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Abstract—Radio frequency fingerprint (RFF) is an effective
way to improve the security of wireless communications. Existing
research mainly focused on the classification capability and the
robustness of RFFs but overlooked malicious attacks. In this
paper, a colluding impersonation attack framework is proposed
to emulate the RFF of legitimate users. A colluding attacker is
introduced to observe the signal features of the impersonation
attacker and the legitimate user and compare their difference.
The difference is fed back to the impersonation attacker to
help improve its RFF impersonation method. With this idea, the
impersonation attack is realized by the Generative Adversarial
Network (GAN) structure. The RFF impersonation is formulated
as the generator whose objective is to output the signal with RFF
similar to the legitimate user, viewed from the colluding attacker’s
perspective. Simulation results show that the proposed method
can effectively impersonate the legitimate user’s RFF under the
dynamic block fading channel.

Index Terms—Radio frequency fingerprint (RFF), imperson-
ation attack, general adversarial network (GAN), adversarial
machine learning

I. INTRODUCTION

Wireless communications face increasing challenges from
malicious attackers due to the broadcasting nature of radio
propagation. Radio frequency fingerprint (RFF) consists of
a series of unique signal features caused by the hardware
impairments. It can be exploited to identify the transmitter
device and is widely recognized as a promising means for
device authentication [1]–[5].

However, like all other authentication approaches, RFF also
faces impersonation attacks from adversaries. With the rapid
development of software-defined radio, malicious devices have
stronger agility and capability to reform their signal charac-
teristics by re-configuring their signal parameters. Whereas,
the potential risks that RFF is tampered by the impersonation
attack have not drawn broad attention yet. A generative ad-
versarial network (GAN)-based wireless signal spoofing attack
is proposed in [6], achieving the signal spoofing with the
assumption of channel similarity between a legitimate user
and the attacker. Yet, this assumption is not realistic in most
application scenarios. More importantly, it is unclear whether
the features that the attacker learned are the RFF of the trans-
mitter or the channel characteristics. In addition, the success
rate of spoofing attacks is not satisfactory (∼ 76% in the
favorable condition). A policy-based reinforcement learning
was proposed for the RF fingerprint spoofing attacks in [7].

However, the proposed spoofing attack cannot target a specific
device when there exist multiple active legitimate devices. It
does not learn the RFF of a legitimate device but it tries to
find the weakness of the discriminator to break the RFF-based
authentication as any identity of the legitimate device. This
attack becomes ineffective when the higher layer authentication
measures are also employed, because the RFF impersonated by
the attacker may not match the identity encoded in the higher
layer authentication protocol.

In the existing work, the spoofed RFFs can only emulate the
features of the legitimate users on a randomly generated signal,
but cannot send tampered information at the same time [6], [7].
It can only be used as a denial-of-service (DoS) attack to the
physical layer authentication but cannot perform identity imper-
sonation attacks. In contrast, this paper investigates the targeted
impersonation attack that can learn the RFF associated with the
specific transmitter irrespective of the channel condition and
can emulate the RFF features with arbitrary information that the
signal conveys. The contribution of the paper are summarized
as follows.

• A colluding impersonation attack framework based on the
GAN structure is proposed so that the attacker can learn
the RFF features of the targeted legitimate transmitter.

• With the proposed RFF impersonation, the attacker can
send arbitrary information with the RFF features of the
targeted transmitter.

• The proposed attack is adapted to the channel variation
with a high success rate, which makes it a realistic
solution.

The rest part of the paper is organized as follows. The
concept of hardware impairments is introduced in Section II.
The motivation and a colluding attack strategy is introduced
in Section III. A colluding impersonation attack framework
is proposed in Section IV. The performance of the proposed
impersonation attack is presented in Section V and Section VI
concludes the paper.

II. PRELIMINARY: HARDWARE IMPAIRMENTS

There are inherent hardware impairments within various
components of wireless transceivers, including both transmitters
and receivers, due to the inevitable variations in the manu-
facturing process. As modeled in [8], a transmitter is subject
to imperfections including oscillator drift, in-phase (I) and



quadrature (Q) imperfection at the mixer, and power amplifier
nonlinearity, while receiver impairments involve oscillator drift
and IQ imbalance. This paper adopts IQ imbalance at both
transmitter and receiver as a case study.

