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Credit Derivatives and Corporate Default Prediction

Abstract

There have been 128 defaults among U.S. CDS reference entities between 2001 and 2020.

Within this sample, the five-year CDS spread is a significant predictor of corporate default

in models with equity market covariates and firm attributes. This finding holds for forecast

horizons up to 12 months, among financial and non-financial firms, within and without the

great financial crisis, and is robust to the inclusion of corporate bond and equity options

market information. A decomposition of the CDS spread into liquidity, physical default,

and risk premium components shows that most of its predictive power for corporate default

comes from the physical default component, both in- and out-of-sample. These results

confirm the relevance of information contained in single-name CDS pricing to corporate

default prediction.

JEL Classification: G12, G13, G17, G23, G33

Keywords : Credit default swap spread, corporate default prediction, physical default, default

risk premium, CDS liquidity.

                  



1 Introduction

The prediction of corporate default is an important topic of interest to both academics and

practitioners. The extensive literature on this topic has incorporated a variety of statistical

techniques and a wide range of explanatory variables.1 However, an obvious source of default-

relevant information has not been fully exploited by researchers—the credit default swap

(CDS) spread. In a CDS contract, the buyer is offered default protection on the underlying

corporate bond, while the seller collects a series of payments determined by the CDS spread.

Therefore, the CDS spread should reflect market expectation of the likelihood of corporate

default.2

The main reason why such a simple idea has not been entertained in the default prediction

literature is likely pragmatic—firms with CDS trading tend to be large and investment-

grade (Saretto and Tookes, 2013; Subrahmanyam et al., 2014). These constitute only a

subset of publicly traded firms, and defaults among such firms could be less frequent than

in the general population. However, we identify 128 defaults between January 2001 and

December 2020 among 760 unique U.S. CDS reference entities with nearly 100,000 firm-

month observations. In comparison, Duffie et al. (2007)’s sample consists of 497 defaults

among 2,770 industrial firms in CRSP/Compustat, covering 390,000 firm-month observations

over 1980-2004. Although our CDS sample is approximately a quarter of the size of the

unrestricted sample, the default rates appear to be similar across the two.3 In any case,

the cumulative coverage of CDS firms and their defaults over the last two decades seem

substantial enough to warrant a serious look at the issue.

In this paper, we provide comprehensive empirical evidence on the predictive power of

1Representatives include Altman (1968)’s discriminant analysis using accounting variables, Shumway
(2001)’s hazard model and Campbell et al. (2008)’s dynamic logit model with accounting and market-based
variables, and Duffie et al. (2007)’s maximum likelihood estimation of the term structure of conditional
default probabilities, incorporating the time-series dynamics of macro and firm-specific covariates.

2Longstaff et al. (2005), for example, use default intensities estimated from CDS spreads to help isolate
the non-default component of corporate bond yield spreads.

3One could argue that even if the default rates are similar, the larger defaults in our CDS sample make
a more significant impact on the average bond investor’s portfolio, in the same way that larger stocks are
more representative of the CAPM market portfolio.
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single-name CDS spreads for corporate default and bankruptcy events. We estimate logistic

regressions by adding the five-year CDS spread to the set of covariates used in benchmark

default prediction models of Duffie et al. (2007) and Duan et al. (2012). We find the CDS

spread to be statistically and economically significant in the presence of distance-to-default

and other covariates, and it retains its significance during the financial crisis and non-crisis

sub-periods as well as within sub-samples of financial and non-financial firms. Compared

to the prominent distance-to-default, the CDS spread has similar statistical significance

when forecasting defaults one month to 12 months ahead, but its economic significance is

smaller. Specifically, when setting all covariates to their sample mean values, the conditional

default rate according to our logit model is 0.27 percent per year. Reducing the distance-

to-default by one standard deviation raises the conditional default rate to 0.82 percent, by

far the largest effect. In comparison, increasing the CDS spread by one standard deviation

raises the conditional default rate to 0.32 percent, similar to the effect of another significant

covariate, net income over total assets.

We conduct a battery of robustness checks of our main result. First, besides the CDS

market, default-relevant information can also be found in the corporate bond and equity

options markets, which have the advantage of covering more firms. In the logit analysis,

we find no significance for the at-the-money implied volatility or the implied volatility skew

in the presence of distance-to-default and the CDS spread. The bond spread is marginally

significant, consistent with Han and Zhou (2014).4 However, the size and significance of the

CDS spread coefficient are qualitatively unchanged. Second, when adding other covariates

such as the investment-grade CDS index spread, the slope of the CDS curve, or firm leverage

and asset volatility in lieu of distance-to-default, the significance of the CDS spread remains

robust. Lastly, our main result also survives research designs intended to mitigate the rare

event bias found in the estimation of logit models.

4Using a larger sample of firms with corporate bonds, Han and Zhou (2014) show that information
asymmetry measures extracted from corporate bond transaction data have significant predictive power for
corporate default in the presence of distance-to-default.
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To further shed light on the source of the CDS spread’s predictability for corporate

default, we follow the regression-based approach of Dick-Nielsen et al. (2012) and Schw-

ert (2017) to decompose the CDS spreads at different maturities into default and liquidity

components, recognizing that CDS liquidity can directly account for a portion of the CDS

spread (Bongaerts et al., 2011). Then, we fit a one-factor reduced-form credit risk model to

the term structure of the estimated default components, to further break them down into a

credit risk premium plus a “pseudo-spread” following Pan and Singleton (2008) and Friewald

et al. (2014), where the pseudo-spread is related to the dynamics of the risk-neutral default

intensity under the physical measure. Substituting the five-year CDS spread with its three

components in the logit regression shows that only the pseudo-spread (or what we call the

“physical default component”) contributes to default prediction, while the liquidity and risk

premium components do not.5 Out-of-sample, the four covariates in Duffie et al. (2007),

including distance-to-default, yield an accuracy ratio of 79 percent for six-month-ahead fore-

casts. This improves to 83 percent when the physical default component of the CDS spread

is included.

The remainder of our paper is organized as follows. Section 2 reviews the relevant liter-

ature and outlines our incremental contribution. Section 3 introduces the data sources and

summarizes the explanatory variables used in our empirical analysis. Section 4 presents the

in-sample estimation and out-of-sample predictive performance of our model including the

single-name CDS spread or its components as explanatory variables. Section 5 concludes.

2 Related Literature

The literature on corporate default prediction is too large to be thoroughly reviewed here.

Instead, we refer readers to the brief but excellent summary in Duffie et al. (2007). The

5Unlike the case of corporate bonds, where bond illiquidity can amplify rollover loss and accelerate
endogenous default by equityholders (He and Milbradt, 2014), there is no obvious link between the liquidity
of CDSs, a derivative instrument, and the default risk of the reference entity. To the extent that the liquidity
and risk premium components make the CDS spread a noisy proxy for default probabilities, the coefficient
of the CDS spread in our logit regressions could be downward biased.
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two major focuses of the literature have been methodological improvements and the choice

of explanatory variables. For instance, Duffie et al. (2007) model corporate defaults as dou-

bly stochastic Poisson processes, and provide maximum likelihood estimates of the default

intensity, the intensities of other forms of exits, and the time-series dynamics of the explana-

tory variables. This information is then used to generate a term structure of conditional

default probabilities. Duan et al. (2012) model the “forward default intensity” instead of

the instantaneous default intensity in Duffie et al. (2007), and argue that their approach has

certain advantages such as computational efficiency and more accurate long-horizon default

prediction.

While the first-generation models, such as Altman (1968), offer single-period classifi-

cations using mostly accounting information, the more recent default prediction models in-

creasingly rely on the dynamic behavior of market-based variables. For example, Duffie et al.

(2007) estimate a parsimonious specification with four covariates: the Merton distance-to-

default, the trailing one-year individual stock return and stock index return, and the three-

month Treasury bill rate. To this specification, Duan et al. (2012) further add net income

over total assets, firm size, cash holdings, market to book, idiosyncratic stock volatility, as

well as the trend of some of these variables. The most prominent out of all these explanatory

variables is perhaps distance-to-default, due to its theoretical underpinning in the Merton

(1974) structural credit risk model. A thorough investigation of the nature of its contribution

to default prediction is undertaken by Bharath and Shumway (2008).

