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Abstract

The work presented in this thesis is directed at investigating approaches whereby Dy-
namic Time Warping (DTW) can be applied in a more effective and efficient manner.
To act as a focus for the work, kNN classification was considered. The main research
question to be answered was “How can the process of dynamic time warping be
applied so that time series can be more effectively and efficiently compared?”
(than as when applied in its standard form).

The main contributions of the thesis are six approaches for reducing the computa-
tional complexity of DTW process: (i) Sub-Sequence-Based DTW approach (SSBDTW),
(ii) Fuzzy Sub-Sequence-Based DTW approach (FSSBDTW), (iii) Candidate Reduction
Based on Euclidean Distance approach (CRBED), (iv) Candidate Reduction Based on
Lower Bounding approach (CRBLB), (v) Exact Discriminator-Based DTW approach
(EDBDTW) and (vi) Distance Profile -Based DTW approach (DPBDTW). The SSB-
DTW approach was proposed to split time series into equal sub-sequences and then
apply DTW. The FSSBDTW approach was an improvement on SSBDTW. Instead of
splitting time series into equal segments, FSSBDTW split time series into non-equal
sub-sequences by identifying the best splitting point. The CRBED approach was used
as a filtering technique to find the most similar time series by applying Euclidean Dis-
tance (ED) as a similarity measurements with k-Nearest Neighbor classification, and
then applying FSSBDTW for the final classification. The CRBLB approach is similar
to the CRBED approach; however, instead of using ED, CRBLB used a Lower Bound-
ing method to identify the most similar candidates. The FSSBDTW approach was then
applied to the identified candidates. The EDBDTW approach was directed at reshaping
time series in an input data set to a new form by only considering the most similar sub-
sequence (with the same indexes) as a discriminator of a class. FSSBDTW was then
applied to the discriminators for classification purposes. The DPBDTW approach was
an alternative reshaping approach, the distinction between the EDBDTW and DPB-
DTW approaches was that DPBDTW used Matrix Profile technique to reshape the
time series in an input data set to a new form based on distance profiles. FSSBDTW
was then applied to this new form. Note that the last four approaches use FSSBDTW
as a final stage for classification.

The approaches were comprehensively analyzed and evaluated using fifteen time
series data sets taken from the UEA and UCR Time Series Classification repository.
Two benchmarks (Standard DTW and Sakoe–Chiba Band DTW) were considered in the
evaluation analysis. The evaluation was conducted to compare the proposed approaches
with the benchmarks in terms of run time, accuracy and F1–score. Ten Cross–Validation
was adopted to validate the performance of the proposed approaches. The evaluation
demonstrated that all the proposed approaches provide efficiency and effectiveness gains
for enhancing the DTW process compare to the benchmarks. More specifically, the
proposed CRBED approach was found to report the best improvements over the other
approaches.
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Chapter 1

Introduction

1.1 Overview

Over recent years there has been a substantial increase in the amount of data that in-
stitutions and commercial enterprises collect. This has largely been as a consequence
of technical advances. The data collected takes many forms; one such form is temporal
data, specifically time series data [10, 89]. A time series is a set of observations recorded
over time, these observations form a numerical sequence of values. Examples of time
series are electrocardiogram (ECG) data [85], daily stocks prices [27] or daily temper-
atures [22]. Many types of data that are not true time series can be transformed into
time series, including DNA, speech, body movement and shapes [87].

Given our increasing ability to collect large amounts of time series data there is a
corresponding increasing desire to apply the tools and techniques of machine learning
to this data. At a high level, the types of machine learning that can be applied to time
series data are no different to the types of machine learning that can be applied to other
forms of data. We typically want to find patterns and/or build models of various kinds
that reflect the data. The distinctions are: (1) that the number of values in a time series
is typically much greater than that found in a standard tabular data record, and (2)
that we want to consider each time series (record) in its entirety, or at least substantial
sub-sequences of a parent time series, as opposed to considering individual values as in
the case of (say) the generation of neural networks with respect to traditional tabular
data formats. Consequently, the application of the tools and techniques of machine
learning to time series typically entail many comparisons of pairs of time series or time
series sub-sequences. Given the number of comparisons, and the length of the time
series concerned (in comparison with tabular data records), the complexity of time series
analysis algorithms is very much influenced by the number of comparisons undertaken.
For example, time series classification is typically conducted using a k Nearest Neighbour
(kNN) classification model, with k = 1, where the model simply comprises a “bank” of
time series with associated class labels. Given a new time series to be classified this is
compared to every time series in the bank and the new time series labelled with the label
for the most similar time series in the bank. The complexity, using “big O notation”, is
thus O(n) where n is the number of time series in the bank.

There are two fundamental ways in which the similarity between two time series S1

and S2 can be calculated: (1) Euclidean Distance (ED) calculation and (2) Dynamic
Time Warping (DTW). The first requires linear alignment hence both time series must be
of equal length. DTW matches time series sequences by “warping” them in a nonlinear
fashion (hence the name). Therefore, the time series under consideration do not need
to be of the same length [11, 72, 100]. DTW coupled with kNN has been used with

1
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respect to time series classification over many decades [92]. Many research studies
directed at time series classification have demonstrated that DTW outperforms ED
similarity measurement in terms of accuracy (although not in run time) [65, 87, 100,
109]. DTW is thus a popular choice because of its associated accuracy and because
it supports comparison of time series of different length. Example applications include
speech recognition, robotics, finance, medicine, image processing, music processing, and
gesture recognition. There are many more.

However, DTW has a significant disadvantage, compared to ED measurement, which
is its quadratic complexity. Given two time series, S1 = [p1, p2, . . . , px] and S2 =
[q1, q2, . . . , qy], where x and y are the lengths of S1 and S2 respectively; DTW oper-
ates by creating a x × y “distance matrix” and finding the minimum “warping path”
from the points at either end of the leading diagonal. The computational complexity of
one application of DTW is therefore given by O(x×y), while that of ED is given by O(x)
or O(y) (recall that ED requires that x = y). Note therefore that the computational
complexity of DTW increases quadratically as the time series size increases, while the
complexity of ED increases linearly as the time series size increases.

1.2 Motivation

From the foregoing, the main motivation for the work presented in this thesis is the time
complexity associated with the application of DTW. This therefore serves to limit its
application in terms of the size of the time series data sets that it can be applied to. The
overriding objective of the work presented in this thesis is thus to reduce this complexity
without adversely affecting the accuracy of its application. The fundamental idea is to
make the use of DTW both effective and efficient with respect to time series data. The
work presented is therefore motivated by the observation that, as noted above, DTW
has a quadratic complexity with respect to the size of the time series being compared. In
other words, the complexity of DTW increases as the time series considered get longer.
The intuition underpinning the work presented in this thesis is that DTW complexity
can be reduced by using novel mechanisms not considered previously in the literature.

1.3 Research Question

From the foregoing, DTW is a well-established time/point series similarity checking
mechanism which has been used effectively. It has been adopted in many domains, such
as; speech recognition [86], time series data mining [15, 34], music analysis [79] and
pattern recognition [121]. It is also worth noting that the DTW concept has similari-
ties with Levenshtein Distance calculation; also referred to as Edit Distance, used for
measuring the similarity between two strings. However, in this case, the values used are
the number of deletions, insertions or substitutions required to transform the first string
into the second.

The overriding research question that this thesis seeks to address is therefore:

How can the process of dynamic time warping be applied so that time series can be
more effectively and efficiently compared?”

To provide an answer to this research question, a number of subsidiary research questions
were considered:
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1. Given that DTW operates using a distance matrix what are the most appropriate
mechanisms, in addition to those described in the literature, for limiting the size
of this matrix?

2. Is there any advantage to be gained, in terms of efficiency, from segmenting the
distance matrix into a set of sub-matrices?

3. Is it possible to utilise knowledge of a given application domain to limit the DTW
processing required. For example, in the case of kNN classification, using early
abandonment with respect to time series that are clearly not going to be very
similar to the query time series?

4. Is it possible to only consider sub-sequences that are repeated in instances (records)
of the same class, so that DTW can be applied only to such sub-sequences instead
of the entire time series?

5. Is it possible to identify a mechanisms for transforming time series from their
original form and apply DTW to this new form?

6. Assuming that the answers to the above entail the use of parameters of various
kinds, how can these parameters be optimised?

1.4 Research Methodology

The research methodology, designed to provide answers to the above research questions
and to address the central motivation of this thesis, is presented in this section. To act
as a focus for the research it was decided to concentrate on time series classification
using kNN with k = 1, because: (i) classification is a common time series analysis
application and (ii) kNN with k = 1 was, and remains, the most frequently used time
series classification model [65, 87, 100, 109].

The start point for the research was to generate a baseline “Standard” DTW classi-
fication mechanism and analyse its operation. The Standard DTW implementation was
evaluated with respect to fifteen time series data sets taken from the UEA and UCR
(University of East Anglia and University of California Riverside) Time Series Classi-
fication Repository [14]. The evaluation metrics used were accuracy, F1-Score and run
time. The same evaluation metrics were used with respect to all evaluations reported in
the thesis. The complexity of the Standard DTW was considered using big O notation.

From the literature, a frequently adopted technique for reducing the time complexity
of DTW is to use what is known as a “warping window”; a mechanism for reducing the
overall search space within the distance matrix. There are a number of mechanisms
whereby the warping window idea can be realised; one of these, the Sakoe-Chiba Band,
was selected for further evaluation. The idea was to use the results from this evaluation
as a further benchmark with which to evaluate and compare the approaches proposed
later in the thesis. in terms of run time, accuracy, and F1 score.

Once the two benchmark approaches had been established the intention was to inves-
tigate a series of alternatives whereby the complexity of DTW could be reduced without
adversely affecting accuracy. A number of alternatives were considered:

1. Vertical Segmentation: Tabular data can be segmented either horizontally
by grouping sequences of rows (records), or vertically by grouping sequences of
columns. The first idea to be considered was vertical segmentation splitting a
time series into sub-sequences and processing those sub-sequences individually,
thus reducing the overall size of the DTW distance matrix.
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2. Reducing The Number of Candidates: Reducing the number of DTW com-
parisons required, so that the DTW process does not have to be applied to the
entire data set. Only the time series which are likely to be good matches will thus
be considered in the DTW process.

3. Time Series Transformation: Instead of applying the DTW to entire time
series, time series could be transformed to a new form (shorter than the original),
to which DTW could be applied more efficiently.

1.5 Contribution

A number of contributions are presented in this thesis with respect to machine learning
in general, and time series classification in particular. The main contributions of this
thesis are a number of approaches for reducing the complexity of DTW while maintaining
effectiveness, as follows:

1. Sub-Sequence-Based DTW (SSBDTW): A first benchmark data segmentation ap-
proach founded.

2. Fuzzy Sub-Sequence-Based DTW (FSSBDTW): A refinement of the SSBDTW
approach.

3. Candidate Reduction Based on Euclidean Distance (CRBED): Use of the concept
of Euclidean Distance similarity measurement to reduce the number of applications
of DTW.

4. Candidate Reduction Based on Lower Bounding (CRBLB): Use of the concept of
lower-bounding reduction to reduce the number of applications of DTW.

5. Exact Discriminator-Based DTW (EDBDTW): An approach directed at finding
a sub-sequences, called discriminators, based on a class, so they can be used to
classify a new time series instead of using the entire time series.

6. Distance Profile-Based (DPBDTW): An approach influenced by the concept of the
“Matrix Profile” idea, where time series are transformed to a new form, namely a
distance profile format.

The main advantages of the above can be itemised as follows:

1. Reducing the time complexity of the Dynamic Time Warping (DTW) process, so
that the run time is reduced compared to Standard DTW and warping window
mechanisms such as the Sakoe-Chiba Band mechanism.

2. Efficiency gains with respect to both short and long time series. Although the
efficiency advantages were more relevant with respect to longer time series.

3. Effectiveness gains in that (interestingly), the reported evaluations also indicated
enhancement in the classification effectiveness, measured using accuracy and F1-
score, with respect to both long and short time series data sets. In some cases
accuracy reached 100%.

4. Unlike most work in the literature, which is directed at improving DTW perfor-
mance in only one direction, either reducing the number of points or the number
of records to be considered, the mechanisms presented in this thesis were directed
at both.
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1.6 Publications

A number of academic papers, presented in this thesis, have been published as follows:

1. Alshehri, M., Coenen, F. and Dures, K. (2019). Sub-Sequence-Based Dynamic
Time Warping. Proc 11th International Joint Conference on Knowledge Discov-
ery, Knowledge Engineering and Knowledge Management (IC3K 2019), Volume
1: Knowledge Discovery and Information Retrieval (KDIR’19), pp274-281.

This paper proposed the initial idea of SSBDTW. Given two time series S1 and S2

these are divided into s sub-sequences so that we have S1 = [U11 , U12 , ...U1s ] and
S2 = [U21 , U22 , ...U2s]. DTW is then applied to each sub-sequence paring U1i , U2j

where i = j. The final minimum warping distance arrived at was the accumulated
warping distance for all sub-sequences after s application of DTW. The operation
of the proposed SSBDTW was compared with the operation of Standard) DTW.
More detail concerning SSBDTW presented In Chapter 4.

2. Alshehri, M., Coenen, F. and Dures, K. (2019). Effective Sub-Sequence-Based
Dynamic Time Warping. Accepted for publication at AI-2019, Thirty-ninth SGAI
International Conference on Artificial Intelligence.

This paper presented a number of variations on SSBDTW by presenting and eval-
uating a sequence of mechanisms to enhanced the splitting process. It was con-
jectured that a rigid definition of s, number of sub-sequences resulted from the
splitting process, might not result in the best segmentation. It was found that
good points at which to cut (fragment) two time series to be compared was where
they meet (same value), or at least at points where the distance between values
of corresponding pairs of points was at a minimum. Thus a degree of fuzziness
should be included to derive the best fragmentation. More detail concerning the
mechanism presented in this paper are included in Chapter 4.

3. Mohammed Alshehri. M., Coenen, F. and Keith Dures (2020). Candidates Re-
duction Coupled with Enhanced Sub-Sequence-Based Dynamic Time Warping. Ac-
cepted for publication at the BCS SGAI AI conference, AI2́020.

This paper presented one of the proposed candidate reduction mechanisms, pre-
sented later in this thesis in Chapter 5, directed at limiting the number of DTW
process that needed to be applied when conducting kNN time series classification.
A two phase approach were proposed: (i) use of Euclidean Distance (ED) as the
distance measure to find the most similar candidates given that ED measurement
is significantly cheaper than DTW, and (ii) processing of the identified candidates
using FSSBDTW (one of the splitting mechanisms proposed in the thesis). More
detail will be presented in Chapter 5.

4. Alshehri, M., Coenen, F. and Dures, K. (2021). Motif-based Classification using
Enhanced Sub-Sequence-Based Dynamic Time Warping. In Proceedings of the 10th
International Conference on Data Science, Technology and Applications - DATA.

This paper presented two approaches to reformatting time series to a new form (i)
based on a discriminator approach and (ii) based on a distance profile approach.
Both approaches changed the time series in a data set to a shorter form. The new
form can then be processed using FSSBDTW. More detail will be presented in
Chapter 6.
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1.7 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2: Background and Related Work.
The background and the related work to the work presented in this thesis are reviewed
in this chapter. The chapter starts with a review of Dynamic Time Warping similarity
measurement. This is followed with a review of the related work with respect to the time
series analysis approaches and mechanisms considered throughout the work presented
in the thesis.

Chapter 3: Evaluation Data sets and Benchmark Approach.
In this chapter, a detailed description is given of the fifteen time series data sets used
with respect to the evaluation reported on in this thesis. In addition, an analysis of
the two time series classification benchmarks, used later in this thesis for comparing
alternative proposed approaches, is presented: (i) Standard DTW and (ii) Sakoe-Chiba
Band DTW (S-C Band DTW). These are evaluated using the fifteen evaluation time
series data sets introduced in the previous chapter

Chapter 4: Sub-Sequence-Based Dynamic Time Warping Approaches.
Two alternative, segment-based DTW approaches are considered in this chapter: (i)
Sub-Sequence-Based DTW (SSBDTW) and (ii) Fuzzy Sub-Sequence-Based DTW (FSS-
BDTW). The latter featuring a number of improvements over the first. Both adopted
the idea of vertically fragmenting the input data. A comparative evaluation is included
in the chapter.

Chapter 5: Candidate Reduction Based in Euclidean distance and Lower
Bounding techniques.
In this chapter, the idea of “candidate reduction” is investigated in the context of FSSB-
DTW. The idea is to limit the number of applications of DTW by reducing the number
of records that need to be considered. In other words, so that DTW only needs to be
applied to the most similar records. Two candidate reduction techniques, incorporated
into FSSBDTW, are proposed: (i) Candidate Reduction Based on Euclidean Distance
(CRBED) and (ii) Candidate Reduction Based on Lower Bounding (CRBLB). A com-
prehensive comparative evaluation is included in the chapter.

Chapter 6: Time Series Data transformation approaches.
The work presented in this chapter is founded on the concept of data transformation
with respect FSSBDTW. The main idea is to transform the time series in a data set to
a new form (shorter than the original) to which FSSBDTW can then be applied. Two
transformation-based techniques are presented: (i) Exact Discriminator-Based DTW
(EDBDTW) and (ii) Distance Profile-Based (DPBDTW). The chapter is concluded
with a comparative analysis of the two techniques.

Chapter 7: Conclusion and Future Work.
This final chapter concludes the work presented in this thesis. The chapter summarises
the main findings of the work with respect to the research question, and subsidiary ques-
tions presented in this chapter. The chapter also proposes a number of recommendations
regarding possible directions for future work.



Chapter 1. Introduction 7

1.8 Summary

This introductory chapter has presented the background and motivation for the work
presented in this thesis, together with the research question and subsidiary research
questions that the thesis seeks to address. The chapter also included a review of the
adopted research methodology, and listed the contributions made by the thesis and
the publications produced as the work progressed. The chapter was concluded with a
review of the structure of the remainder of the thesis. The following chapter will provide
a literature reviews covering related work to that presented in this thesis.



Chapter 2

Literature Review

2.1 Introduction

As noted in Chapter 1, the work conducted in this thesis is directed at speeding up
Dynamic Time Warping (DTW) similarity measurement. To provide context for the
work, the selected focus was time series classification using the kNN algorithm, an
algorithm frequently used with respect to time series classification and which features
significant amounts of similarity measurement, and hence was deemed to provide an
excellent vehicle for the proposed study [50, 91, 106, 117]. This chapter, therefore,
commences by presenting the necessary background concerning time series classification
(Section 2.2) and then goes on to consider time series similarity measurement (Section
2.3) categorising these as either: (i) lock-step measures and (ii) elastic measures. Section
2.3.1 gives a detailed description of the Dynamic Time Warping (DTW) algorithm.
Section 2.3.2 presents a comprehensive review of previously proposed approaches, from
the literature, directed at speeding up DTW using the concept warping windows, either:
(i) predefined or (ii) learnt. Local, as opposed to global, warping windows are also
considered. Section 2.3.3 discusses limiting the number of DTW calculations rather than
limiting the size of the distance matrix as in the case of warping window techniques.
A number of techniques are listed of which candidate reduction is the most significant,
Candidate reduction is thus considered in further detail in Section 2.3.4. The chapter is
concluded with a discussion of mechanisms used to reformat time series data in Section
2.3.5. A summary of the work presented in this chapter is then given in Section 2.3.6

2.2 Time Series Classification

Time series classification is broadly the process of labelling a previously unseen time
series with a class label c taken from a predefined set of classes C = {c1, c2, . . . }. In
other words, given an unlabelled time series, the classification task is to label the time
series [7, 125]. The classification is conducted using a model constructed from a pre-
labelled set of examples, often referred to as training data or simply the training set
[42, 45]. Hence we categorise the process of generating a classification model as a form
of supervised learning (the opposite is unsupervised learning, but unsupervised learning
is not relevant to this thesis) [7, 35]. The objective of classification model generation is
to build a model that maximises classification accuracy, this is achieved by focusing on
features or patterns within the training data that serve to distinguish between classes
[7]. There are a range of mechanisms available that can be used to generate time series
classification models; frequently referenced examples include: (i) Decision Trees [16], (ii)
Support Vector Machine [25], (iii) Deep Learning [37] and (iv) k-Nearest Neighbour [28].

8
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These are considered in some more detail in the following four sub-sections, Sub-sections
2.2.1 to 2.2.4.

2.2.1 Decision Tree (DT)

The oldest form of time series classification model generation mechanisms is, arguably,
the Decision Tree (DT) algorithm. The main idea of this classification model is to divide
the training data in a hierarchical manner to form a tree structure. The root and body
nodes are designed to direct the classification resolution process to a leaf node that
hold a class value [7, 94]. Further details concerning DT algorithms can be found in
[105]. The challenge when generating DTs is defining the splitting criteria at the root
and body nodes, this can be particularly challenging with respect to time series data.
Example where decision trees have been used for time series classification can be found in
[21, 84]. The drawbacks of using DT can be listed as follows: (i) unlike categorical data,
DT does not perform effectively when considering large continuous numerical data (ii)
with respect to some data sets calculating the splitting criteria can be complex resulting
along model training times, and (iii) a small change in the data tends to cause instability
because it can cause a need for change in the tree structure [103, 107].

2.2.2 Support Vector Machines (SVM)

Support Vector Machine (SVM) is a widely used time series classification algorithm
[53, 105]. SVM uses positive and negative discrimination to classify data to perform
binary classification; two classes, a positive class and a negative class [19]. In linear
cases, the SVM model “maps” data using a high-dimensional feature space. SVM sepa-
rates between classes by using a linear hyperplane which has margins equally distanced
between the classes and the hyperplane [7]. In non-linear cases, a Kernel function, which
separates between negative and positive classes using a nonlinear boundary, is utilized
[7]. Further details concerning the SVM algorithm can be found in [19]. In the context
of time series classification SVMs have been used in time series forecasting [63] and used
with DTW to classify normal and pre-seizure electroencephalograms as in [57]. The
disadvantages of using SVMs can be listed as follows: (i) SVMs do not perform well
with overlapped classes, (ii) sufficient generalization performance is required for select-
ing appropriate hyperparameters, and (iii) SVMs are slow, compared to kNN models,
with respect to large time series because they require a large amount of time to process.
[2, 25].

2.2.3 Deep Learning (DL)

Deep learning, facilitated by the computer power that is currently available, has revolu-
tionised the field of machine learning. The take up with respect to time series classifica-
tion has been less pronounced. In deep learning, Long Short-Term Memory (LSTM), an
artificial Recurrent Neural Network (RNN) architecture, is used typically [39, 119]. It is
used for processing entire sequences of data, such as video or speech data, as well as two
dimensional data such as image data. LSTM consist of 4 units: (i) a cell, (ii) an input
gate, (iii) an output gate and (iv) a forget gate; where the cell remembers values and
the three gates regulate the flow of information [97]. In the context of time series data,
LSTM networks are very useful for classification, processing and prediction [52, 131].
The main challenge of deep learning is the amount of training data that is required,
compared to DT and SVM models, which renders it inappropriate for many time series
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classification applications. For this reason, LSTM has not be considered for comparison
purposes in this thesis.

2.2.4 k-Nearsest Neighbors (kNN)

The most commonly used time series classification method is k Nearest Neighbour (kNN)
classification [113]. The idea is to use a set of pre-labelled examples as a data bank (a
data repository), D, comprised of r examples each associated with a class c taken from
C. A new time series to be labelled is then compared with every time series in D and
the labels associated with the k most similar time series used to label the new time
series. Where k > 1 there is a possibility of conflict, in which case a conflict resolution
mechanism, such as voting, is required. When k = 1 this issue does not arise hence
1NN is the most popular form of kNN classification. Further detail concerning the kNN
algorithm can be found in [103]. Given its popularity, and its ease of implementation and
use, 1NN was adopted with respect to the evaluations presented in this thesis. Any of
the other classification algorithms listed above could have been used for the comparative
evaluation; however, 1NN allows for straight-forward complexity calculation. A further
reason for adopting 1NN is that there is evidence to suggest that 1NN outperforms other
time series classification algorithms [65, 100, 109].

2.3 Similarity Measures for Time Series

In time series analysis, finding the similarity between time series is a significant task.
This is specifically the case with respect to time series classification and clustering that
require many comparisons [112]. Selecting the most appropriate similarity measurement
depends on the nature of the data [1, 87]. Exact matching between two time series is
rare; however, looking for approximate matches is a common requirement [8, 41]. This
can best be illustrated by considering a 1NN classification scenario, Figure 2.1 shows a
database D holding four time series {S1, S2, S3, S4} and a new time series (the query
time series) to be labelled according to the labelling in D. The best match is time series
S3 and this label is used to label the new time series. From the figure, it can be seen
that this is a “closest” match and not an “exact” match.

Finding the similarity between time series can be categorized according to the re-
quirements of the application under consideration. Three categories of approach can be
identified:

1. Auto-correlation-based approach: Measuring the similarity of a time series
and a lagged version of itself [58]. For example, measuring the relationship between
current values of a time series and its previous values to identify (say) a change in
trend [78].

2. Correlation-based approach: Measuring the relationship between two time
series based on time. For instance, whether two time series change in a similar
way as they progress in relation to one another [74].

3. Shape-based approach: Measuring the similarity based on shape. For example,
how a time series is similar to another in its shape [78].

The last two can also be distinguished by categorising them as dynamic and static
approaches. The last, the Shape-based approach, is the most frequently encountered
and therefore used with respect to the work presented in this thesis.
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Figure 2.1: Time Series Similarity [8].

From the literature, distance measures used to determine the similarity between two
time series, S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy] (where pi and qj are individual
values in the time series, and x ∈ N and y ∈ N are the time series lengths), can be
categorized (at a high level) in terms of the nature of the measure used: (i) Lock-step
Measures, and (ii) Elastic Measures. Each is considered in further detail in the following
two sub-sections.

Lock-step Measure

The lock-step measure is used to calculate the distance between points in a one-to-
one manner. Given two time series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . px], both
of length x ∈ N, the distance will be calculated between each point of S1 with the
corresponding point in S2 [118]. A common example of such a measure is Euclidean
Distance (ED), where similarity dE is measured as shown in Equation 2.1, the square
root of the sum of the squares of the differences between corresponding points in the
two time series [12, 65].

An alternative might be Manhattan distance [26]. Figure 2.2 provides an illustration
of the Lock-step measure approach.

Figure 2.2: Lock-step Measure Example.

Lock-step measures offer the advantage of comparative computation efficiency (com-
pared to Elastic measures) because they operate in a linear manner. Therefore, the
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complexity of calculating the similarity between two time series, using “Big O” nota-
tion, can be expressed as O(x), where x is the length of the time series [121]. However,
Lock-step measures have a weakness in terms of accuracy with respect to finding the sim-
ilarity between two time series based on shape, this weakness is because of the one-to-one
mapping between the points in the two time series. In other words, local time-shifting,
where the time series shape can hint at similarity, cannot be captured [8]. An additional
disadvantage is that lock-step measures only work with time series of the same length
[12, 87].

dE =

√√√√ n∑
i=1

(xi − yi)
2 (2.1)

Elastic Measure

Elastic measures provide more flexibility compared to Lock-step measures. The flexibil-
ity is derived from the approach that elastic measures adopt, which is a one-to-many or
many-to-one mapping between points in a pair of given time series S1 and S2 [98]. There-
fore, local time shifting can be captured simply [8]. Elastic measures, therefore, provide
greater accuracy with respect to finding the similarity between time series. Figure 2.3
illustrates the mapping approach adopted by Elastic measures.

Figure 2.3: Elastic Measure Example.

However, elastic measures have a disadvantage, in comparison with Lock-step mea-
sures, in terms of their time complexity since they are quadratic in nature [40, 48].
Therefore, the complexity of calculating the similarity between a time series S1 =
[p1, p2, . . . , px] of length x ∈ N and a time series S2 = [q1, q2, . . . , qy] of length y ∈ N, and
again using “Big O” notation, can be expressed as: O(x× y), or if x = y, O(x2) [77].

The most frequently encountered example of Elastic measure is the warping distance
measure which is derived from the Dynamic Time Warping (DTW) process [76, 93].
The work presented in this thesis is therefore directed at addressing the time complexity
of DTW. Thus, further details regarding DTW are given in the following sub-section,
Sub-section 2.3.1.

2.3.1 Dynamic Time Warping

DTW is founded on the idea of identifying an optimal alignment between two time series
which may be of different lengths [99, 109]. Unlike Lock-step similarity measurement,
DTW matches time series sequences by “warping” them in a nonlinear fashion (hence the
name). DTW was first proposed in the context of speech recognition for the comparison
of speech patterns [92]. Subsequently, it has been used for many other applications,
for example, music analysis [32], image processing [17], medicine analysis [49], gesture
recognition [111] and weather forecasting [67].
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The DTW process can best be described by considering two time series S1 =
[p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy], where x and y are the lengths of the two se-
ries respectively and x, y ∈ N. The first step is to construct a “distance matrix” M
of size x × y where the value held at each cell mi,j ∈ M is the summation of di,j and
the minimum cumulative distance value held at the three “previous” cells to mi,j [81],
where di,j is a Euclidean distance between the corresponding points, see Equation 2.2;
and the calculation of mi,j utilizes Equation 2.3. At the end of the process, the minimum
warping distance (wd) will be held at mx,y.

di,j =
√

(pi − qj)2 (2.2)

mi,j = di,j + min{mi−1,j ,mi,j−1,mi−1,j−1} (2.3)

An alternative to Euclidean distance might be absolute value distance calculation.
The distance matrix M is used to determine a minimum warping distance wd, which

is then used as a similarity measure. The warping distance is a function of the minimum
warping path, WP , from cell m0,0 to cell mx,y. A minimum warping path is thus a
sequence of cell locations, WP = [w1, w2, . . . ] in the matrix M , that minimises the
warping distance. Given two time series s1 = [p1, p2, . . . , px] of length x ∈ N and
s2 = [q1, q2, . . . , qy] of length y ∈ N, and using “Big O” notation, the complexity of DTW
can be expressed as: O(x× y), or if x = y O(x2). Thus DTW becomes computationally
expensive when x and/or y are large [109]. This quadratic complexity therefore renders
DTW to be impractical with respect to many application domains.

From the foregoing, it can be seen that the operation of DTW is such that it meets
the following conditions in its warping path [100]:

1. Boundary condition: The path starts from the location m(0,0) and ends at the
location m(x,y).

2. Monotonic condition: The warping path will stay the same or increase. Both
the i and j indexes never decrease.

3. Continuity condition: The path continues one step at a time. Both i and j can
only increase by 1 on each step along the path. Therefore, the follow-on location
is either mi−1,j ,mi,j−1, or mi−1,j−1.

The above is illustrated in Figure 2.4 [79]. Given two time series S1 = 1, 2, 3, 4, 5, 6, 7, 8, 9
and S2 = 1, 2, 3, 4, 5, 6, 7. The figure comprises four sub-figures as follows: (a) warping
path meets all the conditions, (b) warping path where the first condition is ignored, (c)
warping path where the second condition is avoided, and (d) warping path where the
third condition is discarded.

The basic DTW process is illustrated in Figure 2.5. The figure shows the distance
matrix M assuming two time series, S1 = [1, 2, 2, 3, 2, 1, 1, 0, 1, 0, 3, 2, 4, 2, 0] and S2 =
[1, 2, 4, 3, 3, 0, 3, 3, 1, 2, 1, 1, 3, 4, 2]. The minimum warping path is shown by the red line.
The final warping distance arrived at is highlighted using a green box.

2.3.2 Warping Window Approaches

Given the above, the use of DTW, despite its claimed accuracy, can be expensive,
especially when having large time series collections and/or very long time series. One
approach that has been proposed to address this issue is to define a “warping window”
[36]. The idea is founded on the observation that, given a classification or clustering
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Figure 2.4: Warping Path Conditions of Dynamic Time Warping.

Figure 2.5: Dynamic Time Warping Matrix Example.

scenario, we are looking for best matches and those will occur when we have a warping
path that is on, or is close to, the leading diagonal in M ; hence any effort calculating
cell values towards the ends of the antidiagonal are wasted [30]. The warping window is
thus the collection of cells λ ⊆ M for which values should be calculated, a default value
is used otherwise [31]. In other words, the warping window idea places constraints on
the matrix area to be considered when calculating a minimum warping path [88]. The
question then is how to define the warping window λ. Two broad categories of technique
can be identified:

1. Predefined: Techniques where the nature of the warping window is predefined
using one or more parameters (global constraints).

