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Abstract: In the quest to use modern analogues to understand clay mineral distribution patterns to
better predict clay mineral occurrence in ancient and deeply buried sandstones, it has been necessary
to define palaeo sub-environments from cores through modern sediment successions. Holocene
cores from Ravenglass in the NW of England, United Kingdom, contained metre-thick successions of
massive sand that could not be unequivocally interpreted in terms of palaeo sub-environments using
conventional descriptive logging facies analysis. We have therefore explored the use of geochemical
data from portable X-ray fluorescence analyses, from whole-sediment samples, to develop a tool
to uniquely define the palaeo sub-environment based on geochemical data. This work was carried
out through mapping and defining sub-depositional environments in the Ravenglass Estuary and
collecting 497 surface samples for analysis. Using R statistical software, we produced a classification
tree based on surface geochemical data from Ravenglass that can take compositional data for any
sediment sample from the core or the surface and define the sub-depositional environment. The
classification tree allowed us to geochemically define ten out of eleven of the sub-depositional
environments from the Ravenglass Estuary surface sediments. We applied the classification tree
to a core drilled through the Holocene succession at Ravenglass, which allowed us to identify
the dominant paleo sub-depositional environments. A texturally featureless (massive) metre-thick
succession, that had defied interpretation based on core description, was successfully related to
a palaeo sub-depositional environment using the geochemical classification approach. Calibrated
geochemical classification models may prove to be widely applicable to the interpretation of sub-
depositional environments from other marginal marine environments and even from ancient and
deeply buried estuarine sandstones.

Keywords: estuary; estuarine sediment classification; geochemical elements; depositional environment;
prediction; Holocene; machine learning

1. Introduction

Reservoir quality studies in the petroleum industry have led to improved production
strategies for oil and gas fields [1]. The improvement in production due to reservoir
quality studies has been enabled through advances in downhole logging (e.g., NMR),
laboratory analysis (e.g., SEM-EDS), and forward modelling (e.g., diagenetic modelling) [2].
Sedimentary facies analysis should be employed in reservoir quality studies [3,4], because
the primary characteristics of sediment typically influence the way sediment fabric and
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mineralogy change during diagenesis [5]. Sedimentary facies are distinguishable units of
sedimentary deposits, each with a unique set of characteristics developed during a specific
mode of sediment transport and deposition [6]. The environment of deposition of clastic
sediment has a profound impact on sediment characteristics, because it influences grain
size, sorting, degree of bioturbation, clay infiltration, water composition, in situ mineral
processes, and water flux [2].

Dalrymple and Choi [7] suggested that estuarine sediments are uniquely complex
because of the interplay of a wide variety of processes that give rise to a suite of specific
depositional environments. Reservoir quality prediction in ancient estuarine and mixed
fluvial–marine clastic sediments therefore presents a challenge [8]. These problems are
compounded by the presence of multiple sediment sources (variable hinterland geology as
well as sediment sourced from the sea), the spatial and temporal variability in sediment
transport related to the interaction of tidal and riverine processes, and the susceptibility
of these environments to evolve as a result of relative sea-level change [7]. We advocate
that, given the complexity of ancient estuarine and mixed fluvial–marine environments, a
multi-disciplinary and quantitative approach is required to generate robust interpretations.
Geochemical approaches offer a practical way to effectively characterise and interpret
estuarine and mixed fluvial–marine sediments, which may be linked to reservoir quality
analysis of ancient and deeply buried strata because sediment geochemistry influences the
mineral processes during diagenetic transformations [9].

Estuaries are strongly influenced by the fluvial and marine processes that together
control mineral and elemental distribution patterns [10]. Estuaries tend to act as sinks for
elements such as Fe and Mn due to flocculation, a process by which colloidal particles
come out of suspension to sediment under the form of flocs, or flakes, due to a change
of water composition [11]. Accumulated flocs that are rich in Fe and Mn can be flushed
out of the estuary during storm events [12] and during longer-term episodes of relative
sea-level fall [13–16]. In the United Kingdom, the site of the current study, modern estuaries
tend to act as sinks rather than sources for elements such as Fe and Mn because tidal and
flocculation processes limit river output to the ocean [17].

Although the bulk geochemistry of primary sediment is considered to control the
mineralogical architecture of petroleum reservoirs [18], our knowledge of the abundance
and concentration of rock-forming elements (i.e., the elements that comprise rock-forming
minerals) in surface sediments is limited [19]. Geochemical analysis of sediments can
unlock some of the challenges in basin analysis, for example the interpretation of sediment
provenance and differentiation of specific depositional environment [20].

Unlike rocks that are at, or close to, equilibrium, such as most metamorphic rocks [21],
clastic sediments are typically distant from thermodynamic equilibrium. Clastic sediments
can have a large number of discrete mineral phases [2] that far exceeds that expected
by the phase rule. A consequence of this is that a given element can be associated with
numerous minerals (or phases) in a clastic sedimentary system. The composition of surface
sediment is controlled by a number of factors including the geology of the hinterland,
climatic conditions, the vigour and distance of sediment transport, and redox conditions at
the site of deposition [22].

There is a broad relationship between clastic sediment grain size and its geochemical
composition [23,24] because phases in fine-grained sediment fractions, i.e., clay minerals,
hydroxides and sesqui-hydroxides, tend to concentrate elements such as Al, Mn and Fe. In
contrast, coarse-grained fractions tend to enrich Si and elements such Zr and Ti, which are
concentrated in heavy minerals [10]. In the field of sedimentology, the application of grain
size distribution to determine sedimentary environment, is well established [25,26]. In this
study, we have attempted to discriminate estuary sub-depositional environments using
geochemical signatures derived by portable X-ray fluorescence spectrometry (pXRF).

The use of pXRF spectrometers in exploration and environmental geochemistry has
developed significantly over the last decade owing to its ease of use, speed of analysis
and an acceptable level of precision for sedimentary rocks [27–29] and soils [30–32]. pXRF
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spectrometers have been applied successfully in surface sediment characterisation [33].
Recent developments have allowed pXRF to be used for the analysis of up to 42 major,
minor and trace elements [34]. The detection limits of pXRF are commonly sufficient for
many geochemical analyses. pXRF can detect element concentrations ranging from high
percentages down to a few parts per million; this allows monitoring of many elements
in sediment [35]. However, pXRF suffers from low sensitivity for some elements, e.g.,
magnesium has a high detection limit (typically >1000 ppm) [36].

Portable XRF has been used for a wide range of geochemical applications such as litho-
geochemical exploration [37], mineral abundance studies during studies of oil field core [38],
studies of mineral enrichment in ores [39], geological reconnaissance and mapping [40],
assessment of metal distribution in modern sediments [41], geochemical characterisation
and provenance determination of sediments [42], and linking mineralogy to elemental
distribution [43,44]. We here introduce a novel approach for sedimentary sub-environment
classification and prediction using pXRF data from the Ravenglass Estuary in NW Eng-
land. This is an area previously studied as a modern analogue for ancient estuarine and
mixed fluvial–marine sediments [45–52]. The Ravenglass Estuary offers a wide range
of estuarine sub-depositional environments that are relatively pristine and easily acces-
sible. The main aims of this study were to understand surface sediment geochemistry
across the Ravenglass Estuary sub-depositional environments, assess compositional dif-
ferences between sediments from sub-depositional environments, develop a geochemical
method to classify sub-depositional environments and use the classification to predict
sub-depositional environments from core samples. This new approach to the classification
of sub-depositional environments has been applied to a core drilled into the Holocene
succession in the Ravenglass Estuary to reveal palaeo-sub-depositional environments.

This study addressed the following research questions:

1. What elements are dominant within the surface sediment in the Ravenglass Estuary?
2. What controls elemental abundance and distribution patterns at Ravenglass?
3. Do specific estuarine sub-depositional environments have characteristic element

concentrations?
4. Can surface pXRF data be used to discriminate subsurface estuarine sub-depositional

environments?

2. Study Area: The Ravenglass Estuary

The Ravenglass Estuary is situated on the west coast of Cumbria in northwest England,
UK and covers an area of approximately 5.6 km2 (Figure 1). The estuary is macro-tidal
with a maximum recorded tidal range of ~7.55 m; up to approximately 86% of the area
of the estuary is exposed at low tide [45–49,53,54]. The estuary extends eastwards up to
the tidal reaches of the Rivers Mite, Irt and Esk and is connected to the Irish Sea through
a single tidal inlet, 500 m in width, that flows between two, dune-topped coastal spits
(Drigg and Eskmeals spits). The coastal spits shelter the estuary from wave-action, but
the estuary has strong tidal currents as result of the macro-tidal regime. The Rivers Mite,
Irt and Esk have average flow rates of 0.4, 3.4, and 4.2 m3s−1, respectively [54]. Kelly,
Emptage [55] classified the estuary as tide- and wave-dominated and ‘dual-funnelled’ and
described the shallow bathymetry which causes frictional effects and promotes strong
tidal-asymmetry, with a longer outward ebb tidal-flow than inward flood tidal-flow. The
impact of anthropogenic activities on the Ravenglass Estuary is relatively low because the
surrounding environment is sparsely populated. However, the construction of the Esk
and Mite railway bridges in 1868 led to expansion of salt marsh due to added localised
sheltering from tidal currents [56].
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Figure 1. Location map of the Ravenglass Estuary, north-west England with an inset map showing 
the location of the estuary in the UK. The small yellow dots shows the distribution of surface-
sediment sample site (<2 cm) used for XRF analysis and the larger purple dot shows the location of 
the geotechnical core. 

The inner estuary contains brackish water and has moderate fluvial influences from 
the Rivers Irt, and Esk (Figures 1 and 2). The central part of the estuary, containing 
Saltcoats tidal flat, has mixed energy (fluvial, tide and wave-influenced) with near-
seawater salinity (Figures 1 and 2). The outer estuary is dominated by seawater with wave 
and/or tidal currents; this covers the main tidal channel, estuary mouth and the foreshore 
(Figures 1 and 2). 

