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Abstract—We consider the pilot assignment problem in large-
scale distributed multi-input multi-output (MIMO) networks,
where a large number of remote radio head (RRH) antennas
are randomly distributed in a wide area, and jointly serve a
relatively smaller number of users (UE) coherently. By artificially
imposing structures on the UE-RRH connectivity, we model the
network by a partially-connected interference network, so that
the pilot assignment problem can be cast as a topological inter-
ference management problem with multiple groupcast messages.
Building upon such connection, we formulate the topological pilot
assignment (TPA) problem in two different ways with respect to
whether or not the to-be-estimated channel connectivity pattern is
known a priori. When it is known, we formulate the TPA problem
as a low-rank matrix completion problem that can be solved by a
simple alternating projection algorithm. Otherwise, we formulate
it as a sequential maximum weight induced matching problem
that can be solved by either a mixed integer linear program
or a simple yet efficient greedy algorithm. With respect to two
different formulations of the TPA problem, we evaluate the
efficiency of the proposed algorithms under the cell-free massive
MIMO setting.

Index Terms—Distributed massive MIMO, pilot assignment,
topological interference management, network connectivity

I. INTRODUCTION

The last decades have witnessed the advances of multiple-
user multiple-input multiple-output (MIMO) technologies to-
wards the next generation wireless communications systems
(e.g., 5G and beyond), particularly in terms of antenna array
from small size to massive MIMO, in terms of duplex
operations from frequency-division duplex (FDD) to time-
division duplex (TDD), and in terms of network architectures
from centralized (e.g., cloud) to distributed (e.g., fog) radio
access networks. As one of the key wireless access techniques
in 5G and beyond, massive MIMO promises high-throughput
and low-latency services with low-complexity transceivers.

Conventional massive MIMO makes use of a collocated
antenna array with a large number (e.g., hundreds) of elements
at the base station (BS), which coherently serve a relatively
smaller number (e.g., tens) of users (UEs) in the same time-
frequency resource [2], [3]. In doing so, users’ channels
exhibit some interesting properties: channel hardening and
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favorable propagation. Because of the large antenna array, the
average channel gains across time between the BS and the
UEs are almost deterministic, ruling out the small-scale fading
effects that are disadvantageous to high-throughput wireless
services. The large antenna array also provokes the favorable
propagation channels in the sense that the users with distinct
angle-of-arrival have almost orthogonal channel vectors. This
lends itself to the use of conjugate beamforming, also known
as single user matched filtering (SUMF) or maximum-ratio
transmission (MRT) [4], [5], instead of the more sophisticated
zero-forcing beamformers, and thus the transceivers design can
be significantly simplified.

Recently, a distributed deployment spreading out the massive
number of antennas over a large area has been shown to
achieve superior network performance over the collocated
counterpart [6]–[9]. The motivation of such distributed massive
MIMO is two-fold. First, distributed wireless access networks
promise potentially higher coverage thanks to the exploitation
of the diversity against shadow fading. Second, the emerging
applications such as Internet of Things encourage smart devices
with distributed locations to be potential RRHs, so that a
distributed antenna deployment sounds more promising for
ubiquitous communications in the future.

Most recently, various distributed network architectures for
massive MIMO have been proposed with different focuses.
For instance, cell-free massive MIMO [6], [10] promotes the
“cell-free” concept in which every UE will be jointly served
by all RRHs so that no handover will incur when the UE
moves because it is always within the single huge cell. A
central processing unit is enabled to coordinate information
exchange and jointly compute system parameters (e.g., channel
estimation and power control). Such a “cell-free” concept has
attracted a lot of attention recently, including the considerations
of spectral and energy efficiency [11], [12], precoding and
power optimization [7], [13], limited-capacity fronthaul [14],
user-centric approaches [15], the mmWave scenario [16],
among many others (see a comprehensive survey [17] and
references therein). On the other hand, the “fog” massive
MIMO proposed in [18] is dedicated to a seamless and implicit
user association architecture in which the UEs are assigned to
certain RRHs with large-scale antenna array in an autonomous
manner by a novel coded “on-the-fly” pilot contamination
control mechanism, leading to autonomous handover as UE
moves and thus establishing a cell-transparent network. Notably,
pilot contamination is much severer in both cell-free and fog
architectures, where there is no clear cell boundary any longer.
The uplink pilot assignment to the UEs is done once for all
and not re-assigned even when the UEs move freely across



2

the coverage area. It is in sharp contrast to the cellular-based
massive MIMO systems, where pilot re-assignment is simply
assumed at every handover in order to guarantee that intra-
cell users have mutually orthogonal uplink pilots [2]. Hence,
pilot contamination due to non-orthogonal pilots represents
an important limiting factor that is handled by global pilot
optimization in the cell-free scheme [6] or with coding and
“on-the-fly” contamination control in the fog scheme [18].

To address the pilot contamination issue, a number of
works have concentrated on low-complexity pilot assignment
algorithms in the cell-free massive MIMO setting. In particular,
a greedy pilot assignment method was proposed in [6] to
gradually refine the random assignment in order to gain
improved throughput performance. A dynamic pilot reuse
scheme was proposed in [19] by using user-centric clustering
methods. By modeling the conflict of pilot assignment between
UEs as an interference graph, graph coloring based methods
(e.g., [20]–[22]) were proposed for pilot assignment. Joint
RRH selection and pilot assignment was considered in [9]
to make the network more scalable, and structured policies
were proposed in [23], [24] together with clustering techniques
(e.g., K-means and user grouping). Pilot assignment can be
also formulated as a graph matching problem [25], which
can be solved efficiently by Hungarian algorithm. A heap-
based algorithm has been adopted in [26] to reduce pilot
contamination and enhance spectral efficiency, and a tabu
search method in [27] to exploit local neighborhood search.
Although promising, these approaches either rely on sum rate
evaluation during the pilot assignment process, or on heuristics
without theoretical guarantees. In the former, rate calculation
also involves power allocation and channel estimation, which
is related to pilot assignment. This is a “chicken-and-egg”
problem. In the latter, although some heuristics work well in
small-scale networks, they are not provably scalable for large-
scale ones. As the pilot assignment problem has a combinatorial
nature, it is in general NP-hard and challenging to find a
provably scalable solution. In this regard, a natural question
then is to design a principled scheme for pilot assignment that
exploits only the long-term channel information.

As a matter of fact, inspecting such distributed massive
MIMO networks, one may notice that some previously ignored
UE-RRH connectivity patterns may be exploitable and of great
benefit. Owing to the random locations of RRH antennas, the
fact that power decays rapidly with distance, the existence
of obstacles, and local shadowing effects, we may argue that
certain UE-RRH links are unavoidably much weaker than
others, which by intuition makes these concerned RRHs not
suitable to serve some UEs. This is also confirmed by the
simulations in e.g., [6], [7], where only a small fraction of
RRHs contribute most to a UE while the contribution of the rest
is negligible. Thus, the channels with negligible contributions
are not necessarily estimated, and one pilot sequence can be
allocated to more UEs as long as it does not cause severe
pilot contamination. As such, it suggests the use of a partially-
connected bipartite graph to model, at least approximately, the
network connectivity, i.e., which RRH antenna serves which
UE, to artificially sparsify the network topology and channel
estimation pattern, so that the pilot assignment can be done

based on the sparsified UE-RRH connectivity.
In this paper, we focus on the pilot assignment problem in

the distributed (e.g., cell-free or fog) massive MIMO systems,
and aim to provide another perspective to investigate such
a challenging problem. We artificially impose a topological
structure on the network connectivity based on the large-scale
fading coefficients, so that only channels with larger path-loss
coefficients (i.e., stronger channels) than a certain threshold are
captured and the network connectivity is artificially sparsified.
Based on such a sparsified network topology, we connect
the pilot assignment problem to the topological interference
management (TIM) problem with multiple groupcast message
setting [28], so that the developed coding schemes for TIM
using e.g., graph coloring and coded multicasting, can be
applied here for pilot assignment. Instead of analyzing the
optimality with respect to specific topologies in TIM, we
propose two systematic pilot assignment methods to deal with
arbitrary topologies by formulating two non-convex optimiza-
tion subproblems. The first one is a low-rank matrix completion
formulation to minimize the pilot dimension with a given
channel estimation pattern. The second one is a formulation
of binary quadratically constrained quadratic program to find
the optimal channel estimation pattern with a given training
budget (i.e., pilot dimension). By such formulation, we propose
a mixed integer program formulation via sequential maximum
weight induced matching and a simple yet efficient greedy
algorithm.

