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Abstract: A significant portion of railway network income is spent on the maintenance and restoration 20 

of the railway infrastructure to ensure that the networks continue to provide the expected level of service. 21 

The execution of the interventions, i.e. when and where to perform maintenance or restoration activities, 22 

depends on how the state of the infrastructure assets changes over time. Such information helps ensure 23 

that appropriate interventions are selected to reduce the deterioration speed and to maximize the effect 24 

of the expenditure on monitoring, maintenance, repair, and renewal of the assets. Presently, there is an 25 

explosion of effort in the investigation and use of data-driven methods to estimate deterioration curves. 26 

However, real-world time history data normally includes measurement errors and discrepancies that 27 

should not be neglected. These errors include missing information, discrepancies in input data, and 28 

changes in the condition rating scheme. This paper provides solutions for addressing these issues using 29 

machine learning algorithms and estimates the deterioration curves for railway supporting structures 30 

using Markov models and discusses the results.  31 

 32 

Keywords: Maintenance & inspection; Data; Information & Knowledge management; Asset failure & 33 

analysis 34 

 35 

Notation 36 

∆t Time intervals 
µ Mean value 
C(t) The regression curve as a function of time 
CS Condition state 
E(t) The expected CS at time t based on the Markov chain and the estimated probabilities 
P Transition probability matrix 
Pij Probability of transition from state i to j 
S Condition state vector 
σ Standard deviation 
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1 Introduction 37 

Modern societies depend on well-functioning transportation infrastructure. As infrastructure continually 38 

deteriorates, stakeholders have to be able to accurately predict its deterioration speed to determine the 39 

optimal maintenance programs. Although there are different types of models used for this purpose 40 

(Setunge and Hasan, 2011), Markov and semi-Markov models, have perhaps been used for 41 

management purposes the most extensively (Nam, 2009; Kobayashi, Kaito and Lethanh, 2012). For 42 

example, Madanat et al. (1995), Robelin and Madanat (2007), and Setunge and Hasan (2011) used 43 

Markov models to predict bridge deterioration curves, and Ortiz-Garcia et al. (2006) used them to model 44 

the pavement deterioration. Manafpour et al. (2018) used a semi-Markov time-based model to model 45 

concrete bridge deck deterioration and Edirisinghe et al. (2015) predicted the building deterioration using 46 

a Markov model.  47 

 48 

In general, the Markov models use data from inspections of the condition state of the infrastructure over 49 

time, to estimate the deterioration curves. Consequently, the quality of data plays a significant role in 50 

the accuracy of deterioration prediction and the resulting lifecycle cost estimations. However, despite 51 

the recent progress in more frequent and accurate monitoring of the assets and storage of the related 52 

results, in practice, real-world data often does not exist in sufficient quantity, contains errors and 53 

discrepancies, and is not always suitable for estimating accurate transition probabilities. These issues 54 

and errors often result from not archiving the results of past inspections (lack of history), missing 55 

information or faulty entries, lack of a robust guideline for condition assessment, the discrepancies 56 

between the judgment of inspectors, and the measurement errors related to machines, equipment, 57 

sensors, etc. 58 

 59 

Researchers have also done work to bridge these gaps for Markov models. Specifically, Mizutani et al. 60 

(2017) suggested improving the estimation of Markov transition probabilities using mechanistic-61 

empirical models and Lethanh et al. (2017) used these models along with Monte Carlo simulations to 62 

estimate the transition probabilities for a reinforced concrete bridge element with chloride-induced 63 

corrosion. Humplick (1992), has studied methods to tackle the issues of measurement errors related to 64 

monitoring equipment and measurement locations. Park et al. (2008) and Hong and Prozzi (2006)  have 65 

used a Bayesian approach to deal with the small population samples for pavement deterioration 66 

prediction. Chu and Durango-Cohen (2007, 2008) used Kalman filters to eliminate errors in pressure 67 
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and deflection measurements for asphalt pavements and provided numerical examples to demonstrate 68 

how their framework accommodated the missing values. In general, most issues related to the errors in 69 

data, that are addressed in the literature are related to the equipment, item or location related errors, or 70 

measurement errors specified to humans such as faulty entry, discrepancies in the judgments of the 71 

inspectors (Kobayashi et al., 2012). There are occasions, however, where there is a systematic 72 

discrepancy among the data entries, such as changes in the condition rating system, that have not been 73 

addressed in the literature. 74 

This paper contributes to the literature by examining a real-world case study to predict the deterioration 75 

curves of the railway supporting structures using Markov models. In this study, state-of-the-art tools 76 

were used to clean the data and deal with the faulty/incomplete entries. Moreover, three classification 77 

algorithms, i.e. K-Nearest Neighbors algorithms (KNN), Neural Networks (NN), and random forest 78 

algorithms were used to adjust a portion of the data collected using an old condition rating scheme to 79 

the equivalents with a new condition rating scheme. 80 

 81 

The structure of the paper is as follows: Section 2 provides an overview of the study. In section 3 the 82 

procedure for data preparation and structuring is discussed. Section 4 introduces the methodology to 83 

estimate the transition probabilities. The dwell times for different categories of supporting structures are 84 

estimated in section 5, and section 6 discusses the results. Finally, the summary and conclusions of the 85 

study are presented in section 7.  86 

 87 

2 Study description   88 

This paper developed the deterioration curves for railway supporting structures, from a data set with 89 

faulty/incomplete entries, inaccuracies related to the inconsistent monitoring programs and biased data, 90 

as well as the situation where there were changes in the condition state rating system. The supporting 91 

structures in this study were bridges and retaining walls that laterally support soil to restrain it at different 92 

levels on the two sides.  93 

 94 

An inventory of the assets containing 4’988 bridges and 17’000 retaining walls were created in the years 95 

