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ABSTRACT: Climate variability is a key factor in driving malaria outbreaks. As shown in previous studies, climate-driven
malaria modeling provides a better understanding of malaria transmission dynamics, generating malaria-related parame-
ters validated as a reliable benchmark to assess the impact of climate on malaria. In this framework, the present study uses
climate observations and reanalysis products to evaluate the predictability of malaria incidence in West Africa. Sea surface
temperatures (SSTs) are shown as a skillful predictor of malaria incidence, which is derived from climate-driven simula-
tions with the Liverpool Malaria Model (LMM). Using the SST-based Statistical Seasonal Forecast model (S4CAST) tool,
we find robust modes of anomalous SST variability associated with skillful predictability of malaria incidence Accordingly,
significant SST anomalies in the tropical Pacific and Atlantic Ocean basins are related to a significant response of malaria
incidence over West Africa. For theMediterranean Sea, warm SST anomalies are responsible for increased surface air tem-
peratures and precipitation over West Africa, resulting in higher malaria incidence; conversely, cold SST anomalies are
responsible for decreased surface air temperatures and precipitation over West Africa, resulting in lower malaria inci-
dence.. Our results put forward the key role of SST variability as a source of predictability of malaria incidence, being of
paramount interest to decision-makers who plan public health measures against malaria in West Africa. Accordingly, SST
anomalies could be used operationally to forecast malaria risk over West Africa for early warning systems.
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1. Introduction

Malaria is spread by the bite of a female Anopheles mos-
quito mainly in tropical and subtropical regions (Pene et al.
1967; Carnevale et al. 1984). The disease can cause fever,
chills, and flu-like illnesses, and if not treated in time, it may
cause severe complications and even death. Indeed, about
409 000 people die of malaria each year, with 90% of cases
occurring in sub-Saharan Africa (Kiszewski and Teklehaima-
not 2004; Walker et al. 2007; World Health Organization
2019, 2020). The most vulnerable people are children under 5
years of age and pregnant women (Korenromp et al. 2003;
Breman et al. 2004; World Health Organization 2008;

Ouédraogo et al. 2011). Many external factors interact to
determine malaria transmission, including socioeconomic
parameters (Cleaver 1977; Sachs and Malaney 2002) and cli-
mate variability (Lindsay and Birley 1996; Ndiaye et al. 2001)
at both local and regional scales.

In Africa, malaria outbreaks are conditioned by surface air
temperature, humidity, and rainfall (e.g., Gage et al. 2008;
Arab et al. 2014). Relative humidity above 60% due to rain-
fall, combined with a range of medium-to-high temperatures
(188–328C), and conducive vegetation foment the prolifera-
tion of malaria-transmitting mosquitoes, leading to an
increase in malaria incidence in several African regions (Craig
et al. 1999; Liu et al. 2011). In particular, temperatures are a
critical factor for the transmission of vector-borne diseases
(Luterbacher et al. 2004; Rogers and Randolph 2000; Wilson
et al. 1998; Freeman and Bradley 1996; Bayoh 2001). At tem-
peratures below 188C, Plasmodium falciparum, which causes
the most prevalent and lethal form of malaria in Africa, can-
not complete its sporogonic cycle in the Anopheles mosquito
and thus cannot be transmitted (Patz and Olson 2006).
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Accordingly, moderate malaria transmission occurs over
Africa’s northern and southern fringes (Hay et al. 2005). In
contrast, the Sahara Desert is usually malaria free because it
is too hot and dry, with very low humidity. These conditions
are consistent with the optimum temperature for malaria
transmission of approximately 278C (Mordecai et al. 2013)
and the upper temperature threshold for malaria vector sur-
vival of approximately 358C (Mordecai et al. 2019).

Climate variability in the West African Sahel is strongly influ-
enced by anomalous sea surface temperatures (SST) in terms of
the so-called SST-forced atmospheric teleconnections. In partic-
ular, the variability of rainfall and surface air temperatures is
driven by remote and nearby SST anomalies (Losada et al.
2010ab; Rodrı́guez-Fonseca et al. 2011, 2015; Suárez-Moreno
et al. 2018; among others). The leading SST modes of variability
known to impact monsoon rainfall in the Sahel are El
Niño–Southern Oscillation (ENSO) in the tropical Pacific
Ocean, the Atlantic equatorial mode (AEM; also known as the
Atlantic Niño), and Mediterranean SST variability (e.g., Polo
et al. 2008; Mohino et al. 2011; Losada et al. 2012). SST anoma-
lies therefore emerge as a potential source of predictability
for malaria outbreaks. In this context, previous studies
investigated the links between large-scale modes of SST var-
iability and malaria-related parameters, particularly those
related to the ENSO. The ENSO develops over the tropical
Pacific and influences global climate variability (e.g., Philan-
der 1983). Former studies demonstrated that malaria mor-
tality and morbidity increase by an average of about one-
third in the year following an El Niño event (warm phase of
ENSO) over Venezuela and Colombia (Bouma and Dye 1997;
Bouma et al. 1997; Gagnon et al. 2002). Similarly, Githeko and
Ndegwa (2001) showed that El Niño led to floods and malaria
outbreaks in Kenya. While associated with floods in East Africa,
El Niño is generally linked to drier conditions in West Africa.
Prost (1991) found a relationship between ENSO and specific
diseases like malaria outbreaks during the 1970s, corresponding
to persistent drought in the Sahel. Nevertheless, other local
factors (socioeconomic conditions, resistance to insecticide or
drugs, etc.) were likely to be preexisting because malaria preva-
lence remained high, despite the observed reduction in rainfall.

Motivated by the factors raised above, this study is con-
ceived as a continuation of the preliminary work carried out
within the Quantifying Weather and Climate Impacts on
Health in Developing Countries (QWeCI) project in the con-
text of the European Union’s funded research (EU FP7 pro-
ject). The QWeCI project aimed to understand the climate
drivers of vector-borne diseases to generate an integrated deci-
sion support framework for climate and weather impacts on
health (Morse et al. 2012). Earlier work on forecasting malaria
epidemics based on seasonal forecasts of climate variability
was carried out by Tompkins and Di Giuseppe (2015) and
Tompkins et al. (2019). In West Africa, the risk of malaria
transmission is primarily associated with rainfall and tempera-
ture, with a 2-month lag observed between the maximum rain-
fall in August and the peak in malaria cases in October (Diouf
et al. 2013, 2017, 2020). The reliability of the simulated malaria
incidence time series was validated using observed malaria data
(Diouf et al. 2020) from the surveillance system run by the

National Malaria Control Programme [in French: Programme
National de Lutte Contre le Paludisme (PNLP)] for Senegal.

