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Abstract: We study the bosonic part of the BMN matrix model for wide ranges of tem-
peratures, values of the deformation parameter, and numbers of colors 16 ≤ N ≤ 48. Using
lattice computations, we analyze phase transitions in the model, observing a single first-order
transition from a uniform to a gapped phase for all values of the deformation parameter. We
study the functional form of the dependence of the critical temperature on the deformation
parameter, to describe how our results smoothly interpolate between the limits of the bosonic
BFSS model and the gauged Gaussian model.
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1 Introduction

One of the major developments in various attempts to understand the features of quantum
gravity was the observation that the lower-dimensional models of matrices can capture the
dynamics of string/M-theory in an appropriate limit of the parameters. One of the first exam-
ples was the relation shown by Ref. [1] between the (non-supersymmetric) (0+1)-dimensional
c = 1 matrix model and two-dimensional bosonic string theory. This program of connecting
quantum-mechanical models to string/M-theory was extended by Banks, Fischler, Susskind,
and Shenker (BFSS) through their proposal that the dimensional reduction of ten-dimensional
N = 1 super-Yang–Mills (SYM) with gauge group SU(N) describes M-theory in the light-
cone gauge, in the large-N planar limit [2]. A few years later, Berenstein, Maldacena, and
Nastase [3] extended this model by introducing a supersymmetry-preserving one-parameter
deformation. The result, known as the BMN matrix model, describes a certain limit of Type II
string theory on a pp-wave background rather than the flat spacetime relevant for the BFSS
model.

Though there has been excellent progress in understanding and verifying the gauge/gravity
duality conjecture by studying N = 4 SYM in four dimensions using ideas of integrability, the
lower-dimensional non-conformal analogs of the four-dimensional theory have not attracted as
much attention. Only a handful of analytical attempts using certain approximations have been
made so far [4, 5]. Since it is difficult to verify the duality conjecture in the finite-temperature
setting relevant for these cases, we need a method that can provide information about their
strongly coupled regimes. This opens up the possibility of exploring the dual field theories
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using the ideas and tools of lattice field theory. In this regard, there has been good progress
in understanding both various aspects of (0 + 1)-dimensional matrix models as well as the
thermodynamics of stacks of Dp branes with p = 1 and 2, using the (p+ 1)-dimensional dual
supersymmetric theories in Euclidean lattice spacetimes [6–19].

One of the striking features of the gauge/gravity duality is that at large N and finite tem-
perature, there are often phase transitions between different quantum black hole solutions,
which are dual to confinement transitions in the field theory. In this regard, the D0 brane
matrix model is an exception, with only a single deconfined phase at all temperatures in the
planar limit. But this behavior is drastically altered if we consider either a one-parameter
deformation of the BFSS model, i.e., the BMN model, or if we decouple the fermions and
study the bosonic sector of the BFSS model. In both cases, there is a well-defined confine-
ment transition. The dual black hole solutions of the BMN model in the deconfined phase
and the details of the phase transition were studied in Ref. [20]. It remains a challenge to
understand the phase diagram for finite couplings and to verify the results obtained using
gravity computations. Refs. [14, 17, 18] have numerically explored the phase structure of the
full BMN model, with Ref. [14] reporting two different phase transitions — a confinement
transition signalled by the Polyakov loop, and a ‘Myers transition’ signalled by the trilinear
‘Myers term’ — which merge into one for the dimensionless BMN deformation parameter
µ̂ ≡ µ/λ1/3 . 3 (where λ is the dimensionful ’t Hooft coupling). When these transitions are
distinct, Ref. [14] observes the Myers transition to be between two deconfined phases, one
where the system fluctuates around the trivial configuration and the other with fluctuations
around expanded fuzzy spheres. More recently, as our work was in progress, Ref. [17] revisited
the phase structure of the BMN model, introducing constraints on the Myers term to suppress
fuzzy sphere contributions and focus on the confinement transition.

In this work, we report a detailed study of the phase structure that results upon both
including the BMN deformation and decoupling the fermions. This bosonic BMN model was
investigated in Ref. [21] for a fixed µ̂ = 2, finding a single first-order transition in the large-N
limit, at the dimensionless critical temperature T̂c ≡ T/λ1/3 = 0.915(5). It was not clear
from this work whether different µ̂ values might exhibit a Myers transition distinct from the
confinement transition that was previously reported for the full BMN model by Ref. [14].
Addressing this question is part of the motivation for our investigations. The recent Ref. [17]
appeared while our work was underway, reporting a single first-order phase transition for
0.375 ≤ µ̂ ≤ 3 (the range where the two transitions had merged for the full BMN model [14]).1

We will push further into the large-µ̂ regime, which will allow us to conclude that the bosonic
BMN model features a single first-order transition for all values of the deformation parameter.