Figure 1. Location map of the Ravenglass Estuary, north-west England with an inset map showing the
location of the estuary in the UK. The small yellow dots shows the distribution of surface-sediment
sample site (<2 cm) used for XRF analysis and the larger purple dot shows the location of the
geotechnical core.

The inner estuary contains brackish water and has moderate fluvial influences from the
Rivers Irt, and Esk (Figures 1 and 2). The central part of the estuary, containing Saltcoats
tidal flat, has mixed energy (fluvial, tide and wave-influenced) with near-seawater salinity
(Figures 1 and 2). The outer estuary is dominated by seawater with wave and/or tidal currents;
this covers the main tidal channel, estuary mouth and the foreshore (Figures 1 and 2).

Sedimentary deposits are fed into the estuary via the Rivers Mite, Irt and Esk. The
sediments drain from a range of different bedrock types and Quaternary drift-deposits.
The hinterland geology is comprised of Ordovician Borrowdale Volcanic Group (BVG),
Devonian Eskdale Granite and Cambrian Skiddaw Group slate; a small area of Triassic
Sherwood Sandstone Group, at the west of the drainage area, is largely covered by drift.
Quaternary drift-deposits are dominated by glacial diamicton, peat, and glacial-fluvial-
lacustrine deposits [47–49,57]. Eskdale Granite-sourced sediment was transported into
the estuary via the River Esk, while BVG andesite-sourced sediment was transported
into the estuary via the River Irt [47–50]. The post-glacial, Holocene, record represents
approximately 10,000 years of deposition [58]. The estuary has been extensively studied
in terms of sedimentary systems and processes, detrital clay mineralogy and distribution,
detrital clay coat origin, mineralogy and distribution [45–51] and so represents an ideal
field site to answer the research questions set out in the introduction.
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and southern sites); De9, ebb-tidal delta; and De10, salt marsh. 

Sedimentary deposits are fed into the estuary via the Rivers Mite, Irt and Esk. The 
sediments drain from a range of different bedrock types and Quaternary drift-deposits. 
The hinterland geology is comprised of Ordovician Borrowdale Volcanic Group (BVG), 
Devonian Eskdale Granite and Cambrian Skiddaw Group slate; a small area of Triassic 
Sherwood Sandstone Group, at the west of the drainage area, is largely covered by drift. 
Quaternary drift-deposits are dominated by glacial diamicton, peat, and glacial-fluvial-
lacustrine deposits [47–49,57]. Eskdale Granite-sourced sediment was transported into the 

Figure 2. Distribution of estuarine sub-depositional environments mapped across the Ravenglass
Estuary. These sub-depositional environments are labelled; De1, gravel bed; De2, mud flat; De3,
mixed flat; De4, sand flat; De5, tidal bars; De6, tidal inlet; De7, backshore; De8, foreshore (northern
and southern sites); De9, ebb-tidal delta; and De10, salt marsh.

3. Samples and Methods
3.1. Field-Based Mapping and Samples Collection

Based on geomorphological mapping criteria, together with the use of aerial imagery
and grain size analysis, we have mapped eleven sub-depositional environments across the
estuary (Figure 2). The sub-depositional environments are gravel beds, vegetated surfaces,
barrier spits, tidal flats (sub-divided into mud flat, mixed flat and sand flat), tidal bars, tidal
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inlet, backshore, foreshore, ebb-tidal delta (Figure 2). The subdivision of tidal flats was
based laboratory-derived sand percentages, modified from a scheme initially proposed by
Brockamp and Zuther [59], where: 90–100% sand is sand flat, 50–90% sand is mixed flat,
and 15–50% sand is mud flat.

We sampled surface sediment (from <2 cm below the surface) from 497 sites covering
the entire estuary and the coastal portion of the system (Figure 1). Sediment samples were
placed in airtight plastic bags in the field and dried in the laboratory prior to geochemical
pXRF analysis.

3.2. Grain Size Analysis

Grain size analysis was undertaken solely to differentiate the sediments of the tidal
flats into mud-, mixed- and sand-flat sub-depositional environments. Grains <2 mm were
separated from the sample using a sieve and then this fraction was analysed for grain size
distribution using laser particle size analysis (LPSA) with a Beckman Coulter LS13 320
Counter. Organic matter was removed using established laboratory procedures for sample
digestion [50]. A small amount of Calgon was added to convert the dried sediment into a
paste for mixing and homogenisation, prior to analysis [52]. The LPSA data were analysed
using GRADISTAT© to define grain size parameters of the sediment.

3.3. Multi-Element Analyses Using Handheld Niton +XL3t GOLDD pXRF Spectrometer

All sediment samples from Ravenglass were analysed using a handheld Thermo
Scientific Niton +XL3t GOLDD XRF spectrometer (pXRF) to measure the abundance of
major, minor and trace elements. The pXRF equipment is a self-contained, energy dispersive
XRF spectrometer with a variable intensity energy source (6–50 kV, 0–200 µA) Ag anode X-
ray tube. It is equipped with a factory-calibrated, GOLDD (Geometrically Optimised Large
area Drift Detector) detection system, optimised by the manufacturer for low detection
limits, and high-precision measurements of more than 40 elements. Sediment samples were
prepared by air drying whole-sediment samples in a 50 mm Petri dishes which was then
placed 2 mm from the pXRF detector. Problems of horizontal and vertical heterogeneity of
the sample, variable moisture and surface roughness, associated with core-based, “point
and shoot” pXRF studies [30,60–62] have here been avoided [63].

Despite concentrations for 40 elements being reported by the pXRF, only 12 elements
were present in all samples. These elements are Al, Si, K, Ca, Ti, Fe, Mn, Rb, Sr, Zr, Ba
and Cs. Other elements were variably present at concentrations above the element-specific
detection limit, but these elements, with values below detection in some samples, could not
easily be incorporated into any scheme to interrogate the relationship between composition
and the sub-depositional environment.

The reported limit of detections of the instrument for Al, K, Ca, Ti, Fe, Mn, Rb, Sr, Zr,
Ba and Cs are listed in Table 1. The instrument’s high precision and accuracy was validated
by replicating the pXRF analysis, on a single sample 30 times; the average and standard
deviation of Al, K, Ca, Ti, Fe, Mn, Rb, Sr, Zr, Ba and Cs are listed in Table 1. Each analysis was
conducted, for 150 s, in “Test All GEO” mode; this combines mining and soil modes which
thus permits the determination of major and trace elements. The optimum analysis time of
150 s was selected by repeating analysis of one sample for different replicate durations in
order to identify when there was no significant improvement in the reported uncertainty.

3.4. Spatial Mapping

Spatial distribution maps of elements and element indices were generated using
ArcGIS software, via an inverse distance weighted (IDW) interpolation function. The IDW
approach has lower mean prediction errors and higher correlations between predicted
and measured values than other mapping tools [64]. IDW was also selected to avoid
the automatic generation of physically-meaningless negative concentrations, such as are
produced by spline-based interpolation methods, and to avoid the formation of valleys
or ridges [65]. A polyline in ArcGIS was drawn down the long axes of the Drigg and
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Eskmeals spits, to separate the marine data from estuarine data when performing the
interpolations [48].

Table 1. Factory reported detection limit for some key elements plus mean and standard deviations
of one sample analysed 30 times to assess credibility of reported concentration data.

Element Reported Detection
Limit (ppm)

Mean of 30 Repeat
Analyses from One

Sample (ppm)

Standard Deviation
of 30 Repeat

Analyses from One
Sample (ppm)

Al 2000 64,099 1685
K 250 18,234 145
Ca 70 2610 46
Ti 6 2477 92
Fe 25 11,837 90
Mn 30 172 19
Rb 6 70 1
Sr 8 73 2
Zr 3 352 3
Ba 50 487 18
Cs 12 85 4

3.5. Statistical Multivariate Analysis

Multivariate statistical techniques are powerful tools commonly used to investigate vari-
ability in large datasets [66–69]. Although we will display concentration maps of elements,
there is a risk that all we will display is greater or smaller amounts of element dilution by SiO2
due to variable quantities of the dominant mineral, quartz. To evaluate the more meaningful
relative abundance of elements, we have calculated a range of indices (e.g., X/(X + Y)) and
mapped these values. We choose not to use ratios as they vary from infinitely large to infinitely
small and multi-order of magnitude ranges are difficult to map and present problems for
machine learning approaches. We have avoided indices of elements that are strongly autocorre-
lated due to their geochemical similarity (e.g., K and Rb; Ca and Sr; Fe and Mn). We produced
a correlogram (available on request) using R statistical software to identify the presence of
strong element correlations (e.g., K and Rb) and to identify elements that have the greatest
non-correlation and so reveal most about the geochemical variability of the estuary. The in-
dices we have employed are: K/(K + Si), K/(K + Al), K/(K + Ca), K/(K + Ti), K/(K + Mn),
K/(K + Sr), Sr/(Sr + Rb), Ca/(Ca + Fe), and Mn/(Mn + Sr); maps and boxplots of these indices
will be presented. These elemental indices were selected as they were the ones that subsequent
machine learning (recursive partitioning) employed to differentiate sub-depositional environ-
ments (see later text in Section 5.5). However, we have also mapped the spatial distributions of
Fe/(Fe + Ti), K/K + Fe) and Al/(Al + Fe), because Fe is of relevance to the understanding of
Fe-clay minerals in the estuary.

