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“On April 26, 1956, a crane lifted fifty-eight aluminum truck bodies aboard an aging tanker ship moored in 

Newark, New Jersey. Five days later, the Ideal- X sailed into Houston, where fifty-eight trucks waited to 

take on the metal boxes and haul them to their destinations. Such was the beginning of a revolution.” 

(Levinson, 2016) 

The Box: how the shipping container made the world smaller and the world economy bigger.  

Marc Levinson (2016). Princeton University Press, New Jersey. 

 



9 

 

Abstract 

Ocean container shipping fulfils an essential role in today’s global supply chains. Maritime container 

terminals, which are specialised seaports to handle containers for them to be transferred between various 

transport modes, are essential transport facilities in the container shipping network, and their operation 

efficiencies are crucial to enable efficient container shipping. The yard operation system of a container 

terminal serves as the central point that connects the seaside and landside operations, which plays an 

important role in a terminal’s overall performance. High yard storage density and port congestion have 

been an industry-wide challenge. The management of yard operations has become increasingly important to 

the efficiencies and competitiveness of container terminals.  

A major source of inefficiency in yard operations is container relocation (or reshuffling) – moving the 

blocking containers out of the way to access the target container. Being non-productive, container 

relocation is not only costly to terminal operators but also results in delays in container retrieval and low 

quality of customer service. Reducing the number of relocations has therefore attracted increasing attention 

from the operations research community. This thesis addresses two key types of container management 

problems at the yard blocks: the Storage Location Assignment Problem (SLAP) – concerning where to 

store an incoming container in the container stacking process and the Container Relocation Problem (CRP) 

– concerning where to relocate a blocking container in the container retrieval process, with a focus on 

import containers, aiming to improve container yard operation performance. One of the central elements in 

yard operations is the availability and accuracy of container retrieval times. The retrieval times of import 

containers are usually subject to great uncertainties due to the uncertain arrival times of external trucks, but 

studies in this respect remain understudied. To tackle the challenges of uncertainties in yard operations 

planning, this thesis proposes novel strategies for import container stacking and retrieving, by utilising 

truck arrival information and customer information and incorporating service flexibilities. Correspondingly, 

new mathematical models are formulated, and exact and heuristic algorithms are developed for solving the 

arising optimisation problems.  

Specifically, three different but closely related optimisation problems are addressed and presented in the 

format of three papers, with the first two papers on the Stochastic CRP (SCRP) and the third paper on the 

SLAP. In the first paper, a flexible service policy is applied to the container retrieval process, where the 

trucks arriving at the same sub-time window are allowed to be served out-of-order. A new methodological 

framework is constructed that jointly optimises the container retrieval sequence and the relocation positions, 

where stochastic dynamic programming is used to formulate the SCRP, tree search-based exact algorithms 

and heuristic algorithms are designed as solution methods, and a discrete-event simulation model is 

developed to evaluate the solutions under uncertainties. This flexible policy is shown to be effective to 

reduce both the number of relocations and average truck waiting times in a wide range of scenarios. Note 

that flexible policies may raise the issue of service fairness to customers because of the out-of-order service 

phenomenon. The second paper generalises the problem in the first paper to the case with multiple 

sub-time windows and incorporates service fairness into the optimisation objective. The new problem is 

formulated by a stochastic dynamic programming model with two lexicographically ordered objectives and 

solved via a hierarchical iterative approach. The results show interesting trade-offs between relocation 

efficiency and service fairness. It is also found that the information of trucks’ arrival preference over a time 

window can be valuable in reducing the number of relocations in some circumstances. Finally, the third 

paper proposes a smart stacking strategy for import container stacking by utilising the customer identity 

information (the consignees of containers), which intelligently classifies containers into smart containers 
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(free from relocation) and non-smart containers (may require relocation) and allocates them to smart stacks 

and non-smart stacks respectively. Two variants of SLAPs are investigated under two forms of smart 

stacking policies, the split policy and the non-split policy, depending on whether the containers from the 

same customer are allowed to be split between smart stacks and non-smart stacks. Mixed-integer 

programming is used to formulate the SLAPs, and a reformulation with enhanced computational 

performance is developed by leveraging the structural properties of the optimal solution. A 

divide-and-conquer heuristic algorithm based on the structure of the model is designed to seek higher 

solution efficiencies. The results show that the smart stacking strategy can significantly reduce the total 

container retrieval time compared with the traditional practice, and the split policy is superior to the 

non-split policy. Some beneficial scenarios regarding customer information quality and yard utilisation rate 

are also identified.   

The findings of the thesis can help terminal operators to gain insights into the benefit of the proposed 

novel strategies and the value of customer information. Such an understanding could promote 

industry-wide collaboration between terminal operators, trucking companies and cargo owners, and 

revolutionise the current import container handling practice towards a more efficient and sustainable 

fashion. The developed modelling and solution approaches advance the knowledge on operations research 

methods for yard operations problems and can facilitate decision support for terminal operators to 

implement the proposed strategies.  

  



11 

 

Chapter 1  

Introduction 

  

 

 

 

 

 

 

Containerisation – the stowage of freight in sealed, reusable metal boxes of standardized dimensions – is 

one of the most important cargo-moving techniques developed in the 20th century. Since its introduction in 

the 1960s, containerisation has revolutionised not only the shipping industry and ports, it has also 

fundamentally changed the world’s whole international trade and transport systems (Stahlbock and Voß, 

2008a). Being highly efficient compared to other shipping sectors, this concept has been accepted 

worldwide with the development of supporting transport facilities and handling equipment (Jiang et al., 

2015). Container terminals, which are specialised seaports to handle containers for them to be transferred 

between various transport modes, are essential transport facilities in the container shipping network, and 

their operation efficiencies are crucial to enable efficient container shipping. This thesis aims to enhance 

the operational efficiencies of container terminals by approaching a series of optimisation problems on 

import container handlings in container yards under uncertainties.  

This Chapter provides an overview of the operations management problems in maritime container 

terminals and outlines the work executed in this thesis. Section 1.1 introduces the role of container 

terminals in global container shipping. Section 1.2 describes the logistics systems in container terminals 

and provides a general introduction of the operations management problems arising at container terminals. 

Section 1.3 specifically introduces the optimisation problems on the container handling operations in yard 

blocks and describes the uncertainties in container handling. Section 1.4 states the research scope and 

explains the research motivation. Section 1.5 and Section 1.6 respectively provide a compendious literature 

review for the two types of optimisation problems dealt with in this thesis, to prepare the background for 

the main research chapters and justify the research gap and methodology applied. Section 1.7 explains the 

impact of new storage systems to the thesis. Section 1.8 presents the thesis structure.  

1.1 Container terminals in global container shipping 

With the globalisation of the supply chain, ocean transport has become an essential component of 

international trade, and ocean container shipping fulfils an essential role in today’s global supply chains. 

(Fransoo and Lee, 2013). According to the research conducted by Lloyd’s Marine Intelligence Unit in 2009, 

75% of the world trade by volume or 60% by value was carried by sea; and within the sea transport 

industry (including container, tanker, dry bulk, and general cargo), 52% of cargoes by value were 

containerised cargoes (Lee and Song, 2017). The importance of container shipping is also supported by the 

fact that container shipping is the fastest growing sector in shipping in the last two decades and it is 

regarded as the world’s truly global industry due to its ability to achieve integrated end-to-end supply 
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chains (Song, 2021a). Since its inception in the 1960s, containerisation has experienced modest growth in 

the first three decades and then has expanded at a rapid rate in the last two decades (Lee and Song, 2017). 

Over the past two decades, the global containerised trade has experienced a 5.85% average annual growth 

(UNCTAD, 2019). Although the global financial crisis halted its growth in 2009, a recovery was witnessed 

in 2010 and onwards, bringing the total container trade to 152 million Twenty-Foot Equivalent Units (TEUs) 

in 2019 (UNCTAD, 2020).  

Maritime container ports/terminals are essential facilities to enable container shipping. As an 

indispensable part of the global container shipping network, maritime container terminals act as an 

interface connecting seaborn transport and inland transport, where containers are transferred between 

different transport modes (container ships, barges, trucks, rails). The total throughput of container terminals 

has experienced significant growth during the last few decades. In 2019, 811 million TEUs of containers 

were handled in ports worldwide, with an average annual growth rate of 4.05% from 2015 to 2019 

(UNCTADstat). There are more than 1000 ports in 200 countries that can handle container ships (Song, 

2021a). Leading container ports such as Shanghai handle more than 40 million TEUs annually (see Table 

1.1 in the appendix at the end of this chapter) and this volume is projected to continue to rise (THE 

MARITIME EXECUTIVE, 2021). Affected by the COVID-19 pandemic, although the world port container 

throughput is expected to contract by 7.3% in 2020, a jump up to more than 10% is projected in 2021, 

according to Drewry baseline forecast (UNCTAD, 2020). It has been reported that Los Angeles-Long 

Beach is preparing to handle a record 20 million TEUs this year (Mongelluzzo, 2021), an increase of about 

17.9% over 2019. The increasing volume calls for more efficient container handling at container terminals. 

In addition, other factors and trends of container shipping, including mega-vessels, slow steaming, 

hub-and-spoke network, intense port competition, etc., bring challenges for container terminals to improve 

their competitiveness and necessitate more efficient operations planning (Jiang et al., 2015; Kim and Lee, 

2015). 

Port congestion has stretched around the globe nowadays, which puts pressure on terminal operators to 

ensure efficient global container shipping. It is reported that through to May this year, containerships spent 

more than double the time in waiting on anchors for berths since 2019. In later July this year, 116 ports 

around the world reported congestion challenges and 328 ships were idling in front of ports waiting for 

berth spaces (Chambers, 2021). Some container ports, for example, major UK container ports (e.g., 

Felixstowe and Southampton) (Todd and Waters, 2020) and US west coastal ports (e.g., Los Angeles and 

Long Beach) (Porter, 2020) have experienced severe congestion in the second half of 2020. Container 

terminals need to find solutions for reversing the situation of congestion.  

Facing the challenges of increasing volumes and port congestion, it is of increasing importance for many 

ports to seek more efficient and sustainable operations. In this thesis, we propose novel operation strategies 

for container retrieving and stacking at container terminal yards, which can help to improve yard operation 

efficiency and relieve the situation of port congestion.  

1.2 Container terminal operations and decision problems 

Container terminals are complex logistics systems that involve many interdependent operations 

management problems across three sub-systems: seaside, yardside and landside operations. Section 1.1.2 

presents an overview of container terminals. Section 1.2.2 introduces the operational management problems 

in container terminals from three planning horizon levels and three logistics sub-systems.  
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1.2.1 Overview of container terminals 

The layout of a container terminal can be divided into different areas physically according to the functional 

purpose of each area. Though the division can be different in terms of the level of details by different 

researchers (e.g., Carlo et al., 2014 a, b; Meisel, 2009), usually, a container terminal could be divided into 

six specific functional areas: berth, quay, transport area near the quay, yard, transport area near the gate, and 

gate (see Fig. 1.1). According to the logistics process of handling a container in a terminal, a terminal may 

be categorised into three logistics sub-systems, namely the seaside, yardside and landside. The berth, quay 

and transport area near the quay are considered seaside, while the transport area near the gate and the gate 

are considered landside. A few researchers consider that the landside also includes the yard area (e.g., Carlo 

et al., 2014 a, b), while others discuss the yard area or yardside separately as the buffer area between 

seaside and landside (e.g., Song, 2021a,b; Caserta et al., 2020; Zhen et al., 2013).  

 

Seaside Yardside Landside

Gate Transport Berth Transport QuayFunctional 
areas

Logistics 
systems

Export containers

Yard

Import containers

Transhipment containers

Internal Truck

 

Fig. 1.1 Schematic representation of a typical container terminal (adapted from Meisel (2009) and 

inspired by Galle (2018)) 

The berth area is the water place near the shore that connects vessels and the terminal. Vessels moor at 

the berths when they arrive at the terminal from the sea and wait here while being served. The quay area is 

the place where containers are (un) loaded onto (from) vessels by using Quay Cranes (QCs). The yard area 

is the storage area where containers dwell after arriving at the terminal and wait for onwards transport. It 

serves as a decoupling point between seaside and landside transport. Due to the asynchronism between 
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containers’ arrival times and departure times, all containers (except direct transhipment containers, see 

Zeng et al., 2017) need to dwell at the yard for a period of time, typically ranging from a day to a couple of 

weeks (Park et al., 2011), before being loaded to another transport mode. Various equipment can be used to 

handle containers in the yard, which mainly include the gantry Yard Crane (YC) and the Straddle Carrier 

(SC). YCs are used for stacking containers and moving containers to the transfer points where the 

containers are exchanged between the YC and the transfer vehicles. There are mainly two types of YCs, 

Rail-Mounted Gantry Cranes (RMGCs) and Rubber-Tyred Gantry Cranes (RTGCs). In a survey of 114 

terminals all over the world, RTGCs were found to be the most popular yard equipment used in 63.2% of 

the terminals studied (Wiese et al., 2011). The second most used equipment is the SCs (20.2%), which are 

capable of self-lifting and stacking containers. The layout and the technicalities of the yard area will be 

further introduced in detail in Section 1.3. The transport area near the quay is where containers are 

transported from (to) vessels to (from) the storage yard. Common transfer vehicles used for performing this 

transport include trailers, SCs, Automated Lifting Vehicles (ALVs), Automated Guided Vehicles (AGVs), 

and reach stackers, all of which are categorised as internal trucks. Last, the gate is the interface between the 

terminal and hinterland where containers come into or go out of the terminal via External Trucks (ETs). If 

YCs are used for yard operations, ETs are sent directly to the dedicated yard blocks to deliver or pick up 

containers. If SCs are used, ETs enter the parking area near the yard waiting to be served. It is also possible 

that ETs are capable of self-service if containers are stored on chassis in the yard. Other inland transport 

vehicles that link the terminal with hinterland transport include trains and barges. Note that barge can be 

regarded as an inland transport vehicle but barge operations are performed at the quayside. For the terminal 

that can serve trains, railway tracks lead into the terminal. If the railway yard is operated by YCs, 

containers are loaded (unloaded) to (from) the trains by YCs, where horizontal transport of containers is 

required to transfer the containers between the terminal yard and the railway yard. Otherwise, SCs or ALVs 

are used to serve the trains. The transport area near the gate is the place where containers are transferred 

between the terminal yard and the ETs at the parking area or the trains at the railway yard.  

There are three types of containers that are handled in a container terminal based on the directions of the 

container flow: import containers, export containers, and transhipment containers. Import containers arrive 

from the seaside by vessels and then are discharged to the yard for temporary storage, and finally, they 

leave the terminal via hinterland transport. This operation flow is vice versa for export containers. For 

transhipment containers, after being discharged from the vessels and stored in the yard, they will be loaded 

onto other vessels for their next journey. 

1.2.2 Operations management problems in terminal operations  

The complex container terminal operation systems give rise to many operations management problems to 

deal with. The planning of a problem is usually made under a specific length of the planning horizon that 

depends on the characteristics of the problem. According to the planning horizon levels, these planning 

problems can be classified into strategic, tactical, and operational planning problems. While the 

performance of a container terminal can be improved at the strategic level by adopting such as new 

technologies or terminal layout re-design, at the operational level, a proven means to enhance the efficiency 

of terminal operations is optimising how the operations are carried out (Caserta et al., 2020). Researchers 

have devoted a great deal of effort to the definition of the optimisation problems of terminal operations and 

the development of Operations Research (OR) methods to tackle these problems. The optimisation of these 

operations problems can be differentiated between tactical level and operational level depending on the 

planning horizon length. A number of general review papers on terminal operations have been published 
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(Vis and de Koster, 2003; Steenken et al., 2004; Stahlbock and Voß, 2008b; Angeloudis and Bell, 2011; 

Kim and Lee, 2015). Meanwhile, some concentrate on the review of seaside operations (Bierwirth and 

Meisel, 2010, 2015; Carlo et al., 2015), transport operations (Carlo et al., 2014b), yard operations (Zhen et 

al., 2013; Carlo et al., 2014a), and new technologies and OR models for terminal operations (Gharehgozliet 

al., 2016). In the following, we provide a brief introduction to the problems at each planning level. For a 

detailed description, we refer the readers to Iris (2016).  

Strategic problems are often related to long-term investment decisions with years of lifespan that are 

very costly to change. Typical problems include port competition, terminal layout design, multi-modal 

interface design, selection of equipment types, and selection of terminal operating systems.  

Tactical problems usually deal with plannings that are made several months or weeks in advance. These 

decisions are mostly related to the long-term deployment and assignment of the terminal resources that will 

not be changed easily once determined. Typical examples include berth template design (assigning berthing 

windows and positions for cyclic calling vessels), yard template design (assigning yard space for cyclic 

calling vessels), storage yard division (dedicating storage space for import containers, export containers, 

empty containers, and reefer containers), vehicle fleet size (determining the number of transport equipment) 

etc.  

Operational problems correspond to the planning of terminal operations for the efficient utilisation of 

key resources during a short-term that varies between days to seconds, which are closely related to the key 

performance indicators of a container terminal. In most container terminals, key resources include berths, 

storage spaces, QCs, and YCs because of the high cost of increasing their capacity. As pointed out by many 

researchers (e.g., Zhang et al., 2003; Stahlbock and Voß, 2008b; Knatz, 2017; de Melo da Silva et al., 2018), 

key port performance indicators include: (1) the vessel berthing time, which is a measure of the service to 

shipping lines, (2) the throughput of the quay cranes, which is a measure of the productivity of a terminal, 

(3) the turnaround time of trains and external trucks, which is a measure of the customer service level to 

hinterland transport carriers, and the (4) container dwell time at the yard, which is a measure of the yard 

throughput capacity.  

The thesis is concerned with operational level problems. In the following, we introduce the main 

operational level planning problems in relation to three sub-systems: quayside, yardside, and landside. 

Some problems cover multiple logistics sub-systems.  

Quayside 

Operational planning at quayside focuses on berth planning, stowage planning, QC work scheduling, 

container loading/unloading sequencing, and vehicle dispatching and routing.   

Berth planning is addressed in the berth allocation problem (BAP) that determines the berthing times and 

positions of a set of vessels within a planning horizon. The goal is to maximise the service levels of vessels 

given spatial (discrete or continuous berths), temporal (static or dynamic), and handling time (dependent on 

berthing position and/or QC assignment and schedules or fixed) constraints. Because vessels’ arrival times 

may deviate from their estimated arrival times, recent studies focus on designing robust and reliable berth 

planning by considering such uncertainty (e.g., Xiang et al., 2017; Iris and Lam, 2019). 

The Stowage Planning Problem (SPP) is concerned with determining the attributes of containers (such as 

weight, size, port of destination, and type of containers) to be loaded into slots in a vessel or determining 

the exact slot of each container in the vessel, by considering various vessel stability and strength measures 

and physical properties of the vessel. The goal is to minimise the stay times of vessels at the terminal, 

maximise QC utilisation, or minimise the costs related to the yard and transport operations (see e.g., 

Monaco et al., 2014).  
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The QC work scheduling involves the QC Assignment Problem (QCAP) and the QC Scheduling 

Problem (QCSP). The QCAP determines the number of QCs and/or the specific QCs to be assigned to each 

vessel, and/or the movements of QCs between vessels, aiming at maximising the QC productivity. This 

problem is often inter-related and jointly addressed with the BAP because the QC deployment affects the 

berthing during of a vessel (see e.g., Giallombardo et al., 2010; Iris et al., 2015, 2017). Given a QC 

assignment, the QCSP determines the schedules of QCs to perform a set of tasks, including the start and 

end times of a QC in each position of the vessel and the order of performing these tasks. The popular goal 

is to minimise the makespan of the operation by satisfying constraints such as the precedence relations 

among tasks and safety distance between cranes. Integrating the BAP, the QCAP and the QCSP is 

prevailing in studies such as Chen et al. (2012) and Agra and Oliveira (2018). After constructing the QC 

schedule, the container loading/unloading problem determines the sequence of (un)loading containers. 

The Vehicle Dispatching and Routing Problem (VDRP) is tackled at the interface of transferring 

containers between the quay and the storage yard, aiming at minimising the container (un)loading time, the 

idle times of QCs and vehicles, etc. The vehicle dispatching problem determines the assignment of vehicles 

to specific (groups of) containers. The vehicle routing problem is mostly considered jointly with the vehicle 

dispatching problem to determine the travel paths and the schedule of each vehicle to pick up and drop a 

container.  

Landside 

Operational planning at landside addresses the issues related to receiving and delivering containers at the 

interface of the yardside operation and the hinterland operations. In the case where trucks are used as 

hinterland vehicles, gate operations planning problems are addressed to reduce gate congestions, such as 

the truck appointment system design (e.g., Torkjazi et al., 2018) and the truck arrival management (e.g., 

Chen et al., 2013a, b). When there is a rail system at the interface, problems related to transferring 

containers between the yard and the train are addressed, including train loading and unloading, wagon 

shunting between trains, internal transportation problems between the yard and the rail terminal, and yard 

crane operations at the rail terminal (see the references in Song (2021a)).  

Yardside 

Operational planning at yardside can be divided into yard crane operations planning and container handling 

operations planning.  

Yard crane operations planning involves the Yard Crane Deployment Problem (YCDP) and the Yard 

Crane Schedule Problem (YCSP) (Zhen et al., 2013). The YCDP deals with the determination of the 

number of YCs to be assigned in each yard block and how to move the YCs among the blocks (for RTGCs). 

The YCSP is concerned with sequencing storage and/or retrieval operations for each YC considering 

constraints such as the safety distance between cranes, the job precedence, and the job due time, etc, to 

minimise the makespan, the total crane travel time or distance, or the total job waiting time. Depending on 

the number and types of YCs deployed in the block, the YCSPs can be classified into the scheduling of 

single crane (Ng and Mak, 2005), twin cranes (Hu et al., 2016), triple cranes (Dorndorf and Schneider, 

2010) and crossover cranes (Vis and Carlo, 2010). In a recent work by Speer and Fischer (2017), the 

performances of these four types of yard crane systems are examined and compared.  

Container handling operations in the yard involves container stacking during the storage, marshalling 

and retrieval processes. Corresponding optimisation problems will be discussed specifically in Section 1.3.   
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1.3 Container handling operations in yard blocks 

The yard operation system of a container terminal plays an important role in a terminal’s overall 

performance because it serves as the central point of synchronising the asynchronous container flows 

between the transport by deep-sea vessels and the hinterland (Covic, 2018). Yard operation is an integral 

part of the whole process of terminal logistics and needs highly coordinated planning and operations with 

the seaside and the landside. A yard is composed of multiple blocks, and container handling operations are 

conducted within yard blocks. The past two decades have seen increasing interests in the field of container 

handling operations in yard blocks. One of the recent research streams focuses on coping with the 

uncertainties in the operations. In the following, we first introduce the technicalities of yard blocks in 

Section 1.3.1, then describe the optimisation problems related to container handling in yard blocks in 

Section 1.3.2, followed by the presentation of uncertainties in Section 1.3.3.  

1.3.1 Technicalities of yard blocks 

A typical yard consists of multiple rectangular blocks. Due to the limited land space, containers are usually 

stacked in multi-tiers in a block. As presented in Fig. 1.2, a typical block can be described in three 

dimensions: bay, row, and tier. A row and a bay jointly characterise a stack, which is a vertical column for 

storing containers. Note that in the literature, a stack is also referred to as a column, and both blocks and 

bays are sometimes referred to as stacks. Each stack consists of several tiers. A row, bay, and tier jointly 

characterise a slot, which is the basic unit of the block for storing one container (TEU). The number of 

rows and tiers in a block is limited by the type of yard cranes used, and the optimal design of the block size 

depends on specific performance measures in the terminal (see e.g., Lee and Kim, 2010). Typically, these 

values range from 40 to 60 for bays, 6 to 13 for rows, and 3 to 6 for tiers (Galle et al., 2018b).  

 

a stack

a row

a tier
a slot A slot                      

a bay

 

Fig. 1.2 Schematic representation of a typical yard block at a container terminal (adapted from Wan et al., 

2009) 

There are two main configurations of yard layouts: a parallel layout and a perpendicular layout. They 

differ in the orientation of the blocks with respect to the quay and the location of the transfer points (TPs) 

where containers enter and leave the yard.  

The parallel layout has blocks positioned parallel to the quay (see Fig. 1.3a). In such a layout, the TPs are 

located at either both sides or one side of the block, which form truck lanes. When trucks (internal and 

external) arrive at the block, they drive to the bay associated with its storage or retrieval request and wait 

for their turns to be served. In this configuration, the YC travels to the bay where the truck parks to pick up 

(drop) containers from (to) the trucks. This type of yard layout is more common in transhipment terminals 
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(Gharehgozli et al., 2020) and is the most popular in large Asian terminals. It is referred to as Asian layout 

by some researchers (Carlo et al., 2014a).   

For the perpendicular layout, the yard block is positioned perpendicular to the quay and the TPs are 

located at both ends of the block (see Fig. 1.3b). The TPs on the seaside are for internal vehicles and those 

on the landside are for external trucks. For example, at London Gateway, there are six TPs in front of the 

yard block at the landside. In this configuration, the traffic of external trucks is separated from that of 

internal vehicles, which is more popular in Automated Container Terminals (ACTs). Automated stacking 

cranes (ASCs), which are automated RMGCs are normally used to stack containers in this type of layout. 

When a truck with a storage request arrives at a TP, a YC travels to that TP, picks up the container and then 

travels back with the container to the storage location that is assigned to the container. When serving a 

truck with a retrieval request, the YC travels from the location where the requested container is stored to 

the TP that the truck parks, and then it drops the container at the truck. Compared to the parallel layout, the 

perpendicular layout reduces the distances travelled by internal and external vehicles at the expense of 

longer travel distances for YCs. This type of yard layout is more common in export and import terminals 

(Gharehgozli et al., 2020). As it was first implemented in some large European container terminals, it is 

also referred to as European layout by some researchers (Carlo et al., 2014a).   

 

    

(a) Parallel                               (b) Perpendicular 

Fig. 1.3 Two typical types of block layouts in container terminals (Lee and Kim, 2010) 

1.3.2 Optimisation problems in container handling in yard blocks 

The structure of the multi-tier stacking of containers in yard blocks stipulates that only the topmost 

container can be accessed directly by a YC. If the target container (i.e., the container with the highest 

retrieval priority) to be retrieved is not on the topmost tier, those above it – that is, the blocking containers - 

need to be moved out of the way in order to access the target one. The moves of blocking containers are 

called relocation, reshuffling, or rehandling (see Fig. 1.4). For consistency, we use the term “relocation” to 

represent such moves in the rest of the thesis. Container relocation is an unproductive operation that is 

costly to terminals and results in delays to container deliveries, which has been perceived as the major 

source of inefficiency in yard operations (Ku and Arthanari, 2016a). The discussion on container relocation 

is initiated by Kim (1997) who propose a method for estimating the expected number of relocations. Since 

this starting point, researchers have aimed to reduce relocations through better planning the container 
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stacking positions in yard blocks. Such motivation has shaped the framework of container handling in yard 

blocks, leading to a set of problem definitions and solution methods. In a recent systematic literature review 

on this theme conducted by Covic (2018), 61 studies between 1997 to 2018 are identified and five major 

problems are defined. All these problem types in some way focus on minimising the number of relocations 

at retrieval, but the means of how this is achieved are different for each problem type. These problem types 

are described below.  
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Fig. 1.4 Illustration of the terms regarding relocation 

The stacking positions of containers directly affect the number of relocations. The determination of the 

initial storage of containers into the yard is usually addressed hierarchically in the following two problems: 

the Storage Space Allocation Problem (SSAP) and the Storage Location Assignment Problem (SLAP). 

Storage Space Allocation Problem (SSAP)  

The SSAP deals with the container allocation to the yard area at a macro-level, which is the primary 

problem that needs to be solved before a container reaches the yard. It determines the amount of yard 

storage space allocated to each vessel for their containers, which can be addressed at various levels 

according to the storage space unit considered: yard section, yard block, yard sub-block, and yard bay. The 

main goal of the SSAP is to improve the efficiency and productivity at the seaside interface (e.g., Zhang et 

al., 2003; Jiang et al., 2012, 2013; Jin et al., 2016), while a few others focus on the performance at both the 

seaside interface and the landside interface (e.g., Yu et al., 2021). 

Storage Location Assignment Problem (SLAP) 

The SLAP deals with the container assignment to the yard at a micro-level. It determines the exact storage 

locations (i.e., slots) in a yard for individual containers. Some of the SLAPs aim at improving the efficiency 

of the future retrieval process (e.g., Kim et al., 2000; Saurí and Martín, 2011; Zhu et al., 2020), while some 

others focus on the efficiency of the stacking process (e.g., Luo et al., 2016) or the efficiency of both the 

stacking process and the future retrieval process (e.g., Razouk et al., 2016; Rekik and Elkosantini, 2019; 

Wang et al., 2020).  

The following three problem types arise after the stacking area has already been filled with containers, 

which are referred to as post-stacking problems by Caserta et al. (2011a), including the Container 

Relocation Problem (CRP), the Container Remarshalling Problem (CRMP), and the Container 

Premarshalling Problem (CPMP).  
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Container Relocation Problem (CRP)  

The CRP is addressed in the container retrieval stage. Each container has a retrieval priority determining 

when the container will depart from the yard block (see Fig. 1.4). Blocking occurs when the target 

container to be retrieved is stored beneath containers of lower retrieval priorities. The containers on top of 

the target container are blocking containers. When blocking occurs, the blocking containers must be 

repositioned to other stacks. Each such reposition results in one relocation. If the stacking positions of these 

relocated containers are not well planned, they may require further relocation in the future. The standard 

CRP is, given a pre-specified retrieval sequence for containers stacked in a given bay layout, to retrieve all 

containers from the bay with the minimum number of relocations (Ku and Arthanari, 2016a). The CRP 

seems to have received the prime focus within the container handling problems (Covic, 2018). There are 

several variants of the CRP, which will be introduced in Section 1.5.  

Container relocations also take place in marshalling operations, which are usually performed during the 

idle time of YCs to rearrange the containers stacking configuration such that the future retrieval operations 

will be carried out with maximum efficiency. In marshalling operations, the number of containers remains 

constant as the operations only involve relocation activities but no retrieval operations. Typically, two types 

of marshalling operations are distinguished, i.e., premarshalling and remarshalling.  

Container Premarshalling Problem (CPMP) 

The CPMP is concerned with finding a minimum length sequence of relocation moves that reorganizes the 

containers within a bay in such a way that, for a known or estimated retrieval sequence, no further 

relocations are required during the subsequent retrieval operations. Since containers are relocated only 

within the same bay, this type of operation is also called intra-bay re-marshalling.  

Container Remarshalling Problem (CRMP)  

The CRMP arises when marshalling operations are allowed to be performed across bays. It is concerned 

with finding the shortest length sequence of relocation moves that rearrange a set of containers stored in 

source bays into target bays within the same block in such a way that no further relocations will be required 

during the future retrieval process. Since containers are relocated within the same block, this type of 

operation is also called intra-block re-marshalling. In the CRMP, the crane moving distance for retrieving 

containers during the future retrieval process should be taken into account as it may substantially contribute 

to the waiting times of vehicles at the transfer points (Covic, 2017). When more than one YCs are used to 

handle containers in a yard block, the problem also considers avoiding interference among YCs (Choe et al., 

2011).  

In this thesis, we address the Storage Location Assignment Problem (SLAP) and the Container 

Relocation Problem (CRP). They will be discussed in further detail in Sections 1.5 and 1.6.  

1.3.3 Uncertainties in container retrieval time 

Uncertainties widely exist in terminal operations, which can be sourced from many factors, including the 

fluctuation of demand, vessels’ arrival time and operation time, container dwell times, interfaces between 

different equipment units, disruptive events like natural disasters, etc (see e.g., Zhen, 2014, 2015; Lu and 

Xi, 2010; Ku et al., 2012; Iris and Lam, 2019; Tong et al., 2015; Angeloudis and Bell, 2010; Pant et al., 

2014). Uncertainty affects every container terminal, which, unless appropriately handled, may degrade the 

operational gains that stem from optimisation (Angeloudis and Bell, 2010).  

For the yard operation system, one of the central elements in container handling in yard blocks is the 
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availability of container retrieval times (Covic, 2018). This is particularly important in order to avoid 

relocation activities as relocations are required if containers with higher retrieval priorities are stacked 

below containers with lower priorities. Usually, the information on container retrieval priorities is not 

directly given, but can only be predicted from the other characteristics of containers. The availability and 

accuracy of such data greatly depend on the flow direction of the containers (Kemme, 2020).  

Export containers arrive at terminals individually through hinterland transport and departure in large 

volumes through vessels. The arrival times of export containers are uncertain, but there is usually a cut-off 

time by which an export container must be checked in at the terminal for loading to a scheduled vessel or 

train. The cut-off time is usually 24 - 48 hours before the estimated time of departure of the vessel but will 

vary from the carrier and the terminal. The departure of export containers is usually more predictable as it 

is connected with a scheduled vessel. To some degree, the loading sequence of export containers is 

determined by the stowage plan of the vessel (Forster and Bortfeldt, 2012). A stowage plan stipulates the 

attributes of the containers to be loaded into each slot of the vessel. The attributes include the size (20-foot, 

40-foot, 45-foot, high-cube, oversized), the type (reefer, open-top), the weight class (light, medium, heavy), 

the cargo (dangerous, perishable), and the destination port (Monaco et al., 2014). Containers are usually 

categorised into groups by these attributes. A vessel slot can be loaded with any container of the group that 

is specified by the slot. As such, the departure priority of export containers from the storage yard can be 

derived from the stowage plan. For example, to maintain vessel stability, heavier containers are stowed in 

lower slots in a vessel and thus should be loaded earlier than lighter containers. Also, to avoid the 

relocation costs during the vessel unloading process, containers with closer destination ports are placed 

above those for more distant ports on a vessel. With the stowage plan at hand, terminal operators can plan 

efficient storage positions for containers in the yard such that containers to be loaded later are not placed 

above those to be loaded earlier to avoid relocation. However, the information for attributing a group is 

often not available or can be inaccurate (Forster and Bortfeldt, 2012), or the data (e.g., the port of 

destination) is subsequently changed due to changing plans of shipping lines (Caserta et al., 2011a). For 

example, when dedicated weighing procedures are not in place, the weight information of a container is 

oftentimes not accurate (Heilig et al., 2020). The International Maritime Organization (IMO) Safety of Life 

at Sea (SOLAS) has amended new regulations that require a mandatory Verified Gross Mass (VGW) of 

laden containers in order to be loaded onto a vessel from the 1st July 2016. In the meantime, many ports 

have started to provide weighing services, and some ports charge for the container (e.g., £20.00 in the Port 

of Felixstowe) if the VGW provided by the shipper has a large error. These regulations and practices may 

help to improve the quality of the weight data. In addition, the arrival time of vessels also affects the 

loading sequence of export containers. The actual arrival time of a vessel may vary from the planned time 

due to the uncertain sailing time and turnaround time in terminals (long sailing distance, unexpected 

weather conditions, port congestions, etc) (Luo et al., 2011). Most often, the planning of the stacking 

positions of export containers has to rely on the estimated time of arrival, the historical call pattern or the 

arrival time windows of vessels. 

For import containers, the situation is reversed. Import containers arrive at terminals through vessels in 

large batches and depart through hinterland transport individually. The arrival of import containers can be 

predicted by the vessel arrival time, but the departure time is random. When the container is to be stored in 

the yard, the arrival time of external trucks (or trains) is generally not known to terminal operators. It is 

thus hardly possible to arrange the import containers in the yard without causing future relocations. Hence, 

when a truck arrives at the yard, it is quite often that the requested container needs to be dug out from a pile 

of blocking containers. According to empirical studies, in busy ports such as Los Angeles-Long Beach, it 
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takes on average two to three relocations to deliver one container to an external truck (Mongelluzzo, 

2015a).  

With the implementation of the Truck Appointment System (TAS) at container ports, truck arrival 

information can be obtained in advance to some extent. The TAS, also known as Vehicle Booking System 

(VBS), was introduced in the mid-1990s for controlling truck arrivals at the terminal to avoid congestion 

during peak periods (Davies, 2009). It has now been widely applied at container ports worldwide, such as 

Vancouver, Long Beach, Los Angeles, Felixstowe, and Southampton. The TAS is implemented in a quota 

system in which a certain number of appointments (e.g. 100) are allocated to each time window (also 

known as time slot) that is open to be booked by external trucks. When a TAS is in place at a terminal, 

truck drivers must book their arrival time windows before they arrive at the terminal. Hence, each import 

container can be matched with a truck and a corresponding retrieval time window (see Fig. 1.5). Such 

information can then be used for deciding efficient relocation positions for import containers. However, the 

exact arrival time of a truck is still uncertain, which usually can only become known when the truck has 

arrived at the terminal. In addition, although with a mandatory TAS, unpredictable events like road traffic 

congestions, driver shortage or truck breakdowns can lead to changes in the scheduled arrival time 

windows (“no show”, “later show”). Therefore, the retrieval priorities of import containers are much less 

predictable than export containers.  
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Fig. 1.5 Retrieval time windows of import container obtained by truck appointment information  

1.4 Research scope and motivation 

In the Section, we define the research scope of the thesis and explain the research motivation.  

Among the three logistics sub-systems in a container terminal, the quayside sub-system was typically 

recognised as the bottlenecks that limit port performance (Forster and Bortfeldt, 2012; Hu et al., 2014). 

Terminal operators usually give priority to quayside operations as the efficiency of quayside operations 

determines the vessel turnaround time at the terminal which directly relates to the revenue generation for 

the terminal (Covic, 2018). As a result, quayside operations have received probably the most extensive 

studies in the logistics activities within container ports (see review paper by Bierwirth and Meisel, 2015).  

However, the management of yard operations is of paramount importance in determining the efficiency 

of a terminal (Caserta et al., 2020) and has become increasingly important to the competitiveness of a 

container terminal (Hakan Akyüz and Lee, 2014). As new technologies and advanced equipment come into 

use at the seaside (e.g., new generations of QCs and indented berths) (see Gharehgozli et al., 2016), the 

storage yard has now been arguably perceived as the new bottleneck of terminal operations (Zhen et al., 

2013; Jiang et al., 2015; Song, 2021a). With the deployment of mega container ships, the requirements for 

yard management have changed. Nowadays, the biggest container ship can carry up to nearly 24,000 TEUs 
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of containers, implying a dramatic increase in the container moves per hour at the terminal. This trend will 

not only demand a higher QC productivity but also require more storage capacity and productivity for the 

yard and better coordination of quayside and yardside operations. Without effective storage and retrieval of 

containers in the yard, the overall terminal performance would not benefit much from faster quayside 

operations (Jiang et al., 2015). In addition, with the growing container traffic, more and more containers 

will be stored in container yards, which can bring the risk of over-using the yard space and existing 

facilities. Simple capacity expansions by enlarging the terminal space is often impractical because of the 

constraints of the scarcity of land, availability of investment, and environmental concerns (Jiang et al., 

2015). In fact, port congestion has been an industry-wide problem (Song, 2021b). Nowadays, due to the 

disruptive events, including the outbreak of the COVID-19 pandemic, the Suez Canal blockage and the 

Yantian terminal shutdown in 2021, port congestion has stretched out the globe and exacerbated the global 

supply chain delays. This has led to further overloading of the already insufficient yard and gate handling 

capacity for many ports and result in delays in releasing cargo for hinterland transportation. The congestion 

at yards and the incapability of landside productivity can be recognised as a leading factor for port 

congestion. For example, the concentration of volumes at ports caused by the COVID-19 pandemic (e.g., 

10,000 TEUs per port call) has created peaks in yard activity and gate congestion in North America and 

Europe in the first half of 2020 (Notteboom et al., 2021). In another example, the surging ship calls at 

Southern Californian ports in December 2020 brought near-record levels of congestion to the ports with 

many ships forced to wait at anchor for several days to berth because there was nowhere to store the 

containers that need to be unloaded. Due to the storage space shortage, containers had to be piled five high, 

exacerbating the rate of relocation and adding to the truck turnaround time (Porter, 2020). Therefore, facing 

the challenge of the ever-growing demand and the pressure of port congestion, it is important for many 

ports to adjust their yard operation strategies, such as looking for new container stacking and retrieval 

solutions, in order to accelerate the container flow between the seaside and the landside. This is especially 

imperative in the current era. 

Given the above challenges, this thesis focuses on yard operations management in order to improve the 

container handling efficiencies at the yard and at the interface between the yard and the landside. Because 

the major source of inefficiency in yard operations is container relocation, a significant amount of research 

in the literature has been dedicated to minimising the number of relocations in the yard, and different 

problem types have been developed and addressed. Although these operations are facing uncertainties in 

nature, the literature shows a dominant focus on deterministic problem context, as pointed out in Covic 

(2019). In this thesis, we propose novel container stacking and retrieving strategies to cope with the 

challenge of uncertainties. The proposed strategies utilise customer information (truck arrival information 

and customer identity information) and incorporate flexibility in the decision-making process. 

Correspondingly, two problem types are addressed, the Container Relocation Problem (CRP) for the 

container retrieving process (Chapters 2 and 3) and the Storage Location Assignment Problem (SLAP) 

(Chapters 4) for the container stacking process. Specifically, we focus on import containers, whose retrieval 

priority is subject to greater uncertainties and is less predictable than export containers but the majority of 

studies assume deterministic information.  

By addressing the two types of problems, we aim to improve both the import container retrieval 

efficiency and the turnaround time of external trucks during retrieval. The turnaround time of external 

trucks is a key performance measure of terminal efficiencies and concerns the evaluation of customer 

satisfaction and port competitiveness (de Melo da Silva, 2018). Longer truck turnaround times can cause a 

serious environmental concern because of the emissions generated by truck congestions (Phan and Kim, 
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2016). Terminal operators have therefore been under enormous pressure from different entities who require 

terminals to reduce the truck turnaround time, including governments (Giuliano and O’Brien, 2007), port 

authorities (e.g., Port Metro Vancouver), and the stakeholders of the hinterland transport (Bonney, 2015). 

Therefore, the turnaround time of external trucks needs to be considered when addressing the yard 

operations problem.  

The main research questions (RQ) of the thesis are summarised as follows:  

RQ1. How to improve the import container retrieval performance during the retrieving process? 

RQ2. How to improve the import container retrieval performance during the stacking process? 

RQ3. What are the values of customer information to terminal yard operations? 

In the following two sections, we provide a compendious literature review on the CRP and the SLAP, 

respectively, with the purpose to justify the research gaps and the methodologies used to solve the arising 

problems. A more detailed literature review on the two problems is presented in the corresponding research 

Chapters (Chapters 2, 3, and 4). Overviews of storage yard operations can be found in Carlo et al. (2014a), 

Zhen et al. (2013), Caserta et al. (2011a, 2020), Covic (2018), Luo et al. (2011), and Rekik et al. (2015). 

While the first two papers encompass entire aspects of yard management including the material handling 

equipment (yard cranes, yard vehicles, etc), the rest concentrate on container handling operations in yard 

blocks. Besides, a general survey of loading, unloading and premarshalling arising in practical storage areas 

including container terminals, container ship, warehouse and tram depots is proposed in Lehnfeld and 

Knust (2014). 

1.5 Container relocation problem 

Generally, the Container Relocation Problem (CRP) is also called the Block Relocation Problem (BRP) 

wherein “blocks” refers to a set of identically-sized items. The BRP is encountered in many logistics 

facilities such as maritime container terminals and other industries where inventory (such as boxes, pallets, 

containers, and steel plates) is stored in stacks and is to be retrieved on a last-in-first-out (LIFO) basis 

(Petering and Hussein, 2013). As the thesis is addressing the maritime industry context, hereafter, we 

mainly use the term CRP.  

The CRP is initiated by Kim and Hong (2006) who formulate the problem with a dynamic programming 

model to minimise the total number of relocations to retrieve the containers with given priorities in a bay. 

Since this work, several variants and extensions to the CRP have appeared in the literature. Overviews of 

container relocation at maritime container terminals can be found in Caserta et al. (2011a, 2020). In the 

following, we first present a set of generic properties that basically hold for all CRP variants, followed by 

the assumptions in the standard CRP. Then, we introduce the variants and extensions of the CRP when 

some of these assumptions are relaxed or modified. Next, we classify the solution approaches for these 

CRPs. Finally, we justify the research gap and the corresponding methodology adopted in addressing the 

arising CRP in the thesis.  

1.5.1 Properties and assumptions  

1.5.1.1 Terminologies and generic properties of the CRP 

P1. The initial configuration of the bay is given in advance. A bay consists of S stacks, T tiers, and C 

containers. To avoid infeasible relocations, the storage capacity of the bay is restricted to be ( 1) 1S T   

containers, that is, ( 1) 1C S T   .  

P2. Containers to be retrieved next are called target containers. 
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P3. Relocations are performed only within the same bay. 

P4. Each container is associated with a retrieval priority number, and containers with lower priorities can 

only be retrieved after all containers with higher priorities have already been retrieved. 

P5. The situation where a container with a lower priority is stacked above a container with a higher 

priority is called mis-overlay.  

1.5.1.2 Assumptions in the standard CRP 

The following set of assumptions exist in the standard CRPs.  

A1. A container is relocatable only when it is blocking the target container.  

A2. Each container has a unique retrieval priority.  

A3. The deterministic retrieval priority is given in advance. 

A4. No new containers enter the bay during the container retrieval process.  

A5. The relocation cost is measured only by the total number of relocations. 

When some of these assumptions are relaxed or modified, variants and extensions of the CRP arise. 

1.5.2 Variants and extensions 

1.5.2.1 Variants  

 Restricted or unrestricted  

Under A1, only the containers above the current target container are allowed to be relocated. The CRP with 

this assumption is called the restricted CRP, which is considered in the majority of studies on the CRP. By 

relaxing this assumption, the unrestricted CRP is studied (e.g., Expósito-Izquierdo et al., 2014; Zhu et al., 

2012; Jin et al., 2015; Tanaka and Mizuno, 2018).   

 Distinct or duplicate priorities  

A2 and A3 regard the container retrieval priorities, which are important aspects of the CRP. Under A2, each 

container has a unique retrieval priority and is regarded as a single group by itself. This type of CRP is 

referred to as the CRP with distinct priorities. On the other hand, the CRP with duplicate priorities assumes 

that more than one container can have the same retrieval priorities, which belong to the same group (Kim 

and Hong, 2006; Tanaka and Takii, 2016; de Melo da Silva et al., 2018). In this case, the retrieval sequence 

of the containers in the same group is to be determined. 

 Deterministic or uncertain priorities 

One of the central aspects of the CRP is the availability of container retrieval priorities. The accuracy of the 

retrieval priorities is important for avoiding mis-overlay. The retrieval priorities of containers depend on 

various factors, such as departure time, weight, destination port, etc. A3 regards whether the retrieval 

priorities of containers are deterministic or uncertain. Most of the studies on the CRP assume given 

deterministic retrieval priorities. However, since the precise departure time of a container may not be 

available before the container leaves the yard, the decisions made under the assumed deterministic 

priorities could be impractical. Only a few works have dealt with the CRP with uncertain retrieval 

priorities.  

The uncertain CRPs can be categorised into two sub-categories: the online setting and the probabilistic 

setting. In the online setting, the container retrieval sequence is revealed over time, and the knowledge of 

future retrievals is limited to a look-ahead horizon. The goal is to design efficient online heuristics to 

determine the relocation positions for the blocking containers using information updated real-time (e.g., 



26 

 

Zehendner et al., 2017; Zhao and Goodchild, 2010). In the probabilistic setting, the containers’ retrieval 

priorities are modelled by a probability distribution and the research aim is to minimise the expectation of 

associated performance measures, such as the expected total number of relocations (Tong et al., 2015; Ku 

and Arthanari, 2016a; Galle et al., 2018a) and the weighted sum of the expected number of relocations and 

total retrieval delays (Borjian et al., 2013).  

A more detailed literature review for the uncertain CRPs is provided in Chapter two. Here, we would like 

to note that the CRP that considers randomness for container retrieval order among containers in the same 

retrieval time window is termed as the CRP with Time Windows (CRPTW) by Ku and Arthanari (2016a) for 

the first time in the literature. This problem class is then referred to as the Stochastic CRP (SCRP) by Galle 

et al. (2018a). The CRP considered in this thesis belongs to the SCRP. In such a problem class, import 

containers are ordered by the arrival time windows of external trucks which are obtained through the TAS 

of a terminal. In this scenario, the retrieval priorities among containers in different time windows are 

pre-defined, but the actual arrival time or sequence of the trucks within a time window is stochastic.  

1.5.2.2 Extensions 

 Static or dynamic 

The CRP under A4 is called the static CRP, which only involves retrieval and relocation activities. On the 

other hand, the dynamic CRP considers a dynamic environment with containers continually being stored 

and retrieved (Wan et al., 2009; Borjian et al., 2013; Hakan Akyüz and Lee, 2014; Tang et al., 2015). As the 

dynamic CRP joints retrieval and relocation of existing containers and storage of incoming containers, it 

can be regarded as an extension of the CRP that integrates the CRP and the SLAP. In most of the studies on 

the static CRP, since only the container retrieval order is given, there is no need to consider specific time 

points when retrieving containers. In contrast, in the dynamic CRP, the storage activity and retrieval 

activity may be prioritised differently by the terminal operators, therefore, time points such as discrete time 

steps (Borjian et al., 2013) are considered in the problem formulation.  

 Alternative objective functions 

The objective function of the standard CRP is to minimise the total number of relocations. Alternatively, 

objectives can be designed considering time consumption, which might be of interest for a more realistic 

model. A few studies take the YC working time into account, including spreader moving time for 

picking-up/putting-down containers, trolley moving time across stacks and gantry travel time across bays. 

For instance, Lee and Lee (2010) study the CRP in a three-dimensional stacking area and aim to minimise 

the weighted sum of the number of movements and the total working time of the YC. For a 

two-dimensional bay, Ünlüyurt and Aydin (2012) aim to minimise the total time spent for retrieving the 

containers. Voß and Schwarze (2019) investigates the CRP under different objectives by analysing to which 

extent the function value of the initial objective is changed when alternative objective functions are used. In 

addition, López-Plata et al. (2017) address the Blocks Relocation Problem with Waiting Times (BRP-WT) 

that focuses on minimising the total waiting times of customers during retrieval.  

 Alternative service policies 

A service policy for the CRP deals with the service sequence of transfer vehicles arriving at the yard. The 

service sequence determines the container retrieval sequence, which affects the number of relocations and 

the waiting time of transfer vehicles. However, as described above, most of the studies assume that the 

container retrieval sequence is pre-defined exogenously. Only a few studies have discussed service policies 

in the CRP.  
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For import containers, the most commonly used service policy for external trucks is the 

first-come-first-serve (FCFS) policy, that is, containers are retrieved in the arrival order of external trucks. 

However, the FCFS policy does not lead to the most efficient container retrievals. A few studies have 

proposed flexible service policies or out-of-order service, in which the container retrieval sequence (i.e., 

truck service sequence) is determined by the terminal operators to some extent according to the containers 

and the trucks to be processed (Zhao and Goodchild, 2010; Zeng et al., 2019; Borjian et al., 2013; Borjian 

et al., 2015). One major concern of flexible retrievals is the possibility of causing extra delays for some 

trucks and thus may raise the issue of service unfairness. Existing studies in this regard attempt to address 

this issue by restricting out-of-order service within a group of trucks in the same arrival time window (Zhao 

and Goodchild, 2010; Zeng et al., 2019), by setting a maximum service delay for each container (Borjian et 

al., 2013), or by limiting the number of out-of-order retrievals before each truck (Borjian et al., 2015). Note 

that there is no service fairness issue if the out-of-order retrieval is implemented to a group of containers 

with the same retrieval priority, for example, when they will be retrieved by the same customer (de Melo da 

Silva et al., 2018). 

In contrast, for export containers, when the retrieval sequence is treated as a decision, it is usually the 

case that a group of containers have the same retrieval priority, i.e. they are exchangeable in terms of 

loading sequence (Kim and Hong, 2006). In this case, there is no service fairness concern. A ship stowage 

plan only specifies the container class for each slot in the vessel. This provides flexibility for terminal 

operators to determine the exact container to be loaded in each slot while optimising the operative costs that 

always involve the cost of relocations occurring in the yard. For example, in Monaco et al. (2014), the 

retrieval sequence of export containers is determined in the ship loading problem that takes into account 

possible relocations in the yard, to minimise the costs of yard relocations and yard-to-quay transport 

operations.  

 Other extensions 

Moreover, there are several other interesting extensions though seldom studied. By adding a new parameter 

- the weight of containers, Hussein and Petering (2012) propose the BRP with Weights (BRP-W). In this 

setting, the weight of containers is considered in calculating the fuel consumption for moving containers. 

The objective is to minimise the total fuel consumption for retrieving containers. A recent extension is 

investigating the situation where the crane has multi-lift capacity. For example, Lin et al. (2015) investigate 

the situation in which the YC has the multi-lift capability, that is, the YC is equipped with multiple 

spreaders and thus can carry more than one container at a time. With multiple spreaders, the crane working 

time can be reduced, however, this introduction brings fundamental changes into the problem as the 

pick-up order can be different from the put-down order. In addition, Zhang et al. (2016) investigate the BRP 

with batch moves (BRP-BM) that mainly arises from the operations at slab yards in steel plants. This 

problem addresses new bridge crane technology that enables lifting several slabs, i.e., batch moves, at a 

time. Finally, some authors study the integrated problem. For instance, recently, Zweers et al. (2020) 

present a new optimisation problem related to the SCRP, called the Stochastic Container Relocation 

Problem with Pre-Processing (SCRPPP), which aims to minimise a weighted average of the pre-processing 

moves in the pre-processing phase (when the crane is idle) and the relocation moves in the relocation 

phase.  

1.5.3 Solution approaches 

In the last two decades, operations research methods have been extensively applied to address various 
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operations optimisation problems at container terminals, which can be mainly categorised into exact 

approaches, heuristics approaches and metaheuristics approaches. In the following, the solution approaches 

for the CRP are introduced by these categories. A subset of studies focuses only on either exact approaches 

or heuristics, whereas some others introduce exact methods but also add heuristics for addressing larger 

problem sizes.  

 Exact approaches 

Studies in this field aim at finding an optimal solution by exploiting (i) Mathematical programming 

techniques, e.g., (mixed) integer programming (MIP) (Wan et al., 2009; Caserta et al. 2012; Petering and 

Hussein, 2013; Tang et al., 2015; Zehendner et al., 2015), dynamic programming (e.g., Kim and Hong, 

2006), and stochastic dynamic programming (e.g., Ku and Arthanari, 2016a; Galle et al., 2018a); and (ii) 

search-based algorithms, e.g., branch and bound (Kim and Hong, 2006; Expósito-Izquierdo et al., 2015; 

Tanaka and Takii, 2016; Tanaka and Mizuno, 2018), branch and price (Zehendner and Feillet, 2014), branch 

and cut (Bacci et al., 2020), A* algorithm (Expósito-Izquierdo et al., 2014), iterative deepening A* (IDA*) 

algorithm (Zhu et al., 2012; Quispe et al., 2018), and tree search (Ku and Arthanari, 2016a, b; Galle et al., 

2018a).  

 Heuristic approaches 

The CRP has been proven to be NP-hard by Caserta et al. (2012), therefore, only small-scale instances can 

be solved exactly within reasonable times. For this reason, heuristic approaches are the major solution 

approaches for addressing the CRP with realistic sizes. These approaches are typically greedy by exploiting 

(i) a set of heuristic rules and greedy indexes for choosing the containers to move and their target slots 

(Kim and Hong, 2006; Caserta et al., 2012; Ünlüyurt and Aydin, 2012; Hakan Akyüz and Lee, 2014); (ii) 

look-ahead procedure that takes into account the next moves (Jovanovic and Voß, 2014; Petering and 

Hussein, 2013); and (iii) heuristic tree search procedure that explores only a subset of the search tree (Wu 

and Ting, 2010; Forster and Bortfeldt, 2012; Zhu et al., 2012; Expósito-Izquierdo et al., 2014; Jin et al., 

2015; Bacci et al., 2019).   

 Metaheuristic approaches 

Metaheuristic approaches for the CRP apply intelligent strategies to generate candidate bay configurations, 

including (i) the corridor method by Caserta et al. (2011b) in which a dynamic programming algorithm is 

used in a metaheuristic fashion; (ii) the genetic algorithm by Maglić et al. (2020); (iii) the tabu search 

algorithm by Wu et al. (2010); (iv) the ant colony algorithm by Jovanovic et al. (2019); and (v) the rake 

search by Tricoire et al. (2018).  

Recently, machine learning (Zhang et al., 2020; Jiang et al., 2021) has also been used to solve CRP. 

1.5.4 Research gap and methodology justification 

1.5.4.1 Research gap 

When dealing with the CRP, solution approaches for the deterministic version have received the most 

attention over the last decade. However, the assumptions on deterministic information may jeopardise the 

practicality of the solutions. Approaches for the uncertain version of the CRP have started to receive 

attentions in recent years, though they are still understudied. The Stochastic Container Relocation Problem 

(SCRP) that considers the randomness of the arrival order of trucks within a time window can be identified 

as a promising research trend, as demonstrated by Ku and Arthanari (2016a) and Galle et al. (2018a). In the 

SCRP, traditionally, it is assumed that all scenarios of the arrival order of the trucks within a time window 
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have an equal probability. This assumption overlooks the customer arrival preference. Customers (i.e., 

trucks) may have different arrival probabilities over different segments of a time window, which has not 

been considered in the previous SCRP studies. In addition, applying flexible service policies can bring 

visible benefits to a terminal, which is worth receiving more attention from both academia and industry 

practitioners. However, as demonstrated in the literature, only a few studies have considered service 

flexibility in the CRP (Zhao and Goodchild, 2010; Zeng et al., 2019; Borjian et al., 2013; Borjian et al., 

2015; de Melo da Silva et al., 2018). No studies have explicitly applied flexible service policies in the 

SCRP. 

A major concern of applying flexible service policies is that it might raise the issue of service fairness, 

because out-of-order service can cause some early arriving trucks to be served later than some later arriving 

trucks. The issue of service fairness to customers may become a barrier to the implementation of the 

flexible service policy. Considering fairness issues in the container retrieval operation can bring tangible 

benefits to terminal operators, such as improving service reliability and customer satisfaction. However, to 

the best of our knowledge, only Borjian et al. (2015) have evaluated the impact of the 

relocation-minimisation-oriented solutions on the service equity (fairness) in the deterministic version of 

CRP. No studies have explicitly optimised service fairness in the CRP. 

The two papers in Chapters 2 and 3 address the SCRP by applying flexible service policies. The research 

gaps to fill in each paper can be stated as the research objectives (RO) below: 

RO1. Optimise the import container retrieval performance during the retrieving process under uncertain 

truck arrivals by applying flexible service policies and utilising customer preference information. It is 

mainly from the terminal operator’s perspective (Paper 1 in Chapter 2).  

RO2. Optimise operation efficiency and service fairness during the import container retrieving process 

under uncertain truck arrivals. It takes from both the terminal operator and customers’ perspectives (Paper 2 

in Chapter 3). 

RO3. Evaluate the value of customer arrival preference to operation efficiency during the retrieving 

process (Paper 2 in Chapter 3).  

1.5.4.2 Methodology justification 

The SCRPs studied in Chapter 2 and Chapter 3 are both formulated by stochastic dynamic programming. 

The rationale for choosing this methodology is justified below.  

Optimisation under uncertainty has long been a focus of the mathematical programming community. 

Different approaches have been proposed, which, most prominently, include stochastic optimisation and 

robust optimisation. As a direct extension of deterministic optimisation, stochastic optimisation adds 

uncertainty to the problem by modelling the uncertain parameters as a random variable whose probability 

distribution is known to the decision-maker. The objective function of traditional stochastic optimisation is 

usually minimising the expected value of the objective function of the deterministic version of a problem 

(Bakker et al., 2020). In contrast to stochastic optimisation, robust optimisation presents uncertainty by an 

uncertainty set that contains all possible scenarios of the uncertain parameters but does not require 

knowledge of the likelihood of each scenario. The decision-maker wants to construct a solution that is 

feasible for any realisation of the outcomes in the given uncertainty set. The main paradigm of robust 

optimisation aims to optimise the objective function of the worst-case (Gabrel et al., 2014). As such the 

solution can be very conservative depending on the specific application context. Last, another prevalent 

concept is algorithm-based online optimisation that evolves from the field of computer science (Bakker et 

al., 2020). It does not take into account any information on the probability of future outcomes and focuses 

on devising online algorithms that can prove quality guarantees when competing with an optimal offline 
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algorithm that knows the whole input parameters in advance.  

Different concepts have been taken in tackling the container handling problems in yard blocks under 

uncertainties and various approaches have been used. Stochastic Dynamic Programming (SDP) is a 

combination of dynamic programming and stochastic programming, which belongs to the concept of 

stochastic optimisation. Kim et al. (2000) firstly use the SDP to address the export container stacking 

problem. Later, their model is corrected by Zhang et al. (2010). More recently, the SDP method has been 

used to tackle the SCRP by Ku and Arthanari (2016a). Later, Galle et al. (2018a) extends the problem in Ku 

and Arthanari (2016a) by incorporating more information on the truck arrival order, which is also 

formalised by the SDP concept, albeit the authors do not explicitly name their model as SDP. Besides, 

dynamic programming has also been used to solve the deterministic CRP by Kim and Hong (2006). 

Alternatively, a few studies use robust optimisation for tackling the Container Premarshalling Problem 

(CPMP), which is closely related to the CRP as described in Section 1.3. This line of research paradigm is 

currently represented by three papers, i.e., Rendl and Prandtstetter (2013), Tierney and Voß (2016), and 

Boge et al. (2020). In these papers, the retrieval priorities of export containers are uncertain due to the 

uncertainty in vessel arrivals. Such uncertainty is represented in the three papers, respectively, by intervals 

of possible priority values, time intervals within which containers will be retrieved, and scenarios of finite 

permutation of priority classes. In addition, some studies apply the recoverable robust optimisation 

approach for solving the operations optimisation problems at containers terminals, such as Iris and Lam 

(2019) for the berth and quay crane planning problem. Recoverable robustness combines the flexibility of 

stochastic programming with the tractability and performances guarantee of the classical robust approach. 

This approach aims to generate a recovery robust solution that can be recovered by limited costs in all 

likely scenarios (Liebchen et al., 2009). Moreover, in order to have reactive decisions, some studies use 

fuzzy logic-based expert systems for providing real-time decision support to deal with the uncertainty in the 

arrival and departure of containers at yards. In this approach, each input variable (e.g., weight, distance, 

dwell time) is mapped with a membership function (e.g., small, medium, large), and a set of rules are 

defined to determine the solution. Representative studies using this approach include Covic (2017) for the 

container re-marshalling problem and Ries et al. (2014) for the container stacking problem. In addition, 

multi-agent decision support systems have been developed for the reactive and decentralized control of 

container stacking in an uncertain and disturbed environment (e.g., Rekik et al., 2016; Rekik and 

Elkosantini, 2019). Such systems are integrated with a set of knowledge models and learning mechanisms 

for disturbance and reactive decision-making management. The goal of the system is to respond to 

disturbances (e.g., yard breakdown, fault in container placing, container’s date out changes) in a way that 

minimises their impact, thus to avoid the need for re-planning.  

This thesis addresses the SCRP by taking the concept of stochastic optimisation. The selection of this 

concept is driven by the characteristics of the uncertainty in the problem and the goal of the 

decision-making. The source of uncertainty in the SCRP stems from the randomness of truck arrivals 

within the same time window. Such uncertainty presents only in groups of containers/trucks while not 

across groups, as we assume that the truck arrival intervals (i.e., time windows) are already known through 

the TAS and a truck will arrive within its booked time window for sure without deviation to another time 

window. The range of this uncertainty tends to be small since a truck will arrive within a certain time 

window with a shorter length (e.g., 30 minutes or 60 minutes). In this context, the terminal operator may 

want to seek a risk-neutral solution instead of a conservative solution. Therefore, the goal of the SCRP is to 

find an optimal solution, i.e, a sequence of container retrieval and relocation moves, for each realisation of 

scenario, in order to minimise the expected total number of relocations. In this sense, it is different from the 
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goal of the robust approach that aims to find a feasible solution that can overcome the uncertainty in the 

worst-case, as applied in the CPMP. In the problem setting of the robust CPMP, the deviation of the actual 

arrival time of a vessel from its expected arrival intervals can have a large impact on the feasibility and 

optimality of a solution since many containers will be loaded onto the same vessel, therefore, robust 

optimisation is proper to seek a conservative solution. Also, the goal of the SCRP is different from the 

recoverable robust optimisation that has a focus on the recovery costs from the baseline schedule, and is 

different from the reactive decision support system that is designed for reacting after the fact of unexpected 

events. 

The SCRP considered in this thesis falls into the category of multi-stage sequential decision-making 

problems. In this kind of problem, information on the stochastic outcomes is revealed gradually and a 

sequence of decisions in reaction to the realisations of the outcomes is made over time (Birge and 

Louveaux, 2011). For a structuring review on multi-stage optimisation under uncertainty, we refer to 

Bakker et al. (2020). As pointed by Bakker et al. (2020), SDP is an appropriate method to deal with the 

multi-stage sequential decision-making problem in the case the problem has a Markovian process structure. 

The SCRP studied in the thesis possesses the Markov property, that is, the future bay configurations during 

the retrieval process depends only upon the present state of the bay and action and not on the past state, 

which justifies the usage of SDP to formulate the problem. Alternative formulations could be using 

multi-stage stochastic programming, but the practical solvability of multi-stage stochastic programming 

might be strongly restrained due to large dimensions. While the SDP has the advantage of dealing with a 

problem with multi-stages due to the optimal substructure of the problem at each stage. 

In terms of the solution approach, by applying the recursive equation of the SDP model, the optimal 

solutions can be obtained backwards from the final stage to the initial stage. This procedure is usually 

executed by a tree search-based algorithm in a state-space constructed by a decision tree. In this thesis, we 

use a tree search-based algorithm to find the optimal solution. When the problem gets larger, the algorithm 

is not able to find the optimal solution within a limited time. We thus develop two rule-based heuristic 

algorithms to overcome the computational limits of the exact algorithm. The NP-hardness of the CRP 

justifies the usage of heuristic algorithms to address realistic problems of larger sizes.  

1.6 Storage Location Assignment Problem 

The determination of the storage locations for incoming containers into the yard is usually addressed 

hierarchically in two decision problems: the Storage Space Allocation Problem (SSAP) and the Storage 

Location Assignment Problem (SLAP). The SSAP determines the amount of yard storage space allocated to 

each vessel for their containers, which can be addressed at various levels according to the storage space 

unit considered: yard section, yard block, yard sub-block, and yard bay (Jin et al., 2016). The SLAP deals 

with the assignment of individual containers to specific slots – which is specified by a bay number, a row 

number, and a tier - in a block. For a recent comprehensive review on yard space and storage location 

planning, we refer the readers to Kizilay and Eliiyi (2020).  

In this thesis, we address the SLAP in Chapter 4, which focuses on the short-term operational decision to 

assign import containers to exact slots in a given storage area of a yard block. In the following, we first 

introduce the common container stacking strategies. Then, we classify the SLAP into two types based on 

the planning approaches, followed by a summary of different solution approaches. Finally, we justify the 

research gap and the corresponding methodology adopted in addressing the arising SLAP in the thesis.  
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1.6.1 Stacking strategies  

Container stacking strategies are a set of rules or criteria that should be adhered to when determining the 

storage position of a container or the storage space of a group of containers. They are somewhat tactical 

level decisions of container terminals (Maldonado et al., 2019), which influence the allocation of stacking 

positions at the operational level. By avoiding stacking containers on top of those that will be retrieved 

earlier, an appropriate stacking strategy can reduce the number of relocations. Several types of stacking 

strategies have been applied in practice and studied in the literature, which usually differ between export 

containers and import containers due to their different arrival and departure characteristics.  

Export containers usually arrive at terminals individually and are loaded onto vessels in batches. The 

arrival times of export containers are uncertain but their departure times are relatively fixed by the 

destination vessels. There are several types of stacking strategies for export containers. Depending on the 

type of information utilised to categorise containers, these stacking strategies include (i) the residence time 

stacking strategy that utilises the containers’ residence/departure times (e.g., Borgman et al., 2010); and (ii) 

the category stacking strategy where containers are categorised according to the containers’ attributes, such 

as the weight class, the port of destination, and the type of container (e.g., Dekker et al., 2006; Kim et al., 

2000; Kang et al., 2006; Guerra-Olivares et al., 2018). On the other hand, depending on whether containers 

to different ships are allowed to share a stack, dedicated stacking strategies and shared stacking strategies 

are differentiated. Under the dedicated stacking strategy, containers to different ships cannot stack on top of 

each other. While the shared stacking strategy allows containers to different ships to be stacked on top of 

each other by considering the departure time of containers, which can better utilise the yard space (e.g., 

Gharehgozli et al., 2014; Gharehgozli and Zaerpour, 2018).  

Import containers are unloaded from vessels in large volumes and then picked up by customers 

individually and randomly. Due to the high uncertainty in the retrieval sequences of import containers, it is 

not possible to stack import containers according to their individual departure times. The stacking strategies 

for import containers are usually based on the arrival ships of the containers, and two types of strategies are 

differentiated: segregation strategy and non-segregation strategy (De Castilho and Daganzo, 1993; Saurí 

and Martín, 2011; Yu and Qi, 2013). Under the segregation strategy, containers from different ships are 

stacked separately in the container yard. Under the non-segregation strategy, containers from different ships 

are mixed in the storage area such that newly discharged containers are stacked on top of old ones. The 

segregation strategy may have the advantage of reducing the number of relocations during the container 

retrieval process because earlier-arrived containers are likely to be retrieved earlier; but it requires 

additional clearing moves before each ship’s arrival to create enough space for the new containers. On the 

other hand, the non-segregation strategy would increase relocation moves because the containers that have 

stayed for a longer time and thus tend to be picked up soon will be buried under recently arrived ones. A 

few studies develop more detailed stacking strategies based on the container departure dates (e.g., 

Guldogan, 2011) and the estimated dwell times of import containers (e.g., Lee et al., 2008; Gaete et al., 

2017; Maldonado et al., 2019), where containers with longer dwell times are stored under those with 

smaller values to reduce the number of future relocations.  

1.6.2 Online SLAP and offline SLAP 

The SLAP may be classified into two broad categories according to the planning approaches: online 

planning and offline planning.  

The online planning approach uses online heuristic stacking rules to allocate containers to slots in 

real-time by considering the dynamic characteristics of the problem and the uncertain information on 
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containers (e.g, Park et al., 2011; Lin et al., 2017; Petering et al., 2017; He et al., 2019). Simulation is a 

prevalent approach to evaluate a set of heuristic stacking rules (e.g., Dekker et al., 2006; Borgman et al., 

2010; Guldogan, 2011). In addition, decentralized approaches such as case-based reasoning (Rekik et al., 

2018) and multi-agent approach (Rekik and Elkosantini, 2019) are developed for the reactive container 

stacking systems that face uncertainties and disturbances during the container stacking process.  