Our goal is to explore the functional form of the dependence of the bosonic BMN critical
temperature T̂c on the deformation parameter µ̂. To this end, we analyze twelve different
values of µ̂ spanning two orders of magnitude between the previously studied µ̂ → 0 and
µ̂→∞ limits. As µ̂→ 0, we recover the bosonic version of the BFSS model. Although early

1Our µ̂ is equivalent to 3µ in the conventions of Ref. [17].
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numerical and analytic bosonic BFSS investigations reported two near-by phase transitions [22,
23], more recent lattice calculations find only a single confinement transition with T̂c|µ̂=0 =

0.8846(1) [17, 24]. In the µ̂→∞ limit the system reduces to a solvable gauged Gaussian model,
and for large µ̂ the critical temperature is found to scale as T̂c = (6 ln(3 + 2

√
3))−1µ̂ [25, 26].

These two limits serve as consistency checks for our lattice computations.
The paper is organized as follows. In Sec. 2, we discuss the lattice formulation and

define the relevant observables we study. In Sec. 3, we present our results for a wide range of
0.5 ≤ µ̂ . 45 with N = 16, 32, and 48, additionally discussing a separatrix method that we
employ as a novel means to precisely estimate the critical temperature. We then study the µ̂
dependence of these critical temperatures, fitting them to different functional forms for small
and large µ̂. In Sec. 4 we summarize our results and discuss next steps.

2 Bosonic BMN model on a lattice

The BMN model is a one-parameter deformation of the BFSS model—the dimensional reduc-
tion of (9 + 1)-dimensional N = 1 SYM with gauge group SU(N) down to 0 + 1 dimensions.
In Euclidean time the action of the BFSS model is

SBFSS =
N

4λ

∫ β

0
dτ Tr

{
− (DτXi)

2 − 1

2

∑
i<j

[Xi, Xj ]
2

+ ΨT
αγ

τ
ασDτΨσ + ΨT

αγ
i
ασ [Xi,Ψσ]

}
,

(2.1)

where Dτ · = ∂τ ·+[Aτ , ·] is the covariant derivative, Xi are the nine scalars from the reduction
of the ten-dimensional gauge field, and Ψα is a sixteen-component spinor. The indices i, j =

1, · · · , 9 while α, σ = 1, · · · , 16. The degrees of freedom transform in the adjoint representation
of the SU(N) gauge group. The anti-Hermitan gauge group generators are normalized as
Tr(TATB) = −δAB. The trace ‘Tr’ is taken over the gauge indices. In this (0+1)-dimensional
model, the ’t Hooft coupling λ ≡ g2

YMN is dimensionful, [λ] = 3. The model is compactified
on a circle with circumference β = T−1, which corresponds to the inverse temperature because
we impose thermal boundary conditions — periodic for the bosons and anti-periodic for the
fermions.

The action of the BMN model is obtained by adding the following mass and scalar-trilinear
terms to Eq. (2.1):

Sµ = −N
4λ

∫ β

0
dτ Tr

[(µ
3
XI

)2
+
(µ

6
XA

)2
+
µ

4
ΨT
αγ

123
ασ Ψσ −

√
2µ

3
εIJKXIXJXK

]
. (2.2)

Here µ is the deformation parameter, with dimension [µ] = 1. We divide the indices i, j into
two sets: I, J,K = 1, 2, 3 and A = 4, · · · , 9. The scalar mass terms break the SO(9) global
symmetry of the BFSS model down to SO(3) × SO(6). As µ → ∞ the model reduces to a
free supersymmetric Gaussian model, and it can be studied perturbatively for large µ [27, 28].
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Since we are interested only in the bosonic sector, we can remove the fermions to obtain the
action of the bosonic BMN (BBMN) model:

SBBMN =
N

4λ

∫ β

0
dτ Tr

[
− (DτXi)

2 − 1

2

∑
i<j

[Xi, Xj ]
2

−
(µ

3
XI

)2
−
(µ

6
XA

)2
+

√
2µ

3
εIJKXIXJXK

]
.