Relative to this literature, our paper does not offer any methodological advance. Instead,

we note that the market-based variables used in this literature, in particular distance-to-

default, contain information exclusively from the equity market. One of our contributions is

in the inclusion of credit market information, e.g., CDS spreads and/or corporate bond yield

spreads, in routine default prediction models such as conditional logit regressions. Another

contribution is the decomposition of the CDS spread into its components and showing that

only the physical default component matters to default prediction.
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When markets are fully integrated and models are correctly specified, either the equity-

based distance-to-default from the Merton model or the CDS-based physical default compo-

nent from a reduced-form model would suffice for default prediction, with no need for any

other covariates. In the real world, however, there is plenty of evidence of model misspec-

ification and segmentation between the equity and CDS markets.6 As a result, combining

equity- and CDS-based default risk measures, as well as other firm characteristics, is likely

to be a fruitful approach to corporate default prediction.

In a recent study, Avino et al. (2019) construct a sample of annual data on 60 U.S.

and European banks with CDS trading over 2004-12, out of which 20 failed in 2008 alone

and a total of 31 failed during the sample period. They show that the yearly change of

the CDS spread has predictive power for bank failure in the following year. However, the

out-of-sample accuracy ratio of a specification that uses distance-to-default alone dominates

that of any specification that employs the CDS spread change (even when it is combined

with distance-to-default). In comparison, our sample size is much larger and includes both

financial and non-financial firms. Our explanatory variables are chosen to be compatible

with benchmark studies of U.S. industrial and financial firm defaults, as opposed to those

unique to banks.7 More importantly, the use of data at the monthly frequency allows us

to identify the robust predictive power of CDS spreads for corporate default over forecast

horizons between one month and a year.

Interestingly, Bharath and Shumway (2008) extract risk-neutral default probabilities from

CDS spreads and show that they are correlated with default probabilities implied from

various implementations of the Merton model (both the “correct” version and a “naive”

6For example, Bharath and Shumway (2008) present evidence showing that the Merton distance-to-default
is not a sufficient statistic for the probability of default. Elkhami et al. (2014) demonstrates that assuming
a constant 40 percent recovery rate in reduced-form models results in underestimated default probabilities.
Hilscher et al. (2015) argue that equity returns generally lead CDS returns due to lower trading costs in the
equity market, but Acharya and Johnson (2007) find the opposite ahead of major credit events, which they
attribute to insider trading in the CDS market.

7For example, Avino et al. (2019) include the tier-one regulatory capital ratio, the ratio between loan
loss provisions and the book value of total assets, and the ratio between liquid assets and the sum of total
deposits and short-term borrowing in their analysis.

5

                  



one). This is similar in spirit to but not exactly the same as what we are doing in this paper,

which is predicting actual defaults using the CDS spread or the physical default component

of the CDS spread. Bharath and Shumway (2008) are further limited by the lack of data in

the early phase of the CDS market—they obtain only a small sample of 3,833 firm-months

of CDS spreads from December 1998 to July 2003. This is less than four percent of our CDS

sample size and insufficient for the accurate estimation of a default prediction model.

3 Data

3.1 CDS Firms and Their Defaults

The major source of default events in our empirical study is Moody’s Default and Recovery

Database (DRD). The DRD tracks corporate default events at the financial instrument level

and issuer level in the U.S. market since 1926. These corporate default events include missed

interest or principal payments, distressed exchanges, and bankruptcy filings under Chapter

7 or Chapter 11. We link the DRD records with firm characteristics in other academic

databases using exchange ticker symbols and six-digit CUSIP numbers, and confirm that

the issuer name in the DRD is consistent with the firm’s legal name provided in Compustat.

The DRD records are then combined with default events in two other databases, Thomson

Reuters’ Eikon and Audit Analytics. For the defaults of CDS firms, we cross-validate the

DRD records with the Creditfixings website, which provides credit event auctions data, as

well as checking that the firms have active CDS trading around the time of default.

[Insert Table 1 here]

The pricing information on single-name CDSs is retrieved from Markit, a leading credit

market data service provider. We use the five-year CDS spread as the key independent

covariate in the empirical study, as the five-year contract is usually the most liquid maturity

on the single-name CDS spread curve. A firm is counted as an actively traded CDS firm in a

given month if there are at least 15 daily five-year CDS spreads observed during the month.
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From Table 1, the number of actively traded CDS firms reached a peak in 2007 and gradually

fell thereafter.8 We identify and match 128 default/bankruptcy events among these actively

traded CDS firms. Table 1 also reports defaulted CDS firms in number and as a percentage

of the number of actively traded CDS firms in each calendar year.9 Evidently, the number

of defaulted CDS firms spiked during the financial crisis years of 2007-09, which accounted

for 35 percent of all CDS defaults in our sample. It also rose in 2020, perhaps due to the

Covid-19 pandemic, comprising 11 percent of all CDS defaults.

3.2 Covariates

In the empirical analysis, we perform logistic regressions with the binary indicator of whether

a firm has defaulted in a given month as the dependent variable, and the five-year CDS spread

is used as the main source of credit market information for default prediction. For comparison

purposes, we borrow the set of independent variables from Duffie et al. (2007) and Duan

et al. (2012). These variables are documented below, with the first four from Duffie et al.

(2007) and the rest from Duan et al. (2012), who also include distance-to-default.10

1. Distance-to-default (DtD): The explanatory and predictive power of this popular co-

variate for default events has both theoretical justification from the Merton model

and empirical support from a large literature including Duffie et al. (2007), Bharath

and Shumway (2008), and Duan et al. (2012). We expect it to have a strong negative

relation with default events, i.e., a smaller DtD corresponding to a higher default prob-

ability. We adopt the standard KMV approach for calculating DtD, following Crosbie

and Bohn (2002), Vassalou and Xing (2004), and Hillegeist et al. (2004).

8We average the monthly number of active CDS firms to obtain a yearly figure.
9Not all of the actively traded CDS firms reported in Table 1 are included in our later empirical analysis

because of the requirement of additional variables. Our baseline logit regressions, for example, include around
100,000 firm-month observations with 760 unique CDS firms and all 128 CDS defaults.

10In univariate logit regressions with a six-month forecast horizon, all of the listed covariates are significant
in predicting default except for the individual stock return, risk-free rate, and firm size. In bivariate regres-
sions with the presence of the five-year CDS spread, all covariates are significant except for the individual
stock return, risk-free rate, and firm size. In bivariate regressions with the presence of distance-to-default,
all covariates are significant except for the individual stock return and risk-free rate.
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2. Individual stock return: This is the monthly return on a firm’s stock, which correlates

negatively with the market leverage of the firm and its default probability.11 The

firm-level stock return also reflects the idiosyncratic risk of the firm.

3. Stock index return: The monthly S&P 500 index return serves as a systematic risk

measure, and is expected to have a negative relation with default events.

4. Risk-free rate: The three-month Treasury bill rate is used to incorporate business

cycle information into the empirical framework. It is easier for firms to refinance their

existing debt at a lower cost when interest rates are low. On the other hand, lower

interest rates may signal recessions, which are coincidental with more frequent default

events.

5. Net Income/Asset ratio (ROA): This is the ratio between a firm’s net income and total

assets, which is negatively related to its default probability.

6. Firm size: This is the logarithm of a firm’s total assets, where larger firms tend to be

less likely to default.

7. Cash/Asset ratio: The ratio between the sum of cash, cash equivalents, and short-

term investments and total assets. We expect it to be negatively related to the default

probability.

8. Market-to-book ratio: The ratio of the market value of assets to the book value of

assets. Campbell et al. (2008) find that the market-to-book ratios of bankrupt firms

are somewhat higher than those of healthy firms, which they attribute to overvaluation.