The offline planning approach focuses on finding an optimal plan at the beginning of the planning period 

for an offline environment where the input data of the defined problems are known. The SLAP in Chapter 4 

follows this research stream. In the offline SLAPs, minimising the number of relocations during the future 

retrieval process is an important objective function when the container retrieval efficiency is the focus. In 

order to avoid future relocations, accurate data on container retrieval sequence is the most crucial 

information that is needed (Kemme, 2020). As such, the optimisation models for the SLAPs of export 

containers have been relatively well defined because when export containers are to be stacked, their 

retrieval sequence can often be pre-determined to some extent by certain criteria. Such criteria include 

vessel loading schedules (Preston and Kozan, 2001), containers’ weight class (Kim et al., 2000; Zhang et al., 

2010; Kang et al., 2006; Zhang et al., 2014), the vessel departure time windows (Gharehgozli and Zaerpour, 

2018), etc. In contrast, when import containers are to be stacked, it is often hard to know when they will 

leave the yard, therefore, it is not possible to optimally arrange their stacking slots according to their 

retrieval time. A few studies model the SLAP by assuming that the exact retrieval time/sequence is known 

so that the number of relocations can be measured exactly (Chang and Zhu, 2019; Wang et al., 2020) or 

relocations can be completely avoided (Razouk et al., 2016). A recent study assumes that the group retrieval 

priorities are given by the truck arrival time windows (Zhu et al., 2020).  

1.6.3 Solution approaches 

As described above, online heuristic stacking rules and simulation are prevalent approaches to cope with 

the uncertainties and computational complexity of the container stacking problem. The majority of the 

studies on the offline SLAP assumes deterministic information and apply deterministic optimisation 

approaches. From the mathematical modelling perspective, these approaches include integer programming 

(IP) (e.g., Chang and Zhu, 2019; Zhu et al., 2020) and mixed-integer programming (MIP) (e.g., Preston and 

Kozan, 2001; Razouk et al., 2016; Gharehgozli and Zaerpour, 2018; Wang et al., 2020). From the solution 

method perspective, metaheuristics (e.g., Preston and Kozan, 2011; Razouk et al., 2016; Gharehgozli and 

Zaerpour, 2018; Wang et al., 2020) and rule-based heuristics (e.g., Chen and Lu, 2012; Li et al., 2017; 

Chang and Zhu, 2019) are mostly applied. A few authors use commercial solvers such as CPLEX to solve 

their MIP or IP models only for small-scale problem instances (e.g., Razouk et al., 2016; Gharehgozli and 

Zaerpour, 2018).  

Only a few studies address the offline SLAP under uncertainties. In this research stream, stochastic 

dynamic programming models (Kim et al., 2000; Zhang et al., 2010; Zhang et al., 2014) and simulated 

annealing algorithm (Kang et al., 2006) are proposed to determine the stacking positions of export 

containers based on the uncertain weight class information of containers.  

1.6.4 Research gap and methodology justification 

1.6.4.1 Research gap 

When dealing with the offline SLAP of import containers, most of the studies assume that container 

retrieval priorities are given. However, in reality, when import containers arrive at the yard to be stacked, it 

is often not clear exactly when they will be retrieved. For terminals that are equipped with a TAS, although 
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the retrieval priorities among groups of containers can be obtained from the truck appointment information, 

such information is only available after the containers have been stacked in the yard. This is because the 

fact that, in most cases, appointments are not bookable until the container has already been customs cleared 

for pick‐up, which can be days after the container have been stacked in the terminal (e.g., DP World 

London Gateway). Therefore, it is not possible to optimally stack import containers according to their 

retrieval time. 

To improve container pickup efficiency and reduce truck waiting times, an innovative container delivery 

and staging program — Import Free Flow (IFF) — has been initiated in practice at Port of Los Angeles in 

2015 (Mongelluzzo, 2015b). The idea behind IFF is to eliminate the need for relocation through pre-staging 

large groups of containers to be picked up by the same customer (i.e., free-flow containers) in order to 

realise rapid retrieval flow. Container stacking is an important problem involved in running the IFF 

program. Currently, there is no work that investigates how to plan container stacking under the IFF 

program. The current IFF practice works with predefined rules and is inadequate for its mass application. 

For example, the free-flow service is only available to high-volume customers who own at least 50 

containers, and the free-flow containers are simply pre-staged in specific stacks that are separated from the 

traditional containers (i.e., non-free-flow containers) (Parker, 2015). There is a need for an optimal method 

to determine which customers or containers should be free-flowed, how many free-flow stacks should be 

selected, and where these stacks should be located in the yard. A key decision is to group containers. There 

are only two most relevant studies that have investigated grouped-based stacking strategies for import 

containers, which involve the yard slot decision (Jang et al. 2013) and the yard bay decision (Yu and Qi, 

2013). However, neither of them incorporates the concept of free-flow.  

Motivated by the gap between academic research and the IFF practice, we conceptualise a new import 

container stacking strategy - smart stacking strategy - where import containers are classified into either 

smart (free-flow) or non-smart (non-free-flow) containers based on customer identity information and are 

allocated to smart stacks and non-smart stacks respectively in a yard block in an optimal way.  

Chapters 4 addresses the SLAP by applying the smart stacking strategy. The research gaps to fill can be 

stated as the research objectives (RO) below:  

RO1. Optimise the import container retrieval performance during the stacking process by utilising 

customer identity information. 

RO2. Evaluate the value of the customer identity information to terminal operators. 

1.6.4.2 Methodology justification 

The SALP studied in this thesis is formulated as MIP models, which are solved by commercial software 

CPLEX for small-scale problem instances. A divide-and-conquer heuristic algorithm is developed to obtain 

near-optimal solutions for large-scale problem instances. The rationale is justified below.  

The uncertainty in our SLAP is concerned with the expected number of future relocations, which is dealt 

with by estimation. Consequently, the problem can be regarded as a deterministic optimisation problem, 

therefore, it can be formulated by a MIP as commonly did in the literature on offline SLAPs (e.g., Preston 

and Kozan, 2001; Razouk et al., 2016; Gharehgozli and Zaerpour, 2018; Wang et al., 2020). How the 

uncertainty is dealt with is briefly explained here. Under the proposed smart stacking strategy, the 

containers in a smart stack are retrieved from the top to the bottom of the stack, meaning that there is no 

uncertainty regarding the retrieval priorities of the containers in a smart stack; while the containers in a 

non-smart stack will be retrieved in random order. For the containers in a non-smart stack, due to the 

uncertainty in the trucks arrival order, the number of relocations during the retrieval process cannot be 

easily determined in advance (Bruns et al., 2016). In order to overcome the unavailability of the retrieval 
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priority, we estimate the expected number of relocations of a non-smart stack using the lower bound of the 

expected number of blocking containers proven by Galle et al. (2016). This lower bound has also been used 

in a recent study on yard crane scheduling by Galle et al. (2018b) to approximate the number of relocations 

to retrieval all the containers in a single stack when no information is assumed on the retrieval requests.   

We prove that our SLAP is NP-hard in general. Due to the NP-hardness, the proposed MIPs are 

computationally expensive to solve for large-scale problems, which drives us to seek heuristic algorithms. 

The developed heuristic algorithm is based on the principle of divide and conquer. The divide-and-conquer 

paradigm is a commonly used strategy to design efficient algorithms for complicated combinatorial 

optimisation problems (e.g., Reimann et al., 2004; Jin et al., 2016; Wei et al., 2019). Its principle is to 

decompose the original problem into two or more subproblems until they become sufficiently simple to be 

solved directly; the subproblems are solved independently and their solutions are composed to give a 

solution to the original problem (Smith et al., 1985). The structure of the developed MIP motivates us to 

employ the divide-and-conquer strategy to decompose the original problem into several subproblems and 

solve them sequentially and iteratively. It is observed that in the MIP, the decision vector about the smart 

stacks and the decision vector about the non-smart stacks are coupled only by a few constraints. By 

relaxing these constraints, the original problem can be decomposed into two smaller subproblems: one 

involving only the smart stack decisions and the other only concerning the non-smart decisions, which are 

much easier to solve. The solution to the original problem can be obtained by solving a third subproblem in 

which the solutions to the first two subproblems are combined.  

1.7 Impact of new storage systems  

Recently, there are some innovations on new storage systems at container terminals with a particular focus 

on vertical expansion, such as the rack storage systems and container tower (see Gharehgozli et al., 2020). 

The new storage systems are higher and more compact by storing containers in tall structures. For example, 

the prototype of an ultra-high container warehouse system of Ez-Indus in South Korea can stack containers 

up to 50 tiers high (Gharehgozli et al., 2016). The trial "Boxbay" vertical storage system installed by DP 

World can stack containers 11 high in racks (DP World). The rack-based storage system is designed such 

that each container is placed on an individual chassis/slot in the rack and can be accessed directly without 

having to move other containers, which is similar to the warehouse environments. Therefore, no 

relocations are needed in such systems.  

The new storage systems would revolutionise the way containers are handled in terminals and may result 

in a higher terminal efficiency. However, many are still at the concept and experimental stage (Gharehgozli 

et al., 2020). For example, the “BoxBay” of DP World has completed a six-month successful trial in 2021, 

but the parties have not yet detailed plans on next steps (THE MARITIME EXECUTIVE, 2021). In 

addition, implementing such systems can be costly, not only due to the high investment cost, but also the 

potentially high energy consumption as large and heavy containers are lifted to quite high racks. Although 

power regeneration and solar panels on the roof can help improve energy efficiency (e.g., the Boxbay of 

DP World), such technologies may not be applicable to each system and could be expensive. The potential 

of the new storage systems still needs to be evaluated.  

Researchers have started to investigate the design and performance of the new vertical systems (e.g., 

Zaerpour et al., 2019), but it is just beginning. As pointed out by Gharehgozli et al. (2020), in order to 

realise and implement new layouts and systems at container terminals, challenges at strategic and tactical 

levels (such as the optimal configuration and financial feasibility of a layout) and important operational 



36 

 

problems (including the impact of design variables on the performance of a layout) need to be addressed. 

In addition, safety and security may be the top concerns. Container terminals are vulnerable to weather 

disruptions such as hurricanes and typhoons. How the new high storage systems can withstand such 

disruptive events need to be ensured.  

The advent of the new storage systems has the potential to radically transform the nature of the problem 

studied in the thesis since relocations are eliminated. However, the profitability and sustainability of such 

new systems in the long term are still unknown, therefore the work in the thesis is still significant and 

valuable. Under the context of the new systems, for the container stacking and retrieval problems, the 

energy consumption could be very relevant since the containers are stored at quite high positions. One of 

the important questions therefore could be where to put the containers in the rack to minimise the energy 

consumption and emissions. 

1.8 Thesis structure  

The thesis is composed of five chapters. Chapter 1 introduces the research context, identifies the research 

gaps, and justifies the research methods. The middle three chapters correspond to three research papers 

(two published and one under review), in which Chapters 2 and 3 address the Container Relocation 

Problem (CRP) and Chapter 4 addresses the Storage Location Assignment Problem (SLAP). Chapter 5 

concludes the thesis and provides future research directions. 

All three papers focus on improving the import container retrieval performance, but the ways how this is 

achieved are different. On one hand, Paper 1 and Paper 2 aim to achieve this by optimising the container 

relocation and retrieval operations through addressing the Container Relocation Problem (CRP). These two 

papers are developed progressively. Paper 1 focuses on the overall operational efficiency of container 

retrieval, including the total number of relocations and the average truck waiting times, which is mainly 

from the terminal operator’s perspective. Paper 2 is built upon Paper 1 by adding the performance measures 

of service fairness from the customer service perspective. On the other hand, Paper 3 aims to improve the 

import container retrieval efficiency by optimising the container stacking process through addressing the 

Storage Location Assignment Problem (SLAP). Besides the relocation time, the travel time of the yard 

crane for moving containers from their storage slots to the transfer points is also incorporated into the 

objective function.  

The problems in the three papers are solved by different OR methods. Some of the methods are exact 

solution methods that can find optimal solutions, which aims at increasing the methodological knowledge 

about the studied problems and providing benchmarks. Motivated by the characteristics of the studied 

problem, stochastic dynamic programming, tree search-based algorithm, and mixed-integer programming 

are used. Others are heuristic methods that aim to obtain efficient solutions rapidly, which include 

rule-based heuristic algorithms and a divide-and-conquer heuristic algorithm. Although the developed 

heuristic methods may not be readily applicable in practice as the real context can involve more 

complexities, the ideas in the methods can provide terminal operators with insights for designing decision 

support tools. Besides, from a practical perspective, the fast speed of the heuristic algorithms can meet the 

need for frequent or even real-time decision makings, as the studied problems are all at the operational 

planning level that has a short planning horizon. According to industry experts, a solution for real-time 

decisions at yards should take no more than a minute (Song, 2021b).    

In the following, the outline of the three research chapters/papers is presented, along with the 

introduction of the dissemination of each paper.  
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Chapter 2: The stochastic container relocation problem with flexible service policies. (i) We apply a 

flexible service policy to the Stochastic Container Relocation Problem (SCRP) and extend the SCRP to the 

SCRP with Flexible Sevice policies (SCRP-FS), which provide more opportunities for improving the import 

container retrieval performance. We generalise the probabilistic model of truck arrivals so that the 

customers’ preference-based arrival behaviour can be captured more accurately. (ii) We introduce a new 

model that jointly optimises the expected number of relocations and the truck waiting times. (iii) We 

develop exact algorithms by extending an existing algorithm with major adaptions. The incremental 

contributions of our exact algorithms include a decision tree with a new structure, a new lower bound for 

the expected number of relocations in the SCRP-FS, and a procedure for minimising the truck waiting 

times. We also develop two heuristic algorithms that can obtain efficient solutions in a matter of 

milliseconds. (iv) We construct a discrete-event simulation model for evaluating the two optimised 

performance measures by using the optimal solutions derived from the decision tree. The framework 

enables terminal operators to quantify the benefits of the flexible service policy to both terminals and 

truckers. (v) We conduct extensive experiments to demonstrate the effectiveness of the flexible service 

policy and the influence of customer arrival preference on the results. The findings can provide managerial 

insights for terminal operators to manage import container relocation and retrieval operations more 

efficiently. This work has been disseminated as follows: 

Feng, Y., Song, D. P., Li, D., & Zeng, Q. (2020). The stochastic container relocation problem with flexible 

service policies. Transportation Research Part B: Methodological, 141, 116-163, published. 

Feng, Y., Song, D., Li, D., & Zeng, Q. (2019). The stochastic container relocation problem under a flexible 

service policy considering truck waiting times. The 9th International Conference on Logistics and 

Maritime Systems (LOGMS), Singapore, August 2019, presented, First Place Winner of Best Paper 

Competition (Student) Award.  

Feng, Y., Song, D., Li, D., & Zeng, Q. (2019). The impact of flexible retrievals on import container 

relocation at container terminals. The 10th International Conference on Systematic Innovation, Liverpool, 

UK, July 2019, presented, Excellent Presentation Award. 

Feng, Y. Managing import container relocations at container terminals under uncertainty. The 24th 

European Logistics Association (ELA) Doctoral Workshop, Edinburgh, UK, June 2019, presented.  

Feng, Y., Song, D., Li, D., & Zeng, Q. The stochastic container relocation problem with flexible service 

policy. Postgraduate Research Showcase across the Faculty, University of Liverpool, June 2019, poster 

presented. 

Feng, Y., Song, D., Li, D., & Zeng, Q. (2019). The stochastic container relocation problem considering 

customer preference and flexible service. The Transportation Research Board (TRB) 98th Annual 

Meeting, Washington, D.C, January 2019, presented. 

Chapter 3: Service fairness and value of customer information for the stochastic container 

relocation problem under flexible service policy. (i) This paper extends the SCRP-FS to the case with 

multiple sub-time windows, which is termed as the SCRP with Multiple sub-time windows-based Flexible 

Service policy (SCRP-MFS). The SCRP-MFS optimises both the relocation efficiency and service fairness, 

which is the first in the CRP studies. (ii) This paper investigates the impact of the customer preference 

information (i.e., truck arrival probabilities for different sub-time windows) on relocation efficiency. (iii) 

The results demonstrate how the operation efficiency of container retrieval and the quality of service to 

individual trucks are traded off under different levels of service flexibilities, which can help the terminal 
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operators to determine the appropriate number of sub-time windows when applying the flexible service 

policy. (iv) The value of customer preference information demonstrated in different scenarios can provide 

terminal operators with insights into whether it is worth committing effort to capture such information. This 

work has been disseminated as follows: 

Feng, Y., Song, D.P., Li, D., & Xie, Y. (2021). Service fairness and value of customer information for the 

stochastic container relocation problem under flexible service policy, Transportation Research Part E: 

Logistics and Transportation Review, under the second-round review. 

Chapter 4: Smart stacking for import containers using customer information at automated 

container terminals. (i) We propose a new stacking strategy – Smart Stacking (SS) strategy - to improve 

the import container retrieval efficiency. (ii) We introduce two forms of stacking policies under the SS 

strategy, depending on whether the containers from the same customer are allowed to be split between 

smart stacks and non-smart stacks or not. Correspondingly, we formulate two variants of the Storage 

Location Assignment Problem (SLAP), that is, the non-split model and the split model. The proposed 

models enable terminal operators to determine which customers or containers should be dedicated to smart 

stacks and to quantify the advantage of the splitting policy over the non-splitting policy. (iii) We derive 

structural properties of the optimal solution to the non-split model and then make use of these properties to 

improve the computational efficiency of the model. (iv) To overcome computational complexity, we 

develop a heuristic algorithm to solve the non-split model (which is the focus of this paper) based on the 

structure of the model. The heuristic algorithm can obtain near-optimal solutions in a few seconds. (v) We 

conduct extensive experiments to demonstrate the effectiveness of the SS strategy, and the impact of the 

customer information and the yard utilisation rate on the results. The findings can help terminal operators to 

understand the effectiveness of the SS strategy under a variety of scenarios and assess the value of 

customer information to container retrieval efficiency, which could promote the vertical collaboration 

between terminal operators, trucking companies, and cargo owners to improve supply chain performance. 

This work has been disseminated as follows: 

Feng, Y., Song, D. P., & Li, D. (2021). Smart stacking for import containers using customer information at 

automated container terminals, European Journal of Operational Research. In Press. 

https://doi.org/10.1016/j.ejor.2021.10.044.   

Feng, Y. Improving Import Yard Operations at Maritime Container Terminals under Uncertainty. The 25th 

European Logistics Association (ELA) Doctoral Workshop, Helsinki, Finland, October 2021, accepted.  

1.9 Appendix  

Table 1.1. Top 10 global container ports, 2018 and 2019-rank, throughput in million TEUs, and percentage 

change (Source: Lloyd’s List One Hundred Ports, 2020) 

Rank 

(2019) 
Port Country 

2019 

(Throughput) 

2018 

(Throughput) 

2018-2019 

(Percentage 

change) 

1 Shanghai China 43.303 42.010 3.1 

2 Singapore Singapore 37.196 36.599 1.6 

3 Ningbo-Zhoushan China 27.530 26.351 4.5 

4 Shenzhen China 25.770 25.740 0.1 
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5 Guangzhou China 23.236  21.922 6.0 

6 Busan South Korea 21.992 21.663 1.5 

7 Qingdao China 21.010 19.315 8.8 

8 Hong Kong China 18.361 19.596 -6.3 

9 Tianjin China 17.264 15.972 8.1 

10 Rotterdam The Netherlands 14.811 14.513 2.1 
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Chapter 2  

The stochastic container relocation problem with flexible 

service policies 

 

 

 

 

 

 

 

 

 

 

Abstract: This paper investigates the Stochastic Container Relocation Problem in which a flexible service 

policy is adopted in the import container retrieval process. The flexible policy allows the terminal operators 

to determine the container retrieval sequence to some extent, which provides more opportunity for reducing 

the number of relocations and the truck waiting times. A more general probabilistic model that captures 

customers’ arrival preference is presented to describe the randomness for external truck arrivals within their 

appointed time windows. Being a multi-stage stochastic sequential decision-making problem, it is first 

formulated into a stochastic dynamic programming (SDP) model to minimise the expected number of 

relocations. Then, the SDP model is extended considering a secondary objective representing the truck 

waiting times. Tree search-based algorithms are adapted to solve the two models to their optimality. 

Heuristic algorithms are designed to seek high-quality solutions efficiently for larger problems. A 

discrete-event simulation model is developed to evaluate the optimal solutions and the heuristic solutions 

respectively on two performance metrics. Extensive computational experiments are performed based on 

instances from literature to verify the effectiveness of the proposed models and algorithms.
 1

 

Keywords: stochastic container relocation problem, appointment time window, flexible service, stochastic 

dynamic programming, tree search-based algorithm 

2.1 Introduction 

As critical nodes in the global container transport networks, container terminals play an important role in 

transhipping containerized cargoes between different transport modes. At container terminals, containers 

are handled through a series of operations, which can be generally divided into seaside operations 

(unloading/loading operations) and landside operations (stacking/retrieval operations). Methods for 

improving the operational efficiencies at container terminals have been studied for years and many models 

and algorithms have been developed (see review papers: Stahlbock and Voß, 2008; Zhen et al., 2013; 

Lehnfeld and Knust, 2014; Carlo et al., 2014; Lee and Song, 2017; Dragović et al., 2017). 

                                                        
1 Feng, Y., Song, D. P., Li, D., & Zeng, Q. (2020). The stochastic container relocation problem with flexible service policies. 

Transportation Research Part B: Methodological, 141, 116-163, published. 
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One major source of inefficiency in most container terminals is the relocation move (Caserta et al., 2011a; 

Ku and Arthanari, 2016a). In a typical container terminal, containers are stored in the terminal yard after 

their arrivals, waiting for onward transport. The storage area of a yard is divided into blocks, each including 

20-40 bays with each bay consisting of several stacks. Containers are often piled up vertically in stacks. 

During the container retrieval process, if the target container to be retrieved is not on the topmost tier, those 

above it – that is, the blocking containers - need to be moved to other stacks in the same bay. The move of 

blocking containers is called relocation, reshuffling, or rehandling, which is an unproductive operation. The 

Container Relocation Problem (CRP) aims at seeking a sequence of moves to retrieve all containers from a 

given bay with the minimum number of relocations, which is a combinatorial optimisation problem. Most 

existing studies on the CRP assume a priori given container retrieval sequence. The CRP for import 

containers whose retrieval times are subject to uncertainty has been less investigated.  

For import containers, the stochastic arrival times of external trucks complicates the CRP as it will easily 

result in re-relocations in the future. The Truck Appointment System (TAS), also known as vehicle booking 

system (VBS), can increase the predictability for truck arrival times, which has been implemented in many 

container ports to control the truck arrivals at the terminal (Davies, 2009). Under TAS, a truck must make 

an appointment with the terminal in advance to indicate a time window in which the truck will arrive at the 

terminal. Therefore, each arrival truck will have an appointed arrival time window. As a result, the arrival 

precedence of trucks with different appointed time windows becomes pre-specified. However, the arrival 

sequence of the trucks within the same appointed time window remains uncertain, which is typically 

revealed during the retrieval process. The CRP that considers the randomness truck arrivals in the same 

time window is termed as the Stochastic Container Relocation Problem (SCRP) or the CRP with Time 

Windows (CRPTW) in the literature. 

The SCRP is more realistic to model the import container retrieval process. Among the very few studies 

on the SCRP (e.g. Ku and Arthanari, 2016a; Galle et al., 2018b), a common assumption is that retrieval 

requests are fulfilled on a first-come-first-served (FCFS) basis. The FCFS rule appears to be reasonable in 

practice to ensure service equity but may lead to a sub-optimal solution from the overall system perspective. 

Besides, the service equity of the FCFS rule is debatable, because the trucks may experience different 

waiting times and the required number of relocations may be affected by previous trucks. Truck waiting 

time is part of the truck turn time, which is a key performance metric to measure the efficiency of a 

container terminal and also contributes to the evaluation of customer service levels and port 

competitiveness (de Melo da Silva et al., 2018). Some ports (e.g., Port Botany; Port Metro Vancouver) are 

even charged for a penalty if they exceed a stipulated turn time. As an alternative to the FCFS service, a 

flexible service may yield more opportunities for optimisation on the number of relocations, as well as the 

truck waiting time. In this paper, we extend the SCRP to a general setting that allows some flexibility in the 

container retrieval sequences. We term this type of problem as the SCRP with flexible service policies or 

SCRP-FS.  

With the SCRP-FS, we also generalize the probabilistic model of truck arrivals. In the existing studies, 

the arrival order of trucks booked in the same time window is assumed to be uniformly distributed, which is 

not necessarily realistic. Customers (truckers) may have different preferences for different segments of their 

appointed time windows. Firstly, in the TAS, the trucks may not always get their desired time windows 

because slots are often oversubscribed (Mongelluzzo, 2019). In order to narrow the deviation from its 

desired time window, the truck will have preference for either the earlier segment or the latter segment of 

the shifted appointed time window. Secondly, some terminal operators (e.g., DP World, Patrick) impose 

financial penalties on no-show (or late) trucks to ensure truckers compliance with their appointed time 
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windows. To avoid such penalty, those trucks that are subject to high uncertainties on the road tend to target 

the earlier segment of the appointed time window. Such customer preference information may come from 

the TAS or from historical data that record the trucks' arrival behaviour, which can be utilised to make 

better decisions.  

This paper aims to investigate how to use flexible service policies to improve import container relocation 

and retrieval in the presence of truck arrival uncertainties characterised by customers’ preference. The 

objective of this paper is: (i) to seek the optimal solution (including retrieval sequence and relocation 

positions) that retrieves all containers from a given bay considering both terminal relocation and external 

truck waiting; (ii) to quantify the reduction on the number of relocations and the truck waiting times by 

adopting the flexible service policy; (iii) to evaluate the impact of different bay layouts (i.e. size and fill 

rate) and truck arrival patterns (i.e., the number of trucks booked in a time window and the customer 

preference) on the effectiveness of the flexible policy compared with the FCFS rule; (iv) and to analyse the 

influence of customer preference on the results.  

Our contributions to the existing literature and practice can be summarized as follows: (i) We propose a 

new service policy to improve import container retrieval performance in the context of stochastic container 

relocation problem (SCRP) and generalize the SCRP to be SCRP-FS, which can provide more 

opportunities for optimising the current retrieval practice. We also generalize the probabilistic model of 

truck arrivals so that the customers’ preference-based arrival behaviour can be captured more accurately. (ii) 

We introduce a new optimisation framework that jointly optimises the expected number of relocations and 

the truck waiting times. The proposed model enables port operators to quantify the benefits of controlling 

the truck service sequence to both terminals and truckers, which is the first in the SCRP studies. (iii) We 

develop exact algorithms by extending an existing algorithm with major adaptions. The incremental 

contributions of our exact algorithms include a decision tree with a new structure, a new lower bound for 

the expected number of relocations for the SCRP-FS, and a procedure for minimising the truck waiting 

times batch by batch. We develop two efficient heuristic algorithms for solving the SCRP-FS, which can 

serve as decision support tools for terminal operators in real applications. (iv) We construct a discrete-event 

simulation model for evaluating the exact solutions in terms of two performance measures: the expected 

number of relocations and the truck waiting time. To the best of our knowledge, this study is among the 

first to evaluate the truck waiting time of the exact solutions with a tree structure in the context of uncertain 

CRP. (v) We conduct extensive experiments to demonstrate the effectiveness of the flexible service policy 

and the influence of the customer preference on the results. The results can provide managerial insights for 

terminal operators to manage import container operations more efficiently. 

The remainder of the paper is organized as follows. Section 2.2 reviews the previous work related to the 

CRP and SCRP and discusses the service policies applied in the (S)CRP. Section 2.3 describes the problem 

in detail and formulate it using stochastic dynamic programming. Section 2.4 and section 2.5 respectively 

propose exact solution algorithms and heuristic solution methods. A simulation model is developed in 

Section 2.6 to evaluate the solutions. The results of computational experiments are reported in Section 2.7. 

Section 2.8 summarizes the findings and provides managerial insights.  

2.2 Literature review 

Container relocation is related to several container handling processes at container terminals. Four types 

of relevant problems have been identified by Carlo et al. (2014): storage location assignment problem, joint 

retrieval sequencing and relocation problem, pre-marshalling problem and re-marshalling problem. An 
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overview of these problems from a mathematical perspective is given in Lehnfeld and Knust (2014). The 

joint retrieval sequencing and relocation problem is the focus of this paper. 

2.2.1 Deterministic CRP and uncertain CRP  

Most studies on the joint retrieval sequencing and relocation problem assume a priori given retrieval 

sequence and only focus on optimising relocation positions, which leads to the standard CRP. The basic 

objective of the standard CRP is to retrieve all containers in a given bay in a pre-defined order with the 

minimum number of relocations. There are also several variants of the CRP, such as the dynamic CRP, the 

unrestricted CRP, etc. We classify the relevant literature into two research streams: deterministic CRP and 

uncertain CRP, which are differentiated by whether the information on the containers’ retrieval 

times/sequences is deterministic or uncertain.  

Previous researches have largely concentrated on the first research stream, i.e. the certain version of the 

CRP. A number of (mixed) integer programming have been proposed to solve the problem (e.g. Wan et al., 

2009; Caserta et al., 2012; Petering and Hussein, 2013; Tang et al., 2015; Zehendner et al., 2015; 

Expósito-Izquierdo et al., 2015; Galle et al., 2018a). Other studies focus on developing effective solution 

algorithms. Exact solution algorithms are mainly by search-based algorithms, e.g., (iterative deepening) A* 

algorithms (Zhu et al., 2012; Borjian et al., 2015a; Quispe et al., 2018), Branch and Bound (B&B) (Kim 

and Hong, 2006; Ünlüyurt and Aydın, 2012; Expósito-Izquierdo et al., 2015; Tanaka and Takii, 2016), 

Branch and Price (Zehendner and Feillet, 2014), and the abstraction method (Ku and Arthanari, 2016b), 

Besides, heuristics algorithms are presented to overcome computational complexities of the CRP, e.g., 

beam search algorithms (Bacci et al., 2019; Ting and Wu, 2017) and greedy heuristics (Jin et al., 2015; 

Jovanovic and Voß, 2014) (c.f.Ku and Arthanari, 2016b and the references therein). 

In the second research stream, the uncertain CRP may be further categorised into two sub-groups: the 

online setting and the probabilistic setting, according to whether the uncertainties of the containers’ 

retrieval times/sequences are represented by probabilities or not.  

In the online setting, the knowledge of the exact container retrieval sequence is limited to a given 

look-ahead horizon and is revealed over time gradually, and the research focus is to design efficient online 

heuristics to relocate containers in real-time. Zehendner et al. (2017) investigate a case of the online CRP 

where the look-ahead horizon is zero and one container is revealed at a time. They analyse the theoretical 

performance of an online relocation rule called heuristic L (leveling) that relocates containers to the lowest 

tier. Zhao and Goodchild (2010) make use of truck appointment information to deal with the online CRP 

using a simulation method. At the beginning of the retrieval process, the retrieval containers booked in 

different time windows are known, but the exact retrieval sequence of the containers booked in the same 

time windows is unknown or partially known, which is revealed as the retrieval proceeds periodically. Two 

heuristics are designed to reduce the number of relocations utilising the truck arrival information.  

In the probabilistic setting, the uncertainties on the containers’ retrieval times/sequences are modelled by 

a probability distribution and the research purpose is to minimise the expectation of the performance 

measures. Given the probabilistic distribution of containers dwell times, Tong et al. (2015) propose two 

heuristic rules to determine the positions of relocated containers with the objective of minimising the total 

expected number of relocations for retrieving all the containers from a bay. Considering groups of 

containers with uncertain group retrieval orders, de Melo da Silva et al. (2018) introduce the Block 

Retrieval Problem (BRP) and the Bi-objective Block Retrieval Problem (2BRTP). The BRP aims to 

minimise the number of relocations for the initial target group by optimising the retrieval sequence and the 

relocation positions, which is solved by a B&B algorithm and a linear time algorithm. Then, assuming that 
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the probability of any remaining group being the forthcoming one is known, the 2BRTP is introduced with 

the primary objective of minimising the number of relocations for the initial target group and the secondary 

objective of minimising the expected number of relocations for the forthcoming group. A B&B algorithm 

and a beam search algorithm are proposed for solving the 2BRTP.  

The above studies of the uncertain CRP focus on the solution algorithms without providing the details of 

problem formulation. Mathematical optimisation models for the uncertain CRP in the probabilistic setting 

are presented in a few studies. Borjian et al. (2013) introduce a two-stage stochastic optimisation 

framework for the CRP with partial information, in which the departure times of some containers are 

known, while for the remaining containers only a probability distribution of the retrieval order is given. The 

model is to minimise the weighted sum of the expected number of relocations and total retrieval delays, 

which yields the optimal sequence of moves for each possible scenario. A heuristic based on the stochastic 

optimisation model is designed to obtain sub-optimal solutions. Ku and Arthanari (2016a) propose the CRP 

with Time Windows (CRPTW), in which the retrieval sequences of containers with different departure time 

windows are in ascending order by their departure time windows. It is assumed that containers with the 

same departure time windows are retrieved in the uniformly distributed order which is revealed one 

container at a time. The problem is formulated into a stochastic dynamic programming (SDP) model to 

minimise the expected number of relocations. A search-based algorithm (depth-first search) in a tree space 

is proposed to solve the model optimally. More recently, Galle et al. (2018b) study a similar CRPTW using 

the term SCRP. Different from Ku and Arthanari (2016a), the full exact retrieval order of containers booked 

in the same time window is revealed at once after all containers booked in the previous time window have 

been retrieved. The SCRP is formulated as a multi-stage stochastic model, called the batch model. An 

optimal search-based algorithm called Pruning-Best-First-Search (PBFS), a randomized approximate 

algorithm called PBFSA, and two new heuristics are proposed to solve the batch model. The batch model is 

compared with the SDP model in Ku and Arthanari (2016a) both theoretically and computationally to prove 

that it is beneficial to use the batch model in terms of the expected number of relocations. Note that because 

of the use of the same information revealing mechanism and the similar modelling techniques to seek 

global optimal solutions, the current paper positions itself to the SCRP proposed by Galle et al. (2018b). 

However, our study differs from Galle et al. (2018b) in many aspects that will be elaborated at the end of 

this section. 

Finally, it is worth mentioning that several interesting variants of the (S)CRP have also been investigated. 

For instance, a few studies consider the CRP in a three-dimensional storage area and take into account both 

the number of container movements and the working time of the yard crane (e.g., Lee and Lee, 2010; Lin et 

al., 2015). From the service-oriented standpoint, López-Plata et al. (2017) address the Blocks Relocation 

Problem with Waiting Times (BRP-WT) focusing on minimising the sum of waiting times of a set of blocks 

during retrieval. Recently, Zweers et al. (2020) present a new optimisation problem related to the SCRP, 

called the Stochastic Container Relocation Problem with Pre-Processing (SCRPPP), which aims to 

minimise a weighted average of the pre-processing moves in the pre-processing phase (when the crane is 

idle) and the relocation moves in the relocation phase. A B&B algorithm and a local search heuristic are 

proposed to solve the problem.  

2.2.2 Service policies  

Among the literature reviewed above, most of them assume that each container has a distinct retrieval 

sequence that is exogenously determined. For import containers, this assumption corresponds to the FCFS 

service policy, under which the containers are retrieved in the order of external truck arrivals. Using the 
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FCFS service policy may make the problem more tractable but meanwhile loses some opportunities for 

optimisation. In the uncertain CRP context, three studies have considered flexible service policies or 

service out-of-order (SOOO). Zhao and Goodchild (2010) propose a pickup sequence dictation heuristic 

that dictates the retrieval sequence of containers within the first arrival group to reduce relocations. In the 

study of de Melo da Silva et al. (2018), the containers in the same group are assigned the same retrieval 

priority and their retrieval order is to be optimised. Borjian et al. (2013) assume a service time window for 

each container instead of imposing strict service order on containers. In the deterministic CRP context, a 

few researchers have also introduced the flexibility of container retrieval sequence, e.g., Kim and Hong 

(2006), Borjian et al. (2015b) and Zeng et al. (2019).  

One major concern of flexible retrievals is the possibility of causing extra delay and service inequity to 

some trucks. Zhao and Goodchild (2010) and Zeng et al. (2019) attempt to avoid this by restricting 

out-of-order retrievals within a group of containers booked in the same time window. However, Zhao and 

Goodchild (2010) do not analyse the impact of dictating the pickup sequence on external trucks. Zeng et al. 

(2019) find that when the number of containers booked in each time window is over a certain number, 

adjusting the pickup sequence may increase the average waiting time of external trucks. One possible 

reason for this is that they do not consider the common phenomenon of trucks queuing before getting the 

retrieval service at congested container terminals, where out-of-order retrievals may not create more 

waiting times. Borjian et al. (2015b) control the level of flexibility by limiting the number of out-of-order 

retrievals before each truck. They conclude that the average retrieval delay is decreased as a result of 

out-of-order retrievals, and in the long term, the service equity that each truck receives is not adversely 

affected. In the study of Kim and Hong (2006), the containers in the same group are assumed to be loaded 

into a cluster of slots of a vessel in any order, which means those containers share the same retrieval 

priority, and thus there is no issue of delay and service inequity. Similarly, de Melo da Silva et al. (2018) do 

not consider this issue either, as they assume that the containers in the same group are to be retrieved by the 

same customer. Borjian et al. (2013) set a maximum service delay for each container and consider a 

weighted objective function that jointly minimises the expected number of relocations and total delays. It 

can be seen that Borjian et al (2013) is the only paper that applies flexible retrievals in an uncertain CRP 

using a mathematical optimisation model. However, in their model, all uncertain information is revealed at 

once, which is not close to reality. 

In this paper, out-of-order retrievals are limited to the trucks arriving in the same sub-time window to 

maintain the service equity among subsystems (Yang et al., 2013) and to avoid excessive delay to any 

trucks. Meanwhile, this ensures that trucks arriving in the first sub time window are served before those 

arriving in the second sub-window, which is consistent with the customers’ preferences.  

Table 2. 1 compares this paper with the closely related studies from four key aspects. This paper is 

differentiated from previous works in several ways. From the problem perspective, the SCRP-FS we 

propose generalizes the SCRP in the sense that first, a flexible service policy (SOOO), as opposed to the 

FCFS policy, is integrated into the multi-stage stochastic optimisation framework. The SOOO policy allows 

some flexibility in the retrieval sequences of containers in the same group and thus provides more 

opportunities to reduce the number of relocations and the truck waiting times. Second, instead of assuming 

uniformly distributed truck arrival order, we propose a more general probabilistic model to describe the 

randomness of the truck arrivals within the same group. Specifically, our probabilistic model has the 

capability of capturing the customer preference-based arrival behaviour, which has more practical relevance. 

From the methodology perspective, we propose a new optimisation framework that not only optimises the 

expected number of relocations (primary objective) but also optimises the truck waiting times (secondary 
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objective). Although our exact solution algorithm is built upon the PBFS algorithm in Galle et al. (2018b), 

the existing PBFS algorithm does not allow for a straightforward adaption to our problem due to the 

substantial differences between the SCRP and the SCRP-FS. A great deal of effort has been made to adapt 

the PBFS algorithm to solve our problem. The major adaptions are: first, we construct a more general 

decision tree with a new structure, which adds a new layer of decision node for sequencing trucks and 

expresses nodes with a dual-matrix configuration that represents both truck appointment information and 

customer preference; second, we propose a new lower bound for the expected number of relocations for the 

SCRP-FS by including the characteristics of flexible retrieval orders and customer preference-based 

arrivals, which is necessary to prune unpromising nodes; third, we add a procedure for minimising the truck 

waiting times batch by batch by using the derivation of a waiting time indicator. In addition, we design two 

fast and efficient heuristic algorithms for the SCRP-FS. Last, we construct a discrete event simulation 

model to evaluate the exact solutions with a tree structure, which is the pioneer in the relevant literature. 

The simulation model is especially needed to evaluate the truck waiting times for the exact solutions 

because the exact algorithms do not record time-related performance. 

Table 2. 1 The comparison with the most relevant studies 

Characteristics 

The probabilistic 

model of truck 

arrival 

Information 

updating 
Service policy Objectives 

Borjian et al. 

(2015b) 
Deterministic - 

A limited number of 

out-of-order retrievals 

before each truck 

The weighted number of relocations 

and retrieval delays 

Zeng et al. (2019) Deterministic - 
Out-of-order retrieval 

within each group 
The number of relocations 

Borjian et al. 

(2013) 

Scenario-based 

uncertainty  
Two-stage 

Out-of-order retrievals s.t. 

a maximum delay 

The weighted expected number of 

relocations and total delays 

Ku and Arthanari 

(2016a) 
Uniform distribution 

Multi-stage 

over individual 

trucks 

FCFS The expected number of relocations 

Galle et al. 

(2018b) 
Uniform distribution 

Multi-stage 

over groups 
FCFS The expected number of relocations 

This paper 

Customer 

preference-based 

uncertainty 

(incl. uniform 

distribution) 

Multi-stage 

over groups 

Out-of-order retrievals 

within each sub-group 

Primary objective: the expected 

number of relocations;  

Secondary objective: the total truck 

waiting times of each group 

2.3 Problem description and formulation 

In this section, we first describe the SCRP-FS in detail and then formulate the problem by stochastic 

dynamic programming. 

2.3.1 Problem description  

The studied problem is a multi-stage stochastic optimisation problem. The problem is described along 

with the introduction of the basic assumptions of the SCRP, the probabilistic model of truck arrivals, the 

containers’ attributes, and the service priority.  

2.3.1.1 Basic assumptions 

The following assumptions are generic to the (S)CRP (e.g. Kim and Hong, 2006; Caserta et al., 2011b; 

Ku and Arthanari 2016a; Galle et al., 2018b).  

A1: Relocations are performed only within the bay being considered. The initial bay layout consisting of 

S stacks, T tiers, and C containers. In order to avoid infeasible relocations, the storage capacity of the bay is 
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restricted to be ( 1) 1S T   containers.  

A2: A container is relocatable only when it is blocking the target container.  

A3: No new containers arrive at the bay during the container retrieval process.  

A4: The travel distance of the trolley and spreader of the yard crane does not have an impact on 

relocation costs, which means that the relocation effort is measured only by the number of relocations. 

A5: Each container is booked to a time window and the corresponding truck will arrive at the terminal 

within the appointed time window. A batch of containers (trucks) (i.e., one container corresponds to one 

truck) is defined as the set of containers (trucks) booked to the same time window. The arrival precedence 

relationship among batches of trucks is known, but the exact arrival order of trucks within each batch is 

uncertain, which is revealed as the retrieval proceeds. 

A6: For each batch, the full arrival order of trucks from this batch is revealed at once after all containers 

in its prior batch have been retrieved. 

It is worth mentioning that A6 follows the assumption of Galle et al. (2018b), which is based on the 

phenomenon of truck congestion at gates and yards in busy terminals. The considerable number of trucks in 

the queue enables the terminal operator to have information about the full arrival order of trucks in a batch 

before the retrieval of this batch begins.  

2.3.1.2 Probabilistic model of truck arrivals 

The specific probability distribution of the arrival order of trucks within each batch is hard to predict. 

The existing studies assume a uniform distribution. In the practical situation, trucks (customers) have their 

preferred arrival times and may have preferences for either the earlier segment or the latter segment of the 

booked time windows, which leads to unequal probabilities of arriving in each segment.  

We propose a more general probabilistic model of truck arrivals, which can capture customer 

preference-based arrivals. We divide each appointment time window into two sub-time windows with 

identical time length. More generally, our proposed approach can be applied to the case where each time 

window is divided into multiple (more than two) sub-time windows. For the sake of brevity and noticing 

that the current TAS usually sets 30 min or 60 min for each appointment time window, we only focus on the 

case of two sub-time windows in this paper. The following assumption is made in the probabilistic model.  

A7: 1) Within each batch, the probability of a truck arriving at which sub time window is dependent on 

customer preference, and 2) within each sub time window, the truck arrival order is drawn from a uniform 

random permutation. 

This enables us to list all potential scenarios of the assignments of a batch of trucks to two sub-time 

windows with associated probabilities calculated by the customer preference. The calculation is presented 

in the next sub-section along with the introduction of containers’ attributes.  

2.3.1.3 Containers’ attributes 

We introduce containers’ attributes to help describe the problem. The following notations are adopted 

throughout the paper. Let kB  denote the set of containers in batch k and kC  denote the number of 

containers in batch k, {1,..., }k K . By definition 
1

K

k

k

C C


 . Each container has three attributes:  

(1) The first attribute, denoted by il , {1,..., }i C , is the priority label that represents i) the arrival 

precedence relationship among the trucks and ii) the container retrieval sequence. This label changes during 

the container retrieval process. Initially, containers in batch k are labelled by kL  that represents the arrival 

precedence among batches of trucks, which we call batch priority (see Fig. 2. 1(a)). Let 
1

1

1
k

k j

j

L C




  , 
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such that given kL , there is a unique {1,..., }k K . Then, once the full arrival order of trucks in batch k is 

revealed, we get the sub-batch priority for batch k, which represents the arrival precedence among 

sub-batches of trucks. A sub-batch of trucks is the set of trucks that have arrived in the same sub-time 

window. For a container in batch k, {1,..., }k K , if its corresponding truck is revealed to arrive in the 

second sub-time window, its label changes to 1kL  ; otherwise, its label does not change. Once the retrieval 

sequence of a container in batch k is determined, its label changes to the exact retrieval sequence that is 

within [ , 1k k kL L C  ]. 

(2) The second attribute, denoted by iu , {1,..., }i C , is a unique ID, which is used for identifying 

individual containers (trucks) (see Fig. 2. 1(b)).  

(3) The third attribute, denoted by [0,1]ip  , {1,..., }i C , represents the customer preference of 

container iu  (see Fig. 2. 1(c)). We define that truck iu  arrives at the first sub-time window with ip  

and at the second sub-time window with 1 ip . For {1,..., }k K , let kζ  refer to the possible scenario of 

sub-batches of trucks in batch k and ( )kp ζ  refer to its probability. 1

kζ  and 2

kζ  represent two mutually 

exclusive and collectively exhaustive random sets, the random variables in which take values in i ku B , 

such that  1

i ku ζ  is the event that truck iu  arrives in the first sub-batch and  2

i ku ζ  is the event that it 

arrives at the second sub-batch. Then, by definition, we have 
1[ ]
ki iu ζ p P  and 

2[ ] 1
ki iu ζ p  P , 

i ku B . There are a total of 2 kC
 possible scenarios of kζ  for batch k, and a total of 

1 2 kCK

k  scenarios 

for all the batches.  

A simple example is given in Fig. 2. 1 to illustrate the containers’ attributes and the calculation of the 

probability of kζ . There are seven containers in the initial bay that consists of three stacks and three tiers. 

Fig. 2. 1(a) displays the priority labels represented by batch priority (1, 3, 5). Fig. 2. 1(b) gives the 

container/truck ID (u1 ~ u7). Fig. 2. 1(c) presents the customer preference (0.0~1.0). Fig. 2. 1(d) displays 

the revealed sub-batch priority of the first batch in bold. Given the information in Fig. 2. 1(a)-(c), we have 

the initial bay configuration. For example, container u1 is located in the third tier of stack three; truck u1 is 

in the first batch, which will arrive in the first sub-time window with a probability of 0.6 and the second 

sub-time window with a probability 0.4. Let us consider 1ζ . There are totally four scenarios of 1ζ , 

which are respectively     1 2

1 1 1 4,ζ u ζ u  ,   1 2

1 1 4 1, ,ζ u u ζ   ,     1 2

1 4 1 1,ζ u ζ u  , and 

  1 2

1 1 1 4 , ,ζ ζ u u   . Their probabilities are computed as:      1 2

1 1 1 4, 0.6 (1 0.8) 0.12p ζ u ζ u      ; 

   1 2
1 1 4 1, , 0.6 0.8 0.48p ζ u u ζ     ;      1 2

1 4 1 1, (1 0.6) 0.8 0.32p ζ u ζ u      ;

   1 2

1 1 1 4, ,p ζ ζ u u  (1 0.6) (1 0.8) 0.08     . If truck u1 has arrived at the terminal in the first 

sub-time window and truck u4 has arrived in the second sub-time window as shown in Fig. 2. 1(d), 1ζ  is 

revealed to be     1 2

1 1 1 4,ζ u ζ u   .  
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(a) Batch priority        (b) Container (truck) ID    (c) Customer preference    (d) Sub-batch priority  

Fig. 2. 1 An illustration of containers’ attributes 

2.3.1.4 Service policy 

As an alternative to the FCFS policy, we propose a flexible service policy that allows Out-Of-Order 

retrievals for containers in the same Sub-batch, which is called the SOOO policy. Under this policy, a 

former sub-batch of trucks is surely served before a latter sub-batch of trucks, and the service sequence for 

trucks in the same sub-batch is to be determined by the terminal operators. As the root cause of relocation is 

the mismatch between containers’ stacking positions and their retrieval sequences, relocations can be 

reduced by optimising the retrieval sequence. Besides, as relocation operations increase retrieval times, 

out-of-order retrievals can also create opportunities for reducing the truck waiting time in the retrieval 

process. Similar to Galle et al. (2018b), we make the following assumption on the retrieval service begin 

time of a batch.  

A8: The retrieval service of a batch begins at the end of the appointed time window associated with the 

batch. 

A8 can be justified from the following two aspects. Firstly, A8 represents the practical situation of 

crowded terminals in which trucks often queue up at gates and yards after their arrivals and wait to be 

served (see Pham et al., 2011; Chen et al., 2013a,b). On one hand, several activities, e.g., security check, 

permission check, etc. (see Huynh and Zumerchik, 2010) need to be performed at the entry gates before the 

truck can proceed to the yard. On the other hand, for container terminals having a high level of congestion 

in the yard, internal waiting queues are also formed and trucks have to wait to be served (Talley and Ng, 

2016; Li et al., 2019). Secondly, it is observed that the average truck turnaround time could be much longer 

than the length of the appointment time window. For example, in Los Angeles-Long Beach, the average 

truck turn time at the 12 container terminals for the last two years was above 67 minutes and the maximum 

value was nearly 100 minutes (Mongelluzzo, 2020). For some terminals, a truck appointment system with 

30-minutes time windows has been implemented (e.g., Fenix Marine Services container 

(fenixmarineservices.com), Middle Harbor (Mongelluzzo, 2016)). Given above, it is reasonable to assume 

that the service of a batch begins at the end of the appointed time window associated with the batch.  

2.3.2 Problem formulation 

We propose two mathematical models for the SCRP-FS. First, a Sooo model is developed with the 

objective of minimising the expected total number of relocations to retrieval all containers from a given bay. 

The Sooo model is important to the terminal operators in reducing relocations; however, it does not 

consider the truck waiting times. Second, we develop a Sooo extension model to fully take advantage of the 

flexible service policy. The Sooo extension model has two lexicographically ordered objectives: the 

primary objective is to minimise the expected total number of relocations, and the second objective is to 

minimise the total truck waiting times in each batch. To a large extend, our study on the Sooo model is a 

starting point to develop the Sooo extension model, which is one of the main contributions of this paper. 

Still, the results of the Sooo are of a certain interest in their own right, and the developed algorithm serves 
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as building blocks for the exact algorithm for the Sooo extension model.  

2.3.2.1 Sooo model 

The SCRP is a multi-stage sequential decision-making problem with dynamic information revealing. The 

stochastic dynamic programming (SDP) method is appropriate to deal with such problems (Bakker et al., 

2020). The CRP related problems have been tackled using (stochastic) dynamic programming method, e.g. 

the deterministic CRP (Kim and Hong, 2006), the SCRP (Ku and Arthanari, 2016a), and the export 

container stacking problem (Kim et al., 2000; Zhang et al., 2010). In this paper, we formulate the SCRP-FS 

into an SDP model. The emphasis in SDP is typically in identifying the system states and the actions 

(variables) at each state (Birge and Louveaux, 2011). In the following, we first define the stage, state, and 

action for the Sooo model.  

Stage: the sequence number of the batch to be retrieved. The example in Fig. 2. 1 is considered as stage 1 

since the 1st batch of containers is to be retrieved.  

State: the state of each stage is the state of the bay that consists of the stacking positions of the remaining 

containers and their attributes. The input state of the kth stage is the state of the bay after the (k-1)th batch 

has been retrieved and before the scenario of the sub-batches of the kth batch is revealed. For example, Fig. 

2. 1(a)-(c) constitute the input state of stage 1.  

Action: a feasible action is defined as a sequence of moves to retrieve a batch of containers. Different 

from the conventional SCRP, the actions in the SCRP-FS consists of two types of actions: (i) the retrieval 

sequences of the containers (i.e., the service sequence of trucks) in each of the two sub-batches, called 

sequencing, and (ii) the storage positions of the relocated containers, called relocating.  

With these definitions, optimal actions are taken under uncertainty stage by stage. The uncertainty in the 

model refers to the scenarios of the sub-batches of each batch (at each stage). At the beginning of a stage, 

firstly, the scenario of this stage is revealed, and then the optimal actions to retrieve the batch of containers 

at this stage are sought accordingly considering all the potential scenarios of future stages. The objective is 

to minimise the expected total number of relocations to retrieve all the containers. Mathematically, the 

Sooo model can be formulated in a similar way in which it is done in Ku and Arthanari (2016a). The 

notations used in the model are defined as follows.  

K: the total number of batches in the initial bay, which is also the total number of stages. 

k: the stage number (the kth batch of containers to be retrieved), {1,..., }k K . 

kζ : The scenario of the sub-batches of stage k, {1,..., }k K  (a random variable). 

kS : the input state of stage k, that is, the state of the bay after the (k-1)th batch has been retrieved and 

before kζ  is revealed, {1,..., }k K .  

( )kp ζ : The probability of kζ . This is calculated by the probabilistic model of truck arrivals introduced 

in section 2.3.1.2.  

( , )k k kS ζa : The actions (a decision variable) taken for retrieving the kth batches of containers given 

kS  and kζ . ( , ) { ( , ), ( , )}S R

k k k k k k k k kS ζ S ζ S ζa a a , wherein ( , )S

k k kS ζa  is the retrieval sequence 

decision of the containers in each of the two sub-batches at stage k given kS  and kζ , and ( , )R

k k kS ζa  is 

the relocation position decision that respects ( , )S

k k kS ζa . For notational convenience, the dependence on 

( , )k kS ζ  is suppressed from ( , )k k kS ζa , and we use ka  instead.  

( , )k k k kr S ζa : The number of relocations that are required during action ka  on the bay of state kS  

given kζ . 

( , , )k k k kt S ζ a : The state transition function that maps kS , kζ , and ka  into the next state 1kS  . By 
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( , , )k k k kt S ζ a , the kth batch of containers revealed by kζ  are retrieved according to ka  from state kS , 

after which 1kS   is obtained.  

( )k kf S : The expected minimum total number of relocations to retrieve the remaining K-k+1 batches of 

containers from the state kS . 

The Sooo model is formulated as a recursive equation as follows:  

         
1 1

1

1 1 1 1 1 1 2 2 1 1 1 1 1 2 2( ) min ( | , ) ( ) ( ) min ( | , ) ( )
ζ

f S E r S ζ f S p ζ r S ζ f S    
  


a a

a a , 

where         2 1 1 1 1( , , )S t S ζ a                                                       (2.1) 

Generally,        1 1( ) ( )min ( | , ) ( ) ,  {1,..., }
k

k

k k k k k k k k k

ζ

f S p ζ r S ζ f S k K   
a

a , 

where         1 ( , , )k k k k kS t S ζ  a , for {1,..., }k K , and 1 1( ) 0K Kf S                         (2.2) 

The recursive function of equation (2.2) indicates that optimal decisions can be obtained by optimising 

the recursive function in a backward manner stage by stage.  

2.3.2.2 Sooo extension model 

The Sooo extension model considers two lexicographically ordered objectives. The primary objective is 

to minimise the expected total number of relocations and the secondary objective is to minimise the total 

truck waiting times of each batch sequentially. The use of the secondary objective is justified from the 

following three perspectives.  

Firstly, our motivation for considering the metric of truck waiting times stems from its importance not 

only to the container terminals but also to the container transport supply chain. The truck waiting time is a 

key performance indicator that measures the efficiency of storage area at a container terminal (Stahlbock 

and Voß, 2008; Carlo et al., 2014; Gharehgozli et al., 2016) and is one of the main reasons causing delays 

in handling external trucks and leading to low quality of customer service (Borjian et al. 2013). A reduction 

in the truck waiting time would improve the terminals’ competitiveness and act as an incentive to 

encourage external truckers’ cooperation, which is essential to achieve a smooth implementation of the 

flexible service policy.  

Secondly, longer truck waiting time in the yard for service leads to higher truck turn time and more 

emissions (Huynh et al., 2004). Terminal operators have been under enormous pressure from different 

parties requiring to reduce the truck turn time. For example, from the legislative perspective, the California 

Assembly Bill AB 2650 became active in 2003 in the US requiring port terminals to lower port-related 

truck congestion and vehicle emissions. Under this law, external trucks were a major target of regulatory 

efforts (Giuliano and O’Brien, 2007). Besides, from the economic perspective, some port authorities (e.g., 

Port Botany; Port Metro Vancouver) have implemented a penalty system that imposes fees on terminals that 

exceed a specified threshold of truck turn time. In addition, from the perspective of vertical cooperation in 

the container transport chain, truckers, as an import stakeholder of the hinterland transport, have stated that 

they won’t accept truck appointments until terminals can shorten turn times and end long queues (Bonney, 

2015). Reducing the truck waiting time in the container retrieval process helps to alleviate yard congestion 

and thus reduce the truck turn time.  

Thirdly, the importance of the truck waiting time metric in the CRP has also been confirmed by the 

increasing attention it has received in the literature. For instance, López-Plata et al. (2017) minimise the 

total waiting times of the containers that have expected retrieval times in the deterministic CRP. Borjian et 

al. (2015b) and Borjian et al. (2013) minimise the weighted sum of total relocations and delays in the 

deterministic CRP and uncertain CRP respectively. Our study is the first that considers two 

lexicographically ordered objectives when taking both the number of relocations and the trucks waiting 
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time into consideration in the uncertain CRP. The reasons to sequence these two objectives (i.e. the number 

of relocations as the primary objective and the truck waiting time as the secondary objective) are: (i) the 

number of relocations has a more direct impact on the terminal; (ii) this treatment will appropriately 

evaluate the effect of the flexible policy on reducing the expected number of relocations compared to the 

conventional SCRP; (iii) because there may exist multiple optimal solutions to minimising the expected 

number of relocations in the SCRP-FS, introducing the secondary objective can further optimise the second 

objective without sacrificing the primary objective. 

Fig. 2.2 illustrates the idea behind the Sooo extension model. Let us consider the solutions for the first 

batch, in which truck u1 and u5 have been revealed to be in the first sub-batch and u7 in the second 

sub-batch. With regard to the primary objective, there are two optimal solutions to the retrieval sequence 

for u1, u5, and u7. Solution one is 5 1 7u u u  , and solution two is 1 5 7u u u  . The two 

solutions contribute the same number of relocations to the expected total number of relocations since no 

matter which retrieval sequence is used the blocking container u2 is relocated to stack two. The Sooo 

extension model wants to choose one that is optimal with respect to the secondary objective, i.e., 

minimising the total waiting times of the trucks in the first batch/stage. By A8, both truck u1 and u5 are 

ready to be served when the service of this batch begins. If u5 is retrieved before u1, truck u1 suffers 

waiting due to the relocation of u2, which could have been avoided if using the alternative solution. 

Therefore, the optimal solution of the Sooo extension model is 1 5 7u u u  .  

Tier 

3   u1 

2 u2 u3 u4 

1 u5 u6 u7 
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Container ID Revealed information for the first batch 

Fig. 2. 2 An example of illustrating the primary objective and the secondary objective 

Objective function 

Here, we develop the secondary objective function. Before getting retrieval service, truck waiting can 

occur at any point from arriving outside the in-gate to arriving at the designated yard stack until exiting the 

out-gate. As our main focus is on the container retrieval process, only the yard-to-retrieval waiting time is 

of our interest. In particular, we are more concerned with how much waiting times in the container retrieval 

service process can be saved as a result of the flexible service policy as opposed to the FCFS policy. By the 

assumption A8, the retrieval service for a truck cannot commence before the end of its appointed time 

window. Therefore, the waiting time of a truck before the end of its appointed time window is independent 

of our decision variables. We hence define the truck waiting time as the elapsed time between the end of its 

appointed time window and its actual retrieval time. To avoid confusion, we use the term “relevant truck 

waiting time” to represent the truck waiting time considered in this paper. It is worthwhile to note that the 

relevant truck waiting time under A8 has its practical interpretation. In practice, a truck would have an 

expected time to retrieve its container, and the difference between that and the actual retrieval time is a 

common measure of service quality in general terms (López-Plata et al., 2017). For a truck that has booked 

an arrival time window through the TAS, the end of its appointed time window can be regarded as its 

expected retrieval time, and the relevant truck waiting time can be used as a measure of service quality for 

the container retrieval process. 

To measure the relevant truck waiting times, we need some time-based notations. Let ke  denote the 
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end of the appointed time window of the containers in batch k. Let dk denote the completion time of 

retrieving the last container in batch k, and ky  denote the service starting time of batch k. The secondary 

objective is optimised for each stage separately in a sequential way rather than considering global 

optimisation. This means that when optimising the secondary objective of stage k, the service for stage k-1 

has been completed, that is, kS  is given. This enables us to treat the service completion time of the 

(k-1)th stage (dk-1) as a constant when optimising stage k. Given ke  and dk-1, we have ky  by  

 1max ,k k ky e d  , {2,..., }k K ; 1 1y e .                       (2.3) 

By equation (2.3), if the service completion time of batch k-1 is later than the end of the appointed time 

window of batch k, the service starting time of batch k is dk-1. Otherwise, the service starting time of batch k 

coincides with the end of its appointed time window, that is, ke . 

Under the given decisions ( , ) { ( , ), ( , )}S R

k k k k k k k k kS ζ S ζ S ζa a a , we now derive the explicit 

expressions of dk and the relevant waiting time of truck i in batch k ( ki B ) under kζ , which is denoted by 

,
kζ

k iw . The following notations are introduced to extract the relevant information implied in the decision 

variables.  

kζ

io : the service order of truck i, ki B , under kζ . Note that kζ

io  is implied in the service sequence 

decision ( , )S

k k kS ζa . 

kζ

ir : the number of relocation moves needed when serving truck i, ki B , under kζ . Note that kζ

ir  is 

implied in the relocation decision ( , )R

k k kS ζa . 

rett : the handling time per retrieval move. 

relt : the handling time per relocation move. 

By A8, all the trucks in a batch have already waited at the yard stack when the service of this batch 

begins, and thus there is no idle time between the services of any two trucks in the batch. Therefore, dk is 

calculated by  

( )k

k

ζrel ret
k k i

i B

d y t r t



                                      (2.4) 

,
kζ

k iw  is calculated by  

,

,

( ) ( )k k k

ζ ζk k
k j i

ζ ζ ζrel ret rel
k k j ik i

j B o o

w y e t r t t r

 

       ,                 (2.5) 

The first term on the right side in equation (2.5) is the waiting time between the end of the appointed 

time window and the start of the service of batch k, the second term is the total handling time of the trucks 

in the batch that are served before truck i, and the last term is the relocation time for retrieving the container 

requested by truck i. Equation (2.5) is illustrated in Fig. 2. 3 using the instance in Fig. 2. 2, where the first 

batch of trucks is served in the sequence: 1 5 7u u u  . By equation (2.5), the waiting time of truck 

u1, u5, and u7, is respectively k ky e , 
ret rel

k ky e t t   , and 2 2ret rel

k ky e t t   . It is observed that the 

handling time of u1 contributes 
rett  to the waiting time of both u5 and u7 and the handling time of u5 

contributes 
ret relt t  to the waiting time of u7. 
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Fig. 2. 3 Illustration of trucks waiting time 

Let kζ
kW  denote the total waiting times of all the trucks in batch k under kζ  with the given decisions 

( , )k k kS ζa . Then we have  

 

,

,

( ) ( )

( ) ( )

k k k k

ζ ζk k
k k k j i

k k k

k k

ζ ζ ζ ζrel ret rel
k k j ik k i

i B i B j B o o

ζ ζ ζrel ret rel
k k k i k i i

i B i B

W w y e t r t t r

y e C t r t C o t r

   

 

 
        
  
 

         

  

 
,                  (2.6) 

where the first term on the right hand represents the total waiting time of all trucks in the batch before the 

service of this batch commences, the second term represents the sum of the handling times of the 

predecessors of each truck in the batch, and the third term is the total relocation times for retrieving all the 

containers in the batch. Because the service time of truck i adds to the waiting times of all its successors in 

the batch, ( )kζrel ret
it r t   is weighted by ( )kζ

k iC o . In other words, a part of the waiting time of a truck is 

a cumulative service time of all its predecessors in the batch (see Fig. 2. 3).  

Let 
(1) ( )k kγ S  denote the primary objective for stage k, which is the expected minimum total number of 

relocations to retrieve the remaining K-k+1 batches of containers from the state kS , and 
(2) ( )k kγ S  denote 

the secondary objective for stage k, which is the expected minimum total waiting times for the trucks in 

batch k with the state kS . Given kS , the Sooo extension model aims to find the solution that 

minimises the secondary objective 
(2) ( )k kγ S  among the set of solutions that minimise the primary 

objective 
(1) ( )k kγ S . Then, the Sooo extension model for stage k with the state kS , {1,..., }k K , is 

formulated as follows: 

                                
(1) ( ) ( )k k k kγ S f S , which is defined in Eq. (2.2) 

(2) ( ) ( )min k

k
k

ζ

k k k k

ζ

γ S p ζ W
a

                            (2.7) 

Derivation of optimality 

Observation 1. The optimal solution of the Sooo extension model at stage k from the state kS  under 

kζ  is the one that minimises  1k k

k

ζ ζ
i k i

i B

r C o



    among the set of optimal solutions ( , )k k kS ζa  with 

regard to the primary objective. 

Proof. At each stage k, dk-1 is known and thus ky  can be calculated by equation (2.3). Besides, ke , 

kC , 
rett  and 

relt  are constant. Therefore, min k

k

ζ

kW
a

 in equation (2.7) is equivalent to  

 min 1k k

k
k

ζ ζ
i k i

i B

r C o



  
a

,                                   (2.8) 
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where  1k kζ ζ
i k ir C o    represents the contribution of the number of relocations for retrieving container i 

on the waiting time of truck i itself and on the waiting times of all its successors in the batch.                      

 

Observation 1 indicates that at each stage, the secondary objective is jointly determined by the number of 

relocations for each retrieval in the batch and its retrieval sequence. 

2.4 Exact solution algorithms based on decision tree 

By applying the recursive equation of the Sooo model, the optimal solutions can be obtained backward 

from stage K to stage 1. This procedure is usually executed by a tree search-based algorithm in a 

state-space constructed by a decision tree. The state-of-the-art tree search-based algorithm for the SCRP in 

which information is revealed on a batch basis is the Pruning-Best-First-Search (PBFS) algorithm proposed 

by Galle et al. (2018b). To solve the Sooo model, we develop an Adapted Pruning-Best-First-Search 

(APBFS) algorithm by extending the PBFS algorithm; we then extend the APBFS algorithm to solve the 

Sooo extension model. The PBFS is developed for the FCFS rule and does not consider customer 

preference, which does not allow for a straightforward adaption. The main differences between our 

algorithms from existing ones are explained below. Firstly, our decision tree is more general, which can 

support two types of decision-making under flexible service policies and incorporate customer preference. 

In particular, our decision tree is composed of three classes of nodes and each node is represented by a 

dual-matrix configuration, which differs from the PBFS decision tree that is composed of two classes of 

nodes each represented by a single-matrix configuration. Secondly, the new structure of the decision tree 

necessitates several major adaptions in the search: first, a new decision layer is considered during searching 

and back-tracking; second, another two techniques used to decrease the search space are modified: the 

abstract technique and the lowest level to stop branching. Thirdly, a new lower bound for the expected 

number of relocations for the SCRP-FS is proposed to prune unnecessary nodes. We consider the new 

lower bound as one of the major contributions of this paper since this is the first lower bound for the 

SCRP-FS in the literature. Fourthly, our extended APBFS expands the PBFS by having the capability of 

minimising the total truck waiting times of each batch, which has been neglected in the relevant literature. 

In sub-sections 2.4.1-2.4.3, we first introduce the elements of the proposed algorithms with a focus on 

the differences between the PBFS and the APBFS. Then, in sub-section 2.4.4 and 2.4.5, we present the 

APBFS for the Sooo model and the extended APBFS for the Sooo extension model respectively. The 

contribution of the extended APBFS is introduced in sub-section 2.4.5.  

2.4.1 Constructing a decision tree  

In a typical decision tree for the SCRP, the root node represents the initial configuration and the leaf 

nodes represent the empty configuration. Between the root node and leaf nodes, there are two types of 

intermediate nodes: chance nodes and decision nodes, which alternate in some way to form the tree. A 

chance node is to model the stochasticity of trucks’ arrival while a decision node is to model possible 

actions. In the PBFS, each node is represented by a single matrix that corresponds to the truck arrival 

orders. 

In the (extended) APBFS algorithm, each node is represented by a dual-matrix configuration that is 

composed of a priority matrix and a preference matrix (see Fig. 2. 4). The priority matrix represents the 

priority labels of containers and the preference matrix represents the probability of trucks arriving in the 
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first sub-time window (i.e. the customer preference). The structure of the decision tree consists of three 

classes of nodes, which are chance nodes, SD nodes (sequencing decision nodes) and RD nodes 

(relocating decision nodes). The SD nodes create a new decision layer between the chance nodes and the 

RD nodes to sequence trucks. In the following, we define these nodes with the introduction of relevant 

notations.  

A chance node corresponds to kS , {1,..., }k K , in which the scenario of sub-batches of batch k (i.e., 

kζ ) is to be revealed (see e.g., node 0 in Fig. 2. 4). From a chance node, descendant nodes are created by 

kζ , denoted by kS   (see e.g., node 1). Let kζ  represent the revelation of kζ , we have 
kζ

k kS S  , {1,..., }k K . 

After the revelation of the random variable, actions are taken to retrieve the containers in batch k from 

kS  . A SD node corresponds to kS  , in which the retrieval sequence for the kth batch, denoted by 
S

kD , is 

to be determined. From a SD node, descendant nodes, denoted by 
kLX  (e.g., node 5, node 6), are created 

by applying 
S

kD . Recall that as defined in section 2.3.1.3, kL  represents the batch priority such that 

each batch k corresponds to an unique kL . Let 
S
kD

  represent the application of 
S

kD , we have 

S
k

k

D

k LS X  . In a RD node, the target container (the container with the smallest label) is to be retrieved 

and the relocation decisions to retrieve the container is to be determined. For batch k, starting from the SD 

node corresponding to kS  , kC  levels of RD nodes are created sequentially, denoted by 
iX ,  

 ,..., 1k k ki L L C    (e.g., node 5, 7). Let 
R

iD  denote a sequence of moves (relocation moves and 

retrieval move) to retrieve the ith container, and 1iX   denote the configuration after applying action 
R

iD  

to iX  and before applying action 1

R

iD  ,  ,..., 1k k ki L L C   . Let 
R
iD

  represent the application of 

R

iD , we have 1

R
iD

i iX X  ,  ,..., 2k k ki L L C   .  

After the retrieval of the last container in the kth batch whose retrieval sequence is 1k kL C  , 1k kL CX    

transits to the next chance node corresponding to 1kS   (e.g., node 10), which is represented by 

1

1 1

R
L Ck k

k k

D

L C kX S 

   .  

To summarize, for {1,..., }k K , the state transitions from kS  to 1kS   in the tree search are modelled 

by:  

if 1kC  , 
 

1

1

1 1

, ,..., 2

k

S
k

k

R
i

R
L Ck k

k k

ζ

k k

D

k L

D

i i k k k

D

L C k

S S

S X

X X i L L C

X S 



  

 

  


    

 

                                  

if 1kC  , 1

R
Lk

D

k kS S                                                  (2.9) 
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Fig. 2. 4 A sample decision tree  

Dashed-lines: the revelation of the scenario of sub-batches; Dotted-lines: applying the sequencing action on 

retrieval order; Solid-lines: applying the relocating action and retrieving the containers; Containers in bold 

font: target batch of containers; Containers in the shaded slot: target container to be retrieved. 