In this study, we analyze the potential seasonal predictabil-
ity of malaria incidence associated with the leading modes of
interannual SST variability known to impact climate variabil-
ity in West Africa. Malaria incidence is simulated with the
Liverpool Malaria Model (LMM), a dynamic malaria model
driven by a daily time series of rainfall and 2-m surface tem-
peratures (Hoshen and Morse 2004). Specifically, three cli-
mate reanalyses are used to run the LMM that provide
different malaria incidence outputs. The SST-based Statistical
Seasonal Forecast model (S4CAST; Suárez-Moreno and
Rodrı́guez-Fonseca 2015) is then used to analyze the leading
covariability patterns between SST anomalies and anomalous
malaria incidence to determine skillful ocean predictors. Rela-
tive to previous works, we go one step farther by estimating the
impact of SSTs on simulated malaria incidence, exploring the
role of the ocean–atmosphere interactions in driving the effects
of climate variability on malaria. Our work is structured as fol-
lows: section 2 is dedicated to the data and method, and sections
3 and 4 are devoted to results and validation, respectively. Sec-
tion 5 focuses on the discussion and conclusions.

2. Data and method

a. Data

This study focuses on the West African region (48–188N,
208W–158E; see Fig. 1a). Specifically, we look at malaria inci-
dence (%; i.e., cases per 100 people) as simulated by the
LMM (Hoshen et al. 2004), which is driven by daily rainfall
and temperature data from different reanalysis datasets. The
full periods, spatial resolutions, and references of these rean-
alyses are shown in Fig. 1b. We note that, the time series of
simulated malaria incidence derived from the climate reanaly-
sis datasets were previously validated using surveillance
malaria data for Senegal (Diouf et al. 2020). These data were
recorded by the PNLP, and all age groups were screened. The
number of observed malaria cases was available for various
health districts in Senegal for the period 2001–10. These
malaria data were recorded and averaged from 11 main sites
(Dakar, Diourbel, Fatick, Kaolack, Kolda, Louga, Matam,
Saint-Louis, Tambacounda, Thies, and Ziguinchor) for all
health districts and hospitals to derive monthly time series.
Validation of seasonal and interannual cycles of simulated
malaria incidence was performed.

In our study, we expressly use the following reanalysis data-
sets: the Twentieth Century Reanalysis (20CR) spanning the
period 1910–2009 at 2.58 3 2.58 spatial resolution (Compo
et al. 2011) and the National Centers for Environmental Pre-
diction (NCEP) Reanalysis (Kalnay et al. 1996) for the period
1948–2017 at 2.58 3 2.58 spatial resolution. These two reanaly-
sis datasets are provided by the National Oceanic Atmo-
spheric Administration (NOAA). We also use the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Atmospheric Reanalysis of the Twentieth Century (ERA20C)
reanalysis dataset, which covers the period 1910–2010 at 2.58 3
2.58 spatial resolution (Poli et al. 2016).
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The validation is performed with observed anomalies of
malaria incidence from different West African countries.
These observations are obtained from the Global Health
Data Exchange (GHDx) project (http://ghdx.healthdata.org/
gbd-results-tool), which synthesizes numerous input sources
to estimate mortality, causes of death and illness, and risk fac-
tors for diverse diseases.

The SST monthly mean data are derived from the
Extended Reconstructed SST database, version 3b (ERSST
V3b), with a spatial resolution of 2.08 3 2.08 spanning January
1854 toMay 2015 (Smith and Reynolds 2003, 2004; Smith et al.
2008). The three key SST regions (see Fig. S1 in the online
supplemental material) known to affect the West African

climate are examined: (i) the tropical Atlantic region (TA;
308S–108N, 308W–108E), (ii) the tropical Pacific area (TP;
308S–208N, 1508–908W), and (iii) the Mediterranean region
(MED; 308–438N, 108W–438E). Monthly anomalous SST indi-
ces are calculated for the indicated ocean regions. The avail-
ability of the reanalysis data determines the reference period.

b. Method

We use the LMM driven by different climate reanalysis over
West Africa. The LMM is a mathematical–biological model for
malaria transmission based on the impact of surface air temper-
atures and rainfall variability on the development cycles of the
malaria vector in its larval and adult stage and of the parasite

FIG. 1. (a) Location of the study area: West Africa (48–188N and 08–158E) is outlined in red; (b) chart showing the different reanalysis
datasets used to simulate malaria incidence with the LMM, together with their full time periods, spatial resolutions, and associated referen-
ces, up to the step of driving the S4CAST model from the SSTs (predictors) and the LMM outputs (predictand). The malaria incidence
data used as a predictand are simulated malaria incidence by the LMM, fed by daily rainfall and temperature data of the reanalysis datasets.
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and human host. The components of the LMM and the parame-
ter settings are described in Hoshen and Morse (2004) and
Ermert et al. (2011). To summarize, the number of emerging
adult mosquitoes at the beginning of each month depends on
the rain falling during the previous month. The mosquito popu-
lation is then combined with the biting rate, sporogonic cycle
length, and survival probability calculated from temperatures
and the other parameters provided as input to the model. The
LMM model has been successfully validated against a clinical
record in Botswana (Jones andMorse 2010) and Senegal (Diouf
et al. 2017). In this study, the standard parameter setting for
malaria transmission is used.

The SST indices are calculated in terms of area averages of the
anomalies over the TA, TP, and MED regions for different
monthly lags with respect to an index of simulated malaria inci-
dence (%) calculated for West Africa (48–188N, 208W–158E) to
determine the seasons showing the higher correlation coefficients
(see Fig. 2). We consider monthly lag 0–lag 5, where lag 0 corre-
sponds to synchronous correlations between simulated malaria
incidence and SST indices in September–November (SON). In
contrast, lag 5 corresponds to correlations between SST indices
in April–June (AMJ) and malaria indices in SON. We use the
20CR-driven malaria simulations (LMM incidence outputs) as
they are available over the longest period and can provide an ini-
tial assessment of the seasons to be considered. A figure
highlighting the seasonality of rainfall, temperature, and malaria
incidence is provided as online supplemental material (Fig. S2 in
the online supplemental material). We consider the SON season
for malaria incidence since it has been shown as the period with
the largest number of observed malaria cases over West Africa
(Diouf et al. 2020). The same season is used for temperature
because of its peak coinciding with the malaria season.