(2.3)

We discretize this model on a lattice with Nτ sites. The inverse temperature becomes
β = aNτ , where ‘a’ is the lattice spacing with dimension [a] = −1. The integration becomes
a summation over the lattice sites:

∫ β
0 dτ −→ a

∑Nτ−1
n=0 . The dimensionful gauge field Aτ is

mapped to a dimensionless gauge link U(n) connecting the sites n and n+1. We also work with
dimensionless scalars Xi(n) = aXi(τ) once we are on the lattice. To discretize the covariant
derivative DτXi(τ) we use the gauge link to define the finite-difference operator D+Xi(n) ≡
U(n)Xi(n + 1)U †(n) − Xi(n). Finally, we introduce the dimensionless lattice parameters
µlat ≡ aµ and λlat ≡ a3λ, to end up with a lattice action for the bosonic BMN model that
has the same form as Eq. (2.3) while employing only dimensionless lattice quantities:

Slat =
N

4λlat

Nτ−1∑
n=0

Tr

[
− (D+Xi)

2 − 1

2

∑
i<j

[Xi, Xj ]
2

−
(µlat

3
XI

)2
−
(µlat

6
XA

)2
+

√
2µlat

3
εIJKXIXJXK

]
.

(2.4)

The following dimensionless combinations of parameters are particularly useful, because they
can be considered consistently in both the lattice and continuum theories:

T̂ ≡ T

λ1/3
=

1

Nτλ
1/3
lat

µ̂ ≡ µ

λ1/3
=
µlat

λ
1/3
lat

T̂

µ̂
=
T

µ
=

1

Nτµlat
. (2.5)

Using this simple lattice action, we generate ensembles of matrix configurations using the
rational hybrid Monte Carlo algorithm implemented by the publicly available parallel software
presented in Ref. [29].2 As our main goal is to analyze phase transitions, we concentrate our
lattice calculations around the transition regions. We focus our analyses on the following
four observables, again employing dimensionless quantities that connect smoothly between
the continuum and lattice theories:

• The internal energy. As derived in Appendix A, on the lattice this is

Ê

N2
≡ E

λ1/3N2
=

1

4Nλ
4/3
lat Nτ

〈
Nτ−1∑
n=0

Tr

(
− 3

2

∑
i<j

[Xi, Xj ]
2 −

2µ2
lat

9
X2
I −

µ2
lat

18
X2
A

+
5
√

2µlat

6
εIJKX

IXJXK

)〉
.

(2.6)

2github.com/daschaich/susy
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• The scalar-trilinear term, also known as the Myers term. In the continuum, we define
this as the dimensionless quantity

M̂ ≡ M

λ
=

√
2

12N

1

λβ

〈∫
dτ εIJK Tr (XIXJXK)

〉
. (2.7)

On the lattice, it takes the form

M̂ =

√
2

12NλlatNτ

〈
Nτ−1∑
n=0

εIJK Tr (XIXJXK)

〉
. (2.8)

• The Polyakov loop magnitude. The Polyakov loop is the holonomy around the time
direction and is the order parameter for the confinement transition in the large-N limit.
We have

|P | =
〈∣∣∣∣ 1

N
Tr P exp

[
−
∫ β

0
dτ Aτ

]∣∣∣∣〉 , (2.9)

where P exp is the path-ordered exponential. Translating this to the lattice,

|P | =

〈
1

N

∣∣∣∣∣Tr
(
Nτ−1∏
n=0

U(n)

)∣∣∣∣∣
〉
. (2.10)

• The ‘extent of space’ — terminology motivated by the holographic dual of the full BMN
model — which is given by the sum of the squared scalars. In the continuum we consider
the dimensionless quantity

R̂2 ≡ R2

λ2/3
=

1

2Nλ2/3β

〈∫
dτ Tr

(
X2
i

)〉
. (2.11)

On the lattice this becomes

R̂2 =
1

2Nλ
2/3
lat Nτ

〈
Nτ−1∑
n=0

Tr
(
X2
i

)〉
. (2.12)

In addition, to help identify and characterize transitions, we also consider two further observ-
ables related to those above:

• The susceptibility of the Polyakov loop magnitude,

χ ≡ N2
(〈
|P |2

〉
− 〈|P |〉2

)
. (2.13)

• The specific heat, which on the lattice takes the form

CV ≡
λ

2/3
lat N

2
τ

N2

〈(
Ê −

〈
Ê
〉)2
− Ê′

〉
, (2.14)
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with Ê from Eq. (2.6) and

Ê′ =
N

4λ
5/3
lat N

2
τ

〈
Nτ−1∑
n=0

Tr

(
− 3

∑
i<j

[Xi, Xj ]
2 −

2µ2
lat

9
X2
I −

µ2
lat

18
X2
A

+
5
√

2µlat

4
εIJKX

IXJXK

)〉
.