1983 and 2000 respectively, and the results of regular inspections were entered in a database following 96 

that date. In the asset inventory, each object was assigned a unique identification number, and the 97 

document provided information on the type of construction and materials, the dimensions, the position 98 
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of the object, the construction year, and the results of the inspections. The bridges were classified into 99 

three categories of masonry, steel, concrete, and composite. For the retaining walls, from a static point 100 

of view, they were divided into three categories: gravity walls that hold back the earth pressure with their 101 

weight alone, cantilever walls, and anchored walls. Material-wise they were divided into three categories: 102 

masonry, concrete, and natural stone walls. For all structures, the inspections were performed every six 103 

years on average, which resulted in a total of 26’106 status reports from 1983 to December 2018 for 104 

bridges, and 52’647 status reports from the year 2000 to February 2020 for the retaining walls. These 105 

status reports indicated the condition state of the objects at the time of inspection. The first change in 106 

the condition rating scheme occurred in 2009 and affected all objects. The second change occurred in 107 

2013 and affected only natural stone retaining walls (see Figure 1).  108 

 109 

The steps used to develop the deterioration curves are as follows. In the first step, the data was cleaned 110 

and prepared for analysis. In the second step, the transition probabilities were estimated. The 111 

deterioration curves and the dwell times, i.e. the duration that the structures stay in each condition state, 112 

were approximated using the transition probabilities and Monte-Carlo simulations. The following 113 

sections discuss these steps in more detail. 114 

 115 

3 Data preparation 116 

3.1 Data cleaning 117 

In the first step, the data was cleaned and structured to be used for the estimation of the transition 118 

probabilities. The faulty/incomplete entries were first corrected or deleted if unusable; with the aim of 119 

keeping as many entries as possible to have the most informative value for the models. 120 

 121 

3.2 Dealing with changing rating schemes 122 

In the second step, the problem of the variations in the condition rating scheme was addressed. Four 123 

condition states were used prior to 2009 for all object types, and five condition states afterwards. 124 

Additionally, the classification criteria for natural stone walls became stricter in 2013, meaning that worse 125 

condition states were assigned to objects after 2013 than before. Hence, condition states before and 126 

after 2009 and 2013 could not be directly compared. 127 

 128 
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This problem was addressed by reclassifying the inspection results (condition states) that happened 129 

before the changes in the rating system. As this could be done in different ways, the performance of 130 

three classification algorithms, KNN, NN, and the random forest were compared together to adjust the 131 

past condition states to the currently used condition states. The work was based on the idea that the 132 

condition states could be estimated using other information available in the database, such as wall type 133 

and material, construction year, and damage type. The condition states of the natural stone retaining 134 

walls before 2009 were first adjusted for the first rating change, and then again for the second rating 135 

change in 2013. Brief overviews of the different classification methods that were used are provided in 136 

the appendix.  137 

 138 

As can be seen in Figure 1, for bridge inspections before 2009, bridges with the condition state (CS) 1 139 

and 2 maintained the same CS, those with CS3 could either be CS3 or CS4, and bridges with a CS4 140 

would be classified as CS5. For the retaining wall inspections before 2009, walls with the condition state 141 

(CS) 1 maintained the same CS, those with CS2 could either be CS2 or CS3, walls with CS3 could be 142 

either CS3 or CS4, and walls with a CS4 would be classified as CS5. Additionally, for stone walls, 143 

condition states reported before 2013, were treated as follows. Walls with CS1 were still considered as 144 

CS1. Walls with the CS2 could be either CS2, 3, or 4, and walls with CS3 could be converted into CS3, 145 

4, or 5. This meant that a total of five reclassifications were required: 146 

 147 

1) Reclassify the old CS3 (all bridges before 2009) 148 

2) Reclassify the old CS2 (all walls before 2009) 149 

3) Reclassify the old CS3 (all walls before 2009) 150 

4) Reclassify the old CS2 (natural stone walls before 2013) 151 

5) Reclassify the old CS3 (natural stone walls before 2013) 152 

 153 

After an initial assessment of the number of observations for each CS, it was observed that the 154 

distribution of data entries for each CS, for both bridges and walls, was very skewed and unbalanced. 155 

For example, the data record for the retaining walls contained 12,394 status entries of CS2 and 2,979 156 

status entries of CS3. When dealing with an unbalanced dataset such as this one, the classification 157 

algorithms predict the CS too optimistically, since there are many more entries in CS2 than in CS3. This 158 

is because the frequency of entries in each CS is learned in the training dataset, such that the skewed 159 

Auto-generated PDF by ReView Infrastructure Asset Management

ManuscriptF inal.docxMainDocument RVT Review Copy Only 7



6 
 

distribution is reflected in the predicted CSs. To ensure that the classification only takes place based on 160 

the informative value of the features and not the relative frequency of occurrence of the individual CSs, 161 

the training dataset was modified (augmented) to have the same number of entries for each CS. 162 