2. Learnt: Techniques where the nature of the warping window is learnt using train-
ing data.

Both are discussed in further detail below. The use of a warping window λ thus defines
a constrained area inside the matrix M for which cell values need to be calculated. In
addition, it prevents any pathological alignment by forcing the warping path to remain
inside the constrained warping window area.

Both the predefined and learnt warping window techniques define a global warping
window to be used in all cases given a particular application. An alternative is to define a
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bespoke warping window for each pair of time series to be considered. This is considered
in further detail at the end of this Sub-section.

The computational complexity of DTW is dependent on the size of the distance
matrix M . Warping window approaches reduce the overall size of M . The speed up
gained using warping window approaches is therefore in the proportion to the reduction
in the size of M . Of course this should not be achieved at the expense of accuracy, which
should remain the overriding consideration. The speed up is in the order of:

O(|M | − |M ′|) (2.4)

where M is the size of the distance matrix before the application of a warping window
approach and |M ′| is the size of the distance matrix after the application of a warping
window approach.

Predefinition Warping Window Techniques

Predefined warping windows use one or more global constraints to define their shape.
The simplest mechanism for expressing a warping window is to define a band, of width
ℓ, stretching from m0,0 to mx,y (given two time series S1 = [p1, p2, . . . , px] and S2 =
[q1, q2, . . . , qy]). From the literature, the most well-documented example of this approach
is the Sakoe-Chiba band [43, 44, 92], originally introduced and used by the speech
analysis community. In [92] it was suggested that that the value for ℓ defining the band
width should be set to 10% of the time series length. However, it has been demonstrated
that, with respect to some data sets, better accuracy can be obtained using a different
value for ℓ than 10% of the time series length [69]. A disadvantage of the Sakoe-Chiba
band idea is therefore the need to identify the best value for ℓ.

An alternative to using a warping window in the shape of a band is to use a parallel-
ogram thus avoiding unnecessary calculation at the start and end of the warping path.
The best-known example of this is the Itakura parallelogram where the warping window
λ is defined by two slope constraints [55, 96]. A disadvantage is therefore the need to
identify values for the slope constraints.

The Sakoe-Chiba band and the Itakura parallelogram are illustrated in Figure 2.6.
Both offer the advantage that they are simple to implement [43]. Both also feature the
disadvantage that, for the same parameter settings, the size of the warping window is
directly related to the size of the time series to be compared. Therefore, given a very
long time series, where the warping window idea should be of particular relevance, the
warping window can be very large [69].

Figure 2.6: Left: The Sakoe-Chiba band, Right: The Itakura Parallelogram [81].
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Learnt Warping Window Techniques

The predefinition of a warping window requires the user to, more-or-less, guess at the
required definition of the window; users thus tend to err on the side of caution. A more
accurate way of defining the warping window is to use a machine learning approach,
although this requires training data. The idea of learning the nature of the warping
window was first proposed in [81] in the context of time series classification. The idea
here was to produce an arbitrarily shaped window. This was defined by considering
each class in the training set in turn and identifying the minimum warping path for each
pair of time series subscribing to that class. The collected warping paths for each class
then defined a “warping sub-window”. These sub-windows were then merged to define a
global warping window. The approach is illustrated in Figure 2.7 where the training set
features three classes (red, blue and green) whose associated warping sub-windows are
merged to form a global window. A disadvantage of learnt warping window techniques is
the computational overhead associated with the training process; this can be substantial,
especially given a large number of time series and/or a large number of classes increases.
The advantage is that the derived warping window is tuned to a particular application
as defined by a given set of time series.

Figure 2.7: Warping Window learning example using three individual classes (red,
blue, green), gray is the combined global window. [81].

Local Warping Windows Techniques

The warping window idea, described in the foregoing section, is used to define an area
of the DTW matrix where calculations do not need to be made, hence speeding up
the DTW process [126]. The warping window once calculated is applied globally to
all time series to be compared. Using kNN classification this will be the time series
held in the kNN bank D and a query time series Q (D = {T1, T2, . . . }. An alternative
is to consider the warping window in terms of a particular pair of time series to be
compared. In other words tailoring the warping window with respect to each comparison.
One example can be found in [99] where Silva et al. proposed a method to speed up
DTW known as PrunedDTW. The fundamental idea was to place upper bounds on the
calculation process. The distances along the prime diagonal, from m0,0 to mx,y, were
first calculated using the squared Euclidean distance. These distances were considered
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to be “upper bounds”. Then for each point in the diagonal the distances along each
row were calculated moving away from the diagonal, in row and column order, until a
distance greater than the current upper bound is reached, further cells are then outside
of the warping window. Interestingly, in [99], an example is given where parts of the
leading diagonal are outside of the warping window.

2.3.3 Limiting DTW Calculation

In the context of limiting the number of DTW comparisons with respect to kNN time
series classification where a new time series to be classified is compared to a “bank” of
time series, Rakthanmanon et al. [87] reported on four different techniques for achieving
this:

1. Early abandonment.

2. Reordering.

3. Candidate reduction using bounding.

4. Candidate reduction using cascaded bounding.

The idea of underpinning early abandonment is to stop the warping path calculation
if the wd value so far is equal to or larger than the best so far; otherwise, the new
value is the best so far. The second promotes the idea of reordering the time series in
the bank so that the time series that are likely to be the most similar to the new time
series are tested first so that the early abandonment process will result in less calculation
than if the time series were not ordered in this way. One way of ordering time series
is according to Euclidean distance similarity (much cheaper than DTW calculation).
The third considered pruning time series from the bank that was unlikely to be a close
match. One way of doing this is by using the lower bounding technique proposed in [59],
the so called LB Keogh technique. This operates by creating an envelop lower bound
and upper bound) around the new time series, and the distance between the bounds and
times series from the bank will be calculated. Where the calculated value exceeds a given
threshold the associated time series is discounted. The fourth idea was directed at using
a “cascading lower bound” where different lower bounds are considered to identify the
bound most suitable for the data set in question. The idea of candidate reduction was
incorporate into two of the proposed approaches presented in this thesis, the Candidate
Reduction Based on Euclidean Distance (CRBED) and the Candidate Reduction Based
on Lower Bounding (CRBLB) approaches. Candidate reduction is therefore discussed
in further detail in the following sub-section.

Time complexity savings resulting from early abandonment, and reordering coupled
with early abandonment, are difficult to calculate. Much depends on the nature of the
data set to be considered. However, in the worse case performance will be the same as
the baseline DTW.

2.3.4 Candidate Reduction Techniques

From the previous sub-section, candidate Reduction is a technique used to reduce the
number of DTW comparisons required when using kNN classification [51, 71]. The idea
is to prune the set of time series to be considered so that the DTW process does not
need to be applied on all the recorders in the kNN “bank”; only the k most similar time
series to the query time series Q will thus be considered for classification purposes. The
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most commonly adopted technique for candidate reduction is to use some form of Lower
Bounding [64, 114, 115]. Thus the kNN time series classification becomes a two-step
process for each comparison between Q and a time series T in the kNN bank:

1. Determine the lower bound for the set of time series in the bank and retain the
lowest K time series.

2. Apply the DTW process to the retained time series to obtain a classification with
respect to the query time series.

In the remainder of this sub-section, a number of lower bounding methods are considered,
namely: (i) LB Yi lower bound, (ii) LB Kim lower bound and (iii) LB Keogh lower
bound.

The computational speed-up attained by candidate reduction techniques is propor-
tional to the number of comparisons that do not have to be considered, given a classifi-
cation scenario. The speed up is therefore in the order of:

O(r − n) (2.5)

where r is the number of records in D and n is the number of records in D after candidate
reduction has been applied.

Candidate Reduction Using LB Yi Lower Bound

Yi et al. introduced a lower bounding method for DTW known as LB Yi lower bounding
[130] to be used in the context of kNN time series classification. Given a time series
T = {t1, t2, . . . tx} held in the kNN bank and a query time series Q, the LB Yi value
is calculated as shown in Equation 2.6 where: max and min are the maximum and
minimum values in Q respectively [121]. This is done for all T in the the kNN bank
and only the time series with the lowest LB Yi value will have DTW applied. Figure
2.8 illustrates the calculation of the LB Yi lower bound.

LB Y i =

i=x∑
i=0

abs((ti ∈ T : ti > max)–max +

i=x∑
i=0

abs((ti ∈ T : ti < min)–min (2.6)

Figure 2.8: LB Yi Lower Bound (red is the query (new) time series) [80].
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Candidate Reduction Using LB Kim Lower Bound

Kim et al. presented a DTW lower bounding method known as LB Kim lower bounding
[61]. The calculation of LB Kim depended on eight values: (i) the values at the first
index of T and Q, (ii) the value at the last index of T and Q, (iii) the maximum value in
both T and Q and (iv) the minimum value in both T and Q, [80]. The sum of the four
differences between these values was then the value for the LB Kim lower bound. Only
the time series on the kNN bank with the lowest LB Kim value will have DW applied.
Figure 2.9 illustrates the calculation of the LB Kim lower bound.

Figure 2.9: LB Kim Lower Bound (red is the query (new) time series) [80].

Candidate Reduction Using LB Keogh Lower Bound

Keogh et al. proposed a DTW lower bounding method known as LB Keogh lower
bounding [59]. The process of calculating LB Keogh starts with defining an envelop or
warping window (such as the Sakoe-Chiba Band [92] or Itakura Parallelogram [55]) of
the form considered previously in Sub-section 2.3.2 that cover a new time series. The
LB Keogh value is then the square root of the sum of the squared difference between
the upper and lower edge of the warping window for T [80]. Figure 2.10 illustrates the
LB Keogh lower bound calculation process.

LB Keogh was used with respect to the Candidate Reduction Based on Lower Bound-
ing (CRBLB) approach presented in Chapter 5. This was adopted because, in general,
it performs well for most time series data sets [60, 110].

From the foregoing, the lower bounding methods described were all directed at re-
ducing the number of records that need to be processed using DTW, so that there was
no need to apply DTW to the majority of records in the kNN bank [80]. Even though
lower bounding methods improved the performance of DTW in term of run time, the
accuracy was not maintained, with respect to some data sets, when DTW was applied
without lower bounding [80]. The reason for this lower accuracy performance was that
some lower bounding methods used dimensionality reduction mechanisms to reduce the
size of the time series to be considered.

2.3.5 Motif Discovery Mechanisms

A motif is a frequently occurring sub-sequence (pattern) in a given time series. The in-
tuition is that, in the context of time series classification, motifs will be good indicators
of class because they are frequently occurring [3, 6]. However, finding motifs is a com-
putationally expensive task [70]. Research and experiments have been conducted using
different algorithms directed at motif discovery, both exact and approximate [47]. This
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Figure 2.10: LB Keogh Lower Bound, A when using Sakoe-Chiba Band and B when
using Itakura Parallelogram [59].

section presents a review of a number of different motif discovery algorithms. Namely
the MK Algorithm (Sub-section 2.3.5) and the Matrix Profile technique (Sub-section
2.3.5). The significance is that the idea of motifs, and especially, the context of matrix
profiles influenced the proposed Distance Profile Based DTW (DPBDTW) approach
presented in Chapter 6 of the thesis.

The expect of using motifs is to reduce the overall size of the time series to be
considered. The speed up will be in the order of:

O(|M ′|) (2.7)

where |M ′| is the reduced size of the distance matrix as a result of using motifs instead
of whole records.

MK Algorithm

The MK algorithm, named after Mueen-Keogh (MK) who first proposed the algorithm,
is a sampling-based motif discovery algorithm. It is claimed to be the first algorithm that
finds exact motifs in long time series [70]. The algorithm starts by randomly selecting
a sub-sequence (usually the first points of the time series) of a predetermined length
n [24]. Then, the similarity distance between the selected sub-sequence and other sub-
sequences is obtained by sliding the sub-sequence along with the original time series
and calculating the Euclidean distance between the selected sub-sequence and all other
sub-sequences of length w excluding trivial comparisons [23, 47]. Finally, the lowest
distance represents the motif which in turn is considered a good discriminator of a class.

Matrix Profile

Matrix profiles, as first introduced in [128], are used to find motifs and discords within
time series. A Matrix Profile has two main components: (i) a distance profile and (ii) a
profile index. The distance profile is constructed using a sliding window technique and
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holds similarity values. The profile index holds indexes to sub-sequences referenced in
the distance profile [73, 75, 132]. Similarity is measured using Euclidean Distance. Only
one parameter is used, the length n, the sliding window size. The profiles are used to
identify “nearest-neighbours”’, most similar time series sub-sequences, and consequently
motifs. Figure 2.11 gives an example of the matrix profile generated from an original
time series.

Figure 2.11: Matrix Profile generation. Top: the original time series. Bottom: the
resulting Matrix Profile.

2.3.6 Summary

The chapter has presented the necessary background to the work presented in this the-
sis, and the related work that intersects with the work presented in this thesis. The
chapter started with the background to time series classification including consideration
of a number of classification approaches: (i) Decision Trees, (ii) Support Vector Ma-
chines and (iii) k-Nearest Neighbour. This was followed by a discussion of time series
similarity measurement approaches, namely: (i) lock-step measures and (ii) elastic mea-
sures. A detailed description of the Dynamic Time Warping (DTW) process was then
presented. It was noted that the main challenge of DTW is its computational complex-
ity. The chapter also presented some previous work directed at addressing the DTW
complexity starting with the idea of warping windows: (i) predefined warping windows,
(ii) learnt warping windows and (iii) localised windows. An alternative to addressing
the computational complexity of DTW is to adopt a lower bounding mechanism, three
were considered: (i) LB Yi Lower Bound, (ii) LB Kim Lower Bound and (iii) LB Keogh
Lower Bound. The Chapter was concluded with consideration of a number of motif dis-
covery mechanisms, some of which were incorporated in the approaches presented later
in this thesis. These mechanisms including: (i) the MK Algorithm and (ii) the Matrix
Profile technique. The following chapter introduces two benchmarks DTW approaches
that were used for the comparative evaluation of the approaches proposed later in this
thesis: (i) Standard DTW and (ii) DTW coupled with the Sakoe-Chiba band.



Chapter 3

Standard DTW and Sakoe-Chiba
DTW

3.1 Introduction

This chapter presents an analysis of two established DTW approaches: (i) Standard
DTW and (ii) Standard DTW coupled with the Sakoe-Chiba Band (S-C Band DTW)
to enhance the run time performance of DTW. The motivations for the analysis of
standard DTW were two-fold:

1. To obtain a deep understanding of the operation of DTW and its computational
complexity.

2. To establish a benchmark with which the various alternatives presented later in
this thesis could be compared. Any proposed alternative, to be worthwhile, would
need to outperform Standard DTW with respect to at least one criteria while
providing a compatible performance with respect to any other criteria. The two
main criteria considered were efficiency and effectiveness.

The motivations for the analysis of S-C Band DTW were:

1. To obtain a deep understanding of the operation of a warping window approach
to addressing the computational complexity of DTW. From the literature, various
solutions have been proposed to mitigate against the complexity of DTW [80, 99,
109]. One such method, as noted in Chapter 2 and one of the most frequently
sighted solutions, is the Sakoe-Chiba band [92], see for example [55, 81].

2. As in the case for the motivation for analysing the Standard DTW approach, to
establish a benchmark with which the various alternatives presented later in this
thesis could be compared.

For the analysis presented in this chapter, time series classification was considered
with respect to kNN; and experiments were conducted using fifteen time series data
sets taken from the UEA and UCR (the University of East Anglia and the University
of California Riverside) Time Series Classification Repository; a well-documented train-
ing/test time series data set source [14, 29, 108]. The same fifteen data sets were used
throughout the work presented in this thesis. The Selection of the data sets was based
on size (number of records and length of time series) and number of classes. Further
detail concerning the data sets will be presented in Sub-section 3.2.

22
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A classification scenario was considered because this allowed measurement of the
effectiveness of the individual DTW approaches considered in this chapter and later
chapters. The classification was conducted using KNN classification because this entailed
a significant amount of time series comparison. For the evaluation k = 1 was used
because, from the literature, this was the most frequently adopted [13, 82, 109, 120];
k = 1 also provides the advantage that it does not require any conflict resolution as in
the case where k > 1.

The rest of this chapter is organized as follows. Section 3.2 presents a brief review of
the evaluation data sets. Section 3.3 presents the benchmark standard DTW approach,
including (i) Standard DTW operation, (ii) a worked example, (iii) pseudo code, (iv)
theoretical complexity calculation, (v) evaluation and (vi) actual complexity calculation.
Section 3.4 presents the Sakoe-Chiba (S-B) DTW approach, also including: (i) S-C Band
DTW operation, (ii) a worked example, (iii) pseudo code, (iv) the theoretical complexity,
(v) evaluation and (vi) actual complexity calculation. A comparison between the two
approaches is given in Section 3.5. The chapter is concluded with a short summary in
Section 3.6.

3.2 Data sets

This section presents a brief overview of the data sets used for the work presented in
this thesis. Each data set D comprised a set of records {r1, r2, . . . , rr}. Each record ri in
turn comprised x points, [p1, p2, . . . , px]. Note that, for each example data set considered
x was constant, this is frequently the case in practice. In total, fifteen data sets were
downloaded from the UEA and UCR repository. These were selected so that a mix of
data sets was obtained in terms of number of points, number of records, number of classes
and the nature (type) of the data sets. An overview of the fifteen data sets is given in
Table 3.1. Column one gives the ID number for the data set, this is used later in this
chapter and in subsequent chapters. Column two gives the name of the data set. Column
three (x) gives the length of a single time series. Column four gives the number of records
(r) (instances). Column five, x×r, gives an indication of the overall size of each data set.
The “Type” of the data set describes the nature of the data set. The terminology used
to describe time series type is that used with respect to the UEA and UCR repository.
The “Sensor” data type indicates data recorded by a sensor such as electric power signal
sensor, the “Motion” data type refers to data recorded by body motion, the “HAR” data
type describes data recorded by hand movement recognition, the “Spectro” type refers to
data collected using a spectrograph, the “Image” type describes data that was collected
by boundary extraction and/or colour image segmentation, and the “Simulated” type
refers to data generated using some form of simulation. For more detail about the data
sets see [14].

3.3 Standard DTW Approach

In this section, the standard DTW benchmark approach is presented and evaluated.
The section is organised as follows. Sub-section 3.3.1 describes the operation of stan-
dard DTW time series similarity measurement. To aid this understanding Sub-section
3.3.2 presents a worked example. The pseudo code for the Standard DTW approach
is presented in Sub-section 3.3.3. Sub-section 3.3.4 then discusses the theoretical com-
putational complexity of Standard DTW using “Big O” notation. Sub-section 3.3.5
presents a practical evaluation of Standard DTW, followed by the derivation of a com-
plexity equation in Sub-section 3.3.6 based on the work reported in the preceding two
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Table 3.1: Time series data sets used for evaluation purposes

ID Data set Length Records Size No. of Data set
No. Name (x) (r) (x× r) Classes Type

1. SmoothSubspace 15 300 4500 3 Simulated

2. ItalyPowerDemand 24 1096 26304 2 Sensor

3. Libras 45 360 16200 15 HAR

4. SyntheticControl 60 600 36000 10 Simulated

5. GunPoint 150 200 30000 2 Motion

6. OliveOil 570 60 34200 4 Spectro

7. Trace 275 200 55000 4 Sensor

8. ToeSegmentation2 343 166 56938 2 Motion

9. Car 577 120 69240 4 Sensor

10. Lightning2 637 121 77077 2 Sensor

11. ShapeletSim 500 200 100000 2 Simulated

12. DiatomSizeReduction 345 322 111090 4 Image

13. Adiac 176 781 137781 37 Image

14. HouseTwenty 2000 159 318000 2 Image

15. PenDigits 8 10992 87936 10 Motion

sub-sections. As noted earlier DTW coupled with kNN was used for the evaluation be-
cause this is the most commonly used combination as evidenced by the previous work
presented in Chapter 2.

3.3.1 Operation of Standard DTW

The operation of Standard DTW was described previously in sub-section 2.3.1; however,
for completeness, it is presented again here. The fundamental idea of DTW is to identify
the optimal alignment between two time series which may be of different lengths [54, 92,
95]. DTW finds the minimum warping distance (wd) between two time series assuming
a nonlinear alignment. The process of DTW can be described as follows. Given two time
series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy], where x and y are the lengths of S1

and S2 respectively, a distance matrix M of size x×y will be generated. Each value held
at each cell mi,j ∈ M is derived by applying a distance calculation to the points pi ∈ S1

and qj ∈ S2 using Equation 3.1, where di,j is the Euclidean distance calculated as shown
in Equation 3.2; an alternative could be the absolute difference between the value pi and
qj as in Equation 3.3. The distance value assigned to mi,j is then the summation of di,j
and the minimum cumulative distance value held at of the three “previous” elements
to mi,j . At the end of the process, the minimum warping distance (wd) will be held at
mx,y [81].

mi,j = di,j + min{mi−1,j ,mi,j−1,mi−1,j−1} (3.1)

di,j =
√

(pi − qj)2 (3.2)

di,j = |pi − qj | (3.3)
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Given the above, the minimum wd for a pair of time series can be interpreted as a
similarity measure between the two time series. Note that if wd = 0 the two time series
in question will be identical.

3.3.2 Standard DTW Worked Example

A worked example of Standard DTW was presented sub-section 2.3.1; the same worked
example is considered here, but in greater detail. The basic DTW process is illustrated in
Figure 3.1 (2.5 in sub-section 2.3.1). The figure shows the distance matrix M assuming
two time series:

S1 = [1, 2, 2, 3, 2, 1, 1, 0, 1, 0, 3, 2, 4, 2, 0]

and

S2 = [1, 2, 4, 3, 3, 0, 3, 3, 1, 2, 1, 1, 3, 4, 2]

The value held at m0,0 is always 0. The values held at m1,0, m0,1 and m1,1 are then
calculated as follows:

m1,0 = d1,0 + m0,0

m0,1 = d0,1 + m0,0

m1,1 = d1,1 + min{m0,1,m1,0,m0,0}

and so on.
The resulting minimum warping path is as shown by the red line in Figure 3.1. In

the figure the final warping distance arrived at is at mx−1,y−1 (highlighted in green).

Figure 3.1: Dynamic Time Warping Matrix Worked Example repeated of Figure 2.5.

3.3.3 Standard DTW Algorithm

This pseudo code for the Standard DTW algorithm is given in Algorithm 1. The input,
line 1, is two time series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy], where x and y
are the lengths of S1 and S2 respectively. The first step, line 2, is to define the x × y
distance matrix M . Next, line 3, m0,0, the start of the warping path, is set to the
value 0. Then, lines 4 to 9, the value of each cell mi,j ∈ M , where i > 0 and j > 0
(this excluding m0,0), is calculated as the Euclidean distance between the corresponding
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point pi ∈ S1 and pj ∈ S2 (absolute value calculation would be an alternative), to
which is added the minimum value from the three “previous” cells (mi−1,j , mi−1,j−1 and
mi,j−1). At the end of the process, line 10, the minimum wd value, held at mx−1,y−1,
will be returned. Two time series are identical if wd equates to zero. As the value of
wd increases, the similarity reduces. A minimum warping path is thus a sequence of cell
locations, WP = [wp1, wp2, ...] in the matrix M , that serves to minimise the warping
distance.

Algorithm 1 Standard Dynamic Time Warping (Standard DTW)

1: input S1,S2

2: M = [x, y] ▷ Generate a matrix x× y
3: DTW [0, 0] = 0
4: for i = 0 to x do
5: for j = 0 to y do
6: dist = d(S1[i], S2[j]) ▷ Calculate dist using Euclidean distance
7: DTW [i, j] = dist+minimum(DTW [i−1, j], DTW [i, j−1], DTW [i−1, j−1]
8: end for
9: end for

10: returnDTW [x, y]

3.3.4 Theoretical Computational Complexity of Standard DTW

The theoretical time complexity of Standard DTW is considered in this section by con-
sidering a kNN time series classification scenario coupled with Ten Cross Validation
(TCV). The complexity of Standard DTW, DTWcomplexityStand, applied to two time
series, S1 and S2 is given by:

DTWcomplexityStand = O(x× y) (3.4)

where x and y are the lengths of S1 and S2 respectively.
For the evaluation data sets used in this thesis, all the time series were of the same

length (with respect to each data set), as they frequently are in time series classification
applications, the above thus simplifies to:

DTWcomplexityStand = O(x2) (3.5)

Using kNN a previously unseen time series is compared with a “data bank” D of time
series whose class labels are known; the label for the previously unseen time series is then
derived from the k most similar time series in the bank. As noted in the introduction to
this chapter, the most commonly used value for k in time series analysis, using DTW,
is k = 1, thus we have 1NN. If we have a data repository D with r examples the time
complexity to classify a single record using 1NN is given by:

O (r ×DTWcomplexityStand) (3.6)

If there are t new time series to be classified (t > 1) the complexity is given by:

O (r ×DTWcomplexityStand × t) (3.7)

In the case of cross-validation, a well-established statistical technique for evaluating
classification models, the complexity becomes:
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O (r ×DTWcomplexityStand × t× numFolds) (3.8)

With respect to the evaluation presented in the following sub-section Ten Cross–Validation
(TCV) was adopted [89]. When using ten cross validation the data set D is split into

ten folds, in which case numFolds = 10, r = 9×|D|
10 and t = |D|

10 . Thus the complexity
becomes:

O

(
9 × |D|

10
×DTWcomplexityStand ×

|D|
10

× 10

)
(3.9)

Which simplifies to:

O

(
9 × |D|2

10
×DTWcomplexityStand

)
(3.10)

3.3.5 Evaluation of Standard DTW

In this section, a practical analysis of the operation of Standard DTW is presented in
term of 1NN classification. The analysis was conducted using the fifteen time series
data sets presented earlier. Thus, a total of fifteen experiments were run, one for each
data set. For each experiment TCV, as described above (see also [18, 89, 123]) was
adopted. For the experiments, a desktop computer was used, the details of which were
as follows: Apple M1 chip with 8 core CPU, 8 core GPU, 16 core Neural Engine, 16GB
unified memory, and 512GB SSD storage. The same set–up as used with respect to
further evaluations reported on later in this thesis. The metrics collected comprised
run time (seconds), accuracy and F1-score; the last two were derived from a confusion
matrix [33, 46, 90]. These were collected with respect to each “fold” of the TCV and
averages calculated together with associated standard deviations so that a measure of
the “spread” of the results could be obtained.

For the evaluation the class to be assigned to a previously unseen time series was
taken from a set of classes C = {c1, c2, . . . }. The number of classes in C is usually small,
less than ten often, only two [66, 104]. Where |C| = 2 this is referred to as a binary
classification, where |C| > 2 this is referred to a multi-class classification [46, 122]. The
assumption was that only one class label can be attached to a time series.

Figure 3.2: Run time results (seconds) using: 1NN classification applied to the fifteen
time series evaluation data sets, Standard DTW and TCV.

The obtained results are presented in Table 3.2. Considering run time first, from
the table, it is clear that the size of the data set affects the time complexity of the
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Table 3.2: Run time (Secs), Accuracy and F1-Score using: 1NN classification applied
to the fifteen time series evaluation data sets, Standard DTW and TCV.

ID Dataset Standard DTW

# Name
Run time

(Secs)
Accuracy

(SD)
F1-Score

(SD)

1 SmoothSubspace 4.36
91.00
(0.04)

0.91
(0.04)

2 ItalyPowerDemand 33.97
95.61
(0.02)

0.95
(0.02)

3 Libras 5.04
58.89
(0.10)

0.60
(0.11)

4 SyntheticControl 18.10
98.50
(0.01)

0.98
(0.01)

5 GunPoint 6.84
94.50
(0.05)

0.94
(0.05)

6 OliveOil 8.15
86.67
(0.15)

0.86
(0.16)

7 Trace 17.30
99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2 22.52
88.46
(0.09)

0.88
(0.10)

9 Car 31.12
80.83
(0.07)

0.80
(0.09)

10 Lightning2 38.15
87.76
(0.09)

0.87
(0.08)

11 ShapeletSim 64.03
82.00
(0.10)

0.81
(0.11)

12 DiatomSizeReduction 72.29
99.38
(0.01)

0.99
(0.01)

13 Adiac 127.74
65.30
(0.04)

0.62
(0.04)

14 HouseTwenty 653.64
95.00
(0.05)

0.95
(0.05)

15 PenDigits 1569.87
85.47
(0.01)

0.85
(0.01)

classification. This is emphasised in Figure 3.2 which shows a graph of the Standard
DTW recorded run times. In the figure, the x-axis gives the identification number of
the relevant data set (see Table 3.1) and the y-axis the run time in seconds. Recall that
the data sets were ordered according to their perceived complexity.

The accuracy and F1 results given in Table 3.2 will be used later in this thesis
for comparison purposes. Recall that the work presented in this thesis is directed at
improving the run time without adversely affecting effectiveness (accuracy and F1 score).

3.3.6 Standard DTW Run time Equation

In this section, an equation for determining the actual complexity (run time) of Standard
DTW, in the context of 1NN and using TCV, is presented. Equation 3.10 gave the
theoretical complexity of Standard DTW using “Big O” notation. Using this equation
we can derive an equation of the actual run time, in seconds, as follows:

runtime =
9 × |D|2

10
× x2 × z (3.11)
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Table 3.3: Recorded run time, z value and calculated run time for Standard DTW.

Recorded Constant Calculated
ID. Data set Run time z Run time

(secs.) (secs.) (secs.)
1. SmoothSubspace 4.36 0.0000023920 4.24
2. ItalyPowerDemand 33.97 0.0000005455 18.97
3. Libras 5.04 0.0000002134 7.20
4. SyntheticControl 18.10 0.0000001552 35.54
5. GunPoint 6.84 0.0000000844 5.91
6. OliveOil 8.15 0.0000000774 7.68
7. Trace 17.30 0.0000000635 19.85
8. ToeSegmentation2 22.52 0.0000000772 21.28
9. Car 31.12 0.0000000721 31.46
10. Lightning2 38.15 0.0000000714 38.99
11. DiatomSizeReduction 65.63 0.0000000711 65.63
12. ShapeletSim 64.03 0.0000000651 81.00
13. Adiac 127.74 0.0000000751 124.01
14. HouseTwenty 653.64 0.0000000718 663.69
15. PenDigits 1569.87 0.0000002260 1617.40

where z is a constant that represents the time to process a single cell in the matrix M .
Regardless of the data set under consideration. Given any run time from Table 3.3, the
value of z can be calculated as follow:

z =
10 × runtime

9 × |D|2 × x2
(3.12)

Figure 3.3: Recorded and calculated run times (seconds) for Standard DTW. using
z̄ = 0.0000004194, with respect to the fifteen evaluation data sets ordered according to

time series length x.

The calculated z value for each data set is listed in Table 3.3. A global z value can
be calculated by simply averaging the calculated z values to give z̄. In this case z̄ =
0.0000004194. Figure 3.3 shows a plot of the recorded run times and the calculated
run times obtained using z̄ = 0.0000004194 with the data sets ordered according to
length x of the time series (number of points) rather than the ordering given in Table
3.2. Figure 3.4 gives a more detailed view of the beginning of the graph given in Figure
3.3. Inspection of the graphs indicates that the recorded and calculated run times are
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Figure 3.4: Detail of start of graph given in Figure 3.3.

not always aligned as well as we would like; especially for longer time series. It is
suggested that this is because shorter time series have less of a DTW overhead than
longer time series. Consequently, when calculating z̄ the value of x should be taken into
consideration. Inspection of the graphs given in Figures 3.3 and 3.4, and further analysis
of the run times, indicated changes of behaviour at x = 15 points and x = 130 points.
We will refer to time series that feature less than 15 points as short time series, time
series that feature between 15 and 130 points as medium time series and time series
that feature more than 130 points as long time series. It was therefore proposed that
z̄ be calculated by averaging small, medium and large time series z values individually.
Thus:

1. For short time series where x < 15 points, as in the case of the PenDigits and
SommthSubspace data sets, z̄ = 0.0000023240.