The main reasons why we consider two subproblems
separately are as follows: (1) the solution to either subproblem
can be individually employed to yield a pilot assignment
strategy, given the different prior knowledge of either a channel
estimation pattern or a pilot dimension budget; (2) the solution
to either subproblem can be combined with other existing
approaches, e.g., low-rank matrix completion with semi-random
pilot assignment; and (3) there is no guarantee that the
alternating optimization could yield a better performance than
the individual ones due to the lack of convergence guarantees.
The superiority of two proposed methods are verified by Monte-
Carlo simulations under the cell-free massive MIMO settings,
which show that our approaches have a better ergodic rate
performance compared to the state-of-the-art methods.

Notation: Throughout this paper, we abbreviate [n] ,
{1, 2, . . . , n} for an integer n. [A]ij presents the ij-th entry
of the matrix A, and AI,J denotes the submatrix of A where
I and J indicate the indices of selected rows and columns
respectively. |A| is the cardinality of the set A. We denote by
1M×1 the all one M × 1 vector, by IM the M ×M identity
matrix, and by em the m-th column of the identity matrix. We
abbreviate {at}t , {at, ∀t} and for the multiple indices, it
applies similarly.

II. SYSTEM MODELING

A. Distributed Massive MIMO

Consider a distributed massive MIMO network with M re-
mote radio heads (RRHs) each with single antenna1 coherently

1For ease of presentation, we focus on the single-antenna RRHs for the
theory part, whereas the extension to multiple-antenna RRHs is straightforward.
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and simultaneously serving K single-antenna user equipments
(UEs), all of which are uniformly located in a large area at
random. The RRHs operate in TDD mode, so that the downlink
channel coefficients can be estimated through uplink training
due to the uplink/downlink channel reciprocity in TDD mode.
All RRHs are connected to a central processing unit (CPU)
via error-free backhaul links for the purpose of coordination.
The backhaul links are not allowed to exchange instantaneous
channel state information (CSI), while payload data, pilot
assignment strategy, and power control coefficients can be
routed and exchanged. It is assumed M � K, and each UE
should be served by a sufficiently large number of RRHs in
order to harvest the benefits of channel hardening and favorable
propagation. Through the limited coordination among RRHs,
a distributed massive MIMO is formed.

The channel coefficient gmk between RRH-m and UE-k is
modeled as follows:

gmk =
√
βmkhmk, (1)

where βmk is the large-scale fading (i.e., path-loss) coefficient,
and hmk is small-scale fading and is assumed to be a complex
i.i.d. Gaussian random variable with mean 0 and variance 1
(i.e., CN (0, 1)). The channel coefficients are assumed to be
constant during a TDD frame. A TDD frame consists of UL
training and DL payload transmission. In this work, we place
our focus mainly on pilot assignment and channel estimation.

B. Uplink Training

Let τp be the maximal duration (in samples) reserved for UL
training phase, during which each UE is assigned with a single
pilot signal. Such a pilot signal can be generated by combining
multiple orthogonal pilot sequences {ψt ∈ CT×1

, t ∈ [T ]}
with T ≤ τp being the pilot dimension actually used for UL
training. As such, the pilot signals of different UEs are not
necessarily orthogonal. We impose ψH

tψs = δ(t, s) to ensure
the orthogonality of pilot sequences, where δ(t, s) = 1 when
t = s, and 0 otherwise. Note that T can be smaller than the
number of users T < K, where non-orthogonal pilot signals
are employed with proper pilot contamination control.

For a specific ψt, we introduce a set of binary variables

xkt =

{
1, if UE-k is assigned ψt
0, otherwise. , (2)

for k ∈ [K] and t ∈ [T ]. Specifically, xkt indicates whether
or not UE-k makes use of ψt to generate the pilot signal. As
such, the pilot signal sent from UE-k can be specified by

sp,k =
√
τpηp

T∑
t=1

xktψt, (3)

where ηp is the normalized power coefficient such that

1

K

K∑
k=1

E[‖sp,k‖2] ≤ τpρp (4)

with τpρp being the average power reserved for each UE over
UL training. For simplicity, we assume the pilot power is evenly
allocated to each estimated channel, i.e., ηp =

Kρp∑K
k=1

∑T
t=1 xkt

.

At the m-th RRH, the received pilot signal over T pilot
dimensions can be given by

rp,m =

K∑
k=1

gmksp,k +wp,m (5)

=
√
τpηp

K∑
k=1

T∑
t=1

gmkxktψt +wp,m (6)

where wp,m ∈ CT×1 is the additive white Gaussian noise
(AWGN) at RRH-m, and is i.i.d. over T with CN (0, IT ).

Given the above pilot signal, the RRHs check every pilot
dimension and try to estimate certain channels. At the m-th
RRH, the received pilot signal is multiplied by every pilot
sequence ψt to estimate the channels from some UE-k to
RRH-m. Thus, the resulting pilot signal observed at the output
of the t-th pilot correlator r̂p,mt = ψH

trp,m can be written as

r̂p,mt =
√
τpηp

K∑
k=1

gmkxkt +ψH

twp,m (7)

=
√
τpηpgmkxkt +

√
τpηp

∑
k′ 6=k

gmk′xk′t +ψH

twp,m

The next step consists of recovering {gmk}m,k from the
received pilot signals and obtain the corresponding estimates
{ĝmk}m,k. A channel estimate is said to be stable if the
mean square error (MSE) satisfies E[|gmk − ĝmk|2]→ 0 when
ρp →∞. The channel coefficient gmk can be estimated using
different estimators, such as least square (LS), minimum mean
square error (MMSE). For instance, the MMSE estimate of
gmk can be produced by

ĝmk =
E
[
r̂H
p,mtgmk

]
E
[
|r̂p,mt|2

] r̂p,mt =

√
τpηpβmkxkt

1 + τpηp

∑
k′ βmk′xk′t

r̂p,mt

(8)

for some t. The MSE, for which RRH-m estimates the channel
coefficient gmk through pilot ψt when UE-k is sending pilot
ψt as well, can be written as

MSEmkt = E{|gmk|2} −
E{|r̂H

p,mtgmk|2}
E{|r̂p,mt|2}

(9)

= βmk −
τpηpβ

2
mkxkt

1 + τpηp

∑
k′ βmk′xk′t

(10)

Apparently, obtaining a meaningful estimate of gmk requires
xkt = 1 and xk′t = 0 for all k′ 6= k. That is, UE-k is assigned
pilot ψt exclusively, so that gmk can be stably estimated at
RRH-m by using ψt with diminishing estimation error as ρp

tends to infinity. If the UE-RRH connectivity is equally strong
for any pair of UE and RRH, the stable estimate of all channels
requires that each UE is assigned a unique orthogonal pilot
sequence, so that the total pilot dimension is at least K.

Nevertheless, we argue that under the distributed MIMO
setting, it is unnecessary to estimate all channel coefficients
between every RRH and every UE; rather, the UE-RRH links
with negligible contributions can be ignored. As such, over
T pilot dimension, let TE,m represent the indices of UEs
whose channels are stably estimated at RRH-m, and RE,k
represent the indices of RRHs that are supposed to serve UE-k.
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While TE,m is a consequence of pilot assignment, RE,k is a
system choice that determines the distribution of UEs’ data
across RRHs. As a first attempt, in this work we assume those
RRHs who are supposed to serve UE-k should possess stable
estimates of the corresponding channel coefficients associated
to UE-k, and those UEs whose channels are stably estimated
by RRH-m should be served by RRH-m. That is, m ∈ RE,k
if and only if k ∈ TE,m. We hereafter refer to the channel
estimation pattern specified by {TE,m}m as a bipartite graph
GE = ([K], [M ], EE) with the edge set

EE = {(k,m) : k ∈ TE,m,∀m} (11)

where M and K are the numbers of RRHs and UEs, respec-
tively. It follows that the edge set of GE can be alternatively
represented by the UE association pattern EE = {(k,m) : m ∈
RE,k,∀k}.