The equivalent baseband signal at transmitter with IQ imbal-
ance can be given as [8], [9]

sBB(t) = sI(t) + jsQ(t), (1)

where

sI(t) = gtxI xI(t) cos (θ
tx) + gtxQ xQ(t) sin (θ

tx) ,

sQ(t) = gtxI xI(t) sin (θ
tx) + gtxQ xQ(t) cos (θ

tx) ,
(2)

and xI(t) (xQ(t)) and gtxI (gtxQ ) are the modulated signal and
gain of the I (Q) branch, respectively, θtx is half of the phase
mismatch between I and Q branches.

At the receiver side, the received baseband signal with IQ
imbalance is

y(t) = Krx
1 h(t)sBB(t) +Krx

2 (h(t)sBB(t))
∗
, (3)

where h(t) is the channel effect, and

Krx
1 =

grxI e−jθrx

+ grxQ ejθ
rx

2
, (4)

Krx
2 =

grxI ejθ
rx − grxQ e−jθrx

2
, (5)

with grxI (grxQ ) the gain of I (Q) branch and θrx the half of phase
mismatch between I and Q branches at receiver, respectively.
The received signal in (3) can be noted as

y(t) = R
(
h(t)Tk(x(t))

)
, (6)

where Tk(·) and R(·) represent the response of the hardware
impairments of the kth transmitter and the receiver, respectively.
There hardware impairments are unique and stable hence can
be exploited as the RFF of devices.

III. COLLUDING IMPERSONATION ATTACK STRATEGY

A. Motivation

Impersonation attack based on passive eavesdropping and
signal replay perfectly replicates the authentication information
of the legitimate transmitter and can compromise the traditional
password or encryption based authentication mechanisms. In
fact, the attacker will inevitably leave its “fingerprint” in the
captured and replayed signal due to the hardware impairments
of the RF front-end circuits. When the RFF is adopted as
the authentication measure, the attacker’s fingerprint can be
detected by the legitimate receiver’s physical layer security
mechanism. The impersonation attack can thus be detected and
resolved, even though the authentication information carried by
the replayed signal is absolutely correct. Therefore, the attacker
needs to effectively imitate the legitimate user’s RFF in order
to achieve a successful impersonation attack.

However, imitating the legitimate user’s RFF is challenging.
The main reason is that the transmission and reception front-
ends of the attacker also have their own hardware impairments.
These imperfections will cause additional distortion to the
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Fig. 1. RFF impersonation attack by a colluding attacker.

received signal. Therefore, the RFF of the legitimate transmitter
observed by the attacker may not be the same as the one
observed by the legitimate receiver. In the meantime, it is
not easy for the attacker to calibrate its transmission RF
circuit. Hence, the attacker can hardly conceal its RFF in the
transmitted signal. Apparently, it is difficult for the attacker
to perform the impersonation attack to the RFF identification
mechanism of the legitimate users.

B. Colluding Impersonation Attack Strategy

In this work, we propose to introduce a colluding attacker
(Eve) to help an impersonation attacker (Mallory) improve its
attack quality. More specifically, we consider a wireless com-
munication environment where a legitimate transmitter (Bob)
is communicating with a legitimate receiver (Alice), as shown
in Fig. 1. A pre-trained deep learning-based identifier is used
at Alice to determine whether a signal transmission is from the
intended legitimate transmitter.

The attacker Mallory aims to launch an impersonation at-
tack such that its transmissions are identified as the targeted
legitimate ones. More importantly, Mallory intends to transmit
the tampered information with the RFF features of the targeted
legitimate transmitter. Thanks to the RFF carried by the signal,
Mallory’s transmission can be detected as a malicious transmis-
sion by the RFF-based identification. Thus, Mallory needs to
learn the unique signal features of Bob and tune its own signal
characteristics accordingly to enable the impersonation attack.
To this end, Mallory performs some delicate distortion to its
baseband signal. This distortion modifies the RFF feature that
the signal carries.

A colluding attacker (Eve) fully works with Mallory to help
improve the way that Mallory disguises its RFF. Eve observes
the disguised signal sent by Mallory, and compares it to the
legitimate signal coming from Bob. Eve evaluates the similarity
between the two signals using the same principle as the way that
Alice judges the legitimacy of the signal’s RFF. Then Eve sends
the difference to Mallory. With the feedback, Mallory knows
better how to improve the way it disguises its baseband signal
so that the RFF features shown in the RF signal look like Bob’s.
Through an iterative process, Mallory can gradually achieve a
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Fig. 2. Colluding RFF impersonation attack framework based on GAN.

high RFF similarity to Bob. As Eve evaluates the RFF similarity
from an objective perspective, Alice will probably accept the
spoofed RFF once it passes the similarity evaluation of Eve.