2. For medium time series where 15 ≤ x < 130 points, as in the case of the ItalyPow-
erDemand, Libras, and SyntheticControl data sets, z̄ = 0.0000003047.

3. For long time series where x ≥ 130 points, as in the case of the largest ten data
sets used in this thesis, z̄ = 0.0000000729.

Figure 3.5 plots the calculated run times, derived using the above process, against the
recorded run times from Table 3.2. From the Figure, it can be seen that the calculated
run times and the recorded run times are now more aligned. Thus it can be concluded
that a better fit can be obtained if we take the time series length into account when
calculating z̄.

3.4 Sakoe-Chiba Band DTW Benchmark

In thiss section, the Sakoe-Chiba (S-C) Band DTW benchmark approach is presented;
the second of the two DTW benchmark approaches considered in this chapter. The
section is structured in a similar manner to the previous section. The section commences,
Sub-section 3.4.1, with an overview of the Sakoe-Chiba Band warping window idea. A
worked example is given in Sub-section 3.4.2, followed by the pseudo code for the S-C
Band DTW approach in Sub-section 3.4.3. The associated theoretical complexity is then
discussed in Sub-section 3.4.4. A practical analysis of the S-C Band DTW approach,



Chapter 3. Standard DTW and Sakoe-Chiba DTW 31

Figure 3.5: Recorded and calculated run times (seconds) for Standard DTW using z̄
calculated according to time series length, with respect to the fifteen evaluation data

sets.

using the fifteen time series data sets used earlier with respect to the evaluation of the
Standard DTW approach, is presented in Sub-section 3.4.5; and the derivation of a
runtime equation in Sub-section 3.5. Again a DTW and kNN combination was used for
the evaluation because of its popularity.

3.4.1 Operation Sakoe-Chiba Band DTW

The Sakoe-Chiba Band (S-C Band) [92], as noted in sub-section 2.3.2, is a well-known
technique used to address the complexity of DTW by applying a predefined warping
window. The technique first gained popularity in the speech recognition community
[43, 55, 83]. The idea is to define a warping window λ that establishes a constrained
area inside the matrix M for which cell values need to be calculated; cells outside of this
area are ignored. The use of a warping window, therefore, serves to limit the number
of calculations needed to generate M . The intuition is that when undertaking 1NN (or
similar) the “best fit” warping path, the warping path with the lowest wd value, will be
located on, or close to, the leading diagonal in M . In addition, it is also argued that
the use of warping windows prevents any pathological alignment by forcing the warping
path to remain inside the constrained warping window area [43, 83, 92].

The S-C Band is the simplest approach for predefining a warping window λ, and
hence selected for the second benchmark used in this thesis. The idea is to define
a band stretching from m0,0 to mx,y (given two time series s1 = [p1, p2, . . . , px] and
s2 = [q1, q2, . . . , qy]). The band is demarcated in terms of a parameter ℓ, a percentage
of the number of points in the x- or y-coordinate directions. In [81, 92] it was suggested
that the value for ℓ should be set to 10% of the time series length; ℓ = 10% was therefore
adopted with respect to the work presented in this thesis. The operation of S-C Band
DTW is similar to Standard DTW; however, focused on the area within the band.

For completeness, as noted in sub-section 2.3.2 an alternative to using a warping
window in the shape of a band is to use a parallelogram thus avoiding unnecessary
calculation at the start and end of the warping path. The best–known example of this is
the Itakura parallelogram where the warping window λ is defined by two slope constraints
[55]. The distinction between the Sakoe-Chiba band and the Itakura parallelogram was
illustrated in Figure 2.6 in the previous Chapter, but for convenience is given again in
Figure 3.6.
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Figure 3.6: Left: The Sakoe-Chiba band, Right: The Itakura Parallelogram [81]
(repeat of Figure 2.6).

3.4.2 Sakoe-Chiba Band DTW Example

A worked example of the Sakoe-Chiba Band DTW process is presented in this sub-
section using the same two time series also used for illustrative purposes in Sub-section
3.3.2 with respect to the Standard DTW approach:

S1 = [1, 2, 2, 3, 2, 1, 1, 0, 1, 0, 3, 2, 4, 2, 0]

S2 = [1, 2, 4, 3, 3, 0, 3, 3, 1, 2, 1, 1, 3, 4, 2]

The operation of the Sakoe-Chiba Band DTW process is shown in Figure 3.7. The
warping window λ is represented by the coloured cells using ℓ = 26.667% (which happens
to equate to 15×0.26667 = 4 points in the x and y coordinate directions). The minimum
warping path is shown by the red line. As in the previous worked example, the final
warping distance arrived at is highlighted using a green box.

Figure 3.7: Left: S-C Band DTW worked example,
Right: S-C Band Warping Window λ defined using the

parameter ℓ (straight red line).

3.4.3 Sakoe-Chiba Band DTW Algorithm

Sakoe-Chiba (S-C) Band algorithm is a well-known algorithm; first gaining popularity
within the speech recognition community [43, 55, 83]. S-C Band algorithm is similar to
DTW algorithm presented in Algorithm 1; however, the main difference is that now the
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cells mi,j ∈ M to be considered are confined to indexes x× ℓ and y × ℓ (recall that ℓ is
a percentage).

The pseudo code for the S-C Band DTW approach is given in Algorithm 2. As
before, the input (line 1) is two time series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy],
and parameter ℓ. The first step (line 2) is to generate a distance Matrix M with size
x × y where x and y are the lengths of S1 and S2 respectively. Next (lines 3 to 7),
the cells in the distance matrix mi,j are initialised to infinity. Next, (line 8) m0,0 is
set to zero. Then, lines 9 to 14, the value of each cell, inside the warping window λ,
excluding m0,0, is calculated using the Euclidean distance of the corresponding points
pi ∈ S1 and pj ∈ S2 (again absolute value calculation would be an alternative), to which
is added the minimum value from the three “previous” cells (mi,j (mi−1,j , mi−1,j−1 or
mi,j−1) [10]. At the end of the process (line 15), the minimum wd held at mx,y will be
returned. As before, two time series are identical if wd equates to zero. As the value of
wd increases, the similarity reduces. Again, the minimum warping path is the sequence
of cell locations, WP = [wp1, wp2, ...] in the matrix M , that minimises the warping
distance.

Algorithm 2 Sakoe-Chiba Band Dynamic Time Warping (S-C Band DTW)

1: input S1,S2,ℓ
2: M = [x, y] ▷ Generate a matrix x× y
3: for ∀pi ∈ S1 do
4: for ∀qi ∈ S2 do
5: DTW [i, j] = infinity
6: end for
7: end for
8: DTW [0, 0] = 0
9: for i = 0 to x× ℓ do

10: for j = 0 to y × ℓ do
11: dist = d(S1[i], S2[j]) ▷ Calculate the distance using Euclidean distance
12: DTW [i, j] = dist+minimum(DTW [i−1, j], DTW [i, j−1], DTW [i−1, j−1]
13: end for
14: end for
15: return DTW [x, y]

3.4.4 Theoretical Computational Complexity of Sakoe-Chiba Band DTW

The run time complexity in terms of “Big O” notation, given two time series, S1 and
S2, when using S-C Band DTW, is given by:

DTWcomplexitySCbandDTW = O(x× y × ℓ) (3.13)

where x and y are the lengths of S1 and S2 respectively, and ℓ is the Sakoe-Chiba
parameter used to define the size of the warping window λ in the x and y coordinate
directions. For the data sets used for evaluation purposes in this thesis (see Section
3.2), all the time series were of the same length, hence x = y. As suggested in [81, 92],
ℓ = 0.1 × x was adopted, with respect to the work presented in this thesis. The above
thus simplifies to:

DTWcomplexitySCbandDTW = O

(
x2 × 10

100

)
= O

(
x2

10

)
(3.14)
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Inserting the above into Equation 3.10 we get the following equation to determine the
theoretical run time complexity associated with the application of the 1NN classification
model [13, 92, 109] to a data set D when using TCV.

O

(
9 × |D|2

10
×DTWcomplexitySCbandDTW

)
(3.15)

or:

O

(
9 × |D|2 × x2

100

)
(3.16)

3.4.5 Evaluation Sakoe-Chiba Band DTW

An operational analysis of S-C Band DTW is presented in this sub-section. The eval-
uation was conducted using 1NN classification, and the fifteen selected datasets from
the UEA and UCR Time Series Classification repository presented in Section 3.2, in the
same manner as presented above with respect to the Standard DTW approach. As noted
earlier ℓ = 10% was used as recommended in [81]. The evaluation metrics used were
again run time (seconds), accuracy and F1 score. The results are presented in Table 3.4.
Note that, these results will be used later in this thesis for comparison purposes. The
runtime results included in Table 3.4 are given in graph form in Figure 3.8. In the figure,
the x-axis records the identification number of the relevant data set (see Table 3.1) and
the y-axis the run time in seconds. A comparison with Standard DTW is presented in
the following section.

Figure 3.8: Run time results (seconds) using: 1NN classification applied to the fifteen
time series evaluation data sets, S-C Band DTW and TCV.

Sakoe-Chiba Band Run time Equation

This section presents the derivation of an equation for the complexity (run time) of
the S-C Band DTW approach using the theoretical complexity equation given in Sub-
section 3.4.4 and the evaluation results given in Sub-section 3.4.5. Using the theoretical
complexity equation given in Equation 3.16, the run time using 1NN and TCV, for the
S-C Band DTW approach, can be expressed as follows:

O

(
9 × |D|2 × x2

100
× z

)
(3.17)
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Table 3.4: Runtime (Secs), Accuracy and F1-Score using: 1NN classification applied
to the fifteen time series evaluation data sets, S-C Band DTW and TCV.

ID Dataset Sakoe - Chiba Band

# Name
Run time

(Secs)
Accuracy

(SD)
F1-Score

(SD)

1 SmoothSubspace 4.32
95.00
(0.02)

0.95
(0.02)

2 ItalyPowerDemand 30.83
95.70
(0.02)

0.95
(0.02)

3 Libras 4.46
63.06
(0.10)

0.60
(0.11)

4 SyntheticControl 14.03
98.50
(0.01)

0.98
(0.01)

5 GunPoint 3.89
97.50
(0.03)

0.97
(0.03)

6 OliveOil 3.39
86.67
(0.15)

0.86
(0.16)

7 Trace 6.65
99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2 8.70
92.68
(0.07)

0.92
(0.7)

9 Car 11.38
81.67
(0.07)

0.81
(0.08)

10 Lightning2 13.52
87.76
(0.09)

0.87
(0.08)

11 ShapeletSim 23.34
82.00
(0.10)

0.81
(0.11)

12 DiatomSizeReduction 27.61
99.69
(0.01)

0.99
(0.01)

13 Adiac 58.89
65.30
(0.04)

0.62
(0.04)

14 HouseTwenty 226.56
93.00
(0.08)

0.93
(0.08)

15 PenDigits 1023.42
87.62
(0.01)

0.87
(0.01)

where z is again a constant that represents the time to process a single point. Regardless
of the data set under consideration, the value of z should be constant and, we would
anticipate this to be the same, or at least similar, to when using Standard DTW. Given
the known run times from Table 3.4 the value of z can be calculated as follow:

z =
runtime× 100

9 × |C|2 × x2
(3.18)

Using this equation, the z values for each data set are listed in Table 3.5. Using the
same mechanism for determining the average z value (z̄) according to whether a time
series is defined as short, medium or long time series, as described with respect to the
Standard DTW approach, gives:

1. For short time series where x < 15, z̄ = 0.0000019205.

2. For medium time series where 15 ≤ x ≤ 130, z̄ = 0.0000002681.

3. For long time series where x > 130, z̄ = 0.0000000296.
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Note that these z values compare favourably with those presented earlier with respect
to the Standard DTW approach.

Table 3.5: Recorded Run time, z value and calculated run time using S-C Band DTW.

Recorded Constant Theoretical
ID. Data set Run time z Run time

(secs.) (secs.) (secs.)
1. SmoothSubspace 4.32 0.0000023700 3.50
2. ItalyPowerDemand 30.83 0.0000004950 16.69
3. Libras 4.46 0.0000001890 6.33
4. SyntheticControl 14.03 0.0000001200 31.26
5. GunPoint 3.89 0.0000000480 2.40
6. OliveOil 3.39 0.0000000322 3.12
7. Trace 6.65 0.0000000244 8.07
8. ToeSegmentation2 8.70 0.0000000298 8.64
9. Car 11.38 0.0000000264 12.79
10. Lightning2 13.52 0.0000000253 15.85
11. ShapeletSim 23.34 0.0000000259 26.68
12. DiatomSizeReduction 27.61 0.0000000249 32.92
13. Adiac 58.89 0.0000000346 50.41
14. HouseTwenty 226.56 0.0000000249 269.80
15. PenDigits 1023.42 0.0000014700 1102.30

Figure 3.9 plots the theoretical run times derived using Equation 3.18 with the
recorded run time from Table 3.4 using the S-C Band DTW approach. From the Figure,
it can be seen that the calculated run time and the recorded run time align well.

Figure 3.9: Recorded and calculated run times (seconds) for S-C Band DTW, using
z̄ calculated according to time series length, with respect to the fifteen evaluation data

sets.

3.5 Standard DTW versus Sakoe-Chiba Band DTW

A comparison of the performance of the Standard DTW approach and the S-C Band
DTW approach is presented in this section. The collated recorded run times, and accu-
racy and F1-scores, with respect to each approach, and each data set are given in Tables
3.6 and 3.7 respectively.
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Table 3.6 gives the run time results. Figure 3.10 presents the recorded run times in
graph form. In the figure, the x-axis records the identification number of the relevant
data set (see Table 3.1) and the y-axis the run time in seconds. From both, the table
and the figure, it can be seen that S-C Band DTW approach outperformed the Stan-
dard DTW approach. The run-time for the S-C Band DTW approach was reduced to
almost one third of the total run time required for Standard DTW. This was partic-
ularly noticeable with respect to some of the data sets considered, such as the Trace,
ToeSegmentation2 and Car data sets.

Figure 3.10: Comparison of the Standard DTW (blue) and S-C Band DTW (red)
recorded run time results for the fifteen evaluation data sets.

Table 3.6: Recorded Run times for the Standard and S-C Band DTW approaches.

Standard DTW S-C Band
ID. Dataset Run time (secs.) Run time (secs.)
1. SmoothSubspace 4.36 4.32
2. ItalyPowerDemand 33.97 30.83
3. Libras 5.04 4.46
4. SyntheticControl 18.10 14.03
5. GunPoint 6.84 3.89
6. OliveOil 8.15 3.39
7. Trace 17.30 6.65
8. ToeSegmentation2 22.52 8.70
9. Car 31.12 11.38
10. Lightning2 38.15 13.52
11. ShapeletSim 64.03 23.34
12. DiatomSizeReduction 72.29 27.61
13. Adiac 127.74 58.89
14. HouseTwenty 653.64 226.56
15. PenDigits 1569.87 1023.42

Table 3.7 gives the accuracy values and the F1 scores obtained using the Standard
DTW approach and the S-C Band approach (values and scores obtained by averaging
over the ten folds of the TCV). The figures in parenthesis are the standard deviation
values obtained. From the table, it can be seen that the performance using the S-C
Band approach is not adversely affected. In some cases, the performance improves as in
the case of the SmoothSubspac, GunPoint, and ToeSegmentation2 data sets. The reason
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for this, it is suggested here, is that the S-C band approach serves to avoid pathological
alignments and consequent miss-classifications.

Table 3.7: Recorded Accuracies and F1-Scores for the Standard and S-C Band DTW
approaches.

ID Dataset Standard DTW S-C Band

# Name
Accuracy

(SD)
F1-Score

(SD)
Accuracy

(SD)
F1-Score

(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.10)

0.60
(0.11)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03)

0.97
(0.03)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

3.6 Conclusion

In this chapter, an overview of the data sets used throughout the thesis has first been
presented. These were taken from The UEA and UCR (the University of East Anglia
and the University of California Riverside) Time Series Classification Repository. Then,
two benchmarks DTW approaches were presented: (i) the Standard DTW approach and
(ii) the Sakoe-Chiba (S-C) Band DTW approach. In both cases, the process, pseudo
code, theoretical complexity and actual complexity were discussed. Both cases were also
illustrated with a worked example and included an evaluation of the approach. The S-C
Band approach featured the idea of a warping window so as to realise efficiency gains.
The significance of both approaches was that they are used for comparison purposes as
described later in this thesis. The chapter was concluded with a comparison between
the operation of the Standard DTW approach and the S-C Band DTW approach in
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terms of run time, accuracy and F1-score. As was anticipated, the S-C Band approach
outperformed the Standard DTW approach in terms of run time, and achieved an equal,
and in some cases better, accuracy and F1 score. Given that the evaluation results ob-
tained were obtained using 15 evaluation data sets, it can be assumed that the results
obtained were reliable. The following chapter introduces the first two of the six alterna-
tive approaches proposed in this thesis, directed at reducing the complexity of DTW, by
splitting time series into sub-sequences: (i) the Sub-Sequence-Based DTW (SSBDTW)
approach and (ii) the Fuzzy Sub-Sequence-Based DTW (FSSBDTW) approach.



Chapter 4

Sub-Sequence-Based Dynamic
Time Warping Approaches

4.1 Introduction

This chapter presents two segmentation-based approaches to addressing the DTW over-
head, the first of a number of alternative approaches considered in this thesis, the Sub-
Sequence-Based approach (SSBDTW) and the Fuzzy Sub-Sequence-Based (FSSBDTW)
approach [10, 11]. The second is a refinement of the first. The central idea presented
in this chapter is, given two time series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qx],
where x is the length of S1 and S2 (the assumption is that both time series are of the
same length), to segment S1 and S2 into two sets of corresponding sub-sequences each of
length len, S1 = [U11 , U12 , . . . ] and S2 = [U21 , U22 , . . . ], and then to apply DTW to each
sub-sequence pairing U1i , U1j where i = j. To differentiate between a time series ex-
pressed in terms of a number of points and a time series expressed in terms of a number
of sequences, the notation L1 and L2 will be used for the latter. Thus L1 = [U11 , U12 , . . . ]
where U11 , U12 ∈ S1, and L2 = [U21 , U22 , . . . ] where U21 , U22 ∈ S2.

The sub-sequence idea is illustrated in Figure 4.1. From the figure the theoretical
complexity of the comparison will then be:

Figure 4.1: Comparison between Standard DTW and Segmented DTW.

DTWcomplexitySub−Sequence = O (x× len) (4.1)

Where len is the length of the sub-sequences. Given that len will be significantly less
than x this compares very favourably with the theoretical complexity of Standard DTW
given in Equation 3.5 in the previous chapter and presented again below:

40
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DTWcomplexityStand = O
(
x2

)
(4.2)

The challenge is then how best to decide what the most appropriate values of len should
be.

The work presented in the chapter was directed at providing answers to the first two
subsidiary research questions given in Chapter 1:

1. Given that DTW operates using a distance matrix, what are the most appropriate
mechanisms, in addition to those described in the literature, for limiting the size
of this matrix?

2. Is there any advantage to be gained, in terms of efficiency, from segmenting the
distance matrix into a set of sub-matrices?

The rest of this chapter follows a similar format to that presented in Chapter 3. Sec-
tion 4.2 presents a description of the SSBDTW approach and Section 4.3 the FSSBDTW
approach. Both sections comprise six sub-sections: (i) the operation of the proposed ap-
proach, (ii) a worked example, (iii) the algorithm expressed in terms of pseudo code, (iv)
theoretical complexity calculation, (v) evaluation and (vi) actual complexity calculation.
A comparison of the performance of the SSBDTW and FSSBDTW is then presented in
Section 4.4. The chapter is concluded in Section 4.5, which provides a summary of the
content and the main findings.

4.2 Sub-Sequence-Based Dynamic Time Warping

This section presents the first of the two sub-sequence-based approaches considered in
this chapter, the Sub-Sequence-Based DTW (SSBDTW) approach. As noted earlier,
the section is organised as follows. Sub-section 4.2.1 describes the operation of SSB-
DTW approach. For further clarification Sub-section 4.2.2 presents a worked example.
The pseudo code for the SSBDTW approach is then presented in Sub-section 4.2.3.
Sub-section 4.2.4 discusses the theoretical computational complexity of the SSBDTW
approach using “Big O” notation. This is followed by Sub-section 4.2.5 which presents a
practical evaluation of the proposed SSBDTW approach. The sub-section is concluded,
in Sub-section 4.2.6, with the derivation of a complexity equation based on the work
presented in the preceding two sub-sections.

4.2.1 Operation of Sub-Sequence-Based DTW

In this section, the operation of the proposed SSBDTW approach is presented. At a high
level, the process is similar to the Standard DTW process described in the preceding
chapter; the distinction is the idea of segmenting the time series. Thus, given two
time series S1 and S2 these are divided into s sub-sequences so that we have L1 =
[U11 , U12 , . . . U1s ] and L2 = [U21 , U22 , . . . U2s ]. DTW is then applied to each sub-sequence
pairing ⟨U1i , U1j ⟩ where i = j. The final minimum warping distance arrived at will be
the accumulated warping distance for all sub-sequences after s applications of DTW.
There are two mechanisms whereby s can be defined:

1. Fixed number: Directly by specifying a value for s, a number of sub-sequences.

2. Fixed length: In terms of a predefined sub-sequence length len, such that s = x
len ,

where x is the overall length of the two time series to be considered (assuming they
are of equal length).
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Both are considered here.

4.2.2 Sub-Sequence-Based DTW Worked Example

Considering the two time series used for the worked example given in sub-sections 3.3.2
and 3.4.2, S1 = [1, 2, 2, 3, 2, 1, 1, 0, 1, 0, 3, 2, 4, 2, 0] and S2 = [1, 2, 4, 3, 3, 0, 3, 3, 1, 2, 1, 1, 3,
4, 2], using standard DTW the matrix M will measure 15×15 (the lengths of the two time
series); The resulting distance matrix M was given in Figure 2.5 and again in Figure 3.1,
and is given again here in Figure 4.2. However; in the case of the sub-sequence-based
method the first step is to define the number of splits s. If, for the purposes of this
example, it is assumed that s = 3, there will be three sub-sequences in each time series,
each of length len = 5, thus L1 = [U11 , U12 , U13 ] = [[1, 2, 2, 3, 2], [1, 1, 0, 1, 0], [3, 2, 4, 2, 0]]
and L2 = [U21 , U22 , U23 ] = [[1, 2, 4, 3, 3], [0, 3, 3, 1, 2], [1, 1, 3, 4, 2]]. Figure 4.3 shows the
three resulting distance matrices. The warping distance in this case is 2 + 8 + 6 = 16.

Figure 4.2: Distance Matrix and Warping Path (red line) for the example time series
S1 and S2 generated using Standard DTW (repeat of Figures 3.1 and 4.2).

Figure 4.3: Distance Matrices and Warping Paths (red lines ) for the example time
series S1 and S2 generated using SSBDTW.
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4.2.3 Sub-Sequence-Based DTW Algorithm

This pseudo code for the SSBDTW algorithm, using the Fixed Number approach to spec-
ifying s, is given in Algorithm 3. The input, line 1, is two time series S1 = [p1, p2, . . . , px]
and S2 = [q1, q2, . . . , qy], where x and y are the lengths of S1 and S2 respectively, and s
is the number of sub-sequences. Note that it is assumed that x = y. The first step, line
2, is to define the length len of the sub-sequences; the notation |S| is used to indicate
the length (number of points) of a time series S. Next, lines 3, two variables are de-
fined to hold the start and end points of a sub-sequence. The lists L1 and L2 are then
declared and initialised with empty lists (line 4). Next, lines 5 to 10, L1 and L2 are
populated with s sub-sequences of length len. Note that the notation [a : b] indicates
a sub-sequence starting at index a and ending at index b. The function append(L,U)
appends segment U to a list L. Next, line 11, a DTW function is called. The DTW
function is given on lines 13 and 18. The Standard DTW process (presented previously
in Chapter 3) is applied to each sub-sequence pairing. The minimum warping distance
will then be the accumulated warping distance for all sub-sequence pairings, held in the
variable wd returned at the end of the function and then returned at the end of the
process.

Algorithm 3 Sub-Sequence-Based DTW (SSBDTW)

1: input S1,S2,s.
2: len = int(|S1|/s) ▷ It is assumed that S1 and S2 are of the same length
3: start = 0, end = size
4: L1 = [], L2 = []
5: for i = 1 to s do
6: U1i = [s1start : s1end

], U2i = [s2start : s2end
]

7: L1 = append(L1,U1i), L2 = append(L2,U2i)
8: start = end
9: end = end + len

10: end for
11: wd =dtw(L1, L2)
12: return wd

13: function dtw(L1, L2)
14: for i = 1 to s do
15: wd = wd+ dtw(U1i ,U2i) ▷ The standard DTW Algorithm
16: end for
17: return wd
18: end function

When using the Fixed Length approach, the desired sub-sequence length len will
form part of the input instead of s, and line 2 will be replaced with s = int(|S1|/len).

4.2.4 Theoretical Time Complexity of Sub-Sequence-Based DTW

Previously the time complexity for comparing two time series using standard DTW was
given by O(x× y), which equates to O(x2) given the assumption that all our time series
are of equal length. The time complexity when using the proposed splitting approach
(DTWcomplexitySSBDTW ) can be expressed as follows:

DTWcomplexitySSBDTW = O
(
len2 × s

)
(4.3)
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Where len is the pre-specified sequence length and s is the number of sequences (seg-
ments). However, given that len× s = x, this can be rewritten as:

DTWcomplexitySSBDTW = O (x× len) (4.4)

Substituting this into Equation 3.8 given in Chapter 3 for the complexity when using
1NN classification, and assuming cross validation, we get:

O (r ×DTWcomplexitySSBDTW × t× numFolds) (4.5)

Where r is the number of examples in the “data bank” D, t is the number of previously
unseen examples and numFolds is the number of folds used in the cross validation (it
is assumed that each fold will be of equal size). When using ten cross validation, where

consequently, D is split into tenths and thus r = 9×|D|
10 , t = |D|

10 and the number of fold
will equal 10, this will translate to:

O

(
9 × |D|

10
×DTWcomplexitySSBDTW × |D|

10
× 10

)
(4.6)

which can be simplified to:

O

(
9 × |D|2

10
×DTWcomplexitySSBDTW

)
(4.7)

4.2.5 Evaluation of Sub-Sequence-Based DTW

The evaluation of the proposed SSBDTW approach is presented in this section. The
evaluation was conducted using 1NN classification and fifteen selected data sets from the
UEA and UCR Time Series Classification repository [14] in the same manner as reported
on in Chapter 3. Experiments were conducted comparing the operation of SSBDTW
with: (i) the Standard DTW, the benchmark approach (Standard DTW) and (ii) S-C
Band DTW benchmark approach. To define the Sakoe-Chiba band warping window,
ℓ = 10% was used as proposed in [81, 92]. The objectives of the evaluation were:

1. To determine the most suitable mechanism for selecting a value for s (fixed number
or fixed length); and what the most appropriate value for s should be.

2. To evaluate the run-time advantages gained using the SSBDTW approach com-
pared to the Standard DTW and the S-C Band DTW approaches from the previous
chapter.

3. To determine whether the classification accuracy of the proposed SSBDTW ap-
proach was commensurate with that obtained using standard DTW and S-C Band
DTW.

The results are considered in further detail below. For the evaluation, a desktop com-
puter was used with: Apple M1 chip with 8 core CPU, 8 core GPU, 16 core Neural
Engine, 16GB unified memory, and 512GB SSD storage. The same set up as used with
respect to the evaluations reported on in the previous Chapter. The evaluation metrics
collected were again total run time (seconds), accuracy and F1-score; the later derived
from a confusion matrix [33, 38]. The accuracy and F1-score values presented later in
this section are all average values, collected using TCV [62].
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Selection of The s Parameter

For the experiments conducted to determine the most appropriate value for s, the first
of the above evaluation objectives, both effectiveness in terms of accuracy and F1 score,
and efficiency in terms of run time, were considered. Recall that we have two mechanisms
for defining s, the number of sub-sequences into which a time series is to be segmented:
(i) fixed number where the value for s is pre-sepcified directly, and (ii) fixed length where
the desired length of the sub-sequence is pre-specified from which a value for s can be
derived. For the first, a range of values for s was experimented with, from 1 to 10,
increasing in steps of 1. Note that s = 1 is equivalent to not segmenting at all (in other
words Standard DTW). For the second, a range of values for len was used from 10 to
50 points, increasing in steps of 10 points. The anticipation was that as s increased the
run time would decrease in a corresponding manner, whilst accuracy would remain the
same or better for the higher values of s.

The run time results are presented in Tables 4.1 and 4.2. Tables 4.1 gives the results
using the fixed number mechanism to define s, and Table 4.2 the results using the
fixed length mechanism for defining s. In the tables, a “-” character indicates that no
result was obtained because the time series was too short for the given value of s or
len. From the tables, it can be seen that, as expected, as s increased the recorded run
time correspondingly decreased. However, where x ≤ 60 points (such as in the case
of PenDigits, SmoothSubspace, ItlayPowerDemand, Libras and SyntheticControl), the
selected value of s or len was found to have less of an impact than when x > 60 points.
Therefore, in the case of PenDigits, further experiments using len = 4 were conducted.

Table 4.1: Recorded run time (Secs) using fixed number time series sub-sequences
with a range of values for s; the “-” character indicates that the time series for a given

data set is too short with respect to the suggested value for s.

s
Data set 1 2 3 4 5 6 7 8 9 10

SmoothSubspace 4.36 4.38 4.51 - - - - - - -

ItlayPowerDemand 33.97 33.25 32.31 34.33 35.41 35.71 - - - -

Libras 5.04 4.89 4.87 5.11 5.25 5.49 5.64 5.79 5.95 6.25

SyntheticControl 18.10 15.16 14.88 14.93 15.27 15.62 16.62 17.07 17.54 17.91

GunPoint 6.84 5.61 5.03 4.68 4.54 4.47 4.38 4.30 4.26 4.20

OliveOil 8.15 4.58 3.28 3.09 2.44 2.11 1.98 1.84 1.70 1.64

Trace 17.30 10.22 8.73 6.23 5.57 5.02 4.79 4.64 4.91 4.52

ToeSegmentation2 22.52 13.09 9.06 7.09 6.82 6.22 5.20 5.02 4.93 4.79

Car 31.12 17.97 11.37 9.75 6.76 6.54 6.19 5.44 5.12 4.81

Lightning2 38.15 19.77 13.88 11.31 9.18 7.78 7.35 6.36 5.75 5.62

ShapeletSim 64.03 34.33 24.13 18.90 16.00 13.97 12.36 11.81 9.77 9.23

DiatomSizeRed 72.29 46.51 30.83 27.05 22.10 21.01 18.38 17.32 16.87 16.40

Adiac 127.74 93.53 74.83 70.03 63.94 51.99 41.94.87 36.09 31.30 27.14

HouseTwenty 653.64 334.36 224.80 169.77 133.00 108.00 93.00 82.71 74.35 67.45

PenDigits 1569.87 1036.28 - - - - - - - -

The s and len values that produced the best accuracy and F1 score results are given
in Tables 4.3. From the table, it can be seen that the fixed number mechanism for
specifying s tended to produce better results. However, from the table it can also be
seen that there was no single best value for s or len that could be identified. For future
work (see Chapter 7) it is suggested that it might be possible to learn a best value of
s using a training data set, as in the case of the work on learning warping windows
presented in [81].
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Table 4.2: Recorded run time (Secs) using fixed length time series sub-sequences with
a range of values for len; the “-” character indicates that the time series for a given

data set is too short with respect to the suggested value for len.

len
Data set 10 20 30 40 50

SmoothSubspace 1.68 - - - -

ItalyPowerDemand 21.17 - - - -

Libras 4.77 7.27 6.58 - -

SyntheticControl 7.58 7.90 7.03 - -

GunPoint 7.26 6.74 6.94 6.56 6.92

OliveOil 1.81 1.77 1.81 1.90 1.96

Trace 7.12 7.27 6.58 6.76 7.19

ToeSegment2 7.58 7.90 7.03 7.52 7.63

Car 4.72 4.25 4.41 4.72 5.04

Lightning2 5.49 4.92 5.26 5.48 5.83

ShapeletSim 12.25 11.96 11.71 12.31 13.41

DiatomSizeRed 21.29 19.72 21.04 22.33 24.25

Adiac 96.55 91.99 101.00 98.32 98.71

HouseTwenty 19.47 16.57 17.03 20.43 22.65

PenDigits - - - - -

Performance Comparison

Figure 4.4 and Table 4.4 present a comparison between SSBDTW, Standard DTW
and S-C Band DTW in terms of accuracy, F1 score and run time (objectives two and
three for the evaluation). Figure 4.4 gives the average run time performance of the
three approaches. From the figure, it can be seen that for the first three data sets,
the smallest data sets, there was little difference between the recorded run times, this
was to be expected. For the remaining twelve data sets, in seven cases the proposed
SSBDTW approach produced the best run time result, in two cases, the S-C Band DTW
approach produced the best run time result and in the remaining three cases there was
no difference between SSBDTW and S-C Band DTW. The values for s and len used
were those reported in Table 4.3. For the S-C Band DTW approach ℓ = 10% was used
as proposed in [81, 92].