9. Idiosyncratic stock volatility (IVOL). Following Bali and Cakici (2008), IVOL is esti-

mated by regressing daily individual stock returns on the Fama-French three factors

using current month data, and then computing the annualized standard deviation of

11Duffie et al. (2007) use the trailing one-year stock return, which is more stable but contains high serial
correlation at the monthly frequency due to its overlapping structure. We find that the monthly stock return
is more dynamic and better at capturing default-related information from the stock market.
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the regression residuals. IVOL is expected to correlate positively with the likelihood

of default and bankruptcy.

Besides these main covariates, we use other variables to examine the robustness of the

predictive relation between the CDS spread and corporate default. These variables include:

• Corporate bond yield spread: The corporate bond yield spread and the CDS spread

both contain information about a firm’s credit risk. While corporate bonds have lower

liquidity and less favorable tax treatment relative to Treasury bonds (Elton et al.,

2001; Longstaff et al., 2005; Bao et al., 2011), causing these non-default factors to

enter the corporate bond yield spread, the CDS spread is a direct measure of default

risk and thus should contain better information for default prediction. There is also

evidence of the CDS spread consistently leading the bond spread in price discovery

(Blanco et al., 2005). To construct the corporate bond yield spread, we take corporate

bond transaction data from the enhanced TRACE database for the period of July

2002 to December 2020. We follow Bai et al. (2019) to remove bonds with embedded

options (e.g., callable, putable, and convertible features) and floating coupon rates,

keeping only straight bonds. We estimate monthly corporate spot curves for each

issuer, requiring price observations on at least three different bonds each month.12

The corporate bond yield spread is the difference between the corporate spot rate and

the Treasury spot rate at the five-year maturity.

• Option-implied volatility and implied volatility skewness: Information from individual

stock options has been shown to explain bond and CDS spreads (Cremers et al., 2008;

Cao et al., 2010). Using options data from Bloomberg and Thomson Reuters’ Eikon, we

12In the early years of TRACE coverage, the number of corporate bonds is small. Therefore, to preserve as
much sample period as possible, we estimate the Nelson-Siegel (Nelson and Siegel, 1987) yield curve with its
α parameter set to zero when there are price observations on only three different bonds during a month. Note

that the Nelson-Siegel spot rate function is r (m) = α+β1

[
1−exp(−m/λ)

m/λ

]
+β2

[
1−exp(−m/λ)

m/λ − exp (−m/λ)
]
,

where m denotes maturity. The full Nelson-Siegel yield curve is estimated when the number of bonds is
greater than or equal to four, and the Nelson-Siegel-Svensson (Svensson, 1994) yield curve is estimated when
the number of bonds is greater than or equal to six.
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construct at-the-money implied volatility (ATM IV) as the volume-weighted average

implied volatility from a firm’s call options with moneyness between 0.95 and 1.05. The

IV sknewness is the difference between the volume-weighted average implied volatility

from a firm’s put options with moneyness between 0.8 and 0.95 and the previously

defined ATM IV. Both should be positively related to the default probability.

• CDS market index spreads: While single-name CDS spreads contain information about

individual firms’ credit risk, CDS market indices provide information about systematic

credit risk, which can also prove useful to default prediction. Therefore, we calculate

equally-weighted averages of five-year CDS spreads of the top 125 firms with S&P’s

long-term issuer credit rating higher than or equal to BBB- for the investment-grade

(IG) CDS index, and the top 100 firms below BBB- for the high-yield (HY) CDS index,

where we define a top firm in terms of CDS market depth.13

• CDS market depth: This is the number of dealers supplying five-year CDS quotes

on a reference entity according to Markit, and is used as a CDS market liquidity

measure (Qiu and Yu, 2012). In Section 4.4.1, we will show how to use this variable

to estimate the liquidity component of the CDS spread. To the extent that the CDS

spread contains a sizable liquidity component, purging it from the CDS spread may

enhance the predictive power of the CDS spread for corporate default.

• CDS slope: This is defined as the ten-year CDS spread minus the one-year CDS spread.

We expect the CDS curve to be more positively sloped when the CDS spread level is

lower. In other words, there is a negative correlation between the CDS slope and the

five-year CDS spread. More importantly, the CDS slope may contain information not

found in the spread level that is useful for predicting future default.

• Firm leverage and asset volatility: The procedure used to calculate DtD, as in Crosbie

13In the summary statistics and later empirical analysis, we leave out the CDS HY index spread because it
has a correlation of 0.93 with the IG index spread. Including both is likely to cause multicollinearity issues.
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and Bohn (2002), Vassalou and Xing (2004), and Hillegeist et al. (2004), also produces

estimates for firm leverage and asset volatility. Specifically, firm leverage is defined as

the sum of short-term debt and 50 percent of long-term debt over the estimated firm

value, and asset volatility is simply the annualized standard deviation of the firm value.

Instead of combining these two estimates into DtD, one might consider including firm

leverage and asset volatility as separate variables for default prediction.

[Insert Table 2 here]

3.3 Summary Statistics

The main covariates are available over approximately 102,000 firm-month observations in our

sample and are summarized in Table 2. The five-year CDS spread averages 190 basis points

and has a median value of 87 basis points, indicating that the spread is heavily skewed to the

right. This positive skewness also characterizes other variables, such as the IG CDS index

spread and the corporate bond yield spread, which averages around 200 basis points higher

than the CDS spread. The average CDS firm in our sample has total assets of $14.3 billion

(the logarithm of total assets, in units of $1 million, is equal to 9.57), a market-to-book

ratio of 1.65, net income equal to 4.31 percent of total assets, cash holdings equal to 9.48

percent of total assets, an annualized idiosyncratic stock volatility of 22.2 percent, a monthly

stock return of 0.97 percent, and a distance-to-default equal to 4.01. It also has 5.8 dealers

providing quotes on its five-year CDS contracts.

[Insert Table 3 here]

Turning now to the correlations among the covariates in Table 3, we first notice that

the the CDS spread and the corporate bond yield spread, with a correlation of only 0.35,

are separated by a significant “CDS-bond basis” (Bai and Collin-Dufresne, 2019). The CDS

slope has a strong negative correlation of −0.32 with the CDS spread, suggesting that the

CDS curve tends to be more flat when the credit risk level is higher. The CDS spread is
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negatively correlated with the key distance-to-default measure, but its largest correlations

are found to be with the two equity volatilities, ATM IV and IVOL, at 0.67 and 0.52,

respectively. The distance-to-default, on the other hand, has its largest correlation with

the market-to-book, at 0.49, while its correlation with ATM IV and IVOL are only −0.40

and −0.30, respectively. Therefore, even among the same set of inputs, different nonlinear

functional forms between distance-to-default and the CDS spread can emphasize different

inputs, resulting in differential predictive power for default events. Finally, we note that the

CDS spread has a correlation with the CDS market depth equal to −0.12, consistent with

the early evidence from Qiu and Yu (2012).

4 Empirical Results

4.1 Baseline Regressions

We first conduct logistic regressions to assess the in-sample explanatory power of the main

covariates listed in Section 3.2 for corporate default and bankruptcy (1 for a credit event

within the month and 0 otherwise). We are particularly interested in whether the addition

of five-year CDS spreads increases model performance. Furthermore, we vary the forecast

horizon by lagging all independent variables by one, three, six, nine, and 12 months. This is

similar to an exercise performed in Campbell et al. (2008).

[Insert Table 4 here]

Table 4 summarizes the coefficient estimates and their statistical significance.14 The

independent variables include the five-year CDS spread combined with the four covariates

from Duffie et al. (2007) and the five additional covariates from Duan et al. (2012). Focus-

ing first on Column (3) with a medium forecast horizon of six months, we find that only

four covariates—the CDS spread, DtD, NI/TA, and Cash/TA—have statistically significant

coefficients. Importantly, the CDS spread is significant in the presence of DtD and other

14We also perform Poisson regressions mainly as a robustness check with an alternative functional form
for the conditional default probability. Results are qualitatively similar and are available upon request.
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covariates. In results not presented here, we compare the default prediction model with the

full set of covariates, either with or without the five-year CDS spread. Adding the CDS

spread increases the Pseudo R2 from 0.1296 to 0.1457 at the six-month forecast horizon, and

slightly reduces the magnitude and statistical significance of the other covariates.