3.6. ANOVA and Tukey’s Post Hoc Test

Analysis of variance (ANOVA) tests were used in R statistical software [70], to in-
vestigate the statistical significance of geochemical differences between various pairs of
sub-depositional environments. Following ANOVA, Tukey’s post hoc honestly significant
difference (HSD) test was then employed, using R statistical software [70], to determine
which individual depositional environments were statistically different from one another
as a function of elemental indices. The difference between each pair, for each elemental
index, is defined as being significant if the “p” value is less than 0.05 [70,71].

3.7. Boxplots and Classification Trees

Univariate analysis of geochemical indices, split by the sub-depositional environment,
was undertaken using boxplots produced using ggplot2 in RStudio [72]. The Recursive Par-
titioning and Regression Tree (RPART) package [73], available in R statistical software [70],
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was used to classify the sub-depositional environments (categorical data) using sediment
geochemical signatures (continuous data). The RPART routine allows the development
of a classification tree by using one or more variable (in this case, elemental indices) to
find the optimum splits of the dataset, into different categories (e.g., sub-depositional
environment) [52].

3.8. Holocene Cores

A sediment core was drilled through the Holocene succession in the tidal bar sub-
depositional environment in the Esk arm of the inner Ravenglass Estuary, under tender
by Geotechnical Engineering Ltd. (GEL) [58]. The drilled core was retrieved in a series
of 12 cm diameter, 1 m length, semi-rigid plastic liners for protection and easy transport.
Each 1 m segment of the sediment core was sliced and photographed wet and air-dried
for extensive study and subsequent analysis at the University of Liverpool. The core
description involved detailed sedimentary logging of each core segment, at a scale of 1:5,
and lithofacies were characterised in terms grain size, colour, sedimentary structures, bed
thickness, presence of roots and shell fragments, bioturbation extent and type. The core was
sampled at 5 cm intervals for pXRF and LPSA analyses, using techniques described above.

4. Results

Here, we present details of the distributions of sub-depositional environments in the
Ravenglass Estuary and the absolute and relative distribution of elements.

4.1. Sub-Depositional Environments Present across the Estuary

The sub-depositional environments identified and mapped (Figure 2) across the Raven-
glass Estuary are gravel beds (De1), tidal flats (sub-divided into mud flats, De2, mixed flats,
De3, and sand flats, De4), tidal bars (De5), tidal inlet (De6), backshore (De7), foreshore
(De8), ebb-tidal delta (De9), and salt marsh (De10). The subdivision of tidal flats was based
on laboratory-derived laser particle size analysis data, with average grain size distribution
curves for the mud, mixed and sand flats illustrated in Figure 3.
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Figure 3. Frequency distribution curves of the mud, mixed and sand flat sub-depositional environ-
ments revealing how laser particle size analysis data were used to differentiate tidal flat sediments.

The inner estuary comprises: (a) gravel beds (De1), which are locally distributed in the
lower part of the Esk and Irt arms of the estuary and are dominated by a loose aggregate
of rock fragments; (b) salt marsh (De10), which is present in the Esk and Irt arms of the
estuary and is dominated by salt-tolerant plants; (c) tidal bars (De5), which are sand bars
present in the intertidal zone and which usually have a long axis oriented parallel to the
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direction of the main current; (d) sand flats (De4), which are intertidal flats bordering the
main channel; (e) mixed flats (De3), which are sandwiched between sand mud flats; (f) mud
flats (De2), which are furthest away from the main channel (Figure 2).

The central estuary includes extensive tidal flats and comprises: (a) sand flats (De4);
(b) mixed flats (De3); (c) mud flats (De2); and (d) salt marsh (De10).

The outer estuary contains: (a) the main tidal inlet (De6) that cuts between the Es-
kmeals and Drigg barrier spits; (b) foreshore (De8), which is the part of the beach, that
lies between the backshore and the mean-low-water line; and (c) backshore (De7), which
is situated above the mean-low-water line and can be inundated during spring tides and
storm events. The foreshore has been split into two portions, north and south of the main
channel (becoming NDe8 and SDe8), as these areas have texturally (and, as it turns out,
geochemically) distinct sediment. NDe8 is coarser grained than SDe8.

4.2. Element Concentrations in the Ravenglass Estuary

The number of samples from each depositional environment that are above the de-
tection limit is shown in Table 2. A summary of elements with their minimum reported
values is presented in Table 3, where, for elements that have many samples below detec-
tion, the minimum reported value effectively represents the detection limit in Ravenglass
surface sediments.

The elements present in Ravenglass surface sediments include major elements typically
present in all samples: Al, Si, K, Ca, Fe, S and Ti. Minor elements, here defined as between
100 and 1000 ppm, include Cl, Mn, Rb, Zr, and Ba. These minor elements were detected in all
samples from all the different sub-environments. Trace elements, here defined as <100 ppm,
present in Ravenglass sediments include P, Sc, V, Cr, Ni, Cu, Zn, As, Sr, Nb, Pd, Ag, Sn, Sb, Te,
Cs, Hg, Pb, Bi, Th and U. These trace elements were detected in small to negligible quantities
in some samples but were below detection in many samples (Tables 3 and 4).

Table 2. Summary of geochemical elements identified by the handheld pXRF tool and number of
samples for which the element is above the limit of detection.

Sub-Environment Samples Al Si P S Cl K Ca Sc Ti V Cr Mn

Foreshore 69 69 69 17 24 69 69 69 3 69 48 35 67
Gravel bed 28 28 28 10 18 28 28 28 4 28 17 19 26
Mixed flat 94 94 94 1 54 94 94 94 2 94 51 66 93
Mud flat 55 55 55 1 52 55 55 55 16 55 33 52 54

Ebb-tidal delta 21 21 21 9 20 21 21 21 2 21 6 7 20
Sand flat 120 120 120 0 28 120 120 120 1 120 102 40 113
Tidal bars 53 53 53 0 12 53 53 53 1 53 43 18 50
Tidal inlet 25 25 25 5 8 25 25 25 0 25 20 6 24
Salt marsh 17 17 17 17 17 17 17 17 5 17 14 11 17

Sub-Environment Samples Fe Ni Cu Zn As Rb Sr Zr Nb Pd Ag

Foreshore 69 69 0 0 28 15 69 69 69 25 3 0
Gravel bed 28 27 0 1 23 13 28 28 28 14 0 0
Mixed flat 94 94 0 0 93 20 94 94 94 88 0 2
Mud flat 55 54 0 0 55 19 55 55 55 55 0 0

Ebb-tidal delta 21 21 0 0 14 2 21 21 21 4 4 0
Sand flat 120 119 0 0 76 12 120 120 120 69 0 0
Tidal bars 53 52 1 0 39 6 53 53 53 31 0 2
Tidal inlet 25 25 1 1 14 6 25 25 25 7 2 1
Salt marsh 17 17 8 1 17 16 17 17 17 13 2 3

Sub-Environment Samples Cd Sn Sb Te Cs Ba Hg Pb Bi Th U

Foreshore 69 13 32 20 60 65 69 3 13 0 14 8
Gravel bed 28 11 17 10 28 28 28 0 13 1 14 3
Mixed flat 94 0 51 15 92 93 94 6 3 1 46 5
Mud flat 55 0 28 4 48 54 55 3 11 8 41 1

Ebb-tidal delta 21 17 21 19 21 21 21 0 19 0 5 1
Sand flat 120 0 64 27 106 118 120 2 2 1 7 6
Tidal bars 53 0 35 8 49 53 53 2 2 1 3 1
Tidal inlet 25 4 17 9 25 25 25 3 5 0 8 1
Salt marsh 17 16 17 17 17 17 17 1 17 3 15 7
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Table 3. Summary of reported elements showing the minimum detected value for each in the
Ravenglass Estuary.

Elements Al Si P S Cl K Ca Sc Ti

Minimum value (ppm) 1246 56,322 119 90 266 2189 73 6 257
Samples above minimum value 100% 100% 12% 48% 100% 100% 100% 7% 100%

Elements V Cr Mn Fe Ni Cu Zn As Rb

Minimum value (ppm) 44 20 52 2245 18 17 9 4 9
Samples above minimum value 69% 53% 96% 99% 2% 1% 74% 23% 100%

Elements Sr Zr Nb Pd Ag Cd Sn Sb

Minimum value (ppm) 28 29 2 4 100 10 13 12
Samples above minimum value 100% 100% 63% 2% 2% 13% 59% 27%

Elements Te Cs Ba Hg Pb Bi Th U

Minimum value (ppm) 30 10 93 6 5 5 3 6
Samples above minimum value 93% 98% 100% 4% 18% 3% 32% 7%

Table 4. Collation of some of the significance values resulting from the ANOVA analysis and
Tukey’s post hoc honestly significant difference (HSD) tests for the sand-dominated sedimentary
environments. The following symbols presented here highlight the statistical significance; significant
when p < 0.05 (*), very significant when p < 0.01 (**), and extremely significant when p < 0.001 (***).
We have excluded differences that are marginally significant (when p < 0.1).