2.4.2 Back-tracking in the decision tree 

Given a full decision tree, the optimal objective value is calculated by back-tracking. In this section, we 

only focus on the primary objective. Let n be a node in the decision tree. Each node has a cost-to-go 

function, denoted by f(n), which represents the expected cost of the cheapest path from node n to the leaf 

node. Let n=0 denote the root node, and then the objective function is denoted by f(0). The basic idea of 

back-tracking is to compute the cost-to-go function f(n) for each node n recursively from the bottom up of 

the tree with the ultimate goal to obtain f(0). To calculate f(n), we need the immediate cost function, 

denoted by r(n), which represents the cost incurred by the action taken to transit node n to its offspring. In 

the SCRP-FS, f(n) is defined for all three types of nodes, which represents the minimum expected number 

of relocations required to retrieve all remaining containers from node n. r(n)is only defined for RD nodes, 

which represents the number of relocations required in order to retrieve the target container in node n. The 

following notations are used to calculate f(n). 
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nλ : the number of remaining containers in node n, which is defined as the level of n. If n is a chance 

node or a SD node, there exists a unique {1,..., }k K  such that 1k nL C λ   .  

n : the set of offspring of a chance node n. Each node in n  is a SD node that corresponds to a 

realisation of the random variable kζ , and thus 2 kC

n  . 

n : the set of offspring of a SD node n. Each node in n  corresponds to a feasible retrieval order for 

the containers in batch k, wherein 1k nL C λ   , and thus 1 2! !n k kζ ζ  . 

n : the set of offspring of a RD node n. n  is constructed greedily by considering all feasible 

combinations of the relocation positions of the r(n) blocking containers in node n. The maximum value of |

n | is given by 
( )( 1)r nS   when the number of empty slots in each candidate stack is no less than r(n), 

wherein S is the number of stacks.  

inp : the probability of a SD node i nn  , which is calculated by our probabilistic model of truck 

arrivals.  

Given the above definitions, for each node n, we have: 

 

 

( ), if (i)  is a chance node,

( ) min ( ) , if (ii)  is a SD node,

( ) min ( ) , if (iii)  is a RD node.

i

i n

i n

i n

n i

n

i
n

i
n

p f n n

f n f n n

r n f n n











 

 




                             (2.10) 

In equation (2.10), the “if (ii)” condition is a new decision layer to the PBFS algorithm. We use the 

example in Fig. 2. 4 to illustrate equation (2.10). Suppose f(10) = f(11) = 1 is given. Then the f(n) of other 

nodes are calculated as follows: f(7) = r(7) + min { f(10), f(11)} = 1 + 1 = 2; f(5) = r(5) + min { f(7)} = 0 + 

2 = 2; f(1) = min { f(5)} = 2; f(8) = r(8) + min { f(10)} = 0 + 1 = 1; f(9) = r(9) + min { f(11)} = 0 + 1 = 1; 

f(6) = r(6) + min { f(8), f(9)} = 2 + 1 = 3; f(2) = min { f(5), f(6)} = 2. It confirms that the optimal offspring 

of node 2 with regard to the primary objective is node 5. f(3) = min { f(6)} = 3; f(4) = min { f(5), f(6)} = 2. 

It confirms that the optimal offspring of node 4 with regard to the primary objective is node 5. f(0) = p1* f(1) 

+ p2* f(2) + p3* f(3) + p4* f(4) = 0.48*2 + 0.12*2 + 0.08*3 + 0.32*2 = 2.08.  

2.4.3 Techniques to decrease the size of the decision tree 

For larger problems, considering a full decision tree in the tree search becomes computationally 

cumbersome due to the exponential growth of the search space with the growing size of the problem. In the 

PBFS, a combination of four techniques has been proposed to reduce the size of the tree, while ensuring the 

optimality of the solution. The first one is the BFS (Best-First-Search) exploration strategy based on a valid 

lower bound, which determines the search direction of the tree. The BFS first explores the nodes with 

smaller lower bound, because these nodes are the most promising nodes that are most likely to return small 

(.)f . The second technique is pruning with a lower bound. By using the pruning strategy, a node is 

fathomed if its lower bound is greater than or equal to the best (.)f  of the explored nodes. The third 

technique is stopping the search at a level λ
*
 at which (.)f  can be obtained using specific techniques 

without the need for further branching. Finally, the abstracting technique is used to avoid re-generating and 

re-computing identical nodes. 

To use these techniques in the APBFS algorithm, we make the following major adaptions. Firstly, we 

extend the abstract technique by using dual-matrix configurations. Secondly, we derive a new lower bound 
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for the SCRP-FS. Thirdly, we use λ
*
 = S to stop further branching. The following three sub-sections present 

these adaptions respectively.  

2.4.3.1 Abstraction technique 

The abstraction technique is first studied by Ku and Arthanari (2016b) to reduce the search space of the 

CRP and then is used by Ku and Arthanari (2016a) and Galle et al. (2018b) for the SCRP. The rationale 

behind this technique is that some configurations are actually equivalent in terms of their contributions to 

the objective function, and thus duplicate nodes can be avoided. Generally, each newly generated node is 

abstracted by using a projection rule, after which we determine whether to keep this node or not by 

comparing it with the nodes that have been explored in the same level. In the (extended) APBFS algorithm, 

two nodes are regarded as equivalent only when both their abstract priority configurations and abstract 

preference configurations are identical. This is different from the PBFS. The projection procedure of the 

abstraction technique for the (extended) APBFS algorithm is as follows, and an illustration is provided in 

Appendix A.1. We denote the application of this procedure to node n as ( )Abstract n .  

Step 1: Rank the stacks within the priority configuration according to the heights of stacks in ascending 

order. Ties are broken by ranking them lexicographically in ascending order according to the priority labels 

of the containers from top tier to bottom tier.  

Step 2: (obtain abstract priority configuration): Re-arrange the stacks within the priority configuration 

according to their rankings so that lower-ranked stacks are located on the left and higher-ranked ones on the 

right.  

Step 3: (obtain abstract preference configuration): Re-arrange the stacks within the preference 

configuration in the same order of the rankings of the stacks in the priority configuration. 

Remark: we observe that executing the abstract technique could be time-consuming as a newly 

generated node has to be compared with the configurations of all the existing nodes at the same level. For 

example, it takes about 100 seconds to implement the abstract technique on a node that needs to be 

compared with 7722 nodes at the same level. Future research may seek more efficient abstract techniques 

that allow efficient checking for repeated states, such as using a hash table that compares the hash value of 

two nodes instead of their exact configurations (Russell and Norvig, 2016). 

2.4.3.2 Lower bound 

A new lower bound for the SCRP-FS is proposed to prune unpromising nodes. Here we only consider the 

lower bound on the blocking containers, which is the expected number of containers that must be relocated 

at least once in order to retrieve all the containers from a node n, denoted by lb(n). We care about the 

blocking lower bound for RD nodes and chance nodes, while a lower bound for SD nodes is unnecessary 

because each SD node needs to be explored to return the cost-to-go function of a chance node. In the 

SCRP-FS, due to the application of the SOOO policy and the incorporation of customer preference, the 

probability of a container being blocking is different from the conventional SCRP. From now on throughout 

the paper, we refer to the method of calculating the blocking lower bound for the SCRP-FS as LB-FS. In 

the following, we explain how to compute lb(n) by LB-FS. 

Lemma 1. Let n be a node with S stacks and T tiers, each stack containing Hs containers ( 0 sH T  ). 

Let s

hn  denote the container located at stack s ( {1,..., }s S ) and tier h ( {1,..., }sh H ), s
hn

l  denote the 

priority label of container s

hn , and s
hn

p  denote the customer preference for container s

hn , then we have:  
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 
 

    
      

1

1,..., 1 1,..., 1
1, 2    1

1

min 1 min 1 1 1
s

s s s s s s
h i h i h i

s s sn ni h

H hS

n n n n n ni h i h
s h i
H l l

lb n l l l l p p


   
  
 

  
  
         
    

  

 = 1 + 1    (2.11) 

where  A1  is the indicator function of A:  A1  = 1 if condition A is true; and 0 otherwise. 

Proof. The basic idea of computing ( )lb n  is to compute the expectation of a single container being 

blocking and then sum up the expectation for all the containers in node n. Let us fix s and compute the 

probability that container s

hn  is blocking. Clearly, for 0sH  , container s

hn  is not blocking for sure. Now 

we consider 1sH  . Obviously, if 
 

 
1,..., 1
mins s

h in ni h
l l

 
 , container s

hn  is not blocking. Then, we consider the 

following two cases in which container s

hn  may be blocking.  

(i) If 
 

 
1,..., 1
mins s

h in ni h
l l

 
 , then container s

hn  is surely blocking. In this case, the probability that container 

s

hn  is blocking is equal to 1. In the example of Fig. 2. 5 (a chance node), container 
5

sn  meets this 

condition as 
 

 
5 1,...,4

2 min 1s s
in ni

l l


   , and thus container 
5

sn  contributes one blocking container to ( )lb n . 

1
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Fig. 2. 5 Illustration of a single stack configuration for computing the blocking lower bound 

(ii) Otherwise, 
 

 
1,..., 1
mins s

h in ni h
l l

 
 , which means there are containers below s

hn  with the same label, then 

container s

hn  is blocking with probability. This case makes the probability a container being blocking 

different from that in the Galle et al. (2018b). Recall the SOOO policy: the first sub-batch of trucks is given 

higher service priority over the second sub-batch of trucks; the trucks in the same sub-batch are given the 

same service priority. Therefore, s

hn  is surely blocking only in the situation where s

hn  belongs to the 

second sub-batch and there is at least one container with the same label below s

hn  belonging to the first 

sub-batch. In this condition, the probability that container s

hn  is blocking is equal to 

   
1

   1

1 1 1s s
h i

s sn ni h

h

n n
i

l l

p p





 
 

    
  
 

 , where 1 s
in

p  is the probability that container s

hn  belongs to the second 

sub-batch, and  
1

   1

1 1 s
i

s sn ni h

h

n
i

l l

p





   is the probability that at least one container with label s
hn

l  below s

hn  

belong to the first sub-batch. In Fig. 2. 5, container 
2

sn  and 
3

sn  meet this condition. 

2  is blockingsn 
 p (1 0.4) (1 (1 0.5)) 0.3      ; 3  is blockingsn 

 p 

(1 0.2) (1 (1 0.4) (1 0.5)) 0.56        . 
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Combining the above two cases, we have, 

 
    

      
1

1,..., 1 1,..., 1
   1

 is blocking min 1 min 1 1 1s s s s s s
h i h i h i

s sn ni h

h
s

h n n n n n ni h i h
i

l l

n l l l l p p


   



 
 

           
  
 

p = 1 + 1 . 

Summing the above equation for {2,..., }sh H  and {1,..., }s S , we have equation (2.11), which 

completes the proof.  

By equation (2.11), the ( )lb  of the single stack in Fig. 2.5 is calculated as: 

2 3 5 is blocking  is blocking  is blocking = 0.3+0.56+1=1.86s s sn n n           p p p . 

2.4.3.3 Lowest level to stop branching 

Another technique to decrease the size of the decision tree is stopping branching at an early level λ
*
 

without the need for traversing to the leaf node. λ
*
 is regarded as the lowest level of the tree. The PBFS 

algorithm stops branching at * max{ , }Kλ S C  and computes f(.) either using a lower bound or A
*
 algorithm 

(an efficient algorithm for the classical CRP). Here we use λ
*
=S and compute f(.) using LB-FS. Noticing 

that the number of containers in a chance node and in its offspring (a SD node) is equal, it does not make 

sense to stop the search at a SD node, because we can stop the search at the chance node as soon as λ
*
 is 

satisfied. In other words, the lowest level of the tree will be reached at either a chance node or a RD node.  

Lemma 2. Let n be a chance node or a RD node with S stacks, T tiers, and S containers, and *

nλ λ S  , 

then ( ) ( )lb n f n . 

Proof. Since there are only S containers remaining to be retrieved and there are S stacks, any blocking 

container can be relocated to an empty stack. As a result, the relocated container will never block other 

containers again. Therefore, each blocking container at node n will have only one relocation in the optimal 

solution. In addition, each relocation in the optimal solution is unavoidable according to the definition of 

lb(n). This implies that the optimal solution f(n) = lb(n), which completes the proof.                                                                         

 

2.4.4 The APBFS algorithm for the Sooo model 

Built upon the elements introduced above, we present the whole framework of the Adapted 

Pruning-Best-First-Search (APBFS) algorithm for the Sooo model. The following notations are used for 

describing the algorithm.  

APBFS

n : the set of offspring of chance node n that is used to compute ( )f n , which is the subset of n . 

APBFS

n : the set of offspring of SD node n that is used to compute ( )f n , which is the subset of n . 

APBFS

n : the set of offspring of RD node n that is used to compute ( )f n , which is the subset of n . 

Give a configuration n and lower bound LB-FS, the steps of the APBFS algorithm to return ( )f n  is as 

follows. 

Algorithm 1. APBFS algorithm ( ) ( , - )f n APBFS n LB FS  

Step 1. Identify the class of node n. If n is a SD node, go to Step 4. Otherwise, go to Step 2. 

Step 2. If the level of n is not greater than S, compute ( )f n  using ( )lb n . Otherwise, go to Step 3.  

Step 3. If n is a chance node, compute ( )f n  following Step 3.1~3.3.  

Step 3.1. Construct n  by considering all possible scenarios of sub-batches to retrieve the target 

batch of containers in node n. Compute the probability of each node in  in n . 
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Step 3.2. Apply Abstract(.) to each node in  in n . If the abstract configuration is new, add in  to 

APBFS

n  and compute ( )if n . If the abstract configuration is identical to a node m that is 

already in APBFS

n , add the probability of in  to the probability of m. 

Step 3.3. Compute ( )f n  by summing up the expectation of ( )if n  for each in , APBFS
i nn  . 

Step 4. If n is a SD node, compute ( )f n  following Step 4.1~4.6.  

Step 4.1. Construct n  by considering all feasible retrieval sequences to retrieve the target batch of 

containers in node n. 

Step 4.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads 

to n
 . 

Step 4.3. Compute the lower bound ( )ilb n  for each node in  in n
 . Sort the nodes in n

  in 

non-decreasing order of (.)lb . 

Step 4.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in n
 , and add 

(1)n  to APBFS

n .  

Step 4.5. Repeat for each of the remaining nodes in n
  in non-decreasing order of (.)lb  to 

construct APBFS

n : If the lower bound of the considered node n(k) is less than the smallest f(.) 

of the nodes in APBFS

n , apply Abstract(.) to node n(k). If the abstract configuration is identical 

to a node m that is already in the decision tree, then add m to APBFS

n ; otherwise, add the 

considered node to APBFS

n  and compute the cost-to-go function of the considered node f(n(k)) 

= APBFS(n(k), LB-FS).  

Step 4.6. Determine ( )f n  by taking the minimal value of ( )if n , APBFS

i nn  . 

Step 5. If n is a RD node, compute ( )f n  following Step 5.1~5.6.  

Step 5.1. Construct n  by considering all feasible relocation moves to retrieve the target container in 

node n. 

Step 5.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads 

to n
 . 

Step 5.3. Compute the lower bound ( )ilb n  for each node in  in n
 . Sort the nodes in n

  in 

non-decreasing order of (.)lb . 

Step 5.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in n
 , and add 

(1)n  to APBFS

n .  

Step 5.5. Repeat for each of the remaining nodes in n
  in non-decreasing order of (.)lb  to construct 

APBFS
n : If the lower bound of the considered node n(k) is less than the smallest f(.) of the 

nodes in APBFS

n , apply Abstract(.) to node n(k). If the abstract configuration is identical to a 

node m that is already in the decision tree, then add m to APBFS

n ; otherwise, add the 

considered node to APBFS

n  and compute the cost-to-go function of the considered node f(n(k)) 

= APBFS(n(k), LB-FS). 

Step 5.6. Determine ( )f n  by taking the minimal value of ( ) ( )if n r n , APBFS

i nn  . 

2.4.5 The extended APBFS algorithm for the Sooo extension model  

In this section, the APBFS algorithm is extended to solve the Sooo extension model optimally. The basic 
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idea of the extended APBFS algorithm is, for each SD node n, to find its best offspring that minimises the 

secondary objective among its offspring that minimise the primary objective, i.e., f(n). Because of 

Observation 1 in Section 2.3.2.2, the secondary objective can be substituted by a waiting time indicator. 

With Observation 1, we define  1k k

k

ζ ζ
i k i

i B

r C o



    as the waiting time indicator of batch k under kζ , 

which is jointly determined by the container retrieval sequence in batch k and the number of relocations for 

each retrieval in batch k. Recalling in the APBFS algorithm, the container retrieval sequence of batch k is 

included in the immediate offspring (RD node) of the SD node n ( 1n kλ C L   ), denoted by node m. 

Given such a RD node m, the optimal number of relocations for each retrieval from batch k can be obtained 

by tracing the series of optimal offspring of node m. Therefore, in the extended APBFS algorithm, the focus 

is on selecting the optimal immediate offspring of SD nodes by using the waiting time indicator. To this end, 

the APBFS is extended from three perspectives. First, the pruning strategy is adjusted to explore each 

candidate node that is promising with regard to the secondary objective. Specifically, for each SD node n, 

its offspring whose lower bounds are equal to the best f(n) found so far are not pruned (Step 4.5 in 

Algorithm 3). Second, for the immediate offspring of SD node n whose cost-to-go functions are equal to 

f(n), we compute their waiting time indicators and then choose the one with the minimum waiting time 

indicator as the best offspring of node n (Step 4.7-4.8 in Algorithm 3). For a SD node n, the waiting time 

indicator of its immediate offspring ni, denoted by w(ni), is given by WaitTimeIndic(ni, n) in Algorithm 2. 

Lastly, the decision tree is traversed to level one, i.e., λ
*
= 1 (Step 2 of Algorithm 3), because our LB-FS 

does not apply to the secondary objective.  

Algorithm 2. Waiting time indicator of the immediate offspring ni of SD node n: ( )iw n =

( , )iWaitTimeIndic n n  

Step 1. Set Cn to be the number of containers in the target batch in node n. 

Step 2. Set im n  and ( ) 0iw n  .  

Step 3. For j from 1 to Cn, do Step 3.1~3.3.  

Step 3.1. Set r(m) to be the number of blocking containers in node m. 

Step 3.2. Add ( ) ( 1)nr m C j    to ( )iw n . 

Step 3.3. Update m by letting the new m become the optimal offspring of the current m. 

For the purpose of completeness, the steps of the extended APBFS algorithm for computing f(n) given a 

configuration n and lower bound LB-FS are presented below, and a sample decision tree developed by the 

extended APBFS algorithm is provided and explained in Appendix A.2. The differences from the APBFS 

algorithm are highlighted in bold font. Note that the f(n) returned by the APBFS algorithm and the extended 

APBFS algorithm is exactly the same, but the best offspring of SD node n may be different due to the 

consideration of the secondary objective function.  

Algorithm 3. Extended APBFS algorithm ( )  ( , - )f n Extended APBFS n LB FS  

Step 1. Identify the class of node n. If n is a SD node, go to Step 4. Otherwise, go to Step 2. 

Step 2. If the level of n is not greater than one, return zero to ( )f n . Otherwise, go to Step 3.  

Step 3. If n is a chance node, compute ( )f n  following Step 3.1~3.3.  

Step 3.1. Construct n  by considering all possible scenarios of sub-batches to retrieve the target 

batch of containers in node n. Compute the probability of each node in  in n . 

Step 3.2. Apply Abstract(.) to each node in  in n . If the abstract configuration is new, add in  to 

APBFS

n  and compute ( )if n . If the abstract configuration is identical to a node m that is 
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already in APBFS

n , add the probability of in  to the probability of m. 

Step 3.3. Compute ( )f n  by summing up the expectation of ( )if n  for each in , APBFS
i nn  . 

Step 4. If n is a SD node, compute ( )f n  and return the optimal offspring of n following Step 

4.1~4.8.  

Step 4.1. Construct n  by considering all feasible retrieval sequences to retrieve the target batch of 

containers in node n. 

Step 4.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads 

to n
 . 

Step 4.3. Compute the lower bound ( )ilb n  for each node in  in n
 . Sort the nodes in n

  in 

non-decreasing order of (.)lb . 

Step 4.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in n
 , and add 

(1)n  to APBFS

n .  

Step 4.5. Repeat for each of the remaining nodes in n
  in non-decreasing order of (.)lb  to 

construct APBFS

n : If the lower bound of the considered node n(k) is not greater than the 

smallest f(.) of the nodes in APBFS

n , apply Abstract(.) to node n(k). If the abstract 

configuration is identical to a node m that is already in the decision tree, then add m to 

APBFS

n ; otherwise, add the considered node to APBFS

n  and compute the cost-to-go function 

of the considered node f(n(k)) = Extended APBFS(n(k), LB-FS).  

Step 4.6. Determine ( )f n  by taking the minimal value of ( )if n , APBFS

i nn  . 

Step 4.7. For each node in APBFS

n , compute its waiting time indicator by Algorithm 2. 

Step 4.8. Return the node in APBFS

n  that has the minimum waiting time indicator as the optimal 

offspring of node n. 

Step 5. If n is a RD node, compute ( )f n  and return the optimal offspring of n following Step 

5.1~5.7.  

Step 5.1. Construct n  by considering all feasible relocation moves to retrieve the target container in 

node n. 

Step 5.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads 

to n
 . 

Step 5.3. Compute the lower bound ( )ilb n  for each node in  in n
 . Sort the nodes in n

  in 

non-decreasing order of (.)lb . 

Step 5.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in n
 , and add 

(1)n  to APBFS

n .  

Step 5.5. Repeat for each of the remaining nodes in n
  in non-decreasing order of (.)lb  to 

construct APBFS
n : If the lower bound of the considered node n(k) is less than the smallest f(.) 

of the nodes in APBFS

n , apply Abstract(.) to node n(k). If the abstract configuration is identical 

to a node m that is already in the decision tree, then add m to APBFS

n ; otherwise, add the 

considered node to APBFS

n  and compute the cost-to-go function of the considered node f(n(k)) 

= Extended APBFS(n(k), LB-FS). 
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Step 5.6. Determine ( )f n  by taking the minimal value of ( ) ( )if n r n , APBFS

i nn  . 

Step 5.7. Return the node in APBFS

n  whose cost-to-go function equals ( )f n  as the optimal 

offspring of node n. 

2.5. Heuristic solution methods 

The (extended) APBFS algorithms are very time-consuming for larger problems. In this section, we 

propose two efficient heuristic algorithms for the SCRP-FS: the SEM (Sequencing based Expected Minmax) 

heuristic and the SEML (Sequencing based Expected Minmax with Look-ahead horizon) heuristic. In 

addition, in order to make the results of the Sooo (extension) model comparable to that of the batch model 

proposed by Galle et al. (2018b) in terms of the influence of service policies, we extend the EM (Expected 

Minmax) heuristic used in Galle et al. (2018b) to solve the batch model in the new context with customer 

preference-based arrivals. From now on, we use the “base model” to refer to the batch model that considers 

the customer preference-based arrivals. The contributions of our heuristics are summarized below.  

First, the EM extension heuristic generalizes the EM heuristic to the SCRP with customer preference 

information. The main adaptation we made to the EM heuristic is the introduction of the concepts of the 

Blocking Index (BI) and the Delay Index (DI) that calculate the stack score. The BI and DI are not needed 

in the EM heuristics and they cannot be easily inferred from the case of equal arrival probability. As 

presented in Appendix B.1, great effort has been made to calculate the BI and DI, which are used to make a 

more accurate decision in case of a tie in the context of non-equal arrival probability. This extension is 

especially useful for the situation of large batch size as the occurrence of ties will be more frequent.  

Second, we develop two new fast and efficient heuristics to solve the SCRP-FS – the SEM heuristic and 

the SEML heuristic. The main ingredients of these two heuristics are: sequencing rule and relocation rule. 

Regarding the relocation rule, we derive a new blocking index and a new delay index – BIS and DIS, to 

calculate the stack score by considering the SOOO policy, as shown in Appendix B.3. This generalizes the 

EM extension heuristic to a more flexible case. In addition, we make a contribution in terms of the 

sequencing rule, which is an important element of the SCRP-FS. Even though the SEM heuristic uses an 

intuitive sequencing rule, it has been shown to be effective in the computational experiments. The SEML 

heuristic further improves the SEM by using a more complex sequencing rule that applies a look-ahead 

strategy dedicated to performing the most promising retrieval sequence. 

We present these three heuristics respectively in the following three sub-sections.  

2.5.1 EM extension heuristic 

The EM heuristic has been computationally demonstrated to be the equal best heuristic for the batch 

model. The idea of the EM heuristic is from that of the Min-Max heuristic in the earlier literature (Caserta 

et al., 2012), which is based on the computation of a stack score that determines which stack a blocking 

container should be placed. In this paper, the EM extension heuristic is adapted from the EM heuristic to 

obtain sub-optimal solutions of the base model. Although the EM extension heuristic is not the focus of this 

study, its description provides a basis for explaining the SEM heuristic and the SEML heuristic that we will 

design to solve the SCRP-FS.  

Before describing the EM extension heuristic, we first briefly introduce the EM heuristic for the batch 

model. In the batch model, once the truck arrival order of a batch is revealed, the retrieval sequence for this 

batch is confirmed. The EM heuristic only focuses on the heuristic rules for relocating. Let cl  be the 
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priority label of container c to be relocated, and ( )m s  be the smallest label of a container in stack s, 

{1,..., }s S . For an empty stack, ( )m s  is defined as C+1. The heuristic rules that determine the storage 

position of a blocking container c from stack s are described below. 

[Condition 1] There is an available stack s s   such that ( ) cm s l  . 

Let  
{1,..., }\

= min ( ) : ( ) c
s S s

M m s m s l


   . Select the stack that satisfies ( )m s M  . Break ties by choosing from 

the highest ones, finally selecting the leftmost one if any ties remain.  

[Condition 2] For all stack s s  , ( ) cm s l  . 

Let  
{1,..., }\

= max ( )
s S s

M m s


 . Select the stack that satisfies ( )m s M  . Break ties by choosing from the ones 

with the minimum number of containers labelled M. Further ties are broken by choosing from the highest 

ones, finally selecting the leftmost one if any ties remain.  

The EM heuristic is relatively intuitive. The idea is to minimise the expected number of blocking 

containers after each relocation move. In Condition 1, c can surely avoid being relocated again, and we say 

a ‘good’ move is possible. In this condition, EM chooses the stack with the minimum ( )m s , since the 

stacks with larger ( )m s  can be saved as candidate stacks for positioning blocking containers with greater 

labels. In condition 2, we say a ‘good’ move is impossible. There are two cases. If cM l  (which implies 

that c will be relocated again in the future with probability), the stack with the minimum number of 

containers labelled M is chosen, which can minimise the probability of c being relocated again. The 

rationale behind it is that there is an equal chance for any container being the first one to be retrieved 

among the containers labelled M. On the other hand, if cM l  (which means that c will surely be relocated 

again in the future), the stack with the maximum ( )m s  is chosen to delay the next relocation of c as much 

as possible. Ties are broken by selecting the stack with the minimum number of containers labelled M to 

delay c being relocated again, as there is an equal chance for any container being the first one to be 

retrieved among containers labelled M.  

Now we extend the EM as an application to the base model. The EM extension follows the heuristic rule 

for Condition 1 but applies new rules for Condition 2. The following rules are used in the EM extension for 

Condition 2: 

Let  
{1,..., }\

= max ( )
s S s

M m s


 . Select the stack that satisfies ( )m s M  . In case of ties, if cM l , choose 

from the ones with the minimum ( )BI s ; if cM l , choose from the ones with the minimum ( )DI s . 

Further ties are broken by choosing from the highest ones, finally selecting the leftmost one if any ties 

remain.  

The main difference between the EM and the EM extension is the way of breaking ties in the case where 

more than one stack satisfies ( )m s M   in Condition 2. With the consideration of customer preference, 

more accurate criteria are required to break the tie. For this purpose, we introduce two indexes to calculate 

the stack stores: Blocking Index (BI) and Delay index (DI). The BI of a stack s, denoted by ( )BI s , is 

defined as the probability of a container being blocking if relocated to s. The DI of a stack s, denoted by 

( )DI s , is defined as the probability of a container with the smallest label in stack s being the first one to be 

retrieved within its batch. The details of how to calculate the BI and the DI are given in Appendix B.1. 
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2.5.2 SEM (Sequencing based Expected Minmax) heuristic 

The SEM heuristic is proposed to solve the SCRP-FS. Two decisions are to be made by the SEM: 

sequencing the trucks within the same sub-batch, and relocating the blocking containers. The main idea of 

the sequencing rule is to avoid as many current relocations as possible. The relocating rule is similar to the 

EM extension heuristic but new blocking index and delay index are introduced to consider the SOOO 

policy. In the following, we first introduce the outline of the SEM heuristic and then describe the heuristic 

rules in detail. 

2.5.2.1 Outline of the SEM 

In the SEM heuristic, the decision on the retrieval sequence is made one container at a time using a 

sequencing rule and then the consequent blocking containers are relocated using a relocating rule. The 

following notations are defined and used throughout Section 2.5.2 and 2.5.3:  

it : the ith target container, {1,..., }i C . 

cr : the number of relocations needed for retrieving container c. 

 : the bay configuration. Let 0  represent the initial configuration.  

lmin : the smallest label of containers in  .  

 : the set of containers labelled lmin  in  . 

The general steps of the SEM heuristic are as follows: 

Step 0. Let  = 0 . Set k=1 and i=1, i.e., the index of the first batch and the index of the first target 

container.  

Step 1. If k > K, STOP – all containers have been retrieved; otherwise, given   and the truck arrival 

information of batch k, update   by adding the number of containers in the first sub-batch to the labels 

of the containers in the second sub-batch.  

Step 2. Identify lmin  and construct  . If there is only one container in  , let this container be it ; 

otherwise, determine it  and update   accordingly using the Sequencing Rule.  

Step 3. Calculate 
it

r . If 0
it

r  , go to step 4; otherwise, move the 
it

r  number of blocking containers 

from top to bottom to the stacks determined by the Relocating Rule and   is updated as a result. 

Step 4. Retrieve it  from  . If 
1

k

j

j

i C


 , which means all containers in batch k have been retrieved, 

then set k=k+1 and go to step 1; otherwise, set i=i+1, go to step 2.  

2.5.2.2 Heuristic rules in the SEM 

The sequencing rule and the relocation rule are introduced here.  

Sequencing rule 

The SEM heuristic uses an intuitive sequencing rule, the main idea of which is choosing the container 

with the least number of blocking containers from the candidate containers.  

Step 1. Given  , lmin , and  , compute the cr  of each container c .  

Step 2. Sort { : }cr c  in non-decreasing order of cr . Choose the one with the lowest cr  from   

as the target container it , breaking ties arbitrarily.  

Step 3. Update   by increasing the labels of the containers in \ it  by one.  
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Appendix B.2 provides an example illustrating the above sequencing rule.  

Relocating rule 

The relocating rule used in the SEM heuristic follows the basic idea of the rule in the EM extension 

heuristic but uses a new blocking index and a new delay index - BIS (blocking index considering 

sequencing) and DIS (delay index considering sequencing) - to break ties. This is important because the 

blocking container in the batch model is not necessarily blocking in the SCRP-FS in which the container 

retrieval sequence is flexible. Therefore, in order to make correct decisions for the relocation positions, we 

need new indexes that can take into account the flexible service sequence. The idea behind the BIS is that 

container c being blocking if relocated to stack s  occurs only in the scenario where c is in the latter 

sub-batch and there is at least one container i sc M   in the former sub-batch, where sM   is the set of 

containers labelled M and located in s . The idea behind the DIS is that a container ic  is surely being the 

first one to be retrieved in its batch only in the situation that satisfies the following two conditions: 1) ic  is 

in the former sub-batch; 2) ic  has the lowest number of blocking containers among the containers in the 

former sub-batch. The details of computing ( )BIS s  and ( )DIS s  are given in Appendix B.3.  

For the sake of completeness, the relocating rule of the SEM to determine the storage position of a 

blocking container c from stack s is presented as follows.  

[Condition 1] There is an available stack s s   such that ( ) cm s l  . 

Let  
{1,..., }\

= min ( ) : ( ) c
s S s

M m s m s l


   . Select a stack that satisfies ( )m s M  . Break ties by choosing from the 

highest ones, finally selecting the leftmost one if any ties remain.  

[Condition 2] For all stack s s  , ( ) cm s l  . 

Let  
{1,..., }\

= max ( )
s S s

M m s


 . Select a stack that satisfies ( )m s M  . In case of ties, if cM l , choose from 

the ones with the minimum ( )BIS s ; if cM l , choose from the ones with the minimum ( )DIS s . Further 

ties are broken by choosing from the highest ones, finally selecting the leftmost one if any ties remain.  

2.5.3 SEML (Sequencing based Expected Minmax with Look-ahead horizon) heuristic 

The SEML improves the SEM by using a sophisticated sequencing rule that applies a look-ahead 

strategy dedicated to performing the most promising retrieval sequence. Recalling the sequencing rule of 

the SEM heuristic, in case of tie that more than one container has the lowest number of blocking containers 

among the containers with the smallest labels, i.e., there is more than one potential target container, the 

SEM chooses one arbitrarily as the next target container (Step 2 in Section 2.5.2.2). The idea of the SEML 

heuristic is to break this tie more precisely with look-ahead evaluation. The look-ahead horizon H is equal 

to the number of potential target containers in case of the tie. To be more specific, the SEML first evaluates 

the contribution of each feasible retrieval sequence of the potential target containers to the total number of 

relocations, and then, the sequence that contributes least is selected as the actual retrieval sequence of these 

potential target containers. The contribution is measured by the sum of the number of realised relocations 

during the retrievals of the potential target containers and the lower bound of the configuration after these 

retrievals. A new lower bound is proposed with minor modification of the LB-FS, because the SEML 

applies to both SD nodes and RD nodes while the LB-FS does not apply to SD nodes. In the new lower 

bound, the containers with the same priority label whose truck arrival sequence have been revealed are not 

considered blocking each other. The relocating rule used in the SEML is the same as that in the SEM. The 
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details of the sequencing rule are presented below, and an illustration is provided in Appendix B.4. 

Step 1. Given  , lmin , and  , compute the cr  of each container c .  

Step 2. Sort { : }cr c  in non-decreasing order of cr . Construct the set of potential target containers 

  | min :c cc r r c  . Set   | min :c cH c r r c   . If H=1, then choose the only potential target 

container as the target container it . Update   by increasing the labels of the containers in \ it  by 

one. Otherwise, go to Step 3.  

Step 3. Look-ahead evaluation 

Step 3.1. Update   by increasing the labels of the non-potential containers in   by H. 

Step 3.2. Enumerate all feasible retrieval sequences (H! number in total) for the potential target 

containers. 

Step 3.3. Update the labels of the potential target containers according to one feasible retrieval 

sequence that has not been evaluated and obtain a tentative configuration to be evaluated.  

Step 3.4. Given the tentative configuration, retrieve the potential target containers, move the blocking 

containers according to the relocating rule, and count the number of relocations incurred. 

Compute the lower bound of the consequent configuration and the contribution. If all 

retrieval sequences have been evaluated, choose the one with the least contribution as the 

determined retrieval sequence for the potential target containers, breaking ties arbitrarily. 

Then, update   according to the determined retrieval sequence of the potential target 

containers; otherwise, go to Step 3.3.  

Step 3.5. The container with lmin  is selected as the target container it .  

2.6 Simulation model 

In this section, we develop a discrete-event simulation model to evaluate the effectiveness of the exact 

algorithms and the heuristics respectively in terms of the two performance metrics: the total number of 

relocations and the average relevant truck waiting time. Simulation is needed for evaluating heuristics 

because the solutions of the heuristics depend on the scenario of truck arrivals. The necessity of a 

simulation model for evaluating exact algorithms is because the exact algorithms to be evaluated (the 

(extended) APBFS algorithm and the PBFS algorithm) do not record the service completion time for each 

batch. Hence, in order to evaluate the relevant truck waiting time, we need to simulate the complete 

retrieval process by using the optimal solutions. To the best of the authors’ knowledge, this study is the first 

one that implements a simulation model to evaluate SCRP’s optimal solutions that are derived from in a 

decision tree. Our main focus in this section is to show how to evaluate the solutions of the exact 

algorithms by using the developed discrete-event simulation model.  

2.6.1 Input and output data 

The input data of the simulation model includes: i) the problem instance that consists of the container 

stacking configuration, the batch information and the customer preference, ii) the truck arrival times, and 

iii) the handling time per relocation move and the handling time per retrieval move. The direct output for 

each container/truck includes: i) the number of relocations, ii) the service starting time, and iii) the service 

completion time. Then, we can output the total number of relocations and the average relevant truck 

waiting time. By definition, the relevant waiting time of a truck is calculated by: service completion time – 

service starting time – the handling time per retrieval move. The average relevant waiting time for a sample 
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is obtained by taking the average over the relevant waiting times of all trucks. In addition, we also output 

the average delay and the average turn time, which will be explained in Section 2.7.3.2. 

2.6.2 Model structure and functions  

The simulation model consists of three major programs: a truck generator, an optimiser, and a simulator, 

which are subsequently described in detail. All programs are implemented in Matlab.  

2.6.2.1 Truck generator 

The truck generator program creates truck arrival times. Given a problem instance with an initial priority 

matrix and a customer matrix, N samples of truck arrival times are generated by respecting the appointed 

time windows and customer preferences. First, the sub-batch of a truck is generated based on the 

probability given by its customer preference p, such that on expectation each truck is allocated to the first 

sub-batch for N*p times and the second sub-batch for N*(1-p) times. Second, the sub arrival time window 

of the truck is generated by using its sub-batch, its appointed time window, and the length of the 

implemented appointment time window. Last, the specific arrival time of the truck is uniformly generated 

within its sub arrival time window. To ensure a fair comparison of different algorithms, seed initialized 

distribution is used. Thus, identical random truck arrival times can be used in simulating different 

algorithms and the simulation results are repeatable by applying identical problem instances.  

2.6.2.2 Optimiser and simulator  

The optimiser program generates the decisions on retrieval sequence and relocation positions, which 

feeds the simulator to perform tasks. The simulator is the core of the simulation model. Its main task is to 

perform the moves specified by the output of the optimiser, keep track of the state of the container stack, 

count the number of relocations, and record the time-related performance. The simulation model can 

evaluate both the exact algorithms and the heuristics but differs in the optimisers and the way the 

simulators extract the decisions from the output of the optimisers. When evaluating heuristics, the relevant 

heuristic is used as an optimiser; and the simulator reads both the problem instance and the output of the 

truck generator. When evaluating the exact algorithms, the exact algorithm is used as an optimiser to 

produce the optimal solutions; and the simulator reads the problem instance and executes the optimal 

solutions. Details of the simulation model for evaluating exact algorithms are described below.  

The simulation model contains three types of discrete events: revealing the truck arrival information for a 

batch, relocating a container, and retrieving a container. Given a problem instance, first, the optimiser is 

invoked, that is, an exact algorithm is executed to obtain the optimal solution. The obtained optimal 

solution is cached in a tree structure, which we call ‘solution tree’. The simulator reads a truck arrival 

sample output by the generator and reveals it batch by batch. Once a batch is revealed, the simulator looks 

up the solution tree to extract the decisions for that batch and performs retrieval moves and relocation 

moves accordingly. An overview of the architecture of the simulation model is presented in Fig. 2. 6.  
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Fig. 2. 6 The architecture of the simulating model for evaluating exact algorithms  

We use the example in Fig. 2. A.2 in Appendix A to illustrate the simulation process. Given the problem 

instance, i.e., the initial node in Fig. 2. A.2, the optimiser is first invoked to generate the solution tree. Then, 

given a sample of truck arrival times, the simulator reads the sample and reveals it batch by batch. Once a 

batch is revealed, the simulator looks up the solution tree to identify the SD that matches the revealed 

container stack and extracts the optimal retrieval sequence for that batch. The decision on the retrieval 

sequence of a batch is included in the best offspring (a RD node) of the identified SD node. For example, 

let us consider the scenario in which the truck arrival information of the first batch is revealed as that in 

node n. Firstly, the optimal retrieval sequence for the first batch is extracted to be the one indicated in node 

n2. The simulator then retrieves container 3 and records its service start time and service completion time. 

Secondly, the container stack is changed to n3. Notice that the next container to be retrieved (container 4) 

has a blocking container. When there are blocking containers to be relocated, the simulator looks up the 

solution tree to identify the optimal relocation positions. The decisions on the relocation positions are 

obtained by tracing the best offspring (e.g., n4) of the node in which the blocking containers are located 

(e.g., n3). In the considered scenario, the best relocation position for the blocking container above container 

4 is identified to be the empty stack. The simulator then relocates the blocking container to the empty stack, 

retrieve container 4, and records the service starting time and service completion time of container 4. 

Finally, the container stack is changed to node n4. After that, the simulator continues to reveal the truck 

arrival information for the second batch and perform tasks in the same way. It should be noted that after 

each event, the container stack needs to be abstracted to ensure that it can be matched with one of the nodes 

in the solution tree.  

2.7. Computational experiments 

In this section, we test the proposed models and solution methods through enormous numerical 

experiments using the simulation model introduced in Section 2.6. We present four sets of experiments. 

Firstly, we test the solving capabilities of the two proposed exact solution algorithms; and we show the 

improvement of the Sooo extension model over the Sooo model on the relevant truck waiting time. 

Secondly, we evaluate the effectiveness and the efficiency of the two proposed heuristics by comparing 

them with the exact solutions of the Sooo extension model; and we compare the performances of the two 

heuristics to conclude a superior one. Thirdly, we evaluate the effect of the proposed flexible service policy 

as opposed to the FCFS policy and analyse the impacts of the combinations of different bay layouts and fill 

rates, average batch sizes and customer preferences on the effect of the flexible service policy. Lastly, we 
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analyse the influence of customer preference on the Sooo extension model.  

All algorithms and simulation models are coded in MATLAB 2018a, partially based on the source code 

of Galle et al. (2018b) which is available at https://github.com/vgalle/StochasticCRP. All experiments are 

performed on a desktop with Intel® Core ™ i5-7500 3.40 GHz CPU, 8 GB of RAM, and 64-bit Windows 

10 Enterprise. The time limit for running the exact algorithm for each instance is set to one hour (3600 

seconds) because some instances are extremely time-consuming. 

Our experiment dataset is adapted from the set of CRPTW instances in the literature (Ku and Arthanari, 

2016a) which is available at http://crp-timewindow.blogspot.com. The existing instance set is composed of 

1440 instances forming 48 classes. The problem classes are characterised by the size (T×S) and the fill rate 

(μ) of the bay, with T varying from three to six tiers, S varying from five to ten stacks and two μ being 

considered: 50% and 67%. Given a bay size and a fill rate, the number of containers in the bay is calculated 

by C = round(μ*T*S), where round(x) rounds x to its closer integer. There are on average two containers 

per batch, i.e., the average batch size is two. For each such class setting, 30 instances are included, varying 

in the stacking positions of the containers and the number of containers of each batch. To provide a 

meaningful interpretation for our model, we consider larger batches with up to on average six containers 

per batch. The instances of larger batches are obtained by slightly modifying the existing instance set 

following the method in Galle et al. (2018b), which merges r batches using /w w r     , where w is the 

original batch of a container and w  is its modified batch. As a result, we have instances with small 

batches (on average 2 containers per batch), large batches (on average 4 containers per batch), and 

ultra-large batches (on average 6 containers per batch). We use ‘the number of tiers (T) – the number of 

stacks (S) – the fill rate (μ) – the average batch size (B)’ to represent our problem class. We do not 

distinguish problem scales accurately because all the relevant factors – T, S, μ, B – have an influence on the 

computation times of the exact algorithms and the random initial configuration of the container stack also 

has a great influence. Instead, we consider a problem as a larger problem if it has a larger rate and/or larger 

batches while other factors (T and S) are the same. Because the instances with ultra-large batches are very 

hard to be solved optimally, we only use their near-optimal solutions obtained by heuristics to show a 

positive difference between the FCFS policy and the SOOO policy in Section 2.7.3.2. 

Regarding the customer preference, we consider three scenarios of homogenous preference, in which the 

preferences of all trucks are respectively 0%, 50%, and 100%, and a scenario of heterogeneous preference, 

in which the preference of each truck is randomly generated and thus differs from each other. The instances 

with scenario ‘50%’ are referred to as the benchmark set, as they are equivalent to the instance set of the 

batch model. In this scenario, the probability of each SD node is the same (i.e., 0.25). In the scenario ‘0%’ 

and ‘100%’, all trucks will arrive at the second sub-time window and the first sub-time window 

respectively. The truck generator program introduced in Section 2.6.1 is used to generate 1000 samples of 

truck series for each instance associated with a scenario of customer preference. The appointment time 

window is set to be 30 minutes. The handling times per relocation move and per retrieval move are 

calibrated according to the technical capabilities of yard cranes. A Rubber-Tyred Gantry Crane (RTG) can 

perform 20–25 moves on average per hour, but its realised performance in practice is typically less than 12 

moves per hour (Saanen, 2011), which indicates that each move takes on average 2.4 - 5 minutes. 

Considering that a retrieval move usually takes longer to complete than a relocation move due to the need 

for coordination with the truck drivers, we set 2 minutes for a relocation move and 4 minutes for a retrieval 

move.  

2.7.1 Performance of the proposed models and exact algorithms 

In this section, we evaluate the performances of the exact algorithms, test the tightness of LB-FS, and 
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compare the average relevant truck waiting time between the Sooo model and the Sooo extension model. 

All results are obtained by simulating optimal solutions. 

2.7.1.1 Performances of the exact algorithms 

Table 2. 2 shows the results of instances with small batches and the 50% fill rate. The first three columns 

list the problem class, which is characterised by the number of stacks (S), the number of tiers (T), and the 

number of containers (C). The average batch size is omitted here as all instances have the same average 

batch size (i.e., two). Column ‘lb’ gives the value of lower bound obtained by our proposed lower bound 

LB-FS. Columns five to nine and Columns ten to fourteen respectively report the simulation results of the 

APBFS algorithm and the extended APBFS algorithm. Column ‘Opt’ gives the average of the expected 

total number of relocations over 30 instances, which is the theoretically optimal solution obtained by the 

exact algorithm. Colum ‘Solved’ reports the number of instances that the relevant exact algorithm is able to 

solve to optimality within the time limit (1 hour), where ‘√’ indicates that all 30 instances for a problem 

class are solved to optimality. Column ‘CPU(s)’ reports the average computation time for the solvable 

instances in seconds. Column ‘Rel’ and column ‘AveWait’ respectively give the average of the total number 

of relocations and the average of the relevant truck waiting time over 30 instances, each one based on 1000 

samples, which are obtained by simulation.  

Table 2. 2 Results of the APBFS and the extended APBFS algorithm for instances with small batches and 

50% fill rate 

T S C lb 

 Sooo - APBFS   Sooo extension - extended APBFS  

Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Opt Solved CPU(s) Rel 

AveWait 

(min) 

3 5 8 1.454  1.478 √ 0.02 1.478 3.319  1.478 √ 0.03 1.478 3.207 

 6 9 1.558  1.582 √ 0.02 1.581 3.428  1.582 √ 0.03 1.581 3.303 

 7 11 2.608  2.654 √ 0.02 2.654 3.485  2.654 √ 0.03 2.654 3.356 

 8 12 2.163  2.169 √ 0.01 2.169 3.091  2.169 √ 0.03 2.169 3.014 

 9 14 2.875  2.884 √ 0.02 2.885 3.226  2.884 √ 0.04 2.885 3.106 

 10 15 3.092  3.094 √ 0.03 3.093 3.044  3.094 √ 0.06 3.093 2.930 

4 5 10 2.725  2.856 √ 0.02 2.855 3.534  2.856 √ 0.03 2.855 3.411 

 6 12 3.371  3.461 √ 0.03 3.466 3.532  3.461 √ 0.05 3.466 3.351 

 7 14 3.817  3.944 √ 0.04 3.941 3.485  3.944 √ 0.05 3.941 3.324 

 8 16 4.475  4.555 √ 0.16 4.559 3.556  4.555 √ 0.20 4.559 3.390 

 9 18 5.467  5.526 √ 0.29 5.523 3.691  5.526 √ 0.34 5.523 3.474 

 10 20 5.983  6.016 √ 0.72 6.015 3.334  6.016 √ 0.80 6.015 3.181 

5 5 13 4.371  4.883 √ 0.16 4.883 4.042  4.883 √ 0.19 4.884 3.900 

 6 15 5.138  5.546 √ 2.44 5.544 3.708  5.546 √ 2.98 5.544 3.553 

 7 18 6.246  6.575 √ 0.72 6.573 3.993  6.575 √ 0.77 6.573 3.777 

 8 20 7.017  7.519 √ 7.57 7.516 3.695  7.519 √ 8.16 7.516 3.482 

 9 23 8.358  8.699 29 67.35 8.696 3.835  8.699 29 68.25 8.696 3.606 

 10 25 8.883  9.237 29 39.40 9.238 3.719  9.237 29 49.37 9.238 3.517 

6 5 15 5.975  7.004 √ 4.56 6.999 4.034  7.004 √ 5.06 6.999 3.886 

 6 18 6.900  7.729 √ 5.48 7.728 4.162  7.729 √ 6.18 7.728 3.959 

 7 21 8.575  8.925 23 294.96 8.991 4.026  8.925 22 160.87 8.923 3.787 

 8 24 9.258  9.886 22 150.07 9.881 3.998  9.886 22 164.07 9.882 3.748 

 9 27 10.275  10.538 18 100.24 10.538 3.661  10.538 18 104.47 10.538 3.419 

 10 30 11.692  11.576 19 285.31 11.599 3.785  11.576 18 108.52 11.576 3.580 

*Note: customer preference scenario: 50% 
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From Table 2. 2, we can see that the solution capacity of the two algorithms is quite similar. Both of 

them are capable of solving all the instances with T= 3 and T=4 in less than one second and 98.9% 

(178/180) of the instances with T=5 within the time limit. As T increases to six, some instances are 

extremely time-consuming. We call the instances that cannot be solved within one hour ‘hard instances’. 

The number of hard instances for each problem class is basically the same as that for the PBFS algorithms, 

which indicates that our proposed exact algorithms are effective for the SCRP-FS. We observe that the hard 

instances for the two proposed algorithms are the same except the classes of (T=6, S=7) and (T=6, S=10). 

This is because the search rules used in the two algorithms are basically the same. The only difference is 

that in the extended APBFS algorithm the nodes that perform equally in terms of the primary objective are 

further explored in order to find the node that is optimal to the secondary objective. This leads to that the 

extended APBFS algorithm requires a longer CPU time to prove optimality, which can be observed from 

the CPU columns. It should be pointed out that for the problem classes of (T=6, S=7) and (T=6, S=10), the 

CPU times for Sooo extension are much shorter than that of Sooo. This is because the Sooo model is able 

to solve one more instance than the Sooo extension model within the allowed computational time limit (i.e. 

3600 seconds), and this extra instance is too time-consuming to solve for the Sooo extension model. A fair 

comparison of two models can be referred to Section 2.7.1.2 and Table 2. C.4. Due to the unavailability of 

the optimal solutions for hard instances, these hard instances are excluded from the simulation. For the 

problem class that includes any hard instance, Table 2. 2 only reports the average over the solved instances 

in columns ‘CPU’, ‘Rel’ and ‘AveWait’. In addition, as expected, the optimal solutions in terms of the total 

expected number of relocations (Opt) of the two models are the same. Besides, the gap between the ‘Opt’ 

and the ‘Rel’ in both models is insignificant, which is within [-0.08%, 0.09%], indicating that our samples 

are large enough to approximate the actual values.  

The results of the extended APBFS algorithm for larger instances are given in Appendix C.1. From Table 

2. 2 and Appendix C.1, we can conclude that the extended APBFS can solve 87.5% (42/48) of the instances 

with T=3,4 within 30 seconds. In the tables in Appendix C.1, lb* represents the calibrated lower bound, 

which takes the average of the lb of the instances that are solved optimally. By comparing lb*and Opt, we 

can find that the relative difference between the lower bound and the optimal solution for instances with 

higher stacks (larger T) is greater than that with lower stacks (smaller T). This can be explained by the fact 

that the chance of a container being relocated more than once in a bay with higher stacks is greater than that 

in a bay with lower stacks. Since our lower bound only counts the number of blocking containers that are 

relocated at least once, it is tighter for lower bays. For all the instances with lower bays (T=3, 4) in Table 2. 

2 and Appendix C.1, our lower bound is within 13.11% of the optimal solution, and in about 73% (35/48) 

cases our lower bound is very close to the optimal solution with a gap within 5%. Since in many container 

terminals, laden containers are stacked up to four tiers due to safety issues and efficiency considerations, 

our lower bound can efficiently evaluate the least number of relocations needed to empty a bay, which 

could help to determine a favorable container stacking configuration.  

Remark: it is observed that the CPU time deviates greatly for different instances even their problem 

classes are the same. After a closer check, we find that the initial configuration of the container stack has a 

great influence on the solution computational efficiency. 

2.7.1.2 Comparison of the Sooo model and the Sooo extension model 

For a fair comparison of the relevant truck waiting time between the two models, we calibrate the results 

of ‘CPU’, ‘Rel’ and ‘AveWait’ in Table 2. 2 to ensure that only the instances that are solved optimally by 

both algorithms are included into the comparison. The calibrated results are presented in italic in Table 2. 

C.4 of Appendix C.2. Besides, we compare the results of the two models for instances with a 67% fill rate, 
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which are shown in Table 2. 3 and Table 2. 4 (the numbers in italic represent the calibrated results). 

Comparing the ‘Rel’ of the two models, it is found that the simulated total number of relocations of the two 

models are the same in most cases, with only five problem class occurring a difference of 0.001 number of 

relocations. The occurrence of this difference seems counterintuitive, but it might happen only because we 

are sampling. However, as the difference is quite trivial, it is fair to compare the ‘AveWait’ of the two 

models based on our samples. Column ‘Gap[AveWait]’ reports the gap between the average relevant truck 

waiting time of the two models, which represents the benefits of taking into account the truck waiting time. 

Comparing Table 2. 3 with Table 2. C.4, we can find that the gaps in the average relevant truck waiting 

time between the two models are more significant for instances with a larger fill rate. Besides, in a 

comparison between Table 2. 3 and Table 2. 4, it can be found that the instances with more concentrated 

truck arrival patterns, that is, ‘0%’ customer preference scenario, benefit more from the Sooo extension 

model. In addition, the results of small batches and large batches indicate that the batch size does not have a 

significant influence on the relative difference of the relevant truck waiting time between the two models. 

From Table 2. C.4 and Tables 2.3-2.4, we can conclude that the reduction in the average relevant truck 

waiting time in the Sooo extension model over the Sooo model is between 2.5% and 11%. Moreover, the 

CPU results confirm that the extended APBFS algorithm takes a longer time to obtain the optimal solution 

than the APBFS algorithm. 

Table 2. 3 Comparison between the Sooo model and the Sooo extension model for instances with 67% fill 

rate and ‘50%’ customer preference scenario 

T S C 

 Sooo  Sooo extension  
Gap 

[AveWait] 
 

Solved CPU(s) Rel 
AveWait 

(min) 
 Solved CPU(s) Rel 

AveWait 

(min) 
 

Small batches 

3 5 10  √ 0.04 2.786 3.387  √ 0.05 2.786 3.224  4.81% 

 6 12  √ 0.04 3.620 3.710  √ 0.05 3.620 3.524  5.01% 

 7 14  √ 0.03 3.759 3.655  √ 0.06 3.759 3.506  4.08% 

 8 16  √ 0.05 4.382 3.577  √ 0.08 4.382 3.385  5.37% 

 9 18  √ 0.07 4.816 3.580  √ 0.11 4.816 3.408  4.80% 

 10 20  √ 0.07 5.066 3.327  √ 0.11 5.066 3.176  4.54% 

4 5 13  √ 0.11 5.071 4.130  √ 0.14 5.071 3.976  3.73% 

 6 16  √ 1.10 6.931 4.109  √ 1.19 6.931 3.898  5.14% 

 7 19  √ 1.01 6.929 3.646  √ 1.16 6.929 3.465  4.96% 

 8 21  √ 13.98 7.969 3.829  √ 20.25 7.969 3.601  5.95% 

 9 24  √ 11.08 9.257 3.825  √ 11.80 9.257 3.619  5.39% 

 10 27  27 69.81 9.622 3.620  27 92.17 9.622 3.426  5.36% 

Large batches 

3 5 10  √ 0.51 2.403 7.208  √ 0.90 2.403 6.945  3.65% 

 6 12  √ 0.58 3.245 7.804  √ 1.21 3.245 7.468  4.31% 

 7 14  √ 1.41 3.518 8.119  √ 3.58 3.518 7.720  4.91% 

 8 16  √ 1.13 4.180 7.671  √ 3.36 4.179 7.281  5.08% 

 9 18  √ 1.46 4.484 7.680  √ 4.05 4.485 7.349  4.31% 

 10 20  √ 0.93 4.755 7.338  √ 3.40 4.755 6.937  5.46% 

4 5 13  √ 8.60 4.632 8.618  √ 27.60 4.631 8.342  3.20% 

 6 16  28 13.31 6.167 8.502  28 39.35 6.167 8.091  4.83% 

 7 19  28 36.99 6.307 7.681  28 175.06 6.307 7.310  4.83% 

 8 21  28 12.32 

 

7.027 8.036  26 73.15 7.027 7.580  5.67% 
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 9 24  27 71.98 8.208 8.086  24 320.01 8.208 7.655  5.33% 

 10 27  23 153.87 8.898 7.673  21 441.13 8.898 7.233  5.73% 

Table 2. 4 Comparison between the Sooo model and the Sooo extension model for instances with 67% fill 

rate and ‘0%’ customer preference scenario 

T S C 

 Sooo  Sooo extension  
Gap 

[AveWait] 
 

Solved CPU(s) Rel 
AveWait 

(min) 
 Solved CPU(s) Rel 

AveWait 

(min) 
 

Small batches 

3 5 10  √ 0.03 2.500 3.307  √ 0.04 2.500 2.993  9.48% 

 6 12  √ 0.03 3.367 3.672  √ 0.04 3.367 3.289  10.44% 

 7 14  √ 0.03 3.567 3.595  √ 0.05 3.567 3.329  7.42% 

 8 16  √ 0.05 4.100 3.546  √ 0.07 4.100 3.171  10.58% 

 9 18  √ 0.07 4.533 3.533  √ 0.10 4.533 3.204  9.33% 

 10 20  √ 0.07 4.867 3.320  √ 0.10 4.867 3.023  8.94% 

4 5 13  √ 0.06 4.600 3.944  √ 0.09 4.600 3.667  7.02% 

 6 16  √ 0.18 6.600 4.067  √ 0.21 6.600 3.633  10.66% 

 7 19  √ 0.20 6.567 3.589  √ 0.25 6.567 3.239  9.77% 

 8 21  √ 1.06 7.633 3.803  √ 1.31 7.633 3.384  11.02% 

 9 24  √ 2.96 8.967 3.836  √ 3.26 8.967 3.422  10.79% 

 10 27  29 7.71 9.379 3.630  29 8.56 9.379 3.246  10.56% 

Large batches 

3 5 10  √ 0.46 1.800 6.887  √ 0.83 1.800 6.327  8.13% 

 6 12  √ 0.50 2.700 7.683  √ 1.07 2.700 6.861  10.70% 

 7 14  √ 1.23 2.967 7.990  √ 3.48 2.967 7.152  10.49% 

 8 16  √ 0.94 3.533 7.471  √ 2.33 3.533 6.704  10.26% 

 9 18  √ 1.08 3.833 7.452  √ 2.88 3.833 6.852  8.05% 

 10 20  √ 0.82 4.233 7.287  √ 2.99 4.233 6.503  10.75% 

4 5 13  √ 1.82 3.667 8.103  √ 6.19 3.667 7.441  8.16% 

 6 16  √ 8.28 5.467 8.283  √ 132.93 5.467 7.433  10.26% 

 7 19  √ 10.48 5.533 7.484  √ 173.77 5.533 6.789  9.28% 

 8 21  √ 9.28 6.214 7.762  28 86.46 6.214 6.986  9.99% 

 9 24  √ 25.06 7.733 8.042  √ 331.17 7.733 7.200  10.47% 

 10 27  29 27.63 8.429 7.569  28 84.01 8.429 6.788  10.31% 

2.7.2 Effectiveness of the proposed heuristics 

In this section, we evaluate the effectiveness of the heuristic algorithms. First, we compare the results of 

the proposed two heuristics with that of the extended APBFS algorithm. Second, we compare the 

performances of the two heuristics.  

2.7.2.1 Comparison of the exact solutions and heuristic solutions 

Table 2. 5 compares the SEM heuristic and the SEML heuristic with that of the extended APBFS 

algorithm on instances with small batches and a 50% fill rate. For a fair comparison, the heuristic results 

are calibrated (in italic) to ensure that the comparison is based on the instances that are solved to optimality 

by the extended APBFS algorithm. Because the CPU times of both heuristics are less than 1 second, they 

are not presented here. The best heuristic result for each problem class is highlighted in bold, from which it 

can be observed that in almost all cases the SEML heuristic outperforms the SEM heuristic. In addition, 
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from the column Gap[Rel], we can see that for instances with T=3,4, our proposed SEML heuristic 

performs quite well, with only at most 0.64% difference from the optimal solutions in terms of the total 

number of relocations. Overall, the SEML heuristic is at most 3.41% more than the optimal total number of 

relocations. Regarding the average relevant truck waiting time (Gap[AveWait]), the result of the SEML 

heuristic is at most 1.49% more than that of the extended APBFS algorithm. Besides, occasionally, the 

SEML heuristic even outperforms the extended APBFS algorithm slightly in terms of the relevant truck 

waiting time. This is not surprising, because the Sooo extension model aims to minimise the total waiting 

times of each batch sequentially rather than minimising the total waiting times of all the trucks. Because the 

total waiting time of all trucks is jointly determined by the number of relocations of and the service 

sequence of each truck, the solutions with the same total number of relocations may lead to different total 

waiting time and it might also happen that the solutions with more relocations lead to less total waiting 

time.  

Table 2. 5 Comparison of the extended APBFS algorithm, SEM and SEML heuristics for small batches and 

50% fill rate 

T S C 
Extended APBFS  SEM  SEML 

Rel AveWait  Rel AveWait Gap[Rel] Gap[AveWait]  Rel AveWait Gap[Rel] Gap[AveWait] 

3 5 8 1.478 3.207  1.478 3.208 0.00% 0.02%  1.478 3.208 0.00% 0.02% 

 6 9 1.581 3.303  1.582 3.303 0.07% 0.02%  1.581 3.303 0.00% 0.00% 

 7 11 2.654 3.356  2.654 3.359 0.00% 0.08%  2.654 3.359 0.00% 0.08% 

 8 12 2.169 3.014  2.174 3.015 0.22% 0.04%  2.169 3.014 0.00% 0.01% 

 9 14 2.885 3.106  2.886 3.106 0.05% 0.01%  2.886 3.106 0.03% 0.01% 

 10 15 3.093 2.930  3.100 2.931 0.22% 0.04%  3.100 2.931 0.22% 0.04% 

4 5 10 2.855 3.411  2.891 3.408 1.26% -0.09%  2.874 3.403 0.64% -0.22% 

 6 12 3.466 3.351  3.481 3.356 0.44% 0.15%  3.471 3.353 0.14% 0.06% 

 7 14 3.941 3.324  3.986 3.332 1.15% 0.25%  3.960 3.327 0.49% 0.10% 

 8 16 4.559 3.390  4.578 3.389 0.42% -0.02%  4.578 3.389 0.42% -0.02% 

 9 18 5.523 3.474  5.532 3.471 0.15% -0.09%  5.532 3.472 0.15% -0.06% 

 10 20 6.015 3.181  6.018 3.183 0.06% 0.06%  6.016 3.183 0.01% 0.06% 

5 5 13 4.884 3.900  5.047 3.921 3.36% 0.55%  5.031 3.920 3.02% 0.51% 

 6 15 5.544 3.553  5.633 3.558 1.61% 0.16%  5.619 3.554 1.35% 0.04% 

 7 18 6.573 3.777  6.631 3.790 0.88% 0.33%  6.619 3.785 0.70% 0.20% 

 8 20 7.516 3.482  7.636 3.500 1.60% 0.52%  7.619 3.497 1.37% 0.43% 

 9 23 8.696 3.606  8.733 3.610 0.42% 0.11%  8.710 3.607 0.16% 0.04% 

 10 25 9.238 3.517  9.301 3.518 0.68% 0.03%  9.285 3.515 0.50% -0.05% 

6 5 15 6.999 3.886  7.237 3.944 3.40% 1.48%  7.238 3.944 3.41% 1.49% 

 6 18 7.728 3.959  7.918 3.964 2.47% 0.13%  7.913 3.963 2.40% 0.11% 

 7 21 8.923 3.787  9.011 3.772 0.98% -0.40%  9.011 3.772 0.98% -0.40% 

 8 24 9.882 3.748  9.987 3.755 1.06% 0.16%  9.994 3.755 1.13% 0.18% 

 9 27 10.538 3.419  10.652 3.429 1.08% 0.28%  10.652 3.429 1.08% 0.28% 

 10 30 11.572 3.580  11.579 3.578 0.06% -0.06%  11.579 3.578 0.06% -0.06% 

*Note: customer preference scenario: 50% 

We compare the SEML heuristic with the extended APBFS algorithm on larger instances in Appendix 

C.1. The comparisons are based on the instances that can be solved optimally by both the exact algorithm 

and the heuristic algorithm. It can be seen that for the problem classes in Table 2. 5 and in Appendix C.1 for 

which we have access to the optimal solutions of all the 30 instances, the maximum gaps for the total 

number of relocations and the average relevant truck waiting time are 4.28% and 1.49% respectively; and 
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in about 84% (41/49) cases, the total number of relocations obtained by the SEML heuristic is very close to 

the optimal solutions with gaps no more than 2%. Besides, for the problem classes for which we only have 

access to the optimal solutions of part of the 30 instances, the maximum gap for the total number of 

relocations and the average relevant truck waiting time are 9.80% and 1.53% respectively. With an 

enormous number of instances in a range of sizes being evaluated, our experiments show strong evidence 

that the SEML heuristic is a good solution to the SCRP-FS of practical sizes.  

2.7.2.2 Comparison of the two heuristics 

Furthermore, we compare the performance between the SME heuristic and the SMEL heuristic on all the 

instances with a 67% fill rate. Appendix D displays the gaps between the two heuristics for instances with 

three to six tiers respectively. The horizontal axis presents the characteristics of each instance: the customer 

preference scenario (P), the average batch size (B), and the number of stacks (S). Gap[Rel]=(SEM[Rel]–

SEML[Rel])/SEM[Rel]×100%, and Gap[AveWait]= (SEM[AveWait]–SEML[AveWait])/SEM[AveWait]×

100%. In most cases, the SEML heuristic shows superior performance on both measures to that of SEM 

heuristic, which confirms the importance of looking ahead on the decision making of retrieval sequence. 

Although in very few cases the good performance on ‘Rel’ of the SEML heuristic is at the expense of 

‘AveWait’, the increases on ‘AveWait’ are no more than 1% compared with SEM. Given the better 

performance quality of the SEML heuristic, we use SEML as the heuristic solver for the SCRP-FS in the 

remaining experiments.  

2.7.3 Effect of the flexible service policy 

In this section, we first verify the effectiveness of our proposed flexible service policy by comparing the 

Sooo extension model with the base model. Then, various instances with different bay sizes and fill rates, 

batch sizes and customer preference scenarios are tested to investigate their impacts on the effect of the 

flexible service policy.  

2.7.3.1 Comparison of the base model and the Sooo extension model on the benchmark 

In order to evaluate the effect of the proposed flexible service policy as opposed to the FCFS policy, we 

compare the results of the Sooo extension model with the base model on the benchmark set. The 

benchmark set consists of the instances with a 50% fill rate, small batches, and the ‘50%’ customer 

preference scenario. In order to obtain the results of the base model, we slightly adapt the PBFS algorithm 

in Galle et al. (2018b) by using a new lower bound that incorporates the characteristics of customer 

preference, which is similar to the idea of computing the BI in the EM extension algorithm. Table 2. 6 

reports the calibrated results for comparison. Gap[Rel]=(Base model[Rel]–Sooo extension model[Rel])/ 

Base model[Rel]×100%, and Gap[AveWait]=(Base model[AveWait]– Sooo extension model[AveWait])/ 

Base model[AveWait]×100%. We can see that around 2% - 13% reduction in the total number of 

relocations can be achieved by the Sooo extension model compared with the base model on the benchmark 

set. The effectiveness of the flexible policy is also demonstrated by the around 4.3% - 8.4% reduction in the 

average relevant truck waiting time.  
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Table 2. 6 Comparison between the base model and the Sooo extension model on the benchmark instance 

set 

T S C 

Base model*  Sooo extension model  Gap 

Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Opt Solved CPU(s) Rel 

AveWait 

(min) 

 Gap[Rel] Gap 

[AveWait] 

3 5 8 1.703 √ 0.02 1.700 3.436  1.478 √ 0.03 1.478 3.207  13.03% 6.66% 

 6 9 1.739 √ 0.01 1.737 3.487  1.582 √ 0.03 1.581 3.303  9.00% 5.28% 

 7 11 2.878 √ 0.02 2.878 3.544  2.654 √ 0.03 2.654 3.356  7.79% 5.30% 

 8 12 2.308 √ 0.02 2.307 3.148  2.169 √ 0.03 2.169 3.014  5.95% 4.26% 

 9 14 3.004 √ 0.02 3.006 3.235  2.884 √ 0.04 2.885 3.106  4.02% 3.98% 

 10 15 3.192 √ 0.02 3.193 3.066  3.094 √ 0.06 3.093 2.930  3.14% 4.45% 

4 5 10 3.108 √ 0.02 3.107 3.657  2.856 √ 0.03 2.855 3.411  8.08% 6.74% 

 6 12 3.675 √ 0.03 3.676 3.559  3.461 √ 0.05 3.466 3.351  5.70% 5.85% 

 7 14 4.164 √ 0.03 4.164 3.522  3.944 √ 0.05 3.941 3.324  5.37% 5.62% 

 8 16 4.819 √ 0.16 4.820 3.592  4.555 √ 0.20 4.559 3.390  5.42% 5.63% 

 9 18 5.730 √ 0.33 5.729 3.670  5.526 √ 0.34 5.523 3.474  3.58% 5.35% 

 10 20 6.275 √ 0.75 6.272 3.353  6.016 √ 0.80 6.015 3.181  4.10% 5.13% 

5 5 13 5.323 √ 0.15 5.325 4.198  4.883 √ 0.19 4.884 3.900  8.29% 7.09% 

 6 15 5.911 √ 4.38 5.914 3.813  5.546 √ 2.98 5.544 3.553  6.25% 6.83% 

 7 18 6.965 √ 1.11 6.969 4.046  6.575 √ 0.77 6.573 3.777  5.68% 6.64% 

 8 20 7.847 √ 7.85 7.846 3.703  7.519 √ 8.16 7.516 3.482  4.21% 5.98% 

 9 23 8.999 28 70.96 9.005 3.829  8.704 29 70.61 8.701 3.609  3.38% 5.76% 

 10 25 9.547 29 47.92 9.547 3.716  9.237 29 49.37 9.238 3.517  3.24% 5.34% 

6 5 15 7.595 √ 4.98 7.590 4.244  7.004 √ 5.06 6.999 3.886  7.79% 8.43% 

 6 18 8.232 √ 17.45 8.231 4.249  7.729 √ 6.18 7.728 3.959  6.11% 6.82% 

 7 21 9.394 23 251.90 9.393 4.077  8.925 22 160.87 8.923 3.787  5.00% 7.11% 

 8 24 10.318 22 134.48 10.313 3.989  9.886 22 164.07 9.882 3.748  4.18% 6.03% 

 9 27 10.713 18 103.13 10.714 3.609  10.538 18 104.47 10.538 3.419  1.64% 5.26% 

 10 30 11.804 17 234.62 11.809 3.774  11.551 18 114.81 11.547 3.583  2.22% 5.06% 

*Note: The base model refers to the batch model of Galle et al. (2018b) in the new context of customer 

preference-based arrivals. 