Table 4.4 present the comparison between SSBDTW, Standard DTW and S-C Band
DTW in terms of accuracy and F1 score. The values in parentheses are the standard
deviations recorded after averaging over the ten folds of the TCV. Best results are
highlighted in bold font. From the table, it can be seen that the proposed SSBDTW
approach produced the best results with respect to thirteen of the fifteen data sets
considered; for the remaining two cases, an almost identical performance was recorded.
Where the performance was improved, it was conjectured that this was because the
effect of noise was reduced when using the segmentation.

The results highlighted the issue of selecting the best value for s. As noted earlier,
there is no single best value for s. In some cases, there are a range of values for s
that give the same accuracy and F1 score (for example the GunPoint and OliveOil
data sets). From the results obtained it was conjectured that the sub-sequence-based
approach might not work well for short or medium time series (less than or equal to 60
points). However, from Table 4.4, it can be seen that, even when considering short time
series, accuracy was maintained if not improved.
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Table 4.3: Overall best accuracy and F1 results using SSBFTW (Fixed Number and
Fixed Length), best values highlighted in bold font.

ID
#

Data set Fixed Number Fixed Length

s ACC F1 len Acc F1

1 SmoothSubspace 3
98.67
(0.03)

0.98
(0.03)

5
98.67
(0.03)

0.98
(0.03)

2 ItalyPowerDemand 6
96.34
(0.02)

0.96
(0.02)

4
96.34
(0.02)

0.96
(0.02)

3 Libras 6
64.44
(0.11)

0.64
(0.11)

10
62.78
(0.11)

0.62
(0.11)

4 SyntheticControl 3
98.50
(0.01)

0.98
(0.01)

20
98.33
(0.01)

0.98
(0.01)

1 GunPoint 4, 7, 8, 10
98.50
(0.02)

0.98
(0.02)

40
99.47
(0.02)

0.99
(0.02)

2 OliveOil 4, 8, 10
88.33
(0.13)

0.88
(0.13)

10 - 50
90.95
(0.16)

0.91
(0.16)

3 Trace 2
99.00
(0.03)

0.99
(0.03)

40, 50
97.50
(0.03)

0.98
(0.04)

4 ToeSegmentation2 7
93.38
(0.04)

0.93
(0.04)

50
92.75
(0.06)

0.92
(0.06)

5 Car 5
82.50
(0.07)

0.82
(0.07)

40
83.33
(0.10)

0.82
(0.11)

6 Lighting2 3
91.79
(0.06)

0.90
(0.06)

10
83.30
(0.06)

0.83
(0.06)

7 DiatomSizeReduction 3, 6, 10
100.00
(0.00)

1.00
(0.00)

10 - 50
100

(0.00)
1.00
(0.00)

8 ShapeletSim 9
90.00
(0.06)

0.90
(0.06)

40
89.97
(0.06)

0.89
(0.06)

9 Adiac 7
65.81
(0.03)

0.64
(0.03)

10
65.51
(0.04)

0.63
(0.04)

10 HouseTwenty 2
95.00
(0.05)

0.95
(0.05)

10
93.71
(0.06)

0.94
(0.06)

1 PenDigits 2
88.46
(0.01)

0.88
(0.01)

4
88.46
(0.01)

0.88
(0.01)

4.2.6 Sub-Sequence-Based DTW Run time Equation

From the run times presented in Tables 4.1 and 4.2 in the forgoing sub-section, an
actual complexity (run time) equation for SSBDTW can be derived in a similar manner
as described with respect to Standard DTW and S-C Band DTW in Chapter 3. Given
Equations 4.4 and 4.7 the actual complexity can be defined as follows:

runtime =
9 × |D|2

100
× (x× len) × z (4.8)

z =
runtime× 100

9 × |D|2 × s× len2
(4.9)

Where, from Chapter 3, z is a constant that represents the time to process a single cell
in the matrix M . In Chapter 3 a set of rules were derived to determine the z value
for short, medium and long time series for both Standard DTW and S-C Band DTW.
Using the z values for Standard DTW, and incorporating these into Equation 4.9 we
can calculate the run time using SSBDTW given a specific data set. Figure 4.5 shows a
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Figure 4.4: Run time results for Standrad DTW, DTW coupled with Sakoe-Chiba
Band and Sub-Sequence-Based DTW.

plot of the calculated run times derived using Equation 4.8, and the z values obtained
earlier, against the recorded run times from Table 4.1 and Table 4.2. From the figure, it
can be seen that the calculated run times and the recorded run times are almost aligned,
thus confirming the validity of Equation 4.9.

Figure 4.5: Recorded Run time results (seconds) and Calculated Run time results
using SSBDTW with respect to the fifteen evaluation data sets.

4.3 Fuzzy Sub-Sequence-Based Dynamic Time Warping

A possible criticism of the SSBDTW approach described in the foregoing is that the
segment boundaries are “crisp” boundaries. This may not be the most appropriate form
of segmentation. It was, therefore, suggested that a more appropriate approach might
be one that featured fuzzy boundaries. To this end, the Fuzzy Sub-Sequence-Based
DTW approach (FSSBDTW) was investigated and developed. Detail concerning this
approach is presented in this section. The section is structured in a similar manner
to the previous section. The section commences, Sub-section 4.3.1 with an overview
of the FSSBDTW approach. A worked example is given in Sub-section 4.3.2 and the
associated pseudo code in Sub-section 4.3.3. The theoretical time complexity for the
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Table 4.4: Accuracy and F1-Score with standard deviation for fifteen time series data
set using Standard DTW, Sakoe-Chiba Band and Sub-Sequence-Based DTW.

ID Dataset Standard DTW S-C Band ℓ = 10 SSBDTW

# Name
Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

98.67
(0.03)

0.98
(0.03)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

96.34
(0.02)

0.96
(0.02)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.11)

0.60
(0.11)

64.44
(0.11)

0.64
(0.11)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03)

0.97
(0.03)

98.50
(0.02)

0.98
(0.02)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

88.33
(0.13)

0.88
(0.13)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

93.38
(0.04)

0.93
(0.04)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

82.50
(0.07)

0.82
(0.07)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

91.79
(0.06)

0.90
(0.06)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

90.00
(0.06)

0.89
(0.08)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

65.81
(0.03)

0.64
(0.03)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

95.00
(0.05)

0.95
(0.05)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

88.46
(0.01)

0.88
(0.01)

approach is then discussed in Sub-section 4.3.4, whilst the evaluation of the proposed
approach is reported on in Section 4.3.5. The section is concluded with a discussion of
the derivation of an actual complexity equation (as opposed to one using Big O notation)
in Sub-section 4.3.6.

4.3.1 Operation of Fuzzy Sub-Sequence-Based DTW

The fundamental idea underpinning the proposed FSSBDTW approach was the same
as that for the SSBDTW approach described above; to segment (divide) the input time
series into s sub-sequences and then apply DTW to correlated sub-sequence pairs. The
final minimum warping distance arrived at will then be the accumulated warping distance
for each sub-sequence pairing of s applications of DTW.

However, the distinction between the proposed FSSBDTW approach and the pre-
vious SSBDTW approach, is that the proposed approach features fuzzy boundaries as
opposed to crisp boundaries. Intuitively, good points at which to cut the time series is
where they meet, or at least at points where the distance between corresponding pairs
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of points is at a minimum. By incorporating a degree of fuzziness as to where the seg-
ment boundaries are located it should be possible to derive a “best” segmentation. This
is defined by specifying a tail, of length t points, measured backwards from a variable
maxLen defining the maximum permitted length of a segment, within which the cut
should be applied. Thus, the cut should fall between maxLen − t and maxLen, the
latter measured from the start of the time series on the first iteration and the end of the
previous segment on further iterations. The split point will be selected according to the
minimum distance associated with the points between maxLen− t and maxLen. There
are then three options as to how the split point is allocated to a segment or segments:

Option A add to the preceding segment only.

Option B add to the succeeding segment only.

Option C add to both the preceding and the succeeding segments.

A worked example to clarify the process is given in the following sub-section, Sub-Section
4.3.2.

4.3.2 Fuzzy Sub-Sequence-Based DTW Example

If we assume two times S1 = [1, 2, 2, 3, 2, 1, 1, 0, 1, 0, 3, 2, 4, 2, 0] and S2 = [1, 2, 4, 3, 3, 0, 3,
3, 1, 2, 1, 1, 3, 4, 2], the same two time series as used in the worked example presented in
Sub-section 4.2.2 above, and maxLen = 10 and t = 3; we derive a “distance list” D
that hold the absolute difference as shown in Figure 4.6. If we examine the values in
the tail the minimum value of 0 is at index 9, this is then the split point. We then have
three options as to how to allocate the split point to a segment or segments; as itemised
above and as also shown in Figure 4.6.

Figure 4.6: Segmentation example given two time series S1 and S2, and Options A,
B or C.
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4.3.3 Fuzzy Sub-Sequence-Based DTW Algorithm

This pseudo code for the FSSBDTW algorithm, using Option A, is given in Algorithm
4. The input, line 1, is: (i) two time series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy],
(ii) the desired maximum length maxLen of a segment and (iii) the length of the tail t.
Note that, as in previous algorithms presented in this thesis, it is assumed that S1 and
S2 are of the same length. Next, as in the case of the SSBDTW algorithm presented in
Algorithm 3, two variables are defined to hold the start and end points of a sub-sequence
(line 2), and the lists L1 and L2 are declared and initialised with empty lists (line 3).
The difference list D is then populated using the genDiffList function. This is given in
lines 18 to 24. Next, lines 6 to 16, L1 and L2 are populated in an iterative manner with
a series of sub-sequences. On each iteration, a list Tail is produced (line 7) holding the
difference values from D in the tail of the current segment. The index associated with
the minimum value in the tail is then selected (line 8) and used to define an end index,
end, for the current segment. If this index is greater than the end of the input time series
the final index is used. Thus, where an exact segmentation of a time series can not be
achieved, a “short” segment will be included at the end of the segment collection. The
start and end index values are used to generate two sub-sequences, U1 and U2, which
are appended to L1 and L2. Note that s1start , s1end

∈ S1, and s2start , s2end
∈ S2. On

line 14 the start index value is updated ready for the next iteration. Next, line 16, a
DTW function is called, the same as that given in Algorithm 3,. The minimum warping
distance will then be the accumulated warping distance for all sub-sequence pairings,
held in the variable wd returned at the end of the function, and then returned at the
end of the process.

For Option B, add the split point to the proceeding segment only, line 12 would
need to be replaced with U1 = [s1start : s1end−1

], U2 = [s2start : s2end−1
], and line 14 with

start = end. For Option C, add the split point to both the preceding and the proceeding
segments, line 14 would need to be replaced with start = end.

4.3.4 Time Complexity of Fuzzy Sub-Sequence-Based DTW

The theoretical time complexity will be similar to that derived for the SSBDTW ap-
proach and is given in Equation 4.10:

DTWcomplexitySSBDTW = O (x× len) (4.10)

except the length variable len will be replaced with an average length:

DTWcomplexityFSSBDTW = O
(
x× len

)
(4.11)

The TCV complexity when using 1NN is then given by:

O

(
9 × |D|2

10
×DTWcomplexityFSSBDTW

)
(4.12)

4.3.5 Evaluation of Fuzzy Sub-Sequence-Based DTW

In this section, the evaluation of the proposed FSSBDTW approach is presented. The
same fifteen evaluation data sets selected from the UEA-UCR Time Series Classification
repository were used as those used for the evaluation of the SSBDTW algorithm reported
on earlier in this chapter, and for the evaluation of Standard DTW and S-C Band DTW
reported on in the previous chapter. As before 1NN classification and TCV was adopted.
The objectives of the evaluation were:
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Algorithm 4 Fuzzy Sub-Sequence-Based DTW (FSSBDTW)

1: input S1, S2,maxLen, t
2: start = 0, end = 0
3: L1 = [], L2 = []
4: D = genDiffList(L1, L2)
5: i = 0
6: while Start < |S1| do
7: Tail = [dstart+maxLen−t : dstart+maxLen]
8: end = Index associated with minimum value in Tail
9: if end > |S1| then

10: end = |S1|
11: end if
12: U1 = [s1start : s1end

], U2 = [s2start : s2end
]

13: L1 = append(L1,U1), L2 = append(L2,U2)
14: start = end + 1
15: end while
16: wd =dtw(L1, L2)
17: return wd

18: function genDiffList(L1, L2)
19: D = {d1, d2, . . . , d|S1|}
20: for i = 0 to |S1| do
21: di = abs(s1i − s2i) (s1i ∈ S1, s2i ∈ S2)
22: end for
23: return D
24: end function

1. To determine the best values for the maxLen parameter, the maximum sub-
sequence length, and the t parameter, the sub-sequence tail.

2. To determine the best location for the split point to be included, Options A, B or
C.

3. To compare the operation of the proposed FSSBDTW mechanism in terms of effi-
ciency and effectiveness of the proposed approach with the operation of Standard
DTW and S-C Band DTW.

Selection of The maxLen and t Parameters, and Options A, B or C

With respect to the most appropriate values for maxLen and t, and whether to use
Options A, B or C, the first two of the above evaluation objectives, a range of val-
ues for maxLen were considered from 10 to 50, increasing in steps of 10, maxLen =
{10, 20, 30, 40, 50}; and a range of values for t from 1 to 10, incrementing in steps of 1,
t = {1, 2, 3, ..., 10}. A summary of the best results obtained, including the best param-
eters settings, run time, accuracy and F1-score are presented in Table 4.5. From the
table, it can be seen that no “best” parameters could be identified; the best classification
results were obtained using different settings. However, inspection of the table would
suggest maxLen = 40, t = 2 and Option A.
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Table 4.5: Best values for parameters maxLen and t, and best option for the point
allocation strategy in terms of run time, accuracy and F1 results for each data set.

ID Data set Length Tail Option Run time Acc F1
# maxLen t A,B or C (Secs) (SD) (SD)

1 SmoothSubspace 6 2 A 3.03
98.67
(0.03)

0.98
(0.03)

2 ItalyPowerDemand 5 2 C 39.66
97.17
(0.01)

0.97
(0.01)

3 Libras 9 2 A 5.71
65.83
(0.11)

0.64
(0.11)

4 SyntheticControl 20 2 A 16.07
98.50
(0.01)

0.98
(0.01)

1 GunPoint 40 2 A 3.81
99.50
(0.01)

0.99
(0.01)

2 OliveOil 30 2 A 1.88
90.00
(0.11)

0.90
(0.11)

3 Trace 80 2 A 7.19
99.00
(0.03)

0.99
(0.03)

4 ToeSegmentation2 50 2 B 8.19
93.42
(0.04)

0.93
(0.04)

5 Car 60 5 A 6.88
86.67
(0.06)

0.86
(0.06)

6 Lighting2 60 2 A 8.11
89.23
(0.08)

0.89
(0.08)

7 DiatomSizeReduction 40 2 A 24.18
100.00
(0.00)

1.00
(0.00)

8 ShapeletSim 40 2 B 15.79
93.00
(0.04)

0.93
(0.04)

9 Adiac 40 8 C 88.20
68.12
(0.02)

0.66
(0.03)

10 HouseTwenty 40 5 A 50.64
95.00
(0.05)

0.95
(0.05)

1 PenDigits 8 1 A 480.17
88.46
(0.01)

0.88
(0.01)

Performance Comparison

For the comparison of the performance of the proposed FSSBDTW approach compared
to Standard DTW and S-C Band DTW the best run time, accuracy measure and F1
score for each of the approaches were considered. The comparison of the best run-time
results is presented in Figure 4.7. In Figure 4.7 total run time is given on the y-axis and
the data set identifiers on x-axis. The identifiers are ordered according to their perceived
complexity as described in Section 3.2 and illustrated in Table 3.1. From the figure, it
can firstly be seen that for short time series (data sets 1, 2, 3 and 4) there was little to
choose between the approaches in terms of run time. For longer time series (data sets
5 to 15), the performance of FSSBDTW outperformed that of Standard DTW in all
cases. With respect to S-C Band DTW, the FSSBDTW approach was more efficient in
six of the eleven cases, and less efficient in only one case (for the remaining four cases
the efficiency was about the same).

Table 4.6 gives the accuracy and F1 results for the FSSBDTW, Standard DTW and
S-C Band DTW approaches. In the table, the figures in parenthesis give the standard
deviations recorded after averaging over the ten folds of the TCV. Best results are
highlighted in bold font. From the table, it can be seen that the proposed FSSBDTW
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approach, in thirteen of the fifteen cases, produced a better performance than that
produced using either Standard DTW or S-C Band DTW; in the remaining two cases,
an identical performance was recorded. Where the performance improved over Standard
DTW and S-C Band DTW it was conjectured that this was because the effect of noise
was reduced when using splitting.

Figure 4.7: Run time results for Standard DTW, S-C Band DTW and FSSBDTW.

4.3.6 Fuzzy Sub-Sequence-Band Run time Equation

As in the case of the work reported with respect to the Standard DTW, SC Band
DTW and SSBDTW approaches, using the run times presented in Table 4.5 an actual
complexity (run time) equation for the FSSBDTW approach can be derived. The actual
complexity can be defined using Equations 4.11 as follows:

runtime =
9 × |D|2

100
×
(
x× len

)
× z (4.13)

Where, as before, z is a constant that represents the time to process a single cell in the
matrix M . As we do not know what len will be in advance we can use maxLen − t/2
as an approximation. Thus we get:

runtime =
9 × |D|2

100
×
(
x×

(
maxLan− t

2

))
× z (4.14)

Using the z values for standard DTW from Chapter 3 a set of run times can be calculated.
Figure 4.9 shows a plot of the calculated run times and the recorded run times from
Table 4.5. From the Figure, it can be seen that the calculated run times and the recorded
run times are similar, therefore, indicating the veracity of the above equation.

4.4 Sub-Sequence-Based DTWVersus Fuzzy Sub-Sequence-
Based DTW

A comparison of the performance of the proposed approaches, SSBDTW and FSSB-
DTW, is presented in this section. The collated recorded run times, and accuracy and
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Table 4.6: Accuracy and F1-Score using Standard DTW, S-C Band DTW and FSS-
BDTW.

ID Data set Standard DTW S-C Band ℓ = 10 FSSBDTW

# Name
Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

98.67
(0.03)

0.98
(0.03)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

97.17
(0.01)

0.97
(0.01)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.11)

0.60
(0.11)

65.83
(0.11)

0.64
(0.11)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03)

0.97
(0.03)

99.50
(0.01)

0.99
(0.01)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

90.00
(0.11)

0.90
(0.11)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

93.42
(0.04)

0.93
(0.04)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

86.67
(0.06)

0.86
(0.06)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

89.23
(0.08)

0.89
(0.08)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

90.00
(0.06)

0.89
(0.08)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

65.81
(0.03)

0.64
(0.03)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

95.00
(0.05)

0.95
(0.05)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

89.64
(0.01)

0.89
(0.01)

Figure 4.8: Recorded Run time results (seconds) and Calculated Run times (seconds)
using FSSBDTW with the fifteen evaluation data sets.

F1-scores, with respect to each approach, and each data set are given in Tables 4.7 and
4.8 respectively.
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Table 4.7 gives the run time results. Figure 4.9 presents the same recorded run time
results in graph form. In the figure, the x-axis records the identification number of the
relevant data set (see Table 3.1) and the y-axis the run time in seconds. From both
the table and figure, it can be seen that FSSBDTW approach and SSBDTW approach
are very similar; however, FSSBDTW outperforms the SSBDTW in the case of the
HouseTwenty and PenDigits data sets.

Figure 4.9: Comparison of the SSBDTW approach (red) and FSSBDTW approach
(black) recorded run time results for fifteen evaluation data sets.

Table 4.7: Recorded Run times for the SSBDTW and FSSBDTW approaches.

SSBDTW FSSBDTW
ID. Data set Run time (secs.) Run time (secs.)
1. SmoothSubspace 4.51 3.03
2. ItalyPowerDemand 35.97 39.66
3. Libras 5.49 5.71
4. SyntheticControl 14.88 16.07
5. GunPoint 4.68 3.81
6. OliveOil 3.09 1.88
7. Trace 10.22 7.19
8. ToeSegmentation2 5.20 8.19
9. Car 6.76 6.88
10. Lightning2 13.88 8.11
11. ShapeletSim 24.13 24.18
12. DiatomSizeReduction 16.87 15.79
13. Adiac 41.94 88.20
14. HouseTwenty 334.36 50.64
15. PenDigits 1036.28 480.17

Table 4.8 gives the accuracy values and the F1 scores obtained using the SSBDTW
and FSSBDTW approaches (values and scores obtained by averaging over the ten folds
of the TCV). In the table, the figures in parentheses are the standard deviation values
obtained. From the table, it can be seen that the FSSBDTW approach outperforms
the SSBDTW approach in most cases. In some cases, the performance is the same as
in the case of the SmoothSubspac and DiatomSizeReduction data sets. The reason for
this, is due to the flexibility of the FSSBDTW process where the alignment can not be
adversely affected by the splitting process.
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Table 4.8: Recorded Accuracies and F1-Scores for the SSBDTW and FSSBDTW
approaches.

ID Data set SSBDTW FSSBDTW

# Name
Accuracy

(SD)
F1-Score

(SD)
Accuracy

(SD)
F1-Score

(SD)

1 SmoothSubspace
98.67
(0.03)

0.98
(0.03)

98.67
(0.03)

0.98
(0.03)

2 ItalyPowerDemand
96.34
(0.02)

0.96
(0.02)

97.17
(0.01)

0.97
(0.01)

3 Libras
62.78
(0.11)

0.62
(0.11)

65.83
(0.11)

0.64
(0.11)

4 SyntheticControl
98.33
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

5 GunPoint
99.47
(0.02)

0.99
(0.02)

99.50
(0.01)

0.99
(0.01)

6 OliveOil
88.33
(0.13)

0.88
(0.13)

90.00
(0.11)

0.90
(0.11)

7 Trace
97.50
(0.03)

0.97
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
92.75
(0.06)

0.92
(0.06)

93.42
(0.04)

0.93
(0.4)

9 Car
83.33
(0.10)

0.82
(0.11)

86.67
(0.06)

0.86
(0.06)

10 Lightning2
83.30
(0.06)

0.83
(0.06)

89.23
(0.06)

0.89
(0.08)

11 ShapeletSim
89.97
(0.06)

0.89
(0.06)

93.00
(0.04)

0.93
(0.04)

12 DiatomSizeReduction
100.00
(0.00)

1.00
(0.00)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.51
(0.04)

0.62
(0.04)

68.12
(0.04)

0.66
(0.04)

14 HouseTwenty
93.71
(0.06)

0.93
(0.06)

95.00
(0.05)

0.95
(0.05)

15 PenDigits
88.46
(0.01)

0.88
(0.01)

89.64
(0.01)

0.89
(0.01)

4.5 Conclusion

The chapter has presented two proposed segmentation-based approaches directed at
speeding up DTW in the context of 1NN classification: (i) the Sub-Sequence-Based
DTW (SSBDTW) approach and (ii) the Fuzzy Sub-Sequence-Based DTW (FSSBDTW)
approach. The fundamental idea was that by applying DTW to pairs of correspond-
ing sub-sequences significant efficiency gains could be made. The reported evaluation
demonstrated that this was indeed the case. In addition, it was found that accuracy
gains were also made in comparison with Standard DTW and S-C Band DTW. It was
conjectured that this was because the comparison of short time series sub-sequences was
more resilient to noise. The distinction between SSBDTW and FSSBDTW was that the
first included crisp boundaries while the second included fuzzy boundaries. Comparison
of SSBDTW and FSSBDTW indicated that FSSBDTW was more effective (more accu-
rate) since the splitting process was more flexible. In addition, although the reported
evaluation indicated that both tended to have similar run times, it could be argued that
FSSBDTW was more efficient with respect to long time series. The following Chapter
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presents two further proposed approaches directed at reducing the number of DTW pro-
cess required in the context of 1NN classification by limiting the number of candidates
to be considered for comparison: (i) Candidate Reduction Based on Euclidean Distance
(CRBED) and (ii) Candidate Reduction Based on Lower Bounding (CRBLB).



Chapter 5

Candidate Reduction Based on
Euclidean Distance and Lower
Bounding

5.1 Introduction

Chapter 3 presented an analysis of the Standard DTW and S-C Band DTW approaches.
These were essentially two benchmark approaches, any approach proposed in later chap-
ters had to improve on these approaches to be worthwhile. The analysis demonstrated
the considerable computational overhead that DTW entailed. Chapter 4 presented two
segmentation-based DTW approaches designed to address the DTW overhead, the Sub-
Sequence-Based DTW (SSBDTW) approach and the Fuzzy Sub-Sequence-Based DTW
(FSSBDTW) approach. The distinction was in how the sub-sequences were defined.
All four approaches were analysed in the context of kNN classification using k = 1.
FSSBDTW was found to be the most effective approach.

This chapter presents two approaches to further reduce the DTW complexity assum-
ing that we wish to apply DTW in the context of kNN classification (where k = 1) and
that the DTW approach to be used is FSSBDTW (because it was found to be the best
performing approach as reported in Chapter 4). The fundamental idea is to reduce the
number of applications of DTW by reducing the number of comparisons that need to
be considered. In other words, by introducing a pre-processing step for each previously
unseen record to be labelled (each query time series) whereby the time series in the
kNN bank are prioritised and only the Ô most significant time series are considered.
The question is then how best to reduce the number of time series to be considered
without actually invoking DTW. Two approaches are presented: (i) Candidate Reduc-
tion Based on Euclidean Distance (CRBED) and (ii) Candidate Reduction Based on
Lower Bounding (CRBLB). Note that the CRBED approach as presented here was first
published in [12]. The two approaches are fully described by coupling them with FSS-
BDTW. Thus when we refer to the “CRBED approach”, this is Candidate Reduction
Based on Euclidean Distance coupled with FSSBDTW. Similarly when we refer to the
“CRBLB approach”, this is Candidate Reduction Based on Lower Bounding coupled
with FSSBDTW.

The work presented in this chapter, therefore, provides an answer to the third sub-
sidiary question that this thesis seeks to address:

Is it possible to utilise knowledge of a given application domain to limit the DTW
processing required? For example, in the case of kNN classification, using early
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abandonment with respect to time series that are clearly not going to be very similar to
the query time series.

The rest of this chapter follows a similar format to that presented in Chapters 3 and
4. Section 5.2 presents the proposed CRBED approach and Section 5.3 the proposed
CRBLB approach. Each section follows a similar structure: (i) the operation of the
proposed approach, (ii) pseudo code, (iii) theoretical complexity calculation and (iv)
evaluation. Section 5.4 provides a comparison of the two proposed approaches. The
chapter is concluded in Section 5.5 where a brief summary is provided. Note that
comparison with the approaches presented in Chapter 4 is left till Chapter 7.

5.2 Candidate Reduction Based on Euclidean Distance Ap-
proach

This section presents the first of the two candidate reduction approaches considered in
this chapter, the Candidate Reduction Based on Euclidean Distance (CRBED) approach.
The fundamental idea is to use a cheaper mechanism for comparing time series than
DTW, namely Euclidean distance measurement. Recall from earlier work presented in
this thesis that the complexity of DTW is given by:

DTWcomplexityStand = O(x2) (5.1)

where x is the length of the time series to be compared (assuming both time series
are of the same length). The fundamental Euclidean Distance time series comparison
mechanism is given in Algorithm 5. The input is two time series S1 and S2 of equal
length. The accumulated difference in distance, between each point pi ∈ S1 with each
corresponding point pj ∈ S2, is then determined. On completion, the accumulated
distance is a measure of the similarity between the two time series. If the difference is
0 the two time series are identical. The complexity of Euclidean distance time series
comparison is given by:

EuclideanComparisoncomplexity = O(x) (5.2)

A significant difference when compared with the complexity of DTW, especially when
considering long time series.

Algorithm 5 Eulidean Distance Time Series Comparison

1: input S1, S2

2: dist = 0
3: for ∀pi ∈ S1 and ∀pj ∈ S2 do
4: dist = dist + abs(pi − pj)
5: end for
6: return dist

The remainder of this section is organised as follows. Sub-section 5.2.1 describes
the operation of the CRBED approach. The pseudo code for the approach is then
presented in Sub-section 5.2.2. Sub-section 5.2.3 discusses the theoretical computational
complexity of the approach using “Big O” notation. This is followed by Sub-section 5.2.4
where a practical evaluation of CRBED is presented.
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5.2.1 Operation of the Candidate Reduction Based on Euclidean Dis-
tance Approach

In this sub-section, the operation of the proposed CRBED approach is presented when
coupled with FSSBDTW and used for the purpose of 1NN classification. A block-
diagram outlining the overall process is presented in Figure 5.1. The input is a set D of
r time series D = {S1, S2, . . . Sr}. The process then comprises two stages.

Stage 1 Parameter learning to find the best parameters.

Stage 2 Classification of a given query time series ú.

It should be noted that Stage 1 is only undertaken once, whilst Stage 2 may be applied
as many times as required. Unless, of course, more pre-labelled data becomes available
when it may be desirable to repeat Stage 1.

Recall, from the work presented in Chapter 4 that the FSSBDTW approach utilised
two parameters:

1. maxLength: The maximum permitted length of a segment.

2. t: The length of the tail within which the “cut” should be applied.

Previously the values for these parameters were pre-specified as advocated in [10] and
[11]. In other words, they were assigned values in an intuitive manner. Finding the best
parameter was not an option given the computational complexity of DTW. However, by
adopting a cheaper (if less accurate) comparison mechanism, such as Euclidean distance
comparison, parameter tuning becomes a realistic option. Recall also that we have the
parameter Ô, the number of time series to be retained. Thus there are three parameters
to be considered. We thus have a three-dimensional parameter space |I| × |T | × |R|
where:

I is the set of values to be considered for parameter maxLength, I = {maxLen1, . . . ,
maxLen|I|}.

T is the set of values to be considered for parameter t, T = {t1, . . . , t|T |}.

R is the set of values to be considered for parameter Ô, R = {Ô1, . . . ,Ô|R|}.

Preliminary experiments, using classification accuracy and F-1 score, indicated that
there was no global “peak” in this parameter space, but instead many local maxima with,
typically, one that was better than the rest. This precluded any form of “hill-climbing”
strategy. An exhaustive search strategy was therefore adopted for Stage 1. What the
preliminary experiments did indicate was that the sets I, T and R, the parameter space,
should be defined as follows: I = {10, 20, 30, 40, 50} (|I| = 5), T = {1, 2, . . . , 9, 10}
(|T | = 10) and R = {1, 2, . . . , 49, 50} (|R| = 50).