(2.15)

Considering both the Polyakov loop susceptibility and the specific heat will allow us to search
separately for the confinement transition and the Myers transition reported by Ref. [14] (for
the full BMN model). The latter is signalled by the energy (in addition to the Myers term),
and hence by the specific heat.

3 Lattice results

3.1 Determination of the critical temperature

As a first look at our lattice results, we collect some representative plots for the six observables
summarized above. In Fig. 1 we consider µ̂ = 1 with Nτ = 24, scanning the small range
0.896 ≤ T̂ ≤ 0.906 around the transition and observing clear growth in the Polyakov loop
susceptibility and specific heat peaks as the number of colors increases from N = 32 to
48. We see similar behavior in Fig. 2 for µ̂ = 6 and Nτ = 24 with 1 ≤ T̂ ≤ 1.03, here
comparing N = 16 and 32. We chose to fix Nτ = 24 after investigating these observables’
dependence on Nτ for N = 16, and finding that Nτ = 24 appears sufficient to make finite-Nτ

artifacts negligible compared to our statistical precision. This is consistent with earlier lattice
studies [14, 21, 24].

Using Nτ = 24, we performed similar scans in the temperature for all 12 values of 0.5 ≤
µ̂ ≤ 44.66 listed in Table 1. In addition to identifying the critical temperature T̂c from the peak
in the Polyakov loop susceptibility, we also carry out analyses using the separatrix method.
This is a novel way to determine the critical temperature away from the thermodynamic limit,
which can work well even when susceptibility peaks are difficult to resolve. While Ref. [30]
introduced the Polyakov loop separatrix method specifically for (non-supersymmetric) SU(3)
Yang–Mills theory, it generalizes to N > 3. The idea is to consider the unit disk in the
plane of the real and imaginary parts of the Polyakov loop, and separate this into two regions
such that Polyakov loop measurements for deconfined ensembles fall predominantly in one
region while those from confined ensembles fall predominantly in the other. A simple ratio
S(T̂ ) then changes from 0 deep in the deconfined phase to 1 deep in the confined phase, with
the transition identified as the (interpolated) point where this ratio crosses 0.5. Fig. 1 in
Ref. [30] illustrates the equilateral triangle used as the SU(3) separatrix. For our N ≥ 16 we
approximate the corresponding N -gon by a circle of radius rS < 1, so that we just have to
consider the Polyakov loop magnitude |P |.
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(d) Extent of space, Eq. (2.12)
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(e) Polyakov loop susceptibility, Eq. (2.13)

 0

 30

 60

 90

 120

 0.896  0.898  0.9  0.902  0.904  0.906

C
v

T
^

N = 32

N = 48

(f) Specific heat, Eq. (2.15)

Figure 1: The six observables discussed in the text, for µ̂ = 1 and Nτ = 24, in a small range
of temperatures 0.896 ≤ T̂ ≤ 0.906 around the transition. As N increases from 32 to 48 there
is clear growth in the Polyakov loop susceptibility and the specific heat peaks in the final row.
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Figure 2: The six observables discussed in the text, for µ̂ = 6 and Nτ = 24, in a small range
of temperatures 1 ≤ T̂ ≤ 1.03 around the transition. As in Fig. 1, increasing N from 16 to 32

produces clear growth in the Polyakov loop susceptibility and the specific heat peaks in the
final row.
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µ̂ N T̂c ∆

0.5 48 0.900(2) 0.000(3)

1.0 48 0.903(1) 0.000(2)

2.0 48 0.912(1) 0.000(2)

4.0 32 0.949(2) 0.001(4)

6.0 32 1.016(4) 0.004(6)

9.0 16 1.158(8) 0.000(20)

10.0 16 1.213(8) 0.010(26)

11.0 16 1.275(3) 0.000(10)

13.0 16 1.398(8) 0.012(18)

15.0 16 1.531(9) 0.012(23)

21.54 16 2.04(3) 0.01(6)

44.66 16 4.00(3) –

Table 1: The critical temperature T̂c for the 12 µ̂ values considered in this work. As µ̂
decreases, larger N is needed. We determine T̂c either from the peak of the Polyakov loop
susceptibility or from the separatrix method. The last column shows the values of the ∆

parameter defined by Eq. (3.2).