2.7.3.2 Effect of the flexible service policy in different scenarios 

Based on all instances (including the instances with ultra-large batches), we analyse the impacts of the 

combinations of different bay sizes (T*S) and fill rates (μ), truck appointment patterns (the average batch 

size) and truck arrival behaviours (the customer preference scenario) on the effects of the flexible service 

policy. The results of all instances are obtained by simulating heuristic solutions except the results of the 

benchmark set which are from the optimal solutions in Table 2. 6.  

Effect on the number of relocations 

Fig. 2. 7 depicts the relative reduction in the total number of relocations. In each figure, six plots are 

presented, varying in the average batch size in the horizontal direction and the customer preference 

scenario in the vertical direction. Note that because the relative reductions for the ‘0%’ and ‘100%’ 

customer preference scenarios are the same, we only present the result of one scenario in the vertical 

direction. As shown in Fig. 2. 7, the effect on relocation reduction is more significant for the cases with 

larger batch sizes and the cases with more concentrated truck arrivals within the appointed time window 

(i.e., the ‘0%’ customer preference scenario). The reason is that these cases provide more opportunities for 

out-of-order retrievals to reduce relocations as there are more trucks in the same sub-batch. Note that under 

the cases where the customer preference scenario is ‘0%’, the SCRP-FS is equivalent to the deterministic 

CRP with flexible service policies (CRP-FS) in which all the trucks in the same batch are allowed to be 
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retrieved out-of-order. The effect of the flexible service policy is maximised in the context of the CRP-FS 

as the container retrieval order has the greatest flexibility and meanwhile, the truck arrival uncertainties are 

completely offset.  

 

Fig. 2. 7(a) Effect of the flexible service policy on the total number of relocations for instances of 50% fill 

rate 

 

Fig. 2. 7(b) Effect of the flexible service policy on the total number of relocations for instances of 67% fill 
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rate 

Furthermore, we can find that the relative reduction in the number of relocations depends on the bay size 

(T*S) and the fill rate (μ). In general, the percentage is decreasing as the bay size and the fill rate get larger. 

To understand this, let us consider the benefits of the flexible service policy. For each out-of-order retrieval, 

the direct benefit is avoiding one relocation, and the indirect benefit is avoiding future relocations that 

might be caused by the blocking container if it is not retrieved out-of-order. As T and μ increases, the 

likelihood of blocking become greater, but the increasing number of blocking containers cannot be offset 

completely by implementing the proposed flexible service policy as only the containers in the same 

sub-batch are allowed to be retrieved out-of-order. In addition, as S increases, it is more likely that a better 

relocating stack can be found for a relocated container, meaning that the relocated container being blocking 

again in the future is less likely to occur, and thus the benefit of out-of-order retrieval is diminishing. This 

indicates that the bay of smaller size and sparse stacking can benefit more from the flexible service policy. 

For the instances with on average six trucks per batch and the ‘50%’ customer preference scenario, the peak 

relative reduction on the number of relocations is around 38% and 30% respectively for the bay of 50% and 

67% fill rate. This leads to a 9.6% and 11.3% reduction in the average relevant waiting time respectively 

for the bay of 50% and 67% fill rate (see Appendix E.3). 

Effect on the trucks waiting time 

We also report the absolute reduction in the two performances. Note that the application of the flexible 

policy always leads to positive reductions, we use “absolute reduction” only to differentiate it from 

“relative reduction”. The absolute reduction on the average relevant truck waiting times shows a similar 

pattern as that on the total number of relocations (see Appendix E.1 and Appendix E.2). However, in 

contrast to Fig. 2. 7, the bay’s height and fill rate has a positive impact on the relative reduction in the 

average relevant truck waiting time (see Appendix E.3). This is because the total relevant truck waiting 

times include a fixed amount of time that is not influenced by the service policy. Recalling Section 2.3.2.2, 

for each batch k, no matter what the solution is, we have to add  
1

kC

ret
k

j

t C j



   to the total relevant 

waiting times, which is a fixed value. To obtain an accurate understanding of the effect of the flexible 

service policy on reducing trucks’ waiting times, we deduct this fixed amount of time from the total 

relevant waiting times and then take the average, resulting in a new average waiting time. To differentiate, 

we call it average delay time. The average delay time represents the waiting time caused to each truck only 

due to relocation operations.  
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Fig. 2. 8(a) Effect of the flexible service policy on average delay time for instances of 50% fill rate 

 

Fig. 2. 8(b) Effect of the flexible service policy on average delay time for instances of 67% fill rate 

Fig. 2. 8 depicts the relative reduction in the average delay time. The similar trend between Fig. 2. 7 and 

Fig. 2. 8 indicates that the reduction in the number of relocations plays a direct role in reducing the average 

delay time. For the instances with ultra-large batches and the customer preference scenario being ‘50%’, 
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about 50% and 44% of the average delay time can be reduced respectively for the bay of 50% and 67% fill 

rate as a result of out-of-order retrievals. The experiment results also demonstrate (not presented in the 

figure) that on average one reduction in the number of relocations results in 1.07 minutes and 0.93 minutes 

reduction in the average relevant truck waiting time across all instances respectively for the bay of 50% and 

67% fill rate. 

Moreover, we also measure the average turn time under the flexible service policy, which is shown in 

Appendix E.4. The turn time of a truck is defined as the elapse of time between its arrival time and its 

retrieval service completion time. Appendix E.4 shows an average difference of 15-minutes in the average 

turn time between the ‘0%’ customer preference scenario and the ‘100%’ customer preference scenario. 

This is only due to the difference between the truck arrival times that are generated for the two scenarios. 

Noticing that our appointment time window is set to be 30 minutes, the 15-minutes difference validates our 

simulation results.  

Effect on the service equity 

Out-of-order retrievals might make some trucks perceive unfair service due to the adjustment of the 

service sequence. To examine the equity of truck service, we use box plots to display the distributions of 

the truck turn time under the FCFS policy and the flexible policy respectively, which is contrasted in Fig. 2. 

9. It can be observed that the maximum values of the truck turn time (among all trucks’ turn times 

including the outliers) under the flexible service policy are generally greater than that under the FCFS 

policy. This is not surprising because the flexible service policy makes some trucks that arrive earlier being 

served at a later time due to the sequencing decision. However, because we restrict the out-of-order 

retrievals within the same sub-group, the trucks arriving in the first sub-window will always be serviced 

before the trucks arriving in the second sub-window, which means the service equity between two 

sub-groups of trucks is maintained. It can be seen that the difference of the maximum turn times between 

two policies is only about five minutes among the cases in Fig. 2. 9. Besides, the differences are not 

obvious for the cases with higher tiers (T = 5, 6), and in some cases, the flexible policy even has a shorter 

maximum turn time. The reason is that the instances with higher tiers require a higher average number of 

relocations to retrieve a container, while the flexible policy can significantly reduce the number of 

relocations and avoid the long waiting time compared to the FCFC service. Moreover, the flexible policy 

has a lower minimum value of the truck turn time; and more importantly, the median and the mean of the 

trucks’ turn time under the flexible policy are always smaller than those under the FCFS policy.  

These results demonstrate that when the FCFS policy is replaced by the flexible policy, although some 

trucks may experience a little longer turn time, on average the service each truck receives can be improved. 

This goal is consistent with most of the existing relevant literature, e.g., minimising the average waiting 

time (Borjian et al., 2015b; Zeng et al., 2019) or minimising total delay times (Borjian et al., 2013). 
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Fig. 2. 9 Grouped box plots of the truck turn time under two service policies for the instances with 67% fill 

rate, ‘50%’ customer preference scenario and on average 6 containers per batch 

2.7.4 Influence of customer preference 

In this section, we analyse the influence of customer preferences on the results of the Sooo extension 

model. We consider three sets of customer preference scenario: i) all trucks arrive at the first sub-time 

window with the probability of 100% (‘100%’); ii) all trucks arrive at the first sub-time window with the 

probability of 50% (‘50%’); iii) trucks arrive at the first sub-time window with different probabilities 

(heterogeneous). Appendix F reports the results obtained by the extended APBFS algorithm of these three 

sets of customer preference scenarios on the instances with small batches and a 50% fill rate. For the 

heterogeneous scenario, we generate 10 samples of customer preferences randomly for each of the 30 

instances of each problem class, and hence, each problem class has 300 instances to be solved. The number 

of instances that are solved optimally is given in the form ‘x/300’ and ‘√’ indicates that all instances out of 

300 are solved optimally. Note that it takes about six days to obtain the results of the problem class with 

T=6 and S=9 for the heterogeneous scenario since 127 out of 300 instances cannot be solved optimally 

within one hour, we did not conduct the experiments of the problem class with T=6 and S=10 (because it 

would take much longer computational time than six days).  

Concerning the computational efficiency, from Appendix F, it is observed that the instances with the 
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‘100%’ scenario take less time to obtain optimal solutions than the ‘50%’ scenario, and there are fewer hard 

instances for the ‘100%’ scenario. This can be explained by the fact that in the ‘100%’ scenario, each 

chance node only has one offspring, which reduces the burden of the decision tree. By contrast, the 

heterogeneous scenario takes more time to be solved. The reason is that the abstract technique does not 

work efficiently for the heterogeneous scenario as it rarely happens that two nodes are equivalent since the 

preferences of customers differ from each other. Even so, there is no obvious change in the number of hard 

instances, which can be seen from the ‘Solved’ columns of the ‘50’ scenario and the heterogeneous 

scenario. 

In terms of the objective values, from Fig. 2. 10, we can see that the heterogenous scenario and the ‘50%’ 

scenario perform similarly, which have obvious differences from the ‘100’ scenario. This implies that if all 

customers tend to arrive at a specific sub-time window of their appointed time windows, the results will be 

influenced significantly. Besides, if customers have heterogeneous preferences, we can use the results of 

the ‘50%’ scenario as an approximation of the objective values of the heterogeneous scenario. However, 

this does not mean that the solution of the ‘50%’ scenario is feasible to the solution of the heterogeneous 

scenario.  

 

(a) Comparison of the total number of relocations 

 

(b) Comparison of the average relevant truck waiting time 

  Fig. 2. 10 Comparison between three sets of customer preference scenarios for instances with small 

batches and a 50% fill rate 
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We summarize the key findings of the experiments below. Firstly, the solution capacity of the two 

proposed exact solution algorithms is quite similar. The extended APBFS algorithm can solve 87.5% of the 

instances with T=3,4 within 30 seconds. Secondly, our proposed lower bound LB-FS is more effective for 

instances with lower tiers (T=3,4). In 73% of the instances with T=3,4, our lower bound is fairly close to 

the optimal solution with a gap within 5%. Thirdly, for the instances that can be solved optimally, the Sooo 

extension model can reduce the average relevant truck waiting time by 2.5% - 11% in comparison to the 

Sooo model, which indicates the significance of considering truck waiting time in addressing the SCRP-FS. 

Fourthly, the SEML heuristic outperforms the SEM heuristic in both performances, which demonstrates the 

importance of looking ahead on the decision-making of retrieval sequence. For the instances that we have 

access to the optimal solutions, in about 84% cases the total number of relocations obtained by the SEML 

heuristic is very close to the optimal solutions with a gap within 2%, and the maximum gap is 4.28%. 

Fifthly, the proposed flexible service policy can significantly reduce both the number of relocations and the 

relevant truck waiting times. Although some trucks may experience a little longer turn time, on average the 

service each truck receives can be improved. For the benchmark instance set, the largest relative reduction 

on the number of relocations is around 38% and 30%, which leads to a 9.6% and 11.3% reduction in the 

average relevant waiting time, respectively, for the bay of a 50% and a 67% fill rate. The benefit is more 

obvious for the instances with smaller and sparse bays, larger batches, and concentrated truck arrivals 

within one of the sub-time windows. Lastly, customers preferring a specific sub-time window of their 

appointed time windows has a great influence on the results.  

2.8 Conclusions 

In this paper, we have considered the stochastic container relocation problem with flexible service 

policies (termed as SCRP-FS), which focuses on retrieving and relocating import containers with uncertain 

truck arrival orders. The trucks arrive at the terminal randomly within their appointed time windows. The 

containers whose designated trucks arrive at the same sub-time window are allowed to be retrieved 

out-of-order. Customers (trucks)’ preference is taken into consideration to describe the randomness of truck 

arrivals within the same time window. The problem is first formulated by a stochastic dynamic 

programming model to minimise the expected number of relocations, which is termed as the Sooo model. 

Then a Sooo extension model is developed considering a primary objective the same as the Sooo model and 

a secondary objective of minimising the total truck waiting times of each batch sequentially. The Sooo 

extension model not only considers the terminal operator’s objective but also the trucks’ objective. Built 

upon a state-of-the-art algorithm for solving the SCRP, tree search-based algorithms are developed to make 

optimal recommendations about the retrieval sequence of the next batch of containers and the relocation 

positions of the blocking containers. Moreover, two heuristic algorithms, SEM and SEML, are designed to 

seek high-quality solutions efficiently for practical-size problems. A discrete event-driven simulation model 

is developed to evaluate the performance of the algorithms (optimal and heuristic). Extensive 

computational experiments demonstrate the effectiveness of the models and the algorithms.  

On the theoretical side, firstly, the SCRP-FS generalizes the conventional SCRP from two perspectives. 

On the one hand, the flexible service policy relaxes the traditional FCFS policy, which provides more 

opportunities for reducing the number of relocations and allows for reducing the trucks’ waiting time as 

well. On the other hand, the assumption of uniformly distributed truck arrivals within the same time 

window is relaxed by a more general probabilistic model. The capability of capturing the customers’ 

preference-based arrival behaviour, in particular, is a major advantage of the probabilistic model. Secondly, 
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the proposed methodology contributes to the literature of solving multiple objective multi-stage stochastic 

optimisation problems by embedding the optimisation of the secondary objectives within the multi-stage 

optimisation procedure for the primary objective. Such methodology may be applicable to other 

transportation optimisation problems such as berth allocation problems or train loading problems, in which 

decisions are made dynamically and multiple objectives are prioritized.  

On the practical side, based on our findings, we provide some managerial insights to terminal operators 

and truck companies. Firstly, by slightly diverting the current FCFS service policy to the flexible service 

policy that implements out-of-order retrievals within half of the appointment time window, both the number 

of relocations and the average truck waiting time during the retrieval service can be significantly reduced; 

and the service equity between two sub-groups of trucks is maintained. Secondly, the flexible service policy 

is more beneficial in the following practical situations: the container terminal uses small bay or/and sparse 

stacking strategy; the containers to be retrieved in a bay are booked in large batches; the trucks arrive 

within either the earlier segment or the latter segment of their appointed time windows concentratedly. 

Thirdly, customer preference has a great influence on both the number of relocations and the truck waiting 

times during the retrieval service. Lastly, the developed SEML heuristic can generate good solutions very 

fast, which can be applied in practice to enable the real-time dynamic decision-making for the SCRP-FS. 

This paper provides several directions for further research. Firstly, the proposed models and algorithms 

are reasonably general and flexible, which allows for further refining and improvement, e.g. terminal 

operators could choose different sizes of the sub-batches or multiple sub-batches. The optimisation 

framework will be similar and the structure of the decision tree does not need change. However, if the 

terminal operator decides to have more sub-batches, the size of the search tree will be larger due to the 

consideration of more possibilities of sub-batches. Hence, a more efficient search algorithm needs to be 

developed to obtain exact solutions. Nevertheless, our proposed heuristics are supposed to be still efficient 

because their time complexities are decreasing with the decrease of the batch size. Besides, the benefits of 

the flexible service policy need to be further evaluated because the terminal operator will have less control 

over the truck service sequence if they use more sub-batches. Secondly, this study could be extended to 

address more general SCRP problems where trucks do not necessarily arrive within their appointed time 

windows. In the real world, the arrival of a truck may be prior to or later than the appointed time window. 

An extended arrival time window that includes both the preceding and the succeeding time window relative 

to the appointed time window is more appropriate to predict trucks’ arrival times. The probability of the 

deviation from the appointed time window could be gained from historical data and be considered as our 

proposed customer preference. Thirdly, based on our proposed lower bound, more efficient stacking 

policies considering the possibility of out-of-order retrievals in the future could be developed to stack 

import containers in an orderly configuration so that fewer relocations are needed during the retrieval 

process.  

2.9 Appendix 

Appendix A. Some illustrations of the exact algorithms 

A.1. Illustration of the abstraction technique 

Fig. 2. A.1(a) shows the application of the abstract technique on the node 10 and node 11 in Fig. 2. 4. By 

(10)Abstract  and (11)Abstract , node 10 and node 11 are projected to the same abstract configuration. This 

means if (10)f  is known, (11)f  can be directly returned to be (10)f  without further branching. Fig. 2. 
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A.1(b) illustrates two unequivalent abstract configurations due to the difference in their abstract preference 

configurations although they have the same abstract priority configuration.  
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Fig. 2. A.1. Illustration of the abstraction technique 

A.2. A sample decision tree developed by the extended APBFS algorithm 
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Fig. 2. A.2. A sample decision tree developed by the extended APBFS algorithm. 

Fig. 2. A.2 presents a decision tree developed by the extended APBFS algorithm. The initial node in this 

decision tree is the abstract configuration of the last node in the decision tree of Fig. 2. 4. Let us focus on 

the nodes highlighted with upward diagonal background: n, n1, and n2, to illustrate the consideration of the 

secondary objective. n is a SD node with
1 2{ , }APBFS

n n n  , and f(n)=1. As 1 2( ) ( ) 1 ( )f n f n f n   , we 

calculate the waiting time indicator of n1 and n2 by Algorithm 2. We obtain that 2 1( ) 1 ( ) 2w n w n   . 
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Therefore, the best offspring of node n is n2 (step 4.7-4.8 in Algorithm 3). Note that in the APBFS 

algorithm, if n1 is first added into APBFS

n , n2 will not be able to be included into APBFS

n  as 2( ) 1lb n   is not 

less than 1( )f n , which means that we lose the opportunity to find the optimal solution with regard to the 

secondary objective. 

  

Appendix B. Details of the heuristics 

B.1. Calculating the BI and DI of the EM extension heuristic 

Fig. 2. B.1 is used for illustration, which shows how the EM extension heuristic makes decisions on a 

simple example where the truck arrival sequence of the three containers in the first batch ( 7 10 5, ,u u u ) has 

been revealed. The container in the shaded slot is the target container to be retrieved. The container in the 

upward diagonal slot is the blocking container to be relocated at the current step. The numbers under the 

priority matrix correspond to the m(s) of each candidate stack, and the value of M is also given.  
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Fig. 2. B.1. Decisions by the EM extension heuristic on an example 

(1) Method of computing BI 

If cM l , EM extension selects the stack with the minimum ( )BI s  to minimise the probability of c 

being blocking if c is relocated to stack s . Given a configuration B with M, a stack s where c is located 

before being relocated, a stack s  that satisfies ( )m s M  , ( )BI s  is computed as follows. Step 1 in Fig. 

2. B.1 is used to illustrate the computing method. Without special instruction, the ‘stack 1’ used in this 

sub-section refers to the stack 1 in the configuration under step 1 in Fig. 2. B.1.  

Let  1,...,s NM c c  , | |sN M  , be the set of containers labelled M and located in s . We first 

compute the probability that c is not blocking if relocated to s , i.e., 1 ( )BI s . Let us consider the two 

cases in terms of the sub-batch of c: #1) c is in the former sub-batch; #2) c is in the latter sub-batch. 

#1. c is in the former sub-batch.  

Under case 1, we consider two mutually exclusive sub-cases (#1.1 and #1.2) in terms of the sub-batch of 

containers in sM  .  
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#1.1. At least one container i sc M   is in the former sub-batch. 

There are totally 
1

N

k

N

k

 
 
 

  scenarios that satisfy #1.1. Let 1 2, ,...,

N

k

k k k kComb comb comb comb

 
 
 

 
 

  
  

 denote 

the set of all scenarios represented by the combinations of the N elements in sM   taken k,  1,...,k N . 

The size of kComb  is N

k

 
 
 

. Each element i

k kcomb Comb , 1,...,
N

i
k

   
  
   

, represents a scenario where 

the elements in i

kcomb  are in the former sub-batch. For example (see Fig. 2. B.1), in the configuration of 

step 1, 1 1 2{ , }M u u , N=2,  1 2

1 1 1,Comb comb comb , wherein  1

1 1comb u ,  2

1 2comb u , and 

1

2 2{ }Comb comb , wherein  1

2 1 2,comb u u . The probability of kComb  is equal to 

1

(1 )
j j

i i
j k j k

N

k

c c

i c comb c comb

p p

 
 
 

  

   . Then the probability that c is not blocking in the scenario set kComb  is equal to 

1

(1 ) / ( 1)
j j i

i i
j k j k

N

k

c c c

i c comb c comb

p p k p

 
 
 

  

     . Considering all combinations from k=1 to k=N, we have the probability 

that c is not blocking in case 1.1, which is equal to 
1 1

(1 ) / ( 1)
j j i

i i
j k j k

N

kN

c c c

k i c comb c comb

p p k p

 
 
 

   

     . Taking stack 1 for 

example, we have  

2

2

1 1 1 1

(1 ) / ( 1) (1 ) / ( 1)
j j i j j i

i i i i
j k j k j k j k

N

k kN

c c c c c c

k i k ic comb c comb c comb c comb

p p k p p p k p

   
   
   

      

           =(0.3×0.9/2+0.1 ×

0.7/2+0.3×0.1/3)×0.5=0.09. 

#1.2. All containers in sM   are in the latter sub-batch.  

In this case, c is surely not blocking. Then the probability that c is not blocking in case 1.2 is equal to 

1

(1 )
i

N

c c

i

p p


  . Taking stack 1 for example, we have 
2

1 1

(1 ) (1 )
i i

N

c c c c

i i

p p p p
 

      =0.7×0.9×0.5=0.315. 

#2. c is in the latter sub-batch.  

In this case, there exists only one scenario in which it is possible that c is not blocking, that is, all 

containers in sM   are in the latter sub-slot. Then the probability that c is not blocking in case 2 is equal to

1

(1 ) (1 ) / ( 1)
i

N

c c

i

p p N


    . Taking stack 1 for example, we have 

2

1 1

(1 ) (1 ) / ( 1) (1 ) (1 ) / 3
i i

N

c c c c

i i

p p N p p
 

         =0.7×0.9×0.5/3=0.105. 

The above cases exhaust all the possible scenarios of the sub-batches of the containers labelled M. 

Therefore, by summing the above expressions, we have the probability that c is not blocking if relocated to 

s , i.e., 1 ( )BI s , as expressed in Eq. (2.A.1):  
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1 1 1 1

1 ( ) (1 ) / ( 1) (1 ) (1 ) (1 ) / ( 1)
j j i i i

i i
j k j k

N

k N NN

c c c c c c c

k i i ic comb c comb

BI s p p k p p p p p N

 
 
 

    

                  

        
1 1 1

(1 ) / ( 1) (1 ) (1 ) / ( 1)
j j i i

i i
j k j k

N

k NN

c c c c c c

k i ic comb c comb

p p k p p p p N

 
 
 

   

                        (2.A.1) 

Finally, we have the probability of c being blocking if relocated to s , i.e., ( )BI s , as calculated by Eq. 

(2.A.2).  

 
1 1 1

( ) 1 (1 ) / ( 1) (1 ) (1 ) / ( 1)
j j i i

i i
j k j k

N

k NN

c c c c c c

k i ic comb c comb

BI s p p k p p p p N

 
 
 

   

                      (2.A.2) 

For example (see Fig. 2. B.1), in the configuration of step 1, the BI of stack 1 is calculated as 

 (1) 1 0.09 0.315 0.105 0.49BI      . Also, we obtain BI(2)=0.7 by Eq. (2.A.2). As BI(1)<BI(2), stack 1 is 

selected as the relocating stack at step 1 by the EM extension heuristic.  

(2) Method of computing DI 

If cM l , which means that it is unavoidable that c will be relocated again in the future, EM extension 

selects the stack with the minimum ( )DI s  to delay the next relocation of c. Given a configuration B with 

M, a stack s where c is located before being relocated, a stack s  that satisfies ( )m s M  , ( )DI s  is 

computed as follows. Step 3 in Fig. 2. B.1. is used to illustrate the computing method. Without special 

instruction, the ‘configuration’ used in this sub-section refers to the configuration at step 3 in Fig. 2. B.1.  

Let  1 1,...,B LM c c  , | | 1BM L  , be the set of all containers labelled M in configuration B, and sM   be 

the set of containers labelled M and located in s . For example, in the illustrated configuration, 

 1 2 8 3, , ,BM u u u u , L=3,  1 1 2 8, ,M u u u , and  2 3M u . Given a candidate stack s , we first compute the 

probability of each container i sc M   being the first one to be retrieved among the containers in BM , 

denoted by ( )iDI c . Since the retrieval of any container i sc M   will cause the next relocation of c if c is 

relocated to s , by definition, we have ( ) ( )
i s

i

c M

DI s DI c


   . 

Now let us consider a container i sc M   and compute ( )iDI c . Suppose all the containers in \B iM c  are 

located in a dummy stack and ic  is the container to be relocated to this stack. Then ( )iDI c  is equal to 

the probability that ic  is not blocking if relocated to this dummy stack. Therefore, using the Eq. (2.A.1) 

of calculating 1 ( )BI s , ( )iDI c  is computed by Eq. (2.A.3). 

 
, ,

1 1 \ \

( ) (1 ) / 1 (1 ) (1 ) (1 ) / ( 1)
j j i j i j i

n n
j B i j B ij c k j c ki i

L

kL

i c c c c c c c

k n c M c c M cc cmb c cmb

DI c p p k p p p p p L

 
 
 

    

                   

   
, ,

1 1 \

(1 ) / 1 (1 ) (1 ) / ( 1)
j j i j i i

n n
j B ij c k j c ki i

L

kL

c c c c c c

k n c M cc cmb c cmb

p p k p p p p L

 
 
 

   

                     

      (2.A.3) 

wherein, , ,i i

n

c k c kcmb Cmb . 1 2

, , , ,, ,...,
i i i i

L

k

c k c k c k c kCmb cmb cmb cmb

 
 
 

 
 

  
  

 denotes the set of all scenarios represented 
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by the combinations of the L elements in \B iM c  ( i sc M  ) taken k,  1,...,k L . The size of 
,ic kCmb  is 

L

k

 
  
 

.  

Therefore, ( ) ( )
i s

i

c M

DI s DI c


    is computed by Eq. (2.A.4).  

   
, ,

1 1 \

( ) (1 ) / 1 (1 ) (1 ) / ( 1)
j j i j i i

n n
i s j B ij c k j c ki i

L

kL

c c c c c c

c M k n c M cc cmb c cmb

DI s p p k p p p p L


 
 
 

    

 
 

            
 
 

         (2.A.4) 

Let us calculate 8( )DI u  in the illustrated configuration.  
8 8 8 8

1 2 3

,1 ,1 ,1 ,1, ,u u u uCmb cmb cmb cmb , wherein 

 
8

1

,1 1ucmb u ,  
8

2

,1 2ucmb u , and  
8

3

,1 3ucmb u ;  
8 8 8 8

1 2 3

,2 ,2 ,2 ,2, ,u u u uCmb cmb cmb cmb , wherein  
8

1

,2 1 2,ucmb u u , 

 
8

2

,2 1 3,ucmb u u , and  
8

3

,2 2 3,ucmb u u ;  
8 8

1

,3 ,3u uCmb cmb , wherein  
8

1

,3 1 2 3, ,ucmb u u u . For  1,...,3k  , 

we calculate the first term of Eq. (2.A.3):  

For k=1,  

   
8

,1 ,18 8

3

1

1

(1 ) / 1 1 0.1 0.7 0.1 0.3 0.9 0.1 0.9 0.7 0.9 / 2 0.5 0.15025
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

 
 
 

  

                  

For k=2,  

   
8

,2 ,28 8

3

2

1

(1 ) / 2 1 0.1 0.3 0.1 0.1 0.9 0.7 0.3 0.9 0.9 / 3 0.5 0.0515
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

 
 
 

  

                  

For k=3,  
8

,3 ,38 8

3

3

1

(1 ) / 3 1 0.1 0.3 0.9 / 4 0.5 0.003375
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

 
 
 

  

            

Summing the above expressions, we have, 

 
8

, ,8 8

3

3

1 1

(1 ) / 1 0.15025 0.0515 0.003375 0.205125
j j

n n
j u k j u k

k

c c u

k n c cmb c cmb

p p k p

 
 
 

   

           

Then, we calculate the second term of Eq. (2.A.3): 

   
8 8

8\

(1 ) (1 ) / ( 1) (0.9 0.7 0.1) 0.5 0.5 / 4 0.039375
j

j B

c u u

c M u

p p p L


            

By Eq. (2.A.4), we have 8( ) 0.205125 0.039375 0.2445DI u    . In the same way, we obtain 

2( ) 0.1385DI u  , 1( ) 0.0485DI u  , and 3( ) 0.5685DI u  . Therefore, 8 2 1(1) ( ) ( ) ( )DI DI u DI u DI u    

=0.2445+0.1385+0.0485=0.4315, and 3(2) ( ) 0.5685DI DI u  . As (1) (2)DI DI , stack 1 is selected as the 

target relocating stack at step 3 by the EM extension heuristic. 

B.2. An illustrative example for the SEM heuristic  

We use Fig. 2. B.2. to illustrate the sequencing decision of the SEM heuristic. In the initial configuration 

0X , there are five batches of containers. The truck arrival information of the first batch is revealed to be 

that 7u  is in the first sub-batch and 5u  and 10u  are in the second sub-batch, as shown in bold in Step 1. 

Now we present the decisions to retrieve the first batch containers. The container in the shaded slot 

represents the target container to be retrieved. The container in the upward diagonal slot represents the 

blocking container to be relocated. At Step 1, 1lmin  , 7{ }u  , and thus there is no doubt that 7u  is 

selected as the target container. After retrieving 7u , 2lmin  , 5 10{ , }u u  , and 5 10( ) ( ) 1r u r u  . As 
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5 10( ) ( )r u r u , the SEM selects 10u  as the target container arbitrarily. After Step 4, 3lmin  , 5{ }u  , 

and thus 5u  is selected as the target container out of question. 
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Fig. 2. B.2. Decisions by the SEM heuristic on an example 

B.3. Calculating the BIS and DIS of the SEM heuristic 

Fig. 2. B.2 is used for illustration. 

(1) Method of computing BIS 

Given a configuration B with M, a stack s where c is located before being relocated, a stack s  that 

satisfies ( )m s M  , the method of computing ( )BIS s  is introduced here. Let  1,...,s NM c c  , 

| |sN M  , be the set of containers labelled M and located in s . Container c being blocking if relocated 

to s  occurs only in the scenario where c is in the latter sub-batch and there is at least one container 

i sc M   in the former sub-batch. Therefore, we have, 

   
( )

( ) 1 1 1
i

i

c c

c M s

BIS s p p


 
      

 
                                 (2.A.5) 

The term  
( )

1
i

i

c

c M s

p


  of Eq. (2.A.5) is the probability that all the containers in sM   are in the latter 

sub-batch, and thus  
( )

1 1
i

i

c

c M s

p


 
   

 
  is the probability that at least one of them is in the former 

sub-batch. 

Take the configuration at step 1 (see Fig. 2. B.2) for example. 8c u , M=4, and thus stack 1 and stack 2 

are candidate stacks. By Eq. (2.A.5),   (1) 1 0.5 1 0.7 0.9 0.185BIS      , 

  (2) 1 0.5 1 0.1 0.45BIS     . As BIS(1)<BIS(2), stack 1 is selected for relocating 8u .  

(2) Method of computing DIS 

In the sequencing rule introduced above, the one with the lowest number of blocking containers among 

the containers with the smallest label is selected as the target container, ties being broken arbitrarily. 

Therefore, a container ic  is surely being the first one to be retrieved in its batch only in the situation that 

satisfies the following two conditions: 1) ic  is in the former sub-batch; 2) ic  is with the lowest number of 
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blocking containers (i.e., 
icr ) among the containers in the former sub-batch. The second condition means 

that all the containers above ic  labelled M must be in the latter sub-batch and for each stack s  that 

satisfies ( )m s M  , if there are containers labelled M among the top 1
icr   number of containers (if any) 

in stack s , these containers must be in the latter sub-batch.  

Given a configuration B with M, a stack s where c is located before being relocated, a stack Ms S , 

wherein MS  is the set of stack that satisfies ( )m s M  , the method of computing ( )DIS s  is introduced 

here. Let sM   be the set of containers labelled M located in s . Given a candidate stack s , we first 

compute the probability of each container i sc M   surely being the first one to be retrieved in its batch, 

denoted by ( )iDIS c . By definition, we have ( ) ( )
i s

i

c M

DIS s DIS c


   . Let ( , )T n s  denote the set of top n 

number of containers labelled M in stack s. Then, we have 

( ( ), ) \ ( ( ) 1, )

( ) (1 ) (1 )
i j j

j i M j i

i c c c

c T r c s s S s c T r c s

DIS c p p p
      

       . By summing the ( )iDIS c  of all containers 

i sc M  , we get,  

( ( ), ) \ ( ( ) 1, )

( ) (1 ) (1 )
i j j

i s j i M j i

c c c

c M c T r c s s S s c T r c s

DIS s p p p
        

                             (2.A.6) 

Taking the configuration at step 3 (see Fig. 2. B.2) for example, where 11c u , M=4,  1,2MS  , let us 

compute 2( )DIS u . 2( ) 1r u  ,  8(1,1)T u ,  3(2,2)T u , and thus
( ( ), )

(1 )
j

j i

c

c T r c s

p



(1,1)

(1 )
j

j

c

c T

p


 

8
(1 ) 0.5up   , 

\ ( ( ) 1, )

(1 )
j

M j i

c

s S s c T r c s

p
    

 
{2} (2, )

(1 )
j

j

c

s c T s

p
  

   3
(1 ) 0.1up   . Consequently, 

2( ) 0.3 0.5 0.1 0.015DIS u     . Similarly, we get 8( ) 0.5DIS u  , 1( ) 0.0035DIS u  , and 3( ) 0.315DIS u  . 

By Eq. (2.A.6), we have 2 8 1(1) ( ) ( ) ( ) 0.5 0.015 0.0035 0.5185DIS DIS u DIS u DIS u         and 

3(2) ( ) 0.315DIS DIS u  . As (2) (1)DIS DIS , stack 2 is selected for relocating 11u .  

B.4. An illustrative example for the SEML heuristic  

We use Fig. 2. B.3, which continues Step 2 of Fig. 2. B.2, to illustrate the sequencing rule of the SEML 

heuristic. For brevity, we only present the priority matrix. After step 2, 2lmin  , and 5 10{ , }u u  . Because 

5 10( ) ( ) 1r u r u  , both 5u  and 10u  are potential target containers (H=2). Hence, we evaluate the 

contribution of the two feasible retrieval sequences respectively: 5 10u u  and 10 5u u , through step 3 to 

step 6. The final configurations after implementing the two sequences are given at step 7. It is obvious that 

the two final configurations have the same lower bound. And because both of the sequences cause two 

realised relocations, their contributions are the same. Therefore, we can choose one arbitrarily from 

5 10u u  and 10 5u u  as the determined retrieval sequence for 5u  and 10u . 
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Fig. 2. B.3. Decisions by the SEML heuristic on an example 

Appendix C. Performance of the proposed models and exact algorithms 

Note that in the tables, the “Opt” column represents the optimal expected number of relocations obtained 

by the corresponding exact algorithms; the “Rel” column represents the estimated number of relocations 

obtained by simulation.  

C.1. Results of the extended APBFS algorithm, the SEML heuristic, and the lower bound 

Table 2. C.1 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for 

instances with small batches and 67% fill rate 

T S C lb 

Extended APBFS  SEML  Gap 

lb* Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Rel 

AveWait 

(min) 
 

Gap 

[Rel] 

Gap 

[AveWait] 

3 5 10 2.621 2.621 2.789 √ 0.05 2.786 3.224  2.786 3.222  0.00% -0.06% 

 6 12 3.433 3.433 3.621 √ 0.05 3.620 3.524  3.659 3.526  1.08% 0.06% 

 7 14 3.708 3.708 3.756 √ 0.06 3.759 3.506  3.786 3.506  0.72% 0.00% 

 8 16 4.254 4.254 4.379 √ 0.08 4.382 3.385  4.405 3.389  0.52% 0.12% 

 9 18 4.592 4.592 4.815 √ 0.11 4.816 3.408  4.846 3.408  0.62% 0.00% 

 10 20 5.021 5.021 5.067 √ 0.11 5.066 3.176  5.073 3.179  0.14% 0.09% 

4 5 13 4.433 4.433 5.073 √ 0.14 5.071 3.976  5.241 3.972  3.35% -0.10% 

 6 16 6.017 6.017 6.925 √ 1.19 6.931 3.898  7.200 3.936  3.88% 0.97% 

 7 19 6.042 6.042 6.927 √ 1.16 6.929 3.465  7.026 3.475  1.40% 0.29% 

 8 21 7.375 7.375 7.967 √ 20.25 7.969 3.601  8.016 3.605  0.59% 0.11% 

 9 24 8.775 8.775 9.259 √ 11.80 9.257 3.619  9.353 3.619  1.04% 0.00% 

 10 27 8.992 8.935 9.618 27 92.17 9.622 3.426  9.709 3.424  0.90% -0.05% 

5 5 17 7.358 7.058 8.802 26 24.26 8.802 4.145  9.187 4.172  4.37% 0.66% 

 6 20 7.992 7.522 8.465 23 66.56 8.468 3.774  8.679 3.796  2.49% 0.59% 

 7 23 9.475 9.091 10.339 22 340.50 10.340 3.934  10.569 3.945  2.21% 0.28% 

 8 27 11.354 10.816 11.570 17 803.78 11.568 3.705  11.671 3.714  0.89% 0.24% 

 9 30 12.879 12.388 13.436 10 728.19 13.436 3.669  13.555 3.673  0.89% 0.10% 

 10 34 14.229 12.5 12.983 11 195.66 12.990 3.549  13.032 3.548  0.32% -0.02% 

6 5 20 9.496 8.958 11.183 15 613.80 11.181 4.085  12.006 4.148  7.38% 1.53% 

 6 24 11.304 10.894 12.341 13 491.90 12.343 4.102  12.527 4.127  1.49% 0.60% 

 7 28 13.258 13.75 15.375 2 253.16 15.357 3.864  15.359 3.918  0.01% 1.39% 

 8 32 15.367 13.2 13.869 5 693.38 13.865 3.695  13.865 3.685  0.00% -0.26% 

 9 36 16.454 16.5 16.500 2 949.85 16.504 3.646  16.504 3.652  0.00% 0.18% 
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 10 40 19.375 15.25 15.250 1 232.22 15.259 3.857  15.259 3.880  0.00% 0.61% 

Note: customer preference scenario: 50% 

 

Table 2. C.2 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for 

instances with large batches and 50% fill rate 

T S C lb 

Extended APBFS  SEML  Gap 

lb* Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Rel 

AveWait 

(min) 
 

Gap 

[Rel] 

Gap 

[AveWait] 

3 5 8 1.263 1.263 1.278 √ 0.45 1.281 7.206  1.283 7.215  0.16% 0.12% 

 6 9 1.317 1.317 1.334 √ 0.32 1.336 7.388  1.336 7.389  0.00% 0.01% 

 7 11 2.317 2.317 2.340 √ 0.47 2.339 7.075  2.339 7.078  0.00% 0.04% 

 8 12 1.971 1.971 1.973 √ 0.55 1.969 6.499  1.969 6.499  0.00% 0.00% 

 9 14 2.617 2.617 2.621 √ 0.72 2.614 6.764  2.615 6.764  0.04% 0.00% 

 10 15 2.908 2.908 2.914 √ 0.86 2.915 6.708  2.915 6.710  0.00% 0.03% 

4 5 10 2.546 2.546 2.703 √ 0.56 2.702 6.967  2.779 6.991  2.85% 0.34% 

 6 12 3.183 3.183 3.315 √ 1.13 3.312 7.122  3.357 7.140  1.36% 0.25% 

 7 14 3.550 3.550 3.645 √ 4.50 3.648 7.473  3.662 7.479  0.38% 0.08% 

 8 16 4.058 4.058 4.094 √ 6.46 4.090 7.502  4.102 7.507  0.29% 0.07% 

 9 18 5.233 5.233 5.274 √ 19.65 5.273 7.408  5.297 7.409  0.46% 0.01% 

 10 20 5.746 5.746 5.799 √ 16.80 5.803 6.863  5.844 6.869  0.71% 0.09% 

5 5 13 3.952 3.952 4.470 √ 32.02 4.466 8.154  4.633 8.187  3.74% 0.40% 

 6 15 4.844 4.821 5.181 29 84.30 5.181 7.586  5.323 7.610  2.74% 0.31% 

 7 18 5.704 5.594 5.809 28 75.49 5.809 8.007  5.843 7.988  0.58% -0.24% 

 8 20 6.813 6.690 6.971 27 102.75 6.974 7.315  7.055 7.327  1.16% 0.17% 

 9 23 7.950 7.894 8.206 26 419.04 8.205 7.691  8.274 7.701  0.84% 0.12% 

 10 25 8.671 8.65 8.875 25 183.02 8.870 7.441  8.933 7.446  0.71% 0.07% 

6 5 15 5.717 5.714 6.599 28 197.67 6.602 8.074  6.857 8.134  3.86% 0.75% 

 6 18 6.404 6.125 6.840 26 273.82 6.842 8.244  7.056 8.257  3.13% 0.16% 

 7 21 8.140 7.545 7.975 14 271.02 7.976 8.125  8.074 8.159  1.23% 0.42% 

 8 24 8.985 8.351 8.668 13 548.95 8.670 7.690  8.730 7.696  0.70% 0.08% 

 9 27 9.913 9.366 9.758 14 589.12 9.763 7.122  9.878 7.173  1.18% 0.72% 

 10 30 11.552 10.714 10.884 12 207.75 10.890 7.468  10.891 7.469  0.00% 0.02% 

Note: customer preference scenario: 50% 
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Table 2. C.3 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for 

instances with large batches and 67% fill rate 

T S C lb 

Extended APBFS  SEML  Gap 

lb* Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Rel 

AveWait 

(min) 
 

Gap 

[Rel] 

Gap 

[AveWait] 

3 5 10 2.296 2.296 2.404 √ 0.90 2.403 6.945  2.415 6.953  0.50% 0.12% 

 6 12 3.113 3.113 3.239 √ 1.21 3.245 7.468  3.277 7.477  0.99% 0.12% 

 7 14 3.463 3.463 3.520 √ 3.58 3.518 7.720  3.527 7.723  0.26% 0.04% 

 8 16 4.100 4.100 4.176 √ 3.36 4.179 7.281  4.186 7.282  0.17% 0.01% 

 9 18 4.346 4.346 4.483 √ 4.05 4.485 7.349  4.541 7.365  1.25% 0.22% 

 10 20 4.717 4.717 4.755 √ 3.40 4.755 6.937  4.760 6.940  0.11% 0.04% 

4 5 13 4.127 4.127 4.635 √ 27.60 4.631 8.342  4.829 8.368  4.28% 0.31% 

 6 16 5.629 5.594 6.169 28 39.35 6.167 8.091  6.398 8.142  3.74% 0.62% 

 7 19 5.754 5.728 6.318 28 175.06 6.307 7.310  6.397 7.320  1.43% 0.14% 

 8 21 6.921 6.726 7.025 26 73.15 7.027 7.580  7.171 7.591  2.04% 0.15% 

 9 24 8.229 7.859 8.201 24 320.01 8.208 7.655  8.314 7.663  1.30% 0.10% 

 10 27 8.888 8.429 8.897 21 441.13 8.898 7.233  8.994 7.246  1.08% 0.18% 

5 5 17 7.006 6.679 7.664 22 498.41 7.677 8.612  8.178 8.684  6.52% 0.84% 

 6 20 7.677 6.863 7.398 16 151.72 7.402 7.596  7.703 7.644  4.07% 0.64% 

 7 23 9.208 7.889 8.566 9 443.50 8.566 7.681  8.755 7.723  2.20% 0.54% 

 8 27 10.838 10.271 10.696 6 1091.25 10.678 7.467  10.871 7.477  1.81% 0.13% 

 9 30 12.546 10.219 10.914 4 858.35 10.912 7.368  10.955 7.381  0.39% 0.17% 

 10 34 13.925 10.979 11.264 6 549.90 11.249 7.162  11.264 7.177  0.13% 0.21% 

6 5 20 9.183 8.075 9.527 5 1567 9.529 8.042  10.463 8.162  9.80% 1.49% 

 6 24 11.067 9.844 10.531 2 1019.19 10.506 7.841  10.590 7.871  0.80% 0.38% 

 7 28 12.967 - - 0 - - -  - -  - - 

 8 32 14.829 11.75 11.781 1 694.38 11.745 8.051  11.740 8.050  -0.04% -0.01% 

 9 36 16.196 - - 0 - - -  - -  - - 

 10 40 18.935 - - 0 - - -  - -  - - 

Note: customer preference scenario: 50% 
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C.2. The calibrated results of Table 2. 2 for the comparison between the Sooo model and the Sooo 

extension model 

Table 2. C.4. Comparison between the Sooo model and the Sooo extension model with small batches and 

50% fill rate 

T S C 

 Sooo- APBFS  Sooo extension- extended APBFS  
Gap 

[AveWait] 
 

Solved CPU(s) Rel 
AveWait 

(min) 
 Solved CPU(s) Rel 

AveWait 

(min) 
 

3 5 8  √ 0.02 1.478 3.319  √ 0.03 1.478 3.207  3.38% 

 6 9  √ 0.02 1.581 3.428  √ 0.03 1.581 3.303  3.65% 

 7 11  √ 0.02 2.654 3.485  √ 0.03 2.654 3.356  3.70% 

 8 12  √ 0.01 2.169 3.091  √ 0.03 2.169 3.014  2.49% 

 9 14  √ 0.02 2.885 3.226  √ 0.04 2.885 3.106  3.72% 

 10 15  √ 0.03 3.093 3.044  √ 0.06 3.093 2.930  3.77% 

4 5 10  √ 0.02 2.855 3.534  √ 0.03 2.855 3.411  3.49% 

 6 12  √ 0.03 3.466 3.532  √ 0.05 3.466 3.351  5.12% 

 7 14  √ 0.04 3.941 3.485  √ 0.05 3.941 3.324  4.61% 

 8 16  √ 0.16 4.559 3.556  √ 0.20 4.559 3.390  4.67% 

 9 18  √ 0.29 5.523 3.691  √ 0.34 5.523 3.474  5.87% 

 10 20  √ 0.72 6.015 3.334  √ 0.80 6.015 3.181  4.59% 

5 5 13  √ 0.16 4.883 4.042  √ 0.19 4.884 3.900  3.53% 

 6 15  √ 2.44 5.544 3.708  √ 2.98 5.544 3.553  4.19% 

 7 18  √ 0.72 6.573 3.993  √ 0.77 6.573 3.777  5.39% 

 8 20  √ 7.57 7.516 3.695  √ 8.16 7.516 3.482  5.77% 

 9 23  29 67.35 8.696 3.835  29 68.25 8.696 3.606  5.96% 

 10 25  29 39.40 9.238 3.719  29 49.37 9.238 3.517  5.43% 

6 5 15  √ 4.56 6.999 4.034  √ 5.06 6.999 3.886  3.66% 

 6 18  √ 5.48 7.728 4.162  √ 6.18 7.728 3.959  4.89% 

 7 21  23 148.91 8.923 4.006  22 160.87 8.923 3.787  5.46% 

 8 24  22 150.07 9.881 3.998  22 164.07 9.882 3.748  6.24% 

 9 27  18 100.24 10.538 3.661  18 104.47 10.538 3.419  6.60% 

 10 30  19 108.42 11.576 3.804  18 108.52 11.576 3.580  5.90% 

*Note: customer preference scenario: 50% 
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Appendix D. Comparisons between the SEM heuristic and the SEML heuristic 

 

 

(a) Instances of three tiers 

 

(b) Instances of four tiers 

 

(c) Instances of five tiers 
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(d) Instances of six tiers 

Fig. 2. D.1. Comparisons between the SEM heuristic and the SEML heuristic for all the instances with 67% 

fill rate 

 

Appendix E. Additional results for the effectiveness of the flexible service policy 

E.1. Absolute reduction on the total number of relocations 

 

Fig. 2. E.1 (a) Reduction on the total number of relocations by the flexible service policy for instances of 

50% fill rate 
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Fig. 2. E.1 (b) Reduction on the total number of relocations by the flexible service policy for instances of 

67% fill rate 

E.2. Absolute reduction on the average relevant truck waiting time 

 

Fig. 2. E.2 (a) Reduction on the average relevant waiting time by the flexible service policy for instances of 

50% fill rate 
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Fig. 2. E.2 (b) Reduction on the average relevant waiting time by the flexible service policy for instances of 

67% fill rate 

E.3. Relative reduction on the average relevant truck waiting time 

 

Fig. 2. E.3 (a) Effect of the flexible service policy on average relevant waiting time for instances of 50% fill 

rate 
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Fig. 2. E.3 (b) Effect of the flexible service policy on average relevant waiting time for instances of 67% 

fill rate 
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E.4. Average truck turn time  

Table 2. E.1 Results of the average truck turn time for all instances under the flexible service policy 

   Fill rate = 50%  Fill rate = 67% 

S B P T=3 T=4 T=5 T=6  T=3 T=4 T=5 T=6 

5 2 0 13.995 14.178 14.652 14.590  13.981 14.660 14.894 15.052 

 2 0.5 21.709 21.915 22.396 22.393  21.731 22.467 22.764 22.975 

 2 1 28.995 29.178 29.631 29.577  28.981 29.660 29.894 30.049 

 4 0 17.676 17.402 18.330 18.276  17.370 18.551 18.984 18.983 

 4 0.5 25.717 25.492 26.678 26.682  25.452 26.875 27.434 27.629 

 4 1 32.676 32.402 33.315 33.276  32.370 33.525 33.956 33.967 

 6 0 20.630 20.320 22.102 22.467  20.532 23.169 24.930 24.936 

 6 0.5 29.109 28.927 31.329 31.828  29.179 32.577 34.865 35.674 

 6 1 35.630 35.320 37.102 37.467  35.532 38.169 39.918 39.906 

6 2 0 14.125 14.142 14.296 14.669  14.305 14.667 14.648 14.983 

 2 0.5 21.804 21.859 22.055 22.454  22.038 22.437 22.459 22.851 

 2 1 29.125 29.142 29.296 29.669  29.305 29.667 29.648 29.983 

 4 0 17.944 17.594 18.031 18.821  17.892 18.495 18.653 19.230 

 4 0.5 25.899 25.640 26.209 27.128  25.975 26.745 26.998 27.769 

 4 1 32.944 32.594 33.031 33.821  32.892 33.495 33.653 34.221 

 6 0 20.377 21.716 22.086 24.077  21.880 23.528 24.706 26.605 

 6 0.5 28.733 30.411 30.961 33.468  30.576 32.725 34.531 36.959 

 6 1 35.377 36.716 37.086 39.077  36.880 38.528 39.706 41.485 

7 2 0 14.175 14.160 14.528 14.639  14.331 14.258 14.670 15.027 

 2 0.5 21.852 21.829 22.277 22.295  22.003 21.976 22.455 22.861 

 2 1 29.175 29.160 29.528 29.626  29.331 29.258 29.670 30.008 

 4 0 17.613 17.892 18.410 18.411  18.174 17.818 18.652 19.758 

 4 0.5 25.582 25.977 26.580 26.658  26.221 25.893 26.891 28.330 

 4 1 32.613 32.892 33.410 33.408  33.174 32.818 33.637 34.751 

 6 0 21.210 21.924 23.390 24.223  22.480 22.009 25.351 29.294 

 6 0.5 29.559 30.513 32.495 33.544  31.099 30.922 34.755 39.858 

 6 1 36.210 36.924 38.390 39.223  37.480 37.009 40.325 44.297 

8 2 0 13.881 14.188 14.271 14.625  14.172 14.377 14.612 14.973 

 2 0.5 21.514 21.891 21.999 22.247  21.889 22.115 22.374 22.779 

 2 1 28.881 29.188 29.271 29.614  29.172 29.377 29.607 29.969 

 4 0 17.154 17.964 17.976 18.730  17.706 18.142 18.487 19.407 

 4 0.5 24.989 26.001 26.062 26.947  25.777 26.277 26.712 27.788 

 4 1 32.154 32.964 32.976 33.730  32.706 33.142 33.478 34.399 

 6 0 20.435 22.649 23.074 24.595  22.098 23.526 24.767 29.260 

 6 0.5 28.524 31.295 31.759 33.710  30.625 32.603 33.968 39.559 

 6 1 35.435 37.649 38.074 39.595  37.098 38.526 39.767 44.264 

9 2 0 13.979 14.280 14.413 14.382  14.206 14.415 14.764 14.757 

 2 0.5 21.610 21.981 22.111 21.918  21.917 22.125 22.521 22.542 

 2 1 28.979 29.280 29.413 29.382  29.206 29.415 29.757 29.751 

 4 0 17.411 17.937 18.368 18.120  17.885 18.235 19.012 18.968 

 4 0.5 25.265 25.906 26.439 26.213  25.866 26.314 27.258 27.298 

 4 1 32.411 32.937 33.368 33.120  32.885 33.235 34.006 33.959 

 6 0 21.281 22.632 23.580 23.853  22.558 23.807 26.444 27.431 

 6 0.5 29.524 31.075 32.547 32.706  31.083 32.673 36.034 37.316 

 6 1 36.281 37.632 38.580 38.853  37.558 38.807 41.430 42.431 

10 2 0 13.805 14.016 14.343 14.524  14.026 14.271 14.573 14.751 

 2 0.5 21.436 21.686 22.020 22.074  21.692 21.963 22.287 22.502 

 2 1 28.805 29.016 29.343 29.518  29.026 29.271 29.571 29.747 
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 4 0 17.383 17.450 18.151 18.725  17.516 17.854 18.340 19.175 

 4 0.5 25.208 25.376 26.165 26.799  25.442 25.880 26.421 27.433 

 4 1 32.383 32.450 33.151 33.720  32.516 32.854 33.338 34.173 

 6 0 20.750 21.174 23.791 25.256  21.192 22.956 25.013 27.868 

 6 0.5 28.878 29.498 32.363 34.376  29.493 31.476 34.084 37.408 

 6 1 35.750 36.174 38.791 40.256  36.192 37.956 40.005 42.872 

Appendix F. Results of three sets of customer preference scenarios 

Table 2. F.1 Comparison between three sets of customer preference scenarios for small batches and 50% 

fill rate 

T S C 

 ‘100%’ preference scenario  ‘50%’ preference scenario  Heterogeneous preference scenario 

 Solved CPU(s) Rel AveWait  Solved CPU(s) Rel AveWait  Solved CPU(s) Rel AveWait 

3 5 8  √ 0.04 1.267 2.992  √ 0.03 1.478 3.207  √ 0.02 1.475 3.205 

 6 9  √ 0.03 1.433 3.126  √ 0.03 1.581 3.303  √ 0.03 1.593 3.306 

 7 11  √ 0.03 2.433 3.170  √ 0.03 2.654 3.356  √ 0.04 2.638 3.348 

 8 12  √ 0.03 2.033 2.883  √ 0.03 2.169 3.014  √ 0.04 2.158 3.017 

 9 14  √ 0.05 2.767 2.976  √ 0.04 2.885 3.106  √ 0.05 2.885 3.111 

 10 15  √ 0.06 3.000 2.800  √ 0.06 3.093 2.930  √ 0.07 3.088 2.939 

4 5 10  √ 0.04 2.633 3.180  √ 0.03 2.855 3.411  √ 0.04 2.862 3.418 

 6 12  √ 0.05 3.267 3.144  √ 0.05 3.466 3.351  √ 0.06 3.475 3.355 

 7 14  √ 0.07 3.733 3.148  √ 0.05 3.941 3.324  √ 0.08 3.944 3.340 

 8 16  √ 0.15 4.300 3.192  √ 0.20 4.559 3.390  √ 0.31 4.533 3.387 

 9 18  √ 0.37 5.333 3.274  √ 0.34 5.523 3.474  √ 0.76 5.531 3.477 

 10 20  √ 0.27 5.767 3.010  √ 0.80 6.015 3.181  √ 2.65 6.003 3.187 

5 5 13  √ 0.08 4.500 3.621  √ 0.19 4.884 3.900  √ 0.32 4.856 3.884 

 6 15  √ 0.20 5.200 3.307  √ 2.98 5.544 3.553  √ 34.94 5.552 3.565 

 7 18  √ 0.28 6.200 3.519  √ 0.77 6.573 3.777  √ 2.29 6.562 3.783 

 8 20  √ 1.43 7.200 3.267  √ 8.16 7.516 3.482  √ 34.67 7.501 3.484 

 9 23  √ 5.00 8.414 3.388  29/30 68.25 8.696 3.606  284/300 151.57 8.700 3.615 

 10 25  √ 7.33 8.931 3.321  29/30 49.37 9.238 3.517  285/300 158.48 9.235 3.529 

6 5 15  √ 1.25 6.400 3.560  √ 5.06 6.999 3.886  √ 15.69 7.008 3.897 

 6 18  √ 0.99 7.233 3.670  √ 6.18 7.728 3.959  299/300 65.82 7.727 3.963 

 7 21  27/30 44.46 8.455 3.506  22/30 160.87 8.923 3.787  208/300 260.84 8.843 3.795 

 8 24  25/30 23.52 9.333 3.500  22/30 69.554 9.758 3.725  208/300 184.58 9.751 3.734 

 9 27  24/30 48.71 10.389 3.235  18/30 104.47 10.538 3.419  173/300 194.41 10.530 3.428 

 10 30  23/30 38.75 11.333 3.404  18/30 108.52 11.572 3.580  - - - - 



115 

 

Acknowledgments 

The authors thank three anonymous reviewers’ constructive comments that have helped improve the 

presentation of the paper. We also thank Ku and Arthanari (2016a) and Galle et al. (2018b) for their 

published source data. This study is partially supported by the China Scholarship Council, the Royal 

Society (Grant No. IEC\NSFC\170100), the EU H2020 (Grant No. 777742, EC 

H2020-MSCA-RISE-2017), the National Natural Science Foundation of China (Grant No. 71671021), and 

Fundamental Research Funds for the Central Universities.  

References 

Bacci, T., Mattia, S., & Ventura, P. (2019). The bounded beam search algorithm for the block relocation 

problem. Computers & Operations Research, 103, 252-264. 

Bakker, H., Dunke, F., & Nickel, S. (2020). A structuring review on multi-stage optimization under 

uncertainty: Aligning concepts from theory and practice. Omega, 96, 102080. 

Birge, J.R., Louveaux, F. (2011). Introduction to stochastic programming (2nd ed.). Springer, New York. 

Bonney, J. (2015). US ports move toward truck appointment model. JOC.com. Apr 27, 2015. Retrieved 

from 

https://www.joc.com/port-news/us-ports/port-new-york-and-new-jersey/us-ports-move-toward-truck-app

ointment-model_20150427.html. Accessed February 23, 2020. 

Borjian, S., Manshadi, V., Barnhart, C., & Jaillet, P. (2013). Dynamic Stochastic Optimization of Reshuffles 

in Container Terminals. In Manufacturing and Service Operations Management (MSOM) conference. 

Borjian, S., Galle, V., Manshadi, V. H., Barnhart, C., & Jaillet, P. (2015a). Container relocation problem: 

Approximation, asymptotic, and incomplete information. arXiv preprint 1505.04229. 

Borjian, S., Manshadi, V. H., Barnhart, C., & Jaillet, P. (2015b). Managing relocation and delay in container 

terminals with flexible service policies. arXiv preprint 1503.01535. 

Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014). Storage yard operations in container terminals: 

Literature overview, trends, and research directions. European journal of operational research, 235(2), 

412-430. 

Caserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and complexity considerations 

for the blocks relocation problem. European Journal of Operational Research, 219(1), 96-104. 

Caserta, M., Schwarze, S., & Voß, S. (2011a). Container Rehandling at Maritime Container Terminals. In J. 

W. Böse (Ed.), Handbook of Terminal Planning, Operations research/computer science interfaces series 

49 (pp. 247-269). Springer, New York.  

Caserta, M., Voß, S., & Sniedovich, M. (2011b). Applying the corridor method to a blocks relocation 

problem. OR Spectrum, 33(4), 915-929. 

Chen, G., Govindan, K., & Golias, M. M. (2013a). Reducing truck emissions at container terminals in a 

low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival 

pattern. Transportation Research Part E: Logistics and Transportation Review, 55, 3-22. 

Chen, G., Govindan, K., & Yang, Z. (2013b). Managing truck arrivals with time windows to alleviate gate 

congestion at container terminals. International Journal of Production Economics, 141(1), 179-188. 

Davies, P. (2009). Container Terminal Reservation Systems: Paper presented at the 3rd Annual METRANS 

National Urban Freight Conference. Long Beach, USA. 

de Melo da Silva, M., Erdoğan, G., Battarra, M., & Strusevich, V. (2018). The block retrieval problem. 

European Journal of Operational Research, 265(3), 931-950. 



116 

 

Dragović, B., Tzannatos, E., & Park, N. K. (2017). Simulation modelling in ports and container terminals: 

literature overview and analysis by research field, application area and tool. Flexible Services and 

Manufacturing Journal, 29(1), 4-34. 

DP World. Retrievd from https://www.londongateway.com/port/book-a-vehicle. Accessed February 28, 

2020. 

Expósito-Izquierdo, C., Melián-Batista, B., & Moreno-Vega, J. M. (2014). A domain-specific 

knowledge-based heuristic for the blocks relocation problem. Advanced Engineering Informatics, 28(4), 

327-343. 

fenixmarineservices.com. Retrieved from https://www.fenixmarineservices.com/terminal/#appointments. 

Accessed February 21, 2020. 

Galle, V., Manshadi, V. H., Boroujeni, S. B., Barnhart, C., & Jaillet, P. (2018a). The stochastic container 

relocation problem. Transportation Science, 52(5), 1035-1058. 

Galle, V., Barnhart, C., & Jaillet, P. (2018b). Yard Crane Scheduling for container storage, retrieval, and 

relocation. European Journal of Operational Research, 271(1), 288-316. 

Giuliano, G., & O’Brien, T. (2007). Reducing port-related truck emissions: The terminal gate appointment 

system at the Ports of Los Angeles and Long Beach. Transportation Research Part D: Transport and 

Environment, 12(7), 460-473. 

Gharehgozli, A. H., Roy, D., & De Koster, R. (2016). Sea container terminals: New technologies and OR 

models. Maritime Economics & Logistics, 18(2), 103-140. 

Huynh, N., Walton, C. M., & Davis, J. (2004). Finding the number of yard cranes needed to achieve 

desired truck turn time at marine container terminals. Transportation research record, 1873(1), 99-108. 

Huynh, N., & Zumerchik, J. (2010). Analysis of stacking priority rules to improve drayage operations using 

existing and emerging technologies. Transportation research record, 2162(1), 1-8. 

Jovanovic, R., & Voß, S. (2014). A chain heuristic for the blocks relocation problem. Computers & 

Industrial Engineering, 75, 79-86. 

Jin, B., Zhu, W., & Lim, A. (2015). Solving the container relocation problem by an improved greedy 

look-ahead heuristic. European Journal of Operational Research, 240(3), 837-847. 

Kim, K. H., & Hong, G. P. (2006). A heuristic rule for relocating blocks. Computers & Operations Research, 

33(4), 940-954. 

Kim, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export containers in 

container yards. European Journal of Operational Research, 124(1), 89-101. 

Ku, D., & Arthanari, T. S. (2016a). Container relocation problem with time windows for container 

departure. European Journal of Operational Research, 252(3), 1031-1039. 

Ku, D., & Arthanari, T. S. (2016b). On the abstraction method for the container relocation problem. 

Computers & Operations Research, 68, 110-122. 

Lee, Y., & Lee, Y. J. (2010). A heuristic for retrieving containers from a yard. Computers & Operations 

Research, 37(6), 1139-1147. 

Lee, C. Y., & Song, D. P. (2017). Ocean container transport in global supply chains: Overview and research 

opportunities. Transportation Research Part B: Methodological, 95, 442-474. 

Lehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas: Survey 

and classification. European Journal of Operational Research, 239(2), 297-312.  

Lin, D. Y., Lee, Y. J., & Lee, Y. (2015). The container retrieval problem with respect to 

relocation. Transportation Research Part C: Emerging Technologies, 52, 132-143. 

Li, N., Chen, G., Ng, M., Talley, W. K., & Jin, Z. (2020). Optimized appointment scheduling for export 

container deliveries at marine terminals. Maritime Policy & Management, 47(4), 456-478. 



117 

 

López-Plata, I., Expósito-Izquierdo, C., Lalla-Ruiz, E., Melián-Batista, B., & Moreno-Vega, J. M. (2017). 

Minimizing the Waiting Times of block retrieval operations in stacking facilities. Computers & Industrial 

Engineering, 103, 70-84. 

Mongelluzzo, B. (2016). Long Beach automated terminal expects fastest harbor truck turns, JOC.com. Feb 

11, 2016. Retrieved from 

https://www.joc.com/port-news/us-ports/port-long-beach/long-beach-automated-terminal-expects-fastes

t-harbor-truck-turns_20160211.html. Accessed February 21, 2020. 

Mongelluzzo, B. (2019). LA-LB truckers: We need true interoperable chassis pools, JOC.com, Oct 29 2019. 

Retrieved from 

https://www.joc.com/port-news/la-lb-truckers-we-need-true-interoperable-chassis-pools_20191029.htm

l. Accessed February 29, 2020. 

Mongelluzzo, B. (2020). Technology, mandatory truck slots push LA-LB turn times to near six-year low, 

JOC.com, Jan 13 2020. Retrieved from 

https://www.joc.com/port-news/terminal-operators/technology-mandatory-truck-slots-push-la-lb-turn-ti

mes-almost-six-year-low_20200113.html. Accessed February 22. 

Patrick. Retrieved from http://www.patrick.com.au/documents/VBS-Charges-Melbourne-July-2018.pdf. 

Accessed February 28, 2020. 

Petering, M. E., & Hussein, M. I. (2013). A new mixed integer program and extended look-ahead heuristic 

algorithm for the block relocation problem. European Journal of Operational Research, 231(1), 120-130. 

Pham, Q., Huynh, N., & Xie, Y. (2011). Estimating truck queuing time at marine terminal gates. 

Transportation research record, 2222(1), 43-53. 

Port Botany. Retrieved from 

https://www.adventintermodal.com/customers/port-botany-new-south-wales-australia/. Accessed 

February 29, 2020. 

Port Metro Vancouver. Retrieved from 

https://cleanairactionplan.org/documents/final-2017-clean-air-action-plan-update.pdf/. Accessed 

February 21, 2020. 

Quispe, K. E. Y., Lintzmayer, C. N., & Xavier, E. C. (2018). An exact algorithm for the blocks relocation 

problem with new lower bounds. Computers & Operations Research, 99, 206-217. 

Russell, S.J., & Norvig, P. (2016). Artificial intelligence: a Modern Approach (3rd ed.) (pp. 80). Pearson 

Education, Limited. 

Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR 

Spectrum, 30(1), 1-52. 

Saanen, Y. A. (2011). Modeling techniques in planning of terminals: The quantitative approach. In J. W. 

Böse (Ed.), Handbook of Terminal Planning, Operations research/computer science interfaces series 49 

(pp. 83–102). Springer, New York.  

Talley, W. K., & Ng, M. (2016). Port multi-service congestion. Transportation Research Part E: Logistics 

and Transportation Review, 94, 66-70. 

Tanaka, S., & Takii, K. (2016). A faster branch-and-bound algorithm for the block relocation 

problem. IEEE Transactions on Automation Science and Engineering, 13(1), 181-190. 

Tang, L., Jiang, W., Liu, J., & Dong, Y. (2015). Research into container reshuffling and stacking problems 

in container terminal yards. IIE Transactions, 47(7), 751-766. 

Ting, C. J., & Wu, K. C. (2017). Optimizing container relocation operations at container yards with beam 

search. Transportation Research Part E: Logistics and Transportation Review, 103, 17-31. 



118 

 

Tong, X., Woo, Y. J., Jang, D. W., & Kim, K. H. (2015). Heuristic Rules Based on a Probabilistic Model 

and a Genetic Algorithm for Relocating Inbound Containers with Uncertain Pickup Times. International 

Journal of Industrial Engineering, 22, 93–101. 

Ünlüyurt, T., & Aydın, C. (2012). Improved rehandling strategies for the container retrieval process. Journal 

of Advanced Transportation, 46(4), 378-393. 

Wan, Y. W., Liu, J., & Tsai, P. C. (2009). The assignment of storage locations to containers for a container 

stack. Naval Research Logistics (NRL), 56(8), 699-713. 

Yang, M., Allen, T. T., Fry, M. J., & Kelton, W. D. (2013). The call for equity: simulation optimization 

models to minimize the range of waiting times. IIE Transactions, 45(7), 781-795. 

Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., & Voß, S. (2015). An improved mathematical 

formulation for the blocks relocation problem. European Journal of Operational Research, 245(2), 

415-422. 

Zehendner, E., & Feillet, D. (2014). A branch and price approach for the container relocation 

problem. International Journal of Production Research, 52(24), 7159-7176. 

Zehendner, E., Feillet, D., & Jaillet, P. (2017). An algorithm with performance guarantee for the online 

container relocation problem. European Journal of Operational Research, 259(1), 48-62. 

Zeng, Q., Feng, Y., & Yang, Z. (2019). Integrated optimization of pickup sequence and container rehandling 

based on partial truck arrival information. Computers & Industrial Engineering, 127, 366-382. 

Zhang, C., Chen, W., Shi, L., & Zheng, L. (2010). A note on deriving decision rules to locate export 

containers in container yards. European Journal of Operational Research, 205(2), 483-485. 

Zhao, W., & Goodchild, A. V. (2010). The impact of truck arrival information on container terminal 

rehandling. Transportation Research Part E: Logistics and Transportation Review, 46(3), 327-343. 

Zhen, L., Jiang, X., Lee, L. H., & Chew, E. P. (2013). A review on yard management in container terminals. 

Industrial Engineering and Management Systems, 12(4), 289-304. 

Zhu, W., Qin, H., Lim, A., & Zhang, H. (2012). Iterative deepening A* algorithms for the container 

relocation problem. IEEE Transactions on Automation Science and Engineering, 9(4), 710-722. 

Zweers, B. G., Bhulai, S., & van der Mei, R. D. (2020). Optimizing pre-processing and relocation moves in 

the stochastic container relocation problem. European Journal of Operational Research, 283(3), 954-971. 