For rainfall, we focus on July–September (JAS), which rep-
resents the monsoon peak season. In a second step, we quan-
tify the association between SST variability in the TA, TP,
and MED regions and anomalous simulated malaria inci-
dence for the SON transmission season. We use the S4CAST
tool (Suárez-Moreno and Rodrı́guez-Fonseca 2015) to study
these relationships, which is based on maximum covariance
analysis (MCA). The MCA is a broadly used statistical dis-
criminant analysis method to calculate principal directions of
maximum covariance between two variables (e.g., Wallace
and Gutzler 1981; von Storch and Zwiers 2001). This statistical
analysis considers two fields, Y (predictor) and Z (predictand),
for applying the singular value decomposition (SVD) to the
cross-covariance matrix C between Y and Z to maximize it. The
SVD is an algebraic technique to diagonalize nonsquare matri-
ces, like the covariance matrix of two fields with different sizes
(von Storch and Frankignoul 1998).

The S4CAST performs cross-validated hindcasts following
the leave-one-out method (Dayan et al. 2014). This method is
intended as a model validation technique. In the first step,
data for the predictor and the predictand fields are removed
for a given time step (i.e., a given year). Next, the MCA is
applied with the remaining data to calculate the regression
coefficients. Third, the regression coefficients and predictor
data (previously removed) are used to estimate the cross-
validated hindcast. Once the cross-validated hindcasts are

obtained for the whole time series, the skill score of the model
is assessed by calculating the Pearson correlation coefficients
between the original (removed) data to be predicted and the
generated hindcasts. Extended details of the application of
MCA to analyze the SST-forced atmospheric teleconnections
with the Sahel can be found in Suárez-Moreno et al. (2018).

The S4CAST is herein applied to the covariance matrix calcu-
lated between SST anomalies corresponding to each ocean pre-
dictor (TP, TA, and MED) and simulated malaria incidence
over West Africa. We focus on the first (leading) MCA modes,
which explain the highest percentage of explained covariance,
the so-called squared covariance fraction (scf). These modes
exhibit periods of significant correlation (SC) between the
expansion coefficients time series of SST (U; predictor) and
malaria incidence (V; predictand) calculated in terms of 21-yr
running correlation windows. The existence of SC and nonsignif-
icant correlation (NSC) periods indicates the potential nonsta-
tionary (i.e., changing) behavior of SST-forced teleconnections.
The SC periods represent intervals for which covariability modes
are typically more robust along a given sequence of decades
(Suárez-Moreno and Rodrı́guez-Fonseca 2015; Suárez-Moreno
et al. 2018). In contrast, associations are generally weaker for
periods showing NSC. TheS4CAST uses the nonparametric
Monte Carlo method under several user selectable random per-
mutations to assess statistical significance. In this study, we set
the 90% significance level under 500 permutations.

Further analysis based on S4CAST outputs is carried out
using composite maps calculated from the SST expansion
coefficient U associated with the SST–malaria incidence lead-
ing MCA modes. These maps focus on the 20CR experiment
and are computed as mean anomalies for high minus low
events, corresponding to values above 1 positive and below 1
negative standard deviation (hereinafter std) of the SST
expansion coefficients, respectively.

For simplicity, we show the patterns corresponding to a par-
ticular phase of the modes. The opposite patterns must be con-
sidered for negative loadings of the expansion coefficients due
to the linearity of the MCA method. A specific section is dedi-
cated to the validation, or our results derived from the use of
LMM to generate malaria incidence (section 4). In this regard
we compute a correlation map between an index of observed
malaria incidence (GHDx) for 1990–2009 (20 years) and global
anomalous SSTs in July. This map is compared with additional
simulations with the S4CAST tool using the LMM outputs
based on the 20CR reanalysis as predictand fields but for the
analysis period 1990–2009 to be consistent with GHDx data
availability. The SST predictors are the same as described in
section 2a (TA, TP, and MED), with an extra simulation in
which the predictor encompasses the western tropical Pacific.

3. Results

a. Relationship between SST indices and malaria incidence

Figure 2 shows 21-yr running correlation windows between
simulated malaria incidence over West Africa (20CR) and the
different SST indices at different monthly lags. Overall, peri-
ods of significant correlation between SST predictors and
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FIG. 2. The 21-yr sliding window correlation (1910–2009) between an index of anomalous malaria incidence in West Africa (48–188N,
208W–158E) for SON simulated with the LMM and the indices of anomalous SST. Results are shown corresponding to the SST indices cal-
culated for the (a) eastern TP (308S–208N, 1508–908W); (b) TA (308S–108N, 308W–108E); and (c) MED (308–428N, 108W–428E). The SST
indices are computed for monthly lag 0 (SON), lag 1 (August–October), lag 2 (JAS), lag 3 (June–August), lag 4 (May–July), and lag 5
(AMJ). The sliding window correlation for each monthly lag is displayed according to different colored lines (see the legend in the panels).
The dots indicate statistical significance of the correlation at the 90% level under nonparametric Monte Carlo testing (500 random
permutations).
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malaria incidence are found during the first half of the twenti-
eth century and from 1980 to 1990 for all oceanic basins
(Figs. 2a–c). The correlation curve presents two periods of SC
from 1910 to 1940 and from 1980 up to 2009, while no signifi-
cant correlation is found in the period in between. SC periods
are observed up to monthly lag 5 corresponding to the AMJ
season for the oceanic predictors, indicating potential predict-
ability of anomalous malaria incidence up to 5 months in
advance (in SON). Therefore, the application of the S4CAST
model focuses on studying the predictability of the simulated
malaria incidence in SON using the SST predictors in AMJ as
a potential source of seasonal predictability.

b. Covariability modes and prediction skill for the
tropical Pacific

Figure 3 shows the regression maps associated with the
leading MCA mode for the TP SST predictor. The covariabil-
ity modes between SST and climatic inputs (20CR rainfall
and temperature) depict a positive ENSO-like pattern (El
Niño; Figs. 3a–d) related to decreased rainfall in JAS (Fig.
3b) and increased temperatures in SON (Fig. 3e). In both
cases, the significant responses are associated with significant
correlation skill scores (Figs. 3c–f), denoting the robustness of
the signals. Similar calculations based on other datasets
(NCEP and ERA20C, Fig. S3 in the online supplemental
material) indicate that the results are consistent with 20CR
for the same periods.

