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Abstract—The rapid mutation of influenza virus threatens
public health. Reassortment among viruses with different hosts
can lead to a fatal pandemic. However, it is difficult to detect the
original host of the virus during or after an outbreak as influenza
viruses can circulate between different species. Therefore, early
and rapid detection of the viral host would help reduce the
further spread of the virus. We use various machine learning
models with features derived from the position-specific scoring
matrix (PSSM) and features learned from word embedding and
word encoding to infer the origin host of viruses. The results show
that the performance of the PSSM-based model reaches the MCC
around 95%, and the F1 around 96%. The MCC obtained using
the model with word embedding is around 96%, and the F1 is
around 97%.

Index Terms—Influenza, Machine Learning, Deep Learning,
Position-specific Scoring Matrix, Word Embedding, Support
Vector Machine, Ensemble Model, Convolutional Neural Network

I. INTRODUCTION

INFLUENZA is an infectious disease that occurs globally
and infects up to 20 percent of the world’s population each

year, although its prevalence is usually underestimated [1].
Influenza pandemics occur at a lower frequency than seasonal
influenza epidemics, but each such crisis can cause millions of
deaths. Flu epidemics seriously impact vulnerable people with
chronic medical conditions, and flu pandemics put people of
all ages at life-threatening risk.

Influenza viruses are divided into four types based on
their internal ribonucleoproteins: A, B, C and D. Influenza
D viruses are not known to cause human illness. Influenza C
viruses only affect humans, but they are less likely to cause
large-scale pandemics or seasonal epidemics. Thus, currently,
seasonal flu vaccine strains do not inoculate against influenza
C and D viruses. Influenza A and B viruses are the major
causes of seasonal epidemics. Influenza B viruses also only
affect humans, but influenza A viruses affect both humans
and animals and can cause global epidemics (i.e., pandemics).
Subtypes of influenza A viruses are differentiated by two kinds
of glycoproteins under the viral envelope: Hemagglutinin (HA)
and Neuraminidase (NA). Within these types, 18 HA subtypes
(numbered 1–18) and 11 NA subtypes (numbered 1–11) have
been discovered to date [2].

The characteristic of antigenic sites on HA or NA pro-
tein that is recognized by the immune system to inhibit flu

infectious changes rapidly to escape the recognition of the
immune system. This process is also known as antigenic drift,
which results in new influenza A, B or C virus strains that
are partially recognized by humans’ immune systems and
contribute to seasonal influenza outbreaks. The HA or NA in
influenza A can experience drastic changes on antigenic sites
and cause an antigenic shift. Antigenic shifts may result from
a re-assortment of different viruses within single or multiple
hosts and generate a novel virus [3]. Multiple pandemics
have resulted from extreme antigenic shifts, after which most
people lack immunity to the novel virus. The origins of four
major influenza pandemics that emerged since 1900 may have
been caused by a recombination of animal viruses (swine and
avian) and human viruses: Spanish flu (1918–1919), Asian flu
(1957–1958), Hong Kong flu (1968–1969) and the 2009 flu
pandemic (2009–2010).

The Spanish flu was caused by the A/H1N1 virus. It is
the deadliest pandemic in the recorded history and killed
an estimated 17 – 100 million people [4], [5], [6]. The
origin host of the Spanish flu remains a mystery [7], but
recent studies suggest it may have sprung from birds or
pigs to humans [8], [9], [10]. After the initial pandemic in
1918, the virus adapted to keep playing a major role in flu
epidemics until 1957, when the major changes in HA and NA
produced the novel virus A/H2N2 and resulted in the Asian
flu pandemic. Asian flu has higher morbidity and mortality
compared with the subsequent Hong Kong flu in 1968 as Hong
Kong flu caused by the A/H3N2 virus which only involved
the major changes in the HA antigen [11]. Both Asian flu
and Hong Kong flu were caused by reassortment between
human viruses and avian viruses. The A/H1N1 virus also
caused the 2009 flu pandemic, but that iteration involved a
complex triple reassortment between human, avian and swine
viruses [12], [13].