We treat the radius rS as an adjustable parameter,3 which introduces a systematic un-
certainty from our choice of rS . For all µ̂ we consider, we find rS = 0.4 provides stable and
reliable results. We also observe that the systematic dependence on our choice of rS becomes
less significant as µ̂ increases. In Figs. 3 and 4 we show representative Polyakov loop scatter
plots, separatrices, and the resulting S(T̂ ) for µ̂ = 1 with N = 32 and µ̂ = 44.66 with N = 16,
respectively.

The N eigenvalues of the Polyakov loop provide yet another means both to estimate the
critical temperature and to characterize the phases between which the system transitions.
Deep in the confined phase, the angular distribution of these eigenvalues is uniform around
the unit circle, while deep in the deconfined phase their distribution is localized around some
angle, which we can set to θ = 0 by convention. This behavior can be modeled as

ρ(θ) =
1

2π
+

1

qπ
cos θ − π ≤ θ < π, (3.1)

where the positive parameter q → ∞ in the uniform limit, while a gap opens for q < 2. In
Fig. 5 we show a representative example of this gap opening at the critical T̂c identified from

3In Ref. [30], the separatrix is defined using the position of the minimum between two peaks in the distri-
bution of Polyakov loop measurements.
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Figure 3: Polyakov loop scatter plots for N = 32 with µ̂ = 1 for three values of T̂ . The
separatrix is a circle of radius rS = 0.4 shown by the two colors. Panel (d) shows the resulting
S(T̂ ) that identifies the critical temperature T̂c ≈ 0.901. (Note the T̂c = 0.903(1) in Table 1
comes from N = 48.)

the Polyakov loop susceptibility and separatrix, confirming that the corresponding transition
is between the uniform confined phase and the gapped deconfined phase. In this figure we
consider our most challenging data set with the smallest µ̂ = 0.5 and three N = 16, 32 and 48.
Comparing these three values of N allows us to confirm that the transition becomes sharper
as N increases: the distribution for T̂ = 0.895 < T̂c becomes more uniform for larger N while
the size of the gap for T̂ = 0.905 > T̂c also increases.

Finally, we also check that the Myers transition and the confinement transition occur at
the same critical temperature, by defining

∆ ≡

∣∣∣∣∣T̂c(CV )− T̂c(χ)

∣∣∣∣∣ (3.2)

to quantify the difference between the locations of the specific heat and Polyakov loop sus-
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Figure 4: Polyakov loop scatter plots for N = 16 with µ̂ = 44.66 for three values of T̂ and
the same rS = 0.4 circular separatrix as Fig. 3. The resulting S(T̂ ) in panel (d) identifies the
critical temperature T̂c ≈ 4.

ceptibility peaks. Our results for ∆ in Table 1 vanish within uncertainties for all µ̂ < 40,
consistent with the existence of only a single phase transition. For µ̂ = 44.66 we do not
observe well-defined peaks and rely on the separatrix method to determine T̂c. If there were
separate phase transitions signalled by these observables, in order to be consistent with these
results their critical temperatures would need to be too close to resolve with N ≤ 48.

3.2 Critical temperature dependence on deformation parameter

Figure 6 plots our critical temperature results obtained above, to visualize the phase diagram
of the bosonic BMN model in the T̂c–µ̂ plane. We now analyze the dependence of T̂c on the
deformation parameter. Considerations of the simplified µ̂ → ∞ and µ̂ → 0 limits suggests
that this dependence must differ for large vs. small µ̂. Our results confirm this, and also
identify the µ̂? ∼ 10 separating these two regimes.