 163 

Two methods of data augmentation namely oversampling and Synthetic Minority Oversampling 164 

Technique (SMOTE) were used to deal with the problem of the skewed dataset. In oversampling, copies 165 

of the features of the minority class(es) were created until the number of entries in the minority class(es) 166 

were the same as the class with the highest number of data entries. SMOTE synthesized new entries 167 

for the minority class(es) rather than duplicating them. This algorithm uses the concept of the KNN, and 168 

selects data points in the minority class that are close in the feature space, draws a line between the 169 

data points, and adds a new entry at a point along that line. Figure 2 provides an insight into how the 170 

new data entry is generated.  171 

 172 

For each of the algorithms, 
2

3
 of the data points were used as the training set and 

1

3
 as the evaluation set, 173 

and the features (input values) were normalized. The choice of features was tailored to each 174 

classification algorithm, i.e. with the random forest and the NN, all available features (related to the 175 

damage type, material, wall type, the year of construction, and the distance to the track axis) were used, 176 

as these classification algorithms use a weighting scheme for the features and as sufficient data points 177 

were available, their performance was not negatively affected when all features were used. With the 178 

KNN algorithm, a feature selection algorithm was first applied to only consider the most meaningful 179 

features. The reason is that the KNN algorithm can achieve higher accuracy when there are fewer 180 

features involved. In general, to reduce the number of features, either a Principal Component Analysis 181 

(PCA) or a “Feature Selection” procedure is carried out. In this study, a “backward elimination” technique 182 

for feature selection was used and the most significant features (i.e. the construction year, material, and 183 

damage mechanism) were selected to be used in the KNN classifier. These features were those that 184 

correlated most strongly with the condition states. For bridges, features based on the material (masonry, 185 

steel, concrete, composite), features based on the damage type (corrosion, damage to the cover, 186 

damage to the support structure), and the construction year had the highest correlations with the 187 

condition states. For retaining walls, features based on the material (natural stone and reinforced 188 

concrete), features based on wall categories (gravity walls, cantilever walls and anchored walls); 189 
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features based on the damage type (damage to the cover and damage to the support structure); and 190 

the construction year had the highest correlations with the condition states. 191 

 192 

In the next step, a so-called “parameter tuning” was carried out for all classification algorithms, and the 193 

combination of parameters that resulted in the highest 𝑓1 score was selected for each algorithm. The 𝑓1 194 

score is a measure that represents how good the classifier is performing, and is calculated as: 195 

 196 

𝑓1 = 2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 [1]  

 197 

where in a classification problem with two classes of positive and negative, precision is the ratio of the 198 

true positive observations to the total predicted positive observations; and recall is the ratio of the true 199 

positive observations to the sum of true positive and false negative observations (i.e. all observations in 200 

actual positive class). The results of the best combinations of parameters for each algorithm are 201 

summarized in Table 1.  202 

 203 

Table 2 summarizes the performance of the algorithms on the evaluation set for each algorithm with 204 

original data (normal), and the data augmented with oversampling and SMOTE. It can be observed from 205 

Table 2, that the random forest algorithm delivered better classification results, followed by the NN and 206 

the KNN algorithm. Also, data augmented with oversampling led to better performance of the classifiers 207 

in comparison to SMOTE and the original training set (Normal). Figure 3 provides the results of the four 208 

classification tasks. The percentages on the arrows show the proportion of the data with the old rating 209 

scheme that is transferred to a new CS. For example, for retaining walls, for the inspections that were 210 

carried out before 2009, 69.6% of the CS2 states maintained the same CS, while 30.4% were demoted 211 

to CS3 according to the new condition rating scheme.  212 

 213 

In the next step, the data was further refined and structured for the development of the deterioration 214 

curves for each category of bridges and retaining walls. 215 

 216 
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3.3 Data structuring 217 

Figure 4 illustrates the recorded condition states of the bridges and retaining walls after the data cleaning 218 

and preparation. The x-axis shows the condition state of the objects and the y-axis shows the number 219 

of observations (each data point represents an inspection result). After data preparation, a total of 20’022 220 

(out of 26’106) status entries for bridges and 24’479 (out of 52’647) status entries for retaining walls 221 

remained. This shows that the retaining walls had lost more than half of their observations due to 222 

duplicated or incomplete entries in the retaining wall data inventory. Moreover, most of the observations 223 

belong to the first three CSs and only 3.15% and 0.3% of them are dedicated to CS4 and CS5 224 

respectively. 225 

 226 

The bridges and walls were then divided into suitable categories to develop more accurate and 227 

informative data-based decay curves. The aim was to group the objects based on the distinct features 228 

that could significantly influence their deterioration rate; while keeping the number of groups as small as 229 

possible to ensure sufficient data points per category. Figures 5 and 6 show the categories of bridges 230 

and retaining walls respectively along with the number of observations per CS for each category of 231 

objects.  232 

 233 

In the next step, a sequence of the CS transitions was created for each bridge and retaining wall based 234 

on the results of the inspections, to develop the transition probabilities. These sequences could not 235 

contain improvements in the condition state. However, if all objects that were ever repaired were filtered 236 

out, too many data points would be lost. To avoid this issue, the sequences of CS transitions were 237 

adjusted as follows: 238 

 239 

• If there was an improvement in the CS of an object and this observation was confirmed twice in 240 

succession, it was assumed that the object was renewed. Consequently, the sequence was divided 241 

into two separate ones as if the second sequence belongs to a newly constructed object. For 242 

example, the wall 𝑖 with condition state sequence 𝐶𝑆𝑖 = {1,1,2,3,1,1,2}, was split into two sequences 243 