Once the most appropriate parameters settings had been identified the classification
of previously unseen (query) time series could commence, Stage 2. Given a query time
series ú the first step (Stage 2.1) is to prune those time series in D that are unlikely
to provide a good match using Euclidean Distance time series comparison. As noted
above, Euclidean Distance measurement is significantly more efficient than DTW in
terms of run-time (although less accurate). This then provided a reduced data set
D′ = {S1, S2, . . . , SÔ}. To obtain the final classification, Stage 2.2, kNN was applied in
the same manner as before using FSSBDTW as described in Chapter 4 (Algorithm 4).
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Figure 5.1: Schematic illustrating operation of Candidate Reduction Based on Eu-
clidean Distance approach

5.2.2 Candidate Reduction Based on Euclidean Distance Approach
Algorithm

This section presents the pseudo code for Stage 1 and Stage 2 of the above process.
The pseudo code for Stage 1, parameter learning, is given in Algorithm 6. The input,
line 1, is a collection of pre-labelled time series Dtrain to form the initial kNN bank, a
second collection of pre-labelled time series Dtest to form a test set, and the sets I, T
and R. The two sets Dtrain and Dtest are derived from D such that Dtrain ∩Dtest = ∅
and Dtrain∪Dtest = D. There are a variety of ways in which D can be divided, but with
respect to the evaluation presented later in this chapter a 9:1 training/test split was
used. Next, line 2, a list in which to hold the best parameters is defined (initialised with
three zeros), followed (line 3) by the definition of a variable bestAccuracy to hold the
best accuracy obtained so far. This is followed (lines 4 to 13) by a set of three nested
loops whereby the entire search space is processed. On each iteration, the function
kNN Euclidean is called with Dtrain, Dtest and the selected parameters (maxLeni, ti
and Ôi). The function returns the classification accuracy, the number of true positives
and true negatives. This is then used to update the bestAccuracy variable and the best
parameter list. Once the entire search space has been processed the best parameters
will have been identified. Stage 1 is then complete and the identified parameters are
returned (line 14). A similar algorithm is used with respect to the CRBLB approach
described in the following section.

Stage 2 is concerned with the classification of an individual query time series ú.
The pseudo code for the algorithm is presented in Algorithm 7. The input (line 1) is
the labelled data set D, the query time series ú and the parameters identified in Stage
1, maxLen, t and Ô. We start, lines 2 to 7, by applying the candidate reduction and
generating D′ = {S1, S2, . . . , S}. Then, lines 8, the function classification is called
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Algorithm 6 Parameter Learning, Stage 1

1: input Dtrain, Dtest, I, T,R.
2: bestParameters = [0, 0, 0]
3: bestAccuarcy = 0
4: for ∀maxLeni ∈ I do
5: for ∀ti ∈ T do
6: for ∀ Ôi ∈ R do
7: newAccuracy = kNN Euclidean(Dtrain, Dtest,maxLeni, ti, Ôi)
8: if newAccuracy > bestAccuracy then
9: bestAcuuracy = newAccuracy

10: bestParameters = [maxLeni, ti, i]
11: end if
12: end for
13: end for
14: end for
15: return bestParameters

which returns the final class. The pseudo code for the classification function is given
in Algorithm 8; this function is also used with respect to the CRBLB approach described
later in this chapter. The function determines the best match in D′ with ú and retains
the associated class c for this best match, which is returned in line 11. Note that the
matching is done according to the best obtained warping distance (bestWD) generated
using the FSSBDTW algorithm as presented in the previous Chapter.

Algorithm 7 Candidate Reduction Based on Euclidean Distance (CRBED), Stage 2.1

1: input D, ú,maxLen, t,
2: R = empty list to hold references to time series in D
3: for ∀Si ∈ D do
4: dist = euclideanDistance(Si, ú)
5: R = R with Si inserted according to dist
6: end for
7: D′ = top Ô from R
8: return classification(D′, ú, maxLen, t) (Algorithm 8)

Algorithm 8 Candidate Reduction Based on Euclidean Distance (CRBED), Stage 2.2

1: input D′, ú,maxLen, t
2: bestWD = ∞
3: c = default class
4: for ∀Si ∈ D′ do
5: wd = FSSDDTW (Si, ú,maxLen, t)
6: if wd < bestWD then
7: bestWD = wd
8: c = class associated with Si

9: end if
10: end for
11: return c
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5.2.3 Theoretical Time Complexity of Candidate Reduction Based on
Euclidean Distance Approach

In Chapters 3 and 4 the practice was to present the time complexity of a particular
approach assuming TCV and 1NN classification. We will do the same here. We will first
consider the two stages independently and then provide an overall theoretical complexity.

Commencing with Stage 1, parameter tuning, from the foregoing, the time complex-
ity for comparing two time series using Euclidean distance was:

EuclideanComparisoncomplexity = O (x) (5.3)

Assuming a 9:1 training test set split the number of comparisons will be:

numberOfComparisons =
|D|
10

× 9 × |D|
10

=
9 × |D|2

100
(5.4)

The number of parameter combinations is given by:

numberParameterCombinations = |I| × |T | × |R| (5.5)

The complexity of Stage 1 is thus given by:

stage1complexity = numberParameterCombinations× numberOfComparisons

× EuclideanComparisoncomplexity

(5.6)

Thus:

stage1complexity = O

(
|I| × |T | × |R| × 9 × |D|2

100
× x

)
(5.7)

From the foregoing, the sets I, T and R were designed to be pre-specified and hard
coded into the Stage 1 process. Suggested values for the sets I, T and R were presented
above. Using these values, |I| = 5, |T | = 10 and |R| = 50. The above thus becomes:

stage1complexity = O

(
2500 × 9 × |D|2

100
× x

)
(5.8)

which simplifies to:

stage1complexity = O
(
225 × |D|2 × x

)
(5.9)

When using TCV, the parameter tuning will be conducted 10 times. Hence the above
will become:

stage1TCVcomplexity = O
(
10 × 225 × |D|2 × x

)
= O

(
2250 × |D|2 × x

)
(5.10)

Considering Stage 2, the number of Euclidean distance comparisons to decide (gen-
erate) D′ will equate to |D|. The complexity to conduct the candidate reduction will
thus be:

candidateReductioncomplexity = O (|D| × EuclideanComparisoncomplexity)

= O (|D| × x)
(5.11)
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The determination of the class of a query time series will then require |D′| comparisons,
or more simply Ô comparisons. The complexity for class determination, assuming the
FSSBDTW approach, will then be:

classDeterminationcomplexity = O (Ô ×DTWcomplexityFSSBDTW ) (5.12)

which, from Equation 4.11, equates to:

classDeterminationcomplexity = O
(
Ô × x× len

)
(5.13)

where x is the length of a time series and len is the average length of a segment. The
overall complexity of Stage 2 will then equate to:

stage2complexity = candidateReductioncomplexity + classDeterminationcomplexity (5.14)

Thus:

stage2complexity = O
(
(|D| × x) +

(
Ô × x× len

))
= O

(
x
(
|D| +

(
Ô × len

))) (5.15)

If we are undertaking TCV the number of classifications will equate to |D|. Thus the
above becomes:

stage2TCVcomplexity = O
(
(x× |D|)

(
|D| +

(
Ô × len

)))
(5.16)

The overall complexity of the CRBED approach, assuming TCV, will then be:

CRBED TCVcomplexity = stage1TCVcomplexity + stage2TCVcomplexity (5.17)

In other words:

CRBED TCVcomplexity = O
((

2250 × |D|2 × x
)

+ (x× |D|)
(
|D| +

(
Ô × len

)))
= O

(
(x× |D|)

(
(2250 × |D|) + |D| +

(
Ô × len

)))
= O

(
(x× |D|)

(
(2251 × |D|) +

(
Ô × len

))) (5.18)

5.2.4 Evaluation of Candidate Reduction Based on Euclidean Distance
Approach

The evaluation of the proposed CRBED approach is presented in this sub-section. The
evaluation was conducted using 1NN classification and the fifteen selected data sets from
the UEA and UCR Time Series Classification repository [14] in the same manner as
reported on in Chapters 3 and 4. Experiments were conducted comparing the operation
of the proposed CRBED approach with the two benchmark approaches from Chapter 3:
(i) Standard DTW and (ii) S-C Band DTW. With respect to the later, the Sakoe-Chiba
Band warping window size, ℓ = 10%, was defined in the same way as before using the
suggested mechanism proposed in [81, 92]. The objectives of the evaluation were:

1. Operational Analysis: To analyse the operation of the proposed CRBED ap-
proach.
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2. Efficiency Comparison: To evaluate the run-time advantages gained using the
CRBED approach compared to the Standard DTW and S-C Band DTW bench-
mark approaches.

3. Effectiveness Comparison: To determine whether the classification accuracy
of the proposed CRBED approach was commensurate with that obtained using
Standard DTW and S-C Band DTW approaches.

For the evaluation, a desktop computer was used with an Apple M1 processor with
8 core CPU, 8 core GPU, 16 core Neural Engine, 16GB unified memory, and 512GB
SSD storage. The same set up as used with respect to the evaluations reported on in
previous Chapters. The evaluation metrics collected were again total run time (seconds),
accuracy and F1-score; the later derived from a confusion matrix [33, 38]. The accuracy
and F1-score values presented later in this section are all average values, collected using
TCV [62, 89].

Table 5.1: Best values for parameters maxLen, t and Ô in terms of run time, accuracy
and F1 results using 15 evaluation data sets and the CRBED approach.

ID Data set Length Tail Retained Run time Acc F1
# maxLen t Candidates Ô (Secs) (SD) (SD)

1 SmoothSubspace 5 1 3 0.92
98.33
(0.03)

0.98
(0.03)

2 ItalyPowerDemand 6 3 3 13.77
97.17
(0.01)

0.97
(0.01)

3 Libras 10 3 4 2.64
65.83
(0.11)

0.65
(0.11)

4 SyntheticControl 30 2 22 12.10
98.50
(0.01)

0.98
(0.01)

5 GunPoint 40 2 8 2.66
99.50
(0.01)

0.99
(0.01)

6 OliveOil 40 9 4 1.88
90.00
(0.11)

0.90
(0.11)

7 Trace 70 2 10 4.72
99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2 30 3 3 2.32
92.72
(0.04)

0.92
(0.04)

9 Car 60 6 13 5.15
88.33
(0.06)

0.86
(0.06)

10 Lighting2 80 2 4 3.00
87.76
(0.07)

0.87
(0.07)

11 ShapeletSim 40 1 26 14.94
89.50
(0.06)

0.89
(0.06)

12 DiatomSizeReduction 40 2 1 2.98
100.00
(0.00)

1.00
(0.00)

13 Adiac 50 1 1 8.40
65.83
(0.03)

0.64
(0.03)

14 HouseTwenty 40 1 9 19.04
93.71
(0.04)

0.93
(0.04)

15 PenDigits 5 2 1 120.37
89.64
(0.01)

0.89
(0.01)

Operational Analysis

The performance of the proposed CRBED approach, in terms of run time, accuracy and
the F1 measure, is considered here together with the nature of the derived values for
maxLen, t and Ô. Table 5.1 gives the results obtained. Columns 3, 4 and 5 give the
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maxLen, t and Ô values in each case. Column 6 gives the run time in seconds. Columns
7 and 8 give the accuracy values and F1 scores obtained; the numbers in parentheses give
the associated standard deviation. As before, there is no definitive value for maxLen or
t. It is also interesting to note the range of values Ô. This all supports the intuition of
including a parameter tuning stage in the CRBED approach.

Efficiency Comparison

Figure 5.2 gives a comparison of the run time performance of the three approaches
considered here. The x-axis represents the data set identification number given in Table
5.1, and the y-axis represents the run time in seconds. The values for maxLen, t and
Ô that were used to obtain the run times were those also reported in Table 5.1. As
noted above, for the S-C Band DTW approach ℓ = 10% was used as suggested in
[81, 92]. From the figure, it can be seen that for all data sets the proposed CRBED
approach produced the best run times despite, the effort directed at parameter tuning
and candidate reduction. This is particularly evident with respect to the larger data sets,
Adiac, HouseTwenty and PenDigits. In Chapters 3 and 4, the recorded run times were
used to determine and test an actual run time equation from the theoretical complexity
equation. This was done by determining the value of a constant z, the approximate run
time for a single application of DTW. However, in the case of the CRBED approach
we have both Euclidean distance and DTW applications, thus two constants z1 and z2.
Determining the proportion of the run time to be allocated to the calculation of z1, and
the proportion to be allocated to the calculation of z2, is not straight forward. Hence,
unlike in Chapters 3 and 4, an actual run time equation is not presented here (this is
left as a challenge for future work).

Figure 5.2: Comparison of Run time results using Standard DTW, S-C Band DTW
and the CRBED approach.

Effectiveness Comparison

Table 5.2 presents a comparison between CRBED, Standard DTW and S-C Band DTW
in terms of accuracy and F1 score. The values in parenthesis are the standard deviations
recorded after averaging over the ten folds of the TCV. Best results are highlighted in
bold font. From the table, it can be seen that the proposed CRBED approach produced
the best results with respect to fourteen of the fifteen data sets considered; for the
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Table 5.2: Accuracy and F1-Score with standard deviation for the fifteen evaluation
data set using Standard DTW, S-C Band DTW and CRBED (best results in bold font).

ID Data set Standard DTW S-C Band ℓ = 10 CRBED

# Name
Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

98.33
(0.03)

0.98
(0.03)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

97.17
(0.01)

0.97
(0.01)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.11)

0.60
(0.11)

65.83
(0.11)

0.65
(0.11)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03)

0.97
(0.03)

99.50
(0.01)

0.99
(0.01)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

90.11
(0.13)

0.90
(0.11)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

92.72
(0.04)

0.92
(0.04)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

88.33
(0.06)

0.86
(0.06)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

87.76
(0.07)

0.87
(0.07)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

89.50
(0.06)

0.89
(0.08)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

65.83
(0.03)

0.64
(0.03)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

93.71
(0.04)

0.93
(0.04)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

89.64
(0.01)

0.89
(0.01)

remaining one case, HouseTwenty, a second best performance was recorded. Where
the performance was improved, it was postulated that reducing the number of records
considered in the FSSBDTW process prevented anomalous matches.

5.3 Candidate Reduction Based on Lower Bounding Ap-
proach

In this section, the proposed Candidate Reduction Based on Lower Bounding (CRBLB)
approach is presented. A criticism that may be directed at the CRBED approach pre-
sented in the previous section was that the Ô parameter was tuned using a hard-coded
parameter space measuring {1, 2, . . . , 49, 50}. However, it might be possible that the
best value for Ô lies outside of this space. The proposed CRBLB approach addresses this
deficiency by considering an alternative candidate reduction mechanism.

The fundamental idea of the proposed CRBLB approach is the same as that un-
derpinning the CRBED approach described above; to reduce (filter) the number of
candidates in the input time series data set D to produce a reduced set of time series D′
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to which FSSBDTW can then be applied (D′ ⊂ D). However, instead of doing this by
prioritising the time series in the kNN bank according to similarity with the query time
series ú, measured using Euclidean distance, the idea is to use a bounding mechanism.
Given a set of integers a lower bound is any integer that is less than equal to all the
integers in the set. An upper bound is then any integer that is greater than or equal
to every integer in the set. We say that the set is “bounded” by the two values. The
same can be applied to time series. The relevance is that we can think of the lower
and upper bounds as defining an envelope surrounding ú. The lower and upper bounds
can be thought of as time series in their own right. Then, for a time series from the
kNN bank to be a potential match for a query time series, it must fall entirely within
this band. Thus the banding principle can be used as a candidate reduction mechanism.
There are many ways whereby such banding can be defined and implemented. Examples
can be found in [61, 68, 80, 115]. With respect to the work presented in this chapter
the LB Keogh method [59] was adopted because, in many respects, it is the simplest to
implement. Recall that LB Keogh was described in sub-section 2.3.4 Using LB Keogh
the band is defined by a parameter w, which is essentially an offset, applied along the
time dimension to each point in ú to form the upper and lower bound “tram lines”.

The reminder of this section is structured in a similar manner to the previous section.
The section commences, Sub-section 5.3.1 with an overview of the CRBLB approach.
The pseudo code for the proposed CRBLB approach is then presented in Sub-section
5.3.2. This is followed by a discussion of theoretical time complexity for the proposed
approach in Sub-section 5.3.3. An evaluation of the CRBLB approach is then reported
on in Section 5.3.4.

5.3.1 Operation of Candidate Reduction Based on Lower Bounding
Approach

In this sub-section, the operation of the proposed CRBLB approach is presented when
coupled with FSSBDTW and used for the purpose of 1NN classification. A block-
diagram outlining the overall process is presented in Figure 5.3. The input, as in the
case of the CRBED approach, is a set D of r time series D = {S1, S2, . . . Sr}. The
process then comprises two stages.

Stage 1 Parameter learning to find the best parameters.

Stage 2 Classification of a given query ú time series using CRBLB and the application
of FSSBDTW.

Stage 1 is similar to that described for CRBED except that the parameter Ô (the
number of “best matched” time series to be selected) was not considered, instead the
parameter w, the bounding offset parameter, was considered. A parameter space mea-
suring |I| × |T | × |W | was thus used where:

I is the set of values to be considered for parameter maxLength, I = {maxLen1, . . . ,
maxLen|I|}.

T is the set of values to be considered for parameter t, T = {t1, . . . , t|T |}.

W is the set of values to be considered for parameter w, W = {w1, . . . , w|W |}.

Preliminary experiments using selected parameter settings indicated that in this case
the sets I, T and W should be defined as follows: I = {10, 20, . . . , 90, 100} (|I| = 10)
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Figure 5.3: Schematic illustrating operation of Candidate Reduction Based on Lower
Bounding appoach

for medium and long time series, and I = {5, 6, 7, 8, 9, 10} (|I| = 6) for short time series;
T = {1, 2, . . . , 9, 10} (|T | = 10); and W = {5, 10, . . . , 45, 50} (|W | = 10). Note that
a different range of values for I was used with respect to the CRBED approach. The
different ranges were used purely as a consequence of the preliminary experiments. Note
that a short time series was defined earlier, in Chapter 3, as a time series where x < 15
as in the case of the PenDigits and SmoothSubspace data sets. A medium or long time
series is then a time series where x ≥ 15. Recall also that the parameter generation only
needs to be conducted once (unless the set D is added to, or changed in some way).

Stage 2 comprises three steps; (i) lower and upper bound generation (Stage 2.1), (ii)
candidate reduction (Stage 2.2) and (ii) classification (Stage 2.3). We commence, Stage
2.1, by generating the upper and lower bounds on either side of ú. The upper and lower
bound time series, L and U , comprise a sequence of points such that L = {l1, l2, . . . , lx}
and U = {u1, u2, . . . , ux} (where x is the length of ú). As noted above, the values in
L and U are determined by applying a parameter w to ú. The parameter w defines a
number of units of time, one or more. The value for a point li in U was determined as
follows:

li =

{
úi−w if

(
úi−w > úi

)
úi otherwise

(5.19)

The first describes the downward slope situation, the second the default case. With
respect to the lower bound a similar argument applies:

ui =

{
úi−w if

(
úi−w < úi

)
úi otherwise

(5.20)

In this case the first describes the upward slope situation.
Next the candidate reduction is conducted (Stage 2.2) where the time series in D that

are unlikely to provide a good match are pruned, using the LB Keogh lower bounding
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method, to give D′ = {S1, S2, . . . }. Note that in [59] Stages 2.1 and 2.2 are combined
and the actual bounds are not specifically calculated. However, the approach presented
here avoids some repeat calculation and thus, it is suggested, is more efficient. A time
series Si from D is pruned if it is not entirely contained within the band surrounding ú.
This is determined using a distance measurement, LBsum calculated as follows (where
ui ∈ U and li ∈ L):

LBsum =
∑

∀pi∈Si

dist(pi) (5.21)

dist(pi) =


pi − ui if (pi > ui)

li − pi if (pi < li)

0 otherwise

(5.22)

If LBsum is equal to zero, then Si is within the band and therefore not pruned; otherwise
Si is pruned. The process is illustrated in Figure 5.4 which gives two examples taken
from [59]. In the figure, the blue vertical lines indicated where distance measurements
are made because Si (labeled as “time series” in the figure), is outside of the band
surrounding ú (labeled as “new time series” in the figure).

Figure 5.4: Two examples of the application of LB Keogh Lower Bound mechanism
[59].

To obtain the final classification, Stage 2.3, kNN is applied in the same way as before
using FSSBDTW as described in Chapter 4 (Algorithm 4).

5.3.2 Candidate Reduction Based on Lower Bounding Algorithm

This section presents the pseudo code for Stage 2 of the above process. The algorithm
for Stage 1 is essentially the same as Algorithm 6 and is therefore not considered further
here. Stage 2 is where a previously unseen query time series ú is labeled with a class
label c taken from a set of labels C. The pseudo code for the algorithm is presented
in Algorithm 9. The input (line 1) is the labelled data set D, the query time series ú,
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Algorithm 9 Candidate Reduction Based on Lower Bounding Algorithm

1: input D, ú,maxLen, t, w
2: % Stage 2.1
3: U = generateUpperBound(ú, w)
4: L = generateLowerBound(ú, w)
5: % Stage 2.2
6: D′ = empty set to hold retained time series
7: c = default class
8: bestSum = ∞
9: for ∀Si ∈ D do

10: boundSum = boundingSum(Si, U, L)
11: if boundSum == 0 then
12: D′ = D′ with Si appended.
13: else
14: if boundSum < bestSum then
15: bestSum = boundSum
16: c = class associated with Si

17: end if
18: end if
19: end for
20: % Stage 2.3
21: if D′ ̸= ∅ then
22: c = classification(D′, ú,maxLen, t) (Algorithm 8)
23: end if
24: return c

the maxLen, t and w parameters identified in Stage 1. The first step (Stage 2.1) is to
define and populate the point series U and P , the upper and lower bound sequences
(pseudo time series). The sets are defined in lines 3 and 4 through calls to the functions
generateUpperBound and generateLowerBound. Next, the pruned set D′ is generated
(Stage 2.2) in lines 6 to 19. Note that the code takes into account the potential for the
set D′ to be empty in which case the class associated with the nearest time series to
ú is allocated to ú. If the set D′ is not empty DTW is applied using the classification
function presented earlier with respect to the CRBED approach (Algorithm 8).

The pseudo code for the functions generateUpperBound and generateLowerBound
are given in Algorithms 10 and 11. The two algorithms are essentially the same except
for line 9, but both have been included here for reasons of completeness.

The pseudo code for the boundingSum function is given in Algorithm 12. The input
is a time series S ∈ D and the lower and upper bound sequences U and L. A simple
comparison is then conducted between each point pi in S and each corresponding point
in U and L. The process was illustrated in Figure 5.4. It is of course possible to integrate
Algorithms 11, 10 and 12 as in the case of [59].

5.3.3 Theoretical Time Complexity of Candidate Reduction Based on
Lower Bounding Approach

In this sub-section, the theoretical time complexity of the CRBLB approach is consid-
ered. As in the case of the discussion regarding the theoretical complexity of the CRBED
approach, the complexity of the CRBLB approach will be presented by considering the
two stages independently and then deriving an overall theoretical complexity.
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Algorithm 10 Generate Upper Bound

1: input D, ú, w
2: U = empty “time series” representing the upper bound
3: i = 0
4: while i < w do
5: ui = úi (ui ∈ U)
6: i + +
7: end while
8: while i ≤ x do
9: if úi < ti−w (downward slope) then ui = úi−w

10: else
11: ui = úi
12: end if
13: end while
14: return U

Algorithm 11 Generate Lower Bound

1: input D, ú, w
2: L = empty “time series” representing the lowerr bound
3: i = 0
4: while i < w do
5: li = úi (li ∈ L)
6: i + +
7: end while
8: while i ≤ x do
9: if úi > ti−w (upward slope) then

10: li = úi−w

11: else
12: li = úi
13: end if
14: end while
15: return L

Starting with Stage 1, the complexity is similar to Stage 1 of the CRBED approach.
This was expressed in Equation 5.6 as follows.

stage1complexity = numberParameterCombinations× numberOfComparisons

× EuclideanComparisoncomplexity

(5.23)

However, in the case of the CRBLB approach, the number of parameter combinations
is equivalent to:

numberParameterCombinations = |I| × |T | × |W | (5.24)

where I is the set of values to be considered for parameter maxLength, I = {maxLen1,
. . . , maxLen|I|}; T is the set of values to be considered for parameter t, T = {t1, . . . , t|T |}
and W is the set of values to be considered for parameter w, W = {w1, . . . , w|W |} . Thus
with reference to Equation 5.7 the complexity of Stage 1 is given by:
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Algorithm 12 Bounding Sum

1: input S,U, L
2: boundSum = 0
3: for ∀pi ∈ S do
4: if pi > ui (ui ∈ U) then
5: dist = pi − ui
6: else if pi < li (li ∈ L) then
7: dist = li − pi
8: else
9: dist = 0

10: end if
11: boundSum = boundSum + dist
12: end for
13: return boundSum

stage1complexity = O

(
|I| × |T | × |W | × 9 × |D|2

100
× x

)
(5.25)

As noted earlier, the sets I, T and W have been hard coded into the algorithm, hence
|I| = 10 (6 for short time series), |T | = 10 and |W | = 10. The above, assuming long
time series, thus becomes:

stage1complexity = O
(
90 × |D|2 × x

)
(5.26)

When using TCV, the parameter tuning will be conducted 10 times. Hence the above
will become:

stage1TCVcomplexity = O
(
10 × 90 × |D|2 × x

)
= O

(
900 × |D|2 × x

)
(5.27)

For short time series (x < 15) the above will be:

stage1TCVcomplexity = O
(
540 × |D|2 × x

)
(5.28)

Considering Stage 2 we have three components, lower and upper bound generation
(Stage 2.1), candidate reduction (Stage 2.2) and classification (Stage 2.3). Considering
each in turn, generating the upper and lower bounds will entail a complexity of:

boundGenerationcomplexity = O (2x× |D|) (5.29)

where x is the length of a time series and |D| is the number of time series in D. The
complexity of the candidate reduction will be the same as for the CRBED approach:

candidateReductioncomplexity = O (x× |D|) (5.30)

The class determination complexity, using FSSBDTW, is also the same as in the case of
the CRBED approach:

classDeterminationcomplexity = O
(
Ô × x× len

)
(5.31)

The overall complexity of Stage 2 will then equate to:
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stage2complexity = boundGenerationcomplexity + candidateReductioncomplexity+

classDeterminationcomplexity

(5.32)

Thus:

stage2complexity = O
(
(2x× |D|) + (x× |D|) +

(
Ô × x× len

))
= O

(
x
(
(x× |D|) + |D| +

(
Ô × len

))) (5.33)

If we are undertaking TCV, the number of classifications will equate to |D|. Thus the
above becomes:

stage2TCVcomplexity = O
(
(x× |D|)

(
(x× |D|) + |D| +

(
Ô × len

)))
(5.34)

The overall complexity of the CRBLB approach, assuming TCV, will then be:

CRBLB TCVcomplexity = stage1TCVcomplexity + stage2TCVcomplexity (5.35)

In other words, assuming long time series:

CRBLB TCVcomplexity =

O
((

900 × |D|2 × x
)

+
(
(x× |D|)

(
(x× |D|) + |D| +

(
Ô × len

))))
=

O
((

900 × |D|2 × x
)

+
(
x2 × |D|2

)
+
(
x× |D|2

)
+
(
x× |D| × Ô × len

))
=

O
(
(x× |D|)

(
(900 × |D|) + (x× |D|) + |D| +

(
Ô × len

))) (5.36)

For short time series this will equate to:

CRBLB TCVcomplexity = O
(
(x× |D|)

(
(540 × |D|) + (x× |D|) + |D| +

(
Ô × len

)))
(5.37)

Comparing the overall theoretical complexity for CRBLB with that calculated for
CRBED given in Equation 5.18 and given again below, it can be seen that the theoretical
complexity of CRBLB is greater than that for CRBED, although not significantly so.
Of course, the complexity in both cases will be affected by the nature of the parameter
space, but the proposed parameter space settings do seem to produce good results as
demonstrated by the evaluations reported on in this chapter. In practice, TCV would
not be used, thus serving to reduce the above two complexities, but the relative difference
between the two will remain the same.

CRBED TCVcomplexity = O
(
(x× |D|)

(
(2251 × |D|) +

(
Ô × len

)))
(5.38)

5.3.4 Evaluation of the Candidate Reduction Based on Lower Bound-
ing Approach

In this section, the evaluation of the proposed CRBLB approach is presented. The same
fifteen selected data sets from the UEA-UCR Time Series Classification repository as
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used with respect to earlier experiments reported in this thesis were used. As before,
1NN classification and TCV was adopted. The evaluation objectives, as in the case of
the CRBED evaluation reported on in the previous section, were:

1. Operational Analysis: To analyse the operation of the proposed CRBLB ap-
proach.

2. Efficiency Comparison: To evaluate the run-time advantages gained using the
CRBLB approach compared to the Standard DTW and S-C Band DTW bench-
mark approaches.

3. Effectiveness Comparison: To determine whether the classification accuracy
of the proposed CRBLB approach was commensurate with that obtained using
standard DTW and S-C Band DTW approache.

The results obtained are discussed in the remainder of this sub-section.

Operational Analysis

The performance of the proposed CRBLB approach, in terms of run time, accuracy and
the F1 measure, is considered in this sub-section together with the nature of the derived
values for maxLen, t and w. Table 5.3 gives the results obtained. The layout of the table
is the same as Table 5.1 used with respect to the evaluation of the CRBED approach.
Columns 3, 4 and 5 give the maxLen, t and w values. Column 6 of the table gives the
run time in seconds. Columns 7 and 8 give the accuracy values and F1 scores obtained;
the numbers in parentheses give the associated standard deviation. As before, there is
no definitive value for maxLen or t. It is also interesting to note the range of values for
w. Best classification results were obtained using different settings.

Efficiency Comparison

Figure 5.2 gives a comparison of the run time performance of the proposed CRBLB ap-
proach compared with the Standard DTW and S-C Band DTW benchmark approaches;
the last with ℓ = 10% as suggested in [81, 92]. The same value for ℓ as used with
respect to the evaluation of the CRBED approach discussed in the previous section. As
before, the x-axis represents the data set identification number as itemised previously
in Tables 5.1 and 5.3, and the y-axis represents the run time in seconds. The values for
maxLen, t and w that were used in each case were those reported in Table 5.3. From
the figure, it can be seen that for all data sets, the proposed CRBLB approach was the
most efficient in all cases; although not particularly evident with respect to the largest
data set, PenDigits. For similar reasons as in the case of the CRBED approach, the run
time values obtained were not used to calculate an actual run time equation because of
the challenge of deriving such an equation which was considered outside of the scope of
this thesis, and thus left as a topic for future work (see Chapter 7.

Effectiveness Comparison

Table 5.2 present a comparison between CRBLB, Standard DTW and S-C Band DTW
in terms of accuracy and F1 score. As before, the values in parenthesis are the standard
deviations recorded after averaging over the TCV folds. Best results are highlighted in
bold font. From the table, it can be seen that the proposed CRBLB approach, in seven
of the fifteen cases, produced a better performance than that produced using either
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Table 5.3: Best values for parameters maxLen, t and w in terms of run time, accuracy
and F1 results using 15 evaluation data sets and the CRBLD approach.

ID Data set Length Tail Offset Run time Acc F1
# maxLen t w (Secs) (SD) (SD)

1 SmoothSubspace 6 2 15 0.92
96.97
(0.03)

0.96
(0.03)

2 ItalyPowerDemand 6 3 20 13.20
95.98
(0.02)

0.95
(0.02)

3 Libras 9 1 50 2.14
59.44
(0.09)

0.59
(0.09)

4 SyntheticControl 30 1 15 6.44
98.17
(0.02)

0.98
(0.02)

5 GunPoint 40 2 50 1.26
95.50
(0.04)

0.95
(0.04)

6 OliveOil 40 2 5 1.32
88.33
(0.11)

0.88
(0.11)

7 Trace 70 2 30 1.97
99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2 30 3 20 1.61
88.49
(0.06)

0.88
(0.06)

9 Car 60 5 20 1.76
82.50
(0.09)

0.82
(0.09)

10 Lighting2 80 2 40 2.14
87.63
(0.07)

0.87
(0.07)

12 ShapeletSim 40 2 5 13.12
89.50
(0.07)

0.89
(0.07)

11 DiatomSizeReduction 40 2 15 6.64
100.00
(0.00)

1.00
(0.00)

13 Adiac 50 2 15 19.51
66.58
(0.03)

0.64
(0.03)

14 HouseTwenty 40 1 20 18.24
93.04
(0.05)

0.93
(0.05)

15 PenDigits 5 2 20 869.43
85.00
(0.01)

0.85
(0.01)

Figure 5.5: Comparison of Run time results using Standard DTW, S-C Band DTW
and the CRBLB approach.