Turning to the issue of economic significance, we evaluate the marginal effects when all

covariates are set to their sample mean values—under this scenario, the annualized proba-

bility of default is 0.27 percent, much lower than the unconditional probability of default of

1.57 percent in our sample.15 Out of the four significant covariates, the DtD has the most

economic significance by far—a one standard deviation decrease in DtD more than triples

the annualized default probability to 0.82 percent. In comparison, a one standard deviation

decrease in NI/TA raises the default probability to 0.34 percent. For the CDS spread, a one

standard deviation increase moves the default probability from 0.27 percent to 0.32 percent,

a similar effect to the one associated with NI/TA, but much smaller than the effect of a DtD

change. In relative terms, this is roughly a 20 percent increase in the conditional default

probability.

Looking across the forecast horizon in different columns of Table 4, there are only two

covariates with consistently significant coefficients in default prediction—DtD and the CDS

spread. Other covariates may have coefficients with the expected sign, but they are significant

in at most two or three out of five cases. As the forecast horizon becomes longer, we notice

that the pseudo R2 declines, suggesting that it is more difficult to forecast default events

further ahead. At forecast horizons of nine and 12 months, the statistical significance of

the CDS spread coefficient is notably less than at shorter horizons, although its magnitude

remains fairly constant with respect to the forecast horizon. For the DtD coefficient, both

the magnitude and statistical significance are insensitive to the forecast horizon. In the

15We divide the number of defaults in our sample, 128, by the total number of firm-months in Column
(3) of Table 4, 96,956, resulting in a default probability of p = 0.00132 in any given month. The annualized
default probability is then 1− (1−p)12 = 0.0157. This is higher than the predicted default probability when
covariates are set to their sample means, likely because the default probability is a convex function of the
covariates.
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remainder of our analysis, we seek to better understand the preceding baseline results. We

will focus on a forecast horizon of six months, as it is short enough for the CDS spread to

make a significant contribution to default prediction, but not so short as to be compared

with “predict(ing) a heart attack by observing a person dropping to the floor clutching his

chest” (Campbell et al., 2008).

4.2 Firm Types and Market Environment

A quick browse of the default prediction literature suggests that model specification could

be sensitive to the types of firms and the sample period included in the analysis. For

example, Milne (2014) points out that the distance-to-default measure failed to predict

defaults and stock price declines of financial firms (mainly banks) during the great financial

crisis. Duffie et al. (2007) exclude financial firms from their study and estimate their default

prediction model using a sample of industrial firms, whereas Duan et al. (2012) find accurate

default prediction performance for both industrial and financial firms in the U.S. using their

proposed model. Avino et al. (2019) predict U.S. and European bank failures, which occurred

mostly during the great financial crisis, using CDS spreads and DtD. Therefore, we check the

robustness of our default prediction model with respect to firm types and market conditions

in this subsection.

[Insert Table 5 here]

First, we partition the full sample into financial firms (with four-digit SIC codes of 6000-

6799) and industrial firms. Columns (1) and (2) in Table 5 report 10 financial defaults and

118 non-financial defaults, with about 12,000 firm-month observations in the financial sub-

sample and 85,000 in the non-financial sub-sample. Even though the financial sub-sample

is around 12 percent of the total sample size, with only eight percent of the default events,

the coefficients of the CDS spread and DtD for financial firms are similar in size to those

for non-financial firms, with lower but still significant t-statistics. The pseudo R2 is much

higher among financial firms compared to non-financial firms. These results suggest that we
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have no reason to preclude financial firms from our analysis.

Second, we divide the sample period into the financial crisis (January 2007 to December

2009) and non-crisis periods. The financial crisis period contains around one third of all

default events (45 out of 128 defaults), even though the period only covers about 19 percent

of the observations.16 Columns (3) and (4) present the empirical results for the crisis and

non-crisis sub-samples. As it turns out, DtD and the CDS spread are the only covariates

to maintain statistical significance across the two sub-samples. A formal test is not able to

reject the null hypothesis that these two covariates have equal coefficients between the crisis

and non-crisis sub-samples.

Third, we separate the firms according to their S&P’s long-term issuer credit ratings into

investment-grade and high-yield sub-samples. To the extent that investment-grade firms

have low credit risk, their default can be unexpected and difficult to predict. In contrast,

high-yield firms may have ongoing concerns about their financial health, implying that there

are useful signals from the market about impending failure. In Column (5), we find that for

IG firms (around 55 percent of the total sample), there are only nine defaults, reflecting their

low ex ante credit risk. Moreover, DtD is the only significant covariate, and the pseudo R2

is in the single digit, confirming the difficulty in predicting IG defaults. Column (6) paints

the opposite picture for HY firms. With only 45 percent of the total sample but virtually all

of the defaults, the coefficients are quite similar to the baseline results for the whole sample,

presented as Column (0). Notably, both DtD and the CDS spread are highly significant.

Collectively, these findings show that the CDS spread’s predictive power for corporate

default is quite robust to firm types (financial vs. non-financial) and market conditions (crisis

vs. non-crisis). Moreover, it appears to be more effective at predicting HY than IG defaults,

16Das et al. (2007) and Duffie et al. (2009) offer evidence, based on a sample period of 1980-2004, that U.S.
corporate defaults are more correlated than what can be explained with observable covariates, and proceed
to extract a common latent factor driving corporate defaults. The extreme level of default clustering during
the great financial crisis offers an opportunity to further validate their approach. However, our focus in this
paper is on default prediction, not explaining default correlation. We leave the issues of default clustering
and default correlation to future research.
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with the caveat that IG defaults are extremely rare (hence difficult to predict).

[Insert Table 6 here]

4.3 Robustness Checks

In this subsection, we conduct a few robustness checks of our baseline regression results,

which are presented as Column (0) in Table 6 for reference. These robustness checks utilize

additional covariates whose definitions can be found in Section 3.2. The ultimate question

is whether the addition of these covariates changes the CDS spread’s significant incremental

contribution to default prediction.

First, we consider adding the CDS slope, defined as the 10-year spread minus the one-year

spread, to supplement the information provided by the five-year spread. Just as the slope

of the Treasury yield curve may help forecast future risk-free interest rates, the slope of the

CDS spread curve may contain information about corporate default risk in the future. On

the other hand, there is strong empirical evidence that the movement of CDS spread curves

is dominated by a single latent factor (Pan and Singleton, 2008). As Column (1) of Table 6

shows, the CDS slope is not significant when added to the baseline specification.

Second, we consider the effect of including systematic credit risk measures in the baseline

specification. If the single-name CDS spread explains corporate default mostly because of

the systematic credit risk embedded in the CDS spread, then its coefficient would diminish

in size and significance in the presence of systematic credit risk variables. Specifically, we

incorporate the CDS IG index spread, but Column (2) shows that it is not significant.

Third, we note that CDS spreads are not the only market-based source of information on

firm-level credit risk besides DtD—long before the CDS market developed, corporate bonds

were traded and they are actually available for a much broader set of firms. Therefore, we

examine corporate bond yield spreads as a competing source of default relevant informa-

tion in the presence of CDS spreads. Column (3) shows that the five-year bond spread is

marginally significant, with a coefficient less than one third the size of the five-year CDS
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spread coefficient, even though the sample standard deviation of the bond spread is compa-

rable to that of the CDS spread. Therefore, the economic significance of the bond spread is

weaker, though it does contributes incrementally to default prediction beyond DtD and the

CDS spread.

Fourth, by the same logic, we introduce information from the equity options market

into the baseline regression. Specifically, we add the ATM IV and IV skewness, since both

variables can be informative about the left tail of a firm’s stock return distribution. The

crucial question here is whether they offer incremental predictive power for corporate default

in the presence of the two main covariates, DtD and the CDS spread. Column (4) shows

that they do not.