C. Downlink Data Transmission

Given the channel estimates {ĝmk}k∈TE,m
at RRH-m,

conjugate beamforming is employed to transmit the symbols
{qk}k∈TE,m

to the UE-k. The transmitted signal from RRH-m
can be written by

sd,m =
√
ρd

∑
k∈TE,m

η
1/2
mk ĝ

∗
mkqk (12)

where qk is the desired symbol by UE-k satisfying E[|qk|2] = 1,
and ηmk is the power allocation coefficient associated to the
transmitted symbol qk from RRH-m, subject to the average
power constraint at each RRH

1

M

M∑
m=1

E[|sd,m|2] ≤ ρd.

According to the transmitted signal, the power constraint can
be rewritten as

1

M

M∑
m=1

∑
k∈TE,m

ηmkγmk ≤ 1 (13)

where γmk , E[|ĝmk|2]. Thus, the received signal at UE-k is
given by

rd,k =

M∑
m=1

gmksd,m + wd,k (14)

=
√
ρd

∑
m∈RE,k

η
1/2
mk gmkĝ

∗
mkqk

+
√
ρd

M∑
m=1

∑
k′ 6=k,k′∈TE,m

η
1/2
mk′gmkĝ

∗
mk′qk′ + wd,k

= fk,kqk +

K∑
k′:k′ 6=k

fk,k′qk′ + wd,k (15)

where

fk,k′ ,
√
ρd

∑
m∈RE,k′

η
1/2
mk′gmkĝ

∗
mk′ . (16)

Thus, the downlink received signal can be seen as an in-
terference channel with channel coefficients {fk,k′}k,k′ . For

simplicity, we assume that all channel coefficients in (16) are
known to the receivers. Taking into account the uplink training
overhead, we have the downlink ergodic rate [29]

Rk = (1− T

Nc
)E

[
log

(
1 +

|fk,k|2

N0 +
∑
k′ 6=k|fk,k′ |2

)]
(17)

where Nc is length of the TDD frame in samples, and N0 is
the normalized noise power.

III. TOPOLOGICAL PILOT ASSIGNMENT

A. Topological Modeling

Due to the fact that signal power decays fast as the
distance increases and the shadowing effects, some UE-RRH
links are unavoidably weaker than others and thus both their
contributions to joint transmission or influence as interference
are negligible. It suggests the use of a UE-RRH connectivity
pattern to model this at least approximately. In general, there
are three types of links: (1) Strong links, representing the
channel estimation pattern whose links should be estimated; (2)
not-too-strong links but non-negligible, which can be ignored
for channel estimation but should be considered for pilot
assignment because they may cause pilot contamination; and
(3) weak links, which are not considered for channel estimation
and their impact on pilot contamination is also negligible. It
is worth noting that strong links specify which RRH serves
which UE, and the not-too-strong links are responsible for
the pilot contamination. Thus, we introduce another weighted
bipartite graph G = ([K], [M ], E) in Fig. 1 (Left) to represent
the UE-RRH connectivity (i.e., network topology), where [K]
is the index set of UEs, [M ] is the index set of RRHs, and E is
the collection of the edges with weights {βmk}m,k. The UE-k
is said to be connected to RRH-m, i.e., (k,m) ∈ E , if and only
if βmk ≥ δβ , where the threshold δβ is a crucial designing
parameter. Let us denote by Tm , {k : (k,m) ∈ E} the indices
of UEs connected to RRH-m and by Rk , {m : (k,m) ∈ E}
the indices of RRHs connected to UE-k.

The network topology G captures both channel estimation
pattern GE (i.e., solid lines in Fig. 1) that specifies the to-be-
estimated channel pattern with significant contributions, and the
non-negligible interference pattern (i.e., dotted lines in Fig. 1)
that has negligible contributions to joint transmission yet non-
negligible influence as interference, whereas the weak links (i.e.,
those not connected in Fig. 1) are not considered. We would
like to emphasize that, both GE and G are artificially imposed
topological structures for the design of pilot assignment,
and in practice the network is fully connected and all three
types of links are present. That is, no matter whether the
link is strong or weak, the interference of joint transmission
and pilot contamination are always present and should be
considered in performance evaluation. Given such artificially
imposed network structures G, we formulate a topological
pilot assignment (TPA) problem to find the optimal pilot
assignment with unknown pilot dimension T and unknown
channel estimation pattern GE . Without loss of generality, we
assume EE ⊆ E that only strong channels should be estimated.
In general, the TPA problem in a distributed MIMO network
is a complex and challenging optimization problem with a
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combinatorial nature. To make it more tractable, we split it
into the following two subproblems.

Definition 1. Given a UE-RRH connectivity pattern G =
([K], [M ], E), the TPA problem can be split into two subprob-
lems:
• Pilot Dimension Minimization, which focuses on allocat-

ing pilot sequences to minimize pilot dimension T for a
predetermined channel estimation pattern GE;

• Channel Pattern Optimization, which is dedicated to
determining the optimal channel estimation patterns GE
for a given pilot dimension T .

It is worth noting that both subproblem relies highly on the
choice of δβ that determines the network topology G. A larger
δβ makes the resulting topology sparser, so that a smaller T
is able to estimate all channels of the sparse network, while
the uncaptured channels that are consequently not estimated
may cause severe interference. On the contrary, a smaller
δβ leads to a denser network topology, so a specified pilot
dimension may not able to estimate all channels of interest,
while the unestimated yet captured channels may cause severe
degradation as well.

B. Pilot Dimension Minimization
The pilot dimension minimization subproblem aims to assign

each UE a combination of orthogonal pilot sequences with
minimal pilot dimension T for a specified channel estimation
pattern GE , so that all channels of interest can be properly
and stably estimated. For instance, when UE-k is using the
pilot ψt, any RRH-m is supposed to be able to estimate the
channel gmk if (k,m) ∈ EE and the pilot signal at RRH-
m is not contaminated by other UEs using the same pilot
ψt. Meanwhile, for a specific RRH-m, any other UE-j who
has a strong channel connection to RRH-m, i.e., (j,m) ∈ E
due to βmj ≥ δβ , is not supposed to use the same pilot ψt
simultaneously. Otherwise the use of pilot ψt at both UE-k
and UE-j will result in pilot contamination at RRH-m so that
the channels gmk cannot be stably estimated at RRH-m.

Example 1. A feasible pilot assignment is shown in Fig. 1
(Right), in which we assign two orthogonal pilots to estimate
the channels of interest. In Fig. 1 (Right), the edges in EE are
colored using two distinct colors, each of which represents an
orthogonal pilot. Thus, given two orthogonal pilot sequences
ψ1,2 ∈ R2×1, UE-1 and UE-3 send ψ1, UE-2 sends the pilot
ψ2, and UE-4 sends the combination of two pilots ψ1 +ψ2.
Then, RRH-{1, 4, 6, 7, 8} see the uncontaminated pilot signal
and can estimate the corresponding channels, whereas RRH-
{2, 3, 5} see the combination of two orthogonal pilot signals,
and can estimate both channels stably over two timeslots by
e.g., zero-forcing.

C. Channel Pattern Optimization
The channel pattern optimization subproblem is to decide

which channel to be estimated given a total budget of pilot
dimensions during the training phase.

Let us denote by Tm , {k : (k,m) ∈ E} the indices of UEs
connected to RRH-m and by Rk , {m : (k,m) ∈ E} the

indices of RRHs connected to UE-k. Given two UE-j, k such
that j, k ∈ Tm, the channels gmk and gmj cannot be estimated
at RRH-m using the same pilot sequence. That is, with a
single pilot sequence, each RRH can only estimate at most
one channel. On the other hand, given two RRH-m,n such
that m,n ∈ Rk, the channels gmk and gnk can be estimated
at RRH-m and RRH-n using the same pilot sequence. That
is a single pilot could be used to estimate multiple channels
originated from the same UE. As shown in Fig. 1 (Right), for
the pilot sequence denoted by red edges, each RRH estimates
at most one channel and multiple channels may be from the
same UE.

The above rule yields the channel pattern that can be
estimated by a single pilot sequence. Given a fixed pilot
dimension (i.e., the number of orthogonal pilot sequences), the
objective of this subproblem is to maximize the total number
of channels to be estimated.

D. Connection to Topological Interference Management

A closer look at the TPA problem reveals the similarity
to topological interference management (TIM) with message
groupcasting [28]. Both TPA and TIM problems aim to exploit
topological information for transmission in partially-connected
interference networks without knowing channel coefficients at
the transmitters.