In Fig. 4a, warm ENO-like SST anomalies (El Niño pat-
tern) are associated with negative malaria incidence (Fig.
4b). Consistent results are found for the same periods
when using other reanalysis products as inputs (NCEP and
ERA20C) (Fig. S3).

The forecast skill scores as provided by the S4CAST model
(Fig. 4a) depict regions of significant positive correlations.
However, differences are shown depending on the reanaly-
sis used to generate the time series of malaria incidence,
with positive correlations scattered in the Sahelian part of
West Africa.

c. Covariability modes and prediction skill for the
tropical Atlantic

For the TA region, the SST patterns associated with the lead-
ing MCA modes depict a positive AEM-like pattern related to
positive rainfall anomalies over southern West Africa and nega-
tive anomalies over northern West Africa (Figs. 5a,b), and
widespread positive surface air temperature (T2m) anomalies
(Figs. 5d,e). Positive and significant correlation skill scores high-
light the robustness of the response signals (Figs. 5c,d).

For the malaria incidence (Fig. 6), a tropical SST warming
that resembles the positive AEM phase (Fig. 6a) is associated
with negative anomalies over the Sahel and positive anoma-
lies over the Gulf of Guinea (Fig. 5b). The signal over the
Sahel is significant for the 20CR (Fig. 5b) and NCEP experi-
ments (Fig. S4 in the online supplemental material). Such

FIG. 3. Regression maps and correlation skill scores associated with the leading (top) SST(AMJ)–rainfall(JAS) and (bottom)
SST(AMJ)-T2m(SON) MCA modes using the 20CR reanalysis. (a) Homogeneous SST (K std21) regression map calculated by regression
of the SST expansion coefficient U (not shown) associated with the leading SST–rainfall MCA mode onto anomalous SST in the TP region
(1508–908W, 308S–208N). (b) Heterogeneous rainfall (mm day21 std21) regression map calculated by regression of U (not shown) associated
with the leading SST–rainfall MCA mode onto anomalous rainfall in West Africa (208W–158E, 48–188N). (c) Correlation skill scores calcu-
lated between observations and cross-validated hindcasts of rainfall associated with the leading SST–rainfall MCAmode. (d) Homogeneous
SST (K std21) regression map calculated by regression of U (not shown) associated with the leading SST–T2mMCAmode onto anomalous
SST in the TP region. (e) Heterogeneous T2m (K std21) regression map calculated by regression of U (not shown) associated with the lead-
ing SST–T2m MCA mode onto anomalous T2m in the Sahel. (f) Correlation skill scores calculated between observations and cross-vali-
dated hindcasts of T2m associated with the leading SST–T2m MCAmode. The scf for the leading MCA modes is indicated above the plots.
Stippling denotes statistical significance at the 90% level based on nonparametric Monte Carlo testing (500 random permutations).
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similar responses of malaria incidence for the three different
reanalysis datasets suggest the SST-forced response of malaria
incidence to be statistically stationary throughout the study
period. Overall, positive significant correlation skill scores are
located over the western Sahel and local areas in the southern
region of the Gulf of Guinea (Fig. 6c).

d. Covariability modes and prediction skill for the
Mediterranean

Widespread positive rainfall anomalies characterize the
impact of warm MED SST anomalies in West African during
JAS (Fig. 7b). These positive SST anomalies are associated

FIG. 4. Regression maps and correlation skill scores associated with the leading SST(AMJ)–malaria incidence(SON)MCAmodes using
the 20CR reanalysis. (a) Homogeneous SST (K std21) regression map calculated by regression of U (not shown) associated with the lead-
ing SST–malaria incidence MCA mode onto anomalous SST in the TP region (1508–908W, 308S–208N). (b) Heterogeneous malaria inci-
dence (% cases std21) regression map calculated by regression of U (not shown) associated with the leading SST–rainfall MCA mode
onto anomalous malaria incidence in West Africa (208W–158E, 48–188N). (c) Correlation skill scores calculated between simulated
malaria incidence with the LMM model and cross-validated hindcasts of malaria incidence associated with the leading SST–malaria inci-
dence MCA mode. The scf is indicated above the plots. Stippling denotes statistical significance at the 90% level based on nonparametric
Monte Carlo testing (500 random permutations).

FIG. 5. Regression maps and correlation skill scores associated with the leading (top) SST(AMJ)–rainfall(JAS) and (bottom)
SST(AMJ)–T2m(SON) MCA modes using the 20CR reanalysis. (a) Homogeneous SST (K std21) regression map calculated by regression
of U (not shown) associated with the leading SST–rainfall MCA mode onto anomalous SST in the TA region (308W–108E, 308S–108N).
(b) Heterogeneous rainfall (mm day21 std21) regression map calculated by regression of U (not shown) associated with the leading
SST–rainfall MCA mode onto anomalous rainfall in West Africa (208W–158E, 48–188N). (c) Correlation skill scores calculated between
observations and cross-validated hindcasts of rainfall associated with the leading SST–rainfall MCA mode. (d) Homogeneous SST
(K std21) regression map calculated by regression of U (not shown) associated with the leading SST–T2m MCA mode onto anomalous
SST in the TA region. (e) Heterogeneous T2m (K std21) regression map calculated by regression of U (not shown) associated with the
leading SST–T2m MCA mode onto anomalous T2m in the Sahel. (f) Correlation skill scores calculated between observations and cross-
validated hindcasts of T2m associated with the leading SST–T2m MCA mode. The scf for the leading MCA modes is indicated above the
plots. Stippling denotes statistical significance at the 90% level based on nonparametric Monte Carlo testing (500 random permutations).
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with decreased SON temperatures over the western half of
West Africa (Fig. 7e).