Fifth, we include firm leverage and asset volatility as separate variables, rather than

combining them into DtD. Since these two inputs are needed to compute DtD, there is no

sample attrition compared to the baseline regression. In Column (5), we find that firm

leverage is significant and asset volatility is not, but more importantly, replacing DtD with

these two variables in a linear specification results in a smaller pseudo R2. Apparently, this

does not enhance the predictive power of DtD.

In all of these robustness exercises, the CDS spread and DtD coefficients remain qual-

itatively the same as in the baseline case. The same conclusion holds when we combine

all of the additional covariates into one regression in Column (6)—while their t-statistics

decline, the CDS spread and DtD coefficients remain significant and their magnitude does

not decrease.

[Insert Table 7 here]

Lastly, we address the issue of rare event bias with maximum likelihood estimation of

logit models. Three different approaches are used: 1) the bias correction proposed by King

and Zeng (2001); 2) the penalized maximum likelihood estimation of Firth (1993); and

3) randomly sampling 10 percent of the non-default observations to artificially boost the

frequency of defaults. As Table 7 shows, these approaches do not alter the inference of CDS
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spread and DtD effects in any significant way compared to the baseline case.

4.4 CDS Spread Decomposition

In this subsection, we dig deeper into the source of the CDS spread’s contribution to default

prediction. Our specific approach is to decompose the CDS spread into liquidity, physical

default, and default risk premium components and examine the separate contribution of each

component to default prediction. We describe our two-step decomposition procedure below

and then present the empirical results.

4.4.1 Estimating the Liquidity and Default Spreads

In Step 1, we decompose the CDS spread into default and liquidity components follows Dick-

Nielsen et al. (2012) and Schwert (2017). Specifically, we construct a standardized illiquidity

variable for each CDS firm-month as:

λi,t =
Li,t − µL

σL
,

where Li,t is the illiquidity measure for firm i in month t, and µL and σL are its average and

standard deviation over the full sample, respectively. The illiquidity measure is inversely

related to the CDS market depth, namely, Li,t = N̄ − Ni,t, where Ni,t is the number of

dealers providing quotes on five-year CDS contracts for firm i in month t, and N̄ denotes

the maximum number of quote providers across all firm-months.

In March 2009, a collection of changes in the single-name CDS market were announced

together as the so-called “CDS Big Bang Protocol” (Markit Group Limited, 2009), which

were intended to standardize CDS contracts in preparation for central clearing.17 Since the

CDS Big Bang significantly changed the liquidity of the CDS market, we divide our sample

into two halves. The first half is before March 2009, where the maximum number of quote

providers is N̄ = 31. The second half is after March 2009, where N̄ = 14.18 We compute L,

µL, σL, and λ for each sub-sample separately.

17Central clearing in the single-name CDS market began in stages, starting from December 2009. See
Loon and Zhong (2014) and Marra et al. (2019) for details.

18It is likely that the CDS Big Bang and the move toward central clearing raised the cost of market-making,
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We then estimate the following CDS spread regression specification:

CDS spreadi,t = α + β · λi,t + γ′ · Credit risk controlsi,t + εi,t. (1)

We follow the literature to include the stock return, stock return volatility, firm size, leverage,

Altman’s Z-score, and ROA as credit risk controls. The above regression is estimated for

investment-grade and high-yield CDS reference entities separately, and both before and

after the CDS Big Bang in March 2009. We define the CDS liquidity spread as β · (λi,t −

λ5%,t), where λ5%,t is the fifth percentile of the standardized illiquidity variable in month t,

representing the time-varying baseline for a highly liquid CDS reference entity. The default

spread is calculated by subtracting the liquidity spread from the total CDS spread.

[Insert Table 8 here]

The regression Eq. (1) is estimated for each of the 11 CDS maturities separately (6

months, 1, 2, 3, 4, 5, 7, 10, 15, 20, and 30 years), thus providing the liquidity and de-

fault spreads for each maturity. Panel A of Table 8 summarizes the market depth and the

results of this estimation for the five-year CDS spread. There is evidently a shift in the

distribution of the number of quote providers to the left after the CDS Big Bang. However,

the CDS spread is much less sensitive to changes in the standardized illiquidity variable after

the CDS Big Bang (the beta coefficient is much smaller), resulting in liquidity spreads that

are around three times smaller—the average liquidity spread for IG (HY) firms is 22 (75)

bps before the Big Bang and 6 (23) bps after. The percentage of the CDS spread attributed

to liquidity also decreases from around 30 percent before the Big Bang to around 15 percent

after. These results are consistent with the CDS market becoming more liquid after contract

standardization (Loon and Zhong, 2014).

thus favoring large dealers and driving out the small. A similar drop in the number of quote providers was
observed in 2006, when the Fed sent a letter to major dealers in the CDS market requiring them to reduce
the backlog in trade processing (Qiu and Yu, 2012). Although the number of CDS quote providers decreased
after the Big Bang, our analysis below shows that the liquidity component of the CDS spread is much lower
during the second half of the sample period, consistent with an improvement in liquidity.
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4.4.2 Estimating the Physical Default and Risk Premium Components

In Step 2, we further decompose the estimated default spread into physical default and risk

premium components. Specifically, we follow Longstaff et al. (2005), Chun et al. (2019), and

Jarrow et al. (2019) to assume that the risk-neutral default intensity ht of a firm is described

by a CIR process:

dht = (α− βht) dt+ σ
√
htdw

Q
t , (2)

where wQ
t is a Wiener process under the Q measure. Adopting the extended affine specifica-

tion for the market price of risk (Cheridito et al., 2007), we model ht’s P measure dynamics

as

dht =
(
αP − βPht

)
dt+ σ

√
htdw

P
t . (3)

The relation between the Wiener processes under the two measures is given by

wP
t = wQ

t (t) +
α− αP

σ

∫ t

0

1√
hs
ds− β − βP

σ

∫ t

0

√
hsds. (4)

The CDS spread at time t for protection between t and t+ τ satisfies

Sτt =

∫ t+τ
t

P (t, u)E2 (t, u)
{
y − Sτt

(
u− x4uy

4

)}
du

1
4

4τ∑

i=1

P
(
t, t+ i

4

)
E1

(
t, t+ i

4

)
, (5)

where y is the fractional loss given default (0 < y < 1),19 P (t, T ) is the time t price of a

risk-free zero-coupon bond that matures at time T , Sτt
(
u− x4uy

4

)
reflects the accrued CDS

premium from the previous payment date to the time of default, with x4uy denoting the

largest integer smaller than 4u, and

E1 (t, u) = EQ
[

exp

(
−
∫ u

t

(c0 + hs) ds

)∣∣∣∣Ft
]

= A(u− t)eB(u−t)(c0+ht), (6)

E2 (t, u) = EQ
[

exp

(
−
∫ u

t

(c0 + hs) ds

)
(c0 + hs)

∣∣∣∣Ft
]

= [G(u− t) +H(u− t) (c0 + ht)] e
B(u−t)(c0+ht). (7)

19In the estimation, we use one minus the recovery rate provided in the Markit data for y. If the recovery
rate is missing, y is set to 60 percent.
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Here, following Duffee (1999), the constant c0 is added to improve the fit to the data. A,

B, G, and H are functions whose formulae can be found on page 2,221 in Longstaff et al.

(2005).

This one-factor model is then calibrated to the default spreads at the 11 different ma-

turities. The model parameters (under both P and Q) along with the default intensity are

obtained using the unscented Kalman filter (Christoffersen et al., 2014) in conjunction with

maximal likelihood estimation. Then, following Pan and Singleton (2008) and Friewald et al.

(2014), taking the filtered default intensity combined with the P parameters to the CDS pric-

ing function produces the physical default component, while the risk premium component is

the difference between the default spread and the physical default component.

4.4.3 Which Component Predicts Default?

Panel B of Table 8 provides the percentage breakdown of the CDS spread, by maturity, into

the liquidity, physical default, and risk premium components. Several interesting patterns

are worth noting. First, the liquidity component has an inverse-U pattern across maturity,

reaching a minimum at the five-year maturity, where the liquidity spread is less than 20

percent of the total CDS spread. In contrast, close to 70 (40) percent of the one-year

(30-year) CDS spread is attributed to liquidity. Another interesting pattern is that the

percentage of the CDS spread attributed to the default risk premium is rising with maturity.