𝐶𝑆𝑖 = {1,1,2,3} and 𝐶𝑆𝑖+1 = {1,1,2}.  244 
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• In a sequence, where the improvement in the CS only happened once and then it returned to a 245 

worse state, such as in 𝐶𝑆𝑖 = {1,2,1,2,3}, the improvement is considered as an inconsistency in the 246 

judgment of the inspectors and hence it is corrected as 𝐶𝑆𝑖 = {1,2,2,2,3}. 247 

A further issue with the current dataset was related to the lack of history as the database only contained 248 

the results of inspections from the year 1983 to 2018 for bridges and 2000 to 2020 for the retaining 249 

walls. This denotes that information on the condition development of the objects before this period was 250 

missing. For example, a retaining wall was built in 1970 but was only added to the database in 2006 251 

with a CS1. In 2010, a degradation to CS2 was reported. However, it is unknown whether between 1970 252 

and 2006, the wall stayed in CS1, or underwent one or more condition improvement interventions. 253 

Hence, there is a lower bound of 4, and an upper bound of 40 years for the dwell time in CS1, depending 254 

on the condition history of this wall. Since assuming that no interventions were executed before the first 255 

inspection would result in optimistic and non-conservative results, the period between the year of 256 

construction and the initial inspection was not taken into account. This approach, although conservative, 257 

allowed for keeping the entries without the construction year as the data analysis could be carried out 258 

using Markov models. Figures 7 and 8 illustrate the recorded condition state transitions for each 259 

category of bridges and walls.  260 

 261 

4 Transition probabilities 262 

Markov models were used to estimate the deterioration curves. Markov models are stochastic processes 263 

that provide predictions of the future development of a process with limited knowledge of its history. 264 

Hence, they were very suitable for modeling the deterioration curves of the railway supporting structures 265 

(i.e bridges and retaining walls), as the information on the development of the condition states was only 266 

available from the initial inspection of the objects, and not from the year of construction. In these models, 267 

the probability of transition to a future state  Xn + 1 depends only on the current state Xn , and not on the 268 

previous states (Xn− 1, Xn− 2, ...) (Parzen, 1962). The future state of an event is estimated using the 269 

probability of transition from one state to another over multiple discrete intervals. As a convention, these 270 

transitions are time-homogeneous; meaning that the probability of transition from one state to another 271 

remains constant throughout the time (Howard, 1971). Such transition probabilities are represented by 272 

a 𝑛 × 𝑛 matrix, where 𝑛 is the number of possible states. Hence, the transition matrices for the bridges 273 

and retaining walls with 5 possible condition states, would be 5 × 5 matrices.  274 
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The elements in the transition probability matrix 𝑝𝑖𝑗 indicate the probability that the object changes from 275 

initial state 𝑖 to state 𝑗 within a certain time interval. Since an object can only be in one condition state 276 

at any point in time, the sum of each row 𝑖 ∈  {1,2,3,4,5} of the matrix should be equal to 1. If a transition 277 

from 𝐶𝑆𝑖 to 𝐶𝑆𝑗 is not possible, then the corresponding element in the matrix 𝑝𝑖𝑗 = 0. Consequently, the 278 

bridge and wall deterioration transition matrices would be upper triangular (Eq. 2) since, in a natural 279 

deterioration process, there cannot be improvements in the condition states (without interventions).  280 

 281 

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

0

0 0

0 0 0

0 0 0 0

p p p p p

p p p p

P p p p

p p

p

 
 
 
 =
 
 
 
 

 [2]  

 282 

A state 𝐶𝑆𝑖  is called absorbing when it can no longer be left, i.e. when 𝑝𝑖𝑖 = 1. In the case of the 283 

deterioration process for bridges and retaining walls, state CS5 is an absorbing state, as there is no way 284 

to get out of this state without taking repairing measures. 285 

 286 

A regression-based optimization was used to estimate the transition probabilities (Roelfstra et al., 2004). 287 

The objective function of this approach (Eq.3) is to minimize the sum of the absolute differences between 288 

the condition state at time 𝑡 based on the regression curve 𝐶(𝑡), and the expected CS at time 𝑡 based 289 

on the Markov chain and the estimated probabilities, 𝐸(𝑡) (Bulusu and Sinha, 1997). 290 

min 𝑍 = ∑|𝐶(𝑡) − 𝐸(𝑡)|

𝑁

𝑡=1

   [3]  

𝐸(𝑡) = 𝑃(𝑡) × 𝑆 [4]  

 291 

where 𝑁 is the total number of the transition periods and 𝑆 is the condition state vector. Eq. 4.a and Eq. 292 

4.b present the constraints that must be taken into account. 293 

 294 

0 ≤  𝑝𝑖𝑗  ≤  1  [4.a] 
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∑ 𝑝𝑖𝑗  