An increase in malaria incidence over the Sahel is shown in
response to positive SST anomalies (Fig. 8a). The 20CR (Fig. 8)
and NCEP (lower panels of Fig. S5 in the online supplemental

material) experiments show similar results, while ERA20C
experiments show positive anomalous SSTs associated with
decreased malaria incidence over the Sahel (Fig. S5, upper pan-
els). Correlation skill scores in predicting precipitation anoma-
lies (Fig. 7c), and a significant T2m signal restricted to the

FIG. 6. Regression maps and correlation skill scores associated with the leading SST(AMJ)–malaria incidence(SON) MCA modes using
the 20CR reanalysis. (a) Homogeneous SST (K std21) regression map calculated by regression of U (not shown) associated with the lead-
ing SST–malaria incidence MCA mode onto anomalous SST in the Atlantic region (308W–108E, 308S–108N). (b) Heterogeneous malaria
incidence (% cases std21) regression map calculated by regression of U (not shown) associated with the leading SST–rainfall MCA mode
onto anomalous malaria incidence in West Africa (208W–158E, 48–188N). (c) Correlation skill scores calculated between simulated malaria
incidence with the LMM model and cross-validated hindcasts of malaria incidence associated with the leading SST–malaria incidence
MCA mode. The scf is indicated above the plots. Stippling denotes statistical significance at the 90% level based on nonparametric Monte
Carlo testing (500 random permutations).

FIG. 7. Regression maps and correlation skill scores associated with the leading (top) SST(AMJ)–rainfall(JAS) and (bottom)
SST(AMJ)–T2m(SON) MCA modes using the 20CR reanalysis. (a) Homogeneous SST (K std21) regression map calculated by regression
of U (not shown) associated with the leading SST–rainfall MCA mode onto anomalous SST in the Mediterranean region (108W–428E,
308–428N). (b) Heterogeneous rainfall (mm day21 std21) regression map calculated by regression of U (not shown) associated with the lead-
ing SST–rainfall MCA mode onto anomalous rainfall in West Africa (208W–158E, 48–188N). (c) Correlation skill scores calculated between
observations and cross-validated hindcasts of rainfall associated with the leading SST–rainfall MCAmode. (d) Homogeneous SST (K std21)
regression map calculated by regression of U (not shown) associated with the leading SST–T2m MCA mode onto anomalous SST in the
Mediterranean region. (e) Heterogeneous T2m (K std21) regression map calculated by regression ofU (not shown) associated with the lead-
ing SST–T2m MCA mode onto anomalous T2m in the Sahel. (f) Correlation skill scores calculated between observations and cross-
validated hindcasts of T2m associated with the leading SST–T2m MCA mode. The scf for the leading MCA modes is indicated above the
plots. Stippling denotes statistical significance at the 90% level based on nonparametric Monte Carlo testing (500 random permutations).
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western part of the region (Fig. 7f), closely matches the signifi-
cant skill scores in reproducing simulated malaria incidence that
is mainly constrained to the Sahel (Fig. 8c).

e. Comparison of skill scores between climate variables
and malaria incidence

We aim to compare the climate-related skill scores (Fig. 3,
left panel; Fig. 5, left panel; Fig. 7, left panel) with those
derived from simulating malaria incidence (Figs. 4c, 6c, and
8c). Negative malaria incidence anomalies are shown over
West Africa (Fig. 4b) as a response to warmer TP SST condi-
tions (Fig. 4a). This signal is consistent with the decrease in
rainfall (Fig. 3b) and warmer T2m (Fig. 3e). Figure 3 also
shows the skill in predicting rainfall and temperature based
on SST predictors (Figs. 3c,f). Focusing on 20CR reanalysis
(Fig. 4c), TP SST anomalies are shown as a skillful predictor
of malaria incidence over Sahelian longitudes ranging
between 58W and 58E. This significant malaria incidence
response does not entirely correspond to the significant rain-
fall signal over the eastern part of West Africa (Fig. 3c). For
T2m, the significant signal encompasses the whole study
region (Figs. 3e, 5e and 7e). Based on these findings, we sug-
gest the potential nonlinear interaction between rainfall and
T2m anomalies as a modulator of simulated malaria incidence.

For the TA SST predictor, positive rainfall anomalies over
most parts of West Africa (except for the northeastern part
where negative rainfall anomalies are located) tend to favor
an increase in malaria incidence over the Gulf of Guinea (Fig.
5b). The malaria incidence decreases over the Sahel under the
same (opposite) SST anomalies (Fig. 6b). Figures 5c–f show
the skill scores to reproduce rainfall and T2m variability
based on TA SST anomalies. Generalized significant skill
scores are found for T2m, while the rainfall signal is con-
strained to the southern half of the study region. When com-
paring the skill scores found for T2m (Fig. 5f) and malaria
incidence using the 20CR reanalysis data (Fig. 6c), significant
signals are depicted in both south and northeast regions.

As for MED SST anomalies, significant skill scores are
shown to reproduce precipitation anomalies (Fig. 7c), whereas
a significant T2m signal is restricted to the western part of the
region (Fig. 7f). These signals closely match the significant
skill scores in simulating malaria incidence over the Sahel
(Fig. 8c).

To further explore this relationship, we apply the S4CAST
model to calculate the leading MCA modes between SST
anomalies in the eastern tropical Pacific in AMJ (predictor
field) and two different anomalous fields to be predicted. The
first one corresponds to West African rainfall anomalies dur-
ing JAS. The second field corresponds to T2m during SON.
Composite maps based on the 20CR reanalysis shows that the
El Niño signal is associated with anomalous upward move-
ments of air (reflected by positive anomalies of the velocity
potential at 200 hPa on), which in turn affects the zonal
Walker circulation resulting in anomalous air subsidence
(drier conditions) over West Africa (Figs. S6b,c in the online
supplemental material). This subsidence is concomitant with
negative rainfall anomalies and is consistent with the results
shown in Fig. 3a. Nonsignificant and weak T2m anomalies
over West African do not affect the climatological surface
temperatures (Fig. 6d), which range from 268 to 348C follow-
ing a meridional gradient to the north. Under this scenario,
the underlying negative rainfall anomalies (Fig. 3a) do not
favor an increase in incidence during the subsequent malaria
season (SON), even though surface temperatures may be
favorable in certain regions, notably in the southern part of
the Gulf of Guinea where temperatures are around 278C. A
significant decrease in simulated malaria incidence farther
north (Fig. 4a) is concomitant with temperatures exceeding
328C. This threshold is close to the optimal temperature val-
ues for malaria transmission.