Sub-Environment Variable p-Value Sub-Environment Variable p-Value

De3-De2 K/(K + Si) 0.0000000 De9-De4 K/(K + Ca) 0.0000007
De4-De2 K/(K + Si) 0.0000000 N-De8-De4 K/(K + Ca) 0.0000000
De5-De2 K/(K + Si) 0.0000000 S-De8-De4 K/(K + Ca) 0.0000000
De6-De2 K/(K + Si) 0.0000000 De6-De5 K/(K + Ca) 0.0000012
De9-De2 K/(K + Si) 0.0000000 De9-De5 K/(K + Ca) 0.0000044

N-De8-De2 K/(K + Si) 0.0000000 N-De8-De5 K/(K + Ca) 0.0000000
S-De8-De2 K/(K + Si) 0.0000000 S-De8-De5 K/(K + Ca) 0.0000000
De4-De3 K/(K + Si) 0.0000000 S-De8-De6 K/(K + Ca) 0.0041914
De5-De3 K/(K + Si) 0.0000000 S-De8-De9 K/(K + Ca) 0.0112902
De6-De3 K/(K + Si) 0.0000000 S-De8-N-De8 K/(K + Ca) 0.0001769
De9-De3 K/(K + Si) 0.0000000 De3-De2 K/(K + Ti) 0.0000007

N-De8-De3 K/(K + Si) 0.0000000 De4-De2 K/(K + Ti) 0.0000000
S-De8-De3 K/(K + Si) 0.0000000 De5-De2 K/(K + Ti) 0.0000000
De6-De4 K/(K + Si) 0.0033850 De6-De2 K/(K + Ti) 0.0000000

N-De8-De4 K/(K + Si) 0.0000060 De9-De2 K/(K + Ti) 0.0002649
N-De8-De5 K/(K + Si) 0.0000939 N-De8-De2 K/(K + Ti) 0.0000000

De4-De2 K/(K + Al) 0.0000000 S-De8-De2 K/(K + Ti) 0.0000084
De5-De2 K/(K + Al) 0.0000005 De4-De3 K/(K + Ti) 0.0000000

N-De8-De2 K/(K + Al) 0.0000000 De5-De3 K/(K + Ti) 0.0004749
De4-De3 K/(K + Al) 0.0000000 De6-De3 K/(K + Ti) 0.0018964
De5-De3 K/(K + Al) 0.0000132 N-De8-De3 K/(K + Ti) 0.0035633
De9-De3 K/(K + Al) 0.0039216 De3-De2 K/(K + Mn) 0.0000000

N-De8-De3 K/(K + Al) 0.0000000 De4-De2 K/(K + Mn) 0.0000000
De6-De4 K/(K + Al) 0.0000027 De5-De2 K/(K + Mn) 0.0000000
De9-De4 K/(K + Al) 0.0000000 De6-De2 K/(K + Mn) 0.0000000

S-De8-De4 K/(K + Al) 0.0000000 De9-De2 K/(K + Mn) 0.0000000
De9-De5 K/(K + Al) 0.0000000 N-De8-De2 K/(K + Mn) 0.0000000

S-De8-De5 K/(K + Al) 0.0000044 S-De8-De2 K/(K + Mn) 0.0000000
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Table 4. Cont.

Sub-Environment Variable p-Value Sub-Environment Variable p-Value

N-De8-De6 K/(K + Al) 0.0006158 De4-De3 K/(K + Mn) 0.0000000
N-De8-De9 K/(K + Al) 0.0000000 De5-De3 K/(K + Mn) 0.0086938

S-De8-N-De8 K/(K + Al) 0.0000001 De6-De3 K/(K + Mn) 0.0004807
De3-De2 K/(K + Ca) 0.0320513 N-De8-De3 K/(K + Mn) 0.0000001
De4-De2 K/(K + Ca) 0.0000000 De6-De2 K/(K + Sr) 0.0000000
De5-De2 K/(K + Ca) 0.0000000 De9-De2 K/(K + Sr) 0.0000000
De4-De3 K/(K + Ca) 0.0000000 N-De8-De2 K/(K + Sr) 0.0000000
De5-De3 K/(K + Ca) 0.0000000 S-De8-De2 K/(K + Sr) 0.0000000

S-De8-De3 K/(K + Ca) 0.0000884 De6-De3 K/(K + Sr) 0.0000000
De6-De4 K/(K + Ca) 0.0000001 De9-De3 K/(K + Sr) 0.0000000

N-De8-De3 K/(K + Sr) 0.0000000 S-De8-De4 Ca/(Ca + Fe) 0.0000000
S-De8-De3 K/(K + Sr) 0.0000000 De6-De5 Ca/(Ca + Fe) 0.0002164
De6-De4 K/(K + Sr) 0.0000000 De9-De5 Ca/(Ca + Fe) 0.0000749
De9-De4 K/(K + Sr) 0.0000000 N-De8-De5 Ca/(Ca + Fe) 0.0000170

N-De8-De4 K/(K + Sr) 0.0000000 S-De8-De5 Ca/(Ca + Fe) 0.0000000
S-De8-De4 K/(K + Sr) 0.0000000 S-De8-De6 Ca/(Ca + Fe) 0.0013038
De6-De5 K/(K + Sr) 0.0000000 S-De8-De9 Ca/(Ca + Fe) 0.0116983
De9-De5 K/(K + Sr) 0.0000000 S-De8-N-De8 Ca/(Ca + Fe) 0.0000284

N-De8-De5 K/(K + Sr) 0.0000000 De3-De2 Mn/(Mn + Sr) 0.0059663
S-De8-De5 K/(K + Sr) 0.0000000 De4-De2 Mn/(Mn + Sr) 0.0000000
De6-De2 Sr/(Sr + Rb) 0.0015649 De5-De2 Mn/(Mn + Sr) 0.0000001
De9-De2 Sr/(Sr + Rb) 0.0000001 De6-De2 Mn/(Mn + Sr) 0.0000000

N-De8-De2 Sr/(Sr + Rb) 0.0000002 De9-De2 Mn/(Mn + Sr) 0.0000000
S-De8-De2 Sr/(Sr + Rb) 0.0063469 N-De8-De2 Mn/(Mn + Sr) 0.0000000
De6-De3 Sr/(Sr + Rb) 0.0002659 S-De8-De2 Mn/(Mn + Sr) 0.0000000
De9-De3 Sr/(Sr + Rb) 0.0000000 De4-De3 Mn/(Mn + Sr) 0.0000000

N-De8-De3 Sr/(Sr + Rb) 0.0000000 De5-De3 Mn/(Mn + Sr) 0.0220222
S-De8-De3 Sr/(Sr + Rb) 0.0019248 De6-De3 Mn/(Mn + Sr) 0.0000000
De6-De4 Sr/(Sr + Rb) 0.0000004 De9-De3 Mn/(Mn + Sr) 0.0000003
De9-De4 Sr/(Sr + Rb) 0.0000005 N-De8-De3 Mn/(Mn + Sr) 0.0000000

N-De8-De4 Sr/(Sr + Rb) 0.0000000 S-De8-De3 Mn/(Mn + Sr) 0.0000000
S-De8-De4 Sr/(Sr + Rb) 0.0367545 De5-De4 Mn/(Mn + Sr) 0.0105295
De6-De5 Sr/(Sr + Rb) 0.0000033 De6-De4 Mn/(Mn + Sr) 0.0009477
De9-De5 Sr/(Sr + Rb) 0.0000104 N-De8-De4 Mn/(Mn + Sr) 0.0000000

N-De8-De5 Sr/(Sr + Rb) 0.0000000 S-De8-De4 Mn/(Mn + Sr) 0.0001308
De9-De6 Sr/(Sr + Rb) 0.0000000 De6-De5 Mn/(Mn + Sr) 0.0000000

S-De8-De6 Sr/(Sr + Rb) 0.0000000 De9-De5 Mn/(Mn + Sr) 0.0238969
N-De8-De9 Sr/(Sr + Rb) 0.0000000 N-De8-De5 Mn/(Mn + Sr) 0.0000000

S-De8-N-De8 Sr/(Sr + Rb) 0.0000000 S-De8-De5 Mn/(Mn + Sr) 0.0000000
De4-De2 Ca/(Ca + Fe) 0.0000000 N-De8-De9 Mn/(Mn + Sr) 0.0161029
De5-De2 Ca/(Ca + Fe) 0.0000000 De3-De2 Ti/(Ti + Mn) 0.0135132

S-De8-De2 Ca/(Ca + Fe) 0.0041582 De4-De2 Ti/(Ti + Mn) 0.0000000
De4-De3 Ca/(Ca + Fe) 0.0000000 De5-De2 Ti/(Ti + Mn) 0.0064950
De5-De3 Ca/(Ca + Fe) 0.0000000 De6-De2 Ti/(Ti + Mn) 0.0016346

S-De8-De3 Ca/(Ca + Fe) 0.0001215 N-De8-De2 Ti/(Ti + Mn) 0.0000000
De6-De4 Ca/(Ca + Fe) 0.0002233 S-De8-De2 Ti/(Ti + Mn) 0.0473812
De9-De4 Ca/(Ca + Fe) 0.0000826 De4-De3 Ti/(Ti + Mn) 0.0085386

N-De8-De4 Ca/(Ca + Fe) 0.0000040 N-De8-De3 Ti/(Ti + Mn) 0.0076982

Maps of the distribution of elemental concentrations of major, minor and trace elements
have been plotted to assess the distribution in relation to geographic location and sub-
depositional environments. Maps of grain size, and the concentrations of Al, K, Ca, Ti, Fe,
Mn, Sr, Rb, Zr, Ba and Cs are shown in Figure 4. The map showing grain size distribution
across the estuary (Figure 4A) has had boundaries between sub-depositional environments
from Figure 2 superimposed.
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elements), (C) potassium, (D) calcium, (E) titanium, (F) iron, (G) manganese, (H) strontium, (I) 
rubidium, (J) zirconium, (K) barium, (L) and caesium within the Ravenglass Estuary. Note that 
mean grain size decreases towards the margins of the inner estuary and central basin and the grain 
size map (A) has had boundaries between sub-depositional environments from Figure 2 
superimposed. The similarities in spatial distribution between Al and K with finer grain size, show 
potential control of mud on the distribution of these elements. Aluminium, K, Fe, Ti and Mn have 
their highest concentration across the inner estuary, upper reaches of Irt arm and tidal bars. Grain 
size as well as concentrations of Al, Ca and Rb are higher in the southern foreshore than the northern 