Influenza viruses have multiple hosts, such as humans, birds,
pigs and horses. Birds are a major natural reservoir of influenza
A virus [14], [15], and the virus can infect both human and
pigs [16]. Pigs are also considered as an intermediate host of
influenza A viruses between humans and birds [17]. Once a
virus mutates through reassortment between different hosts, it
can produce a life-threatening risk to human populations, as
it no longer needs an intermediate host to transmit between



people.
Therefore, the transmission of influenza viruses is not

limited to human-to-human contact, but also includes animal-
to-human (zoonosis) and animal-to-animal (enzootic) trans-
mission [14]. Zoonotic infections can either be dead-end
transmissions or lead to a pandemic in the human popula-
tion after accumulating enough adaptive mutations to sustain
transmissions between people, which then regularly circulates
as a seasonal influenza virus [14], [18].

It is difficult to determine the origin of each virus during a
virus outbreak because some viruses can cross species barriers.
In this case, swine-origin viruses can be isolated from humans.
The virus needs enough time to complete the adaptive mutation
and accumulation process [14]. Therefore, earlier isolation of
the original viral host may effectively control a viral outbreak
or give an early warning of the risk of the virus.

Traditional methods are mostly laboratory-based, such as
using hemagglutination inhibition (HI) assay to subtype virus
or analyze receptor-binding. Laboratory-based methods are
time-consuming and labor-intensive. In order to save man-
power and time, various machine learning and deep learning
algorithms have been used in viral host prediction, such as
KNN [19], random forests [19], [20], ANN [21] and decision
tree [22]. However, some previous research manually selected
balanced data set [19], [23], and some only used relative
small data set [21] or encode the sequence as a sparse
matrix [21], [25]. Novel deep learning techniques, such as
convolutional neural networks (CNN), have also been applied
in this field, but thus far only to avian and human viruses [26].

Our study uses both classic machine learning techniques
and deep learning techniques to infer the origin host of
influenza viruses. Evolutionary features of viral sequences
were extracted by the PSI-BLAST program and fed into
four traditional machine learning models (sequence alignment-
based method). Word encoding and word embedding were
used for converting viral sequences to numerical vectors before
feeding into a deep learning model (sequence alignment-free
method).

The paper is structured as follows: In Section 2, we intro-
duce the data and methods used in the paper. In Section 3, we
illustrate the hyperparameters and architecture of models. This
is followed by the experimental results in Section 4. Finally,
we provide some discussions and conclusions in Section 5.

II. MATERIALS AND METHODS

A. Data Collection

Complete influenza A virus protein sequences isolated from
avian, swine and human samples were collected from the GI-
SAID [27] database (status 2020-09-25). Only hemagglutinin
(HA) protein sequences are used, as HA is the most dominant
protein for immunity response and helping the virus bind to
target hosts [28]. A protein sequence usually has 20 types of
amino acids, which can be represented by a one-letter symbol:
A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and
V. However, sometimes a protein sequence may also include
other letters to represent uncertain or unknown amino acids,

such as X, B and Z [29]. The sequences containing such letters
were removed from our data set.

The original data set includes redundant data, and we
removed all identical sequences and produced a non-redundant
data set used in this research. We did not apply any further
sequence reduction steps as the influenza virus can infect
across different species and may results in a high similar-
ity between different hosts’ sequences, as shown in Fig. 1.
Therefore, simply removing similar sequences would reduce
sequence diversity and mislead the results, as shown in Fig. 2.

Fig. 1: Example of highly similar sequences with different host. The
strain name of each sequence is shown as follows: EPI158898 Avian:
A/chicken/AR/30402/1999; EPI5571 Human: A/South Carolina/1/18;
EPI4897 Swine: A/swine/Wisconsin/1/61. The percent identity for
these sequences is above 98%, but they were isolated in different
year and from different hosts.
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Fig. 2: Percentage of mistakenly deleted sequences based on different
identity ratio. Error rate = Number of misclassified sequences

Total number of sequences

Only sequences belonging to a single host (human, avian
and swine) were used in the study, which means each sequence
is assigned only one label. Multi-label research is beyond the
scope of this paper. Therefore, a total of 60,087 sequences
have been used. Table I lists the number and proportion of
instances in each class.