 

  



119 

 

Chapter 3 

Service fairness and value of customer information for the 

stochastic container relocation problem under flexible 

service policy 

 

 

 

 

 

 

 

 

Abstract: The Stochastic Container Relocation Problem (SCRP) is to find a sequence of moves to retrieve 

all containers from a bay by minimising the expected number of relocations, where each container has been 

booked to a time window in which a truck will arrive randomly to retrieve the container. Applying a 

flexible service policy, under which the trucks arriving within the same time window are allowed to be 

served out-of-order, the expected number of relocations can be significantly reduced compared with the 

first-come-first-serve service policy. However, the flexible policy may cause some earlier arriving trucks to 

be served later than some later arriving trucks, which raises the concern of service fairness. In addition, a 

question arises as to whether the information of trucks’ arrival probability over the time window (which 

represents the customer preference information) would add value to the terminal operators. In this paper, 

we incorporate the concept of service fairness into the SCRP in two phases. In phase 1, we propose a 

multiple sub-windows-based flexible service policy (SCRP-MFS), under which the time window is divided 

into multiple sub-windows and the flexible service policy is only applied to each individual sub-window. In 

phase 2, the SCRP-MFS is formulated into a stochastic dynamic programming model with two 

lexicographically ordered objectives representing both relocation efficiency and service fairness, which is 

solved via a hierarchical iterative approach. Extensive computational experiments are conducted to evaluate 

the impacts of the number of sub-time windows and to examine the impacts and value of customer 

preference information in various scenarios. The results show interesting trade-offs between efficiency and 

fairness. As the number of sub-time windows increases, the service fairness is generally improving (but not 

guaranteed) while the expected number of relocations is increasing. Hence, the model is useful to balance 

the performance measures from both the terminal operators’ side and the trucks’ side by finding an 

appropriate number of sub-windows. It is also found that the customer preference information can be 

valuable in some circumstances, especially when each truck indicates a certain arrival sub-time window. 

This indicates that the model can provide terminal operators with insights into whether it is worth 

committing effort to capture such information.
 1

   

                                                        
1 Feng, Y., Song, D.P., Li, D., & Xie, Y. (2021). Service fairness and value of customer information for the stochastic 

container relocation problem under flexible service policy, Transportation Research Part E: Logistics and Transportation 

Review, under the second-round review. 
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3.1 Introduction 

Maritime container ports/terminals, where containers are transferred between different transport modes, 

are an indispensable part of the global container shipping network, and their handling productivities and 

efficiencies are essential to ensure efficient container transport logistics. There have been many studies on 

improving the productivity and operational efficiencies of container terminals, as reported in the survey 

paper by Stahlbock and Voß (2008) and Carlo et al. (2014). The disruptions caused by the COVID-19 

pandemic and the Suez Canal blockage have exacerbated port congestion and global supply chain delays. 

This has led to further overloading of already insufficient yard and gate handling capacity, with further 

inefficiencies in releasing cargos for hinterland transportation (Notteboom et al., 2021) and a bigger 

variation of truck turnaround times. To help to address these issues, this research focuses on improving the 

performance of the import container retrieval operations at container terminals.  

Container relocation (also known as reshuffling or rehandling) is a major source of inefficiency in the 

import container retrieval operations in most container terminals (Ku and Arthanari, 2016a). It is a common 

practice that import containers are stored in the storage yard after being discharged from ships, waiting to 

be picked up by external trucks or loaded onto trains for inland transport. Due to limited space in the 

storage yard, containers are piled up vertically in a set of stacks, which can be up to six tiers high (Caserta 

et al., 2012). Container relocation occurs when the target container is buried underneath other containers 

and these blocking containers have to be relocated to other stacks in order to retrieve the target container. 

The container relocation operations are costly to terminal operators and cause delays to external trucks 

when retrieving containers.  

The Container Relocation Problem (CRP) has been extensively studied, which focuses on finding a 

sequence of moves to retrieve all containers from a yard bay with a minimum number of relocations, in 

response to certain container departure priorities. In reality, the departure priorities of import containers are 

subject to high uncertainties due to the unpredictable arrival times of the external trucks. Ports would know 

the arrival precedence of trucks if the trucks book specific time windows in the truck appointment system 

or the vehicle booking system, but the specific arrival order of the trucks booked in the same time window 

is still uncertain. The CRP that considers the randomness of truck arrivals in the same time window is 

termed as the Stochastic Container Relocation Problem (SCRP) (Galle et al., 2018) or the CRP with Time 

Windows (CRPTW) (Ku and Arthanari, 2016a) in the literature. In the majority of the existing studies on 

the CRP or SCRP, import containers are retrieved on the first come first served (FCFS) basis, that is, 

containers are retrieved in the arriving order of their designated trucks. A few studies (e.g., Borjian et al., 

2015; Zeng et al. 2019; Feng et al., 2020) introduce the flexible service policies, under which the arriving 

external trucks are allowed to be served out-of-order. The flexible service policies provide the terminal 

operators new opportunities to determine the container retrieval sequence so that the number of relocations 

can be further reduced compared to the FCFS policy. 

However, the flexible policy might be perceived as unfair to some of the trucks involved, because the 

out-of-order service may cause some early arriving trucks to be served later than some later arriving trucks. 

In addition, it may also lead to a larger variation of the truck turnaround times, which further differentiates 

the customers’ experience at container terminals. As a result, the issue of service fairness to customers (i.e., 

trucks) may become a barrier to the implementation of the flexible service policy. The fairness concerns in 
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a general sense have been emphasized in the operations research and management science literature and 

across multiple industrial applications, e.g. urban transportation systems (Li et al., 2019; Wu et al., 2021), 

vehicle routing problems (Matl et al., 2018), healthcare appointment systems (Qi, 2017), resource 

allocation problems (Bertsimas et al. 2011, 2013), and vessel scheduling at ports (Zhang et al., 2017; Wang 

et al., 2017; Jia and Meng, 2021). However, no studies have explicitly treated service fairness as part of 

objective functions to be optimised in the CRP and SCRP contexts. To the best of our knowledge, only two 

papers (Borjian et al., 2015; Feng et al., 2020) have mentioned service equity (fairness) and evaluated the 

impact of the relocation-minimisation-oriented solutions on the service equity in the CRP and SCRP. The 

consideration of fairness issues in the container retrieval service can bring tangible benefits to port 

operators. Consistently meeting truck turnaround time would enhance the credibility of the appointment 

system, as well as improving service reliability and customer satisfaction. The National Retail Federation 

made a recommendation to the U.S. Secretary of Transportation that the range for truck turnaround time 

should be listed as one of the port performance metrics (Knatz, 2017). The reduction on the maximum truck 

turnaround time could enhance a port’s performance. In this paper, the service fairness refers to avoiding 

excessively long turnaround time for any truck, in other words, keeping the expected maximum truck 

turnaround time as small as possible. In the SCRP context, one measure to mitigate the service unfairness 

among trucks is to divide the appointment window into smaller sub-time windows and only apply the 

flexible service policy for the trucks arriving within individual sub-time windows. This would narrow the 

scope of out-of-order services and achieve the trade-off between the relocation efficiency and the service 

fairness. Another measure is to embed the service fairness objective into the relocation minimisation 

procedure so that not only the number of relocations will be minimised but also the service fairness could 

be improved. This paper extends the model of the SCRP with the Flexible Service policies (SCRP-FS) in 

Feng et al. (2020) to the case with multiple sub-time windows, and it focuses on the balance between 

reducing the expected number of relocations and the concern of service fairness. This problem is termed as 

the SCRP with Multiple sub-time windows-based Flexible Service policy or SCRP-MFS.  

Another feature of the SCRP-FS model is that it takes the customers’ preference on different sub-time 

windows into consideration to characterise the randomness of truck arrivals. However, the influences of the 

customer preference information on the results of the SCRP-FS have not been sufficiently examined. More 

importantly, in reality, the information about customer preference can be uncertain or may not be available 

to terminal operators. Therefore, the question remains as to whether it is worthwhile to commit efforts to 

gather and utilise the customer preference information. In this paper, we will consider various scenarios and 

evaluate the impacts and values of the customer preference information on the number of relocations.  

In summary, this paper aims to achieve the following objectives: (i) to generalize the SCRP-FS into the 

case with multiple sub-time windows and incorporate the measure for service fairness (i.e., the maximum 

turnaround time among trucks); (ii) to analyse the impacts of the number of sub-time windows on the 

system overall efficiency (represented by the total number of relocations and the average truck turnaround 

time) and the quality of service to individual trucks (represented by the maximum value and the coefficient 

of variation of truck turnaround times); (iii) to investigate how customer preference on different sub-time 

windows impacts the number of relocations (iv) and to evaluate the value of customer preference 

information in reducing the number of relocations in the SCRP-MFS.  

This research sheds new light on some important issues in the SCRP that applies flexible service policies 

by: (i) demonstrating how the overall efficiency of container retrieval and the quality of service to 

individual trucks are traded off under different levels of service flexibilities, which can help the terminal 

operators to determine the appropriate number of sub-time windows to implement flexible service policy; 
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(ii) having a more comprehensive understanding of whether the problem is sensitive to customer 

preference, to ensure the robustness of implementing flexible service policy; (iii) and gaining an insight 

into the value of customer preference information, which could inform decision making on whether to 

commit resources to gather such information in order to improve the container retrieval performance. 

The remainder of the paper is organized as follows. Section 3.2 reviews the relevant literature regarding 

the (S)CRP and discusses the service fairness and value of information. Section 3.3 formulates the 

SCRP-MFS by stochastic dynamic programming. A heuristic algorithm is presented in Section 3.4 to solve 

the problem. The results of computational experiments are provided in Section 3.5. In Section 3.6, we 

summarize the findings, provide managerial insights and envisage future research directions. 

3.2 Literature review 

We organize the literature into three parts. Section 3.2.1 reviews the studies on Container Relocation 

Problem (CRP) and stochastic CRP. Section 3.2.2 focuses on the service policies and service fairness 

associated with CRP and SCRP. Section 3.2.3 discusses the value of information to container handling 

operations in the yard. 

3.2.1 Container relocation problems 

The CRP may be formally defined as follows: given a set of containers stored in a yard bay and the 

retrieval priorities among the containers, the objective is to empty the bay with the minimum number of 

relocations (Ku and Arthanari, 2016b). The goal of the CRP is usually to determine the stacking positions 

for the relocated containers. In the standard CRP, the problem setting is static and restricted in the sense 

that it assumes that i) no containers are added to the storage stacks during the container retrieval process 

and ii) a container is relocatable only when it blocks a target container. The static and restricted CRP has 

been the focus of attention of many researchers. In this paper, we also confine the problem under 

consideration to this version. With the relaxations of each of the above assumptions, there are two variants 

of the CRP, i.e., the dynamic CRP and the unrestricted CRP. The interested readers are referred to the works 

by Wan et al. (2009) and Hakan Akyüz and Lee (2014) for the dynamic CRP and the works by Jin et al. 

(2015) and Tanaka and Mizuno (2018) for the unrestricted CRP to get in-depth knowledge.  

More complicated variants of the CRP come in the form of different settings of the container retrieval 

priorities. Regarding the retrieval priority, two types of assumptions have been traditionally made (Jang et 

al., 2013): 1) unique or group retrieval priorities; and 2) deterministic or uncertain retrieval priorities. Table 

3. 1 classifies the literature on the CRP that is most relevant to this paper by these two types of 

assumptions. 

Under the first type of assumptions, it is often assumed that each container has a unique retrieval priority 

and is regarded as a single group by itself. Otherwise, it may be assumed that grouped containers have the 

same priorities. In the latter case, the retrieval sequence for the containers with the same retrieval priority is 

to be determined. Practical examples and academic research of the latter case are as follows. For export 

containers, their loading precedence is specified by the precedence relationship among clusters of empty 

slots in a vessel. A cluster of slots is characterised by the attributes of containers, for example, container 

weight class, destination port and type. When a container with specified attributes is requested for loading 

into a slot, any container with the same set of attributes can be loaded into that slot (Kang et al., 2006). In 

the work of Kim and Hong (2006), the retrieval precedence among groups of containers is given, and the 

authors solve the CRP to minimise the total number of relocations by optimising both the retrieval sequence 
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and the relocation positions. As another example, for import containers, when multiple containers are 

destined for the same consignee or are to be transported by the trucks from the same shipping company, 

their pickup sequence is not important and thus can be in any order (Jang et al., 2013). de Melo da Silva et 

al. (2018) propose the Block Retrieval Problem (BRP) and the Bi-objective Block Retrieval Problem 

(2BRTP), assuming that the containers in the same group are to be retrieved by the same customer. The 

BRP aims to minimise the number of relocations for the initial target group by optimising the retrieval 

sequence and the relocation positions. The 2BRTP includes a secondary objective to minimise the expected 

number of relocations for the next group.     

The second type of assumptions regards whether the retrieval priorities of different groups of containers 

are deterministic or uncertain. In reality, the retrieval order of import containers usually depends on the 

truck arrival order, hence, it is subject to high uncertainties due to the unpredictability of truck arrival. 

While most of the studies on the CRP assume containers are sequenced with a certain prescribed order, 

several researchers have addressed the problem considering uncertain retrieval priorities. The uncertain 

CRPs can be further categorised into two sub-categories (Feng et al., 2020): the online setting and the 

probabilistic setting. In the online setting, the container retrieval sequence is revealed over time, and the 

knowledge of future retrievals is limited to a look-ahead horizon. The goal is to design efficient online 

heuristics to determine the relocation positions for the blocking containers using information updated 

real-time (e.g., Zehendner et al., 2017; Zhao and Goodchild, 2010). In the probabilistic setting, the 

containers’ retrieval priorities are modelled by a probability distribution and the research aim is to minimise 

the expectation of associated performance measures, such as the expected total number of relocations (Tong 

et al., 2015; Ku and Arthanari, 2016a; Galle et al., 2018; Feng et al., 2020) and the weighted sum of the 

expected number of relocations and total retrieval delays (Borjian et al., 2013). For a more detailed review 

of the uncertain CRPs, we refer the readers to Feng et al. (2020). Here, we would like to note that the 

uncertain CRP in which groups of containers are ordered by the appointed time windows and the trucks 

arrive at the appointed time windows randomly is referred to as the Stochastic Container Relocation 

Problem (SCRP) in the literature (Galle et al., 2018; Feng et al., 2020). The problem considered in this 

paper belongs to the SCRP. 

Methodologically, the CRPs have been usually modelled using (mixed) integer programming models 

(e.g., Wan et al., 2009; Petering and Hussein, 2013; Tang et al., 2015; Zehendner et al., 2015) or (stochastic) 

dynamic programming models (e.g., Kim and Hong, 2006; Ku and Arthanari, 2016a; Galle et al., 2018; 

Feng et al., 2020). For exact solution algorithms, search-based algorithms are mainly used to seek optimal 

solutions: (iterative deepening) A* algorithms (Zhu et al., 2012; Quispe et al., 2018), branch and bound 

(Kim and Hong, 2006; Expósito-Izquierdo et al., 2015; Tanaka and Takii, 2015), branch and price 

(Zehendner and Feillet, 2014), and branch and cut (Bacci et al., 2020). As the CRP has proven to be 

NP-hard (Caserta et al., 2012), only small-scale instances are able to be solved exactly within reasonable 

times. As a result, researchers often turn to heuristic approaches to overcome the computational 

complexities, such as index-based heuristics (Caserta et al., 2012; Hakan Akyüz and Lee, 2014), beam 

search (Bacci et al., 2019; Ting and Wu, 2017), metaheuristics (Maglić et al., 2020), and other greedy 

heuristics (Jovanovic and Voß, 2014; Jin et al., 2015) (c.f. Caserta et al. (2020) and the references therein). 

Recently, a new trend of the solution approach has been developed by using machine learning techniques 

(Zhang et al., 2020) and reinforcement learning (Jiang et al., 2021). 

Finally, it is worth mentioning that there are several related problem types regarding container relocation, 

such as storage space allocation that deals with the initial storage of containers into the yard (e.g., Zhou et 

al., 2020) and container marshalling operation that re-arranges the container stacking positions before 
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containers leave the yard (e.g., Parreño-Torres et al., 2020). In addition, in seaport rail terminals, prestaging 

operation is performed to pre-move the containers from the storage yard to local storage areas near the train 

before the train arrival in order to meet the departure deadline of trains (Xie and Song, 2018). 

3.2.2 Service policies and service fairness 

A service policy for CRP is to determine how the arriving trucks are served at the container yard. The 

service policy plays an important role in improving the efficiency of the import container retrieval process. 

The most commonly used service policy is the first-come-first-serve (FCFS) rule for trucks arriving at the 

yard. However, the FCFS policy does not lead to the most efficient container retrievals. A few studies have 

proposed flexible service policies or out-of-order retrievals to CRP, which has been proved to be more 

effective than FCFS policy. When a group of containers have the same retrieval priority, i.e. they are 

exchangeable in terms of retrieval sequence during the retrieval process (Kim and Hong 2006; de Melo da 

Silva et al. 2018), the out-of-order service policy is implicitly accepted by customers, and no concern of 

service fairness is raised. On the other hand, when containers are not exchangeable, a flexible service 

policy can cause extra waiting times for some customers and may raise the issue of service unfairness. The 

service unfairness herein refers to the difference in the waiting times among trucks or customers when 

out-of-order service is implemented. For example, under the truck appointment system, a truck books a 

time window and the containers to be retrieved, therefore, each container is bound with a specific truck. 

Namely, even though multiple containers are booked in the same time window, these containers are not 

exchangeable as they are requested by different trucks. In this case, retrieving the containers in an order 

different from the truck arrival order will influence the waiting time of individual customers (i.e., trucks). It 

may be perceived to be unfair if a truck experiences out-of-order retrievals and gets served later than 

expected. The problem under consideration in this paper falls into this category. Studies in this regard try to 

maintain fairness among trucks by controlling the retrieval flexibilities within a certain range. A couple of 

papers (e.g., Zhao and Goodchild, 2010; Zeng et al., 2019) restrict out-of-order retrievals within a group of 

containers that are booked in the same time window, but they focus only on minimising the number of 

relocations. In the study of Zhao and Goodchild (2010), the impact of dictating the pickup sequence on the 

waiting times of external trucks is not analysed. In contrast, although Zeng et al. (2019) also focus on 

minimising the number of relocations, they evaluate the average truck waiting times by simulation and 

conclude that when the number of containers booked in each time window exceeds a certain value, 

adjusting the pickup sequence will cause excessive delay for external trucks. This result may be caused by 

the assumption that the trucks receive the retrieval service immediately after they arrive at the terminal by 

ignoring the phenomenon of queuing. In busy terminals, the queue of the trucks may create a beneficial 

context in which serving a later arrival truck before an earlier arrival truck may not add a lot of additional 

waiting times for the earlier truck since all trucks have been ready in the queue before the retrieval service 

starts. Recently, Azab and Morita (2021) introduce a new problem — the Block Relocation Problem with 

Appointment Scheduling (BRPAS) — aiming at improving import container relocation operations by 

coordinating with appointment scheduling. It assumes that the terminal operator can reschedule the 

container pickup times requested in the appointment system and determine the final appointments and the 

pickup order for each container. An appointment shift allowance is introduced to control the gap between 

the requested pickup times and the allocated appointment times. The FCFS policy is applied to the 

containers in the same subgroup to reduce truck waiting times.   

When dealing with the CRP that applies flexible service policies, very few studies have incorporated 

customer-centric performance metrics into the objective functions. Borjian et al. (2013) set a maximum 
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service delay for each container and construct the objective function to minimise the weighted sum of the 

expected number of relocations and total retrieval delays. In their study, the uncertain information about the 

arrival times of all trucks is revealed at once, which does not represent the dynamism of uncertainties in 

real terminal operations. Borjian et al. (2015) control the level of flexibility by setting a maximum number 

of out-of-order retrievals before each truck. They conclude that the flexible retrieval planning can decrease 

the total number of relocations and average waiting time of external trucks while maintaining service equity 

for each truck in the long term. However, they study the CRP in a determinism setting and assume that the 

exact arrival time of the external trucks is known, which is unrealistic. Feng et al. (2020) investigate the 

SCRP that applies the flexible service policy (termed as the SCRP-FS), where the primary objective is to 

minimise the expected total number of relocations and the secondary objective is to minimise the total 

truck waiting times of each batch sequentially. A batch refers to the trucks that have booked in the same 

time window. A batch of trucks arrive at its booked time window randomly and their exact arrival order is 

revealed batch by batch. The flexible service policy allows the trucks that arrive at the same sub-time 

window to be served out-of-order. However, the service fairness is neither optimised nor balanced against 

the number of relocations in Feng et al. (2020). 

3.2.3 Value of information 

Relevant information could reduce the degree of uncertainty and improve yard operation performance 

(Zuidwijk and Veenstra, 2015). Utilising information on truck arrival times collected from the truck 

appointment system, a few studies examine ways of reducing the number of relocations during the 

container retrieval process. Zhao and Goodchild (2010) develop two heuristics to address the CRP with 

time windows where containers are grouped and ordered by the trucks’ arrival time windows and new 

information on the exact truck arrival order is updated one truck at a time; this model is referred to as the 

online model by Galle et al. (2018). Their findings show that significant reductions in relocations can be 

achieved from just knowing in which groups a truck will arrive. Ku and Arthanari (2016a) also address the 

CRP in the context of the online model, but they formulate the problem as a stochastic dynamic 

programming model and solve it optimally by a decision tree scheme. Different from using the online 

model, Galle et al. (2018) consider the batch model in which the exact truck arrival order is updated a batch 

(group) at a time and formulate it as a multi-stage optimisation problem. They prove the value of taking 

into account the within batch information in reducing the expected number of relocations both theoretically 

and numerically. 

Some studies utilise the arrival information of trucks or vessels to improve container stacking efficiency 

and reduce the number of relocations. van Asperen et al. (2013) evaluate how information of truck 

announcement time impacts the performance of online container stacking operations; their findings show 

that an average announcement time of 0.5-24 hours can significantly improve the stacking efficiency. 

Gharehgozli and Zaerpour (2018) propose a shared stacking policy that utilises the information on the 

arrival time windows of barges to determine the storage locations of outbound barge containers; compared 

to the practical staking policy, this policy proves to reduce up to 30% of the total retrieval time. In addition, 

the information related to truck arrivals has also been utilised in container (p)re-marshalling operations to 

rearrange the container stacking positions in order to improve future container retrieval efficiency. Covic 

(2017) introduce an online rule-based solution method for container re-marshalling by taking the truck 

arrival information into consideration. The results show that imprecise arrival information of trucks, not 

deviating above a certain threshold, can significantly reduce truck waiting time. Kim and Yi (2021) develop 

heuristic algorithms to locate and pre-marshal import containers using various information sources related 
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to truck arrivals (dwell time distribution of containers, truck dispatching notice, truck appointment, and 

real-time position of trucks). The results show that when all these sources of information are utilised, the 

truck system time and the number of relocations during a container retrieval can be reduced by 47% and 

98%, respectively.   

Different from the aforementioned studies that mainly use information about truck arrivals, this paper is 

to assess the value of customer preference information in reducing the number of relocations in the SCRP 

that applies flexible service policies. The customer preference information is measured as the probabilities 

of a truck arriving in each sub-time window within its booked time window. The motivation is based on the 

fact that the specific probability distribution of the arrival order of trucks in an appointment time window is 

hard to predict. The existing studies on the SCRP (Ku and Arthanari, 2016a; Galle et al., 2018) make a 

simplified assumption that any possible arrival order of the trucks booked in an appointment time window 

has the same probability. Such an assumption may not capture the customer (i.e., truck) behaviours 

adequately as the customers may have their preferred arrival segments within the booked time window. 

There have been studies about shifting trucks’ arrival times from their preferred arrival times to reduce 

truck congestion in port areas (e.g., Chen et al., 2013a, b; Phan and Kim, 2015) and to reduce relocations 

(Azab and Morita, 2021). In a recent study on the SCRP-FS, Feng et al. (2020) consider unequal 

probabilities of the truck arrival order that vary with the customer’s preference for each sub-time window 

of the booked time window. Such customer preference information can be utilised to reduce the number of 

relocations but the extent of the improvement has not been quantified.  

3.2.4 Research gap 

Table 3. 1 summarizes the comparisons of this paper with the most closely related literature from four 

key aspects. Only two papers discuss the issue of service fairness (equity) among trucks in the CRP. Borjian 

et al. (2015) consider the service fairness in a deterministic context and evaluate it by the number of 

out-of-order retrievals performed before a particular truck is served. Feng et al. (2020) studies the CRP in a 

probabilistic setting and evaluate the impacts of out-of-order retrievals on individual trucks in the SCRP-FS 

by the maximum truck turnaround time, but their model is limited to a special case in which each 

appointment time window is divided into two sub-time windows. More importantly, neither of the studies 

optimise the service fairness, nor has it explicitly addressed the trade-off decision between the expected 

number of relocations and the service fairness. This paper attempts to fill these gaps. In this paper, we 

generalize the SCRP-FS to the case with multiple sub-time windows, termed as SCRP-MFS, and 

incorporate the service fairness into objective functions. Through such generalization, we can control the 

level of service flexibility more accurately, making the mathematical model more relevant to reality. 

Applying multiple sub-time windows is beneficial to reduce the maximum truck turnaround time and the 

coefficient of variation of the turnaround times among different trucks (see our experiments’ result in 

Section 3.5.1), which can both reflect the service fairness.  

In addition, the smaller sub-time window can capture the customer preference information more 

accurately. Feng et al. (2020) consider the situation of having two sub-time windows under which the 

probability of a truck arriving at a sub-time window is characterised by customer preference. But trucks 

arriving at multiple sub-time windows remains an unresearched question in the CRP discipline. Besides, the 

value added by the customer information in reducing the number of relocations has not been assessed, and 

it remains unclear as to whether it is worthwhile to commit resources to gather and utilise such information. 

This research also aims to fill these two gaps, by proposing a general probabilistic model of truck arrivals at 

multiple sub-time windows, and evaluating the impacts and the value of customer preference information 
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on the number of relocations.  

Table 3. 1 Classification of the most relevant literature on the CRP.  

Literature 
Unique or group 

priority  
Certainty of priorities Service policy Performance metrics 

Borjian et al. (2013) Group Deterministic; Uncertain Flexible WS of ENR and RD 

Borjian et al. (2015) Unique Deterministic Flexible WS of NR and RD; ORT* 

de Melo da Silva et al. (2018) Group Uncertain Flexible NR; ENR 

Galle et al. (2018) Unique Uncertain FCFS ENR 

Kim and Hong (2006) Unique; Group Deterministic FCFS; Flexible NR 

Ku and Arthanari (2016a) Unique Uncertain FCFS ENR 

Zeng et al. (2019) Unique Deterministic Flexible NR 

Zhao and Goodchild (2010) Unique Deterministic; Uncertain FCFS; Flexible NR; CHTD* 

Feng et al. (2020) Unique Uncertain 
Flexible with 2- 

sub-windows 

ENR; total TWT; 

maximum TTT
* 

This paper Unique Uncertain 
Flexible with 

multi-sub-windows 

ENR; maximum TTT; 

average and CoV of 

TTT
* 

NR: number of relocations; ENR: expected number of relocations; TWT: truck waiting times; TTT: truck 

turnaround times: RD: retrieval delays; CHTD: crane horizontal travel distance; WS: weighted sum; CoV: 

coefficient of variation; ORT: out-of-order retrievals performed before a truck is served.  

Note: performance metrics without “*” represent optimised objectives, and those with “*” represent 

evaluated metrics.  

3.3 The SCRP-MFS 

In this section, we first describe the SCRP-MFS and then introduce the probabilistic model of truck 

arrivals. Next, we present the problem formulation. Last, we analyse the model and develop the handling 

approach.  

3.3.1 Problem description  

The definitions and notations used in the SCRP-MFS are given in Section 3.3.1.1, followed by the 

problem assumptions presented in Section 3.3.1.2. A list of the essential modelling notations is provided in 

Appendix A.1. 

3.3.1.1 Definitions and notations 

A bay consists of S stacks, T tiers, and C containers. In order to avoid infeasible relocations, the storage 

capacity of the bay is restricted to be ( 1) 1S T   containers. Each container is booked to a time window 

and the corresponding truck (i.e., one container corresponds to one truck) will arrive at the terminal within 

the appointed time window. Furthermore, containers and trucks are grouped into a set of batches and 

sub-batches: 

(1) A batch of containers/trucks is defined as a set of containers/trucks booked to the same time window. 

Let kB  denote the set of containers in batch k and kC  denote the number of containers in batch k, 

{1,..., }k K . By definition 
1

K

k

k

C C


 .  

(2) The arrival precedence relationship among batches of trucks is known, but the exact arrival order of 

trucks within each batch is uncertain, and it is revealed as the retrieval proceeds.  

(3) Each appointment time window is divided into W (W  ) sub-time windows with identical time 
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lengths. A sub-batch of trucks is a set of trucks that have arrived in the same sub-time window

{1,..., }w W . Accordingly, a sub-batch of containers is a set of containers whose trucks have arrived 

in the same sub-time window {1,..., }w W . 

(4) Flexible service policy is applied to the containers/trucks in the same sub-batch, that is, the 

containers/trucks in the same sub-batch can be retrieved/served out-of-order.  

Each container has three attributes: priority label, unique ID, and customer preference:  

(1) The priority label, denoted by il , {1,..., }i C , is used to trace the retrieval priorities among 

containers. The priority label is updated during the container retrieval process. Initially, containers in 

each batch k are labelled by a batch priority, denoted by kL , which represents the arrival 

precedence among batches of trucks (see Fig. 3. 1(a)). We let 
1

1

1
k

k j

j

L C




  , and thus given kL , 

there is a unique {1,..., }k K . Then, once the arrival order of trucks in batch k is revealed, the 

priority labels of the containers in this batch are updated to the sub-batch priority that represents the 

arrival precedence among sub-batches of trucks (see Fig. 3. 1(c)). If the truck for a container in batch 

k is revealed to arrive in sub-time window w, its label changes to 
1

1

w

k kw

w

L n






 , where kwn   denote the 

number of trucks that have arrived in sub-time window w . Finally, once the retrieval sequence of a 

container in batch k is determined, its label is updated to the determined retrieval sequence that is 

within [ , 1k k kL L C  ]. 

(2) The unique ID, denoted by iu , {1,..., }i C , is used to differentiate individual containers/trucks (see 

Fig. 3. 1(b)).  

(3) The customer preference, denoted by ,

W

i wp , {1,..., }i C , {1,..., }w W , represents the probability of 

truck iu  arriving at sub-time window w of its appointed time window (see Fig. 3. 1(d)). Each 

appointment time window is divided into W sub-time windows. The values of ,

W

i wp  can be derived 

from the truck appointment system that requires trucks to provide their preferences when booking a 

window; alternatively, the values of ,

W

i wp   can be estimated from historical data as the proportion 

of truck iu  arriving at sub-time window w.  

3.3.1.2 Assumptions 

The following assumptions are made in the SCRP-MFS.  

A1: Relocations are performed only within a single bay.  

A2: A container is relocatable only when it is blocking the target container.  

A3: No new containers arrive at the bay during the container retrieval process.  

A4: (information revealing time) For each batch, the full arrival order of the trucks in this batch is 

revealed at once after all containers in its prior batch have been retrieved. 

A5: (service beginning time) The retrieval service of a batch begins at the end of the appointed time 

window associated with the batch. 

A6: (probabilities of truck arrivals) (1) Within each batch, the probability of a truck arriving at a 

sub-time window depends on customer preference, and (2) within each sub-batch, the arrival order of the 

trucks follows an uniform distribution. 

A1 to A3 are generic to the standard CRP. A4 and A5 ensure that when the retrieval service of a batch 

begins, the arrival order of the trucks in this batch has been revealed. A6 is about the probabilistic model of 

truck arrivals, which will be introduced in detail in section 3.3.2.  
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3.3.2 General probabilistic model of truck arrivals 

The arrival order of trucks in a batch is stochastic. We characterise the truck arrival order in the same 

way as Feng et al. (2020), who model it by customer preference. The customer preference refers to a truck’s 

arrival probabilities for each sub-time window of the booked time window. In this paper, we propose a 

general probabilistic model of truck arrivals, which extends the two sub-time windows model in Feng et al. 

(2020) to the case of multiple sub-time windows.  

Each appointment time window is divided into W sub-time windows with identical time lengths. Let 
W

kζ , {1,..., }k K , refer to a random scenario of which trucks in batch k arrive at each of the W sub-time 

windows of the appointed time window, and let ( )W

kp ζ  refer to its probability.  , | {1,..., }W W

k k wζ ξ w W  , 

where ,

W

k wξ  is a random set of the trucks in batch k that arrive in sub-time window w. ,

W

k wξ , {1,..., }w W , 

are mutually exclusive and collectively exhaustive, that is, ,
{1,..., }

W

k w k
w W

ξ B


  and ,
{1,..., }

W

k w
w W

ξ


  . The 

random variables in ,

W

k wξ  take values in kB , and  ,

W

i k wu ξ  represents the event that truck iu  arrives in 

the sub-time window w. By definition, 
, ,( )W W

i w i k wp P u ξ  , where i ku B  and {1,..., }w W . Let 

{1,..., }

W W

k
k K

ζ ζ


  denote the truck arrival scenario for all the batches. There are a total of kC
W  possible 

scenarios of 
W

kζ  for batch k and a total of 
1

kCK

k W  scenarios for 
Wζ .  

The probabilities of 
W

kζ  can be calculated by ,

W

i wp . An example is given in Fig. 3. 1 to illustrate the 

containers’ attributes and explain the probabilistic model. In this example, W = 3. Fig. 3. 1(a), (b) and (d) 

constitute the initial bay configuration. Fig. 3. 1(c) reveals the sub-batch priority of the first batch (in bold). 

Fig. 3. 1(d) presents the customer preference of each container/truck for each sub-time window, i.e., ,

W

i wp . 

Now we explain the general probabilistic model of truck arrivals by taking the example of 3

1ζ . There are 

totally nine scenarios of 3

1ζ , which are respectively   3 3 3

1,1 4 7 1,2 1,3, , ,ξ u u ξ ξ   , 

  3 3 3

1,1 1,2 4 7 1,3, , ,ξ ξ u u ξ     ,   3 3 3

1,1 1,2 1,3 4 7, , ,ξ ξ ξ u u    ,     3 3 3

1,1 4 1,2 7 1,3, ,ξ u ξ u ξ    , 

    3 3 3

1,1 4 1,2 1,3 7, ,ξ u ξ ξ u    ,     3 3 3

1,1 1,2 4 1,3 7, ,ξ ξ u ξ u    ,     3 3 3

1,1 7 1,2 4 1,3, ,ξ u ξ u ξ    , 

    3 3 3

1,1 7 1,2 1,3 4, ,ξ u ξ ξ u    ,     3 3 3

1,1 1,2 7 1,3 4, ,ξ ξ u ξ u    . The probabilities of these scenarios are computed 

as:    3 3 3

1,1 4 7 1,2 1,3, , , 0.8 0.4 0.32p ξ u u ξ ξ      ; 

   3 3 3

1,1 1,2 4 7 1,3, , , 0.2 0.3 0.06p ξ ξ u u ξ      ;    3 3 3

1,1 1,2 1,3 4 7, , , 0 0.3 0p ξ ξ ξ u u      ; 

     3 3 3

1,1 4 1,2 7 1,3, , 0.8 0.3 0.24p ξ u ξ u ξ      ;      3 3 3

1,1 4 1,2 1,3 7, , 0.8 0.3 0.24p ξ u ξ ξ u      ; 



130 

 

     3 3 3

1,1 1,2 4 1,3 7, , 0.2 0.3 0.06p ξ ξ u ξ u      ;      3 3 3

1,1 7 1,2 4 1,3, , 0.4 0.2 0.08p ξ u ξ u ξ      ; 

     3 3 3

1,1 7 1,2 1,3 4, , 0.4 0 0p ξ u ξ ξ u      ;      3 3 3

1,1 1,2 7 1,3 4, , 0.3 0 0p ξ ξ u ξ u      . According 

to the real truck arrival order, 3

1ζ  will be revealed to be one of these nine scenarios. For example, if 3

1ζ  

is revealed to be     3 3 3

1,1 4 1,2 7 1,3, ,ξ u ξ u ξ    ,     3 3 3

1,1 4 1,2 1,3 7, ,ξ u ξ ξ u    , or     3 3 3

1,1 1,2 4 1,3 7, ,ξ ξ u ξ u    , 

the sub-batch priority for the first batch will be updated to be that shown in Fig. 3. 1(c), which indicates 

that truck u4 and u7 arrive in different sub-time windows and u4 arrives before u7.  

 

Fig. 3. 1 An illustration of containers’ attributes 

3.3.3 Problem formulation 

The SCRP-MFS proposed in this research is a multi-stage sequential decision-making problem with 

dynamic information revealing. The truck arrival information is revealed batch by batch (i.e., stage). At 

each stage, decisions are made based on the revealed information. Mathematically, it can be formulated as a 

stochastic dynamic programming model (SDP) similar to the Sooo model in Feng et al. (2020). However, 

the two models differ in several ways. While both models consider the randomness of truck arrivals within 

an appointed time window, SCRP-MFS models the arrival in multiple sub-time windows rather than in two 

sub-time windows as considered in the Sooo model. Correspondingly, the decision variable in SCRP-MFS 

is the retrieval sequence for the containers in multiple sub-batches, as opposed to the retrieval sequence in 

two sub-batches in the Sooo model. Last, the objective functions are different. This study introduces a 

secondary objective function measuring service fairness, which has been rarely considered in the CRP 

literature. In the following, we first introduce the objective functions of the SCRP-MFS. Then, we present 

the formulation regarding each objective. 

3.3.3.1 Objective functions 

The main subjects involved in the SCRP-MFS are terminal operators and trucks. We formulate the 

SCRP-MFS as a multi-objective optimisation problem aiming to improve the relocation efficiency from the 

terminal operators’ perspective and meanwhile to mitigate the unfairness among trucks from the 

perspective of the worst-off trucks. We adopt two lexicographically ordered objectives. The primary 

objective is to minimise the expected total number of relocations, which reflects the relocation efficiency. 

 Tier 
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1 3 5 1 
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The secondary objective is to minimise the maximum truck turnaround time, which reflects service fairness 

and is called min-max fairness in this paper. The min-max index is a well-studied objective function used to 

measure fairness in transportation systems (e.g., Li et al., 2019; Wu et al., 2021), the healthcare industry 

(e.g., Qi 2017) and other domains of the operational research (see the references in Yang et al., 2013). It has 

also been used in berth allocation problems in container terminals to minimise the maximum lateness of 

any vessel where each vessel has a due departure time (Teye and Bell, 2016). The adoption of 

lexicographically ordered objectives indicates that we still take the relocation efficiency as our principal 

aim and the fairness concern is considered under the promise that the number of relocations is minimised. 

This is because that the number of relocations has a direct effect on the truck turnaround time. The 

minimisation of the number of relocations is beneficial for reducing the truck turnaround time, but multiple 

solutions with the same minimal number of relocations can lead to different maximum truck turnaround 

times. In the following, we introduce the formulations regarding the primary objective and the secondary 

objective respectively.  

3.3.3.2 Primary objective for relocation efficiency 

The stage, state, and action of the SDP model are defined as follows.  

Stage: the sequence number of the batch to be retrieved. A stage refers to a batch. The example in Fig. 3. 

1 is regarded as the first stage since the first batch of containers is to be retrieved.  

State: the state of each stage is the state of the bay that consists of the stacking positions of the remaining 

containers and their attributes. The input state of the kth stage is the state of the bay after the (k-1)th batch 

has been retrieved and before W

kζ  is revealed. For example, Fig. 3. 1(a), (b) and (d) constitute the input 

state of the first stage.  

Action: a feasible action is defined as a sequence of moves to retrieve a batch of containers, which 

consists of two types of actions: (i) the retrieval/service sequences of the containers/trucks in each 

sub-batch, called sequencing, and (ii) the stacking positions of the relocated containers, called relocating.  

The notations in the SDP model are defined as follows. These notations are also included in Appendix 

A.1. 

W: the number of sub-time windows in an appointment time window (a decision variable). 

K: the total number of batches in the initial bay, which also represents the total number of stages. 

k: the stage number, {1,..., }k K , and stage k refers to the kth batch to be retrieved. 

W

kζ : the scenario of the sub-batches of stage k, {1,..., }k K  (a random variable). 

kS : the input state of stage k, {1,..., }k K .  

( )W

kp ζ : The probability of 
W

kζ , which is calculated by the general probabilistic model of truck arrivals 

introduced in section 3.3.2.  

( , )W

k k kS ζa : The actions (a decision variable) taken for retrieving the kth batches of containers given 

kS  and 
W

kζ . ( , ) { ( , ), ( , )}W S W R W

k k k k k k k k kS ζ S ζ S ζa a a , wherein ( , )S W

k k kS ζa  represents the retrieval 

sequence for the containers in each sub-batch at stage k given kS  and 
W

kζ , and ( , )R W

k k kS ζa  represents 

the relocation positions that respect ( , )S W

k k kS ζa . For notational convenience, we suppress the dependence 

on ( , )W

k kS ζ  from ( , )W

k k kS ζa  and use ka  instead.  

( , )W

k k k kr S ζa : The number of relocations required during action ka  on the bay of state kS  given 

W

kζ . 

( , , )W

k k k kt S ζ a : The state transition function that maps kS , 
W

kζ , and ka  into the next state 1kS  . By 

( , , )W

k k k kt S ζ a , the kth batch of containers revealed by 
W

kζ  are retrieved from state kS according to action 
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ka , after which 1kS   is obtained.  

( )W

k kf S : The expected minimum total number of relocations to retrieve the remaining K-k+1 batches of 

containers from state kS  when each appointment time window is divided into W sub-time windows. 

The primary objective is formulated as a recursive function as follows:  

            
1 1

1

1 1 1 1 1 1 2 2 1 1 1 1 1 2 2( ) min ( | , ) ( ) ( )min ( | , ) ( )
W

W W W W W W

ζ

f S E r S ζ f S p ζ r S ζ f S         


a a
a a , 

where          2 1 1 1 1( ,  ,  )WS t S ζ a                                                    (3.1) 

Generally, the problem for any stage k can be formulated as follows: 

               
1 1( ) ( )min ( | , ) ( ) ,  {1,..., }

kW
k

W W W W

k k k k k k k k k

ζ

f S p ζ r S ζ f S k K 
    

a
a , 

where           1 ( , , )W

k k k k kS t S ζ  a , for {1,..., }k K , and 1 1( ) 0W

K Kf S                        (3.2) 

The objective (3.1) is to minimise the expected total number of relocations to retrieve all the containers. 

Equation (3.2) means that at the beginning of stage k, first, the truck arrival scenario for this stage, that is, 
W

kζ , is revealed, and then the optimal actions ( , )W

k k kS ζa  to retrieve the containers at this stage are 

sought by considering all the scenarios of future stages. 

3.3.3.3 Secondary objective for service fairness 

The secondary objective is to minimise the maximum turnaround time among all of the trucks. The 

turnaround time of truck i is defined as the elapse of time between its arrival time ia  and its departure 

time from the yard id , that is, the retrieval service completion time. Let , ( )
W
kζ

i ik ig d a   denote the 

turnaround time of truck i in batch k ( ki B ) under 
W

kζ (
W W

kζ ζ ). Then, the secondary objective 

function can be expressed as   

Min 
,

{1,..., },
( ) max

W
k

kW

ζW
k i

k K i B
ζ

p ζ g
 

                                    (3.3) 

Note that the secondary objective in (3.3) is optimised under the promise that the primary objective in 

(3.1) has achieved optimality, which means that the two objectives are optimised sequentially. Given the 

decisions ( , )W

k k kS ζa  that are optimal regarding the primary objective, we now derive the explicit 

expression of 
,

W
kζ

k ig . The following notations are introduced to extract the relevant information implied in 

the decision variables ( , ) { ( , ), ( , )}W S W R W

k k k k k k k k kS ζ S ζ S ζa a a .  
W
kζ

io : the service order of truck i, ki B , under 
W

kζ . 
W
kζ

io  is implied in the service sequence decision 

( , )S W

k k kS ζa . 
W
kζ

ir : the number of relocations needed when serving truck i, ki B , under 
W

kζ . 
W
kζ

ir  is implied in 

the relocation decision ( , )R W

k k kS ζa . 

rett : the handling time per retrieval move. 

relt : the handling time per relocation move. 

Let ek denote the end of the appointed time window of batch k. Let sk denote the service starting time of 

batch k and ck denote the completion time of retrieving the last container in batch k. Given the decisions 

( , )W

k k kS ζa of batch k, ck and sk can be obtained. By A5, all the trucks in a batch have already waited at the 

yard stack when the service of this batch begins, and thus there is no idle time between the services of any 

two trucks in the batch. Therefore, ck is calculated by  

( )
W
k

k

ζrel ret
k k i

i B

c s t r t



                                     (3.4) 
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Given ek and ck-1, according to A5, sk is calculated by  

                         1max ,k k ks e c  , {2,..., }k K ; 1 1s e .                     (3.5) 

Equation (3.5) means that, if the service completion time of batch k-1 is later than the end of the 

appointed time window of batch k, the service starting time of batch k is ck-1. Otherwise, the service starting 

time of batch k coincides with the end of its appointed time window, that is, ek. 

Given the above expressions, 
,

W
kζ

k ig  is calculated by  

,

,

( )
W W W
k k k

W Wζ ζ
k k

k j i

ζ ζ ζrel ret rel ret
i i k j i ik i

j B o o

g d a s t r t t r t a

 

 
 

          
 
 

 ,       (3.6) 

3.3.4 Model analysis and handling approach 

Let 
(1)γ  and 

(2)γ denote the primary objective and the secondary objective, respectively. Then, the 

SCRP-MFS can be formulated as follows:  

                     
(1)

1 1min ( )Wγ f S , 1 1( )Wf S  is defined in Eq. (3.1)   

(2)
,

{1,..., },
min ( ) max

W
k

kW

ζW
k i

k K i B
ζ

γ p ζ g
 

 ,  ,

W
kζ

k ig  is defined in Eqs. (3.4)-(3.6)   (3.7) 

There are two levels of decisions in the model. At the higher level, the number of sub-time windows W 

directly impacts the level of flexibility in optimising the container retrieval sequence and thus the objective 

values. At the lower level, the container retrieval sequence ( , )S W

k k kS ζa and the container relocation 

positions ( , )R W

k k kS ζa  are two-fold decision variables. We handle the model by a hierarchical iterative 

approach, under the framework presented in Fig. 3. 2. At the outer hierarchy, we determine the number of 

sub-time windows, while at the inner hierarchy, we make decisions on the container retrieval sequence and 

the container relocation positions. The two hierarchies are incorporated in an iterative process. At each 

iteration, we update the value of W, that is, the number of sub-time windows. Accordingly, we solve the 

model where W is treated as a parameter. To solve this model, the focus is to solve the SDP with the 

primary objective. Then, among the multiple solutions that optimise the primary objective, the one with the 

minimal secondary objective value can be selected as the optimal solution for the SCRP-MFS with a 

specific W. The optimal solutions of the SDP model can be obtained by optimising the recursive equation 

(2) backward from stage K to stage 1. However, solving the SDP model is very time-consuming for 

practical scale problems due to the curse of dimensionality (Feng et al., 2020). The case with multiple 

sub-time windows can be more time consuming, as it creates an increased number of possible sub-batches 

and corresponding scenarios. To accomplish extensive experiments in a reasonable time, we use a heuristic 

algorithm to solve the model. When the model is solved, we update the retrieval sequence and the 

relocation positions and evaluate the relevant performance measures by simulation.  

The idea behind the scheme of updating W is to increase the value of W if the maximum truck turnaround 

time is smaller than that in the previous iteration and to terminate the iteration process either if the 

maximum truck turnaround time does not improve for Q1 consecutive iterations or if it reaches the iteration 
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limit Q2. In doing so, the decisions of the SCRP-MFS are forced to lead to a greater number of relocations 

and a shorter maximum truck turnaround time as the iteration process continues. The rationale is explained 

here. There is a trade-off between relocation efficiency and service fairness when optimising the 

SCRP-MFS. There is no ultimate solution with the lowest number of relocations and the smallest maximum 

truck turnaround time. If W is set to be a small value, the solution will turn out to have a smaller number of 

relocations but a longer maximum truck turnaround time. On the contrary, if W is set to be a higher value, 

the solution will show the opposite feature. However, A larger value of W does not necessarily guarantee a 

shorter maximum truck turnaround time. This is because the turnaround time of a truck is also influenced 

by the number of relocations that are needed to retrieve the target container. Under a larger W, since the 

flexibility in optimising the container retrieval sequence is very small, a greater number of relocations may 

be needed to retrieve a container, and thus it may cause longer turnaround times for some trucks. When 

such a point appears, there is no much need to continue increasing the value of W since the benefit for 

reducing the maximum truck turnaround time may be tiny. Initially, W is set to be a small value W0 (e.g., 2) 

to allow a great extent of flexibility for optimising the container retrieval sequence. Then, by scanning W 

from small to large values, we are able to find a certain point that best balances the two objectives. 

However, it is the decision maker’s choice to finally determine the value of W, which depends on whether 

the relocation efficiency or the service fairness is emphasized more by the terminal operators.   

 

Fig. 3. 2 Framework of the model handling approach  

3.4 Heuristic algorithm 

It has been computationally proved that the SEM (Sequencing based Expected Minmax) heuristic is able 

to obtain near-optimal solutions of the SCRP-FS (Feng et al., 2020). In this section, we extend the SEM 

heuristic so that it can be applied to solve the SCRP-MFS. One of the main extensions we made to the SEM 

heuristic is on generalizing the BIS index and DIS index, which are two key criteria used for selecting the 

relocation positions. The details of the two indexes are referred to in section 3.4.2.2. In the SEM heuristic, 

the calculation methods of these two indexes are only applicable to the situation of two sub-batches. When 

considering multiple sub-batches, a general calculation method is needed. In addition, we embed a 

procedure to reduce the maximum truck turnaround time.  

 In the following, we first introduce the outline of the extended SEM heuristic algorithm. Then, we 

introduce the heuristic rules used in the algorithm. Last, we describe the computing methods of the BIS 

index and DIS index.  

Update the number of sub-time windows W 

Solve the SCRP-MFS 

with a specific W by a 

heuristic algorithm 

Update retrieval sequence and relocation positions 

Evaluate the performance 

measures by simulation  
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3.4.1 Algorithm outline 

The extended SEM shares the same outline as the SEM. There are two decisions to be made: sequencing 

and relocating, which are made by two heuristic rules. First, by using the sequencing rule, the retrieval 

sequence is determined one container at a time. Then, according to the relocating rule, the relocation 

positions of the resulted blocking containers are determined.  

The following notations are defined for describing the heuristic and used throughout this section. These 

notations are also included in Appendix A.2. 

it : the ith target container to be retrieved, {1,..., }i C . 

n(u): the number of relocations needed for retrieving container u. 

 : the bay configuration (state). Let 0  represent the initial configuration.  

lmin: the smallest priority label of containers in  .  

 : the set of containers labelled lmin in  . 

kw : the trucks in batch k that have arrived at sub-time window w.  

The overall steps of the extended SEM heuristic are as follows: 

Step 0. Initialization. Let  = 0 . Set k = 1, i.e., the index of the first batch and i = 1, i.e., the index of 

the first target container.  

Step 1. Reveal the truck arrival information. If k > K, stop – all containers have been retrieved; 

otherwise, reveal the truck arrival information of batch k, that is, kw , {1,..., }w W , and go to Step 2. 

Step 2. Update the bay configuration. Update   according to the revealed truck arrival information: 

for w from 2 to W, add 

1

1

w

kw

w







 to the priority labels of each container in the sub-batch w of batch k. 

Step 3. Determine the target container. Identify lmin and construct  . If 1  , let the only 

container in   be it ; otherwise, determine it  using the Sequencing Rule and update   accordingly.  

Step 4. Relocate the blocking containers. Calculate n(ti). If n(ti) = 0, go to step 5; otherwise, determine 

the relocation positions for each of the n(ti) blocking containers from top to bottom using the Relocating 

Rule and relocate these blocking containers accordingly, and as a result,   is updated.  

Step 5. Retrieve the target container. Retrieve it  from  . If 
1

k

j

j

i C


 , that is, all containers in batch 

k have been retrieved, then set k = k + 1 and go to step 1; otherwise, set i = i + 1, go to step 3.  

In the above steps, the main extension we made is the way of updating the bay configuration in Step 2. 

When considering multiple sub-batches, the priority labels of the containers in each sub-batch w > 1 need 

to be updated according to the number of trucks in all of its former sub-batches.  

3.4.2 Heuristic rules 

The sequencing rule and the relocation rule used in the extended SEM algorithm are introduced in the 

following two sub-sections.  

3.4.2.1 Sequencing rule 

The main idea of the sequencing rule is to minimise the number of relocations needed in the next 
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retrieval, and thus the container with the least number of blocking containers is selected from the candidate 

containers as the target container. If more than one container has the same least number of blocking 

containers, the one with the earliest truck arrival time is selected as the target container in order to reduce 

the maximum truck turnaround time. The sequencing rule is presented below.  

Step 1. Identify the number of blocking containers of each candidate target container. Given  , lmin, 

and  , compute the n(u) of each container u .  

Step 2. Determine the target container. Sort { :( })n u u  in non-decreasing order of n(u). Choose the 

one with the smallest n(u) in   as the target container it . If multiple ones are having the smallest n(u), 

the one with the earliest truck arrival time is selected as the target container.  

Step 3. Update the bay configuration. Update   by increasing the priority labels of the containers in 

\ it  by one. 

The example in Fig. 3. 3 is used for illustration. In the example, W = 3, the length of a time window 

equals 30 minutes, and the system starting time equals zero. The priority matrix shows how the priority 

labels of the containers update as the retrieval proceeds. The preference matrix shows the customer 

preference of each container for each sub-time window. The container ID corresponds to the container in 

each slot. The truck arrival time matrix reveals the truck arrival time (in minutes) for each container. “×” 

represents that the truck arrival time for the corresponding container has not been revealed at the current 

step. The containers in bold represent that the truck arrival information of these containers has just been 

revealed at the current step. The containers in the shaded slot represent the target container to be retrieved. 

The containers in the striped slot represent the blocking containers to be relocated at the current step. At 

step 0 in Fig. 3. 3, the truck arrival information for the first batch is revealed to be that trucks u6 and u10 

have arrived at the same sub-time window that is earlier than that of truck u13. The set of candidate target 

containers is 6 10{ , }u u   since both u6 and u10 have the smallest priority label (i.e., 1). As u6 and u10 

have an equal number of blocking containers (i.e., one blocking container), the target container should be 

the one with the earlier truck arrival time. In our example, the truck arrival time of u6 which equals 7 is 

earlier than that of u10 which equals 9. Therefore, u6 is selected as the target container, and accordingly, the 

priority label of u10 is increased by one, leading to an updated priority label (i.e., 2) at step 2.  

3.4.2.2 Relocating rule 

We extend the two important indexes (i.e., BIS and DIS) in the SEM heuristic to the situations of 

multiple sub-batches. The blocking index with sequencing (BIS) of a stack s, denoted by BIS(s), is defined 

as the probability of a container being blocking if relocated to s. The delay index with sequencing (DIS) of 

a stack s, denoted by DIS(s), is defined as the probability of the containers with the highest priority in stack 

s being the first one to be retrieved within its batch. These two indexes are used for selecting the best 

relocation stack when ties on the candidate relocation stacks occur. They are particularly important for the 

problem with larger batches as the ties will occur frequently and need to be broken by some criteria. Before 

introducing the computing methods of the two indexes (see section 3.4.3), we first present the framework 

of the relocating rule in the following.  

The following notations are defined for describing the relocating rule and used throughout this section. 

These notations are also included in Appendix A.1. 

c: the blocking container that is to be relocated; 

ŝ : the stack where the blocking container c is located before relocating; 

m(s): the smallest priority label of a container in stack s, {1,..., }s S . For an empty stack, we let m(s) 
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equal C+1; 

h(s): the number of containers in stack s, {1,..., }s S ; 

SC: the set of candidate stacks; 

*s : the selected relocation stack. 

The heuristic rule that determines the relocation position for the blocking container c from stack ŝ  is 

described below. 

[Condition 1] There is a non-full stack ˆs s  that satisfies ( ) cm s l . 

Let  
ˆ{1,..., }\

= min ( ) : ( ) , ( ) c
s S s

M m s h s T m s l


  . Select the stack that satisfies ( )m s M . Break ties by choosing 

from the highest ones, finally selecting the leftmost one if any ties remain.  

[Condition 2] For all non-full stacks ˆs s , ( ) cm s l . 

Let  
ˆ{1,..., }\

= max ( ) : ( )
s S s

M m s h s T


 . The set of candidate stacks is represented by 

 ˆ{1,..., }\ , ( ) , ( )CS s s S s h s T m s M    . If 1CS  , select the only stack that satisfies ( )m s M . Otherwise, 

ties are broken in the following way. In the case of M = lc, the stack in SC with the minimum BIS is selected, 

that is,  * argmin ( ) Cs BIS s s S  ; In the case of M < lc, the stack in CS  with the minimum DIS is selected, 

that is,  * argmin ( ) Cs DIS s s S  . Further ties are broken by choosing from the highest ones, finally 

selecting the leftmost one if any ties remain.  

The basic idea of the above relocating rule is to avoid or delay the blocking container being relocated 

again in the future. Two conditions arise, depending on whether the blocking container c needs to be 

relocated again in the future. In condition 1, since ( ) cm s l  (recall that lc denotes the priority label of 

container c), c will not need to be relocated again in the future. In this condition, the stack with the 

minimum m(s) is selected as the relocating stack in order to save the stacks with greater m(s) for storing 

other blocking containers with greater priority labels. In condition 2, c will inevitably need to be relocated 

again. The stack with the maximum m(s) is chosen to delay the next relocation of c as much as possible. In 

case of ties, the way how the ties are broken depending on the value of M. If M = lc (which means that c 

will be relocated again in the future with a probability), the stack with the minimum BIS(s) is chosen to 

minimise the probability of c being relocated again. If M < lc (which means that c will surely be relocated 

again in the future), select the stack with the minimum DIS(s) to delay the next relocation of c.  

3.4.3 Two key indexes 

In the following subsections 3.4.3.1 and 3.4.3.2, the methods of computing the two key indexes (BIS and 

DIS) used in the relocation rule are introduced.  

3.4.3.1 Method of computing BIS 

The BIS index is needed to break the first kind of tie in [Condition 2] where more than one candidate 

stacks satisfying ( )m s M  and cM l . Let Ms be the set of containers located in a candidate stack s and 

labelled M. Container c will block if relocated to s only in the situation where at least one container in Ms is 

in the sub-batches before the sub-batch of c. BIS(s) is calculated by considering all scenarios of the 

sub-batches of c except for the scenario of the first sub-batch. The reason why there is no need to consider 
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the scenario of c in the first sub-batch is that if c is relocated to s in this scenario, according to the 

sequencing rule, c will be the first to be retrieved in stack s and thus will not block. The pseudocode of 

calculating BIS(s) is given in Algorithm 1. In Algorithm 1, p(w,ui) denotes the probability that container ui 

is in the sub-batches not before sub-batch w; p(w) denotes the probability that all containers in Ms are in the 

sub-batches not before sub-batch w, and thus (1- p(w)) is the probability that at least one container in Ms is 

in the sub-batches before sub-batch w.  

Algorithm 1: BIS 

1 Input: c   the blocking container to be relocated  

2       M  the maximum of the smallest priority label in each candidate stack 

3       s  the stack whose BIS is to be calculated 

4       Ms  the set of containers in stack s and with label M 

5       W  the number of sub-batches 

6 BIS(s) = 0 

7 for w = 2 to W do 

8 p(w) = 1 

9 for each container uiMs do 

10 p(w,ui) = 0 

11 for k = w to W do 

12    p(w,ui) = p(w,ui) + pik 

13 end 

14    p(w) = p(w) · p(w,ui) 

15  end 

16  BIS(s) = BIS(s) + pcw·(1- p(w)) 

17 end 

18 Return BIS(s) 

Taking the step 1 in Fig. 3. 3 for example. At step 1, the target container to be retrieved is u6 and the 

blocking container to be relocated is u7. We need to determine the relocating stack for u7. According to the 

state of step 1, M = 4 and the set of candidate stacks SC = {1, 2}. By Algorithm 1, BIS(1) = 0.2×(1-0.2) + 

0.5×(1-0.1) = 0.61; BIS(2) = 0.2×(1-0.9×0.8) + 0.5×(1-0.7×0.6) = 0.346. As BIS(2) < BIS(1), stack 2 is 

selected as the relocation stack for u7.  
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Fig. 3. 3 Decisions by the extended SEM heuristic on an example 

3.4.3.2 Method of computing DIS 

The DIS index is needed when a tie occurs in [Condition 2] where more than one candidate stacks s 

satisfying ( )m s M  and cM l . Since there may be more than one container with the same highest priority 

in a stack, DIS(s) is calculated by ( ) ( , )
i s

i

u M

DIS s DIS s u


  , where Ms denotes the set of containers located 

in stack s and with the highest priority, that is, the smallest label M. DIS(s, ui) denotes the probability of 

container ui that has the smallest label in stack s being the first one to be retrieved within its batch. DIS(s, ui) 

is calculated by considering all the scenarios of the sub-batch of container ui. In the scenario where ui is in 

sub-batch w, ui is surely being the first one to be retrieved within its batch when the following three 

conditions are satisfied simultaneously:  

(i) the containers above ui and with label M are in the sub-batches behind w; 

(ii) the containers below ui and with label M are in the sub-batches not before w; 

(iii) for each of the other candidate stacks /Cs S s , for each container uj in stack s : if 

( ) ( )j in u n u  (recall that n(ui) denote the number of blocking containers above ui), uj are in the 

sub-batches behind w; otherwise, uj are in the sub-batches not before w.  

The pseudocode of calculating DIS(s) is shown in Algorithm 2. In Algorithm 2, lines 11-19, lines 20-28, 

and lines 29-47 are to calculate the probability of the above condition (i), (ii) and (iii), respectively. In line 

48, piw · p(w, ui) represents the probability that container ui is in sub-batch w and is the first container to be 

retrieved within its batch. DIS(s, ui) is obtained by considering all the scenarios of the sub-batch of ui (line 

48). DIS(s) is obtained by considering all the containers labelled M in stack s (line 50).  
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Algorithm 2: DIS 

1 Input: B  the state of the current bay 

 

 

 

 

2       M  the maximum of the smallest priority label in each candidate stack 

3       W  the number of sub-batches 

4       s  the stack whose DIS is to be calculated; SC  the set of candidate stacks 

5       Ms  the set of containers in stack s and with label M 

6 DIS(s)= 0 

7 for each container uiMs do 

8 DIS(s, ui) = 0 

 9 for w = 1 to W do 

10  p(w,ui) = 1 

11 for each container uj above ui do 

12    if the label of uj equals W then 

13       sum = 0 

14       for k = w + 1 to W do  

15          sum = sum + pjk 

16       end 

17          p(w,ui) = p(w,ui) · sum 

18        end 

19    end 

20    for each container uj below ui do 

21       if the label of uj equals W then 

22          sum = 0 

23          for k = w to W do 

24            sum = sum + pjk  

25          end 

26          p(w,ui) = p(w,ui) · sum 

27        end 

28     end 

29     n(ui ) the number of blocking containers above ui 

30     for each stack /Cs S s  do 

31        for each container uj in stack s  do 

32           if the label of uj equals W then 

33              n(uj ) the number of blocking containers above uj 

34              sum = 0 

35              if n(uj ) <= n(ui ) then 

36                  for k = w + 1 to W do 

37                     sum = sum + pjk 

38                  end 

39              else 

 40                  for k = w to W do 

41                     sum = sum + pjk 

42                  end 

43              end 

44              p(w,ui) = p(w,ui) · sum 

45            end 

46         end 

47      end 

48     DIS(s, ui) = DIS(s, ui) + piw · p(w,ui) 

49   end 

50   DIS(s) = DIS(s) + DIS(s, ui) 

51 end 

52 Return DIS(s) 
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Taking the step 5 in Fig. 3. 3 for example. At step 5, the blocking container to be relocated is u14. M = 10 

and the set of candidate stacks SC = {3, 4}. By Algorithm 2, DIS(3, u5) = 

0.8×0.9×0.8+0.1×0.8×0.6+0.1×0×0 = 0.624; DIS(4, u9) = 0.1×1×1+0.1×0.8×0.2+0.8×0.6×0.1 = 0.164; 

DIS(4, u8) = 0.2×0.9×0.2+0.2×0.8×0.1+0.6×0×0 = 0.052. Therefore, DIS(3) = DIS(3, u5) = 0.624, and 

DIS(4) = DIS(4, u9) + DIS(4, u8) = 0.216. As DIS(4) < DIS(3), stack 4 is selected as the relocation stack for 

u14.  

3.5. Computational experiments 

We perform three sets of experiments to achieve the research objectives raised in Section 3.1. Firstly, we 

evaluate the impact of the number of sub-time windows. Secondly, we investigate the impact of customer 

preference. Thirdly, we assess the value of customer preference information. The algorithm is coded in 

MATLAB 2018a and the experiments are performed on a desktop with Intel® Core ™ i5-6500 processor, 

3.20 GHz CPU and 8 GB of RAM. The computational times of all the experiments are within several 

milliseconds.  

Table 3. 2 lists the sets of parameters used in the experiments. The number of tiers (T) in a bay varies 

from 3 to 6 and the number of stacks (S) in a bay varies from 5 to 10, which covers the dimension of the 

bay in most container terminals. In total, we have 24 problem classes that are characterised by T and S. The 

utilisation rate (u) of the bay is set to be 67%. Given T, S and u, the number of containers in the bay is 

calculated by C = round(u*T*S), where round(x) rounds x to its closer integer. To provide a meaningful 

interpretation for the results, we consider a larger batch size, that is, there are on average six containers per 

batch. For each problem class, we have 30 instances that vary in the containers’ stacking positions and the 

number of containers in each batch. These instances inherit from the corresponding instances in Feng et al. 

(2020), which were adapted from the CRPTW instances in Ku and Arthanari (2016a). Besides, the length of 

the appointment time window and the handling times per relocation move and per retrieval move also 

follow the settings in Feng et al. (2020).  

Table 3. 2 Parameters setting for the experiments.  

Parameter Range of scenarios Fixed parameters 

Dimension of the bay (T×S) [3, 6] × [5, 10]   

Utilisation rate (u)  67% 

Customer preference scenario (CPS) {homogeneous, heterogeneous, exact}  

Average batch size  6 

Length of an appointment time 

window 

 30 minutes 

Time per relocation move  2 minutes 

Time per retrieval move  4 minutes 

Regarding the customer preference, we consider three Customer Preference Scenarios (CPSs) to 

characterise whether the customer preference information is available and whether the arrival sub-time 

windows are certain, which is detailed in Table 3. 3. In Scenario 1 of homogeneous CPS, the preference for 

each sub-time window w, {1,..., }w W , is evenly distributed, that is, each truck has an equal probability 

(i.e., 1/W) to arrive at each sub-time window. This scenario is equivalent to no customer preference 

information and is used as the baseline. In Scenario 2 of heterogeneous CPS, the probabilities of a truck 

arriving at different sub-time windows follow the distribution of pw. We assume that pw is generated from 

the uniform distribution U(0,1). This scenario represents the situation where each truck has different 
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preferences for different sub-time windows. In the above two scenarios, the trucks will arrive at each 

sub-time window with a probability. In Scenario 3 of exact CPS, each truck is uniformly assigned to one of 

the sub-time windows which it will arrive at with 100% probability. In this scenario, we know which 

sub-time window each truck will arrive at exactly.  

   Table 3. 3 Customer Preference Scenarios (CPSs).  

 Probabilities Preference 

information 

availability 

Arrival sub-time 

windows 
          Sub-time windows 

Scenarios 

1 … w … W 

1. Homogeneous 1/W 1/W 1/W 1/W 1/W Unavailable Uncertain 

2. Heterogeneous p1 … pw … pW Available  Uncertain 

3. Exact 0 0 1 0 0 Available  Certain 

In order to estimate the objective values, we need to sample the customer preference and the truck arrival 

times. The samples are generated through a Monte Carlo simulation. The number of samples required to 

obtain a relative error γ is calculated by  

 
22

1 /2( ) (1 ) /αn γ δ γ Z γμ                                     (3.8) 

where 2δ  and μ respectively represent the variance and mean of the objective values and Z1-α/2 is the 1 - 

α/2 percentile of the normal distribution (Law and Kelton, 2000). In our experiments, we want to estimate 

the total number of relocations, the average truck turnaround time, and the maximum truck turnaround time, 

with a relative error of 5% (γ = 5%) and a confidence level of 90% (α = 10%) respectively for each 

indicator. We conduct two-stage preliminary experiments to calculate, first, the number of the samples of 

the truck arrival times required, denoted by n1(γ), and then, that of the customer preference, denoted by 

n2(γ), for each problem class under the three CPSs, respectively. Note that for Scenario 1 of homogeneous 

CPS, we do not need to calculate n2(γ) as there is only one possibility of the customer preference (that is, 

the probability for each sub-time window is equal) and thus n2(γ) = 1. At the first stage, given a random 

instance and a random sample of customer preference, we calculate 2δ  and μ for each performance 

indicator based on ten random samples of truck arrival times. Then, using Eq. (3.8), n1(γ) is obtained by 

taking the greatest value among the number of samples required for each performance indicator. At the 

second stage, given an instance, we calculate 2δ  and μ based on ten random samples of customer 

preference (the result of each sample of customer preference is the average over n1(γ) random samples of 

truck arrival times). Then, using Eq. (3.8), we obtain n2(γ) by taking the greatest value among the number 

of samples required for each performance indicator. Depending on parameters T, S, W and the CPS, the 

values of n(γ) vary significantly between zero and several hundred. For example, for the problem class with 

T =3, S = 5 and W =2 under Scenario 2 of heterogeneous CPS, n1(γ) = 555 and n2(γ) = 30; while for the 

same problem class under the Scenario 3 of exact CPS, n1(γ) = 12 and n2(γ) = 537. If the resulted n(γ) is less 

than five, we force n(γ) to be five, which means that we make at least five repetitions respectively on the 

customer preference and truck arrival times for each instance.  

The parameters of the developed hierarchical iterative approach for handling the model are selected to be: 

Q1 = 2, Q2 = 5, and W0 = 2, by trials based on the experiment parameters.  

3.5.1 Impact of the number of sub-time windows 

In this section, we evaluate the impact of the number of sub-time windows on system overall efficiency 

and service fairness. Apart from the total number of relocations and the maximum truck turnaround time 
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that are optimised, two more evaluation indicators are proposed to evaluate the performance and listed as 

follows:  

Average truck turnaround time (AveT): AveT is the mean of the total turnaround times of all the 

trucks, which indicates the turnaround time for each truck on average. AveT has a positive correlation with 

the total number of relocations and can also represent system overall efficiency.  

Coefficient of variation of the truck turnaround time (CVT): Coefficient of variation (CV), also 

known as relative standard deviation, is defined as the ratio of the standard deviation to the mean, which is 

a standardized measure of the dispersion of a probability distribution or frequency distribution. As the 

means of the turnaround times under different numbers of sub-time windows are different, we use the CV 

to show the extent of variability of the turnaround time in relation to its mean. CVT has a positive 

correlation with the maximum truck turnaround time, which can also represent service fairness.    

The experiments in this section are based on Scenario 1 of homogeneous CPS. Multiple problem classes 

are constructed to execute the experiments; these classes are characterised by different combinations of the 

number of tiers (T), the number of stacks (S), and the number of containers (C) (see Table 3. 4 and Table 3. 