Warmer SST anomalies in the tropical Atlantic lead to a
southward shift of the ITCZ in response to a positive gradient
of anomalous sea level pressure (SLP) to the south, reducing
and increasing rainfall in the northern and southern West

FIG. 8. Regression maps and correlation skill scores associated with the leading SST(AMJ)–malaria incidence(SON) MCA modes using
the 20CR reanalysis. (a) Homogeneous SST (K std21) regression map calculated by regression of U (not shown) associated with the lead-
ing SST–malaria incidence MCA mode onto anomalous SST in the Mediterranean region (108W–428E, 308–428N). (b) Heterogeneous
malaria incidence (% cases std21) regression map calculated by regression of U (not shown) associated with the leading SST–rainfall MCA
mode onto anomalous malaria incidence in West Africa (208W–158E, 48–188N). (c) Correlation skill scores calculated between simulated
malaria incidence with the LMM model and cross-validated hindcasts of malaria incidence associated with the leading SST–malaria inci-
dence MCA mode. The scf is indicated above the plots. Stippling denotes statistical significance at the 90% level based on nonparametric
Monte Carlo testing (500 random permutations).
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African regions, respectively. This is consistent with the com-
posite map based on the SST expansion coefficient (Fig. S7a
in the online supplemental material) associated with the lead-
ing SST–malaria incidence MCA mode shown (see Fig. 6).
Indeed, the SLP anomaly pattern depicts a positive gradient
to the south (Fig. S7b) that reduces the northward shift of
the ITCZ, increasing rainfall over the southern areas of
West Africa while precipitation decreases over the Sahel.
This result is consistent with the so-called West African
rainfall dipole in response to the AEM (e.g., Losada et al.
2010b). As for T2m, composite maps reveal significant neg-
ative anomalies over the whole study region except for a
positive signal north of Senegal (Fig. S7c). These anoma-
lies place the T2m climatological range between 248 and
278C to the south (Fig. S7d), combined with positive rain-
fall anomalies to increase malaria incidence. By contrast,
drier conditions reduce malaria incidence to the north. It
follows that malaria incidence decreases over the Sahel
and increases over equatorial latitudes, in agreement with
Fig. 6b.

As stated, the leading MCA mode between MED SST
anomalies and malaria incidence for the 20CR reanalysis (is
characterized by a MED SST warming related to an increase
of malaria incidence that affects the Sahelian part of West
Africa (see Fig. 8). The same analysis is applied for the MED
predictor in terms of composite maps based on the MED SST
expansion coefficient (Fig. S8a in the online supplemental
material). A longitudinal band of specific humidity anomalies
at 850 hPa is located over the Sahel in response to low-level
moisture transport to the south, feeding moisture conver-
gence due to warmer Mediterranean SST in JAS (Fig. S8b).
T2m increases following the monsoon season, resulting in pos-
itive anomalies over the central and eastern Sahel during the
subsequent SON season (Fig. S8c). These T2m anomalies are
responsible for absolute values of surface temperatures (Fig.
S8d) that, combined with positive rainfall anomalies (see Fig.
7b), favor the increase of malaria incidence in the West African
Sahel (Fig. 8b).

Further analysis is based on the time-varying relationship
between SST predictors and predictand fields (i.e., anomalies
of malaria incidence, rainfall, and temperature). In this con-
text, sliding windows correlation between the time series
expansion coefficients derived from the leading MCA modes
for the TP predictor denotes a similar evolution for T2mand
rainfall, with the SC periods closely pairing. The signal cor-
responding to simulated malaria incidence also follows an
analogous behavior (Fig. S9a in the online supplemental
material). The same calculations applied to the TA SST pre-
dictor (Fig. S9b) depict similar time-varying signals for the
three predictand fields, even though the link is more robust
for T2m as shown in terms of higher significant correlations.
Likewise, the signals associated with the MED SST predic-
tor are very similar for the three predictand fields (Fig. S9c).
The similarity of the time series presented in this section for
each SST predictor, showing SC periods for which the spa-
tial covariability patterns associated with the different pre-
dictand fields closely coincide, makes the results derived
from this study more consistent.

4. Validation of SST–malaria relationship

This section presents a validation of our results based on
the SST-forced response of malaria incidence. To this aim, we
focus on the 1990–2009 period for which observations of
malaria incidence obtained from the GHDx project (see sec-
tion 2a for extended details) are available beyond the simu-
lated malaria incidence with the LMM. These observations
are used to create an index of malaria incidence calculated as
an average for the Sahelian countries (Burkina Faso, Mali,
Senegal, Niger, and Mauritania).

First, the leading MCA modes are calculated between SST
anomalies and anomalous malaria incidence (LMM output)
as previously done for the three ocean predictors with the
S4CAST model (see Figs. 4, 6, and 8 for TP, TA, and MED,
respectively), but for the study period 1990–2009 (Fig. 9). For
the eastern and western TP SST predictors (Figs. 9a–c and
9d–f, respectively), the results approach the leading MCA
mode previously calculated and its associated cross-validated
skill scores (cf. Fig. 4), which exhibits a positive ENSO-like
SST pattern related to decreased malaria incidence over the
Sahel. This similarity is because the study range (1990–2009)
falls within the Pacific SC period (see Fig. S9a in the online
supplemental material; red line). During this validation
period, the interbasin connection between the equatorial
Atlantic and Pacific (Rodrı́guez-Fonseca et al. 2009) could
synergistically enhance malaria’s impact. In the case of the
TA SST predictor (Figs. 9g–i), the spatial patterns for both
SST anomalies and anomalous malaria incidence differ sig-
nificantly from the MCA modes corresponding to the SC
period (cf. Fig. 6). Contrary to the previous case, this is
attributed to the interval 1990–2009 not belonging to the
SC Atlantic period (see Fig. S9b; red line). For the MED
SST predictor, the spatial patterns derived from MCA
analysis for the 1990–2009 interval (Figs. 9j–l) closely
reproduce the covariability patterns corresponding to the
SC period (cf. Fig. 8). Note that the MED SC period
encompasses the shorter 1990–2009 study interval (see Fig.
S9c; red line).