First, for large µ̂ the expected critical temperature is easy to calculate using the argu-
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Figure 5: Angular distributions of Polyakov loop eigenvalues for µ̂ = 0.5 with N = 16, 32

and 48, considering three temperatures around the critical T̂c = 0.900(2). A gap appears
for T̂ = 0.905 > T̂c, while the distribution for T̂ = 0.895 < T̂c becomes more uniform as N
increases.

ment [25, 26] that for a model with D > 1 matrices (bosonic or fermionic), of masses ωj > 0

with j = 1, · · · , D, the inverse critical temperature βc is given by the solution of

D∑
j=1

e−βωj = 1. (3.3)

For the case of the bosonic BMN model with D = 3 + 6, the large-µ critical temperature is
the solution of

3e−βµ/3 + 6e−βµ/6 − 1 = 0, (3.4)

which gives
1

µβc
=
Tc

µ
=
T̂c

µ̂
=

1

6 ln(3 + 2
√

3)
= 0.089305 . . . (3.5)
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Figure 6: The T̂–µ̂ phase diagram of the bosonic BMN model from our Nτ = 24 results for
T̂c computed with N = 16, 32 and 48. The red curve shows our fit of the µ̂ ≥ 10 results to
Eq. (3.7), while the blue curve shows our fit of the µ̂ ≤ 10 results to Eq. (3.8). Our results
self-consistently identify the µ̂? ∼ 10 separating the small- and large-µ̂ regimes. The inset
zooms in on the µ̂→ 0 limit.

A similar analysis can be done for the full BMN model, which reduces to a supersymmetric
Gaussian model in the µ̂ → ∞ limit. In this case, Refs. [26, 31, 32] have perturbatively
computed the critical temperature of the confinement transition up to next-to-next-to-leading
order in 1/µ̂3 � 1:

T̂c =
µ̂

12 ln 3

[
1 +

320

3

1

µ̂3
−
(

458321

12
+

1765769 ln 3

144

)
1

µ̂6
+O

(
1

µ̂9

)]
. (3.6)

In the µ̂ → ∞ limit, this produces a smaller Tc/µ ≈ 0.076 compared to the bosonic BMN
result in Eq. (3.5). Motivated by the functional form of this perturbative result, we adopt the
following ansatz to fit our T̂c results for sufficiently large µ̂:

T̂c = µ̂

[
C +H

1

µ̂3
+ F

1

µ̂6

]
, (3.7)

where we expect C = 1/[6 ln(3 + 2
√

3)] ≈ 0.0893 from Eq. (3.5). The fit to our results
for µ̂ ≥ 10 shown in Fig. 6 indeed produces C = 0.0893(6), providing a good check of our
numerical setup and code.
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Coefficient Value Reference
A 0.8846(1) Ref. [17]
A 0.8995(7) This work
B 0.00330(2) Ref. [17]
B 0.0032(1) This work
C 0.0893 Refs. [25, 26]
C 0.0893(6) This work
H 47(3) This work
F −15(3)× 103 This work

Table 2: Comparison of the values of the fit parameters appearing in Eqs. 3.7 and 3.8.

Also from Fig. 6 we can observe that this ansatz fails for µ̂? . 10, consistent with the
expected breakdown of the perturbative expansion for insufficiently small 1/µ̂3. In the small-µ̂
regime we must use a different fit form to describe the dependence of the critical temperature
on the deformation parameter. This fit form can be guided by noting that in the µ̂→ 0 limit
T̂c should approach the constant critical temperature of the bosonic BFSS model. The recent
Ref. [17] uses a quadratic ansatz to fit critical temperature results for 0.375 ≤ µ̂ ≤ 3 (i.e.,
0.125 ≤ µ ≤ 3 in their conventions), finding T̂c|µ̂=0 = 0.8846(1). We will also use the same
quadratic ansatz to fit our T̂c results for small µ̂:

T̂c = A+Bµ̂2. (3.8)

Using our conventions, Ref. [17] reports A = 0.8846(1) and B = 0.00330(2). The fit to our
results for µ̂ ≤ 10 shown in Fig. 6 produces A = 0.8995(7) and B = 0.0032(1), with purely
statistical uncertainties. While our result for B agrees with Ref. [17], there is a clear tension in
A. The inset in Fig. 6 makes it clear that our numerical results demand A > 0.89 regardless
of range of µ̂ we include in our fit. Finite-N and discretization artifacts could play a role
in this disagreement. So far we have considered only N ≤ 48 rather than the N ≤ 64 that
Ref. [17] was able to reach. Although we use the same Nτ = 24 as Ref. [17], our first-order
lattice finite-difference operator in Eq. (2.4) differs from the second-order discretization they
employ. The lattice action of Ref. [17] also includes a Faddeev–Popov term from gauge fixing
to the static diagonal gauge, though we do not expect this gauge fixing to affect the critical
temperature.