5). The results show that there is no ultimate solution to achieve the lowest number of relocations and the 

highest service fairness. The SCRP-MFS where each appointment time window is divided into two 

sub-time windows (i.e., W = 2) is regarded as the benchmark. For each problem class, the results obtained 

under different numbers of sub-time windows (in the range of [3, 6]) are compared with the benchmark. In 

Table 3. 4, columns “Rel” and “AveT” respectively give the total number of relocations and the average 

truck turnaround time for a problem class in the benchmark, which are obtained by taking the average of 30 

instances, each one containing n1(γ) samples. Under the scenarios of “W = 3”, “W = 4”, “W = 5” and “W = 

6”, column “Rel%” reports the relative difference between the total number of relocations of the considered 

scenario and the benchmark, indicating the percentage increase of the total number of relocations when 

compared with the benchmark; column “AveT%” reports the relative difference between the average truck 

turnaround time of the considered scenario and the benchmark, revealing the percentage increase in the 

average turnaround time in comparison with the benchmark.  

Table 3. 4 Comparisons of the total number of relocations and average truck turnaround times under 

different numbers of sub-time windows with the benchmark. 

Problem 
class*

1  W = 2
*2 

 W = 3  W = 4  W = 5  W = 6 

T S C  Rel AveT  Rel% AveT%  Rel% AveT%  Rel% AveT%  Rel% AveT% 

3 5 10  2.27 29.16  14.0% 1.5%  21.1% 2.4%  25.5% 2.8%  27.6% 3.1% 

 6 12  3.09 30.62  9.6% 1.5%  14.3% 2.1%  18.9% 3.0%  20.2% 3.0% 

 7 14  3.35 31.15  9.0% 1.5%  13.7% 2.2%  16.2% 2.5%  18.1% 2.9% 

 8 16  4.04 30.64  7.5% 0.9%  10.2% 1.8%  12.6% 2.2%  14.1% 2.4% 

 9 18  4.41 31.00  6.6% 1.7%  11.0% 2.6%  11.2% 2.3%  12.2% 2.7% 

 10 20  4.74 29.48  5.6% 1.1%  8.3% 1.6%  9.4% 1.9%  10.1% 2.0% 

4 5 13  4.33 32.65  9.7% 2.0%  17.7% 3.3%  18.9% 4.0%  20.6% 4.1% 

 6 16  6.28 32.78  6.8% 2.0%  10.5% 3.0%  12.1% 3.6%  14.4% 4.1% 

 7 19  6.59 30.98  6.3% 1.7%  10.8% 2.5%  12.1% 3.0%  13.8% 3.4% 

 8 21  7.02 32.66  5.7% 1.7%  9.6% 2.7%  9.5% 3.0%  11.7% 3.2% 

 9 24  8.80 32.72  5.3% 1.9%  5.0% 1.7%  7.6% 2.8%  7.9% 2.7% 

 10 27  9.30 31.47  4.4% 1.1%  6.6% 2.1%  7.4% 2.5%  7.9% 2.7% 

5 5 17  8.57 34.92  7.4% 2.4%  10.4% 4.0%  12.5% 4.5%  14.7% 5.3% 
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 6 20  9.02 34.61  6.4% 2.5%  9.9% 3.5%  12.2% 4.3%  12.2% 4.5% 

 7 23  10.89 34.80  4.0% 1.7%  7.5% 3.3%  7.9% 3.4%  10.4% 4.9% 

 8 27  12.61 34.00  4.8% 2.1%  6.3% 2.7%  7.7% 3.7%  8.8% 3.9% 

 9 30  14.59 36.19  3.5% 1.6%  6.2% 3.3%  6.2% 3.3%  6.0% 3.7% 

 10 34  15.32 34.15  3.8% 1.9%  4.3% 2.3%  5.8% 3.0%  6.5% 3.3% 

6 5 20  12.61 35.79  6.9% 3.9%  10.6% 5.5%  11.7% 6.3%  12.0% 6.2% 

 6 24  13.77 37.01  5.4% 2.5%  8.1% 4.6%  9.3% 5.3%  11.3% 6.1% 

 7 28  16.69 40.19  3.2% 2.2%  5.2% 3.4%  7.0% 4.5%  7.0% 4.5% 

 8 32  18.01 39.68  3.9% 2.3%  5.6% 3.7%  8.2% 5.1%  8.7% 5.3% 

 9 36  19.18 37.41  3.7% 2.6%  5.4% 3.7%  6.2% 3.9%  7.2% 4.5% 

 10 40  22.33 37.55  0.7% 1.0%  3.4% 2.9%  4.6% 3.7%  4.6% 3.5% 

*1: The CPS is “homogeneous”; *2: “W = 2” is the benchmark.  

In Table 3. 5, columns “MaxT” and “CVT” respectively report the maximum truck turnaround time and 

the CV of the truck turnaround time for a problem class in the benchmark, which is obtained by taking the 

average of 30 instances each of which contains n1(γ) samples. Columns “MaxT%” and “CVT%” 

respectively represent the percentage reduction in the maximum turnaround time and the CV of the 

turnaround time when compared with the benchmark.  

Table 3. 5 Comparisons of the maximum truck turnaround times and the coefficients of variation under 

different numbers of sub-time windows with the benchmark. 

Problem 
class*1  W = 2*2 

 W = 3  W = 4  W = 5  W = 6 

T S C  MaxT CVT  MaxT% CVT%  MaxT% CVT%  MaxT% CVT%  MaxT% CVT% 

3 5 10  39.57 0.25  -2.7% -7.3%  -3.8% -10.1%  -4.1% -10.8%  -4.5% -11.1% 

 6 12  41.55 0.24  -2.5% -6.1%  -3.8% -9.4%  -4.1% -10.7%  -4.5% -10.5% 

 7 14  42.92 0.25  -2.7% -4.1%  -3.7% -6.0%  -4.2% -6.6%  -4.5% -7.8% 

 8 16  42.83 0.24  -2.8% -4.7%  -3.8% -7.2%  -4.5% -8.6%  -5.0% -8.1% 

 9 18  44.03 0.25  -3.1% -4.3%  -3.8% -7.1%  -4.7% -8.0%  -5.1% -7.6% 

 10 20  42.27 0.24  -3.1% -4.9%  -4.2% -7.6%  -5.2% -9.1%  -5.5% -9.0% 

4 5 13  44.73 0.25  -3.0% -5.7%  -3.5% -8.4%  -4.2% -9.8%  -4.8% -9.8% 

 6 16  46.74 0.26  -3.0% -8.4%  -3.9% -10.8%  -4.4% -11.8%  -4.6% -11.3% 

 7 19  44.59 0.26  -2.4% -3.2%  -3.8% -7.3%  -4.6% -8.2%  -5.0% -8.7% 

 8 21  47.24 0.25  -3.3% -8.0%  -4.3% -9.8%  -4.4% -7.3%  -5.1% -10.2% 

 9 24  48.25 0.26  -2.9% -5.4%  -4.9% -9.4%  -4.8% -9.5%  -5.8% -10.0% 

 10 27  46.13 0.25  -2.7% -5.3%  -3.3% -6.9%  -4.2% -7.9%  -4.9% -8.8% 

5 5 17  49.78 0.27  -2.7% -7.5%  -3.3% -8.0%  -3.8% -10.0%  -4.0% -10.6% 

 6 20  49.80 0.27  -2.2% -5.1%  -3.2% -7.6%  -3.5% -8.0%  -3.5% -7.5% 

 7 23  50.43 0.27  -2.7% -6.4%  -2.9% -7.5%  -4.3% -9.2%  -3.7% -8.7% 

 8 27  51.01 0.27  -2.6% -3.6%  -4.5% -9.4%  -4.3% -8.0%  -5.2% -10.3% 

 9 30  53.98 0.29  -3.2% -5.3%  -3.7% -5.4%  -4.6% -6.6%  -4.5% -5.1% 

 10 34  51.91 0.30  -2.3% -2.0%  -4.3% -6.1%  -4.7% -6.0%  -4.4% -5.9% 

6 5 20  51.26 0.26  -1.3% -5.1%  -1.7% -9.4%  -2.2% -10.9%  -2.8% -10.3% 

 6 24  54.21 0.27  -2.0% -5.9%  -2.2% -8.4%  -3.2% -10.1%  -2.7% -10.4% 

 7 28  59.28 0.31  -2.5% -5.2%  -3.5% -7.4%  -3.1% -8.9%  -3.6% -9.0% 
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 8 32  59.67 0.31  -3.1% -3.9%  -3.4% -6.6%  -3.5% -6.0%  -3.9% -7.3% 

 9 36  58.27 0.30  -3.2% -5.6%  -4.1% -7.3%  -4.7% -9.9%  -4.7% -8.9% 

 10 40  58.15 0.33  -2.8% -2.9%  -3.6% -2.8%  -3.4% -3.5%  -3.5% -4.8% 

*1: The CPS is “homogeneous”; *2: “W = 2” is the benchmark.  

From Table 3. 4 and Table 3. 5, we can see that the number of sub-time windows has a significant impact 

on the results of the SCRP-MFS. Firstly, the total number of relocations and the average truck turnaround 

times increase as the number of sub-time windows increases, which is as expected. The reason is that when 

each appointment time window is divided into more sub-time windows, the flexibility to optimise the 

service sequence shrinks. When out-of-order retrieval is implemented within a smaller sub-time window, 

there are fewer tucks in each sub-time window, and thus the opportunity for optimising the retrieval 

sequence decreases. It is noticed that for a few problem classes (highlighted in bold in Table 3. 4), the total 

number of relocations and the average truck turnaround times become smaller as the number of sub-time 

windows increases, which is counterintuitive. There are two possible reasons that can account for that. The 

first reason could be sampling bias. The second reason may be the use of the heuristic algorithm that 

generates near-optimal solutions.  

Secondly, by increasing the number of sub-time windows, generally, both the maximum truck turnaround 

time and the CV of the turnaround time decrease, but for some problem classes, they show an increasing 

trend after a certain number of sub-time windows. The fundamental reason for the decreasing trend is the 

same as in Table 3. 4. Because the scope of out-of-order services is narrowed, the differences between the 

arrival times of trucks in a sub-batch get smaller, and thus the extra waiting times incurred to the early 

arriving trucks when later arriving trucks are served before them are shortened. On the other hand, the 

increasing trend is not surprising, which is attributed to the increasing number of relocations when the 

flexibility of the out-of-order retrieval decreases. In our experiment, when the number of sub-time windows 

is six, the flexible service policy is almost reduced to the FCFS policy as on average each sub-batch has 

only one truck. In this case, since there is little scope for out-of-order service, a truck may experience many 

relocations and thus have a longer turnaround time; and as some trucks may experience excessively long 

turnaround times, the variance of turnaround time may also increase.  

To have a visual understanding of the impacts of the number of sub-time windows, we take two 

representative problem classes and display the trade-off between the total number of relocations, the 

maximum truck turnaround time, and the CV of truck turnaround time in Fig. 3. 4. Each point in Fig. 3. 4 

corresponds to the results under a specific number of sub-time windows (from two to six). As shown in Fig. 

3. 4(a), both the maximum value and the CV of the truck turnaround time exhibit a decreasing trend as the 

total number of relocations increases (with the number of sub-time windows increasing from two to six). 

While in Fig. 3. 4(b), as the number of sub-time windows increases, these two performance measures first 

decrease when the number of sub-time windows is within four and then tend to increase when the number 

of sub-time windows is over four. 
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                (a) T = 4, S = 10                                    (b) T = 5, S = 10 

Fig. 3. 4 Trade-off between total number of relocations, maximum truck turnaround time, and CV of truck 

turnaround time  

Moreover, it is observed that when the number of sub-time windows is over four, increasing the number 

of sub-time windows would not have a great influence on the results of the SCRP-MFS. The reason is that 

the average numbers of trucks per sub-batch are very small, and as a result, their flexibilities of out-of-order 

retrievals are similar. Note that in our experiments, there are on average six trucks per batch. For the 

scenarios of W = 5 and 6, there is on average 1.2 and 1 truck per sub-batch, respectively. As shown in Fig. 3. 

4, when W is within four, the relevant measures exhibit a significant changing trend with the increase of W. 

As W continues to increase, the changing trend tends to be gentle.    

Furthermore, we can observe that the changing trend of the values of “Rel%” and “CVT%” in that, 

generally, the smaller the S and T, the greater (absolute) values of “Rel%” and “CVT%”. Regarding 

“AveT%” and “MaxT%”, as T increases, the absolute values of “MaxT%” show a slightly decreasing trend 

while the values of “AveT%” show an opposite trend. The values of “MaxT%” are not sensitive to S while 

the values of “AveT%” decrease as S increases. These observations indicate that, generally, the number of 

sub-time windows has a more significant influence on the bay with smaller dimensions. This is because 

smaller-scale bays are more sensitive to the flexibility of the out-of-order retrieval. To be specific, in a 

narrower bay (i.e., smaller S), there is less opportunity to find a good stack for the relocated container that 

will not cause future relocations; and in a lower bay (i.e., smaller T), as the containers are stacked in lower 

stacks, a larger proportion of relocations can be avoided by out-of-order retrievals. In both cases, it relies 

more on the optimisation of the retrieval sequence to reduce the number of relocations.  

Above all, the results in the above two tables indicate that applying a larger number of sub-time windows 

is beneficial to reducing the maximum value and the CV of the truck turnaround time but at the expense of 

a high number of relocations and average truck turnaround time. For terminals that are more 

customer-centric or use a larger bay layout, a relatively larger number of sub-time windows could be 

chosen; while on the other hand, if the number of relocations tends to be the primary performance metric of 

the terminals or a smaller bay layout is used, applying a relatively smaller number of sub-time windows 

appears to be a good choice. It should be noted that the service fairness is not necessarily increasing as the 

number of sub-time windows increases. Generally, applying three or four sub-time windows seems 

reasonable, which can have a good balance between the relocation efficiency and the service fairness.  

3.5.2 Impact of the customer preference scenario 

In this section, we investigate whether the SCRP-MFS is sensitive to the CPSs by comparing the total 
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number of relocations under different CPSs. As the direct effect of the flexible service policy is reducing 

the number of relocations, here, we only compare the metric of relocations.  

Table 3. 6 compares the total number of relocations of the SCRP-MFS with W = 2 under different CPSs. 

The results for W = 3 - 6 are given in Appendix B. The total number of relocations under the heterogeneous 

CPS and the exact CPS for each problem class are obtained by taking the average of 30 instances, each 

instance containing n1(γ) samples of customer preference, each customer preference sample containing n2(γ) 

samples of truck arrival times. The middle three columns report the relative difference of the total number 

of relocations between each pair of CPSs, which is calculated based on the results under the former CPS. 

For example, for the column “Ho vs. He”, Gap = (heterogeneous [Rel] – homogeneous [Rel]) / 

homogeneous [Rel]×100%. The last three columns report the p-value of the paired t-test for each pair of 

CPSs. At a 5% significance level, the results that differ significantly between the two CPSs are highlighted 

in Table 3. 6.  

Table 3. 6 Comparisons of the total number of relocations between different customer preference scenarios 

(W = 2). 

Problem class  Gap  p-Value 

T S C  Ho vs. He Ho vs. Ex He vs. Ex  Ho vs. He Ho vs. Ex He vs. Ex 

3 5 10  0.06% -1.31% -1.36%  0.92 0.03* 0.06 

 6 12  -0.48% -1.62% -1.15%  0.47 0.03* 0.20 

 7 14  -0.83% 0.57% 1.42%  0.05* 0.45 0.11 

 8 16  0.88% -0.18% -1.05%  0.25 0.89 0.46 

 9 18  -0.46% -0.19% 0.27%  0.53 0.77 0.73 

 10 20  -1.40% 0.58% 2.00%  0.02 0.21 0.01* 

4 5 13  0.32% -2.28% -2.59%  0.75 0.00* 0.01* 

 6 16  -1.30% -2.09% -0.81%  0.04* 0.00* 0.27 

 7 19  -0.20% -0.23% -0.04%  0.77 0.81 0.97 

 8 21  -0.52% -0.07% 0.46%  0.22 0.89 0.41 

 9 24  -0.88% -0.79% 0.10%  0.09 0.21 0.89 

 10 27  -0.37% -0.37% 0.00%  0.39 0.65 1.00 

5 5 17  -1.73% -3.40% -1.71%  0.01* 0.00* 0.08 

 6 20  0.68% -0.64% -1.30%  0.28 0.25 0.04* 

 7 23  0.10% -1.07% -1.17%  0.88 0.08 0.16 

 8 27  -0.65% -0.12% 0.53%  0.05* 0.81 0.29 

 9 30  -0.34% -0.62% -0.28%  0.37 0.37 0.66 

 10 34  0.31% 0.03% -0.27%  0.33 0.93 0.46 

6 5 20  -0.16% -2.92% -2.76%  0.81 0.00* 0.00* 

 6 24  -0.96% -2.31% -1.36%  0.16 0.05* 0.15 

 7 28  -0.59% -0.63% -0.04%  0.20 0.37 0.95 

 8 32  -0.51% -0.62% -0.11%  0.31 0.23 0.82 

 9 36  -0.93% 0.54% 1.48%  0.02* 0.53 0.06 

 10 40  -0.16% 0.60% 0.76%  0.61 0.30 0.23 

Notes: “Ho vs. He” represents homogeneous vs. heterogeneous; “Ho vs. Ex” represents homogeneous vs. 

exact; “He vs. Ex” represents heterogeneous vs. exact. * Significance level =5%. 

From Table 3. 6 and the tables in Appendix B, some interesting observations can be identified. Firstly, 

the gap values in columns “Ho vs. Ex” and “He vs. Ex” show that, generally, the total number of 
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relocations under the exact CPS is lower than that under the homogeneous and heterogeneous CPSs. This is 

because that the influence of the truck arrival uncertainties on the service sequence can be avoided under 

the exact CPS. Under this CPS, since each truck will arrive at a certain sub-time window, regardless of the 

truck arrival times, under the flexible service policy, a sub-batch of trucks will be served in a deterministic 

order. Secondly, particularly, the results of the homogeneous CPS (Ho) and the exact CPS (Ex) 

significantly differ at a 5% level for the problem classes with a narrower bay (S = 5, 6). This significance 

can be explained by the frequent occurrence of [Condition 2] in the heuristic (section 3.4.2.2) for a bay that 

has fewer stacks. For a bay with a smaller S, there is less opportunity to find a good stack for the relocated 

container that will not cause future relocations, and thus [Condition 2] will occur frequently. Therefore, the 

BIS and DIS indexes need to be used frequently to determine the relocation stacks. The calculation of these 

two indexes relies on customer preference information. The exact CPS can lead to a more accurate value of 

the two indexes and thus a better decision on the relocation stacks.  

Since the difference values for all the problem classes in Table 3. 6 and the results in Appendix B are less 

than 4.1% and in most of the cases the differences are not significant, it can be claimed that the SCRP-MFS 

is not sensitive to the CPSs under consideration. This finding complements the results of the corresponding 

experiments in Feng et al. (2020). Their study shows that the number of relocations is much lower under 

the CPSs of “100%” and “0%” when compared with those under the homogeneous CPS. The “100%” CPS 

and “0%” CPS represent that all trucks will arrive at the first sub-time window and the second sub-time 

window, respectively, both of which provide the largest opportunity for optimising the retrieval sequence. It 

should be noticed that these two sensitive CPSs are two extreme cases that are assumed just for evaluating 

the maximum effectiveness of the flexible service policy but probably will rarely occur in reality, and thus 

they cannot represent the general situation.  

3.5.3 Impact of information availability 

In this section, we assess the value of the customer preference information. The information about the 

customer preference may not always be available. Truckers may not be able to provide their exact arrival 

probabilities for each sub-time window. To acquire the customer preference, terminals need to keep track of 

the historical arrival data of each truck. When the customer preference information is unavailable, the 

terminal operators will assume that the preference for each sub-time window is the same, which is 

equivalent to the homogeneous CPS. However, in reality, the trucks’ arrival behaviour may cohere with the 

heterogeneous CPS or the exact CPS. Therefore, the decisions made under the assumption of homogeneous 

CPS may perform badly under the heterogeneous CPS and the exact CPS. In order to understand whether it 

is necessary to gather and utilise the customer preference information, we assess the value of such 

information by comparing the results of the SCRP-MFS that utilises the preference information and that 

does not utilise the information. The results of the SCRP-MFS without customer information are obtained 

as follows. First, we make decisions under the assumption of the homogeneous CPS, and then we apply the 

decisions to the simulated situation where the trucks arrive under the heterogeneous CPS or exact CPS to 

obtain the total number of relocations.  

Table 3. 7 and Table 3. 8 respectively show the impacts of the availability of the heterogeneous 

information (Scenario 2) and the exact information (Scenario 3) on the SCRP-MFS. Column “Gap” reports 

the relative difference of the total number of relocations obtained by utilising the customer preference 

information (Inf [Rel]) and not utilising the information (NoInf [Rel]), and it is calculated as Gap = (NoInf 

[Rel] – Inf [Rel]) / NoInf [Rel]×100%. Column “p-value” reports the p-value of the paired t-test of using 

and not using the information (significance level = 5%).  
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Table 3. 7 Comparisons of the total number of relocations between utilising the “exact” information and 

not utilising such information. 

Problem 
class  W = 2 

 W = 3  W = 4  W = 5  W = 6 

T S C  Gap p-value  Gap p-value  Gap p-value  Gap p-value  Gap p-value 

3 5 10  1.1% 0.00   1.4% 0.00   1.1% 0.00   1.2% 0.00   1.2% 0.00 

 6 12  1.3% 0.00   1.9% 0.00   1.6% 0.00   2.0% 0.00   2.1% 0.00 

 7 14  0.6% 0.00   0.9% 0.00   1.0% 0.00   1.0% 0.00   0.9% 0.00 

 8 16  0.2% 0.26   0.8% 0.01   0.6% 0.02   0.9% 0.01   1.0% 0.01 

 9 18  0.7% 0.05   0.6% 0.05   0.4% 0.01   0.8% 0.02   0.6% 0.01 

 10 20  0.2% 0.03   0.3% 0.02   0.4% 0.03   0.5% 0.01   0.3% 0.04 

4 5 13  2.3% 0.00  1.9% 0.00  2.0% 0.00  2.1% 0.00  2.1% 0.00 

 6 16  1.2% 0.00  0.9% 0.00  1.5% 0.00  1.6% 0.00  1.7% 0.00 

 7 19  0.7% 0.00  1.3% 0.00  1.2% 0.00  1.0% 0.00  1.1% 0.00 

 8 21  0.8% 0.00  1.0% 0.00  0.9% 0.00  1.0% 0.00  1.0% 0.00 

 9 24  0.5% 0.01  0.6% 0.00  0.5% 0.00  0.7% 0.00  0.5% 0.00 

 10 27  0.4% 0.01  0.6% 0.02  0.6% 0.00  0.6% 0.00  0.5% 0.00 

5 5 17  3.0% 0.00   2.8% 0.00   2.6% 0.00   3.2% 0.00   2.4% 0.00 

 6 20  1.3% 0.00   1.5% 0.00   1.5% 0.00   1.7% 0.00   1.5% 0.00 

 7 23  1.6% 0.00   1.8% 0.00   1.8% 0.00   2.2% 0.00   2.0% 0.00 

 8 27  1.0% 0.00   0.9% 0.00   1.1% 0.00   1.3% 0.00   1.5% 0.00 

 9 30  0.7% 0.00   0.5% 0.00   0.8% 0.00   0.6% 0.01   0.6% 0.00 

 10 34  0.3% 0.01   0.4% 0.00   0.4% 0.00   0.5% 0.00   0.6% 0.00 

6 5 20  2.4% 0.00  2.2% 0.00  2.5% 0.00  2.4% 0.00  2.1% 0.00 

 6 24  2.2% 0.00  2.0% 0.00  1.7% 0.00  1.6% 0.00  1.7% 0.00 

 7 28  0.7% 0.00  1.0% 0.00  0.9% 0.00  1.2% 0.00  1.1% 0.00 

 8 32  0.6% 0.01  0.9% 0.00  0.9% 0.00  0.9% 0.00  0.7% 0.01 

 9 36  0.5% 0.01  0.9% 0.00  0.9% 0.00  1.1% 0.00  1.1% 0.00 

 10 40  0.4% 0.11  0.7% 0.01  0.7% 0.01  0.8% 0.02  0.6% 0.04 

Note: The bold numbers represent not significantly differing at a 5% level. 

In Table 3. 7, the p-values show that, in most cases (118 out of 120 problem classes), the results of 

utilising the exact information and not utilising such information significantly differ at a 5% level. However, 

their relative differences (see Gap) are small, which vary between 0.2% and 3.2%. In addition, regarding 

whether or not to utilise the heterogeneous information, Table 3. 8 shows that about one-fifth of problem 

classes (24 out of 120) do not show a significant difference (p-values >0.05). A common feature in these 

non-significant problem classes is that their bays generally have more stacks (e.g., S = 9, 10). Another 

observation from the two tables is that in both scenarios, the bays with fewer stacks have greater gap values, 

and in the exact scenario, the gap values show an increasing trend as the number of tiers increase. The 

reason is that in the problem classes with fewer stacks and higher tiers, the BIS and DIS indexes are used 

more frequently to determine the relocation stacks. The calculation of the two indexes relies on the 

preference information, but the assumed equal preference may lead to bad decisions on the relocation 

stacks and thus result in more relocations. Moreover, it is observed that the gap values in Table 3. 8 are 

smaller than Table 3. 7 and are no more than 1.3%. One explanation for this phenomenon could be that the 

differences in the values of the two indexes between the exact CPS and the homogeneous CPS are larger 

than that between the heterogeneous CPS and the homogeneous CPS, given that the information in the 

exact CPS is more accurate.  
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Table 3. 8 Comparisons of the total number of relocations between utilising the “heterogeneous” 

information and not utilising such information. 

Problem 
class  W = 2 

 W = 3  W = 4  W = 5  W = 6 

T S C  Gap p-value  Gap p-value  Gap p-value  Gap p-value  Gap p-value 

3 5 10  0.5% 0.00   0.4% 0.00   0.3% 0.00   0.3% 0.00   0.2% 0.00 

 6 12  0.7% 0.00   0.7% 0.00   0.6% 0.00   0.5% 0.00   0.6% 0.00 

 7 14  0.3% 0.00   0.3% 0.00   0.2% 0.00   0.2% 0.00   0.2% 0.00 

 8 16  0.4% 0.02   0.3% 0.07   0.2% 0.17   0.3% 0.02   0.3% 0.08 

 9 18  0.3% 0.06   0.2% 0.09   0.2% 0.03   0.2% 0.06   0.0% 0.54 

 10 20  0.2% 0.01   0.2% 0.06   0.2% 0.01   0.2% 0.06   0.1% 0.04 

4 5 13  0.7% 0.00  0.5% 0.00  0.4% 0.00  0.4% 0.00  0.3% 0.04 

 6 16  0.7% 0.00  0.6% 0.00  0.5% 0.00  0.3% 0.00  0.3% 0.00 

 7 19  0.5% 0.00  0.5% 0.00  0.4% 0.01  0.3% 0.03  0.3% 0.00 

 8 21  0.5% 0.00  0.5% 0.00  0.2% 0.00  0.2% 0.02  0.3% 0.00 

 9 24  0.3% 0.03  0.3% 0.01  0.3% 0.00  0.2% 0.00  0.1% 0.03 

 10 27  0.1% 0.31  0.1% 0.25  0.2% 0.04  0.2% 0.02  0.2% 0.01 

5 5 17  1.3% 0.00   0.6% 0.00   0.7% 0.00   0.5% 0.00   0.4% 0.00 

 6 20  0.7% 0.00   0.6% 0.00   0.5% 0.00   0.4% 0.00   0.3% 0.02 

 7 23  1.0% 0.00   0.7% 0.00   0.8% 0.00   0.5% 0.00   0.5% 0.00 

 8 27  0.6% 0.00   0.5% 0.00   0.4% 0.00   0.5% 0.00   0.4% 0.00 

 9 30  0.4% 0.00   0.3% 0.01   0.5% 0.00   0.3% 0.04   0.2% 0.08 

 10 34  0.1% 0.01   0.1% 0.02   0.1% 0.37   0.1% 0.01   0.1% 0.26 

6 5 20  0.9% 0.00  0.8% 0.00  0.7% 0.01  0.4% 0.00  0.3% 0.03 

 6 24  1.1% 0.01  1.0% 0.00  0.6% 0.02  0.7% 0.02  0.3% 0.00 

 7 28  0.4% 0.00  0.3% 0.00  0.0% 0.89  0.3% 0.05  0.2% 0.01 

 8 32  0.3% 0.01  0.2% 0.12  0.2% 0.04  0.2% 0.11  0.2% 0.08 

 9 36  0.4% 0.00  0.3% 0.01  0.2% 0.06  0.3% 0.00  0.3% 0.06 

 10 40  0.4% 0.01  0.2% 0.07  0.1% 0.06  0.1% 0.21  0.1% 0.49 

Note: The bold numbers represent not significantly differing at a 5% level. 

The small gap values in the above two tables imply that the flexible service policy plays a dominant role 

in reducing the number of relocations, and the relocations that cannot be avoided by out-of-order retrievals 

are also less likely to be avoided by optimising the relocation stacks. From the above two tables, it can be 

suggested that if the truck arrival behaviour conforms to the exact CPS, for the terminals that use narrower 

and higher bays (e.g., S = 5, 6; T =5, 6), it is beneficial to gather the customer preference information, 

which can lead to a 1.3% - 3.2% reduction in the total number of relocations. If the truck arrival behaviour 

conforms to the heterogeneous CPS, the value of the customer preference information might be negligible. 

We remark that when there are more trucks per batch, the value of customer preference information may be 

greater. However, in practice, if there are many containers booked to the same time window, it would be 

wise to avoid stacking these containers in the same bay as this may increase the risk of relocation. Also, in 

the literature (Galle et al., 2018; Feng et al., 2020), six trucks per batch is considered as the largest batch 

size.  

3.6 Conclusions 

This paper investigates the trade-off between the number of relocations and the service fairness and 

assesses the value of customer information in the SCRP under flexible service policies in the import 
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container retrieval process. To handle the issue of service unfairness, two measures are adopted in two 

phases. In phase 1, each appointment time window is divided into multiple sub-time windows and the 

flexible service policy is only applied to smaller sub-time windows. The problem is termed as the SCRP 

with Multiple sub-time windows-based Flexible service policy (SCRP-MFS). In phase 2, we develop a 

stochastic dynamic programming model with two lexicographically ordered objective functions, in which 

the primary objective is to minimise the expected total number of relocations, which reflects relocation 

efficiency, and the secondary objective is to minimise the maximum truck turnaround time, which reflects 

service fairness. The model is tackled using a hierarchical iterative procedure, where the number of 

sub-time windows is updated iteratively and the problem at each iteration is first solved by a heuristic 

algorithm and then the resulted solutions are evaluated by simulation. The SCRP-MFS enables us to 

achieve the trade-off between the reduction of the number of relocations and the concern of service fairness 

by finding an appropriate number of sub-time windows that should be used in the flexible service policy.  

The computational experiments demonstrate that our model is effective in reducing the maximum truck 

turnaround time while incurring a moderate increase in the total number of relocations and only a slight 

increase in the average truck turnaround time. Meanwhile, the coefficient of variation of the truck 

turnaround time, which is another metric of service fairness, can be reduced greatly. We also found that the 

service fairness is not necessarily improving as the number of sub-time windows increases. This implies 

that although the commonly used FCFS policy appears to be fair in terms of service sequence, it does not 

always ensure service fairness in terms of turnaround time. Besides, the degree of the impacts of the 

number of sub-time windows depends on the dimension of the bay layout. As a result of increasing the 

number of sub-time windows, both the reduction in the maximum truck turnaround time and the increase in 

the total number of relocations exhibit a decreasing trend with the increase of the stack height, while the 

latter also shows a decreasing trend as the bay width increases. Moreover, it is found that the scenarios of 

customer preference under consideration do not have a significant impact on the results. In addition, the 

results between utilising and not utilising the customer information are significantly different for the vast 

majority of the problem classes. Specifically, when the customer preference coheres with the exact scenario 

(i.e., each truck will arrive at only a certain sub-time window), the availability of such information can lead 

to a 1.3% - 3.2% reduction in the total number of relocations for the terminals that use narrower and higher 

bays (e.g., S = 5, 6; T =5, 6).  

The above findings help generate some managerial insights for terminal operators. Firstly, when applying 

the flexible service policy, the number of sub-time windows should be carefully determined to balance the 

number of relocations and the performance of individual trucks, in order to mitigate the issue of service 

unfairness. This is especially important for customer-centric terminals that may promise a threshold of 

truck turnaround time to their customers. Multiple sub-time windows should be applied to ensure service 

quality to each customer, but it should be aware that there exists a turning point after which a larger number 

of sub-time windows does not necessarily guarantee better service fairness. Secondly, the suggested 

heuristic algorithm can obtain effective solutions within several milliseconds on a desktop computer. 

Extensive experiments show that the algorithm performs robustly for various scenarios of customer 

preference. Hence, the heuristic tool is suitable for use in real-time decision makings at container yards. 

Thirdly, when each truck only prefers a specific sub-time window, if the yard planning system is able to 

gather and make use of such information from customers, the number of relocations can be further reduced. 

This is especially applicable for the terminals that use a narrower and higher bay layout.  

As future work, apart from the maximum truck turnaround time, more measures can be proposed to 

describe the service fairness for the container retrieval process and considered in the multi-objective 
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decision-making process. Moreover, future research can focus on investigating other operational strategies 

on mitigating the service unfairness among trucks and improving the service quality of import container 

retrievals.  

3.7 Appendix 

Appendix A. Essential notations 

A.1 Modelling notations 

S: the number of stacks in a bay; 

T: the number of tiers in a bay; 

C: the total number of containers in a bay; 

K: the total number of batches; 

Bk: the set of containers in batch k, {1,..., }k K ; 

Ck: the number of containers in batch k, {1,..., }k K ; 

W: the number of sub-time windows; 

,

W

i wp : the probability of truck i arriving at sub-time window w of its appointed time window when each 

appointment time window is divided into W sub-time windows, which represents customer preference. 
W

kζ : the scenario of the sub-batches of stage k, and stage k refers to the kth batch to be retrieved; 

( )W

kp ζ : the probability of 
W

kζ ; 

kS : the input state of stage k, {1,..., }k K ;  

( , )W

k k kS ζa : The actions (a decision variable) taken for retrieving the kth batches of containers given kS  

and 
W

kζ . ( , ) { ( , ), ( , )}W S W R W

k k k k k k k k kS ζ S ζ S ζa a a , wherein ( , )S W

k k kS ζa  represents the retrieval 

sequence for the containers in each sub-batch at stage k given kS  and 
W

kζ , and ( , )R W

k k kS ζa represents the 

relocation positions that respect ( , )S W

k k kS ζa ; 

( , )W

k k k kr S ζa : The number of relocations required during action ka  on the bay of state kS  given 

W

kζ ; 

( , , )W

k k k kt S ζ a : The state transition function that maps kS , 
W

kζ , and ka  into the next state 1kS  ;  

( )W

k kf S : The expected minimum total number of relocations to retrieve the remaining K-k+1 batches of 

containers from state kS  when each appointment time window is divided into W sub-time windows. 

ia : the arrival time of truck i at the terminal; 

id : the departure time of truck i from the yard; 

,

W
kζ

k ig : the turnaround time of truck i, ki B , in batch k under 
W

kζ ; 

W
kζ

io : the service order of truck i, ki B , under 
W

kζ ; 
W
kζ

ir : the number of relocations needed when serving truck i, ki B , under 
W

kζ ; 

rett : the handling time per retrieval move; 

relt : the handling time per relocation move; 

ek: the end of the appointed time window of batch k; 
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sk: the service starting time of batch k; 

ck: the completion time of retrieving the last container in batch k. 

A.2 Notations in the heuristic algorithm 

BIS(s): the probability of a container being blocking if relocated to stack s.  

DIS(s): the probability of the containers with the highest priority in stack s being the first one to be 

retrieved within its batch.  

it : the ith target container to be retrieved, {1,..., }i C . 

n(u): the number of relocations needed for retrieving container u. 

 : the bay configuration (state). Let 0  represent the initial configuration.  

lmin: the smallest priority label of containers in  .  

 : the set of containers labelled lmin in  . 

kw : the trucks in batch k that have arrived at sub-time window w.  

c: the blocking container that is to be relocated; 

ŝ : the stack where the blocking container c is located before relocating; 

m(s): the smallest priority label of a container in stack s, {1,..., }s S . For an empty stack, we let m(s) 

equal C+1; 

h(s): the number of containers in stack s, {1,..., }s S ; 

SC: the set of candidate stacks; 

*s : the selected relocation stack. 

Appendix B. Additional results for the impact of the customer preference scenario 

Note that in the following tables, “Ho vs. He” represents homogeneous vs. heterogeneous; “Ho vs. Ex” 

represents homogeneous vs. exact; “He vs. Ex” represents heterogeneous vs. exact. * Significance level 

=5%.  

Table 3. B.1 Comparisons of the total number of relocations between different customer preference 

scenarios for the SCRP-MFS with W = 3. 

Problem class  Gap  p-Value 

T S C  Ho vs. He Ho vs. Ex He vs. Ex  Ho vs. He Ho vs. Ex He vs. Ex 

3 5 10  0.16% -1.05% -1.21%  0.67 0.14 0.03* 

 6 12  -1.22% -1.68% -0.46%  0.03* 0.01* 0.50 

 7 14  -0.52% -0.65% -0.13%  0.23 0.13 0.85 

 8 16  -0.08% -0.18% -0.09%  0.92 0.87 0.94 

 9 18  -0.43% -0.12% 0.31%  0.39 0.85 0.66 

 10 20  -0.03% -0.22% -0.19%  0.94 0.71 0.80 

4 5 13  -0.64% -2.69% -2.07%  0.28 0.01* 0.02* 

 6 16  -0.48% -1.26% -0.78%  0.35 0.13 0.44 

 7 19  0.19% -1.24% -1.43%  0.78 0.23 0.21 

 8 21  0.04% -0.86% -0.90%  0.93 0.32 0.35 

 9 24  -0.52% 0.08% 0.60%  0.22 0.84 0.27 

 10 27  0.77% -0.79% -1.55%  0.10 0.27 0.02* 

5 5 17  -1.06% -3.84% -2.81%  0.10 0.00* 0.00* 

 6 20  -0.14% -1.54% -1.41%  0.80 0.01* 0.01* 
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 7 23  0.27% -0.89% -1.16%  0.58 0.16 0.07 

 8 27  -0.26% -0.47% -0.21%  0.53 0.40 0.68 

 9 30  -0.39% -1.54% -1.16%  0.24 0.01* 0.04* 

 10 34  0.29% -0.65% -0.93%  0.35 0.07 0.00* 

6 5 20  -0.93% -2.50% -1.59%  0.14 0.00* 0.00* 

 6 24  -1.98% -1.64% 0.35%  0.01* 0.05* 0.46 

 7 28  0.03% 0.21% 0.19%  0.95 0.81 0.85 

 8 32  0.40% -0.59% -1.00%  0.37 0.25 0.07 

 9 36  -0.37% -1.26% -0.90%  0.47 0.04* 0.16 

 10 40  0.15% -0.17% -0.31%  0.64 0.76 0.51 

 

Table 3. B.2 Comparisons of the total number of relocations between different customer preference 

scenarios for the SCRP- MFS with W = 4. 

Problem class  Gap  p-Value 

T S C  Ho vs. He Ho vs. Ex He vs. Ex  Ho vs. He Ho vs. Ex He vs. Ex 

3 5 10  0.19% -0.47% -0.65%  0.57 0.37 0.21 

 6 12  -0.74% -1.96% -1.23%  0.14 0.01* 0.15 

 7 14  0.01% -0.34% -0.35%  0.97 0.47 0.50 

 8 16  0.02% -1.66% -1.67%  0.98 0.28 0.38 

 9 18  0.14% 0.05% -0.10%  0.83 0.93 0.91 

 10 20  -0.25% -0.49% -0.24%  0.48 0.21 0.64 

4 5 13  -1.63% -3.32% -1.72%  0.03* 0.00* 0.02* 

 6 16  -1.22% -2.06% -0.86%  0.03* 0.00* 0.18 

 7 19  -0.38% 0.59% 0.98%  0.57 0.53 0.33 

 8 21  0.37% -0.25% -0.62%  0.48 0.69 0.31 

 9 24  0.83% 0.11% -0.72%  0.04* 0.84 0.19 

 10 27  -0.15% -0.71% -0.56%  0.71 0.29 0.39 

5 5 17  -0.88% -4.10% -3.25%  0.23 0.00* 0.00* 

 6 20  -0.81% -1.61% -0.81%  0.17 0.01* 0.19 

 7 23  0.17% -1.55% -1.72%  0.69 0.02* 0.00* 

 8 27  -0.51% -1.53% -1.03%  0.19 0.02* 0.10 

 9 30  -0.98% -1.34% -0.37%  0.01* 0.04* 0.52 

 10 34  0.17% -0.26% -0.43%  0.59 0.45 0.13 

6 5 20  0.27% -1.66% -1.92%  0.61 0.02* 0.01* 

 6 24  -0.99% -1.99% -1.01%  0.07 0.01* 0.07 

 7 28  -1.09% -1.09% 0.00%  0.04* 0.26 1.00 

 8 32  -0.66% 0.09% 0.76%  0.10 0.89 0.15 

 9 36  -0.23% -0.96% -0.73%  0.56 0.03* 0.10 

 10 40  0.27% 0.22% -0.05%  0.45 0.71 0.91 
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Table 3. B.3 Comparisons of the total number of relocations between different customer preference 

scenarios for the SCRP- MFS with W = 5. 

Problem class  Gap  p-Value 

T S C  Ho vs. He Ho vs. Ex He vs. Ex  Ho vs. He Ho vs. Ex He vs. Ex 

3 5 10  0.70% -0.69% -1.38%  0.07 0.22 0.01* 

 6 12  -0.63% -2.45% -1.84%  0.29 0.00* 0.01* 

 7 14  -0.14% -1.09% -0.95%  0.77 0.06* 0.21 

 8 16  -0.20% -2.40% -2.21%  0.60 0.02* 0.07 

 9 18  -0.13% -0.42% -0.29%  0.82 0.53 0.72 

 10 20  -0.90% -0.91% -0.01%  0.01* 0.01* 0.98 

4 5 13  -0.53% -1.62% -1.10%  0.56 0.13 0.22 

 6 16  -0.79% -1.76% -0.97%  0.14 0.03* 0.27 

 7 19  0.08% -1.32% -1.39%  0.92 0.31 0.28 

 8 21  -0.11% -0.02% 0.09%  0.84 0.98 0.93 

 9 24  0.33% 0.22% -0.10%  0.51 0.67 0.84 

 10 27  0.39% -0.42% -0.81%  0.46 0.58 0.33 

5 5 17  -1.15% -4.01% -2.90%  0.13 0.00* 0.00* 

 6 20  -0.33% -1.86% -1.53%  0.61 0.01* 0.00* 

 7 23  0.75% -0.20% -0.94%  0.14 0.80 0.22 

 8 27  0.34% -1.32% -1.66%  0.42 0.03* 0.00* 

 9 30  -0.36% -1.00% -0.64%  0.28 0.10 0.24 

 10 34  -0.11% -0.41% -0.31%  0.79 0.30 0.50 

6 5 20  -0.81% -2.83% -2.03%  0.11 0.00* 0.00* 

 6 24  -0.54% -1.68% -1.14%  0.28 0.03* 0.05* 

 7 28  -0.45% -2.62% -2.18%  0.27 0.02* 0.03* 

 8 32  0.01% -0.07% -0.09%  0.98 0.91 0.85 

 9 36  -0.13% -0.74% -0.61%  0.72 0.15 0.13 

 10 40  -0.02% -0.04% -0.02%  0.96 0.93 0.97 

 

 

 

 

 

 

 

 

 

 

 

 



156 

 

Table 3. B.4 Comparisons of the total number of relocations between different customer preference 

scenarios for the SCRP- MFS with W = 6. 

Problem class  Gap  p-Value 

T S C  Ho vs. He Ho vs. Ex He vs. Ex  Ho vs. He Ho vs. Ex He vs. Ex 

3 5 10  0.41% -0.46% -0.86%  0.26 0.28 0.01* 

 6 12  -1.07% -2.23% -1.17%  0.02* 0.00* 0.04* 

 7 14  -0.43% -1.44% -1.02%  0.42 0.01* 0.17 

 8 16  -0.22% -1.58% -1.36%  0.71 0.10 0.23 

 9 18  0.01% 0.05% 0.04%  0.98 0.92 0.95 

 10 20  -0.07% -0.55% -0.48%  0.84 0.26 0.40 

4 5 13  -0.53% -1.61% -1.08%  0.49 0.16 0.27 

 6 16  -0.26% -1.71% -1.45%  0.60 0.06 0.05* 

 7 19  -0.14% -1.22% -1.08%  0.79 0.34 0.35 

 8 21  -0.03% -0.92% -0.89%  0.94 0.18 0.21 

 9 24  -0.30% 0.18% 0.48%  0.42 0.63 0.35 

 10 27  0.08% -0.83% -0.91%  0.86 0.20 0.27 

5 5 17  -0.71% -2.38% -1.68%  0.27 0.02* 0.06 

 6 20  -0.19% -1.49% -1.30%  0.74 0.01* 0.05* 

 7 23  0.28% -1.59% -1.86%  0.50 0.03* 0.01* 

 8 27  -0.42% -1.04% -0.62%  0.27 0.07 0.33 

 9 30  -0.23% -1.41% -1.19%  0.50 0.03* 0.02* 

 10 34  0.71% -0.39% -1.09%  0.06 0.37 0.02* 

6 5 20  0.35% -1.97% -2.31%  0.54 0.00* 0.00* 

 6 24  -0.38% -1.83% -1.45%  0.46 0.00* 0.02* 

 7 28  -0.38% -0.84% -0.47%  0.29 0.18 0.44 

 8 32  -0.09% -0.53% -0.45%  0.84 0.36 0.40 

 9 36  -0.53% -1.26% -0.73%  0.24 0.01* 0.08 

 10 40  0.21% -0.28% -0.49%  0.62 0.58 0.27 
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Chapter 4 

Smart stacking for import containers using customer 

information at automated container terminals 

 

 

 

 

 

 

Abstract: Container stacking strategies affect the number of unproductive relocations and the truck waiting 

times during the container retrieval process, which plays a vital role in the efficiency of container terminals. 

Container relocation is caused by the mismatch between containers’ stacking positions and their retrieval 

sequences. Motivated by the practical import free-flow program that aims to expedite the container retrieval 

flow by eliminating container relocations, we conceptualise a new container stacking strategy, termed 

Smart Stacking (SS) strategy, which can greatly reduce the number of relations for import containers by 

utilising customer information. Some customers’ containers are allocated to dedicated stacks (smart stacks) 

so that no relocations are required for them during the retrieval process, while other containers will share 

non-smart stacks. The problem is to determine the smart customers or containers, the number and locations 

of smart stacks (and non-smart stacks), and assign a batch of import containers to exact stacking positions 

in a yard block at an automated container terminal. The objective is to minimise the total retrieval time that 

is the sum of the relocation time and the crane travel time. Our problem can be regarded as the Storage 

Location Assignment Problem (SLAP) under the SS strategy. Two variants of SLAP are investigated under 

two SS policies, the non-split policy and the split policy, according to whether the containers from the same 

customer are allowed to be split between smart stacks and non-smart stacks. For the non-split variant, a 

mixed-integer programming (MIP) model is formulated first. By analysing the properties of the optimal 

solution, an improved formulation is then proposed, which leads to enhanced computational performance. 

To further improve the computational efficiency, a divide-and-conquer heuristic based on the structure of 

the model is proposed to solve the non-split variant, which can produce high-quality solutions with a gap of 

less than 0.6% from the optimal ones within a few seconds. For the split variant, we develop a MIP model 

under the optimal partitions from the non-split model. We prove that the split variant yields better 

performance than the non-split variant. Extensive experiments are carried out to illustrate the effectiveness 

of smart stacking including the comparison with the random stacking strategy that is commonly used in 

practice. It is found that customer information and yard utilisation rate have a great influence on the 

effectiveness of smart stacking. Significant benefits may be achieved by allowing splitting under certain 

conditions.
 1

   

Keywords: OR in maritime industry, import container stacking problem, smart stacking strategy, value 

of customer information 

                                                        
1 Feng, Y., Song, D. P., & Li, D. (2021). Smart stacking for import containers using customer information at automated 
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4.1 Introduction 

With more than 80 percent of the world merchandise trade by volume being carried by sea (UNCTAD, 

2020), maritime transport and ports have become essential components in global supply chains. Within the 

maritime transport industry (including tanker, dry bulk, container, and general cargo), 52 percent of cargoes 

by value were carried by container ships (Lee and Song, 2017). The global containerized trade has 

experienced a 5.8 percent average annual growth over the past two decades (UNCTAD, 2019). Maritime 

container terminals, where containers are transferred between seaborn transport and hinterland transport, 

provide crucial linkages in the global container shipping network, and their handling productivities and 

efficiencies are essential to ensure efficient supply chain operations. According to Drewry baseline forecast, 

although world port container throughput is expected to contract by 7.3 percent in 2020 due to the impact 

of the COVID-19 pandemic, a jump up to more than 10 percent is projected in 2021 (UNCTAD, 2020). In 

fact, major UK container ports (Felixstowe and Southampton) and US west coastal ports (Los Angeles and 

Long Beach) have experienced severe congestion in the second half of 2020. Therefore, container terminals 

need to prepare for a potential surge in container handling volumes. 

A container terminal can be divided into three main areas: seaside, landside, and storage yard (de Melo 

da Silva, 2018). The storage yard serves as the buffer area for storing containers before their onward 

transportation and links the seaside and landside operations. Import containers are discharged from ships at 

the seaside, unloaded into the storage yard, and then loaded to external trucks or trains at the landside, 

whereas the export containers follow the reverse path (Kizilay and Eliiyi, 2020). Inefficient container 

unloading and loading operations at the yard lead to longer waiting times for external trucks, which is 

considered as the major source of delay that affects the truck turnaround time (Phan and Kim, 2016). The 

turnaround time of external trucks is one of the key performance measures of the efficiency of container 

terminals and also contributes to the evaluation of customer service levels and port competitiveness (de 

Melo da Silva, 2018). Longer turnaround time results in truck congestion at the container terminals, which 

has caused a serious environmental concern because of the emissions it generates (Phan and Kim, 2016). 

Terminal operators have been under enormous pressure from different stakeholders who require terminals 

to reduce the truck turnaround time, including governments (Giuliano and O’Brien, 2007), port authorities 

(e.g., Port Botany and Port Metro Vancouver (The Port of Long Beach and Port of Los Angeles, 2017)), 

and the stakeholders of the hinterland transport (Bonney, 2015). This paper focuses on improving the 

delivery (loading) efficiency of import containers to external trucks at the interface of the storage yard and 

the terminal’s landside. 

Container stacking, the theme of this paper, addresses the assignment of storage positions in the yard to 

containers, which directly affects the container delivery efficiency and the truck waiting time. A major 

source of inefficiency when retrieving containers from yards is container relocations (Ku and Arthanari, 

2016a). Due to limited space in the yard, containers are piled up vertically in stacks (usually up to six tiers 

high). If a target container to be retrieved is not on the topmost tier, those above it – that is, the blocking 

containers - need to be moved out of the way in order to access the target one. Such moves of blocking 

containers are called relocation, reshuffling, or rehandling. Relocation is an unproductive operation that is 

costly to terminals and also contributes to truck waiting times. Researchers have been trying to reduce 

relocations by addressing a series of container stacking related problems, for example, the container 

relocation problem that determines the positions of relocated containers (e.g., Zhu et al., 2012; Zehendner 

et al., 2015), the container pre-marshalling problem that re-arranges the container stacking positions (e.g., 

Parreño-Torres et al., 2019; Tanaka et al., 2019), and the container stacking problem that pre-plans the 

initial stacking positions of containers (e.g., Zhang et al., 2014; Gharehgozli et al., 2014). In this paper, we 
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address one of these container stacking problems - the Storage Location Assignment Problem (SLAP), 

where a batch of import containers are allocated to exact locations in a storage area to minimise their future 

retrieval times. 

The SLAPs for import containers have been under-studied. The main challenge may lie in the uncertainty 

regarding which container will be retrieved first since external trucks arrive at the terminal randomly to 

pick up a specific container (Saurí and Martín, 2011; Yu and Qi, 2013). A couple of studies attempt to 

reduce the number of relocations by stacking containers based on the information of retrieval times (e.g., 

Lee et al., 2008; Maldonado et al., 2019). However, in reality, in most cases, the retrieval times of 

containers are not yet known when stacking the containers, and thus containers are often randomly stacked, 

which can lead to a high relocation rate. Studies have shown that in busy ports such as Los Angeles-Long 

Beach, it takes on average two to three relocations to deliver one container to a truck (Mongelluzzo, 

2015a).  

With the development of port digitalization and in an effort to improve container delivery efficiency and 

reduce truck waiting times, an innovative container delivery and staging program — Import Free Flow 

(IFF) — has been initiated at Port of Los Angeles (Mongelluzzo, 2015b). The idea behind IFF is to 

eliminate the need of relocations and realise rapid retrieval flow through pre-staging large groups of 

containers being picked up by the same customer. With IFF, high-volume customers can have all their 

containers stored in dedicated stacks when they are unloaded from a vessel. These containers are called 

free-flow containers. Customers can pick up their free-flow containers from the top of the stacks on a 

last-in-first-out basis since the pickup sequences of containers from the same customer do not matter. As a 

result, no relocations are needed for retrieving free-flow containers.  

The IFF program has resulted in significant improvements in truck turnaround times in practice. For 

example, free-flow containers reduced truck turnaround times by more than 50 percent at Port of Los 

Angeles in 2015 (Parker, 2015). However, the IFF program has not been widely adopted in practice, and 

academic research in this regard is rather scarce. In the current practice, terminal operators usually do not 

utilise the customer information of containers when stacking the containers either because the information 

is not available to them, or probably more importantly, because they have not recognised the value of the 

customer information and how to use the information to determine the container stacking positions. In 

addition, the current stacking strategy in the IFF program is rather heuristic and is inadequate for its mass 

application. For example, the free-flow service is only available to high-volume customers who own at 

least 50 containers, and the free-flow containers are simply pre-staged in specific stacks that are separated 

from the traditional containers (i.e., non-free-flow containers) (Dupin, 2015; Parker, 2015). Expanding the 

free-flow service to smaller customers could dramatically improve container retrieval efficiency, which is 

the next goal of the practitioners (Parker, 2015). However, which customers or containers should be 

free-flowed, how many free-flow stacks should be selected, and where these stacks should be located in the 

yard have never been examined.  

Motivated by the IFF program, we conceptualised a new import container stacking strategy - Smart 

Stacking (SS) strategy - where import containers are grouped based on customer information, and they are 

classified into either smart (free-flow) or non-smart (non-free-flow) containers to be allocated to smart 

stacks and non-smart stacks respectively in a yard block in an optimal way. The smart containers of a 

customer will not share the stacks with containers from any other customers to guarantee zero relocation 

for them. The non-smart containers will share the stacks with other customers’ containers as usual, which 

may incur relocations during the future retrieval process. This paper aims to investigate how customer 

information can be utilised to better plan the exact stacking positions for import containers so as to improve 
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retrieval efficiency. The research objectives are: i) to seek the optimal solution for stacking a batch of 

import containers with customer information into a limited (user-defined) storage area in a yard block 

under the proposed SS strategy; ii) to quantify the reduction in the total retrieval time by applying the SS 

strategy; iii) and to evaluate the impacts of relevant parameters (customer information and yard utilisation 

rate) on the effectiveness of the SS strategy.  

Our contributions to the existing literature and practice can be summarized as follows: (i) We propose a 

new stacking strategy – Smart Stacking (SS) strategy - to improve the import container retrieval efficiency 

at container terminals. (ii) We introduce two forms of stacking policies under the framework of the SS 

strategy, depending on whether the containers from the same customer are allowed to be split between 

smart stacks and non-smart stacks or not. Correspondingly, we develop two variants of mathematical 

models for the Storage Location Assignment Problem (SLAP) at an Automated Container Terminal (ACT), 

that is, the non-split model and the split model. The proposed models enable terminal operators to 

determine which customers or containers should be selected to be free-flowed and to quantify the benefits 

of the splitting policy. (iii) We establish structural properties of the optimal solution to the non-split model 

and then make use of these properties to improve the computational efficiency of the non-split model. (iv) 

To overcome the computational complexity and enable the SS strategy to be applicable in real-time 

situations, we develop a heuristic algorithm to solve the non-split variant (which is the focus of this paper) 

based on the structure of the model. The heuristic algorithm can obtain near-optimal solutions in several 

seconds. (v) We conduct extensive experiments to demonstrate the effectiveness of the SS strategy, and the 

impact of the customer information and the yard utilisation rate on the results. The findings can help 

terminal operators to understand the effectiveness of the SS strategy under a variety of scenarios and assess 

the value of customer information to container retrieval efficiency, which could promote the vertical 

collaboration between terminal operators, trucking companies, and cargo owners to improve supply chain 

performance. 

The remainder of the paper is organized as follows. In Section 4.2, we review existing stacking strategies, 

discuss the previous work related to the container stacking problems, and summarize the research gap. 

Section 4.3 describes the problem under consideration and presents two forms of smart stacking policies. 

Section 4.4 formulates the SLAPs under the two policies by using mixed-integer programming and 

analyses the structural properties of the optimal solution. Section 4.5 proposes a heuristic algorithm for the 

non-split model. In section 4.6, we conduct computational experiments to illustrate the effectiveness of the 

proposed strategies and generate managerial insights. Section 4.7 concludes the paper, discusses several 

extensions of this study, and envisages further research directions. 

4.2 Literature review 

Container stacking has attracted extensive attention over the last two decades (see reviews from Zhen et 

al., 2013; Carlo et al., 2014a, b; Lehnfeld and Knust, 2014). The problems related to container stacking 

include container stacking strategies, storage space allocation, storage location assignment, container 

relocation, and container pre-marshalling. This paper focuses on the short-term operational decision to 

assign import containers to exact storage locations, which belongs to the storage location assignment 

problem (SLAP). Relevant literature is organized into three topics: container stacking strategies, storage 

location assignment, and container relocation estimation. 
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4.2.1 Container stacking strategies 

Container stacking strategies are a set of stacking rules or criteria that should be adhered to when 

determining the storage position of each container or the storage space of a group of containers. Container 

stacking strategies are tactical level decisions of container terminals (Maldonado et al., 2019), which 

influence the allocation of stacking positions at the operational level. Several types of stacking strategies 

have been applied in practice and studied in the literature, which usually differ between export containers 

and import containers due to their different arrival and departure characteristics.  

Export containers 

Export containers usually arrive at terminals individually and are loaded onto vessels in batch. For 

export containers, their arrival times are uncertain but their departure times are relatively fixed by the 

destination vessels. There are several types of stacking strategies for export containers, which differ by the 

type of information utilised to categorise containers. In the residence time stacking strategy, the containers’ 

residence/departure times are used to determine whether a container can be stacked on top of others. 

Container relocation can be reduced by stacking the earlier-departure containers on top of the 

later-departure containers (e.g., Borgman et al., 2010). In the category stacking strategy, containers are 

categorised according to the containers’ attributes, such as the weight class, the port of destination, and the 

type of container, in which the containers of the same category can be stacked on top of each other to avoid 

relocation (e.g., Dekker et al., 2006; Kim et al., 2000; Kang et al., 2006; Guerra-Olivares et al., 2018). This 

is because the containers of the same category are exchangeable in the ship loading plan that specifies only 

the container group. When a container from a group is requested for loading into a ship slot in the loading 

plan that specifies the group, any container from the same group can be loaded into the slot (Kim et al., 

2000). For the category stacking, depending on whether containers to different ships are allowed to share a 

stack, dedicated stacking strategies and shared stacking strategies are differentiated. Under the dedicated 

stacking strategy, containers to different ships cannot stack on top of each other. On the other hand, the 

shared stacking strategy allows containers to different ships to be stacked on top of each other by 

considering the departure time of containers, which can better utilise the yard space (e.g., Gharehgozli et 

al., 2014; Gharehgozli and Zaerpour, 2018).  

Import containers 

Import containers are unloaded from vessels in large volumes and then picked up by customers 

individually and randomly. Due to the high uncertainty in the retrieval sequences of import containers, it is 

difficult to categorise import containers according to their departure times. Two types of stacking strategies 

for import containers are commonly used in practice and have been investigated in academic research: 

segregation strategy and non-segregation strategy. Under the segregation strategy, containers from different 

ships are stacked separately in the container yard. Under the non-segregation strategy, containers from 

different ships are mixed in the storage area such that newly discharged containers are stacked on top of old 

ones. The segregation strategy may have the advantage of reducing the number of relocations during the 

container retrieval process because earlier-arrived containers are likely to be retrieved earlier; but it requires 

additional clearing moves before each ship’s arrival to create enough space for the new containers. On the 

other hand, the non-segregation strategy would increase relocation moves because the containers that have 

stayed for a longer time and thus tend to be picked up soon will be buried under recently arrived ones (De 

Castilho and Daganzo, 1993). 

The segregation strategy and non-segregation strategy are first investigated by De Castilho and Daganzo 
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(1993) and then are further developed by Saurí and Martín (2011). Mathematical models have been 

developed to optimise the stacking height under the segregation strategy (Kim and Kim, 1999) and to 

optimise the number of import containers allocated to each bay under both segregation and non-segregation 

strategies (Yu and Qi, 2013). The segregation strategy separates import containers roughly by the arriving 

vessels but does not specify how the containers from the same vessel are stacked. A few studies develop 

more detailed stacking strategies based on the container departure dates (e.g., Guldogan, 2011) and the 

estimated dwell times of import containers (e.g., Lee et al., 2008; Gaete et al., 2017; Maldonado et al., 2019) 

where containers with longer dwell times are stored under those with smaller values to reduce the number 

of future relocations. However, in reality, the departure dates are often not available in advance, and 

accurate prediction of dwell times is difficult. Besides, the containers with the same dwell time will be 

picked up randomly, which still incur relocations. Different from the above studies, in this paper, the smart 

stacking strategy uses the customer information of import containers to create relocation-free stacks. This 

can avoid the difficulty to predict the container departure time. 

4.2.2 Storage location assignment problem 

The determination of container storage locations is usually addressed hierarchically in two decision 

problems: the Storage Space Allocation Problem (SSAP) and the Storage Location Assignment Problem 

(SLAP) (Kim and Park, 2003; Zhang et al., 2003). The SSAP determines the amount of yard storage space 

allocated to each vessel for their containers, which can be addressed at various levels according to the 

storage space unit considered: yard section, yard block, yard sub-block, and yard bay (Jin et al., 2016). The 

SSAPs mainly aim to improve the efficiency of the container stacking process with efficient use of the 

terminal resources (e.g., Zhang et al., 2003; Lee et al., 2007; Zhen, 2016; Jiang et al., 2012, 2013; Zhou et 

al., 2020). The SLAP deals with the assignment of individual containers to exact storage locations – which 

is specified by a bay number, a row number, and a tier - in blocks. The number of relocations during the 

future retrieval process is an important performance measure in the SLAPs when the container retrieval 

efficiency is the focus (e.g., Kim et al., 2000; Zhang et al., 2010; Saurí and Martín, 2011; Zhu et al., 2020). 

This paper falls into the SLAP, in which we determine the exact storage location of each import container 

in a given storage area of a block.  

The SLAP may be classified into two broad categories according to the planning approaches: online 

planning and offline planning. The online planning approach allocates containers to slots in a real-time way 

by considering the dynamic characteristics of the problem and the uncertain information on containers. For 

example, online-rule-based heuristics are used to determine the stacking position of each container 

separately in real-time (e.g, Park et al., 2011; Lin et al., 2017; Petering et al., 2017; He et al., 2019). 

Simulation-based methods have been used to evaluate and optimise the performance measures (e.g., 

Dekker et al., 2006; Borgman et al., 2010; Guldogan, 2011). Moreover, facing the uncertainties and 

disturbances in the container stacking environment (e.g., equipment breakdown, breakage of machines, and 

a fault in a container placing), decentralized approaches such as case based reasoning (Rekik et al., 2018) 

and multi-agent approach (Rekik and Elkosantini, 2019) are developed for the reactive container stacking 

systems.  

The offline planning approach focuses on finding an optimal plan at the beginning of the planning period 

for an offline environment where the input data of the defined problems are known. This paper follows this 

research stream. The relevant literature adopting the offline planning approach is reviewed in the following 

two sub-sections according to whether they deal with export containers or import containers. 
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4.2.2.1 Export containers 

The loading sequence of export containers can be pre-determined to some extent by certain criteria, 

which makes the optimisation problem relatively well defined. Preston and Kozan (2001) assume that the 

containers’ loading sequence is pre-determined by various loading schedules and develop a mixed integer 

programming model to minimise the total transfer time of each yard machine that is the sum of the travel 

time and the relocation time. Some studies assume that heavy containers will be loaded onto vessels before 

light ones and thus position heavier ones on top of lighter ones to reduce the number of relocations. Based 

on the (uncertain) weight class information of containers, dynamic programming models (Kim et al., 2000; 

Zhang et al., 2010) and simulated annealing algorithm (Kang et al., 2006) are proposed to minimise the 

expected number of relocations or the total punishment of relocations (Zhang et al., 2014). Gharehgozli and 

Zaerpour (2018) assume that the outbound barge containers’ departure priorities are pre-determined jointly 

by the containers’ attributes and the barges’ arrival time windows. Containers with lower departure 

priorities are strictly not allowed to be stacked on top of those with higher priorities so that relocation is 

completely avoided. An integer programming model is proposed to determine the storage locations to 

minimise the total retrieval time. Moreover, a couple of papers decompose the SLAP into two stages, in 

which the bays are assigned to containers in the first stage and the slot for storing each container is 

determined in the second stage where the number of relocations is minimised (Chen and Lu, 2012; Li et al., 

2017). 

4.2.2.2 Import containers 

Relatively fewer studies have been conducted on the SLAP for import containers. One of the challenging 

issues for import containers is the phenomenon of uncertainties in the retrieval sequence. Assuming that 

containers are retrieved with a certain probability distribution, Kim and Kim (1999) develop mathematical 

models to determine the optimal average stacking height to minimise the expected total number of 

relocations over a planning horizon. Assuming that import containers are arriving with constant rates and 

are retrieved with different probability of departure time, Saurí and Martín (2011) propose a probabilistic 

distribution-based mathematical model to estimate the number of relocations for the whole block under 

specific stacking strategies. The stacking strategies define the rules of mixing different groups of containers 

and clearing containers to reduce unproductive moves. A few studies assume that the exact retrieval 

time/sequence is known so that the number of relocations can be measured exactly (Chang and Zhu, 2019; 

Wang et al., 2020) or relocations can be completely avoided (Razouk et al., 2016). Under this assumption, 

Chang and Zhu (2019) develop a two-stage model for the storage space assignment of inbound containers 

in rail–water intermodal container terminals, which selects the optimal block for containers to balance the 

workload in different blocks at the first stage and assigns containers into the optimal slots to reduce the 

amount of overlapping (number of relocations) at the second stage. Besides, Wang et al. (2020) develop a 

multi-objective optimisation model to minimise container overlapping amounts and crane moving distance 

for stacking both inbound and outbound containers in a rail-truck transhipment terminal. In addition, 

Razouk et al. (2016) develop a MIP model for the slot assignment of inbound containers, where the 

travelling distance between the berth and the storage bay is minimised and relocations are avoided. By 

assuming group retrieval priorities given by the truck arrival time windows, Zhu et al. (2020) combine the 

container stacking problem with the ship unloading problem - the inbound containers unloading and 

stacking problem (ICUSP) - to optimise both the container unloading sequence from the vessel and the 

container storage locations in the yard with the objective of minimising the expected number of relocations 

during the container retrieval process.  
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We remark that, in reality, due to the dynamic and random arrivals of external trucks, the exact retrieval 

sequence of import containers is difficult to know when containers are stacked. For terminals that are 

equipped with a truck appointment system, relative retrieval priorities may be obtained from the truck 

appointment information, but only after the containers have been stacked in the yard. This is because the 

fact that, in most cases, appointments are not bookable until the container has already been customs cleared 

for pick‐up, which can be days after the container have been stacked in the terminal (e.g., DP World 

London Gateway; The Port of Long Beach and Port of Los Angeles, 2017). In this study, we do not assume 

the information about the container retrieval sequence.  

4.2.2.3 Concepts and practice relevant to smart stacking 

The smart stacking strategy proposed in this paper utilises the customer information to group containers 

so as to reduce relocations, which resembles the category-based stacking or grouped-storage. Similar 

concepts and practice can also be identified in the storage systems of other relevant industries, such as 

containership stowage systems (Monaco et al., 2014; Iris et al., 2018), warehousing systems (Zaerpour et 

al., 2015) and generic block stacking systems (Yang and Kim, 2006; Jang et. al, 2013). However, there is a 

fundamental difference between our smart stacking strategy and the existing category-based stacking. The 

category-based stacking relies on simple criteria (e.g. container attributes, departure time, and destinations) 

to categorise containers into groups, which is treated as pre-determined before stacking. It does not 

differentiate between smart and non-smart groups/containers because each stack is allowed to store 

multiple groups of containers. On the other hand, given the customer information, the smart stacking 

strategy incorporates intelligence into the stacking decision-making by simultaneously determining 

whether the groups/containers to be either smart or non-smart and optimising the locations of these smart 

stacks and smart containers.  

4.2.2.4 Objective functions 

Most of the above studies focus on conventional container terminals. In the recent decade, many 

terminals have been driven towards automated container terminals (ACTs) due to their low labour cost, low 

energy consumption, high safety, etc (Zhou et al., 2018; Wang et al., 2019). However, the container 

stacking problems at the ACTs are not yet adequately studied in the literature. This paper will address the 

SLAP at ACTs.  

In conventional terminals, the yard blocks are typically positioned parallel to the quay, and containers are 

transferred between the yard crane and trucks at the empty lane at the side of each block. For export 

containers, this type of block layout can reduce the travel distance of the yard crane during the container 

retrieval process by storing export containers of the same group in the same bay to avoid the yard crane 

travelling across different bays. This is because export containers of the same group are usually loaded onto 

a ship consecutively (Kim and Park, 2003). However, for import containers, there is little chance to reduce 

such distance by optimising their storage locations because the retrieval sequence of import containers is 

unknown. Therefore, the objective functions of the SLAPs concerning the retrieval efficiency of import 

containers at conventional terminals mainly focus on the performance metric of the number of relocations 

(e.g., Kim and Kim, 1999; Saurí and Martín, 2011; Zhu et al., 2020).  

In ACTs, the yard blocks are typically positioned perpendicular to the quay, and containers are 

transferred between the Automated Stacking Crane (ASC) and trucks at the ends of each block. Under this 

type of block layout, regardless of the retrieval sequence, to retrieve a container, the ASC needs to travel 

across a number of bays from the location of the container in the block to the transfer point at the end of the 

block. There is a trade-off between the ASC travel time and the number of relocations, which both 
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contribute to container retrieval times and truck waiting times. Some works have addressed the 

determination of container stacking positions at ACTs. For import containers, Yu and Qi (2013) propose 

three optimisation models under the non-segregation and segregation strategies to determine the number of 

import containers allocated to each bay. The objective function is to minimise the total retrieval time that is 

the sum of the expected relocation time and the ASC travel time. Park et al. (2011) propose an online 

search algorithm to first select the yard block with the lowest workload and then the yard stack with the 

minimum weighted sum of four criteria including the stacking cost, the retrieval cost, the relocation cost, 

and the waste of storage space. For export containers, Zhao et al. (2015) propose a simulation-based 

optimisation method for allocating outbound containers to yard bays aiming to minimise the quay crane 

waiting time. Gharehgozli and Zaerpour (2018) propose an integer programming model to determine the 

storage locations of outbound barge containers under a shared stacking strategy with the objective of 

minimising the total travel time of the ASC. Preston and Kozan (2001) develop a mixed integer 

programming model to determine the storage locations of export containers in a multimodal container 

terminal, in which it is implicitly assumed that the yard block is perpendicular to the quay. The objective is 

to minimise the total transfer time of each yard machine that is the sum of the travel time and the relocation 

time. In addition, a couple of studies consider both import and export containers. For example, Dekker et al. 