Next, the index of observed malaria incidence is correlated
with global SST anomalies (Fig. 9m). Significant opposing sig-
nals are shown over the tropical Pacific and Atlantic basins,
with the Pacific (Atlantic) SST anomalies correlating nega-
tively (positively) with the index of observed malaria inci-
dence. This is consistent with a Pacific–Atlantic counteracting
SST effect associated with a significant response of malaria
incidence in the Sahel (see Figs. 9a–i). Indeed, this counteract-
ing effect has been previously highlighted by its strong impact
on rainfall variability in the West African Sahel (Rodrı́guez-
Fonseca et al. 2011; Losada et al. 2012; Suárez-Moreno et al.
2018). For the Mediterranean SST variability, no significant
correlations are found, suggesting that the Pacific–Atlantic
counteracting effect prevails over the Mediterranean influ-
ence. Under this scenario, significant SST anomalies in the
Mediterranean Sea represent a source of predictability of
malaria incidence when the tropical Pacific and Atlantic
basins lack significant anomalies. A summary table with the
influence of each SST predictor on the variability of malaria
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FIG. 9. Regression maps and correlation skill scores associated with the leading SST(AMJ)–malaria incidence(SON) MCA modes using the
20CR reanalysis for the period 1990–2009. Homogeneous SST (K std21) regression map calculated by regression of the SST expansion coeffi-
cient associated with the leading SST–malaria incidence MCA mode onto anomalous SST in the (a) eastern Pacific (EPAC; 1508–908W,
308S–208N), (d) western Pacific (WPAC; 1608E–1508W, 208S–108N), (g) Atlantic region (308W–108E, 308S–108N) and (j) Mediterranean region
(108W–428E, 308–428N). (b),(e),(h),(k) Heterogeneous malaria incidence (% cases std21) regression map calculated by regression of the SST
expansion coefficient associated with the leading SST–rainfall MCA mode onto anomalous malaria incidence in West Africa (208W–158E,
48–188N). (c),(f),(i),(l) Correlation skill scores calculated between simulated malaria incidence with the LMM model and cross-validated hind-
casts of malaria incidence associated with the leading SST–malaria incidence MCAmode. The scf is indicated above the plots. Stippling denotes
statistical significance at the 90% level based on nonparametric Monte Carlo testing (500 random permutations). (m) Correlation maps of the
GHDx incidence anomalies observe in the period 1990–2009 (20 years) and the anomalous SSTs in July of the year of the incidence.
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incidence in West Africa is provided in the online supplemen-
tal material (Table S1).

5. Discussion and conclusions

Studies of the relationship between climate and malaria
transmission in the sub-Saharan region of West Africa are of
paramount importance. In this region, the spread of malaria
appears to be endemic and relatively higher in comparison
with other tropical areas, and knowledge of the consequences
of climate variability and change are not available to the vul-
nerable population. Therefore, our study aims to eliminate
this knowledge gap, helping to understand the link between
malaria transmission and climate factors at a regional level by
analyzing the role of potential SST predictors in driving
malaria outbreaks.

We used the S4CAST model (Suárez-Moreno and
Rodrı́guez-Fonseca 2015) to evaluate the predictability of
malaria incidence motivated by two main reasons. On the
one hand, SST variability in the tropical Pacific and Atlantic
basins and the Mediterranean Sea is known to exert a strong
influence on the West African monsoon dynamics (e.g., Fon-
taine et al. 1998; Nicholson and Grist 2001; Rowell 2013;
Giannini et al. 2020, among others), which in turn directly or
indirectly impacts other essential sectors including agricul-
ture and the seasonal occurrence of vector-borne diseases in
general, and malaria outbreaks in particular. On the other
hand, the nonstationary (i.e., changing over time) influence
of SSTs on West African rainfall has been reported in previ-
ous studies (Janicot et al. 1996, 1998; Ward 1998; Rodrı́guez-
Fonseca et al. 2011; Mohino et al. 2011; Losada et al. 2012;
Suárez-Moreno et al. 2018; Suárez-Moreno 2019). By exten-
sion, this nonstationary behavior would be responsible for
changing impacts on other variables, such as the incidence of
malaria known to be driven by climatic factors (Poveda et al.
2001; Diouf et al. 2017, 2020).

Our results demonstrate robust SST-forced atmospheric
teleconnections driving the variability of surface air tempera-
tures (T2m) and precipitation in West Africa, which in turn
influence the variability of simulated malaria incidence. The
underlying mechanisms associated with the covariability
modes between anomalous malaria incidence and SST anom-
alies were studied and compared with previous works that
focused on SST impacts on West African rainfall, illustrating
how SST variability directly modulates rainfall and T2m and
indirectly affects malaria epidemics.

For tropical Pacific SST anomalies, skillful predictability
of malaria incidence is found 5 months in advance, as illus-
trated with significant correlation skill scores up to 0.6 over
the Sahel. In regard of the tropical Atlantic, significant cor-
relation skill scores at the 5-month lead time that
approaches values of 0.8 highlights robust predictability of
malaria incidence. About the impact of Mediterranean
SST, widespread significant correlation skill scores also at
5-month lead time reach values of 0.8 mainly over the
western Sahel and local areas in the southern part of the
Gulf of Guinea.

For the atmospheric mechanisms for the tropical Pacific
region, the teleconnection is explained by enhanced or weak-
ened subsidence in response to SST warming or cooling,
respectively, that disrupts the upper-level Walker circulation.
Accordingly, for the warm phase of ENSO (El Niño events),
enhanced subsidence over West Africa reduces rainfall and
increases surface air temperatures (e.g., Rowell 2001; Suárez-
Moreno et al. 2018). The opposite pattern occurs for the nega-
tive phase of ENSO (La Niña events). Note that changes in
the spatial patterns are observed depending on the reanalysis
used to generate malaria incidence with the LMM (Fig. S3
in the online supplemental material). On the side of the
ERA20C-related experiment (Figs. S3a–c), both the SST and
malaria incidence patterns are similar (Figs. S3a and b,
respectively), even though the significant correlation skill
scores are lower and limited to Senegal. When using the
NCEP reanalysis (Figs. S3d–f), the weakening of the negative
significant response over the Sahel is potentially due to the
presence of negative SST anomalies in the equatorial Atlantic
region (negative AEM phase) that tends to counteract the
ENSO impact over the Sahel (see, e.g., Losada et al. 2012).
These differences in the covariability patterns between the
reanalysis used to generate malaria incidence with the LMM
might be related to different observational data used in the
assimilation schemes and the distinct periods covered by these
reanalysis products.