TABLE I: Data Set

Class Instances (#) Proportion (%)

Human 32,897 54.75

Swine 8,939 14.88

Avian 18,251 30.37

Total 60,087 100

Before filtering: avian (32,299), human: (133,269), swine (15,265) and
total (180,833).

B. Features Derived from Position-Specific Scoring Matrix

1) Position-Specific Scoring Matrix: The position-specific
scoring matrix (PSSM) [30] is a scoring matrix that contains a
highly informative representation of protein sequences and is
widely used to extract evolutionary features from sequences.
A PSSM can be derived by PSI-BLAST (Position-Specific
Iterated BLAST) program [31].

A PSSM is an L× 20 matrix for a query protein sequence
with L length, as a protein sequence usually has 20 types of



amino acids. The more intuitive way to represent the PSSM
for a sequence a1a2 . . . aL is as follows:

PSSMoriginal =


A R . . . V

a1 p1,1 p1,2 . . . p1,20
a2 p2,1 p2,2 . . . p2,20
· · · · · · · · · · · · · · ·
aL pL,1 pL,2 . . . pL,20

 , (1)

Each pi,j is the score of amino acid ai mutated to aj , it
can also represent the probability of mutation by using the
sigmoid function to restrict the score into the range [0, 1]:

pi,j =
1

(1 + e−pi,j )
, i = 1, 2, . . . , L; j = 1, 2, . . . 20, (2)

We apply a standalone version of PSI-BLAST [32] devel-
oped by the NCBI to run PSI-BLAST iteratively. The database
used for searching is a non-redundant (NR) database, and the
parameters of the PSI-BLAST program are set to their default
values (E-value = 0.001, number of iterations = 3).

The original PSSMs are variable in size and thus cannot be
fed directly into many machine learning models. Therefore, we
propose PSSM-based sequence encoding schemes to overcome
this hindrance. We first introduce a residue grouping rule to
reduce the complexity of proteins and reduce unnecessary
computations.

2) Residue Grouping Rule: 20 kinds of amino acids can
be grouped into 10 types as they have similar functional or
structural characteristics in proteins [33]: G1 (F, Y, W), G2
(M, L), G3 (I, V), G4 (A, T, S), G5 (N, H), G6 (Q, E, D),
G7 (R, K), G8 (C), G9 (G) and G10 (P). By implementing
residue grouping rules to each column of original PSSM, a
grouped-PSSM (GPSSM) with L × 10 dimension can be
formed:

PSSMG =


G1 G2 . . . G10

a1 g1,1 g1,2 . . . g1,10
a2 g2,1 g2,2 . . . g2,10
· · · · · · · · · · · · · · ·
aL gL,1 gL,2 . . . gL,10

 , (3)

where

gi,j =

∑
pi,Gj

|Gj |
, (4)

The GPSSM is produced based on the original PSSM (1),
thence

∑
pi,Gj means the score of amino acid ai mutated to

an amino acid that belongs to group j. L is the length of
sequences; i = 1, 2, . . . , L; |Gj | is the number of amino acids
types in group j. For instances, if i = j = 1, then |G1| = 3,
g1,1 = (p1,F+ p1,Y + p1,W )/3

The following proposed feature sets (EG-PSSM, GDPC-
PSSM and ER-PSSM) are derived from GPSSM (3).

3) EG-PSSM: Because the length of the input sequences
can vary, so can original PSSMs (1) and GPSSMs (3). As
a result, they cannot be directly used in many machine
learning models. One intuitive and simple way to overcome
this problem is to also apply the residue grouping rule to each
row of GPSSM (3). Therefore, each sequence can produce a
10× 10 matrix. Reformatting the matrix in rows from top to

bottom and left to right, a 1× 100 feature vector is extracted
from a GPSSM (3).

PSSMEG =
(
EG1,G1

EG1,G2
· · · EG10,G10

)T
, (5)

where

EGi,Gj =

∑
gGi,Gj

|Gi|
, i, j = 1 . . . 10, (6)

4) GDPC-PSSM: The traditional dipeptide composition
(DPC) [34] captures the composition information of amino
acids and partial local-order information in protein sequences.
Original DPC acts directly on raw sequence data and gives a
400-dimensional feature vector for each sequence, but it can
be further extended to PSSM [35]. Therefore, each L × 10
GPSSM (3) can be further defined as 100-dimensional feature
vector by grouped dipeptide composition encoding:

PSSMGDPC =
(
D1,1 D1,2 · · · D10,10

)T
, (7)

where

Di,j =
1

L− 1

L−1∑
k=1

gk,i × gk+1,j i, j = 1, 2, . . . , 10, (8)

Each gk,i is the value of row k and column i in the
GPSSM (3).