The TIM problem aims to deliver messages and the goal
is to maximize the minimal (symmetric) degrees of freedom
dsym achieved by all desired messages across all receivers. The
groupcast message setting specifies that a message originated
from a transmitter may be desired by multiple receivers, such
that a message multicasting will benefit multiple receivers. In
the TIM setting, G and GE represent the network topology and
desired message pattern respectively.

The TPA problem aims to estimate the channel coefficients
given the known pilot symbols, and the goal is to figure out
how orthogonal pilot sequences are allocated to minimize the
pilot dimensions T . It is feasible that all channels associated
to one UE can be trained by one pilot sequence sent from
this UE. In the TPA setting, G and GE represent the network
topology and channel estimation pattern respectively.

Intuitively, if we treat the channel coefficients in TPA as the
symbols of the unknown messages in TIM, the pilot assignment
in TPA can be obtained from the beamforming vectors of
the encoding schemes for TIM. Note that the pilot signals
of TPA come from a combination of multiple orthogonal
pilot sequences ψt, the selection of which is controlled by
the binary-valued pilot assignment parameters {xkt}, and for
the beamforming vectors of TIM, there are different feasible
designs, which are not necessarily binary-valued. Therefore,
as long as the beamforming vectors obtained for TIM can be
represented as a linear weighted (binary-valued) combination
of the predetermined orthogonal pilot sequences, these binary-
valued weights yield the pilot assignment for TPA. Given a
linear coding scheme for TIM groupcasting, we have translate it
to a pilot assignment scheme for TPA, which yields T = 1

dsym
,

where dsym is the symmetric degrees of freedom under the
TIM setting. In light of such a connection, we can borrow
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1 2 3 4 5 6 7 8

1 2 3 4

1 765432 8
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Fig. 1: Left: Topological modeling for a distributed massive MIMO network as a partially-connected bipartite graph, where all edges (including
all solid and dotted ones) represent the UE-RRH connectivity, i.e., E(G), and the solid edges represent the channel estimation pattern, i.e.,
EE(GE) ⊆ E(G). Right: A possible pilot assignment strategy, where different colors indicate the distinct orthogonal pilot sequences {ψt}
that can be used to estimate the corresponding channels. The colored edges cover the channel estimation pattern EE(GE). By this pilot
assignment, all users’ channels of interest can be estimated stably because no pilot contamination is incurred at the RRHs.

2,3 2,52,2 4,4 4,6

1,1 4,83,3 3,51,2 4,7

Fig. 2: The conflict graph of Example 2.

the well-designed coding schemes from TIM to TPA. In what
follows, we present two simple methods for the purpose of
illustration: one is based on vertex coloring, and the other one
is coded multicast.

1) Vertex Coloring: Given the network topology G and the
desired message pattern GE , we first construct the conflict graph
Gc = (Vc, Ec). Every edge (k,m) ∈ EE(GE) corresponds to a
vertex vkm ∈ Vc(Gc). That is Vc = {vkm : (k,m) ∈ EE(GE)}.
Two vertices vkm and vk′m′ are connected, i.e., (vkm, vk′m′) ∈
Ec(Gc), if and only if

• k 6= k′, indicating that two channels are not originated
from the same UE, and

• either (k,m′) ∈ E(G) or (k′,m) ∈ E(G), indicating that
(1) two channels are joint at one RRH, i.e. m = m′, (2)
UE-k interferes RRH-m′, or (3) UE-k′ interferes RRH-m.

Note here that, for the conflict graph, the vertex set Vc(Gc) is
determined by the edge set EE(GE), while the edge set Ec(Gc)
is determined by the edge set E(G).

Coloring the vertices of the conflict graph ensures that the
adjacent vertices (corresponding to conflicting channels) receive
distinct colors (corresponding to distinct orthogonal pilots
sequences). The vertices with the same color can be assigned
the same pilot sequence without causing contamination in the
training phase, so that the corresponding channels can be stably
estimated.

Example 2. The conflict graph Gc of the network topology
G in Fig. 1 is constructed in Fig. 2. In this figure, the vertex
vkm is denoted by the tuple (k,m), representing the channel
between UE-k and RRH-m. In Fig. 2, the channels (1, 1)
and (1, 2) are originated from the same UE-1, so they are
not conflicting and thus can be assigned the same pilot; the
channel (1, 1) is conflicting with all (2, 2), (2, 3), (2, 5), (2, 7)

and (4, 4), because UE-2 interferes RRH-1 and UE-1 inter-
feres RRH-4 that satisfy the second and third conditions of
constructing conflict graph. As such, there links cannot be
estimated with the same pilot sequence ψt. Note also that
the node (4, 8) does not conflict with any other nodes so
that be assigned either in purple or red. As a result, the
channels {(1, 1), (1, 2), (3, 3), (3, 5), (4, 7), (4, 8)} receive the
same color, so that these channels can be estimated by using
the same pilot sequence. The same applies to the channels
{(2, 2), (2, 3), (2, 5), (4, 4), (4, 6)}. Thus, it can be figured out
that UE-{1, 3} use one pilot sequence, UE-2 uses another one,
and UE-4 uses the combination of those two. In this example,
the pilot assignment strategy is non-orthogonal because UE-4
uses the pilot signal that is the combination of two orthogonal
pilots.

2) Coded Multicast: When the network topology coincides
with the desired message pattern, i.e., G = GE , meaning that all
channels captured in the network topology should be estimated,
we can use coded multicasting method proposed in TIM to
assign pilot sequences. Letting T = maxm|Tm|, we can design
a (K,T ) maximum distance separable (MDS) code with a
T ×K generator matrix in which any T columns are linearly
independent. The columns of this generator matrix can be used
as pilot sequences, and each UE select one of them to use. At
the RRHs, each of them obverses a combination of at most T
pilot signals and is able to estimate all channels.

Example 3. In Fig. 1 (Left), suppose all channels should be
estimated. We have maxm|Tm| = 3, and hence a (4, 3) MDS
code generator matrix can be constructed. Roughly speaking,
four pilot signals sp,k ∈ R3×1 with k = 1, 2, 3, 4 are selected
from the generator matrix, and any three of them are linearly
independent. Note that the pilot signals {sp,k} are not mutually
orthogonal, and they are carefully devised to be represented
by binary-valued weighted combinations of orthogonal pilot
sequences {ψt} with ψt ∈ R3×1. UE-k chooses pilot signal
sp,k, and at RRH-4, the following combined pilot signal is
received (with noise term omitted)

r̂4 = g41sp,1 + g43sp,3 + g44sp,4

and since {sp,k}k=1,3,4 are linearly independent, the inverse
[sp,1, sp,3, sp,4]−1r̂4 yields the estimates of channel coeffi-
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cients {g41, g43, g44}.

The optimality of TIM under the groupcast setting is in
general an open problem. The state-of-the-art coding schemes
focus on the information-theoretic optimality with respect to
some classes of network topologies and are therefore topology-
dependent. In this paper, as we are interested in the pilot
assignment strategies, we aim to design achievable schemes in
a systematic way although their information-theoretic optimality
may be challenging to analyze.

In what follows, we first formulate a pilot dimension
minimization problem given GE is known, followed by the
channel pattern optimization problem with a given pilot
dimension budget.

IV. PILOT DIMENSION MINIMIZATION

In this section, we consider the pilot dimension minimization
problem given the network topology G and a specified channel
estimation pattern GE for the uplink training.

Denoting by xk = [xk1, xk2, . . . , xkT ]T, and Ψ =
[ψ1,ψ2, . . . ,ψT ], we have sk = Ψxk. Each RRH-m performs
“local” interference mitigation/cancellation by combining the
projections on the individual pilots ψt and multiplying by a
constant full-rank matrix Cm ∈ RT×T . The resulting pilot
signal r̃m = Cmr̂p,m can be rewritten as

r̃m =
√
τpηpCmΨH

K∑
k=1

gmkΨxk +CmΨHwp,m (18)

=
√
τpηp

∑
k:(k,m)∈EE

Cmxkgmk︸ ︷︷ ︸
desired pilot signal

+
√
τpηp

∑
k:(k,m)∈E\EE

Cmxkgmk︸ ︷︷ ︸
significant interference

+
√
τpηp

∑
k:(k,m)/∈E

Cmxkgmk︸ ︷︷ ︸
negligible interference

+CmΨHwp,m (19)

where Cm is used to simplify problem formulation by avoiding
an incomplete matrix with binary entries and will be determined
later. It can be verified that as long as the channels are estimated
from r̂p,m, they can be stably estimated from r̃m as well with
high probability.