In fact, the colluding impersonation attack strategy men-
tioned above coincides with the adversarial learning process
of GAN where Eve and Mallory exchange information to help
Mallory disguise its RFF. The detailed attack procedure will be
elaborated in the following section. It is worth noting that the
proposed colluding attack scheme does not restrict the locations
of different parties, nor the similarity among the channels, as
other existing work did [6], [7]. The four channels (e.g. HBA,
HBE, HME and HMA) in our attack model are assumed to be
independent.

IV. GAN-BASED COLLUDING IMPERSONATION ATTACK
FRAMEWORK AND IMPLEMENTATION

In this section, we propose a GAN-based impersonation at-
tack framework that implements the colluding attack presented
in the previous section, as shown in Fig. 2. In contrast to
the existing RFF spoofing attack techniques where the main
target is to emulate the RFF features [6], [7], this work aims to
accomplish a more sophisticated attack that can send arbitrary
messages with the RFF features of a targeted legitimate user.
With this basis, a real impersonate attack can be carried
out once the higher layer authentication measure is stolen or
cracked.

A. Framework Design

Mallory uses a generator network (G) to modify the baseband
signal X ′ and sends the spoofed signal to Eve. Since Mallory
and Eve are fully cooperated, Eve knows perfectly whether
a signal is from Mallory or Bob. Eve uses this knowledge
as the ground truth label to train the discriminator network
(D) which determines the received signal as “true” or “false”.
If the disguised RFF is similar enough to that of Bob, Eve
cannot detect that the signal is from an attacker. This similarity
suggests that Alice cannot detect it either. The identification
results are then fed back to Mallory. Mallory will update the
weights of the generator network according to the gradients’
feedback from Eve.

The generator and discriminator networks are trained in a
min-max manner. Mallory optimizes G to fool D at Eve. The
discriminator, on the other hand, optimizes D to discover the
RFF disguised by G. The training of G and D are carried out
iteratively until the convergence. When the training converges,
G in Mallory can transform its signal features into Bob’s type,
and can be used for the impersonation attack.

It is worth noting that GAN is an unsupervised learning
approach, and depends on the similarity between true and
generated samples by nature. The GAN-based attack framework
breaks through the limitation of existing attack algorithms that
require a large amount of a priori information including the
structure and weights of the network, and can be applied to
various attack scenarios.

B. Proposed GAN Structure

We employ an improved Wasserstein GAN with gradient
penalty (WGAN-GP) [10] to the targeted impersonate attack.
WGAN-GP alleviates the mode collapse problem of the original
GAN and can diversify the generated results to be adaptive to
the more general transmission conditions.

1) Generator Network: We use a generator network for tun-
ing the signal’s fingerprint features (i.e., the “Feature modifier”
module in Fig. 2). According to (1) and (2), most RFF features
can be expressed in a generic form as

sBB(t) = AxI(t) +BxQ(t) + j (CxI(t) +DxQ(t)) , (7)

where A, B, C, and D are the coefficients. The structure
of the generator G is illustrated in Fig. 3(a). The attacker
performs a targeted impersonation attack that learns the RFF
associated with a specific transmitter and can emulate the RFF
characteristics with the signal carrying arbitrary information.
We use the convolutional neural network to realize G to modify
the waveform characteristics of the signal while maintaining
the physical meaning that the signal conveys. A layer of pre-
processing is employed in G, which divides the complex-valued
input data into its real part xI(t) and imaginary part xQ(t),
forming a dual-channel1 aligned data. These two data channels

1To be distinguished from the sense in signal transmission, a “channel” in
neural network is referred to a separate data path in the forward pass.



(a) Generator (G). (b) Discriminator (D).

Fig. 3. Proposed WGAN-GP network for the impersonate attack. The param-
eters in the parentheses (a, b, c, d) indicate the number of input channels, the
number of output channels, kernel size, and stride, respectively.

are fed into the following 1-dimensional (1-D) convolutional
layer for the signal feature transformation as shown in (7).
This expression of G is generic and can represent most of the
fingerprint features.