Figure 4. Spatial distribution of (A) grain size (mm), (B) aluminium (ppm, and for all other elements),
(C) potassium, (D) calcium, (E) titanium, (F) iron, (G) manganese, (H) strontium, (I) rubidium,
(J) zirconium, (K) barium, (L) and caesium within the Ravenglass Estuary. Note that mean grain
size decreases towards the margins of the inner estuary and central basin and the grain size map
(A) has had boundaries between sub-depositional environments from Figure 2 superimposed. The
similarities in spatial distribution between Al and K with finer grain size, show potential control
of mud on the distribution of these elements. Aluminium, K, Fe, Ti and Mn have their highest
concentration across the inner estuary, upper reaches of Irt arm and tidal bars. Grain size as well as
concentrations of Al, Ca and Rb are higher in the southern foreshore than the northern foreshore. The
elements distribution pattern vary greatly with some apparent links to sub-depositional environment
and geographic location.
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Grain size tends to increase down channel and decrease toward the margin of inner
estuary and central basin (Figure 4A). The map of Al abundance (Figure 4B) has a marked
similarity to the grain size map (Figure 4A). Aluminium is not homogeneously distributed
between different sub-depositional environments (Figure 5B). Aluminium is present at
elevated concentrations in the mud and mix flat environments (De2 and De3); Al is present
at intermediate concentrations in the ebb-tidal delta and southern foreshore (De9, SDe8);
Al is present at relatively low concentrations in the sand-dominated sand flat, tidal bar,
tidal channel and northern foreshore environments (De4, De5, De6 and NDe8).
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Fe concentrations are highest in the mud flat, and Rb and Sr concentrations are highest in the 

Figure 5. Boxplots for texture and element concentrations as a function of the Ravenglass Estuary
sub-depositional environment: (A) grain size (mm), (B) aluminium, (C) potassium, (D) calcium,
(E) titanium, (F) iron, (G) manganese, (H) strontium, (I) rubidium, (J) zirconium, (K) barium, (L) cae-
sium. Boxplots contain the median and upper and lower quartile ranges. Outliers are defined as
> (or <) 1.5-times the interquartile range, above the upper and below the lower quartiles. Element
concentrations vary greatly between different sub-depositional environments; for example, Ti and Fe
concentrations are highest in the mud flat, and Rb and Sr concentrations are highest in the southern
foreshore. Overall, the element concentrations in the sand-dominated sub-depositional environments
show weak variability, potentially because of quartz dilution.

The spatial distributions of K and Fe are heterogeneous and have some similar features
(Figure 4C,F). Potassium abundance decreases progressively toward the open sea and tends
to be highest in tidal flat sediments; there is a relative increase in K abundance in the upper
reaches of the northern foreshore (Figure 4C). Iron and Ti abundances also have some simi-
larities as they have highest concentrations in tidal flats, tidal bars, and in <2 mm sediment
from gravel beds. Overall, the relative abundance of Fe and Ti decreases progressively
toward the open sea (Figure 4E,F). Potassium, Fe and Ti are unevenly distributed between
different sub-depositional environments (Figure 5C,E,F). Potassium, Fe and Ti are present
at elevated concentrations in the mud and mix flat environments (De2 and De3); they are
present at relatively lower concentrations in all remaining sub-depositional environments
(De4, De5, De6, NDe8, SDe8 and De9).
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The concentration of Ca in the Ravenglass Estuary sediment is heterogeneous; across
the southern foreshore and tidal inlet and some pockets within the inner estuary and
central basin, there is significant Ca enrichment (>10,000 ppm) (Figure 4D). Some of the
highest concentrations of Ca (>100,000) are found in <2 mm sediment from gravel beds
located at the boundary with the central basin and the upper Esk arm (Figure 4D). Boxplots
show that calcium is not homogeneously distributed between different sub-depositional
environments (Figure 5D). Calcium is present at elevated concentrations in the mud and
mix flat environments and in the southern foreshore (De2, De3 and SDe8); calcium is present
at intermediate concentrations in the tidal inlet, ebb-tidal delta, and northern foreshore
(De6, De9, NDe8); calcium is present at relatively low concentrations in the sand-dominated
sand flat and tidal bar environments (De4, De5).

The abundance of Mn is highest (200 to 700 ppm) in the upper and lower reaches of
the Irt arm of the estuary, in the mud and mixed flats of the central basin and in the finer-
grained parts of the upper and lower Esk arm (Figure 4G). Manganese is heterogeneous
across the outer estuary with abundance broadly decreasing progressively toward the open
sea. Manganese is unevenly distributed between different sub-depositional environments
(Figure 5G). Manganese is present at elevated concentrations in the mud and mix flat
environments (De2 and De3); manganese is present at relatively low concentrations in all
remaining sub-depositional environments (De4, De5, De6, NDe8, SDe8 and De9).

Strontium is mostly a trace element with concentrations <100 ppm across much of the
estuary, but the <2 mm sediment from gravel beds has unusually high Sr concentrations
(>700 ppm) (Figure 4H). Strontium is heterogeneously distributed between different sub-
depositional environments (Figure 5H); the sub-environment distribution of strontium
closely matches the distribution of calcium.

Rubidium is a trace element with relatively low concentration (<15 ppm) across the
estuary except in the southern foreshore, part of the tidal inlet, gravel beds and margins
of the upper Esk estuary, where the concentrations are highest and reach up to 70 ppm
(Figure 4I). Rubidium is not uniformly distributed between different sub-depositional
environments (Figure 5I). Rubidium has the highest concentration in the ebb-tidal delta and
southern foreshore (De9, SDe8); rubidium is present at intermediate concentrations in the
mud and mixed flats (De2 and De3) and low concentrations in all other sub-depositional
environments.

Zirconium varies from <100 to nearly 2000 ppm (Figure 4J). The most noteworthy
aspects of the distribution of Zr are the high concentration along the southern part of the
tidal inlet and southern foreshore and the low concentration along the northern part of the
tidal inlet and northern foreshore. Like all other elements, zirconium is heterogeneously
distributed between different sub-depositional environments (Figure 5J). Zirconium is
present at the highest concentrations in the southern foreshore (SDe8).

Barium concentrations range from approximately 160 to 540 ppm (Figure 4K). Barium
is present at highest concentration in parts of the Esk and Irt arms of the estuary, along the
southern side of the tidal inlet and in the ebb-tidal delta. Barium concentrations do not
seem to show any systematic pattern with the sub-environments of deposition (Figure 5K).

Caesium has a modal concentration of 35 to 50 ppm (Figure 4L). Caesium concen-
trations are slightly higher in the lower part of the Esk estuary, the upper part of the Irt
estuary and along part of the southern side of the tidal inlet. Like barium, caesium concen-
trations (Figure 5L) do not seem to show any systematic pattern for the sub-environments
of deposition.

We have here not mapped the distribution of Cl as it is wholly linked to halite pre-
cipitation from seawater and may reflect estuary water composition rather than sediment
composition. Similarly, we have not mapped the distribution of sulphur as it is present as a
sulphate mineral in the sediment and will be an evaporite mineral, like halite, or linked to
Fe-sulphide oxidation.
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4.3. Relative Element Concentrations

Maps displaying surface sediment characteristics, such as elemental concentration,
are generally considered to be an important tool for sediment analysis [74]. However,
elemental concentrations in quartz-rich sediment will be strongly influenced by the diluting
effect of quartz [48], as this mineral is effectively pure SiO2 and contains next to no trace
elements. All element concentration maps (Figure 4B–H) will be strongly influenced
by variable depletion and enrichment of quartz. However, the observation that not all
the elemental concentration maps are identical (Figure 4B–H) suggests that there are
meaningful differences in the sediment composition that are not due to variable depletion
and enrichment of quartz.

The element index maps show that the spatial distributions of K/(K + Al) and K/(K + Mn)
have some similar features (Figure 6A,D). The data from the index maps are summarised as a
series of boxplots, displayed in Figure 7. K/(K + Al) and K/(K + Mn) increase progressively
toward the open sea and tend to be low in tidal flat sediments (Figure 6A,D and Figure 7A,D).
K/(K + Al) in the foreshore and tidal inlet is relatively lower in the north side than the south
side. K/(K + Mn) has variable distribution in the upper reaches of both Esk and Irt arms, and
in the outer estuary (Figure 6D).

K/(K + Si), K/(K + Sr), and Mn/(Mn + Sr) tend to decrease progressively toward
the open sea and are highest in the inner estuary and central basin (Figure 6B,E,H and
Figure 7B,E,H). Sr/(Sr + Rb) has a narrow range of values, with most falling between 0.677
and 0.816, except along the upper reaches of both the Esk and Irt arms of the estuary, and
in the ebb-tidal delta and south foreshore where it is low (Figure 6I).

K/(K + Ca) and K/(K + Ti) are quite variable across the study area (Figure 6C,G,F
and Figure 7C,G,F). K/(K + Ti) is low in a range of areas including the southern foreshore,
ebb-tidal delta, the southern part of the main channel and the mixed and mud flats of the
central basin and a few other sporadic localities (Figure 6F). K/(K + Ca) is highest in both
the upper reaches of the Irt and Esk arms of the estuary; it is intermediate in the gravel bed,
the middle part of the central basin, and the northern part of the tidal inlet and into the
northern foreshore (Figure 6C).