Standard DTW or S-C Band DTW; in the other eight cases, an almost identical per-
formance was recorded. Where the performance improved over Standard DTW and/or
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Table 5.4: Accuracy and F1-Score with standard deviation for the fifteen evaluation
data set using Standard DTW, S-C Band DTW and CRBLB (best results in bold font).

ID Data set Standard DTW S-C Band ℓ = 10 CRBLB

# Name
Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

96.97
(0.03)

0.96
(0.03)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

95.98
(0.02)

0.95
(0.02)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.11)

0.60
(0.11)

59.44
(0.09)

0.59
(0.09)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

98.17
(0.02)

0.98
(0.02)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03)

0.97
(0.03)

95.50
(0.04)

0.95
(0.04)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

88.33
(0.11)

0.88
(0.11)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

88.49
(0.06)

0.88
(0.06)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

82.50
(0.09)

0.82
(0.09)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

87.63
(0.07)

0.87
(0.07)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

89.50
(0.07)

0.89
(0.07)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

66.58
(0.03)

0.64
(0.03)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

93.04
(0.05)

0.93
(0.05)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

85.00
(0.01)

0.85
(0.01)

S-C BAND DTW it was conjectured that this was because the FSSBDTW approach
reduced the effect of noise (as noted in Chapter 4).

5.4 Candidate Reduction Based on Euclidean Distance vs
Candidate Reduction Based on Lower Bounding

A comparison of the performance of the CRBED approach and the CRBLB approach
is presented in this section. The collated recorded run times, and accuracy and F1-
scores, with respect to each approach, and each data set are given in Tables 5.5 and 5.6
respectively.

Table 5.5 gives the run time results. Figure 5.6 presents the recorded run times in
graph form. In the figure, the x-axis records the identification number of the relevant
data set, and the y-axis the run time in seconds. From both the table and the figure, it
can be seen that the performance of both CRBED and CRBLB, in terms of run time,
are very similar; however, it can be argued (from the recorded results) that the CRBED
approach is more efficient than the CRBLB approach. This is because of the extra work
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undertaken by the CRBLB approach to apply bounding, which is more expensive than a
simple Euclidean distance comparison (see the theoretical complexity comparison given
at the end of Sub-section 5.3.3). This is especially evident with respect to the Adiac
and PenDigits data sets (numbers 13 and 15), where the number of records is large.

Table 5.5: Recorded Run times for the CRBED and CRBLB approaches.

CRBED CRBLB
ID. Data set Run time (secs.) Run time (secs.)
1. SmoothSubspace 0.92 0.92
2. ItalyPowerDemand 13.77 13.20
3. Libras 2.64 2.14
4. SyntheticControl 12.10 6.44
5. GunPoint 2.66 1.26
6. OliveOil 1.88 1.32
7. Trace 4.72 1.97
8. ToeSegmentation2 2.32 1.61
9. Car 5.15 1.76
10. Lightning2 3.00 2.14
11. ShapeletSim 14.94 13.12
12. DiatomSizeReduction 2.98 6.64
13. Adiac 8.40 19.51
14. HouseTwenty 19.04 18.24
15. PenDigits 120.37 869.43

Figure 5.6: Comparison of the CRBED approach (brown) and CRBLB approach
(grey) recorded run time results for fifteen evaluation data sets.

Table 5.6 gives a comparison of the accuracy values and the F1 scores obtained using
the CRBED and the CRBLB approaches (recall that the values and scores were obtained
by averaging over the ten folds of the TCV). As before, the figures in parentheses are
the standard deviation values obtained. Best results are given in bold font. From the
table, it can be seen that the performance using the CRBED approach was better than
in the case of the CRBLB approach in most cases. In three cases, the performance was
the same. In one case, the Adiac data set, the CRBLB approach produced a better
accuracy (but not F1 score).

5.5 Conclusion

The chapter has presented two proposed candidate reduction approaches directed at
speeding up DTW in the context of 1NN classification: (i) the Candidate Reduction
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Table 5.6: Recorded Accuracy and F1-Scores for the CRBED and CRBLB approaches
(best results in bold font).

ID Dataset CRBED CRBLB

# Name
Accuracy

(SD)
F1-Score

(SD)
Accuracy

(SD)
F1-Score

(SD)

1 SmoothSubspace
98.33
(0.03)

0.98
(0.03)

96.97
(0.03)

0.96
(0.03)

2 ItalyPowerDemand
97.17
(0.01)

0.97
(0.01)

95.98
(0.02)

0.95
(0.02)

3 Libras
65.83
(0.11)

0.65
(0.11)

59.44
(0.09)

0.59
(0.09)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.17
(0.02)

0.98
(0.02)

5 GunPoint
99.50
(0.01)

0.99
(0.01)

95.50
(0.04)

0.95
(0.04)

6 OliveOil
90.11
(0.13)

0.90
(0.11)

88.33
(0.11)

0.88
(0.11)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

8 ToeSegmentation2
92.72
(0.04)

0.92
(0.04)

88.49
(0.06)

0.88
(0.06)

9 Car
88.33
(0.06)

0.86
(0.06)

82.50
(0.09)

0.82
(0.09)

10 Lightning2
87.76
(0.07)

0.87
(0.07)

87.63
(0.07)

0.87
(0.07)

11 ShapeletSim
89.50
(0.06)

0.89
(0.08)

89.50
(0.07)

0.89
(0.07)

12 DiatomSizeReduction
100.00
(0.00)

1.00
(0.00)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.81
(0.03)

0.64
(0.03)

66.58
(0.03)

0.64
(0.03)

14 HouseTwenty
93.71
(0.04)

0.93
(0.04)

93.04
(0.05)

0.93
(0.05)

15 PenDigits
89.64
(0.01)

0.89
(0.01)

85.00
(0.01)

0.85
(0.01)

Based on Euclidean Distance (CRBED) approach and (ii) the Candidate Reduction
Based on Lower Bounding (CRBLB) approach. The fundamental idea was that these
approaches work as filtering techniques so that the number of DTW processes that
needed to be applied would be reduced. DTW needs only be applied to the retained
candidates. The work described assumed that any required DTW would be conducted
using the Fuzzy Sub-Sequence-Based DTW (FSSBDTW) approach from the previous
chapter, although the proposed approaches could easily be adapted for use with other
DTW variations. The reported evaluation demonstrated that by applying candidate
reduction significant efficiency gains could be made. In addition, it was found that ac-
curacy gains were also made over Standard DTW and S-C Band DTW. The distinction
between CRBED and CRBLB was that the first adopted a Euclidean distance based ap-
proach to filter the candidates; while CRBLB used a LB Keogh lower bounding method.
Comparison of CRBED and CRBLB indicated that CRBED was more accurate. In ad-
dition, although the recorded runtimes were very similar in most cases, it could also
be argued that CRBED showed a better run time performance when it comes to data
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sets that featured large numbers of records. The following Chapter introduces two fur-
ther approaches directed at reshaping time series: (i) Exact Discriminator-Based DTW
approach and (ii) Distance Profile-Based DTW approach.



Chapter 6

Pruning Approaches

6.1 Introduction

In the previous chapter, two mechanisms for reducing the computational complexity of
DTW, assuming a kNN classification scenario, were considered using candidate reduc-
tion: (i) Candidate Reduction Based on Euclidean Distance (CRBED) and (ii) Candi-
date Reduction Based on Lower Bounding (CRBLB). The fundamental idea, given a
kNN bank of labelled time series D with r records, and a previously unseen time series
ú, was to reduce the number of records in D to Ô in such a way that only the most
likely matches for ú were retained. This chapter explores an alternative whereby the
DTW computational complexity can be reduced, given a kNN classification scenario, by
reducing (pruning) the number of points in the time series to be considered from x to
x′, as opposed to reducing the number of time series in D. By reducing the length of
the time series from x to x′ the size of the DTW distance matrix is reduced as shown
in Figure 6.1.

Figure 6.1: Reduction in size of DTW distance matrix by reducing the time series
length from x to x′

The first idea considered was to identify specific sub-sequences of indexes (locations)
within the time series within D that would best serve to discriminate between classes,
one sub-sequence (location) per class. Once the sequences have been identified, D can
be “reformatted” to form D′ comprised of only the identified sequences. We refer to
such sub-sequences as discriminators. The second idea considered is to translate D and
ú into a “distance profile” format; what a distance profile is will become clear later in
this chapter. Both are used to reformat D as a consequence of which each time series
in D is significantly shortened, and therefore requires less processing. Note that given
a new time series ú this also needs to be reformatted to give ú′, DTW is then applied to
the reduced data set D to obtain a label for ú′ (ú).

82
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The idea of discriminators has similarities with the concept of motifs [5, 56, 102, 116].
A motif is a time series sub-sequence that occurs frequently in a data set D and, because
it occurs frequently, is deemed to be a good indicator of class [124]. The opposite is a
discord [20, 101]. A discord is a time series sub-sequence that occurs infrequently in
a data set D and, because it occurs infrequently, is deemed to be a good indicator
of class [101]. Note the two schools of thought; a motif is the opposite of a discord.
The distinction between a discriminator as envisioned in this chapter, and motifs and
discords, is that the location of the latter can be anywhere within a collection of time
series D, while discriminators always occur at the same locations within D. To put
it another way, a discriminator is a time series sub-sequence that is a good indicator
of class that occurs at a constant location within a set of time series. The challenge
is how these discriminators (locations) should be identified. We can conceive of two
categories of approach, (i) exact approaches and (ii) approximate approaches. The
distinction between the two is that the first entails an exhaustive search. Only the
first is considered here, the Exact Discriminator-Based DTW (EDBDTW) approach.
Approximate approaches are left as a consideration for further work (see Chapter 7).
The distance profile idea is based on work using matrix profiles to identify motifs and
discords [4, 127, 128]. The proposed distance profile approach is referred to as the
Distance Profile-Based DTW (DPBDTW) approach [9].

Earlier in this thesis, Chapters 3 and 4, four DTW approaches were considered.
Two benchmark approaches, Standard DTW and S-C Band DTW, and two approaches
based on segmenting time series, the Sub-Sequence-Based DTW (SSBDTW) approach
and the Fuzzy Sub-Sequence-Based DTW (FSSBDTW). Of these, FSSBDTW was found
to be both the most efficient and the most effective. Hence, with respect to the work
presented in this chapter FSSBDTW was used to obtain classifications, although any
other time series comparison method could be applied. Thus in the remainder of this
chapter reference to either the EDBDTW or DPBDTW approach should be interpreted
as entailing FSSBDTW in the context of kNN classification where k = 1.

Given the foregoing, the work presented in this chapter was directed at providing
answers to the subsidiary research questions four and five given in Chapter 1:

Is it possible to only consider sub-sequences that are repeated in instances (records) of
the same class, so that DTW can be applied only to such sub-sequences instead of the

entire time series?

and

Is it possible to identify mechanisms for transforming time series from their original
form and apply DTW to this new form?

The rest of this chapter is organised as follows. Sections 6.2 and 6.3 present the
proposed EDBDTW and DPBDTW approaches respectively. Both sections are struc-
tured in a similar manner. Sections 6.4 then provides a comparison of the operation
of the proposed EDBDTW and DPBDTW approaches. Note that comparison with the
approaches presented in Chapters 4 and 5 is left till Chapter 7. The chapter is concluded
in Section 6.5, with a summary of the main findings.

6.2 Exact Discriminator-Based DTW approach

This section presents the first of the two time series pruning mechanisms considered in
this chapter, exact discriminator identification. As noted above the exact mechanism
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is an exhaustive mechanism that assumes a fixed discriminator length δ, and typically
one discriminator per time series. Note that δ < x, where x is the length of a time
series in the database D (as before, given a particular application, it is assumed that all
time series are of the same length). The fundamental idea is that a discriminator will
be defined by the location, within a set of time series associated with a class, where the
time series are most similar. This location is then where DTW can best be applied to
obtain a good classification. The exact discriminator identification mechanism was built
into the Exact Discriminator-Based DTW (EDBDTW) approach. The approach is fully
described and evaluated in this section.

The section is organised in a similar manner to the previous sections describing ap-
proaches to enhancing the efficiency of DTW presented earlier in this thesis. Sub-section
6.2.1 describes the operation of the EDBDTW approach. For further clarification, Sub-
section 6.2.2 presents a worked example. The pseudo code for the EDBDTW approach
is presented in Sub-section 6.2.3. Sub-section 6.2.4 then discusses the theoretical com-
putational complexity of the proposed approach using “Big O”notation. This is then
followed by Sub-section 6.2.5 which presents a practical evaluation of the approach,
which concludes the section.

6.2.1 Operation of Exact Discriminator-Based DTW Approach

In this section, the operation of the proposed Exact Discriminator-Based DTW (EDB-
DTW) approach is presented. A block diagram describing the approach is given in
Figure 6.2. The process comprises four stages.

Stage 1 Parameter learning to find the best parameters (the loop at the top of Figure
6.2).

Stage 2 Discriminator location using identified est parameters.

Stage 3 Data set D transformation to give D′.

Stage 4 Classification of a given query ú time series with respect to D′ through the
application of FSSBDTW.

Note that stages 1, 2 and 3 are only undertaken once, unless more training data becomes
available. Stage 4 can then be applied as required.

During Stage 1, the values for the following parameters are learnt: (i) δ, the length
of a discriminator expressed as a percentage of x, the length of a time series in D (as
before, it is assumed that all time series in D are of the same length), (ii) maxLength,
the maximum length of a FSSBDTW segment and (iii) t, the length of the tail used
with respect to FSSBDTW. As before, during Stage 1, a training and test set are used
with Euclidean distance time series comparison (because this is cheaper than DTW). A
9 : 1 training and test set split was used with respect to the evaluation presented later
in this chapter. In Stage 2, the learnt parameter δ is used to identify the discriminator
locations, which are then used to reformat D into D′ in Stage 3. Only one discriminator
is typically learnt for each class. Thus if we have three classes we anticipate that we
will have three discriminators as illustrated in Figure 6.3. In the figure, the identified
discriminators are surrounded by bounds (stadia). The discriminators, for each class,
are identified by comparing all time series of length δ at each location (index) in D to
every other time series of length δ at each other location, and choosing the location
where the time series are most similar. Stage 4 is where the desired classification takes
place.
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Figure 6.2: Schematic outlining the operation of the EDBDTW approach

Figure 6.3: Example discriminators

6.2.2 Exact Discriminator-Based DTW Approach Worked Example

In this section, a worked example of the process of exact discriminator extraction is
presented. Assuming the set of classes C = {blue, red}, a discriminator length δ = 4,
and the set D = {⟨S1, c1⟩, . . . , ⟨S6, c6⟩} as follows:
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i Si ci
1 [1, 3, 2, 1, 3, 2, 1, 3, 1, 2] red
2 [2, 1, 1, 1, 2, 2, 2, 1, 3, 1] red
3 [4, 5, 5, 6, 5, 3, 4, 5, 5, 6] blue
4 [3, 3, 4, 5, 5, 4, 4, 5, 4, 5] blue
5 [3, 3, 1, 2, 2, 3, 2, 3, 2, 3] red
6 [5, 5, 3, 3, 5, 4, 3, 5, 3, 3] blue

We commence by dividing the input set D into a set of sets A so that the time series
associated with each class are grouped. In this example, we will get A = {Ablue, Ared}
such that Ablue will be defined as follows:

i Si ci
1 [4, 5, 5, 6, 5, 3, 4, 5, 5, 6] blue
2 [3, 3, 4, 5, 5, 4, 4, 5, 4, 5] blue
3 [5, 5, 3, 3, 5, 4, 3, 5, 3, 3] blue

and Ared as follows:

i Si ci
1 [1, 3, 2, 1, 3, 2, 1, 3, 1, 2] red
2 [2, 1, 1, 1, 2, 2, 2, 1, 3, 1] red
5 [3, 3, 1, 2, 2, 3, 2, 3, 2, 3] red

We then process A starting with Ablue. For all time series in Ablue up to, but not
including the last time series, we accumulate the absolute distances between points and
store them in a set B. Thus for the first two time series in Ablue the distances will be.

i abs(S1 − S2); S1, S2 ∈ Ablue

1 [4, 5, 5, 6, 5, 3, 4, 5, 5, 6]
2 [3, 3, 4, 5, 5, 4, 4, 5, 4, 5]

distance 1-2 [1, 2, 1, 1, 0, 1, 0, 0, 1, 1]

and for the next two:

i abs(S2 − S3); S2, S3 ∈ Ablue

2 [3, 3, 4, 5, 5, 4, 4, 5, 4, 5]
3 [5, 5, 3, 3, 5, 4, 3, 5, 3, 3]

distance 2-3 [2, 2, 1, 2, 0, 0, 1, 0, 1, 2]

Adding these two together we get B = {3, 4, 2, 3, 0, 1, 1, 0, 2, 3}. Note that there is a one-
to-one correspondence between the index locations in B and the time series in Ablue.
Given δ = 4 we can identify seven sub-sequences in B:

i wi

1 3, 4, 2, 3
2 4, 2, 3, 0
3 2, 3, 0, 1
4 3, 0, 1, 1
5 0, 1, 1, 0
6 1, 1, 0, 2
7 1, 0, 2, 3
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Thus W = {w1, w2, w3, w4, w5, w6, w7}. We then define and populate a set E = {dist1,
dist2, dist3, dist4, dist5, dist6, dist7} with a one-to-one correspondence with the content
of W . Each disti in E holds the sum of the values in wi. Thus E = {12, 9, 6, 5, 2, 4, 6}.
The lowest distance in E is 2, which corresponds to w5 which in turn corresponds to
indexes [5, 6, 7, 8] (assuming we start counting from 1). Thus for the class Ablue the
differentiator sub-sequence is at indexes [5, . . . , 8].

Considering the class Ared, B = {2, 4, 1, 1, 1, 1, 1, 4, 3, 3} and thus we have the sub-
sequences:

i wi

1 2, 4, 1, 1
2 4, 1, 1, 1
3 1, 1, 1, 1
4 1, 1, 1, 1
5 1, 1, 1, 4
6 1, 1, 4, 3
7 1, 4, 3, 3

We therefore have E = {8, 7, 4, 4, 7, 9, 11}. In this case, the lowest value is 4, which
equates to w3 and w4, thus we have two discriminators at indexes [3, . . . , 6] and [4, . . . , 7].
Note that in practice it is unusual to have two or more discriminators for a class.

When we have a new time series ú, we find the similarity by only comparing the
differentiators in ú and D. So, no need to compare the whole of ú with the whole of the
time series in D.

6.2.3 Exact Discriminator-Based DTW Approach Algorithm

This section presents the pseudo code for Stages 1, 2, 3 and 4 of the proposed EDBDTW
approach starting with Stage 1, parameter learning. The pseudo code for Stage 1 is given
in Algorithm 13. The inputs, line 1, are: (i) a collection of pre-labelled time series,
Dtrain, which will form the initial kNN bank, (ii) a second collection of pre-labelled time
series, Dtest, to form a test set, (iii) the size, |C|, of the set of classes C, (iv) a set
I of possible values for the FSSBDTW maxlength parameter, (v) a set T of possible
values for the FSSBDTW t tail parameter and (vi) a set ∆ of the possible values for the
discriminator length parameter δ. The algorithm loops through the different parameter
combinations. On each iteration, a set DIS describing the identified discriminator
locations is generated (line 7). Each discriminator is defined by a start and an end index,
thus DIS = {⟨start1, end1⟩, ⟨start2, end2⟩, . . . } where ⟨start1, end1⟩ is the discriminator
associated with class c1 ∈ C,and ⟨start2, end2⟩ is the discriminator associated with
c2 ∈ C, and so on. The process for doing this will be presented later in this section
(Algorithm 14). The set DIS is then used to translate the input sets Dtrain and Dtest

into the sets D′
train and D′

test (lines 8 and 9). On line 10, the function kNN Euclidean
is called with D′

train, D′
test and the selected values for the parameters for maxLen and

t. The function returns the classification accuracy, the number of true positives and
true negatives. This is then used to update the bestAccuracy variable and the best
parameter list. Once the entire search space has been processed the best parameters
will have been identified. Stage 1 is then complete and the identified parameters are
returned (line 18). Initial experiments indicated that the following definitions for I, T
and ∆ were the most appropriate: I = {10, 20, . . . , 90, 100}, T = {1, 2, . . . , 9, 10} and
∆ = {5%, 10%, . . . , 90%, 95%}.
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Algorithm 13 EDBDTW Parameter Learning, Stage 1

1: input Dtrain, Dtest, |C|, I, T,∆.
2: bestParameters = [0, 0, 0]
3: bestAccuarcy = 0
4: for ∀maxLeni ∈ I do
5: for ∀ti ∈ T do
6: for ∀δi ∈ ∆ do
7: DIS = exactDiscriminatorrID(Dtrain, |C|, δi) (Algorithm 14)
8: D′

train = Dtrain transformed according to DIS
9: D′

test = Dtest transformed according to DIS
10: newAccuracy = kNN Euclidean(D′

train, D′
test, maxLeni, ti)

11: if newAccuracy > bestAccuracy then
12: bestAcuuracy = newAccuracy
13: bestParameters = [maxLeni, ti, δi]
14: end if
15: end for
16: end for
17: end for
18: return bestParameters

Stage 2, discriminator identification, is where the discriminators are identified. Note
that discriminator locations were identified during the Stage 1 parameter tuning, but
not using the entire data set, hence the process is repeated in Stage 2. Recall also
that the discriminators are defined by a tuple of the form ⟨starti, endi⟩, where start1
and endi are the start and end indexes for the discriminator. The pseudo code for
the discriminator identification is given in Algorithm 14. The inputs (line 1) are: (i)
the data set D = {⟨S1, ci⟩, ⟨S2, c2⟩, . . . ⟨Sr, cr⟩}, (ii) the number of classes in C and
(iii) the desired discriminator length δ as discovered during Stage 1. The first step
(line 2) is to declare an empty set DIS in which to hold the identified discriminator
locations, which is to be populated as the process progresses. Next (lines 3 to 6), the
time series in D are grouped according to their associated class and placed in a set of
sets A = {A1, A2, . . . A|C|}, where set Ai holds the collection of time series associated
with class ci. This set of sets is then processed, lines 7 to 22, so as to generate DIS.
For each set of time series Ai ∈ A, associated with a particular class ci, a temporary
array B of length r is generated (lines 8 to 13), which holds the accumulated distances
for each index in the time series in Ai. Thus, the accumulated distances between the
time series for index 1 (time point 1), index 2, and so on, up to index x (the assumption
is that the input time series are all of the same length). The array B is then, line 14,
divided into a set of overlapping sub-sequences, W = {w1, w2, . . . , ws}, each of length
δ. A temporary array E is then created, lines 15 to 18, to hold accumulated distances
(sums of distances) held in each sub-sequence wj ∈ W . Note that there is a one-to-
one correspondence between W and E. The start index associated with the distance
sequence wj ∈ W that has the lowest accumulated distance distj ∈ E is then selected as
the start index of the location for the discriminator for the time series in Ai (line 19). It
is then a simple step to find the end index by adding δ to start (line 20). At the end of
the process, the set DIS will be fully populated with a set of discriminators. To obtain
a more comprehensive understanding of the operation of Stage 2 the reader might find
it useful to return to the worked example given in the precious sub-section.

Stage three involves transforming the set D into a set of discriminators D′ according
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Algorithm 14 Exact Discriminator Identification (Stage 2)

1: input D, |C|, δ
2: DIS = ∅
3: A = Temporary set of sets length |C| to hold sets of time series
4: for ∀⟨Sj , cj⟩ ∈ D do ▷ Populate A
5: Ai = Ai ∪ ⟨Sj , cj⟩ (i = j)
6: end for
7: for ∀Ai ∈ A do ▷ Populate B
8: B = Temporary array [dist1, dist2, . . . , distr], disti = 0
9: for Sj ∈ Ai, j = 0 to j = r − 1 do

10: for ∀px ∈ Sj and ∀qx ∈ Sj+1 do
11: distx ∈ B = distx + abs(px − qx)
12: end for
13: end for
14: W = [w1, w2, . . . , ws], array of sub-sequences in B, each of length l̄
15: E = Temporary array [dist1, dist2, . . . , dists]
16: for ∀wj ∈ W do ▷ Populate E

17: distj ∈ E =
∑i=l̄

i=0 pi ∈ wj

18: end for
19: start = start index of wj ∈ W with lowest distance value distj ∈ E.
20: end = start + δ
21: DIS = DIS ∪ ⟨start, end⟩
22: end for
23: return DIS

Algorithm 15 EDBDTW Parent Code (Stages 1, 2 and 3)

1: input Dtrain, Dtest, |C|, I, T,∆.
2: [maxLength, t, δ] = paramLearn(Dtrain, Dtest, |C|, I, T,∆) ▷ Stage 1 Algorithm 13
3: DIS = exactDiscriminatorID(Dtrain, |C|, δ) ▷ Stage 2 Algorithm 14
4: D′ = Dtrain ∪Dtest transformed using DIS ▷ Stage 3
5: return D′, DIS,maxLength, t

to the content of DIS. Note that D = Dtrain ∪ Dtest. This is a fairly straightforward
process. Once Stage 3 is complete, classification of unseen time series can commence
(Stage 4). The pseudo code given in Algorithm 15 outlines the “parent” code for stages
1, 2 and 3. The input is the same as for Algorithm 13. The output is D′. The parent
algorithm also returns: (i) the set DIS because this will be required to transform any
previously unseen time series to be labeled, and (ii) the parameters maxLength and t
required by FSSBDTW.

The final stage of the proposed EDBDTW approach, Stage 4, is the classification of
previously unseen time series. This final stage is also relatively straight forward when
compared to Stages 1 and 2. The pseudo code is given in Algorithm 16. The input
(line 1) is the kNN bank D′, the set of discriminator locations DIS, the values for the
parameters maxLength and t used by FSSBDTW, and the time series to be labelled ú.
The first step, line 2, is to transform ú into ú′ according to the content of DIS. Then,
lines 4 to 11 we determine the best match in D′ with ú′ and retain the associated class
c, which is returned in line 12. Note that the matching is done using the best warping
distance (bestWD) obtained using the FSSBDTW algorithm presented previously in
Chapter 4.
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Algorithm 16 EDBDTW Classification (Stage 4)

1: input D′, DIS,maxLength, t, ú.
2: ú′ = ú transformed using DIS
3: bestWD = ∞
4: c = default class
5: for ∀Si ∈ D′ do
6: wd = FSSDDTW (Si, ú′,maxLen, t)
7: if wd < bestWD then
8: bestWD = wd
9: c = class associated with Si ∈ D′

10: end if
11: end for
12: return c

6.2.4 Theoretical Time Complexity of Exact Discriminator-Based DTW
Approach

In this section, the theoretical time complexity of the EDBDTW approach is presented,
assuming TCV and 1NN classification, and Big O (“in the Order of”) notation. Each
of the four stages will first be considered independently and then an overall complexity
equation derived. Commencing with Stage 1, parameter tuning, and assuming a 9:1
training-test set split, the complexity is similar to Stage 1 of the CRBED approach
described in Chapter 5 (Equation 5.6):

stage1complexity = numberParameterCombinations× numberOfComparisons

× EuclideanComparisoncomplexity

(6.1)

where:

numberParameterCombinations = |I| × |T | × |∆| (6.2)

numberOfComparisons =
|D|
10

× 9 × |D|
10

=
9 × |D|2

100
(6.3)

EuclideanComparisoncomplexity = O
(
δ̄
)

(6.4)

Note that for determining the Euclidean distance comparison complexity the average
value of δ is used (δ̄). The Stage 1 complexity equation thus becomes:

stage1complexity = O

(
|I| × |T | × |∆| × 9 × |D|2

100
× δ̄

)
(6.5)

Recall that the sets I, T and ∆ were pre-specified, and that |I| = 10, |T | = 10 and
|∆| = 17. The above thus becomes:

stage1complexity = O

(
10 × 10 × 17 × 9 × |D|2

100
× δ̄

)
(6.6)

which simplifies to:
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stage1complexity = O
(
153 × |D|2 × δ̄

)
(6.7)

When using TCV, the parameter tuning will be conducted 10 times. Hence the above
will become:

stage1TCVcomplexity = O
(
10 × 153 × |D|2 × δ̄

)
= O

(
1530 × |D|2 × δ̄

) (6.8)

The complexity of Stage 2, identification of discriminator locations (each defined by
a start and end index), depends on the number of candidates to be considered and the
number of records in D. The number of candidates, given a single time series Si ∈ D,
will be equivalent to x − δ + 1. However, the value of δ will be learnt from a set of
values ∆, thus using a mean value of δ will again be more appropriate. The complexity
of Stage 3 will thus be given by:

stage2complexity = O
(
|D| ×

(
x− δ̄ + 1

))
= O

(
|D| ×

(
x− δ̄ + 1

)) (6.9)

When using TCV this will be conducted 10 times for both Dtrain and Dtest (D =
Dtrain ∪Dtest):

stage2TCVcomplexity = O
(
10 × |D| ×

(
x− δ̄ + 1

))
(6.10)

The complexity of Stage 3, where D is transformed into D′ is simply given by:

stage3complexity = O (|D|) (6.11)

When using TCV this will be conducted 10 times:

stage3TCVcomplexity = O (10 × |D|) (6.12)

The determination of the class of a query time series ú will then require |D′| compar-
isons. The complexity for class determination, assuming the FSSBDTW approach, will
therefore be:

stage4complexity = O
(
|D′| ×DTWcomplexityFSSBDTW

)
(6.13)

The complexity of FSSBDTW was previously given in Equation 4.11 in Chapter 4 as:

DTWcomplexityFSSBDTW = O
(
x× len

)
(6.14)

where x was the length of the time series to be labelled and len was the average length of
a segment. However, in the case of the EDBDTW approach, the length of the time series
has been reduced. If we assume that the identified discriminators are non-overlapping
and that we have one discriminator per class, not necessarily the case as illustrated in
the worked example, then the number of points in each time series in D′ (the length of
the time series) will be |C| × δ̄. The classification complexity thus becomes:

stage4complexity = O
(
|D′| × |C| × δ̄ × len

)
(6.15)

If we are undertaking TCV, the number of classifications will equate to |D|. Thus:
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stage4TCVcomplexity = O
(
|D| × |D′| × |C| × δ̄ × len

)
(6.16)

Note that in this case |D′| is equivalent to |D|. Thus:

stage4TCVcomplexity = O
(
|D|2 × |C| × δ̄ × len

)
(6.17)

The overall complexity of the EDBDTW approach, assuming TCV, will then be:

EDBDTW TCVcomplexity = stage1TCVcomplexity + stage2TCVcomplexity+

stage3TCVcomplexity + stage4TCVcomplexity

(6.18)

In other words:

EDBDTW TCVcomplexity = O(
(
1530 × |D|2 × δ̄

)
+
(
10 × |D| ×

(
x− δ̄ + 1

))
+

(10 × |D|) +
(
|D|2 × |C| × δ̄ × len

)
)

= O(|D| ×
(
1530 × |D| × δ̄

)
+
(
10 ×

(
x− δ̄ + 1

))
+

10 +
(
|D| × |C| × δ̄ × len

)
)

(6.19)

6.2.5 Evaluation of Exact Discriminator-Based DTW Approach

The evaluation of the proposed EDBDTW approach is presented in this sub-section.
The evaluation was conducted using 1NN classification and the fifteen selected data sets
from the UEA and UCR Time Series Classification repository [14] in the same manner
as reported on in Chapters 3, 4 and 5. The objectives of the evaluation were:

1. Operational Analysis: To analyse the operation of the proposed EDBDTW
approach.

2. Efficiency Comparison: To evaluate the run-time advantages gained using the
EDBDTW approach compared to the Standard DTW and the S-C Band DTW
benchmark approaches.

3. Effectiveness Comparison: To determine whether the classification accuracy
of the proposed EDBDTW approach was commensurate with that obtained using
standard DTW and S-C Band DTW.

For the S-C Band approach a warping window of ℓ = 10% was again used as proposed
in [81, 92]. The experimental set up was the same as that used with respect to the
evaluations reported on in earlier chapters. A desktop computer was used with an
Apple M1 8 core CPU processor, an 8 core GPU, a 16 core Neural Engine, 16GB unified
memory, and 512GB Solid State Drive (SSD).