(2006) determine the container storage locations by several variants of category stacking rules and use a 

detailed simulation program to measure the workload of the ASC, the number of containers that cannot be 

stacked, and the number of relocations. Xia et al. (2016) determine the yard stacks allocated to each 

container group by a meta-heuristic to maximise the vessel handling efficiency by a weighted sum 

objective function involving the work balance among blocks and the travel distance between vessels and 

blocks. 

It can be concluded that it is appropriate to use the total retrieval time (i.e. the sum of the crane travel 

time and the expected relocation time) as the objective function of the SLAP for import containers at ACTs 

(Yu and Qi 2013). Moreover, minimising the total retrieval time is also a good proxy for truck waiting 

times (Gharehgozli and Zaerpour, 2018). In the next sub-section, we will discuss some studies on 

estimating the number of relocations.  

4.2.3 Container relocation estimation 

Due to the uncertainty in the containers’ retrieval sequence, the number of relocations during the 

retrieval process cannot be easily determined in advance (Bruns et al., 2016). Given an initial stacking 

configuration, the minimum number of relocations needed to retrieve all the containers depends on the 

retrieval sequence and the locations selected for the relocated containers. Such a problem is studied in the 

(Stochastic) Container Relocation Problem (c.f. Ku and Arthanari, 2016a, b, Galle et al., 2018a, Feng et al., 

2020). Another relevant stream of research is to estimate the number of relocations based on the input 

parameters such as the stack dimensions, the container arrival and departure rates. In this stream, a few 

studies assume that new arrival containers are added to the stacks during the container retrieval process. 

For example, Sculli and Hui (1988) are among the first to explore the impacts of the store dimensions, the 

stacking policies, and the number of different types of containers on the relocation ratio by a simulation 

model, in which the arrival and departure rates of containers are assumed to be equal and random. De 

Castilho and Daganzo (1993) derive general formulas, which are functions of the total number stacks and 

the retrieval rate, to estimate the expected number of moves per container under the segregation and 

non-segregation stacking policies. On the other hand, some studies only consider retrievals. For example, 

under the assumption that containers are retrieved batch by batch in a random order, Zhou et al. (2020) 
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derive the number of relocations to retrieve all containers from a yard segment based on the storage space, 

the number of containers, and the number of container classes by a discrete event simulation. Assuming the 

probability for a container to be picked up next is the same among all the containers, Kim (1997) develop 

an approximated formula that is a function of the number of containers and the number of rows in the bay 

for the expected total number of relocations to retrieve all of the containers in a bay. Yu and Qi (2013) 

propose a more precise estimation than the one proposed by Kim (1997). These two formulas both rely on 

the number of rows/stacks in a bay.  

All the above studies in the estimation stream simulate the number of actually incurred relocations based 

on a prescribed relocation strategy, that is, a realistic rule to select the stack for the relocated container. On 

the other hand, the expected number of blocking containers can also be a good proxy of the number of 

relocations, which can be derived without assuming any relocation strategy. In this respect, Galle et al. 

(2016) theoretically prove that the expected minimum number of relocations to retrieve all containers in a 

bay in a uniformly random order converges to a simple and intuitive lower bound when the number of 

stacks in a bay is large. The lower bound represents the expected number of blocking containers, which 

depends on only the number of containers in each stack. This lower bound is used in a recent study on yard 

crane scheduling by Galle et al. (2018b) to approximate the number of relocations to retrieval all the 

containers in a single stack when no information is assumed on the retrieval requests. In this paper, we do 

not assume any information on the retrieval sequence of non-smart containers, that is, they are retrieved in 

a uniformly random order, and no containers are added to the stacking area during the retrieval process. 

Such a problem environment is considered in Kim (1997), Yu and Qi (2013), and Galle et al. (2016). Given 

the advantage of the simplicity and the good approximation of the lower bound in Galle et al. (2016), we 

use this lower bound, i.e., the expected number of blocking containers, to approximate the expected number 

of relocations for retrieving the containers in a non-smart stack (see Section 4.3.4.2). 

4.2.4 Research gap 

There are only two most relevant studies that have investigated grouped-based stacking strategies for 

import containers aiming at minimising the expected number of relocations (Jang et al. 2013) or the total 

retrieval time (Yu and Qi 2013) during retrieval processes. In Jang et. al (2013), the unit loads (including 

inbound containers) are classified into multiple groups and the retrieval order is issued for a specific group. 

Each stack can store multiple groups of containers, and there is no decision on which groups should be 

relocation-free. In Yu and Qi (2013), import containers are categorised by the arrival times of incoming 

vessels. The emphasis is to analyse the long-term performance of various segregation and non-segregation 

strategies models by considering the dynamic of container arrivals and departures. There has been no 

research on allocating import containers to exact storage slots by utilising customer information alone 

while not relying on the container retrieval time. Motivated by the IFF program in practice, our work is the 

first academic research in this area. We propose a smart stacking strategy that explicitly differentiates smart 

stacks and non-smart stacks. A smart stack can only store containers from a single customer to guarantee 

zero relocation, while a non-smart stack can accept containers from multiple customers. Different from the 

existing stacking strategies, the smart stacking strategy incorporates intelligence into the stacking 

decision-making by simultaneously optimising the number of smart stacks, the customers or containers that 

are allocated to smart stacks and non-smart stacks, and the locations of these stacks by making use of the 

customer information of the containers. Specifically, we focus on the short-term operational decisions to 

allocate a batch of import containers to specific locations in a given storage area of a yard block under the 

smart stacking strategy, with the objective of minimising the total retrieval time including the ASC travel 
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time and the relocation time.  

4.3 Problem Description 

In this section, we describe the SLAP under consideration including the following aspect: the problem 

geometry, the problem definitions, two smart stacking policies, and the objective function.  

4.3.1 Problem geometry 

At an ACT, a yard block is oriented perpendicular to the quay, as shown in Fig. 4. 1. The configuration of 

a block consists of M bays, R rows, and T tiers. Bays are indexed by b from landside to seaside, 1 b M  , 

rows by r from left to right, 1 r R  , and tiers by t from bottom to top, 1 t T  . R is limited by the 

width of the ASC and T by the height of the ASC, which represents the maximum stacking height. 

Typically, R ranges from 6 to 13, T from 3 to 6, and M from 40 to 60. A stack is a vertical column located in 

a bay and a row, which can be characterised by a two-dimensional vector (b, r) representing its location on 

the ground. A slot is an unit space for storing a container located in a bay, a row and a tier, which can be 

characterised by a three-dimensional vector (b, r, t).  

 

 

Stack

Landside

Seaside

 

Fig. 4. 1. A stacking area in a yard block with a single ASC. Adapted from Gharehgozli and Zaerpour 

(2018) 

At each end of the block, i.e., landside and seaside, there are several input/output (I/O) points where 

vehicles park waiting for the service of the ASC. During the import container retrieval process, an external 

truck with a retrieval request parks at one of the I/O points at the landside. The ASC picks up the required 

container in the block and then drop off it onto the truck at the I/O point. The location of the I/O point 

where the truck parks may affect the travel distance of the ASC along the row direction when serving the 

request. In this paper, since we do not schedule the ASC’s working route, we assume that all trucks park at 

the middle I/O point, i.e., the middle point in front of the first bay, which is considered to be located at bay 

0, row R/2 and tier 1. We name this delivery point as the depot, denoted by o. This assumption is in line 

with the literature (Gharehgozli and Zaerpour, 2018). It is also reasonable statistically because on average a 

truck can be regarded as being served in the middle I/O point. Moreover, we will show in Section 4.3.4 that 

after a certain bay, the travel time of the ASC is determined by the gantry crane travel time along the bay 

direction whereas the travel time along the row direction has no impact.  
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4.3.2 Problem definitions  

We make the offline operational-level decision-making in a single planning period, in which we assign 

each import container to a slot in a given storage area in a single block. At the beginning of the planning 

period, we are given a batch of N incoming import containers to be stacked and a storage area where these 

containers are to be stored. The given storage area is composed of B empty bays (i.e., B R  empty stacks) 

in a block. Let   denote the set of the B bays, B  . Let  b, b , denote both a bay and the 

actual bay number of itself in the block. Note that the B bays do not necessarily need to be located 

consecutively in the block. A smaller b corresponds to a bay closer to the landside and a bigger b 

corresponds to a bay closer to the seaside. It is worth noting that the models and solution approaches 

proposed in this paper can be easily extended to a non-empty storage area where some stacks have been 

occupied by existing containers.  

As the yard is a scarce resource at container terminals (de Melo da Silva et al., 2018), terminal operators 

tend to make high utilisation of the yard storage space. Therefore, the number of available bays B should be 

limited depending on the yard utilisation rate. Usually, terminal operators would set an average utilisation 

rate for the yard space. Let u denote the utilisation rate of a bay, which is defined as the percentage of all its 

slots being occupied by the containers stored in the bay. In our experiments, given N, R and u, B is given by 

/B N R T u        , which represents the required number of empty bays to store N containers when each 

bay is utilised at its pre-set utilisation rate u. 

The batch of N containers to be stacked belong to C customers. The containers are grouped by customers. 

Let  1,...,c C  denote the index of customers or groups, and the number of containers in a group c is called 

group size, denoted by vc. When all the containers in a stack are in the same group and the stack is not 

allowed to be used for relocation, no relocations are needed when retrieving the containers in this stack as 

containers are ‘peeled off’ from the top of the stack. We refer to such containers as smart containers (i.e., 

free-flow containers) and such stacks as smart stacks. In another situation, when the containers in a stack 

are from more than one group or all the containers in a stack are in the same group but the stack can be 

used for relocation, relocations may be needed for retrieving the containers in this stack. We refer to such 

containers as non-smart containers (i.e., non-free-flow containers) and such stacks as non-smart stacks. 

Accordingly, we refer to a bay in which all the stacks are smart as a smart bay, in which all the stacks are 

non-smart as a non-smart bay, and in which both smart and non-smart stacks exist as a mixed bay.  

A smart stack will occupy the entire T slots of the stack regardless of how many containers are actually 

allocated to it. This is because a smart stack is dedicated to a single group and is not allowed to be used for 

relocation. If a bay is a smart bay, the capacity of the bay is equal to RT; otherwise, its capacity is equal to 

RT-(T-1) because at least (T-1) empty slots need to be reserved for relocation purpose in order to avoid 

deadlock (Tang et al., 2015; Chang and Zhu, 2019). To ensure the B bays are sufficient to store all the 

containers, the bay utilisation rate u must satisfy the condition ( 1)R T u R T T        . 

The following assumptions are made for formulating the problem. 

A1. Each container is associated with a customer. The containers belonging to the same customer form a 

group. If the customer information of a container is unknown, this container forms a group on its own.  

A2. The containers in a smart stack are retrieved from the top to the bottom without requiring any 

relocation.  
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A3. The containers in a non-smart stack are retrieved in uniformly random order and relocations are 

needed.  

4.3.3 Two smart stacking policies 

Since a customer may have multiple containers and the capacity of a stack is restricted by the maximum 

stacking height T, more than one stacks may be needed to store the containers from a single customer. Note 

that customers may prefer to have all of their containers being smart or non-smart for the convenience of 

truck dispatching management. Two variants of the smart stacking strategy could be designed, depending 

on whether all or part of the containers of a customer are smart. Accordingly, we propose two smart 

policies, non-split policy and split policy.  

Under the non-split policy, the group of containers is not allowed to be split between smart and 

non-smart stacks. In other words, they are either wholly allocated to smart stacks or wholly allocated to 

non-smart stacks; and we are concerned with which groups/customers should be smart. Under the split 

policy, a group of containers can be split between smart stacks and non-smart stacks; and we determine 

how many containers from a group should be smart. Under either policy, we need to determine where these 

smart stacks and non-smart stacks should be located in the block. 

Fig. 4. 2 provides an example solution under the two policies respectively for a single bay to illustrate 

the influence of splitting on the number of relocations. Under both policies, the maximum stacking height 

T=4 forces the groups that have more than T containers to be divided and allocated to different stacks (e.g., 

group A). In Fig. 4. 2(a), under the split policy, the five containers of group A are split between smart stack 

1 and non-smart stack 5 where one container of group A is mixed with one container from group F. In Fig. 

4. 2(b), under the non-split policy, to make all the containers of group A smart, which are allocated to smart 

stacks 1 and 5, stacks 3 and 4 are determined to be non-smart stacks. Note that although the two containers 

in stack 3 are from the same group C, they are non-smart containers and stack 3 is a non-smart stack 

because stack 3 has to be used for accommodating relocations from stack 4 in order to avoid deadlock. 

Besides, one more container is added to stack 4 compared to that under the split policy, which increases the 

possibilities of relocation for stack 4. It can be seen that the split policy can save more relocations than the 

non-split policy.  
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Fig. 4. 2. Illustration of the solutions under two smart policies for a single bay 

In this paper, we optimise and evaluate the effects of smart stacking under both two policies. We focus 

more on analysing the non-split policy because it is closer to the current practice of container terminals and 

easier to implement from the perspective of customer administration. Although the flexibility of the split 

policy can bring more benefit in terms of the relocation reduction in retrieval time, it may cause 

inconvenience to customers, e.g., more complex truck dispatching and higher administration fee. In Section 
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4.4, we develop mathematical models under each policy, and then we compare the two models both 

theoretically (section 4.4.2) and computationally (section 4.6.5).  

4.3.4 Objective function 

The objective of our SLAP is to minimise the total retrieval time that is the sum of the ASC’s travel time 

and relocation time. In the following two sub-sections, we present how the two components in the objective 

functions are measured. 

4.3.4.1 ASC’s travel time  

We first introduce the ASC’s working pattern, and then we give the mathematical expression of the travel 

time. In the end, we present two properties of the ASC’s travel time.  

The container retrieval operations are performed by a single ASC at the landside of the block. To serve a 

retrieval request, the ASC needs to perform both horizontal travel and vertical travel activities. During 

horizontal travels, the ASC moves its gantry along bays and its trolley along rows simultaneously in 

Chebyshev distance. During vertical travels, the ASC moves its spreader up and down. These travel 

activities can be divided into four phases as shown in Fig. 4. 3. Firstly, the crane performs an empty drive 

from its current position to the target stack where the requested container is stored (horizontal). Secondly, 

the crane lowers its spreader to pick up the container and then hoists the spreader up (vertical). Thirdly, the 

crane performs a loaded drive from the target stack to depot o (horizontal). Finally, the crane lowers its 

spreader to set down the container on the truck at the depot and then hoists the spreader up (vertical).  
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Fig. 4. 3. Pattern of typical yard crane movements for a retrieval cycle. Solid grey box indicates variable 

parts, dotted grey box indicates constant parts, and striped grey box indicates irrelevant parts. (Adapted 

from Galle et al. (2018b)) 

Based on this pattern, we now analyse the travel time spent in each phase and derive the relevant part 

that will be included in the optimisation model.  

(1) Empty drive. The empty drive time depends on which stack the ASC currently stops when a retrieval 

request arrives, that is, where the ASC ended its previous request. This is usually optimised in the yard 

crane schedule problem (see e.g. Galle et al., 2018b) when multiple types (stacking and retrieval) of 

requests are considered and their stacking positions and service sequences are to be determined 

simultaneously. In this paper, since we only focus on the retrieval requests, the empty travel time is not 

relevant and thus is not included in the objective function. 

(2) Loaded drive. The loaded drive time depends on the stack (b, r) where the requested container is 

stored, which is a variable part. Let Tb be the gantry moving time from bay b to bay zero (i.e., the artificial 

bay where the depot o is located), and Tr be the trolley moving time from row r to the middle of bay zero 

(i.e., the artificial row where the depot o is located). As the ASC moves along bays and rows 

simultaneously in Chebyshev distance, the ASC’s loaded drive time is calculated as Tbr = max{Tb, Tr}.  

(3) Pick up. The time spent in this phase consists of three parts: the spreader’s lowering time (without a 

container), the time to handle and stabilize the container, and the spreader’s hoisting time (with a container). 
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Among them, the time to handle and stabilize the container is constant (e.g., 20 seconds), and thus it is not 

included in the objective function. The times of the other two parts depend on the tier t where the requested 

container is stored, which is a variable part. Let  E

tT  denote the time spent in lowering the spreader from 

the crane height (i.e., tier T) to tier t, and L

tT  the time spent in hoisting the spreader from tier t to tier T. 

Then, the variable part for the pick-up phase is expressed by E

t tT T  + L

tT . 

(4) Set down. Containers are dropped off to trucks at the depot. Since the locations of the trucks are fixed, 

the set-down time is constant and will not be included in the objective function.  

To sum up, the variable part of the ASC’s travel time to retrieve a container stored at slot (b, r, t) is 

expressed by Tbrt = max{Tb, Tr} + E

tT  + L

tT . This variable part Tbrt will be included in our objective 

function. Namely, only the relevant travel time of the ASC when retrieving a container is considered in the 

optimisation model.  

In the following, we present two structural properties of the ASC’s travel time. The properties will be 

utilised several times in the rest of the paper, such as for designing the heuristic algorithm and analysing the 

results of the experiments. Property 1 states that after a certain bay b̂ , the ASC’s horizontal travel time 

depends only on the bay where the container is stored no matter which row it is stored; and after bay b̂ , 

the ASC’s horizontal travel time increases with the bay where the container is stored. In our experiment in 

which a block has ten rows, ˆ 3b  , indicating that the ASC’s horizontal travel for retrieving a container 

located in a bay b, 3b  , is determined by only the bay index. Property 2 indicates that the ASC’s 

vertical travel time decreases with the tier where the container is stored. The proofs of Property 1 and 

Property 2 are provided in Appendix A. 

Property 1. Let l
x 

and l
y
 be the length and width of a 20-ft (twenty-foot equivalent unit) standard 

container, respectively. Let v
x
 be the ASC gantry moving speed with load and v

y
 be the ASC trolley moving 

speed with load. For a block with R rows and M bays, if there exists a bay b̂ ( ˆ1 b M  ) that satisfies 

ˆ / 2x y x

x y x

b l R l b l

v v v

  
   ( ˆ1 b b M   ), then br bT T  for ˆ1 b b M    and 1 r R  , and br b rT T   for 

b̂ b b M    and 1 r R  . 

Property 2. t tT T   for 1 t t T   . 

4.3.4.2 Relocation time 

Relocation moves are often inevitable when retrieving the containers from non-smart stacks since 

containers in these stacks are requested by external trucks in random order. As in the literature (Zhao and 

Goodchild, 2010; Yu and Qi, 2013), we assume that the number of relocations and the time needed to 

perform one relocation is independent, and thus the total relocation time is estimated by the expected 

number of relocations and the average time to relocate one container.  

Since the exact number of relocations cannot be easily determined in advance, this part of the objective 

function is often replaced by a lower bound on the number of relocations (Bruns et al., 2016). When no 

information is available on the container retrieval sequence, the lower bound given by the expected 

number of blocking containers is regarded as a good proxy for the expected number of relocations when 

the number of stacks in a bay is large (Galle et al., 2016). Therefore, as in Galle et al. (2018b), we use the 

expected number of blocking containers to approximate the expected number of relocations. We define 

tα  to be the expected number of blocking containers in a stack of t containers in the case when no 

information on the containers’ retrieval sequence is available. From Galle et al. (2016), we have 0 0α   

and 
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1

1t

t

i

α t
i

  , {1,..., }t T                                (4.1) 

The expected number of relocations for a non-smart stack of t containers is calculated by Eq. (4.1). The 

advantage of using Eq. (4.1) is that it only requires the information of the number of containers per stack, 

which is easier to compute. Let T  be the average time of relocating a container. Therefore, the total 

expected relocation time for a non-smart stack of t containers can be expressed by the product of tα  and 

T .  

4.4 Mathematical models 

In this section, we present the mathematical models under the non-split policy and the split policy 

respectively. The notations used in both models as given as follows. The unique notations used in each 

model will be introduced when introducing the corresponding models.  

Parameters: 

N: the total number of containers to be stacked.  

 : the set of empty bays, B  .  

R: the number of rows (stacks) in a bay.  

T: the maximum stacking height.  

T : the average time needed to perform a relocation (in seconds).  

tα : the expected number of relocations in a non-smart stack of t containers, which is defined by Eq. 

(4.1). 

brtT : the ASC’s travel time to retrieve a container located at slot (b, r, t) (in seconds).  

Auxiliary Variables: 

bz : equals zero if all the stacks in bay b are smart stacks, and one otherwise; 

brh : the number of non-smart containers in stack (b, r); 

bw : the expected number of relocations in bay b, which is a continuous variable;  

brtf : equals one if there are t non-smart containers stored in stack (b, r), and zero otherwise; 

brty : equals one if there is a container stored at tier t of stack (b, r), and zero otherwise. 

4.4.1 Non-split model 

We now present the mathematical model under the non-split policy, that is, a group of containers is either 

wholly allocated to smart stacks or wholly allocated to non-smart stacks. We first develop an original 

formulation, and then we develop an improved formulation by enhancing the variable representation of the 

original one. Both formulations are mixed-integer programming (MIP) models. The key decision variables 

in the non-split model are which groups (customers) should be selected as smart groups, how the containers 

from a smart group should be distributed to multiple smart stacks, and where these smart stacks should be 

located in the block. Note that all the containers in a smart group should be allocated to some smart stacks.  

4.4.1.1 Original formulation 

The newly defined parameters and decision variables in the original formulation are as follows.  

Parameters: 

cv : the size of group c.  

Decision Variables: 
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ct

brx : equals one if stack (b, r) is a smart stack that is allocated to t number of containers of group c, and 

zero otherwise;  

cs : equals one if group c is a smart group, and zero otherwise; 

The original formulation (denoted by M1) is presented below:   

[M1]:                  min
1 1

R T

brt brt b

b r t b

T y w T
   

                                    (4.2) 

s.t.  
1 1

1
C T

ct

br

c t

x
 

 , b  ,  1,...,r R                                 (4.3) 

1 1

R T
ct

br c c

b r t

x t s v
  

   ,  1,...,c C                                (4.4) 

1 1 1

R C T
ct

br br

b r c t

x t h N
   

 
   

 
                                    (4.5) 

1 1 1

R C T
ct

b br

r c t

z R x
  

  , b                                    (4.6) 

1 1 1

R C T
ct

b br

r c t

z R R x
  

   , b                                   (4.7) 

1 1 1

( 1)
R C T

ct

br br b

r c t

x T h RT T z
  

 
      

 
  , b                     (4.8) 

1 1

1
C T

ct

br br

c t

h x T
 

 
   
 

 , b  ,  1,...,r R                         (4.9) 

1 1 1

T C T
ct

brt br br

t c t

y x t h
  

    , b  ,  1,...,r R                       (4.10) 

, 1brt br ty y  , b  ,  1,...,r R  ,  2...,t T                      (4.11) 

1 1

R T

b t brt

r t

w α f
 

  , b                                      (4.12) 

1

1
T

brt

t

f


 , b  ,  1,...,r R                                  (4.13) 

1

T

brt br

t

t f h


  , b  ,  1,...,r R                               (4.14) 

 0,1brty  ,  0,1brtf  , b  ,  1,...,r R  ,  1...,t T                  (4.15) 

 0,1bz  , 0bw  , b                                      (4.16) 

brh Z  , b  ,  1,...,r R                                   (4.17) 

 0,1cs  ,  1,...,c C                                           (4.18) 

 0,1ct

brx  , b  ,  1,...,r R  ,  1,...,c C  ,  1...,t T                   (4.19) 

The objective function (4.2) is to minimise the total retrieval time, which is the sum of the total ASC 

travel time and the total relocation time. Constraints (4.3) ensure that each smart stack is allocated to a 

specific number of containers of at most one group. Constraints (4.4) guarantee the non-split policy, that is, 

for a smart group, all the containers in the group are allocated to smart stacks. Constraints (4.5) ensure that 
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all given containers are stored in the given storage area. Constraints (4.6) and (4.7) define the auxiliary 

decision variables 
bz  that indicate whether all the stacks in a bay are smart. 

bz  is forced to equal zero if 

all the stacks in bay b are smart and equal one if there are non-smart stacks in bay b. Constraints (4.8) 

guarantee the capacity feasibility of each bay. For a smart bay (i.e, 0bz  ), the capacity of the bay is equal 

to RT; otherwise, its capacity is equal to RT-(T-1) because at least (T-1) empty slots need to be reserved for 

relocation in order to avoid deadlock. Constraints (4.9) guarantee that the height of a non-smart stack is not 

more than T. Constraints (4.9) also ensure that there is no non-smart container in a smart stack. If stack (b, r) 

is a smart stack, i.e., 
1 1

1
C T

ct

br

c t

x
 

 , brh  is forced to equal zero. Constraints (4.10) and (4.11) determine the 

height of each stack and guarantee that containers are stacked from the ground and are stacked on top of 

one another. Constraints (4.12) calculate the total relocation time for retrieving the containers in a bay. 

Constraints (4.13) and (4.14) define the auxiliary decision variables brtf  by brh . If 0brh  , 0brtf  , 

 1...,t T  ; otherwise, , 1
brbr hf   and 0brtf  ,  1,..., / brt T h  . Finally, Constraints (4.15)-(4.19) specify the 

domains for the decision variables.   

4.4.1.2 Properties of optimal solutions 

We now propose two propositions regarding the properties of optimal solutions of the original 

formulation, based on which we will develop an improved formulation in the next sub-section.  

First, we define a pile as the set of containers stacked in the same stack. We refer to a pile that is stacked 

to the maximum stacking height as a full pile. A smart pile is implied by the smart stack.  

Proposition 1. Let 
iph  be the height of pile pi. In the optimal solution to M1, for any two smart piles pi 

and pj which are located at stacks ( , )i ib r  and ( , )j jb r  respectively, if  
i jp ph h  , then 

i i j jb r b rT T . 

Sketch of the proof. The proof is proved in Appendix A. We suppose by contradiction that 
i jp ph h and 

i i j jb r b rT T  in the optimal solution *σ . We construct a feasible solution σ   such that 
i jp ph h  and 

i i j jb r b rT T , and we show that σ   leads to a smaller objective value than *σ  which provides a 

contradiction to *σ  being an optimal solution. 

Proposition 2. Let Pc be the number of piles of a smart group c in the optimal solution, then 

/c cP v T    , and the Pc piles are composed of Pc -1 full piles and one pile whose height equals 

 1cc Pv T   . 

Sketch of the proof. The proof is provided in Appendix A. Let us rank the Pc piles in ascending order of 

the ASC’s horizontal travel time needed to retrieve a container from the stack where the pile is located. 

According to Proposition 1, the Pc piles can be ordered as 1 2, ,...,
cPp p p  with 

1 2
....

Pc
p p ph h h    and 

1 1 2 2
....

P Pc c
b r b r b rT T T   . There are two cases depending on the size of cv , i.e., cv T  and cv T . In the 

case of cv T , it is sufficient to suppose by contradiction that in the optimal solution there is at least one 

non-full pile in the first Pc -1 piles. Let pi be the highest non-full pile in the first Pc -1 piles. We can 
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construct a feasible solution such that the height of pi is increased by one by moving one container from 

pile 
cPp  to pile pi. In the case of 

cv T , it is sufficient to suppose by contradiction that in the optimal 

solution 
1p ch v . We can construct a feasible solution by moving one container from pile 

cPp  to pile p1. 

In both cases, the feasible solution we construct can lead to a lower objective value than the optimal 

solution, which provides a contradiction to the supposing.  

Proposition 2 implies that among the Pc piles of smart group c, the pile located at the stack with the 

greatest ASC’s horizontal travel time has  1cc Pv T   containers, and all the other piles are full piles.  

4.4.1.3 Improved formulation 

Based on the propositions of the optimal solution in Section 4.4.1.2, we can propose an improved 

formulation, which is easier to solve than [M1].  

To simplify the narrative, we introduce the concept of optimal partition. The idea of the new formulation 

is to make decisions on which customers and partitions should be smart without the need of associating the 

smart partitions with specific smart customers. Proposition 2 indicates that in the optimal solution of the 

original formulation, each group is partitioned into /c cP v T     piles such that Pc -1 piles have T 

containers and one pile has  1cc Pv T   containers. We define the optimal partition of a group as the 

pattern that divides the group into the partitions each corresponding to a pile of the group in the optimal 

solution. Let { | [1,..., ]}c i cπ p i P   denote the set of partitions of group c by using the optimal partition, 

where /c cP v T     is the number of partitions of group c, pi is the number of containers in partition i. 

Without the loss of generality, we let pi =T, {1,..., / 1}ci v T    , and  /
1

c
ccv T

TPp v
  

    .  

We partition each group by using the optimal partition. With such pre-processing, the improved 

formulation is developed based on the unit of partition. The newly defined parameters and decision 

variables in the improved formulation are as follows. 

Parameters: 

ctu : the number of partitions with t number of containers for group c, {1,..., }c C , {1,..., }t T , which 

is defined by  

1,
1, ( 1)
0, {1,..., } /{ , ( 1) }

c

ct c c

c c

P t T
u t v P T

t T T v P T

 
    

   

 

Decision Variables: 
t

brx : equals one if stack (b, r) is a smart stack that is allocated to a partition with t number of containers, 

{1,..., }t T , and zero otherwise. 

The improved formulation (denoted by M2) is presented below: 

[M2]:                   min
1 1

R T

brt brt b

b r t b

T y w T
   

                                   (4.2) 

s.t.  
1

1
T

t

br

t

x


 , b  ,  1,...,r R                            (4.20) 
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1 1

R C
t

br c ct

b r c

x s u
  

  , {1,..., }t T                             (4.21) 

1 1

R T
t

br br

b r t

x t h N
  

 
   

 
                                    (4.22) 

1 1

R T
t

b br

r t

z R x
 

  , b                                  (4.23) 

1 1

R T
t

b br

r t

z R R x
 

   , b                                (4.24) 

1 1

( 1)
R T

t

br br b

r t

x T h RT T z
 

 
      

 
  , b                   (4.25) 

1

1
T

t

br br

t

h x T


 
   
 

 , b  ,  1,...,r R                    (4.26) 

1 1

T T
t

brt br br

t t

y x t h
 

    , b  ,  1,...,r R                 (4.27) 

 0,1t

brx  , b  ,  1,...,r R  , {1,..., }t T                (4.28) 

                            Constraints (4.11) – (4.18)      

 

The objective function (4.2) is the same as in [M1]. Constraints (4.20) ensure that each smart stack is 

allocated to a partition with a specific number of containers. Constraints (4.21) guarantee the non-split 

policy by forcing the total number of partitions with t number of containers for all the smart groups equals 

the total number of smart stacks each storing t containers. Constraints (4.22) ensure that all given 

containers are stored in the given storage area. Constraints (4.23) and (4.24) define the auxiliary decision 

variables bz  that indicate whether all the stacks in a bay are smart. Constraints (4.25) guarantee the 

capacity feasibility of each bay. Constraints (4.26) guarantee that the height of a non-smart stack is not 

more than T and there is no non-smart container in a smart stack. Constraints (4.27) determine the height of 

each stack. Constraints (4.11) – (4.18) inherit from [M1].  

Proposition 3 states that the optimisation problem defined by [M1] and the optimisation problem defined 

by [M2] are equivalent. 

Proposition 3. [M1] and [M2] are equivalent problems.  

Sketch of the proof. The proof is provided in Appendix A and is in three parts. In order to prove the 

equivalence between [M1] and [M2], we first show there is an implied constraint for [M1] that can be 

derived by the definition of ctu . By using this implied constraint, we can reformulate [M1] into an 

equivalent counterpart [M1-1]. Secondly, by using the transformation between ct

brx  and t

brx , we can 

reformulate [M1-1] into an equivalent counterpart [M1-2]. Lastly, we show that [M1-2] and [M2] are 

equivalent.  

The improved formulation enhances the representation of the variables ct

brx  in the original one by using 

the new variables t

brx . By such enhancement, the number of variables is reduced significantly as t

brx  is 

not associated with group c. When implementing the solution of [M2], terminal operators need the 

information regarding which group a smart stack is allocated to. As proved in Proposition 3 (in Appendix 

A), given the solutions of t

brx  and cs  in [M2], we can obtain such information through deriving ct

brx  by 

the following formulas:   

1

R
ct

br c ct

b r

x s u
 

  ,  1,...,c C  , {1,..., }t T                           (4.A.5) 
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1

C
t ct

br br

c

x x


 , b  ,  1,...,r R  , {1,..., }t T                       (4.A.7) 

4.4.2 Split model 

In this section, we develop the mathematical model under the split policy, that is, a group of containers 

can be split between smart stacks and non-smart stacks. Intuitively, selecting a full pile to be a smart stack 

is more beneficial than selecting a non-full pile to be a smart stack because of the saving of relocations and 

better utilisation of the stack space. The split policy offers the opportunities to increase the number of full 

smart piles and decrease the number of non-full smart piles. We restrict the split policy to the cases that all 

smart piles must be selected from the optimal partitions defined in Section 4.4.1.3. This treatment makes 

the split model easy to compare with the non-split model.  

We pre-process each group by the optimal partition as that in Section 4.4.1.3, and as a result, we get a 

total of 
1 1

C T

ct

c t

u
 

  partitions for all the containers. We define a new parameter 
1

C

t ct

c

n u


  that denotes the 

total number of partitions with t number of containers, {1,..., }t T , in which ctu  is defined in Section 

4.4.1.3. The decisions of the split model focus on which partitions should be smart. The newly defined 

parameters and decision variables in the split model are as follows. Note that t

brx  has been defined for 

[M2], we introduce it here again for the purpose of differentiating it from the decision variable ct

brx  in 

[M1].   

Parameters: 

tn : the total number of partitions with t number of containers, {1,..., }t T , which is defined by 

1

C

t ct

c

n u


 , {1,..., }t T .  

Decision variables: 
t

brx : equals one if stack (b, r) is a smart stack that is allocated to a partition with t number of containers, 

{1,..., }t T , and zero otherwise. 

The split model (denoted by M3) is presented below:   

[M3]:                      min
1 1

R T

brt brt b

b r t b

T y w T
   

                                (4.2) 

s.t.  
1

R
t

br t

b r

x n
 

 , {1,..., }t T                               (4.29) 

                             Constraints (4.11) – (4.18), (4.20), and (4.22) – (4.28)     

Constraints (4.29) ensure that the number of smart stacks allocated to the partitions with t number of 

containers is not more than the total number of partitions with t number of containers. The other constraints 

inherit from [M2].  

The following two lemmas compare the split model and the non-split model theoretically. Lemma 1 

states that the objective value of [M3] is not greater than that of [M2]. Lemma 2 states that [M2] and [M3] 

have the same objective value when the maximum group size is no more than the maximum stacking height 

T. The proofs of Lemma 1 and Lemma 2 are provided in Appendix A.  

Lemma 1. Let (M2)f  and (M3)f  be the objective functions of the optimisation problems defined 

by [M2] and [M3], respectively, then (M3) (M2)f f . 

Lemma 2. Let 
{1,..., }
max { }m

c
c C

V v


 , then (M2) (M3)f f  when mV T . 
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4.4.3 Complexity of the SLAP 

The SLAP is NP-hard in general. This can be proved by reducing the Set Partitioning Problem to a 

special instance of the SLAP. We define a ‘bay profile’ as a feasible assignment of containers to a bay, and 

each bay profile is associated with a total time for retrieving all the containers in this bay profile. For all 

available bays, a finite set of all feasible bay profiles can be defined in advance, denoted by P. Consider a 

special case of the SLAP, in which we are given only a subset of P, denoted by P . Then, the remaining 

task of the SLAP is to find a subset of bay profiles from P  with the minimum total retrieval time subject 

to that it covers all of the containers and no two of the bay profiles share the same container. This instance 

is equivalent to the Set Partitioning Problem. Therefore, we are able to reduce the Set Partitioning Problem 

to a special case of the SLAP. Because the Set Partitioning Problem is known to be NP-hard (Rasmussen 

and Larsen, 2011), the SLAP is NP-hard. 

Due to the NP-hardness of the SLAP, the proposed MIPs are computationally expensive to solve for 

large-scale problems. More importantly, the computational times required to solve the MIPs are not 

applicable for real-time decision-making (c.f. the results in Section 4.6.3). Therefore, in the next section, 

we will develop an efficient heuristic algorithm that is able to find near-optimal solutions within several 

seconds for realistic scaled SLAPs.  

4.5 Divide-and-conquer heuristic 

In this section, we develop a heuristic algorithm for the non-split variant by employing the 

divide-and-conquer strategy. The framework of the heuristic is introduced in Section 4.5.1 and the details 

are presented in Sections 4.5.2-4.5.5. 

4.5.1 Framework  

Divide-and-conquer is an important paradigm to design computationally efficient algorithms in 

computer science (Li et al., 2009). The principle underlying divide and conquer algorithms is that: the 

original problem is decomposed into two or more subproblems until they become sufficiently simple to be 

solved directly; the subproblems are solved independently and their solutions are composed to give a 

solution to the original problem (Smith et al., 1985). The divide-and-conquer paradigm has become a 

commonly used strategy to design efficient algorithms for complicated combinatorial optimisation 

problems (e.g., Reimann et al., 2004; Jin et al., 2016; Wei et al., 2019).  

The structure of the non-split model [M2] motivates us to employ the divide-and-conquer strategy to 

decompose the original problem into several subproblems and solve them sequentially and iteratively. It is 

observed that in [M2], the decision vector x about the smart stacks and the decision vector h about the 

non-smart stacks are coupled only by Constraints (4.22) and (4.25) - (4.27). By relaxing these constraints, 

the original problem can be decomposed into two smaller subproblems: one involving only the smart stack 

decisions and the other only concerning the non-smart decisions, which are much easier to solve. The 

solution to the original problem can be obtained by solving a third subproblem in which the solutions to the 

first two subproblems are combined.  

Fig. 4. 4 provides the framework of the divide-and-conquer (D&C) heuristic. At each iteration, three 

subproblems are solved sequentially based on the updated number of available bays. Initially, all the given 

B empty bays are taken into account; then at each later iteration, the number of available bays is reduced by 

one. Subproblem 1 is first solved to determine the smart piles. Here, we use “smart piles” rather than 

“smart stacks” because subproblem 1 only concerns the heights of smart stacks but does not determine their 
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locations; instead, the smart piles are considered to be temporarily stacked in a certain area in the block to 

guarantee the feasibility of the capacity constraint. After that, the number of non-smart containers and the 

remaining storage space for non-smart containers can be obtained and passed to subproblem 2 where the 

non-smart piles are determined subsequently. Finally, the smart piles and the non-smart piles resulted from 

subproblems 1 and 2 are passed to subproblem 3, in which the locations of each pile are determined and the 

objective function is updated. The algorithm terminates at the iteration with B
min

 bays, which is the 

minimum number of required bays supposing each bay can be fully utilised, or the iteration where the 

objective function stops improving.  

Subproblem 2: determination of non-smart 

piles by MIP and solved by CPLEX

Subproblem 3: location allocation of each 

pile by IP and solved by heuristic rule

Does the objective 

function improve?

Yes

Stop

No

Has the minimum number of 

required bays been reached?

Yes

No

Initialize the number of available bays

Subproblem 1: determination of smart piles

by IP and solved by heuristic rule

Update the number of available bays

 

Fig. 4. 4 The framework of the divide-and-conquer algorithm 

4.5.2 Updating scheme and stopping criteria 

Let i  denote the set of available bays at the ith iteration, and iB  the size of i . 0  is initialized 

as   and B0 is initialized as B. After solving the three subproblems at each iteration, 1i  is updated by 

removing the bay closest to the seaside in i , and accordingly, the number of available bays is updated by 

Bi+1=Bi – 1. The idea behind this updating scheme is to minimise the objective function through the 

trade-off mechanism between the ASC travel time and the relocation time. When the available storage 
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space gets larger, the number of relocations tends to decrease but the retrieval time tends to increase. The 

objective function is minimised at a certain point where the number of occupied stacks is optimal. 

Therefore, by scanning the number of available stacks, we are able to minimise the objective function. 

However, instead of scanning the number of stacks, we can reduce the number of iterations and thus save 

the solution time by scanning the number of bays. Although this does not guarantee optimality, it is 

expected that the optimality gap is small because of the property of the ASC travel time stated in Property 1. 

Let 1  denote the set of bays in i  located before bay b̂  ( b̂  is the minimum bay in the block that 

satisfies 
垐br b

T T  for any 1 < r < R), and 2  the set of bays in i  located after bay b̂  (including bay b̂  

if b̂  is in i ). According to Property 1, for the bays in 1 , the ASC’s horizontal travel time for 

retrieving a container depends on both the row index and the bay index of the stack where the container is 

stored; and for the bays in 2 , it only depends on the bay index. In the realistic situation, in most cases, 

1  is much smaller than B, which means that the bays in 1  must be occupied. Since for the bays in 2 , 

the ASC’s horizontal travel time depends only on the bay index, there would be no much difference among 

the solutions with one more stack available or one less stack available in such bays.  

On solving the three subproblems at each iteration, the total retrieval time can be obtained. The search 

process terminates either if the iteration reaches the minimum number of required bays B
min 

or if the 

objective function does not improve. B
min

 is calculated by min / ( )B N R T    , supposing each bay can be 

fully utilised.  

4.5.3 Subproblem 1: smart piles 

Subproblem 1 deals with the selection of smart piles. The objective of subproblem 1 is to maximise the 

number of smart containers. By considering the constraints associated with only smart containers, 

subproblem 1 for the ith iteration can be formulated as an integer programming model denoted by [Sub1] in 

Appendix B.1. 

In [Sub1], the decisions on the heights of smart piles and the locations of smart piles are bound together 

by the decision variable x. As the locations of smart piles will be determined in subproblem 3, here, we 

only need to determine smart groups s. With s, we can obtain the heights of each smart pile. In order to 

guarantee the feasibility of the original problem, we need to make sure that a feasible solution can be found 

in subproblem 2, and thus the feasibility of Constraints (4.22), (4.25) and (4.26) in [M2] should be 

maintained when solving [Sub1]. Therefore, smart groups should be determined such that there are as many 

smart containers as possible and the remaining storage space is still enough to accommodate the non-smart 

containers. For this purpose, we design a heuristic rule to select smart groups.  

The basic idea of the heuristic rule is to give priority to the groups who can make more contribution to 

reducing the number of relocations and meanwhile can utilise the storage space more efficiently. For this 

purpose, we introduce a group score dc to represent the average height of each pile of group c, which is 

defined by /c c cd v P . Groups with higher dc are given priority over those with lower dc when selecting 

smart groups. For the groups with the same value of dc, the groups with a greater number of partitions (Pc) 

are given priority. The rationality behind this is that a group with a higher dc has a higher utilisation rate of 

the stacks and thus more space can be saved for storing other smart containers, and a group with a greater 
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number of partitions can bring more smart containers and thus can lead to fewer relocations. Therefore, 

these groups are more promising to become smart groups in the optimal solution.  

The details of the heuristic rule used for determining the smart groups are provided in Appendix B.2.  

4.5.4 Subproblem 2: non-smart piles 

After solving subproblem 1, suppose there are Nn non-smart containers, Ss stacks for storing smart 

containers and Sn stacks for storing non-smart containers. Subproblem 2 determines the heights of 

non-smart piles. The objective is to minimise the total retrieval time of the Nn non-smart containers. 

Subproblem 2 can be formulated as a MIP model denoted by [Sub2] in Appendix B.3. As [Sub2] only 

involves the decisions of non-smart containers, it can be solved by CPLEX efficiently.  

[Sub2] is developed under the assumption that a specific storage area in the block has been pre-allocated 

to the non-smart containers. In order to guarantee the feasibility of Constraints (4.25) and (4.26), we 

temporarily divide the given storage area into smart bays, non-smart bays and mixed bays. The division 

method is described below, and an example illustrating the pre-allocated storage area is provided in 

Appendix B.4.  

The bays in i  are divided into three subsets, which are 1

i , 2

i  and 3

i . Let T  denote the set of 

full smart piles output from subproblem 2, that is, the smart piles with T number of containers. First, the 

first /T R     bays near the landside in i , denoted by 1

i , are allocated to T , which are smart bays. 

Second, the next /nS R    bays in i , denoted by 2

i , are allocated to all the non-smart containers, 

which are non-smart bays. Note that the last bay in 2

i , denoted by B , can be a mixed bay depending on 

the value of %nS R . Let ˆ %nR S R . Recall that we refer to a bay shared by both smart stacks and 

non-smart stacks as a mixed bay. If ˆ 0R  , bay B  is a non-smart bay. If ˆ 0R  , bay B  will be a 

mixed bay and R̂  represent the number of non-smart stacks in this bay. In this case, a part of the stacks 

of bay B  are reserved for smart containers and thus are not allowed to store non-smart containers. We 

suppose that the (R- R̂ ) number of stacks at the right side of bay B  are reserved for smart piles and the 

R̂  number of stacks at the left side are allocated to non-smart piles. Last, the last 1/s iS R    
 bays in 

i , denoted by 3

i , are reserved for the remaining smart piles that are neither in 1

i  nor in the mixed bay. 

Note that n s iS S B   and 1 2 3

i i i iB      . If ˆ 0R  , 2

i nR S    and 1 3

i i sR R S      ; 

otherwise, if ˆ 0R  ,  2 ˆ1i nR R S      and 1 3ˆ( )i i sR R R R S        .  

The rationale behind this pre-allocation is that in the optimal solution, according to Proposition 1, a 

higher stack would be allocated to a bay with a smaller index. Since the height of a non-smart pile will be 

no greater than T, it is reasonable to pre-allocate the first 1

i  bays to full smart piles. In addition, the 

purpose of solving subproblem 2 is to obtain the heights of non-smart piles rather than their locations which 

will be determined in subproblem 3. Pre-allocating 2

i  to be the non-smart area makes the non-smart piles 

have competitive heights to compete with the smart piles for the bays near the landside in subproblem 3.  
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4.5.5 Subproblem 3: location allocation 

After solving subproblems 1 and 2, we have obtained smart piles and non-smart piles, and the relocation 

time has been determined. Subproblem 3 is to determine the locations of the smart piles and non-smart 

piles to minimise the ASC travel time, which can be formulated as an integer programming model denoted 

by [Sub3] in Appendix B.5.  

After conducting a preliminary experiment by CPLEX, we found that [Sub3] is still computationally 

expensive for larger instances. Therefore, we design a heuristic rule to solve [Sub3]. The basic idea behind 

the heuristic rule is to allocate higher piles to the stacks near the landside. The rationale is that generally, 

the ASC’s horizontal travel time tends to increase with the bay number as stated in Property 1. In the 

heuristic, first, we construct temporary bays. The smart and non-smart piles obtained from subproblems 1 

and 2 are allocated to the smart and non-smart storage area respectively which are pre-allocated in 

subproblem 2. Second, we re-allocate these temporary bays based on the unit of bay by taking advantage of 

Property 1. These temporary bays are sorted in descending order according to the total number of 

containers in each bay and then the sorted bays are assigned to the locations of the bays in i  from the 

landside to the seaside. Last, we re-allocate the piles in 1  based on the unit of pile to seek possible 

savings on the travel time since for 1b  , Tbr also depends on r. A higher pile is re-allocated to a stack 

with greater Tbr. The advantage of the heuristic is that we do not need to consider the capacity feasibility 

since all the bays meet the capacity constraints. The details of the heuristic rule used for allocating the 

locations of the smart piles and non-smart piles are provided in Appendix B.6. 

Based on the locations of each pile, the total ASC travel time can be obtained. Then, the total retrieval 

time is returned by the sum of the relocation time obtained by [Sub2] and the ASC travel time obtained in 

subproblem 3.  

4.6 Computational experiments 

In this section, we present extensive computational experiments to validate the effectiveness and 

efficiency of the proposed solution approach. CPLEX 12.9 is used as the MIP solver to solve [M1], [M2], 

[M3] and [Sub2]. All the experiments are programmed in C++ (VS2015) and are performed on a desktop 

with Intel® Core ™ i5-7500 3.40 GHz CPU, 8 GB of RAM, and 64-bit Windows 10 Enterprise.  

4.6.1 Experiment design and instance generation 

We present four sets of experiments, which are illustrated in Fig. 4. 5. Firstly, we compare the 

computational efficiency of the two formulations of the non-split model, by which we show the superiority 

of the improved formulation over the original one. Secondly, we verify the effectiveness and efficiency of 

the proposed heuristic algorithm by comparing it with the improved formulation solved by CPLEX. Thirdly, 

we evaluate the effectiveness of the smart stacking strategy by comparing the proposed heuristic with a 

commonly used rule in practice. We also examine the impacts of customer information and bay utilisation 

rates on the performance and the effectiveness of the smart stacking strategy. Lastly, we compare the 

performances of the two variants of models to evaluate the benefit of the split policy.  
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Fig. 4. 5 The diagram of the experiment design 

Table 4. 1 lists the sets of parameters used in the experiments. To evaluate the performance of our 

proposed models and heuristic algorithm under different cases, each parameter is varied within a range of 

scenarios. Such variations can cover the dimension of a yard block in most of the modern ACTs (Galle et 

al., 2018b) and the practical scales of containers to be stacked into a block in a planning period (Yu and Qi, 

2013). We also set a base instance that represents the dimension and the utilisation rate of a bay at a typical 

ACT. Given N, R, T, and u, the number of available bays (B) in the storage area is obtained by 

/B N R T u        . In the experiments, for the convenience of analysing and interpreting the results, the B 

bays are located consecutively in the block, that is, from bay 1 to bay B. We use three-tuple, “the number of 

containers to be stacked (N) | the dimension of the bay (R×T) | the number of bays (B)”, to represent the 

problem class. We do not distinguish the scales of the problem classes strictly because all the relevant 

factors – N, R×T, and B – have an influence on the computational times of the exact solution. Instead, we 

regard a problem as a larger problem if it has a larger N while other factors are the same. The parameters 

associated with the operating speed of the ASC are based on Galle et al. (2018b). The relocation time per 

container is set to be 120 seconds according to the literature (Zeng et al., 2019) and the terminal practice.  

Table 4. 1. Parameters setting for the experiments.  

Parameter Base Range of scenarios Fixed parameters 

Number of containers (N)  [144, 1296]  

Dimension of bay (R×T) 10×6 [5, 12] × [3, 8]  

Utilisation rate (u) 0.8 {0.67, 0.8, 0.85}  

Distribution of group sizes U[1,10] Introduced in corresponding 

sub-sections 

 

Relocation time per container    120 seconds 

ASC speed: 

Trolley speed with load 

Gantry speed with load 

Hoisting speed without load 

   

1.17 meter/second 

1.17 meter/second  

0.93 meter/second  
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Hoisting speed with load 0.47 meter/second 

Container size: 

Container width 

Container length 

Container height 

   

2.35 meter  

5.90 meter  

2.39 meter 

Regarding the distribution of the group sizes, we consider three scenarios of complete information in 

which the customer information of all containers is known, and three scenarios of incomplete information 

in which only the customer information of a part of the containers is known. Details will be given in the 

corresponding sub-sections. Let V denote the size of a group. In the base instance, the group sizes are 

uniformly distributed in [1,10], which is represented by V~U[1,10]. For a problem class with the same 

number of containers and the same distribution of the group sizes, we randomly generated ten instances to 

vary the size of each group.  

4.6.2 Comparison of two formulations of the non-split model  

In this section, we verify the superiority of the computational efficiency of the improved formulation 

over the original formulation. The number of containers N takes the values in the set of {144, 336, 528, 720, 

912}, which is sufficient to demonstrate the significant differences between the solution capacity of the two 

models. Other parameters are the same as the base instance, that is, R = 10, T =6, u = 0.8, and the group 

sizes follow the uniform distribution U[1,10]. Each problem class includes ten random instances. Both 

models are solved using CPLEX given a time budget of one hour. The results of the two models are 

reported in Table 4. 2. “%Opt” reports the percentage of instances solved to optimum within one hour. 

“Time (s)” reports the average computation time for the instances solved optimally by both models. “#Var” 

and “#Con” report the average number of variables and constraints for the instances solved optimally by 

both models, respectively.  

As shown in Table 4. 2, both models obtain optimal solutions for all instances in the problem class with 

144 containers, but the original model requires a longer computational time. With the increase in the 

number of containers, the problem becomes more difficult to solve and some instances cannot be solved to 

optimum within the one-hour time limit. For the problem classes with 336, 528 and 720 containers, the 

improved model only takes 0.6% to 1.5% of the time taken by the original model. In Table 4. 2, the 

problem class “912|10×6|19” is the most difficult to solve as shown by that the original model fails to 

verify the optimum for all the instances within the time limit. For this problem class, the improved model 

can obtain the optimal solution for 90% of the instances in 679 seconds on average per instance. As can be 

seen from the “#Var” and “#Con” columns, the improved model substantially reduces the number of 

variables and reduces the number of constraints a little, and thus the computational efficiency is improved. 

Given the superiority of the computational efficiency of the improved model, it is used as a benchmark to 

evaluate the performance of the proposed heuristic algorithm in Section 4.6.3.  

Table 4. 2. Results of two formulations of the non-split model. 

Problem class 

N|R×T|B 

 Original formulation [M1]  Improved formulation [M2] 

 %Opt Time(s) #Var #Con  %Opt Time(s) #Var #Con 

144|10×6|3  100 11.4 4936 338  100 3.7 598 319 

336|10×6|7  60 1252.4 26528 790  100 13.3 1398 735 

528|10×6|11  20 1173.7 66550 1244  100 17.2 2200 1151 

720|10×6|15  10 2438.7 109184 1680  90 13.6 2984 1567 
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912|10×6|19
* 

 0 3600 193721 2145  90 679.2 3796 1983 

Note. For the problem class “912|10×6|19”, the results of [M1] are for all the ten instances, and the 

results of [M2] are for the nine instances that are solved to optimality.  

4.6.3 Comparison of the improved model and the heuristic 

To validate the efficiency and effectiveness of the proposed D&C heuristic for solving the non-split 

model, we compare the performance of the heuristic with that of the improved formulation [M2] solved by 

CPLEX. CPLEX is given a time limit of one hour and returns the best solutions found so far, i.e., upper 

bounds when reaching the time limit. We use the default relative MIP gap of CPLEX that is 0.01%, which 

means CPLEX will stop as soon as it has found a feasible solution proved to be within 0.01% of optimal. 

Table 4. 3 reports the results of the base instances with a range of batch sizes (N). “LB” and “UB” report 

the lower bound and upper bound obtained by CPLEX within the time limit, respectively. “Gapc” reports 

the average gap (in percentage) between the upper bound (UB) and the lower bound (LB) obtained by 

CPLEX. The solutions obtained by the heuristic are reported in “Obj”. “LB”, “UB” and “Obj” are all 

reported in seconds. “Gaph” reports the average gap (in percentage) of the solutions obtained by the 

heuristic against the lower bound obtained by CPLEX. “CPU(s)” reports the average computational time 

for the ten instances in each problem class. 

From Table 4. 3, it can be seen that CPLEX can obtain optimal solutions when the number of containers 

is small. As the number of containers increases, the solution time of CPLEX increases dramatically. 

However, the gaps between the lower bound and upper bound are negligible, which indicates that the 

improved model can provide near-optimal solutions for practically sized problems. As for the heuristic 

algorithm, it is much more efficient in that it can produce the solutions very close to that of CPLEX within 

just one second.  

Table 4. 3. Comparison between CPLEX and the D&C heuristic for the base instances.  

Problem class  CPLEX  Heuristic 

u=0.8  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 

144|10×6|3  8127 8127 3.7 0.004  8179 0.1 0.644 

336|10×6|7  21833 21835 15.8 0.010  21912 0.2 0.361 

528|10×6|11  37448 37452 46.5 0.010  37479 0.5 0.084 

720|10×6|15  56421 56427 638.7 0.010  56525 0.5 0.184 

912|10×6|19  81336 81345 971.3 0.010  81523 0.6 0.229 

1104|10×6|23  107811 107850 1069.6 0.036  108050 0.7 0.222 

1296|10×6|27  137376 137407 1611.3 0.023  137515 0.7 0.101 

Average    622.4 0.015   0.4 0.261 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

In order to show the effectiveness of our heuristic under varying scenarios, we conduct more experiments 

with varying bay structures and ranges of group sizes. In these experiments, we focus on the problem 

classes with 1296 containers, which takes the longest solution time by CPLEX as shown in Table 4. 3. The 

results are reported in Table 4. 4-4.6. The effectiveness of our heuristic is confirmed by the small gaps that 

are less than 0.6% across all the instances in Table 4. 4-4.6, as shown in the column “Gaph”. Besides, the 

running times of the heuristic for all these instances are less than six seconds, which confirms its efficiency. 

The efficiency of the heuristic owes to the decoupling of the decisions of smart stacks and non-smart stacks, 

and the high solution efficiency of the sub-problems.  
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Table 4. 4. Comparison between CPLEX and the D&C heuristic for instances with large-scale containers, 

u=0.8 and V~U[1,10]. 

Problem class  CPLEX  Heuristic 

u=0.8  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 

1296|10×3|54  169060 169071 1.8 0.007  169077 0.4 0.010 

1296|10×4|41  141608 141622 10.8 0.010  141632 0.2 0.017 

1296|10×5|33  128170 128182 64.9 0.009  128229 0.2 0.046 

1296|10×6|27  137376 137407 1611.3 0.023  137515 0.7 0.101 

1296|10×7|24  135920 136124 2749.6 0.150  136194 1.3 0.202 

1296|10×8|21  136445 136530 1821.4 0.062  136881 1.8 0.320 

1296|6×6|47  181529 181575 1215.2 0.025  182215 0.5 0.378 

1296|8×6|35  150179 150233 1204.1 0.036  150470 0.6 0.194 

1296|12×6|23  120467 120483 1615.7 0.013  120608 0.6 0.117 

Average    1143.8 0.037   0.7 0.154 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

Table 4. 5. Comparison between CPLEX and the D&C heuristic for instances with large-scale containers, 

u=0.85 and V~U[1,10]. 

Problem class  CPLEX  Heuristic 

u=0.85  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 

1296|10×3|52  169060 169071 1.6 0.007  169072 0.3 0.007 

1296|10×4|39  144856 144870 74.6 0.010  144918 0.2 0.043 

1296|10×5|31  134490 134504 162.3 0.010  134608 0.4 0.088 

1296|10×6|26  145167 145280 2761.0 0.078  145418 0.6 0.173 

1296|10×7|22  154631 154830 3600.0 0.129  155187 2.3 0.360 

1296|10×8|20  145723 145942 3270.3 0.150  146079 2.2 0.244 

1296|6×6|44  197361 197528 1460.7 0.085  197995 0.7 0.321 

1296|8×6|33  161959 162056 1498.3 0.060  162154 0.6 0.120 

1296|12×6|22  128507 128520 494.2 0.010  128548 1.1 0.032 

Average    1480.3 0.060   0.9 0.154 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

Table 4. 6. Comparison between CPLEX and the D&C heuristic for instances with large-scale containers, 

u=0.85 and V~U[1,5]. 

Problem class  CPLEX  Heuristic 

u=0.85  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 

1296|10×3|52  183838 183854 7.7 0.009  183854 0.4 0.009 

1296|10×4|39  166948 166964 444.0 0.010  167068 0.4 0.072 

1296|10×5|31  147366 147380 181.2 0.010  147445 0.5 0.054 

1296|10×6|26  164986 165004 2421.2 0.011  165055 1.0 0.042 

1296|10×7|22  180942 180998 3600.0 0.031  181886 4.3 0.522 

1296|10×8|20  185912 185970 3600.0 0.031  186913 5.7 0.538 

1296|6×6|44  226370 226392 103.0 0.010  226525 1.2 0.068 

1296|8×6|33  185231 185286 3088.8 0.030  185420 0.9 0.102 

1296|12×6|22  147294 147309 143.0 0.010  147398 0.8 0.071 
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Average    1509.9 0.017   1.7 0.164 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

There is an interesting observation from the comparison of Tables 4.4 and 4.5. The problems with higher 

utilisation (0.85) are generally more computationally expensive than those with lower utilisation (0.8), 

although the former problems have fewer bays and thus a smaller number of variables and constraints. One 

possible reason is that the smart groups are determined in such a way that the groups whose average 

partition height is larger than T*u are more likely to be smart groups, which we call “advantageous groups”. 

Therefore, the greater the percentage of advantageous groups, the less the number of nodes that will be 

explored during the CPLEX branch-and-bound process, as those nodes that do not include the 

advantageous groups will be cut with a high probability. When the utilisation rate increases, the percentage 

of advantageous groups decreases, and thus more nodes need to be explored to reach optimality. The 

heuristic performs robustly, which can be seen by the very similar optimal gaps in columns Gaph between 

Table 4. 4 and Table 4. 5.  

Overall, the improved model solved by the standard commercial solver CPLEX performs well when the 

computational efficiency is not a concern. However, in realistic situations, the dynamic changing of the 

yard status and the uncertainties of the incoming containers may require the terminal operators to make 

more frequent decisions quickly according to the dynamically updated information. Our proposed heuristic 

can generate near-optimal solutions with fairly comparable accuracy in substantially reduced time. From 

the application point of view, our proposed heuristic is more readily available for real-time decision-making 

because it is able to provide high-quality and robust solutions within very short running times (in seconds).  

Given the high solution quality and efficiency of the proposed heuristic, the heuristic will be used to 

conduct the experiments of sensitivity analysis in Section 4.6.4.  

4.6.4 The effectiveness of smart stacking 

In this section, we evaluate the effectiveness of smart stacking by comparing the proposed heuristic with 

the random stacking strategy. The random stacking strategy is commonly used in practice when no 

information can be used to support stacking decision-making (Dekker et al., 2006). In random stacking, the 

containers are evenly spread over the stacks in the storage area to reduce the number of relocations. Various 

instances with different scenarios of group information (Section 4.6.4.1) and yard utilisation rates (Section 

4.6.4.2) are tested to investigate their impacts on the performance and the effectiveness of the smart 

stacking strategy.  

4.6.4.1 Impact of group information 

We first analyse the impact of the amount of group information and then the impact of the range of group 

size.  

4.6.4.1.1 Impact of the amount of group information 

In reality, terminal operators might have incomplete information when only a part of the containers are 

provided with the information of customer identities or only a part of the customers are willing to 

participate in the IFF program. To describe the amount of group information, we assume a certain 

percentage of containers (20%, 50%, and 80%) without group information. For these containers, each one 

forms a group on its own. For example, “U[1, 10]_20%” represents that for 20% of the containers, each one 

forms a group, while for the remaining 80% containers, their group sizes obey uniform distribution 

U[1,10]. 

Table 4. 7 presents the results of the scenarios with varying amount of group information. “U[1,10]” 
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represents the scenario of complete information where all the group sizes are generated from the uniform 

distribution [1,10]. The columns “Obj1” and column “Obj2” report the total retrieval time for the smart 

stacking and random stacking respectively. The columns “Gap(%)” report the relative difference (in 

percentage) between the two stacking strategies. The results show that the performance of smart stacking 

measured in total retrieval time depends on the amount of group information. The total retrieval time 

increases as the amount of information decreases, which is in agreement with intuition. Moreover, the less 

the amount of information, the smaller the gap is between the smart and random stacking strategies. 

Obviously, with limited storage space, containers without group information are very unlikely to be 

allocated to smart stacks (Fig. 4. 6), leading to an increasing percentage of relocation time (Fig. 4. 7), and 

thus the benefit of smart stacking is decreasing. Nevertheless, smart stacking can still bring an 

improvement by around 12% compared with random stacking even when only 20% of containers are 

provided with group information, as shown in the category of U[1,10]_80% in Table 4. 7.   

Table 4. 7. The results of smart stacking under different amounts of group information.  

Problem class 
Smart stacking  Random 

stacking U[1,10]  U[1,10]_20%  U[1,10]_50%  U[1,10]_80%  

u=0.8 Obj1 Gap(%)  Obj1 Gap(%)  Obj1 Gap(%)  Obj1 Gap(%)  Obj2 

144|10×6|3 8179 46.1  9211 39.4  11045 27.3  13367 12.0  15187 

336|10×6|7 21912 43.3  24028 37.8  28123 27.2  33961 12.1  38624 

528|10×6|11 37479 43.0  41665 36.7  48980 25.6  57969 11.9  65803 

720|10×6|15 56525 41.6  62325 35.6  71920 25.6  85304 11.8  96724 

912|10×6|19 81523 38.0  87437 33.5  98739 24.9  115914 11.8  131396 

1104|10×6|23 108050 36.4  113645 33.1  129424 23.8  149845 11.8  169811 

1296|10×6|27 137515 35.1  145424 31.4  162873 23.2  187219 11.7  211967 

Note. Gap(%) = (Obj2- Obj1)/ Obj2×100%.      

  

Fig. 4. 6. The percentage of smart containers in smart stacking Fig. 4. 7. The percentage of relocation time 

in the total retrieval time in smart stacking 

4.6.4.1.2 Impact of the range of group size 

We now analyse the impact of the range of group size on the performance and the effectiveness of smart 

stacking. Table 4. 8 compares the smart stacking with the random stacking for three scenarios of the range 

of group size, where the maximum group size is 5, 10, and 20 respectively. We also report the average 

relocation time per container and the ASC’s average travel time per container (in seconds) in smart stacking, 
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which are depicted in Fig. 4. 8 and Fig. 4. 9, respectively. The performances of smart stacking measured in 

terms of the total retrieval time (columns Obj1) and average relocation time (Fig. 4. 8) improve as the range 

of group size enlarges. This is intuitive because a wider range of group size can bring more full partitions 

(the partitions whose heights equal T) and thus more smart containers. The more interesting observation is 

that the ASC’s average travel time shows a slightly improved trend (Fig. 4. 9) with the enlarging of the 

group size. This indicates that smart stacking can also help in saving travel time. This observation can be 

understood from the two properties of the ASC travel time. When the range of group size gets larger, the 

heights of smart stacks increase, and thus a greater number of higher stacks will occupy the stacks closer to 

the landside (Property 1). Since a higher slot needs less hoisting time (Property 2) and the bays closer to the 

landside need less gantry moving time (Property 1), the ASC’s total travel time will decrease.  

Furthermore, when comparing the results of the smart stacking with the random stacking (columns 

Gap(%)), the wider the range of group size, the larger the gap is between the smart and the random stacking 

strategies. This observation can also be explained by the increased percentage of smart containers.    

Table 4. 8. The results of smart stacking under different ranges of group size. 

Problem class 
Smart stacking  Random 

stacking U[1,5]  U[1,10]  U[1,20]  

u=0.8 Obj1 Gap(%)  Obj1 Gap(%)  Obj1 Gap(%)  Obj2 

144|10×6|3 10171 33.0  8179 46.1  5828 61.6  15187 

336|10×6|7 26115 32.4  21912 43.3  15913 58.8  38624 

528|10×6|11 45071 31.5  37479 43.0  29460 55.2  65803 

720|10×6|15 68832 28.8  56525 41.6  45419 53.0  96724 

912|10×6|19 95927 27.0  81523 38.0  64672 50.8  131396 

1104|10×6|23 125965 25.8  108050 36.4  87874 48.3  169811 

1296|10×6|27 159364 24.8  137515 35.1  113606 46.4  211967 

Note. Gap(%) = (Obj2- Obj1)/ Obj2×100%.       

     

Fig. 4. 8. The average relocation time in smart stacking Fig. 4. 9. The average travel time in smart stacking  

4.6.4.2 Impact of utilisation rate 

The utilisation rate of the yard storage space varies in terminals and over time. Some terminals have 

adequate space and may prefer a lower utilisation rate because this reduces the risk of relocation. In 

contrast, others may prefer to make the best use of the stack height to accommodate more containers (Bruns 

et al., 2016). Table 4. 9 compares the smart stacking and the random stacking under three utilisation rates. 
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As the utilisation rate increases, the total retrieval time of smart stacking (column “Obj1”) increases, and 

the gap between the smart and the random stacking strategies (column “Gap(%)”) decreases. This is mainly 

due to the decreasing percentage of smart containers (column “Sm(%)”). With the increase of the utilisation 

rate, groups with lower average partition heights are less possible to become smart groups because that will 

result in wasted space. Thus, the percentage of the smart containers decreases as the utilisation rate 

increases. As a result, the average relocation time (column “Avg_r”) increases. However, the average travel 

time (column “Avg_t”) decreases. This is because the higher the utilisation rate, the higher the average 

stacking height is, and the fewer the bays near the seaside are occupied. According to the properties of the 

ASC travel time in Section 4.3.4.1, a higher slot needs less hoisting time, and the bays closer to the 

landside need less gantry moving time. Therefore, the ASC travel time decreases.  

 It can be observed that the random stacking strategy and the smart stacking strategy have similar trends 

of the average relocation time and the average travel time in response to the change of the utilisation rate. 

However, the trends of the total retrieval time under the two strategies are different. This is because of the 

trade-off effect of two components. When the utilisation rate increases, under the random stacking, the 

reduction in the average travel time is sufficient (in most of the cases) to cancel out the increase in the 

average relocation time, whereas under the smart stacking, the increase in the average relocation time is 

much more than the reduction in the average travel time.  

Table 4. 9. The results of smart stacking under different bay utilisation rates for instances with V~U[1,10]. 

Utilisation 

rate 
Problem class 

Smart stacking  Random stacking 
Gap(%) 

Obj1 Avg_r Avg_t Sm(%)  Obj2 Avg_r Avg_t 

 912|10×6|23 70430 0.5 76.8 95.4  138480 57.2 94.6 49.1 

0.67 1104|10×6|28 95082 0.3 85.8 96.8  180887 57.0 106.8 47.4 

 1296|10×6|33 123346 0.6 94.6 94.8  227963 56.9 119.0 45.9 

 912|10×6|19 81523 16.3 73.1 76.2  131396 63.9 80.2 38.0 

0.80 1104|10×6|23 108050 16.3 81.6 76.3  169811 63.9 89.9 36.4 

 1296|10×6|27 137515 15.9 90.2 76.9  211967 63.9 99.6 35.1 

 912|10×6|18 89850 26.6 71.9 61.3  130817 65.7 77.8 31.3 

0.85 1104|10×6|22 116051 24.7 80.5 64.1  169709 65.3 88.4 31.6 

 1296|10×6|26 145418 23.2 89.0 66.2  212156 65.1 98.6 31.5 

Note. Gap(%) = (Obj2- Obj1)/ Obj2×100%. 

4.6.5 Computational comparison of the non-split model and the split model 

In this section, we compare the performances of the two variants of smart stacking strategy to evaluate 

the benefit of allowing splitting a group between smart stacks and non-smart stacks. Table 4. 10 presents 

the results of the two models under two scenarios of the range of group size. Both models are solved by 

CPLEX given a time limit of one hour, and their best objective functions found within the time limit are 

reported in columns “Obj1” and “Obj2” respectively. Columns “Sm(%)” report the average of the 

percentage of the smart containers for the instances that are solved to optimality by both models so that the 

two models are comparable by this performance. Columns “Gap(%)” report the relative difference between 

the objective functions of the two models.  

 

 

 



194 

 

Table 4. 10. Comparison of the two variants of smart stacking models under two scenarios of group size.  