5) ER-PSSM: The third proposed sequence representation
is adapted from RPSSM [36], which computes the pseudo-
composition of dipeptide in sequences. Same as GDPC-PSSM,
RPSSM also extracts the partial local sequence order informa-
tion in sequences. Original RPSSMs only compute the pseudo-
composition of any two adjacent amino acids. We extend the
computation of RPSSM for any two amino acids akak+t with
gap t in sequences and extract a 1 × 910 feature vector per
sequence:

PSSMER =
(
M1,1,1 M1,2,1 · · · M10,10,9 T1 · · · T10

)T
, (9)

where

Mi,j,t =
1

L− t

L−t∑
k=1

(gk,i − gk+t,j)
2

2
,

i, j = 1, 2, . . . , 10; t = 1, 2, . . . , 9

(10)

and

Ti =
1

L

L∑
k=1

(
gk,i − Ḡi

)2
, i, j = 1, 2, . . . , 10. (11)

Ḡi is the average of values of GPSSM (3) in column i,
Ti computes the average pseudo-composition of all the amino
acids in the protein sequence corresponding to column i in
GPSSM (3).



C. Features Learned from N-grams

Traditional machine learning methods require manual data
preprocessing and feature extraction to extract representative
features of each protein sequence. The feature extraction
process requires prior knowledge to select suitable features.
In contrast, deep learning methods can directly learn the
implicit representation of protein sequences. This subsection
introduces two vectorization schemes, word encoding and
word embedding, to map protein sequences into numerical
vectors.

1) Overlapping N-grams: A protein sequence is morpho-
logically similar to a text sentence, except that the text is
composed of words but the protein sequence is formed by
amino acid letters. Therefore, we split the sequence into
overlapping n-grams (n is ranging from 3 to 5) to transform a
protein sequence into a protein ”sentence” of n-grams. An n-
gram is a protein ”word” with successive n amino acids. Fig. 3
is an example of overlapping 3-grams for a protein sequence,
and Fig. 4 shows the word clouds of n-grams for all sequences.

M L S I T I L F L . . .

overlapping 3-grams: MLS LSI SIT ITI TIL ILF LFL . . .

Fig. 3: Example of Overlapping Trigrams.

(a) 3-grams (b) 4-grams (c) 5-grams
Fig. 4: Word Clouds of N-grams

2) Word Encoding: Word encoding, also called indexed-
based encoding, maps words to numbers, as shown in Fig. 5.
Compared with commonly used one-hot encoding, word en-
coding can generate non-sparse vectors and is more efficient.
However, word encoding is not trainable and unexplainable
for models that need to learn feature weights as it loses the
relationship between words.

Index : 1 2 3 4 5 6 7

Vocabulary : MLS LSI SIT ITI TIL ILF LFL

Words : LSI ITI ILF INL

Word Encoding : [2 4 6]

Word Encoding : [0 0 0 2 4 6]
(left padding)

Fig. 5: Example of Word Encoding.

3) Word Embedding: Word embedding compensates for the
drawbacks of word encoding and one-hot encoding. It cannot
only produce dense vectors but also capture the relationship
between similar words. Popular implementations of word em-
bedding include Word2Vec [24], but it lacks domain-specific
words. Therefore, we generated a custom word embedding

from the dataset only used for training and mapped the n-
grams of each sequence to the embedding vectors. Each n-
gram is represented as a vector of size N , and a protein
sequence is represented as a L × N , where L is the length
of the sequence (number of n-grams in the sequence) and N
is the embedding dimension. Fig. 6 depicts the visualization
of word embedding using 2-d t-SNE.

(a) 3-grams (b) 4-grams (c) 5-grams
Fig. 6: Word Embeddings Visualization Using 2-D t-SNE

We left-pad and truncate the sequence with the most fre-
quent sequence length to unify the dimensionality of matrices,
which means that most sequence information will be retained,
but more noise will be introduced to the shortest sequence,
and the longest sequence information will be discarded.