Operational Analysis

The performance, in terms of run time, accuracy and the F1 measure, for the proposed
EDBDTW approach, is considered here together with the nature of the derived values
for maxLen, t and δ. Table 6.1 gives the results obtained. Columns 3, 4 and 5 give the
maxLen, t and δ values in each case. Column 6 gives the run time in seconds. Columns
7 and 8 give the accuracy values and F1 scores obtained. As in the case of the previous
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Table 6.1: Best values for parameters maxLen, t and δ in terms of run time, accuracy
and F1 score for each data set.

ID
Data set maxLen

Tail
δ

Run time Acc F1
# t (Secs) (SD) (SD)

1 SmoothSubspace 5 2 95% 3.04
95.00
(0.02)

0.95
(0.04)

2 ItalyPowerDemand 6 3 55% 15.87
96.35
(0.02)

0.96
(0.02)

3 Libras 10 3 60% 3.47
64.17
(0.12)

0.61
(0.12)

4 SyntheticControl 30 2 90% 10.68
95.17
(0.03)

0.95
(0.03)

5 GunPoint 40 2 45% 1.63
98.00
(0.02)

0.98
(0.02)

6 OliveOil 40 9 95% 2.18
90.00
(0.11)

0.90
(0.11)

7 Trace 70 2 80% 5.88
99.00
(0.02)

0.99
(0.02)

8 ToeSegmentation2 30 3 75% 6.05
92.21
(0.04)

0.92
(0.04)

9 Car 60 6 85% 6.19
83.33
(0.06)

0.83
(0.06)

10 Lighting2 80 2 90% 8.25
89.17
(0.08)

0.89
(0.08)

11 ShapeletSim 40 1 85% 14.64
87.00
(0.07)

0.87
(0.07)

12 DiatomSizeReduction 20 2 20% 4.81
100.00
(0.00)

1.00
(0.00)

13 Adiac 10 2 100% 88.20
65.81
(0.03)

0.62
(0.04)

14 HouseTwenty 300 5 45% 53.32
96.25
(0.05)

0.96
(0.05)

15 PenDigits 5 2 100% 480.17
89.19
(0.01)

0.89
(0.01)

evaluation results presented in this thesis, the numbers in parentheses give standard
deviations. From the table, and as experienced with respect to the parameter settings
associated with the earlier approaches presented in this thesis, there is no definitive value
for maxLen, t or δ. This supports the intuition of including a parameter tuning stage
in the EDBDTW approach. Although not shown in the table, as was anticipated, the
results obtained indicated that run time decreased as δ decreased, whilst accuracy was
only affected in a marginal manner.

From Table 6.1 it is also interesting to note that in many cases the best value for δ
is high. In 10 of the 15 cases, the best identified value for δ was greater than 70%. In
other words, no significant reduction of the time series length was being made. Given
several classes, it might be the case that the entire data set is still being examined! In
two cases, Adiac and PenDSigits the best value for δ was found to be 100%; in other
words, no saving was being made. In only one case, DiatomSizeReduction, where the
best value for δ was found to be 20%, was any significant saving being made in terms of
time series length. It is also worth noting, by comparing back to Table 4.5 in Chapter
4, that different best values for maxLength and t were obtained using the EDBDTW
approach compared to using FSSBDTW in isolation. This, it was conjectured, was
because if the interplay between the parameters maxLength and t, and δ, in the case of
the EDBDTW approach. It also might be conjectured that there was a certain degree
of “volatility” with respect to the parameters maxLength, t and δ.
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Efficiency Comparison

Figure 6.4 gives a comparison of the run time performance of the Standard DTW, S-C
Band DTW and EDBDTW Approaches. The x-axis represents the data set identification
numbers as listed in Table 6.1, and the y-axis represents the run time in seconds. The
values for maxLen, t and δ that were used were the best performing values as reported
in Table 6.1. From the figure, it can be seen that for all the data sets considered, except
the Adiac and PenDigits data sets, the proposed EDBDTW approach produced the
best run times despite the effort directed at parameter tuning, discriminator location
identification and data set transformation. In the case of the PenDigits data set, a
very similar run time was recorded. Referring back to Table 6.1 the reason for the poor
result with respect to the Adiac and PenDigits data sets was that the best value for
δ of 100% was used. Hence, effort was directed at finding best parameters, identifying
the location of the discriminator and transforming D into D′, with no advantage gained
because the entire time series were still being processed. In addition, referring back to
the discussion presented in the previous sub-section, in many cases, the value for δ was
high and consequently, the length of the time series were not significantly reduced. Hence
an argument can be made that a significant proportion of the efficiency gains obtained
using the EDBDTW approach, compared to Standard DTW and S-C Band DTW, were
as a result of using FSSBDTW rather than the discriminator concept. However, this
argument should be tempered with the observation that some of the data sets considered
featured time series that were relatively short (see Table 3.1 presented in Chapter 3).
For example, the time series in the PenDigits data set only featured 8 points, hence it
should come as no surprise that the best value for δ was found to be 100%.

In Chapters 3 and 4, the recorded run times were used to determine and test an actual
runtime equation founded on the theoretical complexity equation. This was done by
determining the value of a constant z, the approximate run time for a single application
of DTW. However, in the case of the EDBDTW approach we have both Euclidean
distance and DTW comparisons, thus two constants z1 and z2. Furthermore, we have
the four stages of the proposed EDBDTW approach to consider. Thus, determining the
proportion of the recorded run times to be allocated to the calculation of z1 and z2 is
not straight forward. Hence, unlike in Chapters 3 and 4, an actual run time equation is
not presented here.

Figure 6.4: Run time results using the Standard DTW and S-C Band DTW bench-
mark approaches and the proposed EDBDTW Approach.
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Table 6.2: Accuracy and F1-Score, with standard deviation, for fifteen time series
data sets using Standard DTW, S-C Band DTW and EDBDTW.

ID Data set Standard DTW S-C Band ℓ = 10 EDBDTW

# Name
Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

95.00
(0.02)

0.95
(0.02)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

96.35
(0.02)

0.96
(0.02)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.11)

0.60
(0.11)

64.17
(0.12)

0.61
(0.12)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

95.17
(0.03)

0.95
(0.03)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03)

0.97
(0.03)

98.00
(0.02)

0.98
(0.02)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

90.11
(0.11)

0.90
(0.11)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

99.00
(0.02)

0.99
(0.02)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

92.21
(0.04)

0.92
(0.04)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

83.33
(0.06)

0.83
(0.06)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

89.17
(0.08)

0.89
(0.08)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

87.00
(0.07)

0.87
(0.07)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

65.81
(0.03)

0.64
(0.03)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

96.25
(0.05)

0.96
(0.05)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

89.64
(0.01)

0.89
(0.01)

Effectiveness Comparison

Table 6.2 presents the comparison between EDBDTW, Standard DTW and S-C Band
DTW in terms of accuracy and F1 score. The values in parentheses are the standard
deviations recorded after averaging over the ten folds of the TCV. Best results are
highlighted in bold font. From the table, it can be seen that the proposed EDBDTW
approach produced the best results with respect to fourteen of the fifteen data sets
considered; for the remaining one case (the SyntheticControl data set), a similar per-
formance was recorded. Where the performance was improved, and not with standing
that in some case δ = 100%, it can be argued that in some cases the reshaped time
series according to the identified discriminators served to produce a more representative
data bank for use with respect to kNN classification, hence a better classification was
produced given previously unseen time series.
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6.3 Distance Profile-Based DTW

A criticism of the EDBDTW approach described in the previous section is that in many
cases the value of δ is such that there is little (in some cases no) reduction in the overall
length x of the time series in D. Hence, in many cases there is little advantage to be
gained. This section presents an alternative approach, Distance Profile-Based DTW
(DPBDTW), to reduce x by recasting the data into a distance profile format. An idea
influenced by the work on matrix profiles for motif (and discord) discovery [4, 127, 128].
A distance profile, in the context of the work presented here, is a data structure that
serves to reduce the lengths of the time series to be considered by n−1, where n is a pre-
defined time series sub-sequence length [129]. The reduction in size is thus dependent on
the selected value for n. Given a kNN classification scenario both the data bank D, and
the previously unseen time series ú to be classified, have to be converted into distance
profiles, Π and ú′ which can then be compared to retrieve the class label associated with
the most similar row in Π. The idea is illustrated in Figure 6.5. In the figure, the x-axis
represents the time series indexes and the y-axis represents the values. At the top of
the figure, we have an input time series Si, at the bottom, we have the same time series
transformed into a distance profile Pi (note the change in shape and the reduced length
of n− 1).

Figure 6.5: Distance profile generation. Top: the original time series. Bottom: the
resulting distance profile.

The remainder of this section is organised in a similar manner to the previous section.
The section commences, Sub-section 6.3.1 with an overview of the operation of the
proposed DPBDTW mechanism. For further clarification, a worked example is given in
Sub-section 6.3.2 and the associated pseudo code in Sub-section 6.3.3. The theoretical
computational complexity for the proposed DPBDTW approach is then discussed in
Sub-section 6.3.4. A practical evaluation of the proposed approach is reported on in
Section 6.3.5.

6.3.1 Operation of Distance Profile-Based DTW

In this section, the operation of the proposed DPBDTW approach is presented. As noted
in the introduction to this section, the fundamental idea is to recast the input data into
a distance profile. A distance profile is a r× (x− n + 1) matrix where r, the number of
rows in the profile, is the number of time series (records) to be considered, x is the length
of the time series and n is a pre-defined time series sub-sequence length. Given a data
set D = {S1, S2, . . . , Sr} each time series Si is represented by a row in the associated
distance profile. Each column in the distance profile represents a sub-sequence in a time



Chapter 6. Pruning Approaches 97

series Si. To generate a row in a distance profile, Si is first segmented (divided) into
x − n + 1 overlapping sub-sequences. The elements in a row in the distance profile are
then the Euclidean distances between the first sub-sequence and all the sub-sequences in
Si (thus the first element, where the first sub-sequence is compared to itself, will always
have the value zero).

A schematic of the overall DPBDTW process is given in Figure 6.6. From the figure,
it can be seen that the DPBDTW approach comprises three stages:

Stage 1 Parameter learning to find best parameters (the loop at the top of Figure 6.6).

Stage 2 Data set D transformation to give Π.

Stage 3 Classification of a given query ú time series through the application of FSSB-
DTW.

Note that, as in the earlier proposed approaches that featured parameter learning and
data transformation, Stages 1 and 2 are only undertaken once (unless of course more
training data becomes available). Stage 3 can then be applied as and when required.

Figure 6.6: Schematic outlining the operation of the DPBDTW approach

During Stage 1, the values for the following parameters are learnt: (i) n, the time
series sub-sequence length, (ii) maxLength, the maximum length of the FSSBDTW
segment and (iii) t the length of the tail used with respect to the FSSBDTW approach.
As before, during Stage 1, a training and test set are used with Euclidean distance
time series comparison. A 9 : 1 training and test set split was used with respect to the
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evaluation presented later in this section. In Stage 2, the learnt parameter n is used to
generate a distance profile Π. Stage 3 is where the desired classification takes place. A
worked example to clarify the process is given in the following sub-section, Sub-Section
6.3.2.

6.3.2 Distance Profile-Based DTW Worked Example

As in the case of the EDBDTW approach presented in the previous section, this sub-
section presents a worked example of the operation of the DPBDTW approach. For
the worked example the same input data set, D = {S1, S2, . . . }, as used previously is
considered here:

i Si ci
1 [1, 3, 2, 1, 3, 2, 1, 3, 1, 2] red
2 [2, 1, 1, 1, 2, 2, 2, 1, 3, 1] red
3 [4, 5, 5, 6, 5, 3, 4, 5, 5, 6] blue
4 [3, 3, 4, 5, 5, 4, 4, 5, 4, 5] blue
5 [3, 3, 1, 2, 2, 3, 2, 3, 2, 3] red
6 [5, 5, 3, 3, 5, 4, 3, 5, 3, 3] blue

The first step is to segment the records in D = {S1, S2, . . . }. Each time series Si ∈ D
is segmented into x − n + 1 sub-sequences each of length n, and the result stored in a
set Ω = {W1,W2, . . . ,Wx−n+1}. Thus, in the case of S1 = [1, 3, 2, 1, 3, 2, 1, 3, 1, 2], and
assuming n = 4, the following will be obtained:

i Wi

1 [1, 3, 2, 1]
2 [3, 2, 1, 3]
3 [2, 1, 3, 2]
4 [1, 3, 2, 1]
5 [3, 2, 1, 3]
6 [2, 1, 3, 1]
7 [1, 3, 1, 2]

We then process W and determine the Euclidean distances between w1 and all of the
sub-sequences in W . Thus the Euclidean distance between w1 and w2 is abs(1 − 3) +
abs(3− 2) + abs(2− 1) + abs(1− 3) = 2 + 1 + 1 + 2 = 6. This is repeated for all wi ∈ W .
On completion, the distances will be [0, 6, 5, 0, 6, 3, 2]. The process is repeated for all
Si ∈ D. The results are then stored in a Distance Profile Π = {P1, P2, . . . } (note that
there is a direct correspondence between each Pi and Si). In the case of the worked
example, Π will be of the form:

i S′
i ci

1 [0, 6, 5, 0, 6, 3, 2] red
2 [0, 2, 3, 4, 2, 3, 2] red
3 [0, 3, 5, 6, 5, 3, 0] blue
4 [0, 2, 5, 5, 3, 4, 3] blue
5 [0, 3, 4, 4, 3, 3, 3] red
6 [0, 4, 7, 3, 3, 5, 2] blue

Note that in the above distance profile the first column comprises all zero values. This
is because the first column gives the distance between each segment W1 and itself, hence
we would expect this to be zero.
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Given a previously unseen time series, ú, this will be compared with the contents of
Π using DTW. In the case of the evaluation presented later in this section FSSBDTW
was used because of its good performance as established in Chapter 4. To do this ú has
to also first be transformed into a distance profile (of one row).

6.3.3 Distance Profile-Based DTW Algorithm

This pseudo code for the DPBDTW approach is given in this sub-section. The algorithm
for Stage 1 is similar to that given in Algorithm 13 for the EDBDTW approach except
that: (i) |C| is not required as an input; (ii) ∆ is replaced with N , the set of possible
values for n; (iii) line 7 references the function distanceProfileGen(D,n) (algorithm
17 presented below). Through a process of experimentation it was found that N =
{5, 10, . . . , 95, 100} was an appropriate setting for N . The same settings for I and T as
used previously were adopted; I = {10, 20, . . . , 90, 100} and T = {1, 2, . . . , 9, 10}.

The pseudo code for Stage 2, distance matrix generation, is given in Algorithm 17.
The input is a data set D = {S1, S2, . . . , Sr} and the n parameter value identified in
Stage 1. Note, D could comprise only one record (r = 1) when considering a previously
unseen record to be labelled. The output is a distance profile Π = {P1, P2, . . . , Pr}. The
distance profile is defined on line 2. Next D is processed record by record (lines 3 to
9). On each iteration, the current time series Si ∈ D is segmented into x − n + 1 time
series to give Ω = {W1,W2, . . . ,Wx−n+1}. The Euclidean distance between W1 ∈ Ω and
all Wj ∈ Ω is then calculated (including the distance between W1 and itself, which will,
obviously, be zero). To determine the Euclidean distance Algorithm 5 from Chapter 5
was used. The calculated distances are then stored at index i, j in Π. On completion,
the populated distance profile is returned (line 10). Although not shown in Algorithm
17., we also retain the class label associated with each row in the distance profile.

Algorithm 17 Distance Profile Generation (Stage 2)

1: input D, n
2: Π = r × x− n + 1 ▷ Empty distance profile
3: for ∀Si ∈ D do
4: Ω = {W1,W2, . . . ,Wx−n+1} = Si segmented into x− n + 1 sub-sequences
5: for ∀Wj ∈ W do
6: d = euclideanDistance(W1,Wj) ▷ Algorithm 5
7: Πi,j = d
8: end for
9: end for

10: return Π

Algorithm 18 DPBDTW Parent Code (Stages 1 and 2)

1: input Dtrain, Dtest, |C|, I, T,N .
2: [maxLength, t, n] = paramLearn(Dtrain, Dtest, I, T,N) ▷ Stage 1
3: Π = distanceProfileGen(Dtrain ∪Dtest, n) ▷ Stage 2 Algorithm 17
4: return Π,maxLength, t, n

Algorithm 18 gives the parent code for Stages 1 and 2. The input (line 1) is: (i) a
collection of pre-labelled time series, Dtrain, to form the initial kNN bank, (ii) a second
collection of pre-labelled time series, Dtest, to form a test set, (iii) a set I of possible
values for the FSSBDTW maxlength parameter, (iv) a set T of possible values for the
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FSSBDTW t tail parameter and (v) a set N of possible values for the segment length
parameter n. The parameter learning is first conducted (line 2) followed by distance
profile generation (line 3). The distance profile Π is then returned on line 4, together
with the parameters maxLength, t and n. The distance profile Π then becomes the kNN
bank for classifying previously unseen records. To conduct the desired classification, each
previously unseen record has to first be transformed into the distance profile format using
the parameter n. For the evaluation presented later in this section, FSSDDTW was used
for the actual classification, which requires the parameters maxLength and t. Hence
the best values for maxlength and t are also returned by Algorithm 18.

Algorithm 19 DPBDTW Classification (Stage 3)

1: input Π,maxLength, t, n, ú.
2: ú′ = distanceProfileGen(ú, n) ▷ Algorithm 17
3: bestWD = ∞
4: c = default class
5: for ∀Pi ∈ Π do
6: wd = FSSDDTW (Pi, ú′,maxLen, t)
7: if wd < bestWD then
8: bestWD = wd
9: c = class associated with Pi ∈ D′

10: end if
11: end for
12: return c

The final stage of the proposed DPBDTW approach, Stage 3, is the classification of
previously unseen time series. The pseudo code is given in Algorithm 19. The input
(line 1) is: (i) the kNN bank Π; (ii) the value for the parameter maxLength; used by
FSSBDTW; (iii) the value for the parameter t, also used by FSSBDTW; (iv) the value
for parameter n used to generate a distance profile for the previously unseen time series,
and (v) the time series to be labelled ú. The first step, line 2, is to transform ú into a
single row distance profile. Then, lines 5 to 11, we determine the best match in Π with
ú′ and retain the associated class c, which is returned in line 12.

6.3.4 Time Complexity of Distance Profile Based DTW

In this section, the theoretical time complexity of the DPBDTW approach is presented,
again assuming TCV and 1NN classification. The organisation of this section is similar
to that used to derive the complexity for the EDBDTW approach given in Sub-section
6.2.4 above. Starting with Stage 1 the complexity will be:

stage1complexity = numberParameterCombinations× numberOfComparisons

× EuclideanComparisoncomplexity

(6.20)

where:

numberParameterCombinations = |I| × |T | × |N | (6.21)

numberOfComparisons =
|D|
10

× 9 × |D|
10

=
9 × |D|2

100
(6.22)
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EuclideanComparisoncomplexity = O (n̄) (6.23)

Note that for determining the Euclidean distance comparison complexity the average
value of n is used (n̄). The Stage 1 complexity equation thus becomes:

stage1complexity = O

(
|I| × |T | × |N | × 9 × |D|2

100
× n̄

)
(6.24)

Recall that the sets I, T and N were pre-specified, and that |I| = 10, |T | = 10 and
|N | = 20. The above thus becomes:

stage1complexity = O

(
10 × 10 × 20 × 9 × |D|2

100
× n̄

)
(6.25)

which simplifies to:

stage1complexity = O
(
180 × |D|2 × n̄

)
(6.26)

When using TCV, the parameter tuning will be conducted 10 times. Hence the above
will become:

stage1TCVcomplexity = O
(
10 × 180 × |D|2 × n̄

)
= O

(
1800 × |D|2 × n̄

) (6.27)

The complexity of Stage 2, distance profile generation, depends on the size of the
distance profile Π, which will be dictated by the number of records in D and the number
of segments into which each time series is divided times. Thus |D| × (x − n + 1)1.
Therefore:

stage2complexity = O (|D| × (x− n̄ + 1)) (6.28)

Note that the average value n̄ for the segment length n is again used here. When using
TCV, distance profile generation will be conducted 10 times for both Dtrain and Dtest

(D = Dtrain ∪Dtest). Therefore:

stage2TCVcomplexity = O (10 × |D| × (x− n̄ + 1)) (6.29)

The determination of the class of a query time series ú will then require |Π| comparisons.
In other words, |D|. The complexity for class determination, assuming the FSSBDTW
approach, will then be:

classDeterminationcomplexity = O (|D| ×DTWcomplexityFSSBDTW ) (6.30)

The complexity of FSSBDTW was previously given in Equation 4.11 in Chapter 4 as:

DTWcomplexityFSSBDTW = O
(
x× len

)
(6.31)

where x was the length of the time series to be labelled and len was the average length
of a segment. However, in the case of the DPBDTW approach, the length of the time
series will have been reduced to x− n + 1. The classification complexity thus becomes:

1The parameter r could be used here, but |D| has been used here to maintain consistency with earlier
complexity calculations
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stage3complexity = O
(
|D| × x− n̄ + 1 × len

)
(6.32)

Note that the average value for the parameters n is again used here. If we are undertaking
TCV, the number of classifications will equate to |D|. Thus:

stage3TCVcomplexity = O
(
|D| × |D| × x− n̄ + 1 × len

)
= O

(
|D|2 × x− n̄ + 1 × len

) (6.33)

The overall complexity of the DPBDTW approach, assuming TCV, will then be:

DPBDTW TCVcomplexity = stage1TCVcomplexity + stage2TCVcomplexity+

stage3TCVcomplexity

(6.34)

In other words:

DPBDTW TCVcomplexity = O(
(
1800 × |D|2 × n̄

)
+ (10 × |D| × (x− n̄ + 1)) +(

|D|2 × x− n̄ + 1 × len
)
)

= O(|D| × ((1800 × |D| × n̄) + (10 × (x− n̄ + 1)) +(
|D| × x− n̄ + 1 × len

)
))

(6.35)

6.3.5 Evaluation of Distance Profile-Based DTW

In this section, the evaluation of the proposed DPBDTW mechanism is presented. The
evaluation was conducted using 1NN classification, and the same fifteen selected data
sets from the UEA-UCR Time Series Classification repository as used earlier. In line
with the earlier evaluations reported on in this thesis, the objectives of the evaluation
were:

1. Operational Analysis: To analyse the operation of the proposed DPBDTW
approach.

2. Efficiency Comparison: To evaluate the run-time advantages gained using the
proposed DPBDTW approach in comparison with Standard DTW and S-C Band
DTW benchmark approaches presented in Chapter 3.

3. Effectiveness Comparison: To determine whether the classification accuracy
of the proposed DPBDTW approach was commensurate with that obtained using
standard DTW and S-C Band DTW.

For the S-C Band approach, as on previous occasions, a warping window of ℓ = 10% was
used as recommended in [81, 92]. The experimental set up was the same as that used
with respect to the previous evaluations reported on in this thesis. A desktop computer
was used with an Apple M1 8 core CPU processor, an 8 core GPU, a 16 core Neural
Engine, 16GB unified memory, and 512GB Solid State Drive (SSD).
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Operational Analysis

This sub-section reports on the results obtained to determine the most appropriate
value for the parameters n, maxLen and t. A summary of the best results, including
the best parameters settings, run time, accuracy and f1-score are presented in Table
6.3. From the table, it can be seen that, in line with earlier evaluation outcomes, no
“best” parameters settings could be identified; best classification results were obtained
using different settings for each data set. From Table 6.3 it is interesting to note that
relatively small best values for n were obtained, meaning that in many cases the length
of the distance profile time series was not significantly less than the original time series
length. Table 6.4 presents a summary of the effect of distance profiling in terms of the
reduction in overall time series length using the best value for n as listed in Table 6.3.
The lowest recorded best value for n was 4 with respect to the PenDigits data set. For
this data set x = 8, hence a reduction to 8 − 4 + 1 = 5, a reduction of 37.5%. The
highest recorded best value for n was 70 with respect to the Adiac data set. For this
data set x = 176, hence a reduction to 176 − 70 + 1 = 107, a reduction of 29.2%.

Table 6.3: Best values for parameters maxLen, t and n in terms of run time, accuracy
and F1 results for each data set.

ID Data set Length Tail Seg. len. Run time Acc F1
# maxLen t n (Secs) (SD) (SD)

1 SmoothSubspace 10 2 7 1.63
43.00
(0.07)

0.43
(0.07)

2 ItalyPowerDemand 4 2 11 21.94
95.16
(0.01)

0.95
(0.01)

3 Libras 9 2 15 5.80
65.83
(0.11)

0.65
(0.11)

4 SyntheticControl 30 1 10 9.44
89.17
(0.03)

0.89
(0.03)

5 GunPoint 40 2 30 4.20
98.00
(0.02)

0.98
(0.02)

6 OliveOil 80 2 20 2.04
90.00
(0.08)

0.90
(0.08)

7 Trace 50 2 40 5.49
100.00
(0.00)

1.00
(0.00)

8 ToeSegmentation2 50 2 15 7.54
88.53
(0.06)

0.88
(0.06)

9 Car 50 6 35 7.39
83.33
(0.09)

0.83
(0.09)

10 Lighting2 80 2 45 8.22
75.26
(0.13)

0.75
(0.13)

12 ShapeletSim 40 1 5 15.21
99.50
(0.01)

0.99
(0.01)

11 DiatomSizeReduction 20 2 40 21.21
100.00
(0.00)

1.00
(0.00)

13 Adiac 10 2 70 64.28
53.53
(0.06)

0.53
(0.06)

14 HouseTwenty 40 2 20 41.91
94.29
(0.06)

0.94
(0.06)

15 PenDigits 4 1 4 490.66
88.46
(0.01)

0.88
(0.01)

Comparing the best values for maxLength and t given in Table 6.3 with those given
previously in Table 4.5 in Chapter 4, it can be observed that different best values for
maxLength and t were obtained using the proposed DPBDTW approach compared to
using the FSSBDTW approach in isolation. As in the case of the EDBDTW approach
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Table 6.4: Reduction to time series length as a consequence of distance profile gener-
ation.

ID Data set Length Seg. len Reduced %
# x n length reduction

1 SmoothSubspace 15 7 9 40.00

2 ItalyPowerDemand 24 11 14 41.67

3 Libras 45 15 31 31.11

4 SyntheticControl 60 10 51 15.00

5 GunPoint 150 30 121 19.33

6 OliveOil 570 20 551 3.33

7 Trace 275 40 236 14.18

8 ToeSegmentation2 343 15 329 4.08

9 Car 577 35 543 5.89

10 Lighting2 637 45 593 6.91

12 ShapeletSim 500 5 496 0.80

11 DiatomSizeReduction 345 40 306 11.30

13 Adiac 176 70 107 39.20

14 HouseTwenty 2000 20 1981 0.95

15 PenDigits 8 4 5 37.50

considered in the foregoing section, it was conjectured that this was either because of
the interplay between the parameters maxLength and t, and n; or because of a certain
degree of “volatility” with respect to the parameters maxLength, t and n; or a mixture
of the two.

Efficiency Comparison

Figure 6.7 gives a comparison of the run time performance of the Standard DTW and
S-C Band DTW benchmark approaches and the DPBDTW approach. As in the case
of similar graphs presented previously, the x-axis represents the data set identification
numbers (see Table 6.3), and the y-axis represents the run time in seconds. The values
for maxLen, t and n that were used were the best performing values as reported on in
Table 6.3. From the figure, it can be seen that for 13 of the 15 data sets considered, the
proposed DPBDTW approach offered efficiency gains over the benchmark approaches.
The exceptions were the Libras data set and the Adiac data set. The Libras data set
was a relatively small data set, 360 records comprised of 45 points each (see Table 3.1
given previously in Chapter 3), hence the advantage offered by the DPBDTW approach
my not always materialise in such a small data set. The Adiac data set featured an
advantageous value for n, it is thus unclear why, in this case, the S-C Band DTW
approach produced a slightly better performance.

Effectiveness Comparison

Table 6.5 gives the accuracy and F1 results for the DPBDTW approach in comparison
with the benchmark Standard DTW and S-C BAND DTW approaches. The figures
in parentheses give the standard deviations recorded after averaging over the ten folds
of the TCV. Best results are highlighted in bold font. From the table, it can be seen
that the proposed DPBDTW mechanism, in nine of the fifteen cases, produced a better
performance than that produced using either Standard DTW or S-C Band DTW (100%
accuracy in two cases). In one case, the ItalyPowerDemand data set, an identical per-
formance was recorded. In the five remaining cases, DPBDTW did not produce the best
results. In one case, SmoothSubspace, DPBDTW produced a particularly poor perfor-
mance. It was conjectured that this was because the SmoothSubspace data set featured
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Figure 6.7: Run time results using the Standard DTWn and S-C Band DTW bench-
mark approaches and the proposed DPBDTW approach.

time series of only 15 points, hence reducing the length had an adverse effect. For the
remaining five cases, the loss in accuracy when using DPBDTW was less pronounced.
There did not seem to be any correlation between x and accuracy that might have in-
dicated that DPBDTW was more suited to time series that featured larger values of
x.

6.4 Exact Discriminator-Based DTW versus Distance Profile-
Based DTW

A comparison of the performance of the EDBDTW approach and the DPBDTW ap-
proach is presented in this section. The collated recorded run times, and accuracy and
F1-scores, with respect to each approach, and each data set, are given in Tables 6.6 and
6.7 respectively. The results with respect to the best performing parameters were used
in each case.

Table 6.6 gives the run time results. The same results are presented in graphical
form in Figure 6.8. In the figure, the x-axis records the identification number of the
relevant data set, and the y-axis the run time in seconds. From both the table and the
figure, it can be seen that the EDBDTW and DPBDTW approaches both have very
similar run times. There is little to choose between them.

Figure 6.8: Comparison of the recorded run time results using the EDBDTW (gray)
and DPBDTW (red) approaches with respect to the fifteen evaluation data sets.

Table 6.7 gives the accuracy values and the F1 scores obtained using the EDBDTW
and DPBDTW approaches (values and scores obtained by averaging over the ten folds of
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Table 6.5: Accuracy and F1-Score using Standard DTW, S-C Band and DPBDTW
approaches.

ID Data set Standard DTW S-C Band ℓ = 10 DPBDTW

# Name
Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

Acc
(SD)

F1
(SD)

1 SmoothSubspace
91.00
(0.04)

0.91
(0.04)

95.00
(0.02)

0.95
(0.02)

43.00
(0.07)

0.43
(0.07)

2 ItalyPowerDemand
95.61
(0.02)

0.95
(0.02)

95.70
(0.02)

0.95
(0.02)

95.16
(0.01)

0.95
(0.01)

3 Libras
58.89
(0.10)

0.60
(0.11)

63.06
(0.11)

0.60
(0.11

)
65.83
(0.11)

0.65
(0.11)

4 SyntheticControl
98.50
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

89.17
(0.03)

0.89
(0.03)

5 GunPoint
94.50
(0.05)

0.94
(0.05)

97.50
(0.03

)
0.97

(0.03)
98.00
(0.02)

0.98
(0.02)

6 OliveOil
86.67
(0.15)

0.86
(0.16)

86.67
(0.15)

0.86
(0.16)

90.00
(0.08)

0.90
(0.08)

7 Trace
99.00
(0.03)

0.99
(0.03)

99.00
(0.03)

0.99
(0.03)

100.00
(0.00)

1.00
(0.00)

8 ToeSegmentation2
88.46
(0.09)

0.88
(0.10)

92.68
(0.07)

0.92
(0.7)

88.53
(0.06)

0.88
(0.06)

9 Car
80.83
(0.07)

0.80
(0.09)

81.67
(0.07)

0.81
(0.08)

83.33
(0.09)

0.83
(0.09)

10 Lightning2
87.76
(0.09)

0.87
(0.08)

87.76
(0.09)

0.87
(0.08)

75.26
(0.13)

0.75
(0.13)

11 ShapeletSim
82.00
(0.10)

0.81
(0.11)

82.00
(0.10)

0.81
(0.11)

99.50
(0.01)

0.99
(0.01)

12 DiatomSizeReduction
99.38
(0.01)

0.99
(0.01)

99.69
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.30
(0.04)

0.62
(0.04)

65.30
(0.04)

0.62
(0.04)

53.53
(0.06)

0.53
(0.06)

14 HouseTwenty
95.00
(0.05)

0.95
(0.05)

93.00
(0.08)

0.93
(0.08)

94.29
(0.06)

0.94
(0.06)

15 PenDigits
85.47
(0.01)

0.85
(0.01)

87.62
(0.01)

0.87
(0.01)

88.46
(0.01)

0.88
(0.01)

the TCV). The figures in parentheses are the standard deviation values obtained. From
the table, it can be seen that the performance using the EDBDTW was better than in
the case of the DPBDTW approach in six of the fifteen cases. In another six cases, the
performance was the same. In three cases, the Libras, Trace and ShapeletSim data sets,
the DPBDTW approach produced a better performance. There was no obvious reason
why this should be the case other than as a result of the vagaries of the different data
sets involved.