Problem class 
U[1,10]  U[1,20] 

Non-split Split Gap 

(%) 

 Non-split Split Gap 

(%) u=0.8 Obj1 Sm(%) Obj2 Sm(%)  Obj1 Sm(%) Obj2 Sm(%) 

144|10×6|3 8127 74.4 6624 89.7 18.5  5821 96.3 5608 98.0 3.7 

336|10×6|7 21835 73.7 18185 90.3 16.7  15900 98.2 15710 98.5 1.2 

528|10×6|11 37452 77.6 32765 91.2 12.5  29451 97.9 29122 98.3 1.1 

720|10×6|15 56427 83.4 50880 93.1 9.8  45383 99.3 45311 98.8 0.2 

912|10×6|19 81345 75.0 72717 90.4 10.6  64620 99.5 64620 98.8 0.0 

1104|10×6|23 107850 76.7 97350 90.6 9.7  87834 99.1 87711 98.5 0.1 

1296|10×6|27 137407 78.5 125073 91.0 9.0  113552 99.4 113486 98.3 0.1 

Note. Gap(%)= (Obj1 - Obj2)/ Obj1×100%. 

Based on Table 4. 10, we have two observations. First, the superiority of the spit model over the non-split 

model is verified. However, the benefit of allowing splitting is highly related to the range of group size and 

is less sensitive to the problem class. For the scenarios of U[1,10], the relative difference between the two 

models is in the range of 9% and 18.5%, which is quite significant. For the scenarios of U[1,20], the 

difference is much smaller (less than 4%). This is because the non-split scenarios of U[1,20] have a very 

high percentage of smart containers, which leaves not much space to improve by allowing splitting.  

Second, the reduction in the total retrieval time when allowing splitting (column “Gap(%)”) is the result 

of an increase in the percentage of smart containers (comparing the columns “Sm(%)” of the two models). 

This is because, in the split model, the smart container decision is not bound to groups but partitions. Such 

flexibility enables more containers to merit smart stacks. When comparing the columns “Sm(%)” of the 

two models under the scenarios of U[1,20], it is observed that in the last four problem classes, the 

percentage of smart containers for the split model is even smaller than that of the non-split model. This 

counterintuitive phenomenon can be explained as follows. The experiments’ results show that there exist 

some stacks that are assigned with only one container. For these stacks, they can be regarded either as 

non-smart stacks by hbr=1 or as smart stacks by 1

brx =1, which essentially leads to multiple optimal 

solutions with different “Sm(%)” performances.   

4.7 Conclusions 

This paper considers the Storage Location Assignment Problem (SLAP) for import containers at an 

automated container terminal. We proposed a new concept, the Smart Stacking (SS) strategy, which is 

motivated by a practical container delivery program, import free flow (IFF), aiming at eliminating the need 

for relocations and realising rapid retrieval flow. Under the SS strategy, the free-flow (smart) containers of 

a customer are stored at dedicated stacks to guarantee zero relocation when retrieving them, while the 

non-free-flow (non-smart) containers are sharing stacks. We focus on the offline operational-level decision 

making, in which a batch of import containers are to be assigned to exact slots in a given storage area in a 

single block to minimise the total retrieval time that is the sum of the relocation time and the crane travel 

time.   

Two policies, non-split policy and split policy, are proposed under the SS strategy according to whether a 

single customer’s containers are allowed to be split between smart stacks and non-smart stacks. 

Mixed-integer programming models are developed under each policy, which are compared both 

theoretically and computationally. For the non-split policy, we develop two formulations: original and 
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improved formulations. The improved formulation utilises the structural properties of the optimal solution 

to enhance the representation of certain variables. As a result, the number of variables can be significantly 

reduced and the solution efficiency is improved. To further improve the solution efficiency, a 

divide-and-conquer heuristic algorithm is designed that can solve the non-split model in several seconds 

achieving within 0.6% gap from the optimal solution for the experimented instances that are of realistic 

problem sizes. For the split policy, we develop a MIP model assuming that all smart piles must be selected 

from the optimal partitions of the non-split model. The objective of the split model is proved to be not 

greater than the objective of the non-split variant. Extensive computational experiments demonstrate the 

effectiveness of the proposed SS strategy, models and algorithm. 

This paper is the first to propose the concept of smart stacking that enables the terminal operator to 

incorporate the customer information to optimise import container storage and allocation so that the total 

retrieval time can be minimised. The proposed SS strategy and the SLAPs under consideration contribute to 

the literature of container stacking problems for import containers, and more importantly bring about 

novelty in developing new thinking and research opportunities in this field. On the practical side, this paper 

produces useful managerial implications. Firstly, the SS strategy can significantly reduce the total retrieval 

time compared with the traditional practice. The effectiveness of the SS strategy is more significant in the 

following situations: a larger amount of customer information, a wider range of group sizes, and a lower 

utilisation rate. It is thus recommended that terminal operators should seek collaboration with the customers 

to access the customer information of the import containers so that port congestion can be mitigated in the 

retrieval processes, especially with those high-volume customers. Secondly, the proposed heuristic 

algorithm is fast enough to produce high-quality solutions, which can be applied in practice to support the 

operational-level decision-making of free-flow containers, non-free-flow containers, and their stacking 

positions. Thirdly, the retrieval time could be further reduced if the same customers’ containers are allowed 

to be split into smart and non-smart in certain conditions. The proposed models can help terminal operators 

evaluate the trade-off between the additional benefit and the extra cost of negotiating with customers when 

adopting the split policy. 

Further research may be conducted in the following directions. Firstly, the split policy deserves more 

research, e.g. investigating the optimality of the split variant and examining the relationship between the 

characteristics of a specific problem environment (e.g., the distribution of customer volumes/group sizes, 

the maximum stacking height and the utilisation rate) and the reduction in retrieval time from the split 

variant. Secondly, more information about containers could be incorporated into our models such as 

container retrieval time and customer priority. By incorporating predictive retrieval times or advanced 

appointments (e.g. via vehicle booking system/truck appointment system), the smart stacking strategy can 

be further enhanced and there are more opportunities to generate benefit and save storage space because 

containers of different customers can share stacks according to their retrieval times. It is therefore 

interesting to incorporate the temporal information of containers into the models and evaluate its value. 

Thirdly, the SLAP studied in this paper is oriented toward a short-term operational problem. It is 

interesting to study the long-term storage space allocation problems that concern the storage and allocation 

of import containers from multiple vessels to different blocks in the yard over a planning horizon. The 

models and solution method developed in this paper will function as a building block for this higher-level 

decision. Fourthly, another meaningful research direction is to apply the smart stacking strategy at 

rail-water intermodal container terminals. Note that a single rail carrier could have hundreds of containers 

from each vessel and these containers may go for the same rail head; this makes such intermodal terminals 

suitable for smart stacking. 
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4.8 Appendix  

Appendix A. Technical proofs 

Property 1. Let l
x 

and l
y
 be the length and width of a 20-ft (twenty-foot equivalent unit) standard 

container, respectively. Let v
x
 be the ASC gantry moving speed with load and v

y
 be the ASC trolley moving 

speed with load. For a block with R rows and M bays, if there exists a bay b̂ ( ˆ1 b M  ) that satisfies 

ˆ / 2x y x

x y x

b l R l b l

v v v

  
   ( ˆ1 b b M   ), then br bT T  for ˆ1 b b M    and 1 r R  , and br b rT T   

for b̂ b b M    and 1 r R  . 

Proof. This proof is straightforward. It suffices to identify the condition (i.e., bay b̂ ) under which the 

gantry moving time is not less than the trolley moving time when retrieving a container from a slot to the 

landside transfer point. Let (b, r) be the stack where the requested container is stored.  max ,br b rT T T  is 

calculated by 
/ 2

max ,

yx

br x y

r R lb l
T

v v

   
  

  
, 1 b M   and 1 r R  . For all the stacks r (1 r R  ) in 

bay b, they have the same gantry moving time, which is calculated by 
x

b x

b l
T

v


 , whereas their trolley 

moving times depend on the stacks r, which are calculated by 
/ 2 y

r y

r R l
T

v

 
 . 

1

/ 2
max
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R R l
T
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 
 . 

Therefore, for any b (1 b M  ), if 
/ 2x y

x y

b l R l

v v

 
 , then 

x

br bx

b l
T T

v


  , 1 r R  . Suppose there 

exists a minimum bay b̂  that satisfies 
ˆ / 2x y x

x y x

b l R l b l

v v v

  
   ( ˆ1 b b M   ). For any b ( b̂ b M  ), 

since 
ˆx x

x x

b l b l

v v

 
 , 

x

br x

b l
T

v


  still holds. Therefore, we have br bT T  for ˆ1 b b M    and 1 r R  . 

In addition, for any two b and b  ( b̂ b b M   ),  since 
x x

x x

b l b l

v v

 
 , we have br b rT T  . This 

completes the proof.   

 

Property 2. t tT T   for 1 t t T   . 

Proof. This proof is straightforward. Let l
z
 be the height of a 20-ft standard container. Let v

z,E
 and v

z,L
 be 

the speed of the ASC lowering its spreader without a container and hoist its spreader with a container, 

respectively. Then, E L

t t tT T T   is calculated by 
   

, ,

1 1z z

t z E z L

T t l T t l
T

v v

     
  . Therefore, we have 

t tT T   for 1 t t T   , which completes the proof.   

 

Proposition 1. Let 
iph  be the height of pile pi. In the optimal solution to M1, for any two smart piles pi 

and pj which are located at stacks ( , )i ib r  and ( , )j jb r  respectively, if  
i jp ph h  , then 

i i j jb r b rT T . 
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Proof. We suppose by contradiction that there exists an optimal solution *σ  such that  
i jp ph h and 

i i j jb r b rT T . We construct a *σ  where pi is located at stack ( , )i ib r = * *( , )i ib r  and pj is located at stack 

( , )j jb r = * *( , )j jb r  with 
i jp ph h and 

i i j jb r b rT T . Let us consider only the stacks that accommodate pi 

and pj. Then, we can construct a feasible solution σ   by swapping the positions of pi and pj in *σ . As a 

result, in σ  ,  pi is located at stack * *( , )j jb r  and pj is located at stack * *( , )i ib r , which means 

i i j jb r b rT T .  

Now we consider the total times *t  and t   for retrieving the containers in pi and pj under *σ  and 

σ  , respectively. *t  and t   can be calculated by Eqs. (4.A.1) and (4.A.2), respectively.  

* * * *

*

1 1

pp ji

i ji i j j

hh

p t p tb r b r
t t

t T h T T h T
 

                                   (4.A.1) 

    
* * * *

1 1

pp ji

i jj j i i

hh

p t p tb r b r
t t

t T h T T h T
 

                                    (4.A.2) 

By Eqs. (4.A.1) and (4.A.2), we have    * * * *

*

i ji i j j
p pb r b r

t t T T h h     . Since 
i jp ph h  and 

* * * *
i i j jb r b r

T T , we have     * * * * 0
i ji i j j

p pb r b r
T T h h    and thus *t t . Since *σ  and σ   differ only in 

the positions of the stacks that accommodate pi and pj, the total times for retrieving the containers in other 

piles are the same. Therefore,  *t t  leads to a contradiction that *σ  is an optimal solution and 

concludes the proof.   

 

Proposition 2. Let Pc be the number of piles of a smart group c in the optimal solution, then 

/c cP v T    , and the Pc piles are composed of Pc -1 full piles and one pile whose height equals 

 1cc Pv T   . 

Proof. Let us rank the Pc piles of smart group c in ascending order of the ASC’s horizontal travel time 

needed to retrieve a container from the stack where the pile is located. According to Proposition 1, the Pc 

piles can be ordered as 
1 2, ,...,

cPp p p  with 
1 2

....
Pc

p p ph h h    and 
1 1 2 2

....
P Pc c

b r b r b rT T T   . There are two 

cases depending on the the size of cv : #1) cv T ; #2) cv T . 

In the case of cv T , we suppose by contradiction that in the optimal solution *σ  there is at least 

one non-full pile in the first Pc -1 piles. Let pi be the highest non-full pile in the first Pc -1 piles. We can 

construct a feasible solution σ   that differs *σ  only with regards to piles pi and
cPp of group c such that 

the height of pi is increased by one and the height of pile 
cPp  is decreased by one. In σ  , the piles 

corresponding to pi and
cPp  are denoted by ip   and 

cPp  , and 1
ii

pp
h h


   and 1

PcPc
pp

h h

  .  
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Let *( )f σ  and ( )f σ   be the objective function of *σ  and σ  , respectively. Next, we show that  

*( ) ( ) 0f σ f σ  . Let *t  denote the total times for retrieving the containers in piles pi and
cPp  under 

*σ , and t   denote the total times for retrieving the containers in ip  and 
cPp   under  σ  . Since *σ  

and σ   differ only in the heights of pi and ip  , and the heights of 
cPp  and 

cPp  , the total times for 

retrieving the containers in other piles are the same. Hence, *( ) ( )f σ f σ  equals *t t . Now, we 

calculate *t  and t   by Eqs. (4.A.3) and (4.A.4), respectively. 

*

1 1

p
p Pi c

i i i P P Pc c c

hh

b r p t b r p t

t t

t T h T T h T
 

                                     (4.A.3) 

1 1

p
p Pi c

i i P Pc ci Pc

hh

b r t b r tp p
t t

t T h T T h T




 
 

                                      (4.A.4) 

By Eqs. (4.A.3) and (4.A.4), we have    *

1P P i i p pc c iPc
b r b r h ht t T T T T 

     . For the first term, since 

i i P Pc c
b r b rT T , we have   0

P P i ic c
b r b rT T  . For the second term, since 

P ic
p ph h , we have 1

P ic
p ph h  . By 

Property 2, we have 1p piPc
h hT T  . Therefore, * 0t t  , which leads to a contradiction that *σ  is an 

optimal solution. 

In the case of cv T , we suppose by contradiction that in the optimal solution *σ , 
1p ch v . We can 

construct a feasible solution σ   that differs *σ  only with regards to piles p1 and
cPp of group c such that 

the height of p1 is increased by one and the height of pile 
cPp  is decreased by one. Same as the first case, 

we can prove that * 0t t  , which leads to a contradiction that *σ  is an optimal solution.  

Therefore, in the optimal solution, in the case of cv T , all the first Pc -1 piles must be full piles; and 

in the case of cv T , there must be only one pile whose height equals cv . This means that in both cases, 

/c cP v T    , and the Pc piles are composed of Pc -1 full piles and one pile whose height equals 

 1cc Pv T   , which completes the proof.  

 

Proposition 3. [M1] and [M2] are equivalent problems.  

Proof. We first show an implied constraint for [M1]. By the definition of ctu , we have the following 

implied constraints for [M1] which ensures that if group c is smart, it will be allocated to ctu  number of 

smart stacks for storing its partitions with t number of containers.  

1

R
ct

br c ct

b r

x s u
 

  ,  1,...,c C  , {1,..., }t T                 (4.A.5) 
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We now show that Constraints (4.4) are redundant with Constraints (4.A.5). 

By summing both sides of Eq. (4.A.5) by the domain of t, we have  

1 1 1

R T T
ct

br c ct

b r c t

x t s u t
   

    ,  1,...,c C                      (4.A.6) 

By the definition of ctu , we have 
1

T

ct c

t

u t v


  . Then, by replacing 
1

T

ct

t

u t


  in (4.A.6) by cv , we can 

obtain Constraints (4.4): 
1 1

R T
ct

br c c

b r t

x t s v
  

   ,  1,...,c C  . 

Therefore, [M1] is equivalent to the following formulation defined by [M1-1]. 

[M1-1]                     min
1 1

R T

brt brt b

b r t b

T y w T
   

                                (4.2) 

                        s.t. Constraints (4.3), (4.A.5), and (4.5)-( 4.19) 

Next, we reformulate [M1-1] into an equivalent problem denoted by [M1-2]. 

We define variables t

brx  by  

1

C
t ct

br br

c

x x


 , b  ,  1,...,r R  , {1,..., }t T             (4.A.7) 

Then, we replace all 
1

C
ct

br

c

x


  in the constraints of [M1-1] by t

brx , after which [M1-1] is re-formulated as 

the following equivalent problem defined by [M1-2].  

 [M1-2]                   min
1 1

R T

brt brt b

b r t b

T y w T
   

                                 (4.2) 

                         s.t. Constraints (4.11) – (4.18), (4.20), (4.22) – (4.28), (4.A.5), and (4.A.7)  

Recall that [M2] is formulated as 

  [M2]                    min
1 1

R T

brt brt b

b r t b

T y w T
   

                                 (4.2) 

                         s.t. Constraints (4.11) – (4.18) and (4.20) – (4.28) 

We now prove that [M2] is equivalent to [M1-2] by showing that (i) any optimal solution of [M1-2] can 

be transferred to a feasible solution of [M2] (i.e., (M1-2) (M2)f f ); and (ii) any optimal solution of [M2] 

can be transferred to a feasible solution of [M1-2] (i.e., (M1-2) (M2)f f ), and thus (M1-2) (M2)f f .  

 (i) Any optimal solution of [M1-2] can be transferred to a feasible solution of [M2]. 

We first show that by combining Constraints (4.A.5), and (4.A.7), we can derive Constraints (4.21).                    

By summing both sides of Eq. (4.A.5) by the domain of c, we get  

1 1 1

R C C
ct

br c ct

b r c c

x s u
   

   , {1,..., }t T                         (4.A.8) 

Using Eq. (4.A.7), we replace 
1

C
ct

br

c

x


  in (4.A.8) by t

brx , and then we obtain Constraints (4.21): 

1 1

R C
t

br c ct

b r c

x s u
  

  , {1,..., }t T  .  

We denote X by the polyhedron defined by Constraints (4.11) – (4.18), (4.20), (4.22) – (4.28), (4.A.5) 

and (4.A.7), and Y by the polyhedron defined by Constraints (4.11) – (4.18) and (4.20) – (4.28). Since 

Constraints (4.A.5) and (4.A.7) can derive Constraints (4.21), Y contains X. Since the feasible set of [M1-2] 

is defined by X and the feasible set of [M2] is defined by Y, we have (M1-2) (M2)f f . Given any optimal 

solution of [M1-2], ( cs , ct

brx , t

brx , bz , brh , bw , brtf , brty ), we can transfer it to a solution of [M2], ( cs , t

brx , 

bz , brh , bw , brtf , brty ). 
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 (ii) Any optimal solution of [M2] can be transferred to a feasible solution of [M1-2]. 

Given any optimal solution of [M2], (
cs , t

brx , 
bz , 

brh ,
bw ,

brtf , 
brty ), we show that we can construct a 

solution of [M1-2], (
cs , ct

brx , t

brx , 
bz , 

brh ,
bw ,

brtf , 
brty ). Since the set of variables of t

brx , 
bz , 

brh ,
bw ,

brtf  and 
brty  verify the Constraints (4.11) – (4.18) and (4.20) – (4.28), they also satisfy the Constraints 

(4.11) – (4.18), (4.20) and (4.22) – (4.28) in [M1-2]. Therefore, the remaining task is to prove that the 

solution of cs  and t

brx  satisfy the Constraints (4.A.5) and (4.A.7) in [M1-2]. In the following, given the 

solutions of cs  and t

brx  in [M2], we construct a feasible solution ct

brx  that satisfies the Constraints 

(4.A.5) and (4.A.7) in [M1-2].  

Let G denote the set of groups with 1cs   and G

 the set of groups with 0cs  . Then, according to 

Constraints (4.21), we have Eq. (4.A.9) 

1

1 0
R

t

br ct ct

b r c G c G

x u u
   

      , {1,..., }t T                  (4.A.9) 

Let tP  be the set of stacks (b, r) that satisfies 1t

brx  , then we have 
t ct

c G

P u


  , and Eq. (4.A.9) can 

be written by 

( , ) t

t

br ct

b r P c G

x u
 

  , {1,..., }t T                           (4.A.10) 

We construct the relationship between ct

brx  and t

brx  by Eq. (4.A.11), which correspond to Constraints 

(4.A.7). 

1

C
ct ct ct t

br br br br

c c G c G

x x x x
  

     , {1,..., }t T  , ( , ) tb r P       (4.A.11-1) 

1

0
C

ct

br

c

x


 , {1,..., }t T  , ( , ) tb r P                     (4.A.11-2) 

We construct Eq. (4.A.12) which corresponds to the case of c G   in Constraints (4.A.5). 

1

0
R

ct

br

b r

x
 

 , c G  , {1,..., }t T                      (4.A.12) 

By Eq. (4.A.12) and Eq. (4.A.11-1) we have  

ct t

br br

c G

x x


 , {1,..., }t T  , ( , ) tb r P                     (4.A.13)  

By summing (4.A.13) by the domain of (b, r), we get 

( , ) ( , )t t

ct t

br br

b r P c G b r P

x x
  

   , {1,..., }t T                        (4.A.14) 

Combining Eqs. (4.A.10) and (4.A.14), we obtain 

( , ) t

ct

br ct

b r P c G c G

x u
  

   , {1,..., }t T                          (4.A.15) 

We divide tP  into G  sub-sets such that 
ct ctP u , c G  , and t tc

c G

P P


 . Then, combing Eq. 

(4.A.15) and the definition of tcP , we get 

( , ) tc

ct

br ct

b r P

x u


 , c G  , {1,..., }t T                       (4.A.16) 

Eqs. (4.A.12) and (4.A.16) together construct a feasible solution corresponding to Constraints (4.A.5). 

Therefore, Eqs. (4.A.11), (4.A.12) and (4.A.16) together provide a feasible solution that satisfies the 

Constraints (4.A.5) and (4.A.7) in [M1-2]. By now, we have transferred any optimal solution of [M2] to a 

feasible solution of [M1-2], and thus we have (M1-2) (M2)f f . Since (M1-2) (M2)f f  as proved in (i), 



201 

 

we have  (M1-2) (M2)f f .  

Therefore, we have proved that [M1-2] and [M2] are equivalent. Since [M1] and [M1-2] are equivalent, 

the equivalence between [M1] and [M2] follows, which completes the proof.   

 

Lemma 1. Let (M2)f  and (M3)f  be the objective functions of the optimisation problems defined 

by [M2] and [M3], respectively, then (M3) (M2)f f . 

Proof. In order to prove (M3) (M2)f f , we show that any optimal solution of [M2] is a feasible 

solution to [M3]. It is observed that [M2] and [M3] share the same Constraints (4.11) – (4.18), (4.20), and 

(4.22) – (4.28). In addition, [M2] has one more Constraints (4.21), and [M3] has one more Constraints 

(4.29). Therefore, the remaining task is to prove that any solution t

brx  in [M2] satisfies Constraints (4.29). 

1 1

R C
t

br c ct

b r c

x s u
  

  , {1,..., }t T                           (4.21) 

1

R
t

br t

b r

x n
 

 , {1,..., }t T                               (4.29) 

Since 
1 1

C C

c ct ct t

c c

s u u n
 

   , from Constraints (4.21), we can derive Constraints (4.29) by 

1 1

R C
t

br c ct t

b r c

x s u n
  

   , {1,..., }t T  . Thus, any solution t

brx  in [M2] satisfy Constraints (4.29). 

Therefore, any optimal solution of [M2] is a feasible solution to [M3], that is, (M3) (M2)f f , which 

completes the proof.   

 

Lemma 2. Let 
{1,..., }
max { }m

c
c C

V v


 , then (M2) (M3)f f  when mV T . 

Proof. In order to prove Lemma 2, we only need to prove that any optimal solution of [M3] is a feasible 

solution to [M2] when mV T  and thus (M3) (M2)f f  when mV T . Since (M3) (M2)f f  by 

Lemma 1, (M2) (M3)f f  when mV T  follows.  

When mV T , according to the definition of optimal partition, any group c has only one partition in 

which the number of containers equals its group size cv . Thus,  ctu , {1,..., }c C , {1,..., }t T , is 

defined by 

1,
0, {1,..., } /

c
ct

c

t v
u

t T v



  

We now divide all the groups into T mutually exclusive and collectively exhaustive sub-sets tG , 

{1,..., }t T , such that tG  be the set of groups with cv t  and 
1

T

t

t

G C


 . Then, Constraints (4.21) in 

[M2] and Constraints (4.29) in [M3] can be re-written as follows 

1 t

R
t

br c ct

b r c G

x s u
  

   , {1,..., }t T                         (4.21) 

1 t

R
t

br ct

b r c G

x u
  

  , {1,..., }t T                           (4.29) 

The remaining task is to prove that any optimal solution t

brx  of [M3] satisfies Constraints (4.21). 

Suppose in the optimal solution of [M3], 
1 t

R
t

br ct t

b r c G

x u X
  

   , {1,..., }t T . By the definition of tG  
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and ctu , we have 
t tX G . Next, we show that we can construct cs  that satisfies 

1 t

R
t

br c ct

b r c G

x s u
  

   , 

{1,..., }t T  .  Since tG , {1,..., }t T , are mutually exclusive and 
t tX G , we can always find a subset 

of groups from tG , denoted by *

tG , such that 
*

t tG X  and *

tG , {1,..., }t T , are mutually exclusive. 

Then, we can construct a feasible cs  by letting 1cs  , *

tc G , {1,..., }t T  and 0cs  , *

tc G , 

{1,..., }t T .  

By now, we have proved that any optimal solution of [M3] is a feasible solution of [M2] when mV T , 

which indicates (M3) (M2)f f  when mV T .   

 

Appendix B. Details of the heuristic 

B.1. The integer programming model for Subproblem 1 

[Sub1]                                   max
1

C

c c

c

s v


                              (4.B.1) 

s.t.  
1

1
T

t

br

t

x


 , ib  ,  1,...,r R                      (4.B.2) 

1 1i

R C
t

br c ct

b r c

x s u
  

  , {1,..., }t T                        (4.B.3) 

1 1

R T
t

b br

r t

z R x
 

  , ib                             (4.B.4) 

1 1

R T
t

b br

r t

z R R x
 

   , ib                          (4.B.5) 

 0,1bz  , ib                                  (4.B.6) 

 0,1cs  ,  1,...,c C                              (4.B.7) 

 0,1t

brx  , ib  ,  1,...,r R  , {1,..., }t T           (4.B.8) 

B.2. The heuristic rule for solving Subproblem 1 

The heuristic rule used for determining the smart groups is described below. The following notations are 

defined. 

gc: the group at the cth position in the sorting list. 

Ns: the number of smart containers.  

Nn: the number of non-smart containers.  

Ss: the number of stacks for storing smart containers.  

Sn: the number of stacks for storing non-smart containers.  

Cap: the capacity of the remaining stacks for storing non-smart containers.  

Step 0: Calculate /c c cd v P  for each group. Sort the groups according to dc in descending order. Ties 

are broken by sorting them according to Pc in descending order. Initialize, c = 0; Ns = 0; Nn = N; Ss = 0; Sn = 

iB R . 
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Step 1: c = c+1. If c C , calculate the capacity of the remaining stacks for storing non-smart 

containers Cap by Eq. (4.B.9); otherwise, stop.   

     
      

/ ( 1) 1 , if % 0;

/ ( 1) 1 % 1 1, otherwise

c c

c c

n g n g

n g n g

S P R R T S P R
Cap

S P R R T S P R T

       
 

         

               (4.B.9) 

Step 2: If 
cn gCap N v  , determine gc to be a smart group, update Ss = Ss + Pc, Sn = Sn - Pc, 

cs s gN N v  , and 
cn n gN N v  , and then go to Step 1; otherwise, go to Step 1.  

In the above procedures, Steps 1 and 2 are to maintain the feasibility of Constraints (4.22) and (4.25). In 

considering whether a group can be selected as a smart group, Step 1 first calculates the remaining 

capacity assuming that the group has been determined to be a smart group, and then Step 2 judges whether 

this capacity is enough to store the remaining non-smart containers. If the remaining capacity is not 

enough, the group under consideration is skipped and we move on to examine the next group in the sorting 

list.  

B.3. The MIP model for Subproblem 2 

The objective function of subproblem 2 is as follows: 

min
2 21 1
i i

R T

brt brt b

r tb b

T y w T
  

                                 (4.B.10) 

The following constraints need to be satisfied: 

2 1
i

R

br n

rb

h N


                                         (4.B.11) 

1

( 1)
R

br

r

h RT T


   , 2

ib                             (4.B.12) 

1

T

brt br

t

y h


 , 2

ib  ,  1,...,r R                       (4.B.13) 

, 1brt br ty y  , 2

ib  ,  1,...,r R  ,  2...,t T            (4.B.14) 

1 1

R T

b t brt

r t

w α f
 

  , 2

ib                                (4.B.15) 

1

1
T

brt

t

f


 , 2

ib  ,  1,...,r R                         (4.B.16) 

1

T

brt br

t

t f h


  , 2

ib  ,  1,...,r R                      (4.B.17) 

 0,1brty  ,  0,1brtf  , 2

ib  ,  1,...,r R  ,  1,...,t T    (4.B.18) 

 1,...,brh T , 2

ib  ,  1,...,r R                      (4.B.19) 

0bw  , 2

ib                                       (4.B.20) 

 

If ˆ 0R  , the B th bay will be a mixed bay and we have the following constraints for this bay:   

0
Br

h  ,  ˆ 1,...,r R R                                 (4.B.21) 

Then, subproblem 2 can be formulated as follows: 
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    [Sub2-1] if ˆ 0R  :                       

                                  min (4.B.10) 

                             s.t. Eqs. (4.B.11) – (4.B.21) 

    [Sub2-2] if ˆ 0R  :                       

                                      min (4.B.10) 

                             s.t. Eqs. (4.B.11) – (4.B.20) 

The objective function (4.B.10) is to minimise the total retrieval time of the non-smart containers. 

Constraints (4.B.11) ensure that all the non-smart containers are stored in the non-smart area. Constraints 

(4.B.12) guarantee the capacity feasibility of each bay. Constraints (4.B.13) and (4.B.14) determine the 

height of each non-smart stack and guarantee that containers are stacked from the ground and are stacked 

on top of one another. Constraints (4.B.15) calculate the total relocation time for retrieving the containers in 

a bay. Constraints (4.B.16) and (4.B.17) define the auxiliary decision variables brtf . Constraints 

(4.B.18)-(4.B.20) define the domains of the decision variables. Constraints (4.B.21) ensure that the stacks 

reserved for smart containers in the mixed bay are not occupied by non-smart containers.  

B.4. An illustrative example for Subproblem 2 

Fig. 4. B.1 illustrates the storage area that is temporarily pre-allocated to smart containers and non-smart 

containers in subproblem 2. In this example, the given stacking area consists of six consecutive bays from 

bay 1 to bay 6 (i.e., Bi = 6), six rows (R=6) and five tiers (T=5). The first bay is allocated to full smart piles 

whose heights equal the maximum stacking height of five. The middle four bays from bay 2 to bay 5 are 

allocated to non-smart containers, in which the rightmost two stacks in bay 5 are allocated to smart piles as 

bay 5 is a mixed bay. The last bay is allocated to smart piles.  

1

i

Non-smart bays

Bay 1 Bay 2 Bay 3 Bay 4 Bay 6Bay 5

1

5
4

3
2

6

Row

Smart bays Smart baysMixed bay

3

i

B(     )ˆR R smart piles

2

i

 

Fig. 4. B.1. Illustration of the pre-allocated area to smart and non-smart containers in subproblem 2 

B.5. The integer programming model for Subproblem 3 

The new parameters and decision variables for subproblem 3 are defined as follows: 

Parameters:  

 : the set of smart piles; 

 : the set of non-smart piles;  

hk: the height of pile k, k  .  

Decision variables: 
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k

bru : equals one if smart pile k, k  , is allocated to stack (b, r), ,
ib ,  1,...,r R ; and zero 

otherwise;  

k

brv : equals one if non-smart pile k, k   is allocated to stack (b, r), 
ib ,  1,...,r R ; and zero 

otherwise;  

Then, subproblem 3 for the ith iteration can be formulated as follows: 

[Sub3]:                       min
1 1i

R T

brt brt

b r t

T y
  

                                (4.B.22) 

s.t.  
1

1
i

R
k

br

b r

u
 

 , k                                (4.B.23) 

1

1
i

R
k

br

b r

v
 

 , k                                (4.B.24) 

1k k

br br

k k

u v
 

   , ib  ,  1,...,r R               (4.B.25) 

1

( 1)
R

k k

br br k b

r k k

u T v h RT T z
  

 
       

 
   , ib       (4.B.26) 

1

R
k

b br

r k

z R u
 

  , ib                            (4.B.27) 

1

R
k

b br

r k

z R R u
 

   , ib                         (4.B.28) 

1

T
k k

brt br k br k

t k k

y u h v h
  

     , ib  ,  1,...,r R      (4.B.29) 

, 1brt br ty y  , ib  ,  1,...,r R  ,  2...,t T        (4.B.30) 

 0,1k

bru  , ib  ,  1,...,r R  , k              (4.B.31) 

 0,1k

brv  , ib  ,  1,...,r R  , k                (4.B.32) 

 0,1brty  , ib  ,  1,...,r R  ,  1,...,t T          (4.B.33) 

 0,1bz  , ib                                 (4.B.34) 

The objective function (4.B.22) is to minimise the ASC travel time. Constraints (4.B.23) ensure that each 

smart pile is allocated to a stack in the given storage area. Constraints (4.B.24) ensure that each non-smart 

pile is allocated to a stack in the given storage area. Constraints (4.B.25) make sure that each stack can only 

store either a smart pile or a non-smart pile. Constraints (4.B.26) guarantee the capacity feasibility of each 

bay. Constraints (4.B.27) and (4.B.28) enforce that bz  equals zero if all the piles allocated to bay b are 

smart and equals one if there are non-smart piles allocated to bay b. Constraints (4.B.29)-(4.B.30) 

determine the height of each stack and guarantee that containers are stacked from the ground and are 

stacked on top of one another. Constraints (4.B.31)-(4.B.34) are the binary constraints.  

B.6. The heuristic rule for solving Subproblem 3 

The heuristic rule used for allocating the locations of the smart piles and non-smart piles is described 

below. The following notations are used for describing the heuristic rule. The first three notations are 
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newly defined, and the remaining ones have been defined in Section 4.5, which are recalled here.  

Sθ : the sorting list of smart piles; 

Nθ : the sorting list of non-smart piles;  

Ib: the total number of containers in bay b,
ib ;  

 : the set of smart piles; 

 : the set of non-smart piles;  

T : the set of full smart piles with T number of containers; 

1 : the set of bays in i  located before bay b̂  ( b̂  is the minimum bay in the block that satisfies 

垐br b
T T  for any 1 < r < R); 

1

i : the first /T R     bays in i , which are allocated to full smart piles and are smart bays; 

2

i : the next /nS R    bays in i , which are allocated to the non-smart containers and are non-smart 

bays; 

B : the last bay in 2

i ; 

R̂ : the number of non-smart piles in bay B  if B  is a mixed bay, ˆ %nR S R ; 

3

i : the last 1/s iS R    
 bays in i , which are allocated to the smart piles that are neither in 1

i  

nor in B ; 

Step 1: Constructing temporary bays.  

Step 1.1: Sort the smart piles in   according to hk in descending order and obtain the sorting list Sθ .  

Step 1.2: Position the first 
1

i R   smart piles in the sorting list Sθ  to the bays in 1

i  , starting from 

the leftmost row to the rightmost row in each bay.  

Step 1.3: Sort the non-smart piles in   according to their locations (b, r) obtained in subproblem 2 in 

ascending order of b and ties are broken in ascending order of r, and obtain the sorting list Nθ .  

Step 1.4: Position the non-smart piles in the sorting list Nθ  to the bays in 2

i , starting from the 

leftmost row to the rightmost row in each bay.  

Step 1.5: If ˆ 0R  , allocate the remaining smart piles in the sorting list Sθ  to the bays in 3

i , starting 

from the leftmost row to the rightmost row in each bay; otherwise, first, allocate the first (R- R̂ ) in the 

remaining piles in Sθ  to bay B , starting from row ˆ 1R   to row R, and then allocate all the remaining 

piles in Sθ  to the bays in 3

i , starting from the leftmost row to the rightmost row in each bay.  

Step 2: Re-allocating temporary bays. Calculate the total number of containers Ib in each bay ib . 

Sort the bays in descending order of Ib and then re-allocate the sorted bays to the locations of the bays in 

i  from the landside to the seaside.  

Step 3: Re-allocating piles in 1 . For each bay 1b , re-allocate its piles based on Tbr such that a 

higher pile is allocated to a stack with greater Tbr.  
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Chapter 5  

Conclusion 

 

 

 

 

 

 

 

 

In this chapter, we summarise the executed work and research findings, outline possibilities to extend this 

work and discuss some open challenges for future research.   

5.1 Summary and discussions 

Container terminal operations encompass three main logistic sub-systems where the storage yard is the 

central intersection of seaside and landside operations within the terminal. The management of yard 

operations is of paramount importance in determining the efficiency and competitiveness of a terminal. As 

container relocation is the major source of inefficiency in yard operations, the optimisation of container 

handling in yard blocks to reduce relocations has been an active research stream in Operations Research in 

the past two decades. Five problem types have been defined and addressed in the literature, which involves 

the process of container storage, container marshalling and container retrieval. The optimisation of these 

problems is highly dependent on the retrieval times of containers. Although such data is often uncertain, the 

majority of research assumes deterministic settings, which could jeopardise the practicality of the solutions. 

A recent research trend has seen an increasing interest in taking into account uncertainties but it remains 

less studied compared to the dominant deterministic research stream. This thesis contributes to the literature 

on the optimisation of container handling operations in yard blocks under uncertainties. As there is a strong 

drive for addressing issues such as over-utilisation of yard storage space and port congestion, besides 

pursuing optimisation methods, there is a need for seeking innovative container handling strategies and 

utilising potential information. This thesis proposes new strategies for container retrieval and stacking and 

address the corresponding optimisation problems to improve the import container retrieval performance. 

The research work is presented in Chapters 2 - 4 in the format of three papers (published and unpublished). 

Chapter 2 and Chapter 3 addresses the Container Relocation Problem (CRP), and Chapter 4 addresses the 

Storage Slot Assignment Problem (SLAP).  

In the following, Section 5.1.1 summarises the work and main findings of each paper, followed by the 

discussions of the findings in the three papers in relation to each other and in relation to wider literature in 

Section 5.1.2.  

5.1.1 Summary of each paper 

In Chapter 2 and Chapter 3, we extend an uncertain version of the CRP – the Stochastic Container 

Relocation Problem (SCRP), where the randomness of truck arrival within a time window is modelled by 
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scenarios with given probabilities and the goal is to find a globally optimal container relocation sequence 

that minimises the expected total number of relocations, which is originally introduced in Ku and Arthanari 

(2016) and extended by Galle et al. (2018). Our novelty is the introduction of flexible service policies that 

allow the terminal operator to determine the service sequence of the external trucks to some extent during 

the container retrieval process, as opposed to the traditional first-come-first-serve policy. In addition, we 

relax the assumption of uniformly distributed truck arrivals within a time window by a more general 

probabilistic model that considers the customers (trucks)’ arrival preference over a time window.  

In Chapter 2 (Paper 1), the flexible service policy is applied in a two sub-time windows-based situation 

where each appointment time window is divided into two sub-time windows with equal length, and the 

trucks that have arrived at the same sub-time window are allowed to be served out-of-order. The arising 

problem is termed as the SCRP with Flexible Service policies (SCRP-FS). We present a stochastic dynamic 

programming model with two lexicographically ordered objectives, where the primary objective is to 

minimise the expected total number of relocations and the secondary objective is to minimise the total truck 

waiting times of each batch. Correspondingly, tree search-based exact algorithms and heuristic algorithms 

are developed to obtain optimal solutions and near-optimal solutions respectively. Efficiencies of all 

algorithms are evaluated through computational experiments by a discrete event-driven simulation model. 

Computational results show that the computation times of the exact algorithm deviate greatly for different 

instances even their problem classes are the same. For some instances, an optimal solution can be obtained 

in less than one second, while for others, optimal solutions are not able to be found within an hour time 

limit. The look-ahead heuristic algorithm can solve all problems in a matter of milliseconds. For the 

problems that we have access to optimal solutions, the accuracy of the heuristic algorithm is within 2% 

gaps in most cases. In addition, both the number of relocations and the average truck waiting time can be 

significantly reduced by applying the flexible service policy. The main contribution of this work is the 

novelty and effectiveness of the flexible service policy and the adaptability of the methodological 

framework. The proposed methodology is applicable to solve multi-stage stochastic optimisation problems 

in which decisions are made sequentially and multiple objectives are lexicographically ordered. 

Flexible service policies provide more opportunities for reducing the number of relocations but may raise 

the concern of service fairness because some earlier arriving trucks can be served later than some later 

arriving trucks. In Chapter 3 (Paper 2), we extend the SCRP-FS to the case with multiple sub-time 

windows, that is, the SCRP with Multiple sub-time windows-based Flexible Service policy (SCRP-MFS). 

In the SCRP-MFS, an appointment time window is divided into multiple sub-windows such that the level 

of service flexibility can be controlled more accurately to mitigate the issue of service fairness. The 

problem is formulated into a stochastic dynamic programming model with two lexicographically ordered 

objectives minimising the expected total number of relocations (primary) and the maximum truck 

turnaround time (secondary), which is solved via a hierarchical iterative approach. The computational 

results show interesting trade-offs between relocation efficiency and service fairness. A counter-intuitive 

finding is that the considered service fairness does not necessarily improve as the number of sub-time 

windows increases. Another important finding is that the information on the customer arrival preference 

over a time window can be valuable in reducing the number of relocations, especially when each truck 

indicates a certain arrival sub-time window. These findings can help the terminal operator to better 

determine the number of sub-time windows when applying the flexible service to achieve a balance 

between relocation efficiency and service fairness, and decide whether it is worth committing effort to 

capture the customer preference information.   

In Chapter 4 (Paper 3), we deal with the determination of the initial storage locations of import 
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containers into a yard block by addressing the Storage Slot Assignment Problem (SLAP). Our novelty is the 

introduction of the Smart Stacking (SS) strategy that intelligently categorises containers into smart 

containers and non-smart containers by utilising customer identity information. Under the SS strategy, 

relocations can be avoided for the smart stacks that store containers only from the same customer (smart 

containers); on the other hand, relocations are required for the non-smart stacks that store containers from 

multiple customers (non-smart stacks). Depending on whether the containers from the same customer are 

allowed to be split between smart stacks and non-smart stacks, two SS policies arise, that is, the non-split 

policy and the split policy. Under each policy, the problem is to determine the smart customers or 

containers, the number and locations of smart stacks and non-smart stacks, and assign a batch of import 

containers to exact stacking positions in a yard block. The objective is to minimise the total retrieval time 

that is the sum of the relocation time and the yard crane travel time. Both the non-split variant and the split 

variant are formulated by a mixed-integer programming model. For the non-split variant, we leverage the 

structural properties of the optimal solution to develop an improved formulation with enhanced 

computational performance. By analysing the structure of the model, we then develop a divide-and-conquer 

heuristic algorithm to solve the non-split variant. The computational results show that the heuristic 

algorithm is efficient in that it can obtain near-optimal solutions within 0.6% gaps from the lower bound for 

sufficiently large problems (with more than one thousand containers), with the runtimes ranging from only 

less than one second to about six seconds. In addition, the SS strategy can significantly reduce the total 

retrieval time compared to current practice, and the effectiveness is more significant in situations with a 

larger amount of customer information and a wider range of group sizes. Moreover, it is proved that the 

split policy yields better benefits than the non-split policy both theoretically and computationally. These 

findings demonstrate the value of customer information to container stacking and highlight the importance 

of the information quality, which can motivate the collaboration between terminal operations and their 

customers especially those with high-volume containers. The superiority of the split policy can provide an 

insight into whether or not to allow splitting when applying the SS strategy for terminal operators.  

5.1.2 Discussions 

In the following, we first discuss the findings in the three papers in relation to each other, and then discuss 

the findings in relation to wider literature.  

5.1.2.1 Findings in relation to each other 

Firstly, the findings in all three papers are related to the import container retrieval performance.  

 Papers 1 and 2 focus on the performance of the number of relocations and the waiting time of external 

trucks. Paper 1 finds that both the number of relocations and the average truck waiting time can be 

significantly reduced by applying the flexible service policy.  

 Based on Paper 1, Paper 2 further shows that there is a trade-off between relocation efficiency (the 

number of relocations) and service fairness (the maximum truck turnaround time) when applying the 

flexible service policy.  

 Paper 3 focuses on the total time needed for retrieving containers. Besides the time spent on relocation 

activities, the yard crane travel time for moving containers from the storage slots to the transfer points 

is also incorporated into the objective function. It finds that the total retrieval time, which is the sum 

of the relocation time and yard crane travel time, can be significantly reduced by applying the smart 

stacking strategy compared to the current practice.  

Secondly, all three papers prove that customer information is valuable to the terminal operators.  
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 Papers 1 and 2 focuses on the customer arrival preference information and utilises it in the container 

retrieval and relocation process. Paper 1 finds that if all customers prefer the same sub-time window, 

the number of relocations will be significantly different compared to the case of equal preference.  

 Paper 2 further demonstrates that utilising the customer arrival preference information can lead to a 

statistically significant reduction in the number of relocations in comparison with not utilising such 

information, especially when each truck indicates a certain arrival sub-time window.  

 Paper 3 focuses on the customer identity information and utilises it in the container stacking process. 

It finds that the customer identity information is useful for determining the container initial storage 

positions, which can reduce the future retrieval time significantly.  

5.1.2.2 Findings in relation to wider literature 

Overall, the findings in the thesis (i) complement and advance the knowledge of the effects of flexible 

service policies on import container retrieval performance, and (ii) advance the knowledge of the value of 

customer information to import container retrieval performance. Specifically, our findings complement and 

advance the knowledge in the literature in the following two aspects:  

(i) The effects of flexible service policies.  

Only a few studies have applied the concept of flexible service or out-of-order service to the CRP for 

import containers and have discussed the effects (Zhao and Goodchild, 2010; Borjian et al., 2013; Borjian 

et al., 2015; Zeng et al., 2019). Table 5.1 presents these studies from three key aspects: the flexibility in 

service sequence, the characteristics of the truck arrival information, and the main findings regarding the 

effects of flexible service.  

Table 5.1 Closely relevant literature on the CRP for import containers with flexible retrieval.  

Literature 
Flexibility in service 

sequence 
Truck arrival information Effects of flexible service 

Zhao and 

Goodchild (2010) 

Out-of-order retrieval 

within the first group 

Arrival group and arrival 

order within the first group is 

known; exact arrival order is 

updated on a truck unit basis 

Fewer relocations 

Borjian et al. 

(2013) 

Out-of-order retrieval s.t. a 

maximum delay 

Retrieval time window for 

each container is known 
Fewer relocations and less delay 

Borjian et al. 

(2015) 

A limited number of 

out-of-order retrievals 

before each truck 

Retrieval time window for 

each container is known 

Fewer relocations, less delay, and 

unaffected service equity 

Zeng et al. (2019) 
Out-of-order retrieval 

within each group 
Arrival group is known 

Fewer relocations and longer 

average truck waiting times 

Paper 1 in the 

thesis 

Out-of-order retrieval 

within each sub-group (two 

sub-time windows-based) 

Arrival group is known; exact 

arrival order is updated on a 

group size basis 

Fewer relocations and shorter truck 

waiting times 

Paper 2 in the 

thesis 

Out-of-order retrieval 

within each sub-group 

(multi-sub-time 

windows-based) 

Arrival group is known; exact 

arrival order is updated on a 

group size basis 

*Increased relocations, and reduced 

maximum truck turnaround time 

and coefficient of variation of truck 

turnaround time (but not 

guaranteed) 

Note: “*” represents in comparison with the results of Paper 1. 

As shown in Table 5.1, in previous studies, the effects of flexible service on the CRP have been 

discussed regarding the performances of the number of relocations, retrieval delays, truck waiting times, 

and service equity. Our findings in Paper 1 and Paper 2 complement the existing findings in the following 

ways, and they together advance the knowledge of the effects of flexible service policies on import 

container retrieval performance. 
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 Paper 1 and Paper 2 complement Zhao and Goodchild (2010) by adding the effects on truck waiting 

times and service fairness. 

 Paper 1 and Paper 2 complement Borjian et al. (2013), Borjian et al. (2015) and Zeng et al. (2019) by 

generating findings in an uncertain decision-making context.  

 Paper 1 complements Zeng et al. (2019) by concluding a reduced average truck waiting times. 

 Paper 2 complements Borjian et al. (2015) by demonstrating the trade-off effects between relocation 

efficiency and service fairness. 

(ii) The value of customer information.  

Customer information has been increasingly utilised to seek more efficient yard operations, which span 

over container stacking, marshalling, retrieving and relocating. Table 5.2 presents the relevant studies from 

three key aspects: the type of operations, the information utilised, and the main findings regarding the value 

of information. 

Table 5.2 Closely relevant literature on the value of customer information to container handling at yards.  

Literature Operation type Utilised information Value of information 

Zhao and 

Goodchild (2010) 
Retrieving and relocating 

Truck arrival group; updated 

exact truck arrival order on a 

truck unit basis 

Fewer relocations by utilising 

the arrival group information; 

Further fewer relocations when 

updating the arrival order   

Borjian et al. 

(2013) 
Retrieving and relocating 

Probabilities of the container 

departure time scenarios 

Fewer relocations by having 

more accurate information and 

knowing the information earlier  

Galle et al. (2018) Retrieving and relocating 
Updated exact truck arrival order 

on a group basis 

Fewer relocations by utilising 

the within group information  

van Asperen et al. 

(2013) 
Stacking and re-marshalling Container departure time 

The earlier the announcement 

of the information, the better 

the stacking efficiency 

Gharehgozli and 

Zaerpour (2018) 
Stacking Barges arrival time windows  Reduced total retrieval time 

Covic (2017) Re-marshalling Truck appointment information 

Reduced truck waiting time by 

utilising the imprecise truck 

arrival information that does 

not deviate above a certain 

threshold 

Kim and Yi 

(2021) 

Stacking and 

pre-marshalling 

Truck arrivals (dwell time 

distribution of containers, truck 

dispatching notice, truck 

appointment, and real-time 

position of trucks). 

Fewer relocations and reduced 

truck system time by utilising  

all these sources of information  

Paper 1 in the 

thesis 
Retrieving and relocating 

Customer arrival preference (i.e., 

truck arrival probabilities over a 

time window) 

Fewer relocations if all 

customers prefer the same 

sub-time window 

Paper 2 in the 

thesis Retrieving and relocating 

Customer arrival preference (i.e., 

truck arrival probabilities over a 

time window) 

Fewer relocations 

Paper 3 in the 

thesis 
Stacking Customer identity information Reduced total retrieval time 

 

The findings in our three papers together advance the knowledge of the value of customer information to 

import container retrieval performance. The ways how they advance are specified below.  

As shown in Table 5.2, three studies have proved the value of the information about the container 

departure times to the import container retrieval performance by utilising the information in the container 
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retrieving and relocating process (Zhao and Goodchild, 2010; Borjian et al., 2013; Galle et al., 2018). 

Different from them, our work in Paper 1 and Paper 2 develops new knowledge on the value of customer 

arrival preference information to the import container retrieval performance when the information is 

applied to the retrieving and relocating process.  

In addition, some studies have proved the value of the arrival information of carriers (trucks and barges) 

to container stacking or/and retrieval efficiencies by utilising the information in the container stacking 

or/and marshalling processes (van Asperen et al., 2013; Gharehgozli and Zaerpour, 2018; Covic, 2017; Kim 

and Yi, 2021). Different from these studies, our work in Paper 3 develop new knowledge on the value of 

customer identity information to the import container retrieval efficiency when the information is applied to 

the stacking process.   

5.2 Overall contribution  

The thesis makes theoretical, methodological and practical contributions. 

Theoretical contributions 

(1) The thesis is theoretically relevant to academics by adding a series of new variants of problems to the 

literature on container handling problems in yard blocks, which helps to obtain efficiency improvement 

compared to the traditional variants and practices and brings many new research directions. 

(2) The thesis makes an incremental theoretical contribution by: (i) generating some knowledge (lower 

bound, properties, NP-hardness, etc) on the new variants of problems, (ii) demonstrating the value of 

customer information (customer arrival preference information and customer identification information), 

and (iii) demonstrating the benefits and pitfalls of flexible service policies.  

Methodological contributions 

(1) The proposed mathematical formulations and solution methods generate methodology rigour and 

scientific usefulness to the optimisation of container terminal operations (under uncertainties). The 

developed exact algorithm enriches the application of tree search-based algorithms to solving stochastic 

dynamic programming. The developed heuristic algorithms enrich the optimisation methods for solving 

terminal operation problems.    

(2) The proposed methods can be applied to other problems with similar structures and goals by 

appropriate modifications.  

Practical contributions 

(1) The new variants of problems consider the uncertainties in the real context, which increases the 

practicability and significance of optimisation.  

(2) The alternative service policy for container retrieval and the novel strategy for container stacking 

help to improve both the terminal operation efficiency and the customer service level. 

(3) The proven value of customer information provides practical implications to terminal operators and 

their customers, which could promote industry-wide collaboration between terminal operators, trucking 

companies and cargo owners to improve the import container retrieval performance. 

(4) The developed heuristic algorithms are efficient that can generate effective solutions in a matter of 

milliseconds for the container retrieval problem and within a few seconds for the container stacking 

problem, which can be applied to facilitate the decision making for terminal operators even for real-time 

decisions.    
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5.3 Future research directions 

We now present some possible extensions from the thesis and then envision some future research directions 

for addressing open challenges. 

5.3.1 Extensions from the thesis 

5.3.1.1 Chapter 2 

There are many ways to extend the work in Chapter 2. 

(i) From the perspective of theoretical and methodological contribution: 

 The lower bound of the expected number of relocations could be tightened to be used as a more 

efficient node pruner in the tree search-based algorithm. This can refer to the progress in the 

state-of-the-art lower bounds for the deterministic CRPs (e.g., Tanaka et al., 2016; Tanaka and Mizuno, 

2018; Tricoire et al., 2018).  

 Another approach could be using machine learning-driven algorithms, such as deriving pruners from 

machine learning techniques (Zhang et al., 2020), for solving the SCRP.  

 With an orientation to heuristic solution methods, heuristic tree search procedures that explore only a 

subset of the search tree (e.g., Ting and Wu, 2017) and metaheuristics (e.g., Jovanovic et al., 2019) 

could be devised to balance the computational time and the solution quality.  

(ii) From the perspective of problem definition, more realistic situations regarding the truck arrival 

uncertainties could be considered. In the real world, it cannot be guaranteed that a truck will arrive within 

its appointed time window for sure, due to the stochastic nature of the road travel time and the planning 

changing within the truck companies, etc. The arrival of a truck may be prior to or later than the appointed 

time window or even not arriving (no-show). This will lead to different problem settings and 

correspondingly, may require different modelling techniques and resulting solution approaches. 

 The model in this work may be extended to account for such uncertainties to approach the new 

problem by taking the stochastic optimisation paradigm.  

 Alternatively, a robust optimisation approach may be devised to hedge against the worst-case scenario. 

The application of robust optimisation has been studied in the closely related pre-marshalling problem 

in Rendl and Prandtstetter (2013), Tierney and Voß (2016), and Boge et al. (2020) but has not 

appeared in the CRP.  

 It would also be interesting to target the problem from the recoverable robustness viewpoint with a 

focus on the recovery cost by applying the recoverable robust optimisation approach (e.g., Iris and 

Lam, 2019a).  

 However, with many alternative approaches available, it is needed to critique the merits and defects of 

different approaches. With respect to this, a further question should be developing an evaluation 

framework in order to allow a fair comparison of the performance of different approaches in 

addressing the same problem setting.  

(iii) Finally, it would be possible to investigate the application of the ideas and methodology provided in 

this work to other variants of the CRP, such as the unrestricted CRP under uncertainties.  

5.3.1.2 Chapter 3 

The work in Chapter 3 can be extended in several directions.  

(i) From the perspective of methodological contribution, exact solution methods need to be developed in 

order to allow a benchmarking for evaluating the performance of the heuristic solution method. This is 
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expected to be computationally challenging because the size of the search tree would be very large when 

multiple sub-time windows are considered due to more possibilities of scenarios. Besides the 

best-first-search strategy used in Chapter 2, alternative branching strategies and pruning strategies could be 

tested to speed up the search procedure. The computational time might also be improved if more efficient 

abstract techniques are used for checking repeated nodes, such as using a hash table that compares only the 

hash value of two nodes instead of their exact configurations (Russell and Norvig, 2016).  

(ii) From the perspective of theoretical contribution, it would be interesting to derive the theoretical 

properties of optimal solutions by analysing the structure of the problem, as this work obtains some 

computational results that are not straightforward (e.g., the non-monotonicity of maximum turnaround time 

with the number of sub-windows).  

(iii) From the perspective of problem definition, it would be interesting to introduce alternative measures, 

such as sequence fairness (Borjian et al., 2015) and delay fairness (Wang et al., 2017), for characterising the 

service fairness in the container retrieval process, and study their impacts on the multi-criteria 

decision-making of the SCRP.  

(iv) Lastly, it would be worthwhile to investigate other operational strategies to improve the service 

efficiency and quality of import container retrieval and mitigate the service unfairness among trucks. 

Recently, Azab and Morita (2021) incorporate truck appointment scheduling into the optimisation of the 

deterministic CRP to reduce the number of relocations by rescheduling the container retrieval times 

requested in the truck appointment system. Future research could integrate this idea with the concept of 

flexible service and apply it in the SCRP. In this context, it would be possible to develop a dual-channel 

communication mechanism where the information on the trucks’ preferred or estimated arrival time is 

updated to the terminal system and the scheduled arrival time by the terminal is feedbacked to the truck, 

both dynamically.  

5.3.1.3 Chapter 4 

The work in Chapter 4 is the first in the literature that addresses the initial storage for import containers 

under the smart stacking strategy. Many directions are worthwhile studying in the future.  

(i) To continue this work, the split variant may be further investigated. The current split model provides 

an upper bound for the split policy by assuming optimal partition. A future research direction is 

investigating the optimality of the split variant. This would provide an insight into the quality of the upper 

bound at hand.  

(ii) The problem studied in the current work is oriented toward a short-term operational problem in order 

to derive insights into the structural properties of the problem. A future research direction could focus on 

the long-term storage space allocation problem under the smart stacking strategy, which aims to allocate the 

import containers from multiple vessels to the storage slots in different yard blocks over a longer planning 

horizon. This problem involves two-level decisions for each container, that is, block allocation and slot 

assignment, which is usually decomposed into two stages in the literature (e.g., Chen and Lu, 2012; Chang 

and Zhu, 2019). In this respect, the modelling and solution methods developed in this chapter can function 

as a building block for this long-term planning.  

(iii) In order to efficiently utilise the yard storage space, it may require to incorporate the temporal 

information (e.g., retrieval time) of containers into the optimisation such that containers of different vessels 

can share stacks without causing mis-overlays. Because such information is unavailable when containers 

are to be stacked into the yard, a data-driven framework can be established. In the framework, data mining 

techniques can be used to predict the dwell time of containers (e.g., Moini et al., 2012; Kourounioti et al., 

2016), so that it is possible to differentiate the retrieval priority of containers, which is then input to the 
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optimisation model. This would contribute to the application of data-driven approaches in the context of 

terminal planning and management, which is still in its infancy but is expected to have more promising 

research as identified by Heilig et al. (2020).  

(iv) Lastly, another meaningful research direction is applying the methodology developed in this work to 

sea-rail intermodal container terminals. This would increase the potential of smart stacking for practical 

application because a single rail carrier could have hundreds of containers from a vessel and these 

containers may go for the same rail head.   

5.3.2 Open challenges 

There are some open questions as identified in several review papers on yard operations by Caserta et al. 

(2011, 2020), Luo et al. (2011), Carlo et al. (2014) and Covic (2018), on energy management and 

operations planning in seaport by Iris and Jam (2019b), and on planning problems in the container shipping 

supply chain by Song (2021). Based on some of those open questions, we discuss future research directions. 

In the end, the challenges under the Covid-19 pandemic in the research topic and potential solutions are 

also discussed.  

5.3.2.1 Integrated planning 

The first challenge is how to make integrated planning of the container handling operations in order to 

move towards a global optimum for yard productivity. Some efforts in this respect can be observed where 

two types of container handling are jointly optimised, such as dynamic CRP that consider both container 

storage and retrieval (e.g., Hakan Akyüz and Lee, 2014; Tang et al., 2015), integrated optimisation of 

container storage and marshalling by Choi and Kim (2016), and integrated optimisation of container 

premarshalling and relocation by Zweers et al (2020). However, because there are interaction effects 

between different problems and the operating environment is highly uncertain, approaching a holistic 

optimisation is hardly intractable from a computational perspective. In this regard, one can turn to online 

optimisation. An integrated simulation-optimisation framework could be established, where optimisation 

tools are called to solve a particular or several consecutive container handling problems while simulation 

tools are used to capture the real-time data outside the system and model the interactions between different 

container handling processes.   

5.3.2.2 Information availability and reliability 

Another challenge is the availability and reliability of information. Efficient cargo flows rely on efficient 

information flows along the logistics chains. The maritime industry has increasingly recognised the value 

of information and sought decision support tools to gain competitive advantages (Heilig et al., 2020). 

However, terminal operators usually only possess estimated information or do not have the information at 

the required moment.  

One of the crucial aspects for making better decisions on container stacking is the availability of reliable 

information on containers (container arrival and departure times, modes of onwards transport, etc). The 

existing studies that take the uncertainty of temporal information into account rely extensively on the 

knowledge of the container departure probabilities or truck arrival probabilities (e.g., Ku and Arthanari, 

2016; Galle et al., 2018; Chapters 2 and 3 in the thesis), which would be hard to obtain in practice. Some 

studies analyse the effects of different levels of information availability and reliability on the results (e.g., 

Gharehgozli and Zaerpour, 2018; Covic, 2019; Chapter 4 in this thesis). Besides, some work focuses on 

demonstrating the value of information by computational results, which can help to motivate information 

collaboration between terminals and customers (e.g., Kim and Yi, 2021; Chapter 4 in the thesis).  
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Apart from these previous attempts, a further avenue is to revisit the issue by taking a data-driven 

optimisation perspective. On one hand, a possible approach is applying a two-stage framework that 

combines data mining and optimisation method (e.g., van Nguyen, 2020). In the first stage, by using data 

mining techniques, one could derive useful knowledge out of the massive flow of accessible data in 

terminal systems and as a result, lead to problem settings with more realistic data. In the second stage, the 

derived information is integrated into the optimisation model as input data. At this stage, the available 

methods and knowledge from the existing relevant container handling problems can be transferred or 

adapted to address the resulting optimisation problems. On another hand, Distributionally Robust 

Optimisation (DRO) is an emerging optimisation approach that could effectively leverage partial data 

information (such as support set and moment statistics) without any assumption about the probability 

distribution of uncertainties, which has attracted immense research attentions in the operations research 

community (Delage and Ye, 2010; Shang and You, 2018; Esfahani and Kuhn, 2018). The DRO approach 

has the advantage of avoiding over-conservative solutions by incorporating partial stochastic information. It 

has been used to address the uncertainty in the container transportation system in a few papers (e.g., Dai 

and Yang, 2020; Liu et al., 2021), while its application to terminal operations problems seems missing. The 

investigation of how DRO could add value to the optimisation of terminal operations provides broad 

opportunities for future research. Finally, as pointed out by Song (2021), information sharing does require 

trust, commitment and collaboration among participated stakeholders. 

5.3.2.3 Port decarbonisation and energy efficiency 

The need for port decarbonisation provides fruitful research directions. GHG (greenhouse gas) emissions 

from international shipping has attracted IMO’s attention for many years. In 2018, IMO published an initial 

GHG strategy to decarbonise shipping, where the long-term goal is to reduce carbon intensity by 70% in 

2050 compared to 2008 levels (Rutherford and Comer, 2018). Although the IMO strategy did not explicitly 

include the emissions from port activities, there is a need for more regulatory and operational effort to port 

decarbonisation given that ports are pollution and emission concentration areas and many ports are located 

close to cities (Song, 2021). Meanwhile, to mitigate the negative environmental impacts in ports, stricter 

regulations have been adopted by authorities to minimise port pollution and target sustainable operations 

over the long term (Woo et al., 2018). However, in a comprehensive literature review on green ports and 

maritime logistics conducted by Davarzani et al. (2016), it is found that this research field is still in its early 

growth and expansion period.  

Port emissions reduction is closely related to energy efficiency in ports. In a systematic literature review 

conducted by Iris and Jam (2019b), the energy efficiency measures in ports include three categories: 

operational strategies (e.g., operations optimisation, peak shaving,), technologies (e.g. cold-ironing, 

electrification of equipment, energy storage systems), and energy management (e.g., renewable energy, 

alternative fuels, smart energy management systems). In order to achieve energy efficiency and emission 

reductions without capital investment, many ports focus on operational optimisation, for example, through 

energy-aware planning of operations and reducing the idle in operations, etc. However, as pointed out in 

Iris and Lam (2019b), currently, the number of papers on energy-aware planning is limited, and there is a 

need to improve the integration of energy management and operational planning.  

From the perspective of energy-aware operations optimisation, container handling in yards can be better 

managed by factoring energy consumption and emission-related objectives into the decision-making, as did 

e.g. in Sha et al. (2017), Iris and Lam (2021), and Karakas et al. (2021). For this purpose, new aspects need 

to be taken into consideration, including the container weight in fuel consumption (see Hussein and 

Petering, 2012), explicit tracking of the yard crane moving activities (trolley moving, gantry moving, 
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hoisting and lowering), crane idle time, etc. Moreover, from the perspective of peak shaving methods, 

marshalling operations in the yard can be better planned considering the balance of resources usage, as 

advised in Iris and Lam (2019b). Given that such operations are often preparatory work conducted before 

vessels or trucks arrival, which is usually not urgent, it can be beneficial to conduct such operations in 

non-peak periods in order to shift the peak workload (noting that the electricity price depends on the 

consumption level). It is noted that an attempt to determine the right time to remarshall outbound containers 

has received attention recently (see Kim et al., 2021), but they focus on the efficiency of the vessel loading 

operation rather than the energy efficiency.    

5.3.2.4 Challenges under COVID-19 pandemic 

The COVID-19 outbreak has seriously disrupted the container shipping supply chain, including the port 

and terminal logistics. As the world economy reopens following the lifting of lockdown at different 

countries, many ports have experienced a spike in container volumes as importers seek to replenish stock 

levels that dropped during the lockdown phase. The surging container volumes put pressure not only on a 

terminal’s seaside operations (ships at anchor awaiting berths) but also on its yardside operations (yard 

congestion) and hinterland transport network (slow-moving of containers between the ports and the inland), 

leading to severe congestion to many ports. The situation of port congestion is challenged by a number of 

factors including shortages of manpower (e.g., terminal workers, truckers) and inland haulage capacity (e.g., 

trucks, railcars and chassis), lack of storage space, importers unwillingness to collecting containers, etc.  

It is well acknowledged that reversing the congestion cannot be achieved overnight and it requires the 

joint effort and cooperation of the channel members in the container shipping supply chain. The work in the 

thesis does help to relieve port congestion because of the improved efficiency in import container retrieval 

through optimisation. Besides the prescriptive analytics methods, strategic-level proactive and reactive 

strategies are much required to mitigate the root causes of congestion and increase the port and supply 

chain resilience. Based on the author’s knowledge, the ideas borrowed from existing literature and inspired 

by industry practices, the following potential solution methods are envisioned from four angles of goals 

(some are overlapping to some extent). Examinations of their practical viabilities are needed and may 

require the development of innovative research methods.  

(i) Reduce container dwell time at terminal yards 

 Impose incentive and penalty mechanisms on the storage pricing strategies of containers to encourage 

customers to collect inbound containers in time and deliver outbound containers at right time. In this 

regard, off-dock container yards or remote container yards can be largely used to control the 

inventory level of containers in the terminal yard (see e.g., Woo et al., 2016). Unlike studying the 

storage pricing from the perspective of competing relationships between terminal operators and 

remote container yard operators (e.g., Lee and Yu, 2012), collaborated and cooperated modes (e.g., 

Zhang et al., 2020) need to be investigated in order to achieve the incentive effects, whereas the 

profit-making goal as commonly targeted in the existing literature may not be primary in this context.  

 Call for subsidy policies from the government to encourage customers to collect their containers from 

the terminal without delay.  

 Restrict outbound container arrivals through a truck appointment system. A new appointment 

mechanism is needed to induce customers to deliver outbound containers to the terminals according 

to their priority of shipment.  

 Skip the storage phase in the yard by direct transhipment. Direct transhipment is a new transhipment 

mode at container terminals, where arrival containers are directly loaded onto another transport mode 

instead of being unloaded to the container yard for temporary storage. Its concept is similar to the 
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cross-docking at a logistic distribution centre (Chiarello et al., 2018) where the arrival and departure 

of the carriers are synchronised to achieve low or zero inventory. Compared to the conventional 

indirect-transhipment mode, the direct-transhipment mode could save yard resources but require more 

restrictions on the berthing time of vessels due to the need for synchronising container arrivals and 

departures. The direct-transhipment mode has been taken into consideration for vessel-to-vessel 

transhipment (see Zeng et al., 2017; Monaco and Sammarra, 2018) and vessel-to-train transhipment 

(Yan et al., 2020), but it is still a relatively new research stream in the literature of terminal operations 

management. Facing the challenge of port congestion, direct transhipment can be propelled to carry 

hinterland transport. In this aspect, using barges and trains are considered to be more beneficial and 

viable compared to road trucks given their higher capacity and more controllable and predictable 

arrival times, implying easier coordination with deep-sea vessels. From the operations process 

perspective, the coordination of the schedule and operation plan (e.g., berthing plan, vessel stowage 

plan, container unloading and loading plan, train arrival plan) between deep-sea vessels and 

barges/trains is needed. From the commercial process perspective, the barrier of custom clearance 

constraints needs to be removed.  

(ii) Expand terminal capacity  

 Design higher and more compact rack-based yard storage systems, such as containers racks, 

ultra-high container warehouse, and container tower (see Gharehgozli et al., 2020), which can enlarge 

yard storage capacity substantially and eliminate the need for relocation. Whether such systems can 

become profitable in the long term need to be investigated.  

 Build or lease new off-dock warehouses in proximity to ports as buffer capacity to hedge 

unprecedented container volumes. Demand forecasting may be needed to determine the leasing 

contract. Charging policies to customers may need to be established.  

 Establish collaborations and integrate with the terminals/ports within the same port cluster to jointly 

hedge the risk of shutdowns in one or more terminals (e.g., a month-long shutdown at Yantian 

terminal due to Covid-19 outbreak). Revenue-sharing schemes need to be developed.  

(iii) Release resources  

 Release yard space in advance. Prepare sufficient storage space for the coming huge number of 

containers by transferring the already stacked containers in the terminal yard to remote container 

yards. To arrange efficient transferring, it requires that the shipping lines share advance shipment 

information with the terminal. Coordination with customers is also needed when selecting which 

containers should be transferred.  

 Improve road haulage capacity. The capacity of road haulage can be improved if the turnaround time 

of trucks at ports can be reduced. In this regard, the measures in point (i) are helpful because a shorter 

dwell time implies higher efficiency and thus lower truck turnaround times. In addition, promoting a 

modal shift from road to barges and trains can reduce the pressure on the roads.  

(iv) Reduce human intervention 

 Accelerate the degree of port automation and digitalisation. This can reduce the reliance on 

manpower and thus avoid operation suspending caused by human factors. For example, the Yantian 

terminal in China was partially closed in May this year after a local Covid infection cluster involving 

port workers.  

Finally, it is noted that many of the above solutions are also discussed in normal situations without 

disruptive events, but the Covid-19 outbreak is urging their development and implementation. 
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