Table 2 summarizes our findings for the coefficients in Eqs. 3.7 and 3.8. We note that
H and F are new predictions from this work. Comparing these with the perturbative com-
putation for the full BMN model in Eq. (3.6), we see that our non-perturbative results for
the bosonic case are both a few times larger: HBBMN ' 47 compared to HBMN ' 8, while
FBBMN ' −15× 103 compared to FBMN ' −4× 103.
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Figure 7: Signs that the phase transition is first order, for µ̂ = 4. (a) The distribution of the
Polyakov loop magnitude has support across two different regions for T̂c ≈ 0.949, suggesting
a developing two-peak structure. (b) Normalizing the Polyakov loop susceptibility by N2

produces the same peak height for N = 16 and 32, indicating that the maximum χ is scaling
with the number of degrees of freedom ∝ N2.

3.3 Order of the phase transition

We expect that the single phase transition we observe is first order. We confirm this in
two ways. First, in the left panel of Fig. 7 we plot the distribution of the Polyakov loop
magnitude for three temperatures around the critical T̂c ≈ 0.949, for a representative µ̂ = 4

with N = 32. While the |P | distributions for T̂ = 0.945 and T̂ = 0.953 each have a single peak
in two different regions, respectively corresponding to the confined and deconfined phases, the
distribution for T̂ = 0.949 has support across both of these regions. This suggests that a
developing two-peak structure would be visible for larger N > 32, which is characteristic of
phase coexistence at a first-order transition.

Second, in the right panel of Fig. 7 we check the scaling of the Polyakov loop susceptibility
with N . Because the thermodynamic limit for the bosonic BMN matrix model corresponds to
N2 →∞, this scaling can distinguish between first- and higher-order phase transitions [33, 34].
Considering the same µ̂ = 4, we plot χ/N2 against T for both N = 16 and 32. Within
uncertainties, both values of N produce the same peak height, again suggesting a first-order
transition where the maximum χ would scale with the number of degrees of freedom.

3.4 Dependence of the internal energy on T̂ and µ̂

Finally, we comment on the internal energy of the bosonic BMN model. Let us begin in
the µ̂ → ∞ limit where this system reduces to a gauged Gaussian model with D = 9 scalar
matrices. For general D, Ref. [4] computed that the internal energy of this Gaussian model is

1

N2
Ê =

3

4
(D − 1)T̂ +O

( 1

N2

)
. (3.9)
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Figure 8: Internal energy vs. temperature for various µ̂ values and N = 32. We see that for
T̂ < T̂c, the energy has no temperature dependence, and after transition it depends linearly
on temperature.

for high temperatures and large N . Plugging in the D = 9 relevant for the bosonic BMN
model, we want to explore how this result will be modified for finite µ̂. We expect that the
relevant parameter will be T̂

µ̂ = T
µ , so that

1

N2
Ê = 6T̂

[
1 + f

(
T

µ

)]
+O

( 1

N2

)
(3.10)

for some as-yet unknown function f .
In Fig. 8 we show our lattice results for the temperature dependence of the energy, for

µ̂ = 1, 2 and 4 with N = 32. Although our lattice calculations focus on the transition regions,
we do consider enough T̂ > T̂c points in the deconfined phase to clearly see the leading-order
linear dependence predicted by Eq. (3.9). This is in contrast to the T̂ -independent energy in
the T̂ < T̂c confined phase. Although the energy depends on µ̂ in both phases, we observe
that the high-temperature slope is insensitive to the deformation parameter within the range
1 ≤ µ̂ ≤ 4. A precise determination of f(T/µ) will be interesting to pursue through future
generations of bosonic BMN lattice calculations.

4 Conclusion

We have presented a lattice study of the non-perturbative phase structure of the bosonic BMN
matrix model. Our main results for the transition temperatures T̂c for twelve 0.5 ≤ µ̂ ≤ 44.66,
collected in Fig. 6, show how our numerical investigations smoothly connect the bosonic BFSS
model in the µ̂ → 0 limit to the known behavior of the µ̂ → ∞ gauged Gaussian model. In
addition to monitoring several standard observables and susceptibilities, we have also applied
a novel separatrix method to determine these critical temperatures. We observed only a single
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transition, finding evidence that it is first order, and analyzing the Polyakov loop eigenvalues
to confirm that it separates the uniform confined phase from the gapped deconfined phase.

Using our results for T̂c, we have investigated the functional forms of the dependence of
the critical temperature on the deformation parameter in both the small- and large-µ̂ regimes.
Our results for the parameters of these functional forms, collected in Table 2, agree with some
existing values in the literature, and also provide some new predictions. However, there is a
disagreement with results from Refs. [17, 24] for T̂c in the µ̂ → 0 bosonic BFSS limit, which
deserves further investigation.