6.5 Conclusion

The chapter has suggested, in the context of kNN classification, two novel mechanisms
whereby the length x of the time series to which DTW is to be applied can be reduced.
The intuition was that if the time series length was reduced, the DTW distance matrix
would be reduced, and hence the DTW process would become more efficient. Of course,
any reduction in x should not cause a commensurate loss in classification accuracy.



Chapter 6. Pruning Approaches 107

Table 6.6: Recorded Run times for the EDBDTW and DPBDTW approaches.

EDBDTW DPBDTW
ID. Data set Run time (secs.) Run time (secs.)
1. SmoothSubspace 03.04 1.63
2. ItalyPowerDemand 15.87 21.94
3. Libras 3.47 5.80
4. SyntheticControl 10.68 9.44
5. GunPoint 1.63 4.20
6. OliveOil 2.18 2.04
7. Trace 5.88 5.49
8. ToeSegmentation2 6.05 7.54
9. Car 6.19 7.39
10. Lightning2 8.25 8.22
11. ShapeletSim 14.64 15.21
12. DiatomSizeReduction 4.81 21.21
13. Adiac 88.20 64.28
14. HouseTwenty 53.32 41.91
15. PenDigits 480.17 490.66

The first idea promoted in this chapter was that of discriminators, a time series sub-
sequence with fixed start and end locations (indexes) within a time series collection
(assuming that all time series are of a constant length) to which DTW should be applied,
therefore, reducing the overall length of the time series to be considered. The criterion
for selecting these indexes was the similarity between time series segments across the
input time series with respect to individual classes. The idea was incorporated into the
Exact Discriminator-Based DTW (EDBDTW) approach. The second idea promoted in
this chapter was to translate the input data into a distance profile format, after first
segmenting the data, a consequence of which was reduced time series length. The idea
was incorporated into the Distance Profile-Based DTW (DPBDTW) approach. Both
approaches featured a parameter learning stage; the discriminator length δ in the case
of the EDBDTW approach, and the segment length n in the case of the DPBDTW
approach. Both approaches were fully described. Evaluation of the EDBDTW approach
indicated that the value for δ could be very large, equivalent to x in some cases, hence the
advantages gained were limited; although, overall, a better performance was recorded
compared to Standard and S-C Band DTW. Evaluation of the DPBDTW approach was
not conclusive; although, as in the case of the EDBDTW approach, a better performance
than Standard and S-C Band DTW was observed generally. Comparing EDBDTW and
DPBDTW indicated that there was little to differentiate the two approaches (in terms
of accuracy, F1 score and run time), although both provided interesting insights into
addressing the computational overhead associated with DTW. The following chapter
concludes the thesis with a summary and an overview of the main findings in terms of
the research question and related subsidiary questions from Chapter 1. The chapter
also presents a comparison of the eight different approaches directed at reducing the
complexity of DTW that have been proposed and discussed in this thesis, and some
possible directions for future work whereby the work presented in this thesis can be
extended.
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Table 6.7: Recorded Accuracy and F1-Scores for the EDBDTW and DPBDTW ap-
proaches.

ID Data set EDBDTW DPBDTW

# Name
Accuracy

(SD)
F1-Score

(SD)
Accuracy

(SD)
F1-Score

(SD)

1 SmoothSubspace
95.00
(0.02)

0.95
(0.02)

43.00
(0.07)

0.43
(0.07)

2 ItalyPowerDemand
96.35
(0.02)

0.96
(0.02)

95.16
(0.01)

0.95
(0.01)

3 Libras
64.17
(0.12)

0.61
(0.12)

65.83
(0.11)

0.65
(0.11)

4 SyntheticControl
95.17
(0.03)

0.95
(0.03)

89.17
(0.03)

0.89
(0.03)

5 GunPoint
98.00
(0.02)

0.98
(0.02)

98.00
(0.02)

0.98
(0.02)

6 OliveOil
90.11
(0.11)

0.90
(0.11)

90.00
(0.08)

0.90
(0.08)

7 Trace
99.00
(0.02)

0.99
(0.02)

100.00
(0.00)

1.00
(0.00)

8 ToeSegmentation2
92.21
(0.04)

0.92
(0.04)

88.53
(0.06)

0.88
(0.06)

9 Car
83.33
(0.06)

0.83
(0.06)

83.33
(0.09)

0.83
(0.09)

10 Lightning2
89.17
(0.08)

0.89
(0.08)

75.26
(0.13)

0.75
(0.13)

11 ShapeletSim
87.00
(0.07)

0.87
(0.07)

99.50
(0.01)

0.99
(0.01)

12 DiatomSizeReduction
100.00
(0.00)

1.00
(0.00)

100.00
(0.00)

1.00
(0.00)

13 Adiac
65.81
(0.03)

0.64
(0.03)

53.53
(0.06)

0.53
(0.06)

14 HouseTwenty
96.25
(0.05)

0.96
(0.05)

94.29
(0.06)

0.94
(0.06)

15 PenDigits
89.64
(0.01)

0.89
(0.01)

88.46
(0.01)

0.88
(0.01)



Chapter 7

Conclusion and Future Work

7.1 Introduction

In this Chapter, the work presented in this thesis is concluded. The chapter commences
with Section 7.1.1 which provides a summary of the thesis including a comparative
review of the eight approaches considered. The main findings and contributions of the
thesis will then be presented in Section 7.1.2 with respect to the research question and
subsidiary research questions. The chapter is then concluded with potential areas and
directions for future research that build upon the work presented in the thesis.

7.1.1 Summary of Thesis

The work presented in this thesis was directed at reducing the computational overhead
associated with the application of Dynamic Time Warping (DTW) to compare time
series; particularly in the context of 1NN classification which entails significant amounts
of time series comparison. The thesis commenced (Chapter 1) with an overview of time
series and similarity measurements including DTW and Euclidean Distance (ED). The
observation was made that DTW tended to be more accurate although more expensive
than ED comparison. Then motivation, research question, subsidiary questions and
research methodology were also presented in this first chapter. The fundamental idea
was to make the use of DTW more effective and efficient, especially with a view to
processing large time series data sets. DTW has quadratic complexity; therefore, when
using DTW with larger time series, the complexity increases in a quadratic manner.

Chapter 2 then presented a review of related work. The chapter included an overview
of time series classification including consideration of a number of classification ap-
proaches: (i) Decision Trees, (ii) Support Vector Machines and (iii) k-Nearest Neighbour.
This was followed by a discussion of time series similarity measurement approaches,
namely: (i) lock-step measures and (ii) elastic measures. A detailed description of the
Dynamic Time Warping (DTW) process was included. The computational complexity of
DTW was again high-lighted. The chapter also discussed some previous work directed at
addressing DTW complexity starting with the idea of warping windows: (i) predefined
warping window, (ii) learnt warping window and (iii) localised windows. It was also
noted that an alternative to addressing the computational complexity of DTW was to
adopt a lower bounding mechanism, three were considered: (i) LB Yi Lower Bound, (ii)
LB Kim Lower Bound and (iii) LB Keogh Lower Bound. The Chapter was concluded
with a review of a range of motif discovery mechanisms including: (i) the MK Algorithm
and (ii) the Matrix Profile technique. The significance was that the motif idea was a

109
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previously proposed mechanism for reducing DTW complexity that influenced two of
the approaches considered later in the thesis in Chapter 6.

An overview of the data sets used throughout the thesis was presented in Chapter 3.
In total, fifteen time series data sets were used for evaluation purposes throughout the
thesis. These data sets were all taken from The UEA and UCR (the University of East
Anglia and the University of California Riverside) Time Series Classification Repository
[14]. Data sets were selected so that a range of different sizes in terms of the number of
columns and the number of rows were considered. Chapter 3 also presented an analysis
of two benchmark DTW approaches:

1. Standard DTW.

2. Sakoe-Chiba Band DTW (S-C Band DTW).

The S-C Band DTW approach featured the idea of a warping window so as to realise
efficiency gains. The significance of both approaches was that they could be used for
comparison purposes with respect to alternative approaches presented later in the the-
sis. Any proposed alternative, to be of value, had to outperform the two benchmark
approaches. The chapter was concluded with a comparison between the operation of
the Standard DTW and S-C Band DTW approaches in terms of run time, accuracy and
F1-score. As was anticipated, the S-C Band approach outperformed the Standard DTW
approach in terms of run time, and achieved an equivalent, and in some cases better,
accuracy and F1 score.

The following three chapters, Chapters 4, 5 and 6, featured six alternative approaches
to addressing the computational overhead associated with the application of DTW:

1. Sub-Sequence-Based DTW (SSBDTW).

2. Fuzzy Sub-Sequence-Based DTW (FSSBDTW).

3. Candidate Reduction Based on Euclidean Distance (CRBED).

4. Candidate Reduction Based on Lower Bounding (CRBLB).

5. Exact Discriminator-Based DTW (EDBDTW).

6. Distance Profile-Based DTW (DPBDTW)

The idea underpinning the first two approaches, SSBDTW and FSSBDTW, was
that the overall size of the DTW distance matrix could be reduced if a given pair of
time series were segmented and the individual segments compared (using DTW). The
first adopted a “crisp” boundary between segments, while the second used a “fuzzy
boundary”. The reported evaluation demonstrated that efficiency gains could indeed be
made in comparison with Standard DTW and S-C Band DTW, although not always
the case for all data sets. In addition, it was found that accuracy gains were also made
(again in comparison with Standard DTW and S-C Band DTW). It was conjectured that
this was because the comparison of short time series sub-sequences was more resilient to
noise. Comparison of SSBDTW and FSSBDTW indicated that FSSBDTW was more
effective (more accurate) since the splitting process was more flexible. In addition,
although the reported evaluation indicated that both tended have similar run times, it
could be argued that FSSBDTW was more efficient with respect to longer time series.

The next two approaches, CRBED and CRBLB, investigated mechanisms whereby
the number of DTW comparison instances could be reduced. The fundamental idea,
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given a kNN bank D of time series and a new time series ú to be labelled, was to “throw
away” the time series in D that were unlikely to be good matches for ú leaving a reduced
data set D′. Using the CRBED mechanisms the time series in D were compared with
ú using inexpensive Euclidean distance comparison. Using CRBLB a lower bounding
technique was used. In both cases, a reduced data set D′ was produced which could
then be compared with ú using the FSSBDTW approach from the previous chapter. From
the reported evaluation it was found that significant efficiency gains could be made. In
addition, it was found that accuracy gains were also made with respect to Standard
DTW and SC Band DTW. It was conjectured that this was because the comparison was
done only on similar candidates, not on all the time series in the data set.

The idea underpinning the last two approaches was, instead of reducing the number
of DTW comparisons, to reduce the over number of points in the time series to be
considered thereby reducing the size of the DTW distance matrix. Two mechanisms
were considered whereby this could be achieved. The first involved finding a location
(a sub-sequence) in a set of time series in D associated with a particular class where
DTW could best be applied; a location (sub-sequence) which was most representative of
the class. The second involved transforming D into a distance profile representation (an
idea influenced by existing work on motifs). The two mechanisms were incorporated into
two DTW approaches, EDBDTW and DPBDTW. From the reported evaluation, it was
found that the accuracy gains were made with respect to Standard DTW and SC Band
DTW. It was conjectured, in this case, that this was because the comparison tended
to be more resistant to noise. Comparison of EDBDTW and DPBDTW indicated that
EDBDTW tended to be more effective, although they both featured similar run times.

Table 7.1: Recorded Run times (Secs) for the fifteen time series data sets using the
eight approaches presented in this thesis, best results are highlighted in bold.

ID. Dataset DTW SC-DTW SSBDTW FSSBDTW CRBED CRBLB EDBDTW DPBDTW
1. Smooth 4.36 4.32 4.51 3.03 0.92 0.92 3.04 1.63
2. ItalyPower 33.97 30.83 35.97 39.66 13.77 13.20 15.87 21.94
3. Libras 5.04 4.46 5.49 5.71 2.64 2.14 3.47 5.80
4. Synthetic 18.10 14.03 14.88 16.07 12.10 6.44 10.68 9.44
5. GunPoint 6.84 3.89 4.68 3.81 2.66 1.26 1.63 4.20
6. OliveOil 8.15 3.39 3.09 1.88 1.88 1.32 2.18 2.04
7. Trace 17.30 6.65 10.22 7.19 4.72 1.97 5.88 5.49
8. ToeSegment 22.52 8.70 5.20 8.19 2.32 1.61 6.05 7.54
9. Car 31.12 11.38 6.76 6.88 5.15 1.76 6.19 7.39
10. Lighting2 38.15 13.52 13.88 8.11 3.00 2.14 8.25 8.22
11. Shapelet 64.03 23.34 24.13 24.18 14.94 13.12 14.64 15.21
12. DiatomSize 72.29 27.61 16.87 15.79 2.98 6.64 4.81 21.21
13. Adiac 127.74 58.89 41.94 88.20 8.40 19.51 88.20 64.28
14. HouseTwenty 653.64 226.56 334.36 50.64 19.04 18.24 53.32 41.91
15. PenDigits 1569.87 1023.42 1036.28 480.17 120.37 869.43 480.17 490.66

Ave. Runtime 178.21 97.42 103.88 50.63 14.33 63.98 46.95 47.13

A comparison of the eight approaches considered in this thesis in terms of recorded
run times, accuracy and F1 score is given in Tables 7.1, 7.2 and 7.3. In each case,
the results were obtained using TCV and the best parameter settings. In each table,
best results are highlighted in bold font (by considering best runtime with respect to
best accuracy obtained). Note that some approaches feature a run time, however their
accuracy was adversely affected; therefore, the performance was balanced to find the
best approach. With reference to Table 7.1, it can be seen that CRBED coupled with
FSSBDTW was the most efficient (best recorded run time in 9 of the 15 cases). Con-
sidering the total run time, last row in Table 7.1, it can be confirmed that the total run
time for CRBED coupled with FSSBDTW was the best among the other approaches.
Figure 7.1 illustrates the run time performance for all the proposed approaches. From
the figure, it can be seen that for the largest data sets (HouseTwenty and PenDigits)
the proposed approach performed much better than for the smaller data sets. Note that
CRBED approach (red line) has the best performance among the other approaches.
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Figure 7.1: Comparison of the proposed approaches in term of run time for the fifteen
data sets considered.

Table 7.2: Accuracy results for the fifteen time series data sets using the eight ap-
proaches presented in this thesis, best results are highlighted in bold.

ID. Dataset DTW SC-DTW SSBDTW FSSBDTW CRBED CRBLB EDBDTW DPBDTW

1. Smooth
91.00
(0.04)

95.00
(0.02)

98.67
(0.03)

98.67
(0.03)

98.67
(0.03)

96.97
(0.03)

95.00
(0.02)

43.00
(0.07)

2. ItalyPower
95.61
(0.02)

95.70
(0.02)

96.34
(0.02)

97.17
(0.01)

97.17
(0.01)

95.98
(0.02)

96.35
(0.02)

95.16
(0.01)

3. Libras
58.89
(0.10)

63.06
(0.10)

62.78
(0.11)

65.83
(0.11)

65.83
(0.11)

59.44
(0.09)

64.17
(0.12)

65.83
(0.11)

4. Synthetic
98.50
(0.01)

98.50
(0.01)

98.33
(0.01)

98.50
(0.01)

98.50
(0.01)

98.17
(0.02)

95.17
(0.03)

89.17
(0.03)

5. GunPoint
94.50
(0.05)

97.50
(0.03)

99.47
(0.02)

99.50
(0.01)

99.50
(0.01)

95.50
(0.04)

98.00
(0.02)

98.00
(0.02)

6. OliveOil
86.67
(0.15)

86.67
(0.15)

88.33
(0.13)

90.00
(0.11)

90.11
(0.13)

88.33
(0.011)

90.11
(0.11)

90.00
(0.08)

7. Trace
99.00
(0.03)

99.00
(0.03)

97.50
(0.03)

99.00
(0.03)

99.00
(0.03)

99.00
(0.03)

99.00
(0.02)

100.00
(0.00)

8. ToeSegment
88.46
(0.09)

92.68
(0.07)

92.75
(0.06)

93.42
(0.04)

92.72
(0.04)

88.49
(0.06)

92.21
(0.04)

88.53
(0.06)

9. Car
80.83
(0.07)

81.67
(0.07)

83.33
(0.10)

86.67
(0.06)

88.33
(0.06)

82.50
(0.09)

83.33
(0.06)

83.33
(0.09)

10. Lighting2
87.76
(0.09)

87.76
(0.09)

83.30
(0.06)

89.23
(0.06)

87.76
(0.07)

87.63
(0.07)

89.17
(0.08)

75.26
(0.13)

11. Shapelet
82.00
(0.10)

82.00
(0.10)

89.97
(0.06)

93.00
(0.04)

89.50
(0.06)

89.50
(0.07)

87.00
(0.07)

99.50
(0.01)

12. DiatomSize
99.38
(0.01)

99.69
(0.01)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

13. Adiac
65.30
(0.04)

65.30
(0.04)

65.51
(0.04)

68.12
(0.04)

65.81
(0.03)

66.58
(0.03)

65.81
(0.03)

53.53
(0.06)

14. HouseTwenty
95.00
(0.05)

93.00
(0.08)

93.71
(0.06)

95.00
(0.05)

93.71
(0.04)

93.04
(0.05)

96.25
(0.05)

94.29
(0.06)

15. PenDigits
85.47
(0.01)

87.62
(0.01)

88.46
(0.01)

89.64
(0.01)

89.64
(0.01)

85.00
(0.01)

89.64
(0.01)

88.46
(0.01)

Ave. Acc.
87.89
(0.06)

88.24
(0.06)

89.39
(0.05)

90.64
(0.04)

91.39
(0.04)

89.06
(0.05)

90.09
(0.09)

88.53
(0.05)

Considering Table 7.2, CRBED coupled with FSSBDTW produced the best result
in eight of the fifteen cases. This is echoed in Table 7.3 where CRBED coupled with
FSSBDTW produced the best F1 score in eight of the fifteen cases. Looking at the
average accuracy and F1 score in each case, the last row in Tables 7.2 and 7.3, it can
be confirmed that CRBED coupled with FSSBDTW obtained the best results. Thus,
overall it can be concluded, from the comparison, that the CRBED approach is both
the most effective and efficient approach of the six approaches proposed in this thesis
and the two benchmark approaches.
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Table 7.3: F1-Score results for the fifteen time series data sets using the eight ap-
proaches presented in this thesis, best results are highlighted in bold.

ID. Dataset DTW SC-DTW SSBDTW FSSBDTW CRBED CRBLB EDBDTW DPBDTW

1. Smooth
0.91
(0.04)

0.95
(0.02)

0.98
(0.03)

0.98
(0.03)

0.98
(0.03)

0.96
(0.03)

0.95
(0.02)

0.43
(0.07)

2. ItalyPower
0.95
(0.02)

0.95
(0.02)

0.96
(0.02)

0.97
(0.01)

0.97
(0.01)

0.95
(0.02)

0.96
(0.02)

0.95
(0.01)

3. Libras
0.60

(0.011)
0.60
(0.11)

0.62
(0.011)

0.64
(0.11)

0.65
(0.11)

0.59
(0.09)

0.64
(0.12)

0.65
(0.11)

4. Synthetic
0.98
(0.01)

0.98
(0.01)

0.98
(0.01)

0.98
(0.01)

0.98
(0.01)

0.98
(0.02)

0.95
(0.03)

0.89
(0.03)

5. GunPoint
0.94
(0.05)

0.97
(0.03)

0.99
(0.02)

0.99
(0.01)

0.99
(0.01)

0.95
(0.04)

0.98
(0.02)

0.98
(0.02)

6. OliveOil
0.86
(0.16)

0.86
(0.16)

0.88
(0.13)

0.90
(0.11)

0.90
(0.11)

0.88
(0.11)

0.90
(0.11)

0.90
(0.08)

7. Trace
0.99
(0.03)

0.99
(0.03)

0.97
(0.03)

0.99
(0.03)

0.99
(0.03)

0.99
(0.03)

0.99
(0.02)

1.00
(0.00)

8. ToeSegment
0.88
(0.10)

0.92
(0.07)

0.92
(0.06)

0.93
(0.04)

0.92
(0.04)

0.88
(0.06)

0.92
(0.04)

0.88
(0.06)

9. Car
0.80
(0.09)

0.81
(0.08)

0.82
(0.11)

0.86
(0.06)

0.86
(0.06)

0.82
(0.09)

0.83
(0.06)

0.83
(0.09)

10. Lighting2
0.87
(0.08)

0.87
(0.08)

0.83
(0.06)

0.89
(0.06)

0.87
(0.07)

0.87
(0.07)

0.89
(0.08)

0.75
(0.13)

11. Shapelet
0.81

(0.011)
0.81

(0.011)
0.89
(0.06)

0.93
(0.04)

0.89
(0.08)

0.89
(0.07)

0.87
(0.07)

0.99
(0.01)

12. DiatomSize
0.99
(0.01)

0.99
(0.01)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

13. Adiac
0.62
(0.04)

0.62
(0.04)

0.62
(0.04)

0.66
(0.04)

0.64
(0.03)

0.64
(0.03)

0.64
(0.03)

0.53
(0.06)

14. HouseTwenty
0.95
(0.05)

0.93
(0.08)

0.93
(0.06)

0.95
(0.05)

0.93
(0.04)

0.93
(0.05)

0.96
(0.05)

0.94
(0.06)

15. PenDigits
0.85
(0.01)

0.87
(0.01)

0.88
(0.01)

0.89
(0.01)

0.89
(0.01)

0.85
(0.01)

0.89
( 0.01)

0.88
(0.01)

Ave. F1.
00.87
(0.06)

00.88
(0.06)

00.89
(0.05)

00.90
(0.04)

00.91
(0.04)

00.89
(0.05)

00.90
(0.09)

00.88
(0.05)

7.1.2 Main finding and Contributions

In this section, the main findings and contributions, arising from the work presented,
are considered in terms of the primary and subsidiary research questions. For reference,
the primary research question was as follows:

“How can the process of dynamic time warping be applied so that time series can be
more effectively and efficiently compared?”

The responses to the subsidiary research questions will be considered first and then the
primary research question will be returned to. Thus:

1. What are the most appropriate mechanisms, in addition to those described in the
literature, for limiting the size of the matrix data that needs to be stored?

This thesis has suggested several mechanisms whereby the size of the distance
matrix, on which DTW is found, can be reduced. As noted in Chapter 1, the
length x of any two time series to be compared dictates the size of the distance
matrix M (|M | = x × x = x2). To reduce the size of M the idea of segmenting
the input time series and applying DTW to corresponding segments, the SSBDTW
and FSSBDTW approaches from Chapter 4, was first proposed. Secondly, the idea
of reducing the size of x using discriminators or distance profiles was proposed
in Chapter 6. Further advantages could be gained by combing the later with
SSBDTW or FSSBDTW. The advantages are illustrated in Figure 7.2. The top
left sub-figure shows the search space for standard DTW, the top right sub-figure
the search space when segmentation is applied, the bottom left the effect of using
discriminators or distance profiles, and the bottom right the effect of combing the
two. From the figure, it is clear that all three mechanisms served to reduce the size
of the DTW distance matrix. By referring back to the average run times recorded
in Table 7.1 it can be seen that the three mechanisms seemed to speed up the
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Figure 7.2: Comparison of the proposed approaches to reduce the overall size of the
DTW distance matrix

DTW process by a factor of three to four times compared to Standard DTW and
twice when comparing with S-C Band DTW.

2. Is there any advantage to be gained from splitting the distance matrix in term of
efficiency?

The work presented in Chapter 4 clearly demonstrated that segmenting (splitting)
the time series offered clear advantages with respect to run time, accuracy and F-
score (see Tables 7.1, 7.2 and 7.3). However, in Chapter 4 it was also demonstrated
that splitting the time series according to some fixed, pre-specified, time series sub-
sequence length (the SSBDTW approach) did not work as well as when a variable
segment length was used (the FSSBDTW approach).

3. Is it possible to utilise knowledge of a given application domain to limit the DTW
processing required. For example, in the case of kNN, using early abandonment
with respect to time series that are clearly not going to be very similar to the query
time series?

The fundamental idea investigated, using kNN classification, was whether it was
possible to “throw away” some of the time series to be considered given a new,
previously unseen, time series. In other words, whether candidate reduction could
be successfully applied. Two mechanisms were investigated whereby the kNN bank
D could be preprocessed and a subset, D′, retained. The first used Euclidean
distance comparison (the CRBED mechanisms) and the second lower bounding
(the CRBLB mechanism). Both were combined with FSSBDTW. The results,
summarized in Table 7.1, clearly demonstrated that efficiency gains could be made.
Further, it was demonstrated that efficiency gains could be made without adversely
affecting accuracy or F1 score (see Tables 7.2 and 7.3).
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4. Is it possible to only consider sub-sequences that are repeated in instances (records)
of the same class, so that DTW can be applied only to such sub-sequences instead
of the entire time series?

To answer the above subsidiary question, a new approach, the EDBDTW approach
was proposed and investigated. The idea was to transform the time series in the
input data set D to a new form D′ which featured shorter time series, compared to
the original time series in D, by finding the most similar sub-sequences (discrim-
inators). In other words, the discriminator will be defined by the location within
the set of time series associated with a class where the time series are most similar;
this is then the location where DTW can best be applied to obtain a good clas-
sification. The results obtained indicated that this was indeed the case although
an open question remained as to whether the advantages gained were more to do
with the use of FSSBDTW than the use of discriminators (this is discussed further
in the following section).

5. Is it possible to identify mechanisms for transforming time series from their orig-
inal form and apply DTW to this new form?

This was investigated by considering the use of distance profiles, transforming the
time series in D into a distance profile format and applying DTW to this format
(FSSBDTW in the case of the evaluation presented in this thesis). The result was
the DPBDTW approach. The reported evaluation indicated that some advantages
could be gained; but, as in the case of the EDBDTW approach it was unclear how
much of the advantage gained could be attributed to the use of FSSBDTW, and
how much to the use of the distance profile idea (this is also discussed further in
the following section).

6. Assuming that the answers to the above entail the use of parameters of various
kinds, how can these parameters be optimised?

The various approaches proposed and investigated to address the above subsidiary
questions did indeed entail the use of a range of parameters and that there was no
“one size fits all” values for these parameters. A mechanism was proposed whereby
the best parameter settings could be learnt using comparatively inexpensive Eu-
clidean distance time series comparison. This seemed to work well.

Returning to the primary research question. From the foregoing, several approaches
were proposed: (i) Sub-Sequence-Based DTW (SSBDTW), (ii) Fuzzy Sub-Sequence-
Based DTW approach (FSSBDTW), (iii) Candidate Reduction Based on Euclidean
Distance (CRBED), (iv) Candidate Reduction Based on Lower Bounding (CRBLB), (v)
Exact Discriminator-Based DTW (EDBDTW) and (vi) Distance Profile-Based DTW
(DPBDTW). The experiments and the analyses conducted on those approaches demon-
strated that time series can be compared effectively and efficiently using Dynamic time
Warping (DTW). Significant performance gains, in terms of run time, accuracy and
F1-score, were obtained using these approaches. The best performing approach was the
Candidate Reduction Based on Euclidean Distance (CRBED).

The main generic benefits of the work presented in this thesis can be itemized as
follows:

1. Reducing the time complexity of the Dynamic Time Warping (DTW) process, so
that run time is significantly reduced compared to Standard DTW and S-C Band
DTW.
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2. Efficiency gains resulting from the use of the proposed mechanisms. Efficiency
gains that seemed to be independent of time series length; good results were ob-
tained with respect to both short and long time series. It was also found that
the efficiency gains become more pronounced when considering longer time se-
ries. From Figure 7.1, it can be seen that for largest data sets (HouseTwenty and
PenDigits) the proposed approaches performed much better than for the smaller
data sets.

3. Enhancement in the accuracy and F1-score with respect to both long and short
time series data sets was not adversely affected; in some cases, the accuracy and F1
score values obtained exceed those obtained using Standard DTW and S-C Band
DTW (an accuracy of 100% was recorded in a few cases).

4. Inexpensive mechanisms for parameter learning using Euclidean distance compar-
ison prior to the application of DTW.

5. Flexibility in the application of the proposed approaches, so that they can be joined
with each other as well as with alternative approaches proposed in the literature.

7.1.3 Future Work

The work presented in this thesis has proposed several approaches for speeding up the
DTW process. The proposed approaches have demonstrated better performance com-
pared to Standard DTW and SC-Band DTW. The work presented in this thesis has
faced some limitations that prevented investigation with respect to very long time series
collections, because of the COVID-19 pandemic, which limited access to high perfor-
mance computing facilities. This investigation has been left as an item for future work.
There are also some other related areas that merit further investigation. This conclud-
ing sub-section, therefore, itemises a number of potential directions for future work as
follows:

1. Best value for s: The SSBDTW approach presented in Chapter 4 used a param-
eter s, the number of segments into which a time series should be divided. It was
suggested in Chapter 4 that the best value for s could be learnt in a similar manner
to the way that parameters were learnt with respect to the approaches presented
in Chapter 5 and 6. It is suggested here that this would be an interesting avenue
for future work.

2. Further investigation using discriminators. The work presented in Chapter 6
raised the question as to whether the advantages gained from using discriminators
might be as a consequence of the use of FSSBDTW rather than the use of the
discriminators themselves. This is thus the first suggested avenue for future work.

3. Further investigation using distance profiles. The work presented in Chapter
6 also raised the question as to whether the advantages gained from transforming
the input data into distance profiles might again be more as a consequence of the
use of FSSBDTW than the use of distance profiles. This is thus the third suggested
avenue for future work.

4. Use of Approximate discriminators: The work in Chapter 6 was directed at
finding exact discriminators. Further efficiency gains might be realized if approxi-
mate discriminators were found.
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5. Integrating the proposed approaches with each other: Form the work pre-
sented in this thesis, several approaches were introduced. Experiments were con-
ducted that combined CRBED and CRBLB with FSSBDTW, and that combined
the use of discriminators and distance profiles with FSSBDTW, but experiments
were not conducted combing the mechanisms for reducing the number of time se-
ries to be considered (CRBED and CRBLB) with the use of discriminators and
distance profiles. It is conjectured that this may provide further efficiency and
effectiveness gains and therefore merits further investigation.

6. Integrating the proposed approaches with alternatives from the liter-
ature: Various alternative mechanisms have been proposed in the literature to
reduce the DTW overhead. Of note, is the work on motifs and discords [101, 129].
Other examples are the Itakura parallelogram [55], learning constraints as in [81]
or alternative “lower bounding” methods as in [61, 68, 80, 130]. Therefore, a fur-
ther potential avenue for future work is how these previously proposed mechanisms
could be integrated with the approaches presented in this thesis to realise further
gains.

7. Long time series: We have seen that the complexity of DTW is dictated by
the length of the time series to be considered. It was also noted above that the
COVID-19 pandemic precluded the investigation of the application of the proposed
techniques to long time series. This is thus another potentially fruitful avenue for
further work.

8. Complexity Calculation: Another possible direction for future work is a more
extensive analysis of the time complexity of the proposed approaches. Complexity
analysis using “Big O” notation was presented with respect to all the approaches
considered. In Chapters 3 and 4 actual complexity equations were derived using
a constant z. For the approaches considered in Chapters 5 and 6 an actual com-
plexity equation was not derived because of the challenge of finding values for two
constants z1 and z2. This is then the final avenue for future work proposed here.
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