This is because with a one-factor diffusion-based default intensity model, there is greater

deviation between physical and risk-neutral default probabilities when the horizon is longer.

Lastly, the percentage of the CDS spread due to physical default reaches a maximum at

the five-year maturity, lending support to our choice of using the five-year spread in default

prediction (assuming that the physical default component is what provides the predictive

power).

[Insert Table 9 here]

To see each component’s contribution to default prediction, we refer to Table 9. In

21

                  



Column (1), we include the default and liquidity spreads as separate regressors. The results

show that only the default spread is significant, with coefficient similar to the CDS spread

coefficient in the baseline case in Column (0). In Column (2), we include all three components

as separate regressors. Here, only the physical default component is significant, while the

liquidity and risk premium components are not. Compared to the baseline case, allowing

the three components to be separate contributors to default prediction increases the pseudo

R2 from 0.1457 to 0.1675. These results underscore the importance of extracting the “right”

information from CDS spreads for predicting corporate default.

4.5 Out-of-Sample Performance

In this last subsection, we perform out-of-sample forecasting of default and bankruptcy

events using the CDS spread and other covariates. The training dataset is constructed on

a 60-month rolling basis, starting from January 2001. The out-of-sample forecasting begins

in January 2006 and ends in December 2020. There are 108 default events during this

180-month sample period. We rank the firms by their predicted one-, three-, six-, nine-, or

12-month forward default probabilities from the logit model. For a given percentile of ranked

firms with the worst predicted n-month forward default probabilities, we ask what fraction

of default events that actually occurred n-month ahead are included within this subset. The

plot of this fraction of defaults as a function of the percentile of predicted default probability

is called the power curve. The area under this curve and above the 45 degree line multiplied

by two is defined as the accuracy ratio for default prediction. What we summarize below

either graphically or in table format are the power curves and accuracy ratios averaged over

all rolling five-year training periods.

[Insert Figure 1 here]

Figure 1 shows the power curve across different models and forecast horizons. Four logit

regression models are presented here—the first using the four conventional covariates of DtD,

firm stock return, S&P 500 index return, and three-month Treasury bill rate from Duffie et al.
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(2007) (hereafter DSW07), the second adding the five-year CDS spread, the third replacing

the CDS spread with the default spread, and the last replacing the default spread with the

physical default component. Graphically, we can see that the out-of-sample performance of

the model improves the most with the addition of the physical default component to the

DSW07 four-covariate specification.

[Insert Table 10 here]

Table 10 provides more details about the out-of-sample performance. It shows the ac-

curacy ratio as well as several points on the power curve at the 10th, 20th, 30th, and 40th

percentiles. At a medium six-month forecast horizon, the accuracy ratio of the DSW07 spec-

ification is 79 percent. This contrasts with a higher accuracy ratio of 88 percent for one-year

default prediction reported by DSW07. The large difference could be attributed to a num-

ber of factors. First, the sample periods are different—we examine 2006-20 while DSW07

1993-2004. Second, we use a five-year rolling window to estimate the model, while DSW07

take all of the data from 1980 up to the point of a forecast. Perhaps most importantly, our

sample consists of CDS reference entities, which tend to be larger firms whose default is

more infrequent and more difficult to predict, while DSW07’s sample contains all publicly

traded firms.

Overall, the numbers presented in Table 10 confirm that a larger fraction of default events

are correctly classified by our predicted default probabilities when the model specification

includes CDS-related information, in particular the physical default component of the CDS

spread. Most of the improvement occurs at a lower percentile of the power curve, representing

firms with higher predicted default probabilities, the cohort we actually care about. At the

six-month forecast horizon, the accuracy ratio increases from 79 percent for the DSW07

specification to 83 percent when the model includes the physical default component of the

CDS spread, a four percentage point increase. This level of improvement in the accuracy

ratio remains robust across the range of forecast horizons we have considered.
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5 Conclusion

We provide the first comprehensive empirical study of the relevance of CDS market informa-

tion to corporate default prediction using data from 2001-20. The baseline logit regressions

show that, across forecast horizons from one month to 12 months, the CDS spread and

distance-to-default (DtD) are the only two covariates that consistently maintain their sta-

tistical significance. While the economic significance of DtD is the largest by far among

all covariates, a one-standard-deviation increase in the CDS spread raises the conditional

default probability by about 20 percent. The significance of the CDS spread in default pre-

diction is robust to different firm types and market conditions. It also survives the inclusion

of systematic credit risk factors, corporate bond yield spreads, and equity options market

information. A decomposition of the CDS spread into liquidity, physical default, and risk

premium components confirms that, as expected, only the physical default component con-

tributes significantly to default prediction both in- and out-of-sample. In summary, CDS

market information ought to be incorporated into default prediction models whenever such

information is available.
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Table 1: Corporate default/bankruptcy statistics
The total number of default and bankruptcy events for actively traded CDS firms each year over
the sample period of January 2001 to December 2020. A firm is counted as an actively traded
CDS firm in a given month if there are at least 15 daily five-year CDS spreads observed during
the month. The number of actively traded CDS firms each year is obtained by averaging over all
months of the year.

Year Actively traded CDS firms Defaults/bankruptcies (%)
2001 259 1 0.39%
2002 443 3 0.68%
2003 605 4 0.66%
2004 743 1 0.13%
2005 803 11 1.37%
2006 842 3 0.36%
2007 889 9 1.01%
2008 880 16 1.82%
2009 843 20 2.37%
2010 798 7 0.88%
2011 796 7 0.88%
2012 776 4 0.52%
2013 743 3 0.40%
2014 741 3 0.40%
2015 725 6 0.83%
2016 717 4 0.56%
2017 702 2 0.28%
2018 692 4 0.58%
2019 676 6 0.89%
2020 646 14 2.17%
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Table 4: Effect of CDS spread on corporate default prediction
The baseline regressions examine the conditional effect of the CDS spread on corporate default
prediction for different forecast horizons. Model specifications are logistic regressions with standard
errors clustered at the firm level. The forecast horizons are one month, three months, six months,
nine months, and 12 months. All independent variables are lagged by the corresponding forecast
horizon in the empirical analysis. ∗∗∗, ∗∗, and ∗ represent statistical significance at the one, five,
and 10 percent level, respectively. t-statistics are in parentheses.

(1) 1M (2) 3M (3) 6M (4) 9M (5) 12M
CDS 5Y 3.986*** 4.104*** 4.063*** 3.927*** 3.841***

[6.694] [5.912] [6.104] [4.288] [3.954]
DtD -0.320*** -0.209*** -0.288*** -0.281*** -0.228***

[-5.863] [-4.230] [-5.523] [-4.850] [-4.870]
Stock Return -3.045*** -0.526 -0.464 -1.785** -2.227*

[-2.964] [-0.669] [-0.385] [-2.085] [-1.932]
Index Return 1.743 -4.296 -2.618 2.070 6.557*

[0.697] [-1.643] [-0.995] [0.844] [1.688]
Treasury Rate 3M 7.380 8.001 9.027 14.091** 19.351***

[0.784] [0.897] [1.217] [2.029] [2.786]
NI/TA -1.921** -1.158 -2.752*** -0.512 -0.704

[-2.430] [-1.362] [-3.112] [-0.508] [-0.493]
Size -0.087 -0.025 -0.063 -0.091 -0.085

[-1.029] [-0.301] [-0.807] [-1.229] [-1.154]
Cash/TA -3.963** -2.963 -4.977** -4.712* -3.330

[-1.984] [-1.325] [-2.048] [-1.897] [-1.531]
MtB -0.343 -0.736* -0.666 -0.751* -0.653*

[-0.900] [-1.712] [-1.519] [-1.653] [-1.704]
IVOL 0.099 1.446*** 0.028 0.286 0.676

[0.215] [3.192] [0.054] [0.499] [1.056]
Intercept -5.887*** -6.511*** -5.411*** -5.139*** -5.669***

[-6.204] [-6.324] [-5.521] [-5.546] [-6.027]
N 100,584 98,836 96,956 95,088 93,371
# Defaults 128 128 128 128 127
Pseudo R2 0.2336 0.2046 0.1457 0.1138 0.1060
Clustered SE Y Y Y Y Y
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Table 5: Effect of CDS spread on corporate default prediction: Sub-sample analysis
The regressions examine the conditional effect of the CDS spread on corporate default prediction
for different sub-samples. The forecast horizon is six months. Column (0) presents the baseline
regression in Table 4. The sub-samples are financial firms vs. industrial firms (Columns (1) and
(2)), crisis period from 2007-09 vs. the non-crisis period (Columns (3) and (4)), and investment-
grade firms vs. high-yield firms (Columns (5) and (6)). ∗∗∗, ∗∗, and ∗ represent statistical significance
at the one, five, and 10 percent level, respectively. t-statistics are in parentheses.