For a given m, to recover {gmk : (k,m) ∈ EE ,∀k} stably,
we need to guarantee that the vectors of coefficients in {Cmxk :
(k,m) ∈ EE ,∀k} are linearly independent. To guarantee stable
estimation, we need to let the significant interference go to zero,
i.e., Cmxk = 0 if (k,m) ∈ E\EE . The negligible interference
does not contribute too much because the path loss βmk is small
according to topological modeling, and therefore {Cmxk :
∀(k,m) /∈ E} do not really matter.

In what follows, we propose a low-rank matrix completion
and factorization method to calculate the minimum pilot
dimension T and the pilot assignment vectors {xk}k.

A. Low-rank Matrix Completion and Factorization

For the sake of problem formulation, we first construct
matrix with a specific T which is in fact unknown a priori,
and then remove the dependence of T . Collecting all vectors to
form a big matrix, we have C = [CT

1 , . . . ,C
T

M ]T ∈ RMT×T

and X = [x1, . . . ,xK ]T ∈ {0, 1}K×T . Let Ã = CXT ∈
RMT×K , and [Ã]Ĩm,k = Cmxk ∈ RT×1 where Ĩm = {(m−
1)T + 1, . . . ,mT}. Thus, the matrix form of the received pilot
signal can be given by

r̃m =
√
τpηpÃmgm + ñm (20)

where Ãm = [Ã]Ĩm,: is the submatrix of Ã indexed by the
rows Ĩm, and ñm = CmΨHwp,m. Note here that, only the
channels {gmk : (k,m) ∈ EE} are of interest to be estimated,
and our goal is to figure out the matrix Ã with rank T which
depends only on two patterns G and GE .

To minimize the pilot dimension, we have

T = min rank(Ã) (21)

where Ã is a partially filled matrix and is supposed to possess
the following property:

[Ã]Ĩm,k =

 c̃mk, if (k,m) ∈ EE
0, if (k,m) ∈ E\EE
∗, otherwise

(22)

where c̃mk is any nonzero vector, and ∗ is any indefinite T ×1
vector. To ensure that the channels of interest {gmk, (k,m) ∈
EE} can be stably estimated over T pilot dimensions, the
following should be satisfied:

rank([Ã]Ĩm,TE,m
) = |TE,m|. (23)

For simplicity, [Ã]Ĩm,TE,m
can be chosen from the columns

of the identity matrix IT .
Observing that each RRH is not connected to all UEs, we

note that some rows in Ã may only have zero or indefinite
elements. The rank minimization is prone to turning these
rows to be all zero, i.e., by setting indefinite elements to be
0. As such, we can safely remove these rows from Ã without
reducing the rank. Because RRH-m has |Tm| connected UEs,
so there are |Tm| nonzero vectors with a single nonzero element
in {[Ã]m,1, . . . , [Ã]m,K} and the rest is indefinite. By this, we
only need to keep the |Tm| rows with nonzero elements in
[[Ã]m,1, . . . , [Ã]m,K ]. In doing so, a modified matrix A has
in total

∑M
m=1|Tm| rows and possesses the following property:

[A]Im,k =

 cmk, if (k,m) ∈ EE
0, if (k,m) ∈ E\EE
∗, otherwise

(24)

where cmk can be any |Tm| × 1 vector, Im = {
∑m−1
m′=1|Tm′ |+

1, . . . ,
∑m
m′=1|Tm′ |}, and the full column rank property of

[A]Im,TE,m
should be maintained. Thus, we have the low-rank

matrix completion problem formulation

T = min
A

rank(A) (25a)

s.t. rank([A]Im,TE,m
) = |TE,m|, ∀m. (25b)
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where A follows the structure in (24). This matrix completion
problem is known to be difficult to solve. Instead of pursuing the
unique completion as in the literature, we are only interested in
finding one feasible solution with any properly filled indefinite
entries. Thus, for a given rank r, we reformulate this problem
as a feasibility problem as follows

find A, (26a)
s.t. rank(A) ≤ r, (26b)

rank([A]Im,TE,m
) = |TE,m|, ∀m. (26c)

Thus, denoting by M̄ =
∑M
m=1|Tm|, rm = |TE,m|, and

I ′m = {
∑m
m′=1|Tm′ | + 1 :

∑m
m′=1|Tm′ | + rm}, we define

three constraint sets:

SΩ = {A ∈ RM̄×K : [A]Ω = 0} (27a)

Sr = {A ∈ RM̄×K : rank(A) ≤ r} (27b)

SΩE
= {A ∈ RM̄×K : [A]I′m,TE,m

= Irm ,∀m} (27c)

where Ω = {(Im, k) : (k,m) ∈ E\EE}, ΩE = {(Im, k) :
(k,m) ∈ EE}, and emk is k-th column of the identity matrix
I|Tm|.

Such a low-rank matrix completion formulation is a general-
ized version of that for the multiple-unicast TIM problem [30].
The intuition behind it is the min-rank solution in the index
coding problem [31]. Jafar has established the equivalence
between index coding and TIM with respect to linear coding
schemes [28]. The use of low-rank matrix completion to find the
min-rank solution has been proposed in [32] for index coding
and in [30] for TIM with alternating projection approaches
(and later on in [33] with Riemannian pursuit), where the multi-
unicast message setting was considered. In this work, we extend
the low-rank matrix completion formulation for TIM from the
multi-unicast to groupcast settings. In a similar way, we can
adopt a low-complexity alternating projection method [30] to
obtain a feasible solution (see Alg. 1) by projecting iteratively
on the above constraint sets, e.g., PS(A) is to project A onto
the set S . In particular, PSr (A) can be done by singular value
decomposition followed by selecting the largest r singular
values and the corresponding subspace.

Algorithm 1 Low-Rank Matrix Completion via Alternating
Projection
Input: G, GE .

1: for r = K,K − 1, . . . , 1 do
2: Set k = 0, and randomly generate A0

r,B
0
r ∈ RM̄×K

3: while ‖Ak
r −Bk

r ‖2 > ε & k ≤ Itmax do
4: Bk

r ← PSr (Ak
r )

5: Ak
r ← PSΩ(Bk

r ) + PSΩE
(Bk

r )
6: k ← k + 1
7: end while
8: If k < Itmax then Update A← Ak

r and break end if
9: end for

Output: T = r, A.

Once A is completed, inserting zero rows gives us the
original matrix Ã. Then the matrix Ã will be factorized into
a real matrix C and a binary matrix X , i.e., Ã = CXT

where C ∈ RMT×T and X ∈ {0, 1}K×T . This is a matrix
factorization problem with binary component that arises in
various problems, such as blind binary source signal separa-
tion and network component analysis. Although no existing
algorithms guarantee the exact unique factorization due to
the non-convexity, some efficient algorithms were proposed to
yield a feasible solution. The problem can be efficiently done
by adopting a low-complexity algorithm in [34], by which we
obtain a feasible pilot assignment xk = Xk for all k. Once
the pilot assignment {xk}k is determined, the MMSE channel
estimator as in (8) can be applied to produce channel estimates
{ĝmk}m,k.

V. CHANNEL PATTERN OPTIMIZATION

When the channel estimation pattern is unknown a priori,
the pilot assignment needs to be done together with the
optimization of such a pattern. In what follows, we consider
the pilot assignment problem given a budget of pilot dimension
T when GE is unknown.

We take a closer look at each pilot assignment indicators
{xkt}, enforcing that each pilot should be used to estimate
at most one channel at each RRH. To this end, we introduce
another set of binary variables {ymt} such that

ymt =

{
1, if RRH-m estimates using ψt with success,
0, otherwise,

(28)

where ymt indicates whether or not the pilot ψt is useful for
channel estimation. In terms of success, we mean the channel
between RRH-m and UE-k can be stably estimated when UE-k
is assigned with the pilot ψt.

We further assume that each pilot ψt at RRH-m can at most
estimate channels from κ UEs connected to RRH-m by e.g.,
zero-forcing. Thus, we have the following constraint∑

k∈Tm

xktymt ≤ κ, ∀m, t (29)

where κ = 1 means RRH-m is dedicated to one single UE for
pilot ψt.