In the Atlantic Ocean, warm SST anomalies associated
with the positive AEM phase (Atlantic Niño) are responsible
for a weak temperature and pressure gradient to the north.
This causes a low differential land–ocean contrast that
reduces the inland monsoon flow as the ITCZ keeps equator-
ward (e.g., Chiang et al. 2000). By linearity of the MCA
method, cold SST anomalies result in a strong positive gradi-
ent to the north that shifts the ITCZ northward, displacing
the monsoon rain belt over Sahelian latitudes. This telecon-
nection mechanism was inferred for the leading MCA mode
associated with the use of 20CR reanalysis to generate
malaria incidence with the LMM (see Fig. 6), the spatial pat-
terns being closely similar in the case of producing malaria
incidence from the ERA20C product (Figs. S4a–c in the
online supplemental material). However, the result referring
to the use of the NCEP reanalysis is significantly different
(Figs. S4d–f). Significant SST anomalies in the eastern sub-
tropical Atlantic could be responsible for reduced cross-equa-
torial SST gradient to the north, maintaining the ITCZ and
therefore the monsoon flow over the Guinean Gulf region,
where the SST-forced response of anomalous malaria inci-
dence is more robust while it weakens over the Sahel.

For the Mediterranean Sea, the southward advection of
anomalous low-level moisture due to warmer SST enhances
the rainfall response over the Sahel, playing a potential role
in driving the variability of simulated malaria incidence over
the region, and prevailing over temperature forcings (e.g.,
Rowell 2003; Gaetani et al. 2010). These results are consistent
with Suárez-Moreno et al. (2018), who found that increased
northeasterly moisture transport from warmer Mediterranean
SST feeds moisture convergence over West Africa for a spe-
cific sequence of decades (the 1950s and after the 1990s),
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which coincide with our significant correlation period. Besides
warmer Mediterranean SSTs that should imply increase rain-
fall leading to augmented malaria incidence, the North
Atlantic Ocean (in front of the coast of Senegal) shows nega-
tive SST anomalies, which should lead to reduced malaria
incidence. This is consistent with a counteracting effect
between the SST forcing associated with the Mediterranean
and subtropical North Atlantic Ocean regions, making the sig-
nal misleading for the ERA20C-related malaria incidence as
compared with the results derived from 20CR and NCEP
products. Differences when using other reanalyses to generate
malaria incidence are potentially due to cooler North Atlantic
SSTs in ERA20C (Fig. S5a in the online supplemental mate-
rial) relative to the results derived from 20CR and NCEP
reanalysis (Fig. 8a and Fig. S5d, respectively). The pro-
nounced SST cooling over the northern tropical Atlantic
reduces the positive meridional SST gradient to the north,
limiting the northward shift of the ITCZ, which reduces low-
level convergence and, therefore, precipitation in the Sahel.
Moreover, tropical Pacific SST cooling is stronger for the
20CR and NCEP experiments as it extends farther west. As a
result, the SST-forced response of malaria incidence is
enhanced for 20CR and NCEP reanalysis (Fig. 8b and Fig.
S5e, respectively), while it is reversed for the ERA20C prod-
uct (Fig. S5b).

Given that the leading modes of covariability between SST
anomalies and anomalous malaria incidence are shown to be
more robust for some periods than for others, it follows that
these nonstationary relationships are associated with the
changing behavior of atmospheric teleconnections. In this
context, our results show that the correlations between El
Niño (positive phase of ENSO) and rainfall over the southern
part of West Africa are weaker than those with Sahelian pre-
cipitation in July, in agreement with Barnston et al. (1996).
As rainfall decreases in the Sahel, malaria incidence is
reduced, even though this relationship is changing over time,
consistent with previous studies. For instance, Folland et al.
(1986), Ward (1992), and Ropelewski and Halpert (1987)
found no significant relationship between ENSO and rainfall
over the Sahel. Moreover, interdecadal rainfall variability in
the West African Sahel is pronounced in a way that a harsh
drought period in the 1980s and early 1990s was followed by
positive precipitation anomalies from the mid-1990s onward
(Barnston et al. 1996) to confirm an apparent recovery trend
(Giannini et al. 2003; Nicholson 2005; Hagos and Cook 2008).

The validation carried out in section 4 supported our results
based on simulated malaria incidence and its robust relation-
ship with SST-forced climate variability in West Africa. Nev-
ertheless, there are some limitations in our study. For the
validation of the model predictions against observed inci-
dence data, the quality of malaria-related observations is lim-
ited. Validating our results over a large spatial domain (West
Africa) and the long-term is difficult because of the data
accessibility and quality. In this framework, only partial vali-
dation was performed for the 1990–2009 period by computing
the correlation maps between an averaged index of malaria
incidence (GHDx) for a series of West African countries and
the anomalous SSTs. By construction, applying MCA for such

a short period is not optimal, although the results are
mostly consistent with the analysis of the longest period
for which simulated malaria incidence with the LMM was
used, showing the counteracting Pacific–Atlantic SST forc-
ing as the leading driver of malaria incidence in the Sahel,
while the Mediterranean would become a key source of
predictability when tropical SST anomalies are not signifi-
cant. As further limitations of this study, even if the impact
of climate is essential in the occurrence of malaria, our bio-
logical model (the LMM) does not consider critical noncli-
matic factors such as socioeconomic factors and early and
strong public health measures taken by local governments.
The large-scale migration of populations from areas in
which malaria is endemic into new areas will also play an
essential role in the dynamics of the disease (World Health
Organization 2017; Rodrigues et al. 2018).

This work is not yet fully implemented into operational
practice, and it is time to evaluate its potential benefits, partic-
ularly after postprocessing with the S4CAST algorithm. This
encourages malaria prediction diagnostics to be extended to
the whole African continent. An in-depth analysis of the indi-
rect influence of ocean conditions on malaria is needed to
confirm that the same method can be developed elsewhere.
Our study is expected to be helpful to decision-makers know-
ing that the essential factor in reducing the impact of an epi-
demic is a timely response in which effective control measures
are undertaken as soon as the episode has been predicted
using climate information. Otherwise, due to the lack of reli-
able, validated malaria for a sizable spatiotemporal scale,
extending this study to the whole African continent and else-
where is somewhat a big challenge.

To better understand the impact of air–sea interactions on
malaria incidence, further studies are encouraged that include
sensitivity experiments with GCMs by prescribing SST anom-
alies in the Pacific Ocean, Atlantic Ocean, and Mediterranean
Sea basins. Accordingly, the obtained T2m and precipitation
would be introduced in the malaria model (LMM) to better
determine the malaria model’s sensitivity to these SST pat-
terns and induced climate variability over West Africa. Fur-
thermore, in future work, we would like to validate the
S4CAST model hindcasts with other observed malaria-related
data.
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Ouédraogo, C. M. R., G. Nébié, L. Sawadogo, G. Rouamba, A.
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