Indices related to Fe concentration are variable across the estuary. The Ca/(Ca + Fe)
index is lowest in both the upper reaches of the Irt and Esk arms of the estuary and it is
intermediate in the mixed and mud flats of the central basin and much of the northern and
southern foreshores (Figures 6G and 7G). The southern foreshore and parts of the southern
side of the tidal inlet have the highest Ca/(Ca + Fe) index values (Figure 6G). K/(K + Fe),
related to the Fe/K index used for clastic sedimentary rock geochemical classification by [75],
shows that most values fall into an intermediate category (Figures 6J and 7J). The highest
values are in the tidal bars of the Esk and Irt and at some localities within the foreshore and
tidal inlet. Fe/(Fe + Ti), where both elements are mafic indicators, is highest in the middle part
of the system, from the uppermost Esk arm through the northern part of the main channel
(Figures 6K and 7K). This index is lowest in the southern foreshore, ebb-tidal delta, and mixed
and mud flats of the Esk and Irt inner estuaries. Al/(Al + Fe) is lower in the Esk arm than the
Irt arm of the estuary; it is also low in parts of the northern foreshore (Figure 6L). Al/(Al + Fe)
is highest in the southern foreshore, the ebb-tidal delta and parts of the Irt arm of the estuary
(Figure 6L).
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Figure 6. Spatial distribution of element indices (A) K/(K + Al), (B) K/(K + Si), (C) K/(K + Ca),
(D) K/(K + Mn), (E) K/(K + Sr), (F) K/(K + Ti), (G) Ca/(Ca + Fe), (H) Mn/(Mn + Sr), (I) Sr/(Sr + Rb),
(J) K/(K + Fe), (K) Fe/(Fe + Ti), and (L) Al/(Al + Fe) within the Ravenglass Estuary. Note that
these element indices vary systematically for the Ravenglass Estuary sub-depositional environments.
The combination of these elemental indices may be used to discriminate mud flat, mixed flat, sand
flat, tidal bars, tidal inlet, north foreshore, south foreshore and ebb-tidal delta in the Ravenglass
Estuary. Maps A to I represent the indices that RPART classification, in R Statistical Software, used to
discriminate the various sub-depositional environments (see Section 5.5).

4.4. Holocene Cores

Based on the sedimentary log of the geotechnical core [58], mud and sand are the
dominant lithologies in the tidal bar in the Esk arm of the estuary (Figure 8). This sand-



Geosciences 2022, 12, 23 17 of 31

dominated core has a narrow grain size range. The core was drilled into a vegetated tidal
bar (fresh marsh) sub-depositional environment at the surface; the uppermost part down to
100 cm in depth is dominated by mud to very fine sand (Figure 8). Below this depth, most
of the sediment is composed of different units of medium- and coarse-grained sand that
may represent mixed fluvial-tidal deposits [58]. The specific sedimentary sub-depositional
environments in this core could not have been automatically predicted as there is a range
of grains sizes (gravel beds through to mud-dominated sediment) not typical of vegetated
tidal bars. The Holocene core was analysed using the pXRF spectrometer, and the nine key
indices used to classify the sediment (and see Figures 6 and 7 and Section 5.5) are shown
with critical cut-off values marked by dashed lines.
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Figure 7. Box plots for element indices as a function of the Ravenglass Estuary depositional environ-
ment. (A) K/(K + Si), (B) K/(K + Ca), (C) Mn/(Mn + Sr), (D) K/(K + Al), (E) K/(K + Mn), (F) K/(K
+ Ti), (G) K/(K + Sr), (H) Sr/(Sr + Rb), (I) Ca/(Ca + Fe), (J) Ti/(Ti + Mn), (K) Fe/(Fe + Ti), and (L)
Al/(Al + Fe). Boxplots contain the median and upper and lower quartile ranges. Outliers are defined
as > (or <) 1.5-times the interquartile range, above the upper and below the lower quartiles. This
figure should be examined in conjunction with Table 4 to reveal the most important differentiators
between sub-depositional environments. The critical values for parts A to I have been taken from the
machine learning-derived decision nodes (see Section 5.5).
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Figure 8. Sedimentary log of the 5 m Holocene core drilled in a tidal bar in the Esk arm of the Raven-
glass Estuary (Figures 1 and 2) with the geochemical data, derived from XRF analysis, illustrated.
These nine indices are represented as these are the ones that RPART classification, in R Statistical Soft-
ware, used to discriminate the various sub-depositional environments (e.g., Section 5.5 and Figure 9).
The critical values superimposed on the nine indices, were taken from machine learning-derived
decision nodes in Figure 9.
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Figure 9. Classification tree for the discrimination of estuarine sub-depositional environments, based
on surface samples collected from the Ravenglass Estuary, developed through a combination of
visual analysis (Figure 2) and pXRF analyses, using supervised classification and the recursive
partitioning package, RPART [73], available in R studio software [70]. Each machine learning-derived
decision node splits the data using one data (chemical index) type. In each terminal leaf node, the
classification of depositional environment is listed first, followed by the fractional quantity of samples
in the eight classified depositional environment; the higher the fractional quantities, the higher the
classification certainty. Where these fractional values are less than 1.00, the uncertainty is because
of some depositional environments having overlapping attributes, even when nine dimensions are
considered. The value presented at the bottom of the node is the total percentage of the whole sample
set that lies in each leaf node. This RPART-supervised machine learning approach differentiated De2,
De3, De4, De5, De6, NDe8, SDe8 and De9 based on K/(K + Si), K/(K + Al), K/(K + Ca), K/(K + Ti),
K/(K + Mn), K/(K + Sr), Sr/(Sr + Rb), Ca/(Ca + Fe), and Mn/(Mn + Sr) index data. This classification
tree has a model accuracy of 72.3% (Figure 10).
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Figure 10. Bar chart showing model accuracy for different approach of classification trees. High
model accuracy was achieved by engineering the datasets, through selective merging of neighbouring
sub-depositional environments.
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5. Discussion

The primary objective of this study was to determine the ability of pXRF data to
discriminate sedimentary environment in an estuarine setting. To ascertain how elemental
data can be used to predict sub-depositional environments, parameters such as sediment
source areas, and the statistical relationship between element concentrations and sub-
environment, will be evaluated and discussed.

5.1. Elemental Distribution in the Ravenglass Estuary

One of the aims of this research was to understand the controls on the distribution
of elements across an entire estuarine system. This is of interest to clastic sedimentary
geologists, especially those who work with rock properties, because elemental distribution
reflects, and potentially controls, mineral distribution via clay synthesis, Fe-reduction and
silica precipitation [50,76–79].

The distributions of Al, K, Ca, Ti, Fe, Mn, Sr, and Rb, as well as Zr, Ba and Cs, in the sed-
iment of the Ravenglass Estuary vary greatly with some apparent links to sub-depositional
environment and geographic location (Figure 4). For example, Al and K display similar
maps of concentration patterns (Figure 4B,C). Aluminium and K are present at the highest
concentrations in the finest-grained sediments of the mud and mixed flat sediment (De2 and
De3) and are present at the lowest concentrations in coarsest-grained sediments of the north-
ern foreshore and parts of the tidal inlet (De6 and NDe8) (Figure 4A–C and Figure 5A–C).
Aluminium sits predominantly in the detrital minerals K-feldspar, muscovite, plagioclase,
and in the dominant clay mineral, illite, with lesser quantities of detrital biotite and chlo-
rite and weathering-related kaolinite [48]. Potassium sits predominantly in K-feldspar,
muscovite, and illite with lesser quantities in biotite [48]. The distribution patterns of Al
and K are almost certainly controlled by illite clay distribution as they are present at the
highest concentrations in the finest-grained sediment (Figure 4A–C). Conversely, if Al and
K were largely controlled by K-feldspar distribution, then the highest concentrations of
these elements would be in the coarser sedimentary sub-depositional environments. The
dominant role of weathering-related illite in controlling Al and K distribution reveals the
important role of chemical weathering in the hinterland. Rubidium has similar geochemical
properties to K, in terms of ionic radius and charge [80], and the two elements seem to have
broadly similar distributions in the estuary (Figure 4I), although the concentration of K is
high in the mixed and mud flats (Figure 4C) whereas the concentration of Rb is relatively
low, possibly indicating that Rb is partly controlled by variable K-feldspar as well as illite
abundance (given that mixed and mud flats are the finest-grained sediment in the estuary
(Figure 4A).

Iron, Mn and Ti concentrations display some similarities in terms of their mapped
distributions at Ravenglass (Figure 4E–G). Iron, Mn and Ti are present at the highest
concentrations in the finest-grained sediments of the mud and mixed flat sediment (De2
and De3) and are present at the lowest concentrations in coarsest-grained sediments of
the foreshore, tidal inlet, tidal bar (De5, De6, SDe8, NDe8, and De9) (Figure 4A,E–G and
Figure 5E–G). Iron and Mn have similar geochemical properties, as they can have a similar
ionic radius and charge (when divalent) but they both have variable oxidation states. Iron
and Mn probably exist in the Ravenglass sediment in a combination of divalent ions within
detrital lithic grains and minerals (e.g., chlorite and biotite) [48] and in higher valence states
in weathering products such as hydroxides [51]. Iron is preferentially concentrated in the
upper reaches of the Ravenglass Estuary (Figure 4F), confirming that fluvially-transported
iron is trapped at the site of mixing between river water and seawater [81]. In contrast, Ti
can sit in ilmenite and rutile (and other oxides) or as a trace element in mica minerals. In
the Ravenglass Estuary surface sediments, the rutile concentration is approximately 0.40%
in mud and mixed flats and approximately 0.10% in the sand-dominated environments [82].
The increase in Ti in the finest-grained sediments is therefore likely to be due to rutile as
well as mica minerals (illite, muscovite and biotite) (Figure 4A,E).
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Calcium displays a strongly variable distribution (Figure 4D). The concentration of
calcium closely matches the distribution of CaCO3 (calcite and aragonite) [48]. CaCO3
is largely found as bioclastic material, including large (10 cm) shells in the gravel beds
on the lower Esk Estuary and the southern side of the tidal inlet. Strontium has similar
geochemical properties to calcium and is present in carbonate minerals, especially arag-
onite; Sr can substitute for Ca in carbonates [83]. However, the relationship between Ca
and Sr maps is not especially strong (Figure 4D,H). Strontium seems to display a weak
relationship with Ravenglass sub-depositional environments but there are some pockets
of local enrichment, especially in gravel-rich sediment deposits, potentially due to their
present in lithic fragments [84,85], and shell fragments possibly due to the Sr–Ca association

Zirconium is probably only present in the mineral zircon. The distribution of Zr
reveals the distribution of zircon (Figure 4J). The map of Zr (Figure 4J) seems to follow the
inverse of the grain size map, with the lowest concentrations of Zr in the coarsest-grained
sands (Figure 4A).