For ease of presentation, we define a topology matrix T ∈
{0, 1}K×M as follows:

[T ]km =

{
1, if (k,m) ∈ E(G)
0, otherwise. (30)

Given the budget of pilot dimension T , the objective of pilot
assignment is to make sure that as many strong channels as
possible can be stably estimated by pilot {ψt}Tt=1. That is,

max
{xkt,ymt}

T∑
t=1

M∑
m=1

K∑
k=1

[BT ]kmxktymt (31a)

s.t.

K∑
k=1

[T ]kmxktymt ≤ κ, ∀m, t (31b)

xkt, ymt ∈ {0, 1}, ∀k,m, t (31c)

where [BT ]km = βmk, and the objective is to find a set of
triples (m, k, t) with maximum sum weights {βmk}. For any
given (m, t), the selected triples are subject to the constraint
(29).
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A. Binary Quadratically Constrained Quadratic Programming

The above optimization problem can be rewritten in a matrix
form as

max
X,Y

vT

XQ0vY (32a)

s.t. vT

XQm,tvY ≤ κ, ∀m, t (32b)

vX ∈ {0, 1}KT ,vY ∈ {0, 1}MT (32c)

where vX = vec(X) and vY = vec(Y ) are vectorization of
the corresponding matrices, and

Q0 = (BT � T )⊗ IT (33)
Qm,t = (T � (1K ⊗ eT

m))⊗ diag(et) (34)

in which 1K is the K × 1 all-one vector, em is the m-th
column of IM , and et is the t-th column of IT . This is a
binary quadratically constrained quadratic program (BQCQP),
in which two set of binary parameters {xkt} and {ymt} are
interacting with each other. This type of problems is known
difficult to solve, with a possible approach by SDP relaxation
as in [35].

B. Sequential Maximum Weight Induced Matching (sMWIM)

A more tractable solution is to consider each pilot sequen-
tially, so that for each pilot, we assign it to as many UE-
RRH pairs as possible, and after T sequential assignment,
the resulting assignments are expected to achieve a good
approximation of the original problem.

First, let us focus on the pilot assignment for a given pilot
sequence ψt and a given network topology G. The goal is
to assign the same pilot to as many users as possible. The
optimization subproblem can be formulated as follows:

max

M∑
m=1

K∑
k=1

[BT ]kmxktymt (35a)

s.t. xkt ≤
M∑
m=1

[T ]kmymt, ∀k (35b)

ymt ≤
K∑
k=1

[T ]kmxkt, ∀m (35c)

K∑
k=1

[T ]kmxkt ≤ κymt +K(1− ymt), ∀m (35d)

xkt, ymt ∈ {0, 1}, ∀k,m (35e)

where (35b) indicates that if UE-k is assigned the pilot ψt,
then there is at least one RRH with strong connections to UE-k
is able to estimate the channel coefficient by using the pilot
ψt; (35c) indicates that if an RRH can estimate the channel
coefficient using pilot ψt, then there is at least one UE sending
such a pilot; and (35d) guarantees that if the RRH-m can
estimate the channel coefficient using the pilot ψt, there exist
at most κ UEs with strong connectivity to this RRH that can
be assigned with this pilot. These constraints are to ensure
that of (29). Note that there is not a similar constraint of (35d)
for UEs, meaning that one UE can use the same pilot to train
multiple channels as long as the RRHs are capable to do so.

This can be recognized as a modified version of the classic
maximum weight induced matching problem in a quadratic
programming form. Here the difference from the conventional
induced matching is that, (1) there may exist multiple edges
originated from the same k, corresponding to the scenario that
the channel coefficients from a UE to multiple RRHs can be
estimated at these RRHs using the same pilot; (2) there exist
multiple edges from the same m, meaning that channels from
multiple UEs can be estimated at the same RRH.

Let us linearize it into the following form by introducing
an auxiliary variable zmkt = xktymt:

max

M∑
m=1

K∑
k=1

βmkzmkt (36a)

s.t. (35b)− (35e) (36b)
zmkt ≤ xkt, ∀(k,m) ∈ E (36c)
zmkt ≤ ymt, ∀(k,m) ∈ E (36d)
zmkt ≥ xkt + ymt − 1, ∀(k,m) ∈ E (36e)
zmkt ∈ {0, 1}, ∀m, k (36f)

where these additional constraint is to ensure that zmkt = 1
if and only if xkt = ymt = 1. In general, this optimization
is a linear integer program, and can be solved by applying
off-the-shelf solvers. Taking a closer look at the additional
constraints for {zmkt}, we observe that (36f) can be relaxed
without loss of optimality, that is, zmkt ∈ {0, 1} can be relaxed
to zmkt ∈ [0, 1], owing to the integer-valued {xkt}k and
{ymt}m. For a large-scale network with large M and K, as
the computational complexity of (36) is still prohibitively high,
we can follow Benders’ decomposition in [36] to separate the
variables {xkt, ymt} from {zmkt} to reduce complexity.

Then, we can sequentially solve (36) with reweighed βkm, so
that the assigned UE-RRH link (k,m) will not be reconsidered
later. Benders’ Decomposition is to first search for a feasible
induced matching by optimizing a master problem with
variables {xkt, ymt}k,m and the constraints (35b) - (35e),
followed by a slave subproblem to maximize the objective
function (36a) with variables {zmkt}k,m and the constraints
(36c)-(36f). The master and slaver problems will be connected
with a refined cut as defined below. Specifically, in order not
to select the same set of edges as induced matching for for
different pilot dimension, we introduce T (t) to denote the
remaining network topology with the selected edges in the
previous pilot dimensions removed, where T (0) represent the
initial network topology G. Thus, the master problem turns out
to be

max

M∑
m=1

ymt + L (37a)

s.t. xkt ≤
M∑
m=1

[T (t)]kmymt, ∀k (37b)

ymt ≤
K∑
k=1

[T (t)]kmxkt, ∀m (37c)

K∑
k=1

[T (0)]kmxkt ≤ κymt +K(1− ymt), ∀m (37d)
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L ≤
M∑
m=1

K∑
k=1

L̂∗(xkt, ymt) (37e)

xkt, ymt ∈ {0, 1}, ∀k,m, (37f)

where (37e) is the Benders’ cut that will be determined later.
Denote by ({x̂kt}k, {ŷmt}m, L̂) the optimal solution to the
master problem. The slave problem can be given by

max

M∑
m=1

K∑
k=1

[B
(t)
T ]kmzmkt (38a)

s.t. zmkt ≤ x̂kt, ∀(k,m) ∈ E (38b)
zmkt ≤ ŷmt, ∀(k,m) ∈ E (38c)
zmkt ≥ x̂kt + ŷmt − 1, ∀(k,m) ∈ E (38d)
zmkt ≥ 0, ∀m, k (38e)

whose dual problem can be given by

min
{akm,bkm,ckm}

M∑
m=1

K∑
k=1

(akmx̂kt + bkmŷmt (39a)

+ckm(x̂kt + ŷmt − 1)) (39b)

s.t. akm + bkm + ckm ≥ [B
(t)
T ]km, ∀k,m (39c)

akm ≥ 0, bkm ≥ 0, ckm ≤ 0, ∀(k,m) ∈ E .
(39d)

Let the optimal solution to (39) be {âkm, b̂km, ĉkm}. The
updated Benders’ cut can be refined by

L̂∗(xkt, ymt) = âkmxkt + b̂kmymt + ĉkm(xkt + ymt − 1).
(40)

The sMWIM algorithm is summarized in Alg. 2. It has a
multi-round procedure. In each round t, we find the maximum
weight induced matching over the remaining network topology
T (t), by solving both the master and slave problems (37)-(38)
alternatingly, until the update of Benders’ cut stabilizes. The
algorithm continues until t exceeds the pilot dimension budget
T or all edges in G are assigned with a pilot. It is worth noting
that the approach assigns orthogonal pilots to each UE-RRH
link individually, such that one UE may be assigned with the
combination of multiple pilots, each of which is dedicated to
some links.

C. Greedy Algorithm

While the sMWIM algorithm gives us a tractable solution,
the computational complexity of the mixed integer program
formulation usually scales with the number of parameters,
even if Benders’ decomposition is applied. By revisiting the
formulation in (35), we take a step back to formulate the TPA
problem as a many-to-many matching problem instead of the
induced matching, for which we develop a greedy algorithm
to find a feasible solution.