𝑗

=  1 [4.b] 

 295 

For the bridges and retaining walls, the expected CS at time 𝑡, i.e.  𝐸(𝑡), can be expressed as: 296 

 297 

𝐸(𝑡) = 𝑥(𝑡 − 1) × 𝑝𝑖𝑗    [5]  

 298 

Assuming 𝑥𝑖𝑗 denotes the proportion of objects in 𝐶𝑆𝑗 at time interval 𝑖, the objective function of the 299 

optimization problem in Eq. 3 can be written as: 300 

 301 

11 21
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1 211
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0 0 0 0
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0

0

0 0 0 0 0 0

j

j i
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j

j i
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i j

ji ij

p x
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p x
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Z

p x

x x

p xx

p x

− −

− −

  
 

   
   
   
   
   
   = −
   
   
   
   
   
    

   


 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[6]  

 302 

The matrix 𝑥(𝑡 − 1) has a dimension of [(𝑖 − 1) ∗ 𝑗; 𝑗2], the vector of the transition probabilities 𝑝𝑖𝑗  has a 303 

dimension of [𝑗2; 1], and the vector 𝑥(𝑡) has a dimension of [( 𝑖 − 1) ∗ 𝑗; 1].  304 

 305 

The process of estimating the transition probabilities starts with data aggregation within a certain time 306 

interval ∆𝑡. For the bridges since the age of the objects were known, the ∆𝑡 was selected as 5 over a 307 

period of 100 years (20 time intervals), and then the proportion of the number of observations in each 308 

condition state was calculated in each time interval, considering the age of the bridge. For the walls, as 309 

the information regarding the year of construction was unknown for almost half of the walls, the time of 310 

the first inspection for all walls was considered as  𝑡0  and only the time differences between the 311 

inspections were considered. As the inspections in the database were conducted from the year 2000 to 312 

2020, 20 time intervals (∆𝑡 =1) were selected for data aggregation to estimate the transition probabilities 313 

for each category of retaining walls. 314 
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In this problem, 𝑖 ∈  {1,2,3, . . . ,20}   denotes the interval number, and 𝑗 ∈  {1,2,3,4,5}  represents the 315 

condition states. Subsequently, the transition probabilities were estimated using the regression-based 316 

approach described above. The optimal solutions to Eq. 6, i.e. the transition probability matrices for each 317 

category of the bridges and retaining walls are presented in Tables 3 and 4. It can be observed that due 318 

to the lack of sufficient observations in CS5, CS4 is the absorbing state for all wall categories except 319 

masonry gravity walls. Moreover, the number of observations in CS4 and CS3 were much lower than 320 

CS2 and CS1, which suggests that the bridges and the retaining walls were maintained regularly to 321 

avoid dangerous condition states.  322 

 323 

5 Deterioration curves and dwell times 324 

After data preparation and estimation of the transition probabilities, a fictitious portfolio of 12,000 objects 325 

was created for each category of bridges and retaining walls. The deterioration of the objects over time 326 

was then simulated using the estimated transition probabilities and the Monte Carlo simulations. The 327 

dwell times for each CS were then calculated, based on the results of the previous step (Figure 9 and 328 

10). Tables 5 and 6 provide a comparison between the dwell times of bridges and retaining walls derived 329 

directly from the data (i.e. the max, min, and the mean time that each category of bridges and retaining 330 

walls was in each condition state based on the inspection data) and the estimated dwell times using the 331 

developed transition probabilities and the Monte-Carlo simulations.  332 

 333 

6 Discussion 334 

The comparison between the dwell times derived directly from inspection data and the dwell times 335 

estimated using transition probabilities and Monte-Carlo simulations shows that the wall and bridge 336 

categories with a higher number of observations produced more accurate estimations of the transition 337 

probabilities. This can especially be seen through the comparison of the dwell times for concrete and 338 

composite bridges, where the estimated dwell times are almost equal to the dwell times from inspection 339 

data (Figure 9). In these categories, although the minimum and mean dwell times are almost the same, 340 

the max dwell times from the simulations are considerably longer. Here it seems that the simulations 341 

likely provide a better reflection of reality than the data, because the max dwell times from the data are 342 

constrained due to the limited time period over which data was collected. For example, in Table 5 the 343 

max dwell time derived from data for concrete bridges in CS2 is 35.2, which is equal to the max 344 
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inspection history. In contrast, the Monte Carlo simulations show a longer max dwell time, which is 345 

because the dwell time for a “fictitious” bridge is not constrained.   346 

 347 

For the masonry bridges and steel bridges, there are discrepancies among the dwell times derived from 348 

data and those estimated using the simulations, which is mainly due to the lack of sufficient observations 349 

in these categories (Table 5). For the retaining walls (Table 6 and Figure 10), the discrepancies are 350 

more noticeable. For example, for all wall categories, the dwell times estimated for CS2 using the 351 

simulations are higher than those observed directly from data due to overestimation of the transition 352 

probability 𝑝22. This is principally due to the fact that the number of CS2 observations were higher than 353 

the rest of the CSs and secondly due to the accumulation of aggregated observations in the first few 354 

time intervals, which occurred because the year of construction was unknown for almost half of the 355 

retaining walls. To deal with this issue as mentioned in section 3.3, when preparing the data, the initial 356 

inspections for all walls were set to 𝑡 = 0; while this is not the case in reality as the walls are of different 357 

ages, and the first inspections were not actually carried out at the same time. This approach was 358 

selected as it allowed for keeping the entries without the construction year and also had the advantage 359 

of being “representative” for all available time intervals (∆𝑡 =1), whereas for the other approach used for 360 

the bridges, where the chronological order of the first inspections in time were used (i.e. not set to be at 361 