Adding multiple convolutional layers can transfer informa-
tion hierarchically. That is to say, by deepening the network,
the problems to be learned at each layer can be decomposed
into simple problems that are easy to solve. The batch norm
layer is added to improve the speed of model training, and can
effectively avoid the disappearance and explosion of gradients.
In the meantime, the generalization ability is improved to avoid
overfitting in the training. In addition, as all the signal and fine-
tuning distortion are centrosymmetric with respect to the origin,
the bias of all convolution layers is set to zero to ensure the
output still being centrosymmetric and improve the stability in
the network training.

2) Discriminator Network: The structure of the discrimina-
tor is shown in Fig. 3(b). Increasing the network depth can
effectively reduce the impact of noise and interference [11].
The batch normalization layer is not used in the discriminator
because it affects the calculation of gradient penalty and
leads to inaccurate gradient update [10]. In contrast, layer
normalization is used in the discriminator. The discriminator
network only needs to identify whether the signal is emitted
by the target legitimate transmitter or the attacker. Hence, a
binary classification will be applied. This is different from the
identification network at the legitimate receiver, which needs
to classify multiple legitimate transmitters. We reduce the size
of the last few fully connected layers in the discriminator (D)
to prevent overfitting. The activation function is also changed
to Sigmoid in the last layer for discriminator (D).

TABLE I
IQ IMBALANCE FOR ALL DEVICES. gQ = 1

Device (gI , 2θ) Device (gI , 2θ)

legitimate Tx 0 (−0.3,−15◦) legitimate Tx 5 (−0.2,−15◦)

legitimate Tx 1 (−0.1, 5◦) legitimate Tx 6 (0.2, 10◦)

legitimate Tx 2 (0.3, 5◦) legitimate Tx 7 (0.1, 15◦)

legitimate Tx 3 (0.1, 10◦) legitimate Tx 8 (0.2, 5◦)

legitimate Tx 4 (0.3,−5◦) legitimate Tx 9 (0.2,−10◦)

legitimate Rx (−0.1,−5◦)

attacker (0.3,−15◦) colluding attacker (−0.3, 15◦)

V. PERFORMANCE EVALUATION

A. Simulation Setup

1) Device Configuration: There are ten legitimate transmit-
ters, one legitimate receiver, one impersonation attacker and a
colluding attacker. As discussed in Section II, all the devices
are impaired by IQ imbalance. Their configurations are given
in Table I. The parameters are chosen according to the model
in [12]. Without loss of generality, set gQ = 1 for all cases.

The RFF identification network at the legitimate receiver has
the same structure as given in Fig. 3(b) but with different num-
ber of classes. This paper considers the colluding attacker only
knows the structure of the identification network of legitimate
receivers, but not the network weights. The impersonation and
colluding attackers are configured with the generative network
and the discriminator, respectively, as shown in Fig. 3.

2) Channel Configuration: This paper considers a block
fading Rayleigh channel. A single tap channel is assumed.
Specifically, we consider two types of channels.

• Dynamic Channel I: This channel model assumes perfect
time and frequency synchronization. The channel coeffi-
cient can be given as

h = a · ejθh , (8)

where a is the real-valued channel amplitude, θh is the
phase offset caused by the channel fading.

• Dynamic Channel II: This channel model further involves
timing error and frequency jitter. The channel coefficient
is written as

h = a · ej(θh+θT+∆ft), (9)

where the timing error θT is a random phase offset
uniformly distributed in (−10◦, 10◦) and the frequency
jitter ∆f is randomly chosen from a Gaussian distribution
with zero mean and standard deviation of 1 KHz.

3) Dataset Description: For all the legitimate transmitters
and the impersonation attacker, the training dataset is generated
as follows:

• Each device generates a packet of 450 complex RF sym-
bols.

• Every 100 packets form a data segment, which share a
common channel realization.

• Each device generates 100 data segments.



(a) Target on legitimate Tx 1. (b) Target on legitimate Tx 4.

Fig. 4. Spoofed signal received by Alice using the network trained in dynamic
channel I.

(a) Target on legitimate Tx 2. (b) Target on legitimate Tx 5.

Fig. 5. Spoofed signal received by Alice using the network trained in dynamic
channel II.

With the block fading assumption, the channel parameters
remain the same within one data segment and vary among
segments.

There are two neural network models, namely the identi-
fication model of the legitimate receiver and the WGAN-GP
model.