D. Machine Learning Techniques

1) RUSBoosted Tree: Data sampling with boosting algo-
rithms are applied to tackling the problem of class imbalance.
Commonly used data samples methods include oversampling
(enriching the minority class) and undersampling (decreasing
the majority class). Random undersampling boosting (RUS-
Boost) algorithm [37], as its name implies, combines under-
sampling methods with boosting algorithms. Compared with
other oversampling methods, e.g., SMOTEBoost, RUSBoost
is computationally cheaper and more efficient.

2) Extreme Gradient Boosting: Extreme Gradient Boosting
(XGBoost) [38] is a highly efficient and scalable imple-
mentation of gradient boosting algorithms. Gradient boosting
algorithms are similar to AdaBoost but use gradient descent
to optimize the derivable loss function when adding the new
models. XGBoost can handle stubborn issues in the data
science area, such as it can solve missing values and sparse
data in an automatic way. One of the biggest advantages of
XGBoost is that it provides parallel training to speed up the
training process and can handle large datasets.

3) Random Forest: Decision trees have higher variance
and lower bias, while the bagging algorithm aims to reduce
the variance of the model. Therefore, the combination of
bagging and decision tree (random forest) improves the overall
performance of the model. Random forest [39] considers only
a small part of all features in each split. It introduces more
randomness to each decision tree. In contrast to boosting-
based ensembles, bag-based ensembles are prone to con-
struct deep trees, which means bag-based ensembles are more
complex than boosting-based ensembles. Therefore, bag-based
ensembles may require more training time than boosting-based
ensembles but leave out the validation process to estimate
generalization performance.



4) Support Vector Machine: Support vector machine
(SVM) is one of the best ”off-the-shelf” supervised learning
algorithms [40]. SVM can not only classify linearly separable
data but also can classify non-linearly separable data by
introducing a kernel trick. Kernel tricks help SVMs handle
high-dimensional data (even infinite-dimensional data) well
by mapping lower-dimensional data into higher dimensional
data but without explicitly transforming them. We use the
Gaussian kernel as kernel function and the one-vs-all strategy
to construct the multi-class SVM.

5) Convolutional Neural Network: Convolutional neural
networks (CNN or ConvNets) often appear in areas related to
computer vision, such as facial recognition, object recognition,
and autonomous vehicles. CNN initially took images as input
and expanded to include non-image data such as time series,
text, and audio data. Contrary to traditional machine learning,
CNN learns features of the data in each hidden layers. A CNN
often includes three hidden layers: the convolutional layer for
learning certain features, the activation layer for activating
features, and the pooling layer for reducing the number of
network parameters.

E. Model Parameters and Implementation

Four classic machine learning models (SVM, RF, RUSBoost
and XGBoost) were evaluated using optimized parameters (see
Table II for the tunning range). We used Bayesian optimization
to automatically adjust hyperparameters in 30 iterations and
at most 40,000 seconds. The deep learning model (CNN) was
evaluated using fixed parameters (see Table III for details).

RF, RUSBoost, SVM and CNN were implemented in MAT-
LAB 2020a, and XGBoost was implemented by XGBoost
Python Package.

TABLE II: Hyperparameter Setting for Classic ML Models

ML Classifiers Hyperparameters Tuning Range

SVM
BoxConstraint

KernelScale

[0.001, 1000]

[0.001, 1000]

RUSBoost

RF

NumLearningCycles

LearnRate

MinLeafSize

MaxNumSplits

NumVariablesToSample

[10, 500]

[0.01, 1]

[1, No. of data points]

[1, 1
2 (No. of data points)]

[1, No. of features]

XGBoost

learning rate

max depth

colsample bytree

[0.01, 1]

[1, 15]

[0.1, 1]

F. CNN Architecture

We designed a simple CNN for classifying protein n-grams,
as shown in Fig. 7. The CNN used in this work contains one
input layer (input), one convolution layer (conv), one batch
normalization layer (bn), one ReLU activation layer (relu),