𝑡 = 0), a “representative deterioration time interval” was selected to estimate the transition probabilities 362 

(∆𝑡 =5) which is also consistent with the use of Markov models.  363 

 364 

In general, it should be noted that the dwell times might seem to many experts as relatively short. The 365 

predominant reason for this is most likely due to the definition of the condition states on the object level 366 

and their use in practice. Although the condition states were defined to give a general impression of how 367 

the object is deteriorating over time and were meant to give a global view of the object, in practice the 368 

objects are assigned condition states associated with the worst state of an element, which alerts 369 

management to the fact that an intervention is required in the near future, even if it is small. Hence, the 370 

sum of the dwell times in each condition state for an asset does not correspond with the total amount of 371 

time that it is expected to be in service before it needs to be replaced. This difference is because in one 372 

case condition states are used to approximate the life of the asset and in the other, they are being used 373 

to trigger interventions.  374 

 375 
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7 Summary and conclusions 376 

Determination of optimal intervention programs for infrastructure depends on the development of the 377 

condition state of the assets over time. Markov models are appropriate models that use the information 378 

from the condition state development of the assets over time and predict their deterioration rate and the 379 

remaining service life. This paper used a Markov model to predict the deterioration curves of the railway 380 

bridges and retaining walls and proposed solutions to address the challenges that normally exist when 381 

dealing with real-world data, including insufficient inspection history, incomplete/faulty entries, biased 382 

data caused by the lack of clear guidelines for the inspectors, and the changes to the condition rating 383 

scheme.  384 

 385 

It is concluded that the following considerations can be made in other similar real-world situations: 386 

• Clean the data and correct or delete the faulty/incomplete entries with the goal to keep as many 387 

entries as possible to increase the informative value of the models. 388 

• While structuring the data, separate the situations where there are discrepancies between the 389 

judgment of inspectors, from when there have been improvements in the condition of the structures due 390 

to maintenance work. 391 

• Adjust the old inspection data with the new rating scheme when there is a change in the 392 

condition rating system. In this study, KNN, NN, and random forest were used for reclassification 393 

purposes and to align the inspection data with the new condition rating schemes, so that the data from 394 

before and after the changes in the condition rating scheme could be compared with each other. The 395 

results suggested that the random forest was the most appropriate method for such classification 396 

problems.  397 

• The transition probability matrices can be estimated using a regression-based optimization 398 

approach for each category of objects. The deterioration curves and dwell times can be estimated by 399 

using the transition probabilities in conjunction with Monte Carlo simulations. 400 

• When there is no information on the construction year of the objects in the database, in using 401 

the Markov models, the period between the year of construction and the initial inspection can be 402 

neglected and the initial inspections for all objects should be set to 𝑡 = 0.  This would result in the 403 
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conservative estimation of the transition probabilities except for the condition state that had the highest 404 

concentration of the observations in the first few intervals.   405 

• As the number of observations plays a significant role in the accuracy of the deterioration curves, 406 

it is necessary to mitigate data losses due to faulty entries as much as possible. This can be done by 407 

equipping the database with a drop-down menu rather than the manual insertion of the information. 408 

Additionally, to avoid biases in the inspection ratings, the condition rating scheme should be revised to 409 

be strict and clear, leaving no room for interpretations.  410 

• To obtain more accurate estimates of the deterioration process with limited data, it might be 411 

more beneficial to determine mechanistic-empirical deterioration models for each individual retaining 412 

wall category and then calibrate the results using the available data. Finally, the application of automated 413 

structural health monitoring or drone-based surveillance systems can facilitate regular collection of data 414 

from all assets, for future developments of the deterioration curves. 415 

• The difference between the different uses of condition states has to be considered, i.e. one 416 

cannot simply take the condition states reported in data and use them directly to estimate the expected 417 

lifetime of the asset. 418 

 419 
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8 Appendix 477 

8.1 The K-Nearest-Neighbor  478 

The K-Nearest-Neighbor algorithm (KNN) is a simple, but very efficient classification method. The key 479 

idea behind the KNN classification is that similar measured values belong to the same classes. Thus, 480 

one only needs to know the class identifier of a certain number of the nearest neighbors to be able to 481 

estimate the class number of a data point (Figure 11). The class of an unknown data point is usually 482 

determined using the majority criterion. i.e. if the majority of the neighbors of an unknown point are from 483 

class 𝐴, it is very likely that the point is also from class 𝐴. The number of nearest neighbors 𝑘 should 484 

also be kept as small as possible since a large 𝑘 can lead to a bad classification if the individual classes 485 

are not well-separated. 486 

 487 

8.2 Neural Networks 488 

Neural networks (NN) are computational models with the capacity to learn, generalize, or classify data. 489 