For these future investigations, we are particularly interested in exploring smaller µ̂,
which will require larger N > 48 to overcome challenges associated with flat directions and
metastable vacua that make the numerical calculations more difficult. We also have lattice
investigations of the full BMN model underway [18], with similar plans to pursue smaller µ̂
with larger N .

We have already mentioned our ambition to determine the function f(T/µ) that modifies
the dependence of the internal energy on the temperature and deformation parameter in
Sec. 3.4. In that section we also raised the possibility of generalizing the bosonic BMN model
to a different number of scalar matrices, D 6= 9. It would be interesting to explore how the
phase diagram and the order of phase transitions depend on D. Ref. [35] recently addressed
this problem for the analogous generalization of the µ̂ = 0 bosonic BFSS model, investigating
that system for a range of D and concluding that the transition changes from first order to
second order for D ∼ 36. In the future we hope to report how the BMN deformation affects
this phenomenon.

Finally, we also plan to study the ‘ungauged’ version of the BMN matrix model, with
and without fermions, again building on prior investigations of the µ̂ = 0 BFSS model [36,
37]. In addition to exploring the effects of the deformation parameter in this context, it
will be interesting to see the extent to which holographic arguments carry over to the non-
supersymmetric bosonic BMN model.
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A Internal energy on the lattice

To obtain the expression for the internal energy, we consider deforming the partition function
by a small amount from Z to Z ′, which is expressed by the following set of transformations:

t′ =
β′

β
t, A′

(
t′
)

=
β

β′
A(t), X ′i

(
t′
)

=

√
β′

β
Xi(t). (A.1)

Note that we have [DX ′] = [DX] and [DA′] = [DA]. For the bosonic BMN model, it is
convenient to break up the action Eq. (2.3) into two pieces:

S = S0 + Sµ, (A.2)

S0 =
N

4λ

∫ β

0
dτ Tr

(
− (DτXi)

2 − 1

2

∑
i<j

[Xi, Xj ]
2

)
, (A.3)

Sµ = −N
4λ

∫ β

0
dτ Tr

(
µ2

9
X2
I +

µ2

36
X2
A −
√

2µ

3
εIJKXIXJXK

)
. (A.4)

Applying Eqs. (A.1), and defining ∆β ≡ β′ − β, we find

S′ = S′0 + S′µ, (A.5)

S′0 = S0 +
N

4λ

∫ β

0
dτ Tr

(
− 3

2

∆β

β

∑
i<j

[Xi, Xj ]
2

)
+O(∆β2), (A.6)

S′µ = Sµ −
N

4λ

∫ β

0
dτ Tr

(
2

∆β

β

(µ
3
XI

)2
+ 2

∆β

β

(µ
6
XA

)2

− 5
√

2µ

6

∆β

β
εIJKXIXJXK

)
+O(∆β2). (A.7)

The partition function therefore becomes

Z(β′) =

∫
[DX ′]β′ [DA′]β′ e−S

′
=

∫
[DX]β[DA]β e

−SeE∆β+O(∆β2)

= Z(β)
[
1 + E∆β +O(∆β2)

]
. (A.8)

Hence, we can write

Ê

N2
=

E

λ1/3N2
=

1

Z(β)λ1/3N2
lim

∆β→0

Z(β′)− Z(β)

∆β
. (A.9)
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Using Eqs. (A.2)–(A.7) in Eq. (A.9) we get

Ê

N2
=

1

λ1/3β

〈
1

4Nλ

∫ β

0
dτ Tr

(
− 3

2

∑
i<j

[Xi, Xj ]
2 − 2

(µ
3
XI

)2
− 2

(µ
6
XA

)2

+
5
√

2µ

6
εIJKXIXJXK

)〉
.

(A.10)

Upon discretizing the bosonic BMN model, as discussed in Sec. 2, the dimensionless lattice
internal energy takes the form reported in Eq. (2.6):

Ê

N2
=

1

4Nλ
4/3
lat Nτ

〈
Nτ−1∑
n=0

Tr

(
− 3

2

∑
i<j

[Xi, Xj ]
2 −

2µ2
lat

9
X2
I −

µ2
lat

18
X2
A

+
5
√

2µlat

6
εIJKX

IXJXK

)〉
.

(A.11)
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