(0) Base (1) F (2) NF (3) C (4) NC (5) IG (6) HY
CDS 5Y 4.063*** 4.372** 3.939*** 4.996*** 3.986*** 9.602 3.751***

[6.104] [2.471] [5.334] [3.680] [4.752] [0.785] [5.419]
DtD -0.288*** -0.347** -0.292*** -0.313*** -0.265*** -0.409*** -0.222***

[-5.523] [-1.982] [-4.714] [-3.251] [-4.423] [-2.630] [-3.679]
Stock Return -0.464 -0.799 -0.434 -0.981 -0.134 2.415 -0.477

[-0.385] [-0.263] [-0.329] [-0.487] [-0.095] [0.591] [-0.382]
Index Return -2.618 5.281 -3.742 0.765 -5.566** -6.826 -2.643

[-0.995] [0.492] [-1.460] [0.149] [-1.963] [-1.041] [-0.884]
Treasury Rate 3M 9.027 -15.252 11.984 -4.937 10.61 5.263 11.209

[1.217] [-0.637] [1.561] [-0.461] [0.959] [0.360] [1.294]
NI/TA -2.752*** 1.054 -3.110*** 0.232 -4.076*** 1.077 -2.798***

[-3.112] [0.495] [-3.662] [0.124] [-4.394] [0.372] [-3.070]
Size -0.063 0.113 0.023 -0.079 -0.061 -0.072 0.038

[-0.807] [0.362] [0.237] [-0.559] [-0.658] [-0.365] [0.405]
Cash/TA -4.977** -6.573 -3.589 -8.593 -3.584 -11.846 -4.212

[-2.048] [-1.300] [-1.289] [-1.504] [-1.346] [-1.427] [-1.587]
MtB -0.666 -0.002 -0.844* -0.439 -0.867 0.205 -1.024**

[-1.519] [-0.001] [-1.744] [-0.757] [-1.381] [0.502] [-1.998]
IVOL 0.028 1.909*** -0.396 -0.270 0.001 -2.550 0.091

[0.054] [2.959] [-0.617] [-0.275] [0.002] [-0.797] [0.166]
Intercept -5.411*** -9.361** -5.902*** -4.708*** -5.378*** -6.293*** -5.763***

[-5.521] [-1.974] [-5.408] [-2.858] [-4.225] [-2.831] [-4.841]
N 96,956 11,941 85,373 18,255 79,059 53,856 43,458
# Defaults 128 10 118 45 83 9 119
Pseudo R2 0.1457 0.2617 0.1457 0.1522 0.1494 0.0856 0.1305
Clustered SE Y Y Y Y Y Y Y
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Table 6: Effect of CDS spread on corporate default prediction: Robustness checks
The regressions examine the conditional effect of the CDS spread on corporate default prediction when
adding alternative risk measures. The forecast horizon is six months. Column (0) presents the baseline
regression in Table 4. Column (1) adds the CDS slope; Column (2) adds the CDS IG index spread;
Column (3) adds the five-year corporate bond spread; Column (4) adds the ATM IV and IV skewness
from equity options; Column (5) replaces DtD with firm leverage and asset volatility; Column (6)
incorporates all variables mentioned above. ∗∗∗, ∗∗, and ∗ represent statistical significance at the one,
five, and 10 percent level, respectively. t-statistics are in parentheses.

(0) (1) (2) (3) (4) (5) (6)
CDS 5Y 4.063*** 5.433*** 3.931*** 5.339*** 4.206*** 4.584*** 5.061**

[6.104] [3.655] [5.912] [5.138] [5.565] [6.699] [2.513]
CDS Slope 2.968 0.494

[1.036] [0.201]
CDS-IG 19.063 65.769

[1.592] [0.848]
Corp Bond 5Y 1.779* 2.946*

[1.890] [1.945]
Option ATM IV 0.794 0.692

[1.369] [0.944]
Option IV Skewness -4.052 -2.136

[-0.748] [-0.239]
Firm Leverage 3.232*** 0.728

[4.925] [0.547]
Asset Volatility -0.650 -1.118

[-1.163] [-1.488]
DtD -0.288*** -0.250*** -0.289*** -0.300*** -0.302*** -0.246***

[-5.523] [-4.619] [-5.459] [-5.374] [-5.122] [-3.008]
Stock Return -0.464 -0.650 -0.410 -0.788 -1.058 -0.743 -2.027

[-0.385] [-0.517] [-0.346] [-0.574] [-0.814] [-0.568] [-1.133]
Index Return -2.618 -2.956 -3.659 -2.733 -2.354 -2.100 -3.471

[-0.995] [-1.003] [-1.273] [-0.947] [-0.773] [-0.775] [-0.709]
Treasury Rate 3M 9.027 10.465 3.831 11.659 10.841 11.062 10.372

[1.217] [1.324] [0.481] [1.502] [1.284] [1.490] [0.960]
NI/TA -2.752*** -2.489** -2.903*** -1.895* -2.204** -3.139*** -1.359

[-3.112] [-2.540] [-3.257] [-1.745] [-2.224] [-3.636] [-0.956]
Size -0.063 -0.032 -0.062 -0.137 -0.133 0.048 -0.185

[-0.807] [-0.383] [-0.791] [-1.474] [-1.532] [0.611] [-1.558]
Cash/TA -4.977** -5.006** -4.877** -4.924* -3.520 -2.868 -2.852

[-2.048] [-2.109] [-2.044] [-1.830] [-1.546] [-1.216] [-1.223]
MtB -0.666 -0.885 -0.686 -0.645 -0.437 -1.888*** -0.698

[-1.519] [-1.637] [-1.565] [-1.344] [-1.126] [-3.610] [-1.238]
IVOL 0.028 0.176 0.298 -0.584 -0.695 0.401 -0.841

[0.054] [0.298] [0.613] [-0.886] [-0.936] [0.741] [-1.039]
Intercept -5.411*** -5.619*** -4.980*** -4.737*** -5.313*** -6.601*** -3.926**

[-5.521] [-5.203] [-4.877] [-4.078] [-5.240] [-6.223] [-2.131]
N 96,956 85,391 97,314 86,382 88,655 96,956 84,594
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# Defaults 128 128 128 98 128 128 128
Pseudo R2 0.1457 0.1455 0.1481 0.1610 0.1500 0.1375 0.1578
Clustered SE Y Y Y Y Y Y Y
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Table 7: Effect of CDS spread on corporate default prediction: Rare event bias
The regressions estimate the conditional effect of the CDS spread on corporate default prediction
with corrections for potential rare event bias. The forecast horizon is six months. Column (0)
presents the baseline regression in Table 4. Column (1) uses the bias correction in King and
Zeng (2001). Column (2) uses the penalized MLE approach when estimating the logit regression.
Column (3) combines all default events with randomly sampling 10 percent of the non-default
observations. ∗∗∗, ∗∗, and ∗ represent statistical significance at the one, five, and 10 percent level,
respectively. t-statistics are in parentheses.