NNs are beneficial in approximating unknown non-linear functions that depend on a large number of 490 

variables (features) since their application eliminates the need to define that function. Figure 12 491 

represents a typical single-layer neural network classifier. The model contains an input layer of variables 492 

(features), a hidden layer, and an output layer with the desired classes. In addition to the normal neurons, 493 

there are also bias neurons that are used to help ensure that the model has a good fit with existing data. 494 

The weights (connections between neurons) are used to model the relationships between the neurons. 495 
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The activation function is used to introduce non-linearity into the model to ensure that there is a good fit 496 

between the values predicted by the model and the expected output. To use these models, the network 497 

needs to be trained first, i.e. the weights are adjusted (by going through a certain number of forward and 498 

backward propagations) so that the error between the expected output and the generated output of the 499 

model is minimized. 500 

 501 

In a trained NN classifier, an input data point with known characteristics (features) is passed to the first 502 

hidden layer, where the activation function in each neuron receives the input 𝑥𝑖  and generates the 503 

output. That output is then passed to the next hidden layer (if any) and the procedure continues till it 504 

reaches the output layer, where outputs from the previous layer are combined to yield a final class of 505 

the input data point. 506 

 507 

8.3 Random Forest 508 

Random forests are built from decision trees and are widely used for classification and regression 509 

problems. Fundamentally, they structure multiple hierarchical sequences of yes/no questions that 510 

ultimately lead to a decision. The variety of decision trees is what makes random forests more effective 511 

than individual decision trees. The random forest algorithm determines the class of an unknown data 512 

point using the following steps: 513 

1- Create a bootstrapped dataset 514 

2- Create a decision tree using the bootstrapped dataset, only using a random subset of the 515 

variables (features) at each step.  516 

3- Repeat steps 1 and 2, 𝑖 times (𝑖 being the number of created decision trees or estimators).  517 

4- Take the unclassified data and run it down each decision tree, to find the class of the data point 518 

using various decision trees.  519 

5- The class of an unknown data point is determined using the majority criterion, i.e. the class that 520 

receives the most votes from the decision trees is chosen. 521 

 522 

Figure captions 523 

Figure 1. Changes in the condition-rating scheme of all objects in 2009 and the natural stone retaining 524 

walls in 2013 525 

Figure 2. The 2D illustration of SMOTE 526 
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Figure 3. Redistribution of the condition states in accordance with the new rating schemes 527 

Figure 4. Recorded condition states after the data preparation 528 

Figure 5. Recorded condition states per category of bridges 529 

Figure 6. Recorded condition states per category of walls 530 

Figure 7. Recorded condition state transitions for each category of bridges 531 

Figure 8. Recorded condition state transitions for each category of walls 532 

Figure 9. Estimated dwell times for each category of bridges; solid lines indicate the mean dwell time 533 

while the dashed lines (--) show the minimum and the dotted dashed lines (-.-) show the maximum 534 

values.   535 

Figure 10. Estimated dwell times for each category of walls; solid lines indicate the mean dwell time 536 

while the dashed lines (--) show the minimum and the dotted dashed lines (-.-) show the maximum 537 

values.  538 

Figure 11. Schematic overview of the KNN algorithm 539 

Figure 12. Visual representation of a NN classifier 540 

 541 

Table captions 542 

Table 1. Selected parameters for KNN, NN, and random forest algorithms 543 

Table 2. Performance of the KNN, NN, and random forest algorithms 544 

Table 1. Transition probabilities for each category of bridges 545 

Table 2. Transition probabilities for each category of retaining walls 546 

Table 3. Estimated dwell times for bridges 547 

Table 4. Estimated dwell times for retaining walls 548 
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 Figure 4. Recorded condition states after the data preparation 
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Figure 5. Recorded condition states per category of bridges 
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Figure 6. Recorded condition states per category of walls 
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Figure 7. Recorded condition state transitions for each category of bridges 
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Figure 8. Recorded condition state transitions for each category of walls 
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Table 1. Selected parameters for KNN, NN, and random forest algorithms 

Algorithm  The selected combination of parameters  Comments 

KNN 

 𝑘 = 15  
number of closest neighbors for classification 
1, 2 and 3 

 𝑘 = 20  
number of closest neighbors for classification 4 
and 5 

NN 

 Number of hidden layers = 3  The number of hidden layers 

 hidden layer sizes = (50, 50, 50)   

 𝜑 = tanh  Activation function [logistic, tahn, relu] 

 𝛼 = 0.01  Learning rate 

Random Forest 

 max_depth = 100  The maximum depth of the tree 

 max_features = sqrt  
The number of features to consider when 
searching for a suitable split 

 min_samples_split = 2  
The minimum number of samples required to 
split an internal node 

 n_estimators = 100  The number of trees in the forest 
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Table 2. Performance of the KNN, NN, and random forest algorithms 