TABLE III: Hyperparameter Setting for CNN

Hyperparameters Value

MiniBatchSize 128

MaxEpochs 30

solver adam

InitialLearnRate 0.001

LearnRateSchedule piecewise

LearnRateDropPeriod 10

LearnRateDropFactor 0.01

ValidationPatience 15

one dropout layer (dropout), one max pooling layer (max-
pool), four fully connected layers (fc) and one softmax layer
(softmax). Each protein feature matrix has (L,N) dimension,
where L is the length of the protein sentences after padding
or cropping, and N is the embedding dimension of that
sequence. Typically, CNN takes the image input with size
(height, width, color channels). When it is applied to text
classification, the height of the input is set as 1. Thence, the
output size of the the convolution layer (conv) is (1, L, 256).
The convolution layer (conv) has 256 filters of size [1 ngram],
where ngram is the size of protein words. Two parameters
of the convolution layer (conv) and max pooling layer (max-
pool), which are not mentioned in Table III, are step size
(stride) and padding value that were set as [1 1] and 0,
respectively. The dropout rate in the dropout layer (dropout)
is 0.2.

L

N
1

input

(1,L,N)

conv + bn
+ relu +
dropout

(1, L, 256)

max-
pool

(1,1,256)

fc
(1,1,128)

fc
(1,1,64)

fc
(1,1,32)

fc +
soft-
max

(1,1,3)

Fig. 7: Example of the CNN Architecture

III. MODEL EVALUATION

A. Cross-Validation

We used stratified K-fold cross-validation (CV) to evaluate
models. The class ratio of the training set was almost the
same as that of the test set. The generalization performance
of models was only evaluated on the test set (unseen data to
the model). Nested CV adds the outer K-fold CV for final
evaluation to reduce bias when it comes to hyperparameters
optimization and model selection [41]. Therefore, nested CV
will take advantage of the full diversity of the data set and
ensure that all data will be tested. The pseudo-code of stratified
nested CV is shown in Fig. 8.

In this study, we chose kouter = 6 and kinner = 5.
Therefore, approximately 68%, 16%, and 16% of the data
were used for training, validation, and testing, respectively.



The detailed information on the training set and test set is
shown in Table IV.

Algorithm 1: Nested Cross-Validation with Bayesian Optimization

Data: Data set with features X and labels y, D = {X, y}
input : Number of inner folds Kinner, number of outer folds Kouter

Maximum number of steps of Bayesian optimization niter

Maximum tuning time MaxTime
output: Generalization error Eg of the model

Shuffle D;
Stratified split D into Kouter folds;
for i = 1 to Kouter do

Take ith fold of D as test set Di
test and remaining as training set

Di
train;

Stratified split Di
train into Kinner folds;

for k = 1 to niter do
for j = 1 to Kinner do

Take jth fold of Di
train as validation set Dj

val and remaining

as training set Dj
train′ ;

Train the model on Dj
train′ with hyperparameter set Pk;

Compute validation error Ek,j
val′ of the model on Dj

val;

Compute average validation error Ek
val, where

Ek
val = average(Ek

val′);
if elapsed time > MaxTime then

Stop tuning

Select optimal hyperparameter set Popt with the lowest Eval;
Fit the model on Di

test with Popt;
Compute the test error Ei

test of the model on Di
test;

Compute generalization error Eg of the model, Eg = average(Etest);

Fig. 8: Pseudo Code of Stratified Nested CV

TABLE IV: Training Set and Test Set

Class
Traininga Testingb

Instances (#) Proportion (%) Instances (#) Proportion (%)

Avian 15,209 30.37 3,042 30.37

Human 27,144 54.75 5,483 54.75

Swine 7,449 14.88 1,490 14.88

Total 50,072 100 10,015 100

a The training set contains 84% of all data, 80% of the training set used
for training and 20% of the training set used for validation (5-fold cross-
validation).

b The test set contains 16% of all data and is only used in final evaluation.