By letting zmkt = xktymt, for the t-th round, the optimiza-
tion (35) can be replaced by a many-to-may matching problem
with the following linear integer program formulation

max

M∑
m=1

K∑
k=1

[
B̃

(t)
T

]
km

zmkt (41a)

Algorithm 2 Sequential Maximum Weight Induced Matching
(sMWIM)
Input: T , BT , T , κ.

1: Initialization: T (1) = T , B(1)
T = BT , t = 1

2: while t ≤ T & T (t) > 0 do
3: Set j = 1, L∗1(t) = ‖B(t)

T ‖1, L∗0(t) = 0
4: while |L∗j (t)− L∗j−1(t)| > ε do
5: Solve (37) and obtain {xkt}k and {ymt}m
6: Solve (38) and obtain {zmkt}k,m
7: Update L∗j+1(t)← L̂∗(xkt, ymt) according to (40)
8: Update j ← j + 1
9: end while

10: Update [T (t+1)]km ← [T (t)]km − zmkt, for all k,m
11: Update B(t+1)

T ← B
(t)
T � T (t+1)

12: Update t← t+ 1;
13: end while
Output: {xkt}k,t, {ymt}m,t.

s.t.

K∑
k=1

zmkt ≤ κ, ∀m (41b)

M∑
m=1

zmkt ≤ κu, ∀k (41c)

zmkt ∈ {0, 1}, ∀m, k (41d)

where κ and κu denote the maximum number of UEs that each
RRH could serve and the number of connected RRHs per user,
respectively. For simplicity, we set κ and κu as constant integers
throughout the iteration. The above many-to-many matching
problem is also known as the generalized multi-assignment
problem (GMAP) [37].

To solve the GMAP in an efficient way, we develop a greedy
algorithm as shown in Alg. 3. Given the initial network topology
G, which can be constructed with or without RRH selection, we
take at most T rounds to assign pilot sequences to different UEs.
At the t-th round, we introduce an auxiliary adjacency matrices
{T̃ (t)} (and the corresponding path loss matrices {B̃(t)

T }) to
indicate the remaining network topology to be considered for
pilot assignment. Once the UEs are assigned with pilots, they
will be removed from consideration, which yields an updated
T̃ (t+1) (see Line 27 in Alg. 3). It is worth pointing out that T̃ (t)

is usually not equal to T (t) in the previous section, because
of the use of different matching algorithms.

At the t-th round, we have a pre-selection procedure to
identify the network topology T̃ (t) for the many-to-many
matching. First, we introduce a binary matrix T̃ (t)

max to indicate
the position of the maximum coefficients, defined as

[T̃ (t)
max]km =

{
1, if [B̃

(t)
T ]km = maxm{[B̃(t)

T ]km},
0, otherwise,

(42)

and the corresponding path loss matrix B̃(t)
T,max = B̃

(t)
T �T̃

(t)
max

to pre-select the maximum coefficients. In each round, if there
are multiple UEs that compete for the same RRH, then only
the one with the largest path loss coefficient will be considered
in this round, and the rows corresponding to other competing
UEs in B̃(t)

T will be set to zero (see Lines 5-8 in Alg. 3).
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Algorithm 3 TPA via Greedy Algorithm
Input: T , BT , T , κ, κu

1: Initialization: T (1) = T , B(1)
T = BT , t = 1

2: while t ≤ T & T (t) > 0 do
3: Set FLAG = 1, T̃ (t) = T (t), B̃(t)

T = B
(t)
T , xkt =

ymt = 1 for all k ∈ [K],m ∈ [M ]

4: Update T̃ (t)
max and B̃(t)

T,max according to (42)
5: for m ∈ {m′ :

∑K
k=1[T̃

(t)
max]km′ > 1,∀m′ ∈ [M ]} do

6: Update T̃ (t) such that [T̃ (t)]k,: = 0, ∀k /∈
arg maxi{[B̃(t)

T ]im}
7: Update B̃(t)

T ← B̃
(t)
T � T̃ (t)

8: end for
9: for k ∈ {k′ :

∑M
m=1 ymt[T̃

(t)]k′m > κu,∀k′ ∈ [K]}
do

10: Update T̃ (t) such that [T̃ (t)]km = 0, ∀m /∈
arg maxκu{[B̃(t)

T ]km′}
11: end for
12: Define profit and cost matrices P (t) and C(t) as (44)

and (45)
13: while FLAG do
14: Select the RRH m such that

∑K
k=1 xkt[T̃

(t)]mk >
κ

15: Compute (43) as Φb if the RRH-m is not selected,
i.e., xkt = 0

16: Compute (43) as Φu if only κ UEs with largest
elements in B̃(t)

T are selected
17: if Φb > Φu then
18: ymt = 0, and [T̃ (t)]km = 0, ∀k ∈ [K]
19: else
20: xkt = 0, and [T̃ (t)]km = 0,∀m ∈ [M ], k /∈

maxκ{i : [B̃
(t)
T ]im, i ∈ [K]}

21: end if
22: Update B̃(t)

T ← B̃
(t)
T � T̃ (t)

23: if
∑K
k=1 xkt[T̃

(t)]km ≤ κ,∀m ∈ [M ] then
24: FLAG = 0
25: end if
26: end while
27: Update [T (t+1)]km ← [T (t)]km − xkt, ∀k,m
28: Update B(t+1)

T ← B
(t)
T � T (t+1)

29: end while
Output: {xkt}k,t, {ymt}m,t

In doing so, we try to ensure each UE can be served by the
dominant RRH with the largest path loss coefficient and avoid
the competition for the dominant RRH between UEs in the
same round. Second, for the selected UEs, if the number of
connected active RRHs is larger than κu, then only the RRHs
with the largest κu path loss coefficients will be considered, and
others will be removed from the topology (see Lines 9-11 in
Alg. 3, where maxpA is to choose the largest p elements from
A). By doing so, the constraint (41c) is automatically satisfied.
Third, we select RRHs that do not satisfy the constraint (41b)
and make the decision to either switch off these RRHs (i.e.,
ymt = 0) or some UEs (i.e., xkt = 0) to make (41b) satisfied
(see Lines 14-21 in Alg. 3). To make the decision, we introduce

the following evaluation function for the t-th round

Φ(t) =

M∑
m=1

K∑
k=1

xktymt

(
[P (t)]km − δ[C(t)]km

)
(43)

where δ is a predefined parameter to compromise between
profit and cost, defined as

[P (t)]km =

K∑
j=1

[B̃
(t)
T ]km[B̃

(t)
T ]jm, (44)

[C(t)]km =

K∑
j=1,j 6=k

[B̃
(t)
T ]km[B̃

(t)
T ]jm, (45)

for all k,m. It is worth noting that both profit and cost
matrices rely only on the path loss information {βmk}m,k
for assignment, which is different from the existing ap-
proaches in the literature. It takes at most TM iterations to
achieve a feasible solution with the worst-case complexity of
O(TM(K logK +K)) [38] where O(K logK) is for sorting
UEs and O(K) for computing the evaluation function Φ(t) in
each iteration. The computational complexity is comparable
to the state-of-the-art method in [24]. A similar approach was
also demonstrated to be effective and efficient in active channel
sparsification in FDD massive MIMO systems [39].

VI. NUMERICAL RESULTS

In this section, we evaluate our proposed TPA algorithms
via simulations under the cell-free massive MIMO settings [6].
We consider a square area of 1 km × 1 km in the dense urban
scenario where M RRHs and K UEs with single antenna are
uniformly located at random. To avoid the boundary effects, we
also let the area be wrapped around for the random placement
of RRHs. The large-scale fading coefficient βmk is modeled
as follows:

10 log10(βmk) = PLmk + σshnmk (46)

where PLmk represents the path loss (in dB) between RRH-m
and UE-k, and σsh denotes the standard deviation (in dB) of
shadow fading with nmk ∼ NC(0, 1). We mainly focus on the
uncorrelated shadowing model for simplicity. In our simulation,
a three-slope path loss model [6] is considered. Specifically,

PLmk = −L− 15 log10(d1)− 20 log10(d0), if dmk ≤ d0

−L− 15 log10(d1)− 20 log10(dmk), if d0 < dmk ≤ d1

−L− 35 log10(dmk), if dmk > d1

(47)

where dmk is the distance (m) between RRH-m and UE-k, and
we use Hata-COST231 propagation model when dmk > d1

with d0 = 10 m and d1 = 50 m. Here, we have

L , 46.3 + 333.9 log10(f)− 13.82 log10(ha)

− (1.1 log10(f)− 0.7)hu + (1.56 log10(f)− 0.8)

where f is the carrier frequency (MHz), and ha and hu are
the heights (m) of RRHs and UEs, respectively. The following
baseline pilot assignment algorithms are chosen for comparison.