Classification Algorithm KNN NN Random Forest 

Aggregation of the training 
data set 

Normal Oversampled SMOTE Normal Oversampled SMOTE Normal Oversampled SMOTE 

Classification 1 𝑓1 Score 0.569 0.547 0.584 0.587 0.603 0.612 0.723 0.763 0.745 

Classification 2 𝑓1 Score 0.538 0.592 0.592 0.564 0.614 0.591 0.714 0.749 0.730 

Classification 3 𝑓1 Score 0.530 0.566 0.565 0.680 0.684 0.650 0.809 0.811 0.800 

Classification 4 𝑓1 Score 0.401 0.456 0.444 0.473 0.460 0.434 0.682 0.699 0.695 

Classification 5 𝑓1 Score 0.377 0.429 0.335 0.551 0.632 0.572 0.793 0.862 0.795 
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Table 3. Transition probabilities for each category of bridges 
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Table 4. Transition probabilities for each category of retaining walls 
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Table 5. Estimated dwell times for bridges 

Concrete Bridges 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 

1 12.86 6.58 11.71 0.00 31.97 1330 

2 13.48 8.61 11.58 0.08 35.20 388 

3 6.94 3.89 5.81 1.94 16.11 15 

Dwell times from 
simulations 

1 13.39 9.94 11.00 1.00 38.00 10547 

2 13.35 8.88 12.00 1.00 37.00 3997 

3 6.09 5.04 4.00 1.00 33.00 2844 

Masonry Bridges 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 

1 10.30 4.76 10.93 0.00 32.23 176 

2 13.62 7.96 11.59 0.00 34.96 284 

3 12.69 5.14 12.70 4.46 20.86 16 

Dwell times from 
simulations 

1 8.89 8.01 6.00 1.00 50.00 11968 

2 10.98 9.21 8.00 1.00 48.00 7812 

3 6.40 5.70 5.00 1.00 44.00 11178 

Steel Bridges 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 
 

1 10.50 5.24 10.17 0.84 25.47 116 

2 12.17 6.67 11.59 0.33 30.04 141 

3 6.80 3.04 5.95 0.92 12.29 23 

4 4.62 0.00 4.62 4.62 4.62 1 

Dwell times from 
simulations 

1 5.22 4.65 4.00 1.00 40.00 11997 

2 11.93 9.02 10.00 1.00 39.00 10682 

3 7.46 6.16 6.00 1.00 36.00 9124 

Composite Bridges 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 

1 11.26 5.46 11.03 0.00 27.95 422 

2 15.83 8.15 15.84 0.00 32.65 506 

3 7.96 4.24 5.98 0.23 21.57 57 

Dwell times from 
simulations 

1 10.22 9.00 7.00 1.00 45.00 11851 

2 16.15 10.92 14.00 1.00 44.00 6505 

3 6.65 5.57 5.00 1.00 41.00 5297 
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Table 6. Estimated dwell times for retaining walls 

Masonry Gravity Walls 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 
 

1 6.27 2.64 5.87 0.00 14.17 814 

2 6.32 2.54 5.92 0.01 15.36 266 

3 4.94 2.81 5.40 0.04 11.86 25 

4 2.59 2.58 2.59 0.00 5.17 2 

Dwell times from 
simulations 

1 3.56 2.93 3.00 1.00 23.00 3944 

2 10.30 6.73 9.00 1.00 25.00 6190 

3 7.88 5.75 7.00 1.00 25.00 4347 

4 6.35 4.92 5.00 1.00 25.00 2887 

Concrete Gravity Wall 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 

1 6.32 2.36 5.96 0.00 14.58 1259 

2 5.92 2.14 5.84 0.08 15.38 166 

3 5.74 2.14 5.94 0.22 9.11 23 

Dwell times from 
simulations 

1 4.54 3.87 3.00 1.00 25.00 6277 

2 11.26 6.84 11.00 1.00 25.00 2966 

3 5.18 4.33 4.00 1.00 25.00 3655 

Natural Stone Gravity Walls 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 
1 6.49 2.27 5.93 0.26 11.87 116 

2 5.84 0.24 5.67 5.67 6.17 3 

Dwell times from 
simulations 

1 5.71 5.04 4.00 1.00 33.00 9887 

2 8.30 6.69 6.00 1.00 33.00 11185 

3 4.33 3.65 3.00 1.00 30.00 10717 

Masonry Anchored Walls 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 

1 5.50 2.26 5.87 1.79 13.21 23 

2 5.90 2.09 5.90 0.93 11.44 41 

3 5.74 0.68 6.01 4.39 6.14 5 

Dwell times from 
simulations 

1 1.44 0.76 1.00 1.00 6.00 856 

2 6.80 5.53 5.00 1.00 26.00 8223 

3 4.74 3.94 4.00 1.00 26.00 10378 

Concrete Anchored Walls 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 
1 5.85 1.21 5.81 3.44 8.20 18 

2 5.85 0.66 6.07 4.95 6.53 3 

Dwell times from 
simulations 

1 1.41 0.75 1.00 1.00 7.00 2710 

2 9.69 6.17 9.00 1.00 22.00 5136 

3 2.13 1.52 2.00 1.00 15.00 6332 

Cantilever Retaining Walls 

Type Condition State 𝜇 𝜎 Median Min Max Observations 

Dwell times from data 

1 6.57 2.56 5.93 0.87 14.26 287 

2 5.96 1.89 5.58 3.11 12.68 23 

3 8.74 2.87 8.74 5.87 11.61 2 

Dwell times from 
simulations 

1 6.04 5.08 4.00 1.00 25.00 5615 

2 11.30 6.83 11.00 1.00 25.00 1833 

3 2.68 2.17 2.00 1.00 18.00 3478 
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