• Identification model of the legitimate receiver: The train-
ing dataset consists of 110,000 samples for ten legitimate
transmitters and the attacker.

• WGAN-GP model: Depending on the legitimate trans-
mitter that the attacker aims to impersonate, the training
dataset consists of 20,000 samples from the transmitted
data of that particular transmitter and the attacker.

For both datasets, the ratio of training set to validation set is
8:2. The data from the training set is randomly selected in batch
and put into the network for training. Different neural network
models are trained depending on the channel model and the
transmitter to be impersonated.

There are another 5,500 new samples generated for testing
with 500 samples for each device. The attack model is inde-
pendent of the modulation method (here QPSK is used as an
example). The four channels HBA, HBE, HME, and HMA in
our considered attack scenario are mutually independent and
follow two types of distribution in the evaluation.

B. Simulation Results and Analysis

Figures 4 and 5 present the constellation of the spoofed
signal received by Alice using the network models trained in
the dynamic channel I and dynamic channel II, respectively.
For the sake of presentation clarity, the channel distortion is
not involved in the examples shown in the figures. As can

(a) Target on legitimate transmitter 1.

(b) Target on legitimate transmitter 4.

Fig. 6. Identification results under impersonation attack in dynamic channel I.

be observed, the constellation points of the attacker Mallory
become much closer to the targeted legitimate transmitter. This
means even though Mallory does not have any prior information
on the RFF of the legitimate transmitters, it can adjust its
signal distribution to approach the characteristics of the targeted
transmitter. The signal of Mallory is independent of Bob, which
means that Mallory can send arbitrary information with the RFF
features of the targeted legitimate transmitter by employing
the proposed WGAN-GP. This provides Mallory the ability to
perform the RFF impersonation attack.

Then, we evaluate the effectiveness of the proposed attack
through the possibility that Mallory’s spoofed signal can fool
Alice’s RFF identification measures. We randomly choose the
legitimate Tx 1 and 4 as the targets of impersonation attack in
dynamic channel I and Tx 2 and 5 as the targets in dynamic
channel II. The identification network of the legitimate receiver
is trained with separate data samples and can achieve an
identification accuracy of 99.7% under dynamic channel I and
98.0% under dynamic channel II. This network will be used
by the legitimate receiver Alice to identify legitimate users and
discover attacker. The results of the identification network under
impersonation attack are given in Fig. 6 and Fig. 7. From the
figures, it can be observed that using the proposed WGAN-
GP, Mallory can adjust its signal to possess the RFF features of
specific legitimate transmitters under different channel condi-



(a) Target on legitimate transmitter 2.

(b) Target on legitimate transmitter 5.

Fig. 7. Identification results under impersonation attack in dynamic channel
II.

tions and is recognized as the targeted legitimate transmitters
by the RFF identification mechanism in most of the cases. This
suggests that the attack is very likely to be successful.

We calculate the attack success rate which is defined as
the ratio of the number of signal that are misjudged as the
target legitimate to the number of signal that are sent by
the attacker. The results over all legitimate users and under
different channel conditions are shown in Fig. 8. Though facing
different channel conditions, the proposed WGAN-GP-based
impersonation attack is effective to spoof the RFF features
of all the legitimate transmitters considered in the evaluation.
The attack success rate is at least 91.3% in dynamic channel I
and 93.3% in dynamic channel II. The slight difference in the
success rate is caused by the fact that the RFF identification
network is trained independently with the data samples under
the two channel conditions. The dynamic channel II introduces
more uncertainty in terms of timing error and frequency jitter.
Therefore, the acceptable signal spread under dynamic channel
II is more significant than dynamic channel I, which leaves
more room for the attacker to “sneak in”.

VI. CONCLUSION

In this paper, we proposed a GAN-based colluding attack
framework to realize the targeted RFF impersonation attack.
The proposed attack mechanism can learn the RFF features
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Fig. 8. Impersonation attack success rate under different channel conditions.

associated with the specific transmitter, irrespective of the
channel condition or the information that the signal conveys.
A WGAN-GP based network was proposed to realize the
attack accordingly. The attacker can adapt to more flexible
channel conditions, and send arbitrary information with the RFF
features of the legitimate transmitter. Simulation results show
that the spoofed signal can fool RFF identification measures
at a high success rate in varying channel conditions, which
suggests the effectiveness of the proposed impersonation attack
in realistic scenarios.
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