12

• Semi-random [6]: Each user randomly chooses one
orthogonal pilot, so that for each pilot dimension, at most
dKT e users are randomly selected.

• Cell-free greedy [6]: K users are assigned with K pilots
randomly, and the users with low downlink rate will be
iteratively reassigned with new pilots to minimize pilot
contamination.

• Structured policies [24]: The user group scheme with
RRH selection is adopted. This is a state-of-the-art pilot
assignment method for cell-free massive MIMO.

• TPA LRMC+Semi-random: Alg. 1 is applied to obtain
the minimal pilot dimension T of the required pilots, and
the semi-random method is adopted for pilot assignment.

• TPA sMWIM: Alg. 2 is applied to find the set of binary
values {xkt}k,t such that the pilot ψt will be assigned to
the user k when xkt = 1.

• TPA greedy: Alg. 3 is applied to find {xkt}k,t such that
the pilot ψt will be assigned to the user k when xkt = 1.

Unless otherwise specified, we consider M = 100, K = 40,
and κu = 20 in our simulations. The carrier frequency is set to
1900 MHz with bandwidth of 20 MHz. The power ρp and ρd

are set to 100mW and 200mW, respectively. For simplicity, we
adopt the equal power allocation for downlink data transmission.
Noise power spectral density is -174 dBm/Hz. The antenna
heights at RRH and UE are 15m and 1.65m, respectively.
The shadow fading σsh =8 dB, and noise figure is 9 dB. For
brevity, instead of using thresholds explicitly, we use G = 30%
to indicate that 30% of UE-RRH links with largest {βmk} will
be considered, with an implicitly specified threshold δβ such
that βmk ≥ δβ for all (m, k) ∈ E .

In Figure 3, we compare the cumulative distribution function
(CDF) of the downlink achievable rate per user of our proposed
algorithms with that of the existing methods [6], [24]. For our
proposed TPA algorithms, we adopt κ = 2 and G = 75%. For
the user group method of [24], T = 16 pilot dimension is
chosen, and for the semi-random and the greedy algorithms in
[6], the pilot dimension is T = 15 to best exploit the potential
of their methods. It can be observed that our proposed sMWIM
and greedy algorithms outperform all others in 90%-likely
spectral efficiency, while the structured user group method has
the best 10%-likely rate performance.

In Figure 4, the sum rate performance versus the pilot
dimension T is considered for all pilot assignment algorithms.
For our proposed algorithms, we also consider the different
connectivity when G = 30%, 50%, and 75% with κ = 2.
For comparison, our proposed LRMC algorithm to find the
pilot dimension is also considered to improve the semi-random
scheme. We observe that the sMWIM algorithm with G = 75%
has the highest sum rate when T = 20, but when T is small
or large, it is outperformed by the structured policy [24]. The
sMWIM algorithm with G = 30% performs well when T is
small, because the sparsity lends itself to a relatively more
efficient pilot assignment given the limited number of training
resource, but the performance is significantly degraded when
T becomes larger, due to the remaining interference that is not
captured by G. Remarkably, when T is extremely small, the
semi-random algorithm turns out to be the best choice. The
structured policy with user group scheme has the superior sum
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Fig. 3: The CDF of the downlink achievable rate per user with
G = 75% and κ = 2.
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Fig. 4: The downlink achievable sum rate versus pilot dimen-
sion T .

rate performance if budget of pilot dimension is larger than 24,
which is more than needed for our methods. In addition, for our
proposed sMWIM algorithm, when T is small, then a sparser
connectivity G yields a better sum rate performance; when T
exceeds certain threshold (e.g., T = 12), then the denser the
connectivity G is, the better the sum rate is. It suggests that if
training resource is limited, a sparser G is preferable, and vice
versa. Our proposed greedy algorithm could also have a better
sum rate performance if the pilot dimension is properly chosen,
i.e., T = 20. As a side remark, our proposed methods do not
require the prior knowledge of pilot dimension as the user
group scheme does [24]. The pilot dimension corresponding
to the peak sum rate value indicates the minimum number of
training dimensions for pilot assignment. We can observe that
the training dimension of sMWIM increases with the density
of network connectivity G – it requires T = 20, T = 16, and
T = 12 for G = 75%, G = 50%, and G = 30%, respectively.

To evaluate the impact of κ and G, we plot the CDF of the
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Fig. 5: The CDF of the downlink achievable rate per user with
G = 75%.
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Fig. 6: The CDF of the downlink achievable rate per user with
κ = 2.

downlink achievable rate with different κ in Figure 5 and with
different G in Figure 6. Figure 5 illustrates the CDF of per-
user rate performance of both sMWIM and greedy algorithm
with κ = 1, 2, 3 when G = 75% is fixed. We can observe
that when κ = 1, both sMWIM and greedy algorithms have
the same performance. Note that κ = 1 means each RRH is
allowed to estimate the channel from one UE in each pilot
dimension, so that the pilot dimension is minimized. This
corresponds to orthogonal access in the TIM setting [40], [41].
As the pilot scheduling is on the artificially imposed structure
G, pilot contamination is inevitable and may not be necessarily
eliminated perfectly in the physical scenarios. As such, by
setting κ = 2, 3, certain level of pilot contamination is allowed
in G. Such a non-orthogonal access strategy could bring in
potential coding gains over the orthogonal counterpart, making
sophisticated coding techniques developed in TIM e.g., [28],
[42] applicable to the TPA problem. In doing so, the majority
of UEs witness certain increase in per-user rate performance,

although there is some degradation of the UE with low rate.
To summarize, κ = 2 is preferred with respect to per-user rate
performance, where a limited level of pilot contamination is
allowed in pilot assignment. Figure 6 illustrates the CDF of
the downlink per-user rate when different connectivity G is
considered under a fixed κ = 2. It can be observed that, for the
sMWIM algorithm, when the connectivity is denser (e.g., G =
75%), the 90%-likely per-user rate is higher, as potential pilot
contamination and multiuser interference is taken into account
although there might be less freedom for pilot assignment. On
the other hand, when the connectivity is sparser (e.g., G = 30%)
the 10%-likely per-user rate is higher, meaning that there
would be more UEs have per-user rate above 2.5 bits/sec/Hz.
There observations agree on the intuition that a proper UE-
RRH association is crucial for the sMWIM algorithm. For
the greedy algorithm, the per-user rate performance is less
sensitive to the connectivity G. It is because in the greedy
algorithm the network connectivity G will be refined before
pilot assignment (see T̃ (t) in Alg. 3). We observe that the
performance is slightly outperformed by the sMWIM algorithm.
One reason is that, each UE is assigned with one unique
orthogonal pilot in the greedy algorithm, while in the sMWIM
algorithm the pilot of one UE could be the linear combination of
multiple orthogonal pilots - this suggests the potential benefit of
coded pilot design. Nevertheless, the computational complexity
of the greedy algorithm is substantially reduced.

VII. CONCLUSION

We have proposed a framework for pilot assignment in
large-scale distributed MIMO networks by artificially imposing
topological structures on UE-RRH connectivity. By such a
topological modeling, we cast the pilot assignment problem
to a topological interference management (TIM) problem with
groupcast messages. With respect to the known or unknown
channel estimation patterns, we proposed two topological
pilot assignment (TPA) problem formulations by a low-rank
matrix completion and factorization method and a binary
quadratically constrained quadratic program, for which we
apply low-complexity algorithms to solve the pilot assignment
problem efficiently. The effectiveness of our proposed frame-
works and algorithms are verified under the cell-free massive
MIMO settings. The proposed TPA approach yields superior
ergodic rate performance compared to the state-of-the-art pilot
assignment methods. Such a bridge between TPA and TIM
problems is expected to trigger a new line of research dedicated
to channel estimation methods in distributed networks, so that
the sophisticated coding techniques from TIM, e.g., [28], [42],
can be tailored for pilot assignment applications in distributed
MIMO systems.
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