(0) Baseline (1) Bias Correction (2) Penalized MLE (3) Reduced Sample
CDS 5Y 4.063*** 3.100*** 3.094*** 4.531***

[6.104] [5.676] [4.839] [4.790]
DtD -0.288*** -0.266*** -0.267*** -0.321***

[-5.523] [-5.904] [-4.452] [-5.506]
Stock Return -0.464 -2.181** -2.181*** -3.152***

[-0.385] [-2.566] [-2.839] [-3.351]
Index Return -2.618 2.286 2.280 1.695

[-0.995] [0.969] [0.913] [0.564]
Treasury Rate 3M 9.027 10.648 10.618 16.022

[1.217] [1.062] [1.074] [1.537]
NI/TA -2.752*** -3.197 -3.186 -6.682*

[-3.112] [-1.161] [-0.929] [-1.715]
Size -0.063 -0.051 -0.051 -0.056

[-0.807] [-0.652] [-0.526] [-0.655]
Cash/TA -4.977** -2.915 -2.914 -2.378

[-2.048] [-1.469] [-1.431] [-1.211]
MtB -0.666 -0.257 -0.248 -0.175

[-1.519] [-0.753] [-0.609] [-0.481]
IVOL 0.028 1.685*** 1.685*** 0.827*

[0.054] [4.362] [4.047] [1.941]
Intercept -5.411*** -6.965*** -6.978*** -4.577***

[-5.521] [-7.664] [-6.261] [-4.461]
N 96,956 96,956 96,956 8,287
# Defaults 128 128 128 128
Pseudo R2 0.1457 0.17750 0.2074 0.2973
Clustered SE Y Y Y Y
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Table 8: CDS spread decomposition
Panel A summarizes the estimation of Eq. (1) across IG and HY firms before and after the CDS
Big Bang, using five-year CDS spreads. Min, Max, and Mean Market Depth are the minimum,
maximum, and mean value of the number of CDS quote providers, respectively. β̂ is the estimated
coefficient of the standardized CDS illiquidity variable. The mean and standard deviation of the
CDS liquidity spread are presented, as is the mean of the CDS liquidity spread as a percentage of
the total CDS spread. Panel B presents the mean and standard deviation of the percentage of the
total CDS spread attributed to liquidity (% Liquidity), physical default (% P Default), and the
default risk premium (% Risk Premium) across different maturities.

Panel A Before CDS Big Bang After CDS Big Bang
Investment-grade High-yield Investment-grade High-yield

Min Market Depth 2.000 2.000 2.000 2.000
Max Market Depth 28.000 31.000 14.000 14.000
Mean Market Depth 6.897 6.070 4.411 4.592

β̂ 0.000905 0.002758 0.000518 0.001353
Mean(Liquidity Spread) 0.218% 0.749% 0.063% 0.229%
SD(Liquidity Spread) 0.162% 0.483% 0.060% 0.160%
Mean(% Liquidity) 30.118% 30.632% 16.886% 15.311%

Panel B CDS 1Y CDS 3Y CDS 5Y CDS 7Y CDS 10Y CDS 20Y CDS 30Y
Mean(% Liquidity) 68.54% 40.14% 18.80% 21.86% 25.77% 32.81% 41.49%
SD(% Liquidity) 48.46% 36.77% 28.95% 25.34% 22.49% 19.56% 18.46%
Mean(% P Default) 11.51% 34.56% 50.27% 42.46% 33.15% 16.34% 6.91%
SD(% P Default) 39.51% 34.71% 31.34% 29.63% 28.60% 27.98% 27.09%
Mean(% Risk Premium) 19.95% 25.31% 30.94% 35.67% 41.08% 50.85% 51.60%
SD(% Risk Premium) 35.48% 33.11% 30.05% 28.77% 27.69% 26.57% 25.49%
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Table 9: Effect of CDS spread components on corporate default prediction
The regression examines the conditional effect of the CDS spread components on corporate default
prediction. The forecast horizon is six months. Column (0) presents the baseline regression in Table
4. Column (1) replaces the five-year CDS spread with its default and liquidity components. Column
(2) further splits the default component into the physical default and risk premium components.
∗∗∗, ∗∗, and ∗ represent statistical significance at the one, five, and 10 percent level, respectively.
t-statistics are in parentheses.

(0) (1) (2)
CDS 5Y 4.063***

[6.104]
Default 5Y 3.959***

[5.986]
Physical Default 5Y 5.749***

[3.479]
Risk Premium 5Y 0.993

[0.532]
Liquidity 5Y 21.101 43.552

[1.067] [0.580]
DtD -0.288*** -0.282*** -0.258***

[-5.523] [-5.174] [-4.926]
Stock Return -0.464 -0.449 -0.022

[-0.385] [-0.374] [-0.017]
Index Return -2.618 -2.953 -3.324

[-0.995] [-1.132] [-1.089]
Treasury Rate 3M 9.027 9.969 8.518

[1.217] [1.300] [1.147]
NI/TA -2.752*** -2.785*** -2.287**

[-3.112] [-3.135] [-1.982]
Size -0.063 -0.054 -0.087

[-0.807] [-0.653] [-1.028]
Cash/TA -4.977** -4.962** -4.790*

[-2.048] [-2.041] [-1.893]
MtB -0.666 -0.674 -0.817

[-1.519] [-1.529] [-1.612]
IVOL 0.028 0.069 -0.399

[0.054] [0.134] [-0.616]
Intercept -5.411*** -5.647*** -4.944***

[-5.521] [-5.420] [-4.771]
N 96,956 96,956 96,956
# Defaults 128 128 128
Pseudo R2 0.1457 0.1463 0.1675
Clustered SE Y Y Y

39

                  



Table 10: Out-of-sample performance of default prediction models
Summary statistics of out-of-sample performance of logistic default prediction models using 1)
the four DSW07 covariates (labeled “DtD”); 2) DSW07’s covariates plus the CDS spread (labeled
“CDS Spread”); 3) DSW07’s covariates plus the default spread (labeled “CDS Default”); and
4) DSW07’s covariates plus the physical default component of the CDS spread (labeled “CDS P
Default”). “Area” is two times the area under the power curve and above the 45 degree line,
measuring the accuracy ratio of overall default prediction performance with the chosen forecast
horizon (“Lag”) and covariate combination. Also presented are points on the power curve at the
10th, 20th, 30th, and 40th percentile, respectively.

Lag Statistics CDS P Default CDS Default CDS Spread DtD
Area 87% 85% 84% 84%
10th 68% 62% 62% 62%

1 month 20th 78% 72% 72% 70%
30th 80% 76% 78% 74%
40th 84% 84% 82% 82%
Area 84% 81% 80% 79%
10th 64% 56% 56% 52%

3 months 20th 72% 62% 62% 58%
30th 76% 72% 70% 68%
40th 80% 82% 78% 78%
Area 83% 80% 80% 79%
10th 64% 56% 54% 60%

6 months 20th 70% 62% 62% 62%
30th 72% 66% 66% 66%
40th 78% 78% 76% 76%
Area 83% 80% 81% 79%
10th 66% 56% 58% 58%

9 months 20th 70% 64% 64% 62%
30th 72% 66% 66% 64%
40th 80% 76% 74% 76%
Area 83% 80% 80% 80%
10th 66% 56% 56% 60%

12 months 20th 68% 62% 60% 62%
30th 74% 66% 64% 64%
40th 78% 76% 74% 76%
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Figure 1: Out-of-sample power curves of default prediction models. This figure presents
the average out-of-sample power curves starting in January 2006, using a five-year rolling-window
training dataset, and ending in December, 2020. Forecast horizons are one, three, six, nine and
twelve months. The predictive model specifications are logistic regressions using 1) the four DSW07
covariates (labeled “DtD”); 2) DSW07’s covariates plus the CDS spread (labeled “CDS Spread”);
3) DSW07’s covariates plus the default spread (labeled “CDS Default”); and 4) DSW07’s covariates
plus the physical default component of the CDS spread (labeled “CDS P Default”).
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