Barium might be present, substituting for K, in detrital K-feldspar or possibly in barite.
Caesium may also substitute for K in micas and feldspars. Barium and Cs have similarly
bland distribution maps (Figure 4K,L), with most values varying tightly about the modal
value, with the lowest concentrations in the coarsest-grained sands (Figure 4A). Variable
dilution by quartz may be responsible for much of the variation in Zr, Ba and Cs.

5.2. Relationship between Element Indices and Sub-Depositional Environment

One of the problems with element concentration maps (Figure 4) is that they are
strongly influenced by variable dilution by quartz and, perhaps to a lesser extent, calcite.
Given that quartz has negligible trace elements, doubling the quantity of quartz would
halve the concentration of a trace element, all other factors remaining the same. We
therefore consider that relative element concentrations are more useful to understanding the
relationship between sediment supply, weathering intensity, etc., and the sub-depositional
environment [86]. Element indices have been analysed in terms of the sub-depositional
environment as these will be useful for developing a quantitative classification tool.

K/(K + Al) is low in mud flats, ebb-tidal delta, and southern foreshore sub-environments
(De2, De3, De9 and SDe8) (Figure 7A). It is highest in sand flat, tidal bar and northern foreshore
sediment sub-environments (De4, De5 and NDe8). It has intermediate values in mixed flat and
tidal inlet environments (De3 and De6). In these sediments, the K/(K + Al) index reflects the
relative concentrations of K-feldspar, illite (and muscovite) and kaolinite (there is no gibbsite
in these sediments); high values imply more K-feldspar, low values imply more kaolinite
and illite.

K/(K + Si) simply reflects dilution by quartz of the collection of K-bearing minerals
(K-feldspar, illite, muscovite and, to a lesser extent, biotite). This index is highest in the least
quartz-rich, most fine-grained mud flat sediments (De2) (Figure 7B). It has consistently
low values in the sand-rich sub-depositional environments (De4–De9) and an intermediate
value in mixed flats (Figure 7B). Every other element indexed to silicon looks like Figure 7B,
reflecting variable dilution by quartz; we have therefore chosen not to replicate such
distributions as they all show the same pattern and do not help to further discern the
sub-depositional environment. Silicon and its element indices seem to have minimal value
to this study of estuarine sub-environments.

K/(K + Ca) is low in mud flats and southern foreshore sub-environments (De2, De3,
SDe8) (Figure 7C). It is highest in sand flat and tidal bar sub-environments (De4, De5). It
has intermediate values in mixed flat tidal inlet, northern foreshore, and ebb-tidal delta
sub-environments (De3, De6, NDe8, De9). In these sediments, the K/(K + Ca) index reflects
the relative concentrations of K-bearing K-feldspar, illite (and muscovite) compared to
carbonate concentrations. As K concentration seems to be broadly consistent in all sand-
dominated sub-environments (Figure 5C), the variation in K/(K + Ca) in these sandy
sediments is largely due to variations in Ca (Figure 5D) and therefore CaCO3 minerals.
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K/(K + Mn) is low in mud flats (De2) (Figure 7D). It is highest in sand flat, tidal
bar, tidal inlet, and northern and southern foreshore (De4, De5, De6, NDe8, SDe8) sub-
environments. It has intermediate values in mixed flat tidal inlet and ebb-tidal delta
sub-environments (De3, De9). In these sediments, the K/(K + Mn) index (Figure 7D)
reflects the subtle changes in the relative concentrations of K-bearing K-feldspar, illite (and
muscovite) (Figure 5C) compared to mafic minerals and/or Mn oxides and hydroxides
(Figure 5G). K/(K + Ti) resembles the boxplot distribution of K/(K + Mn) (Figure 7D,F),
which suggests that Ti and Mn come from the same mafic sources.

K/(K + Sr) is uniformly high in inner estuary mud, mixed and sand flats and tidal
bar sub-environments (De2, De3, De4, De5) (Figure 7E). It is lowest in mid and outer
estuary tidal inlet, northern and southern foreshore, and ebb-tidal delta (De6, NDe8, SDe8,
De9) sub-environments. In these sediments, the K/(K + Sr) index (Figure 7D) reflects the
subtle changes in the relative concentrations of K-bearing K-feldspar, illite (and muscovite)
(Figure 5C) compared to Sr-bearing carbonate minerals (Figure 5H). K/(K + Sr) better
differentiates inner and outer estuarine sub-environments than either K or Sr on their
own (Figure 5C,H,E). Mn/(Mn + Sr) resembles the boxplot distribution of K/(K + Sr)
(Figure 7E,H), which suggests that Sr dilution is an important discriminator in these
sediments.

Ca/(Ca + Fe) is lowest in sand flat and tidal bar sub-environments (De4, De5) (6G).
It is highest in southern foreshore sediment (SDe8) and intermediate in all other sub-
environments (De2, De3, De6, NDe8, De9). The Ca/(Ca + Fe) index reflects subtle variations
in the amount of Ca and therefore CaCO3 minerals (Figure 5D) and iron in mafic minerals
and oxides and hydroxides (Figure 5G).

Sr/(Sr + Rb) is lowest in ebb-tidal delta and southern foreshore (De9, SDe8) (Figure 7I).
It is highest in tidal inlet and northern foreshore (De6 and NDe8), showing that this index
is a good differentiator of the two parts of the lower estuary/marine system. The inner
estuary sub-environments have intermediate values (De2, De3, De4, De5).

K/(K + Fe) (Figure 7J), related to the K/Fe ratio used by Herron [75] for log-based
clastic identification, has a similar, but more muted, pattern than K/(K + Mn). The latter
will thus prove to be better at discriminating sub-environments. Fe/(Fe + Ti) (Figure 7K),
involving two mafic-associated elements, has a limited range of overlapping values with
highest values in the tidal inlet and northern foreshore sub-environments (De6, NDe8),
lowest values in the mud and mixed flat sub-environments (De2, De3) and intermediate
for all other sub-environments (De4, De5, De9, SDe8).

Al/(Al + Fe) (Figure 7L) has high values in ebb-tidal delta and southern foreshore
sub-environments (De9, SDe8) and low values in the northern foreshore sub-environments
(NDe8) but similar and overlapping values in all other sub-environments (De2, De3, De4,
De5, and De6).

5.3. Multi-Element Analyses in Discriminating Estuarine Sub-Depositional Environments

The application of compositional geochemical signatures in the classification of sed-
iments for the interpretation of large-scale depositional environments has been widely
reported [87–93]. However, the use of major and trace element compositional data has not
been used to differentiate sub-depositional environments.

Here, we have developed a new technique for the independent classification of sed-
imentary sub-depositional environments using bulk compositional data. Given that the
classification scheme is intended for application to core samples, or poorly-defined de-
positional environment, we have elected to initially discriminate gravel beds (De1) and
salt marsh (De10), as this can be achieved by inspecting any core for the obvious presence
of gravel and roots. Additionally, aeolian sediment (De11) was excluded because of its
poor preservation potential in estuarine sedimentary systems [94]. We have used element
indices (Figures 6 and 7) and supervised machine learning (RPART) with natural splits in
the indices illustrated by the dashed lines superimposed on boxplots (Figure 7) to develop
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an automated way to determine sub-depositional environments based on pXRF-derived
compositional data (Figures 4–7).

5.4. ANOVA and Tukey’s Post Hoc Test to Differentiate Estuarine Sub-Depositional Environments

To establish whether there are statistically significant differences in index values
between pairs of sub-depositional environments, we have employed analysis of variance
(ANOVA) and Tukey’s post hoc honestly significant different (HSD) statistical tests using
R [70]. The statistical significance of a difference is defined by the derived “p” values:
p > 0.1 represents an insignificant difference, p < 0.05 represents a significant difference,
p < 0.01 represents a very significant difference, and p < 0.001 represents an extremely
significant difference [70,71]. Table 4 presents p-values based on elemental index values that
indicate statistically significant geochemical differences between pairs of sub-depositional
environments.

5.5. Development and Application of A Classification Diagram Using a Supervised Machine
Learning Approach (RPART)

The results of the statistical ANOVA and HSD tests (Table 4) can also be visualised
using the boxplots in Figure 7 [95,96]. We have here illustrated boxplots of the key indices
K/(K + Si), K/(K + Ca), Mn/(Mn + Sr), K/(K + Al), K/(K + Mn), K/(K + Ti), K/(K + Sr),
Sr/(Sr + Rb), and Ca/(Ca + Fe), all of which will be used to differentiate the estuarine
sub-depositional environment (Figure 7).

The combination of initial visual discrimination of gravel beds and root-bearing salt
marsh, followed by the use of numerous element indices via a supervised machine learning
approach, in the form of recursive partitioning (RPART), has led to a new quantitative clas-
sification approach to discriminate sub-depositional environments in an estuarine setting.

The RPART package [73], available in R statistical software [70], was employed to
classify the geochemical signatures of sediments into sub-depositional environments. We
employed Recursive Partitioning and Regression Tree (RPART) software in R to develop
a classification tree by using elemental indices to find best splits for the dataset into
different sub-depositional environments in the Ravenglass Estuary. A similar approach
was employed by Simon et al. [52] to subdivide sediment textural data from the Ravenglass
Estuary. It was hoped that the geochemical data might lead to an improved classification
compared to the textural data; note that the risk of closed datasets [97], has here been
circumvented by using element indices.