B. Evaluation Metrics

Evaluation measurements used in the study include F1-score
and Matthews’s correlation coefficient (MCC). The equations
of measurements for each class are defined as follows:

F1i = 2 · Precisioni · Sensitivityi
Precisioni + Sensitivityi

, (12)

MCCi =
TPi×TNi−FPi×FNi√

(TPi+FPi)(TPi+FNi)(TNi+FPi)(TNi+FNi)
,

(13)
where i = 1, 2, . . . , N , N is the number of

classes; Sensitivityi = TPi/(TPi+FNi) and Precisioni =
TPi/(TPi+FPi). TP (True Positive) and TN (True Negative)
represent the number of data correctly predicted, FP is the
number of negative data misclassified as positive, and FN
counts the number of positive data incorrectly predicted as
negative.

For multi-class classification, the one-vs-all strategy is ap-
plied to produce F1-score for each class. The overall F1-score
and overall MCC are defined as follows:

Overall F1 =

∑N
i=1 F1i

|C| , (14)

Overall MCC =
c · s−∑N

i pi · ti√
s2 −∑N

i p2i ·
√
s2 −∑N

i t2i

(15)

where ti is the number of times that class i truly occurred,
pi is the number of times class i was predicted, c is the total
number of correctly predicted data, s is the total number of
data items.

IV. EXPERIMENTAL RESULTS

A. Sequence Alignment-based Methods

Fig. 9 shows the overall performance of the optimized
PSSM-based models on the test set. After hyperparameter
optimization, the performance of all models is outstanding,
but RUSBoost with ER-PSSM has highest variation.
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Fig. 9: Overall Performance of PSSM-based Models

The classes in the data set are unbalanced: more than half of
the data belongs to human viruses, whereas only around 15%
belongs to swine viruses. The class imbalance problem means
that the classifier may ignore the minority class, resulting in
performance degradation for the minority class. All models
yield the worst performance in swine viruses compared with
human and avian (see details in Fig. 10). Among all PSSM-
based models, the SVM with ER-PSSM performs best in
individual classes.

B. Sequence Alignment-free Methods

Regardless of the length of the n-gram, the overall perfor-
mance of word embedding is better than word encoding in
CNN (Fig. 11). Human is the easiest class among all CNN-
based models to classify, and swine is the most difficult one
(Fig. 12).

Fig. 13 depicts the average performance of all PSSM-based
optimized machine learning models (Fig. 13c) and CNN-
based models (Fig. 13a, Fig. 13b) in each class based on the
confusion matrix on the test set. The human class has above
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Fig. 11: Performance of Embedding-CNN in Individual Classes

92% probability to be correctly classified among all models,
as opposed to the swine. The performance between PSSM-
ML and Embedding-CNN in human and swine classes is not
much different, and Embedding-CNN is better than PSSM-ML
in distinguishing swine viruses.

C. Integrated Results from Various models

We looked at the performance of the models and integrated
the predicting results from Embedding-CNN and PSSM-ML.
For each viral sequence, we only know the infected host of
the sequence instead of the original host. Some sequences
were collected during the outbreak, which means that the
host used to isolate the virus may not be the original host.
Previous research [20] only used one model to predict the viral
host, which raises a concern about the accuracy of results.
Different models may yield different predictions. Therefore,
we provided integrated results and investigated the agreement
between the model results, see details in Table V.

The models can reach a 100% agreement of approximate
35.50% of the sequences, while 100% disagreement between
models occurs in 348 sequences. Among these 348 sequences,
217 belonged to the H1N1 influenza virus, and 196 sequences
were similar to or related to the 2009 H1N1 influenza pan-
demic (pH1N1), including 55 sequences with mixed positive
and negative segments. More specifically, 6 out of 13 avian
sequences and 190 out of 254 swine sequences, all probably
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Fig. 13: Confusion Matrix of Different Models: the value on ith row
and jth column indicates the probability of predicting the class i as
the class j.

related to the pH1N1. These sequences show the potential
ability to break the barrier of species and could be isolated
from different species.

From the machine learning perspective, the predicted label
mismatch the true label means the model misclassify the data.
But this view is open to discussion for Influenza viral host
prediction. We listed six sequences that can be traced in
literature, as shown in Table VI. These sequences seem to
be misclassified by all models, but the literature findings gave
us the opposite result.