Classification trees, derived by machine learning, create quantitative decision node
split-points for a given index. The software establishes the dominant discriminators; these
sit highest up the tree. The RPART-supervised machine learning approach (Figure 9)
selected decision nodes of the following elemental indices to achieve a supervised classifica-
tion: K/(K + Si), K/(K + Al), K/(K + Ca), K/(K + Ti), K/(K + Mn), K/(K + Sr), Sr/(Sr + Rb),
Ca/(Ca + Fe), and Mn/(Mn + Sr). Initially, we trained the model to identify all eight
sub-depositional environments: De2, De3, De4, De5, De6, NDe8, SDe8 and De9. At the
end of each branch, there is either another decision node or a terminal leaf node. For
each terminal leaf node, the software states the sub-depositional environment that has the
highest probability (i.e., the name or the “answer”), but it also lists the fractional probability
of each sub-depositional environment in the order in which they are listed in the key. The
percentage of all samples in that terminal leaf node is also stated. The classification is most
successful when the highest fractional values in each leaf node are close to 1.00. Values
are less than 1.00 when there are overlaps in the geochemical attributes of two or more
sub-depositional environments.

The decision nodes each relate to a specific question imposed on the data by the
software, in terms of whether values are greater or less than a given value for a specific
index (Figure 9). We have transposed the critical values for the software-selected optimal
indices onto the boxplots in Figure 7. For example, towards the left-hand side of the
classification diagram, K/(K + Ti) has a critical value of 0.87, whereby if samples are
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less than this value, there is an 86% probability that the samples are from mud flat sub-
depositional environments. We have superimposed the value of 0.87 as a dashed line on
Figure 7F, which illustrates the previous point about discriminating De2 and De3 sediments.

The code in R can be used to evaluate the accuracy of the RPART classification. In
the case of the eight sub-depositional environments, the accuracy is 72.3% (Figure 10).
We have engineered the dataset, to try to achieve higher-accuracy models, by selectively
merging neighbouring sub-depositional environments. The most accurate classification
model resulted from merging all inner estuary sediments (De2, De3, De4, and De5) and
all outer estuary sediments (De6, De9, NDe8, and NDe8), leading to an accuracy of 92.9%
(Figure 10). One of the single biggest improvements is in the merging of sand flat and tidal
bar sediment (De4 and De5) sediments, as this led to a 7.5% increase in the model accuracy
(Figure 10).

We have here displayed one of the simpler classification trees, based on partly merged
sub-depositional environments (Figure 11). This model was developed with all outer estu-
ary sediments grouped (De6, De9, NDe8, and NDe8) but leaving inner estuary sediments
grouped into coarser (De4 and De5) and finer (De2 and De3) sediments. This classification
approach led to a model accuracy of 87.0% (Figures 10 and 11).
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Figure 11. Classification tree based on partly merged data, developed using the same approach as
Figure 10. This classification tree has a model accuracy of 87.0% (Figure 10) and shows how high
model accuracy can be achieved with subsequent grouping of neighbouring or near neighbouring,
sub-depositional environments.

The method proposed above, calibrated with geochemical data from the Ravenglass
Estuary surface sediments from known sub-depositional environments, has been applied
to the geochemical data from the Holocene core (Figure 8).

5.6. Application of Proposed Model for Discrimination of Estuarine Sub-Environments

We have applied the fully resolved RPART model (no merging of sub-depositional envi-
ronments) (Figure 9) to the geochemical data from the Holocene core (Figure 8). The output
from the application of the model has allowed us to define palaeo-sub-depositional environ-
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ments, instead of using an indirect method of describing sedimentary facies, grouping these
into facies associations and then interpreting palaeo-sub-depositional environments [58].
We first applied visual identification to establish the presence of gravel beds and salt marsh
in the core. Using our new approach, we were able to identify mud flat, mixed flat, sand flat,
tidal bar, tidal inlet, northern foreshore, and ebb-tidal delta sub-depositional environments
throughout the core interval (Figure 12).
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Figure 12. Schematic sedimentary log of the cored sediment beneath inner estuary vegetated tidal bar
deposits (see Figure 1 for core location) with application of the classification tree in Figure 9 (wholly
split sub-depositional environments) and Figure 11 (partly merged sub-depositional environments) to
data presented in Figure 8. The split and merged geochemical classification models reveal a succession
of sub-depositional environments that could not easily be predicted based only on classical core
description methods.
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In detail, the massive, texturally-bland, section between a depth of 300 and 400 cm
was hard to interpret in terms of descriptive facies-based analysis. On the basis of core
description, the sand between depths of 300 and 400 cm may have been due to inner or
outer estuary deposition, given the lack of diagnostic sediment structures, trace fossils, or
other features. The application of the automated classification approach has here revealed
that this section was due to inner estuary deposition.

The sediment accumulation in this core started with a late glacial event and the
accumulation of glacial diamicton [58]. The first sediments preserved on top of the till were
apparently from a marine outer estuary environment (De9, Figure 12). This was succeeded
by 100 cm of sand bar deposits (De4) and then approximately 200 cm of interbedded sand
flat and mixed flat deposits (De3, Figure 12). The final 100 cm of deposition represents salt
marsh deposits. This overall sequence could represent a time of (a) falling sea level, or (b) a
greater rate of delivery of sediment to the estuary compared to net flux to the ocean. Salt
marsh commonly represents the final stages of the levelling of marine coastal plains and the
presence of marsh above the implies a phase of abandonment due to river migration [58].
Overall, the Holocene core shows an upward-fining profile at the multi-metre scale and
represents a highstand-into-regression sequence. The newly revised interpretation, based
on the geochemical classification of sub-depositional environments, shows that the core,
drilled into a present-day tidal bar sub-depositional environment, was not always the site
of a tidal bar throughout the Holocene.

The interpretation of the occurrence of a few discrete samples of northern foreshore and
tidal inlet sediments is probably anomalous and a consequence of the fact that the RPART
models are not 100% accurate, as shown by the leaf nodes in the classification diagram not
having values of 1.0 in the dominant sub-depositional environment (Figures 9 and 11). It is
probably appropriate to be led by the overall stacking pattern of the sediments rather than be
driven by potentially anomalous 5 cm beds that seem to be out of sequence. Note that this
interpretation is based on the concept that all environments in the core exist in the estuary at
the present time; this assumption is reasonable but is difficult to unequivocally prove.

A question remains about the significance of the interpretation of the basal ebb-tidal
delta sediments in Figure 12. This question arises as there are no intermediate sediments
from foreshore, tidal inlet or tidal bar sub-depositional environments between the ebb-tidal
delta and sand flat successions, thus seeming to break Walther’s law. It seems unlikely
that sand flat deposits would sit directly on top of ebb-tidal delta deposits as they are
not adjacent sub-depositional environments. There is no sign of erosion of intermediate
sediment between tidal delta and sand flat deposits (Figure 8). The significance of the
ebb-tidal delta sub-depositional environment in the core in Figure 12 is unclear, but it may
be due to mis-classification due to overlapping characteristics of the ebb-tidal delta and
sand flat sediments. Despite this question, the development of a ML-approach, using a
surface sediment calibration dataset, has proved to be a valuable tool to better understand
palaeo-environments in 10,000 years of post-Holocene deposition recorded in a core.

This novel geochemical classification of sub-depositional environments has a good
level of accuracy at discriminating outer estuary sediments, fine-grained inner estuary
sediments and coarse-grained inner estuary sediments. It can also differentiate eight
sub-depositional environments but with a lower degree of accuracy than the less refined
classification scheme. The Ravenglass classification models (Figures 9 and 11) may be
applicable to other estuaries but differences in provenance and in-basin geochemical
processes may result in different cut-offs at decision nodes: such an approach remains
to be tested. It is also possible that the geochemical indices, that proved to be useful
at differentiating modern and Holocene sub-depositional environments, could also be
effective for estuarine cores from deeply buried and ancient sandstones. As a final point,
the approach laid out here could also be applied to other modern and ancient depositional
environments that also have subtleties that are not easy to differentiate using classical core
description and facies analysis approaches.
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6. Conclusions

1. This work represents a detailed study of sediment, analysed for composition using
pXRF analyses, from the Ravenglass Estuary, NW England, United Kingdom.

2. Sub-depositional environments, mapped and defined across the estuary, include
gravel beds, salt marsh, mud flats, mixed flats, sand flats, tidal bars, tidal inlet,
foreshore, and ebb-tidal delta. The foreshore of the Ravenglass Estuary was subdi-
vided into discrete northern and southern portions as they have distinct textural and
elemental attributes.

3. Elements concentrations vary throughout the estuary, especially in terms of localised
differences of Al, K, Ca, Fe, Mn, Zr, Rb, some of which will be the result of localised
dilution due to preferential accumulation of detrital quartz.

4. Major, minor and trace element indices, varying between 0 and 1, were employed for
the discrimination of sub-depositional environments, instead of raw concentration
data, to circumvent the problem of variable dilution by quartz and closed datasets.

5. Element indices are heterogeneously distributed throughout the estuary, showing that
element concentration patterns are not simply due to variable dilution by quartz.

6. There are strong relationships between specific sub-depositional environments and
element indices within the estuary.

7. Provenance, sediment mineralogy and grain size, controlled by estuarine hydrody-
namics, are the dominant controls on the distribution of elements (and their indices)
in the Ravenglass Estuary.

8. A supervised machine learning method was developed, using the RPART routine in
R Statistical Software, for the automatic discrimination of palaeo sub-depositional
environments, with the model calibrated using surface sediment element indices. The
model was successfully applied to a core drilled through the Holocene succession at
Ravenglass to predict palaeo sub-depositional environments over the last 10,000 years.

9. This work has proved that there are strong and predictable relationships between
estuarine sub-depositional environments and sediment geochemistry.
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