Previous research speculate that A/turkey/BC/1529-3/2005
may be a swine-origin virus [42], [43]. A/Beijing/1/2017
and A/India/TCM2581/2019 are avian viruses isolated from
human [44], [45]. A/swine/Jangsu/48/2010 is a pH1N1-like
swine virus which used for proving the retro-infection from
swine to human in China [46]. A/swine/Jiangsu/1/2008 was
isolated from swine but prove to be mostly close relationship
to avian [47]. A/swine/Jiangsu/2/2009 was also isolated from
infected swine but also mostly closely related to avian and
human [47].

D. Performance at a Lower Taxonomic Level

Above results only represented the performance of pro-
posed models at a higher taxonomic level. This subsection
illustrates the performance of models at a lower taxonomic
level. Among all PSSM-based models, the performance of
ER-PSSM-XGB is outstanding and stable. As for CNN-based
models, Embedding-CNN with 5-gram yields the best results.
Hence, we also evaluated the performance of ER-PSSM-
XGB and Embedding-CNN (5-gram) when it comes to a



TABLE V: Integrated Results

Disagreement Rate

1 [0.5, 1) (0.1,0.5) (0, 0.1] 0

Avian 13 112 527 12477 5122

Human 81 468 1241 15048 16059

Swine 254 451 1606 6476 151

Total 348 1031 3374 34001 21332

* disagreement rate of sequence i equals to Ei/N , where Ei is the number of
models that misclassify sequence i, and N is the total number of models.
If the disagreement rate of sequence i is in [0.5, 1), it means that sequence
i cannot be correctly classified by more than half of the models.

TABLE VI: Example of Strains Reach Model Disagreement
# Strain Names Infected Host Predicted Host

1 A/turkey/BC/1529-3/2005 Turkey Human (7.4%); Swine (92.6%)
2 A/Beijing/1/2017 Human Avian (100%)
3 A/India/TCM2581/2019 Human Avian (100%)
4 A/swine/Jangsu/48/2010 Swine Human (100%)
5 A/swine/Jiangsu/2/2009 Swine Avian (66.7%); Human (33.3%)
6 A/swine/Jiangsu/1/2008 Swine Avian (96.3%); Human (3.7%)

lower taxonomic level. Fig. 14 shows the confusion matrix
of Embedding-CNN (5-gram) and ER-PSSM-XGB at a lower
taxonomic level.

There is not much difference in performance between
Embedding-CNN (5-gram) and ER-PSSM-XGB. However,
some host can be detected by ER-PSSM-XGB but not
Embedding-CNN (5-gram), such as mute swan. The overall
performance of Embedding-CNN (5-gram) and ER-PSSM-
XGB are both degraded compared with their performance at a
higher taxonomic level. Embedding-CNN (5-gram) produces
a 89.03% F1 and a 82.75% MCC, whilst ER-PSSM-XGB has
a 87.63% F1 and a 80.52% MCC. In addition to this, the
number of sequences correctly classified by ER-PSSM-XGB
(87.63%) is higher than Embedding-CNN (5-gram) (62.18%).

V. DISCUSSION AND CONCLUSION

We used both sequences alignment-based and sequence
alignment-free models to predict viral hosts of influenza A
viruses. Sequence alignment-based models use the features
extracted by PSSM before feeding into classic machine learn-
ing models. PSSM-based features cannot only maintain the
evolutionary information in the virus sequence but also capture
the local information in the sequence. Sequence alignment-
free models transfer the virus sequences into numerical vectors
through word encoding or word embedding before feeding into
CNN and is incapable of capturing the local information in
sequences. They also need padding to make the dimension
of the vectors uniform. But even so, the overall performance
of Embedding-CNN is still slightly better than PSSM-based
models at a higher taxonomic level. When it comes to the
performance at a lower taxonomic level, the PSSM-based
model can classify some viruses that Embedding-CNN cannot
do.
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(a) Embedding-CNN (5-gram)
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(b) ER-PSSM-XGB
Fig. 14: Confusion Matrix of Embedding-CNN (5gram) and ER-
PSSM-XGB at a Lower Taxonomic Level: the number of sequences
for each class is indicated in the brackets of actual label.

The data set used in the paper is non-redundant and all
the multi-label sequences were removed, which means each
sequence only belongs to a single host. Multi-label prediction
is beyond the scope of this article (only about 3% of the data
is multi-label) and is left for future work.
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