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Abstract

This thesis explores two topics from the intersection between string theory, quantum field theory, and geom-
etry. While the two topics share some overarching themes, for practical purposes they are distinct areas of
research. Therefore this work is presented in two parts, treated separately.

Quiver vacua geometry

Supersymmetric quantum fields theories with eight supercharges are intimately related with numerous topics
in geometry. Theories living in three dimensions and enjoyingN = 4 supersymmetry are perhaps the most
accessible such theories. The fields in these theories are arranged into hyper- and vector multiplets, both
containing scalar fields. The field-content and symmetries of these theories may be denoted using a quiver, a
type of graph in which edges and nodes have specific interpretations in terms of multiplets and symmetries.
Thepossible lowest energy states (vacua) for these theories are associated to vacuumexpectation values (VEVs)
of the scalar fields. These possible vacua can be organised as an affine variety wherein each point corresponds
to a particular set of scalar VEVs. This variety is called the moduli space of vacua for the theory in question.
For the class of linear quivers, these varieties are known to be nilpotent varieties in sln. In Part I of this thesis,
after introducing the necessary machinery, we explore the geometry of the moduli space of vacua of two sets
of quiver gauge theories which appear as natural generalisations of the linear case. These are circular quiver
gauge theories and D-type Dynkin quiver gauge theories. A central tool in our work is the Kraft-Procesi
transitionwhich can be thought of as a physical interpretation of the singularity structure of the affine variety
associated to the possible vacua for a given theory.

Fermions on branes

In Part II we make a detailed study of the fermionic fields living on brane worldvolumes. In string phe-
nomenology many of the most promising candidates for the construction of a small, positive cosmological
constant in a string theoretic setting rely on ingredients in which the fermionic couplings of fields living on
brane worldvolumes play a critical role. We use the superspace formulation of supergravity in eleven and ten
dimensions to compute fermion couplings on the M2-brane and on Dp-branes. Fermionic couplings arise
naturally from the expansion of the superfields in orders of the fermionic coordinates of superspace. The
techniques we use and develop can be applied to determine the fermionic couplings to background fields up
to arbitrary fermionic order. We start with the superspace formulation of 11-dimensional supergravity and
use a geometric technique known as the normal coordinatemethod to obtain the θ-expansion of theM2-brane
action. We then present a method which allows the translation of knowledge of fermionic couplings on the
M2-brane to knowledge of such couplings on the D2-brane, and then to any Dp-brane. This method is based
on superspace generalizations of both the compactification taking 11-dimensional supergravity to type IIA
supergravity and the T-duality rules connecting the type IIA and type IIB supergravities.
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Introduction

Overview

Thefirst half of this thesis is dedicated, fittingly, to the first half of the research completed duringmy PhD. For

this half we will be concerning ourselves with quantum field theories in two space dimensions and one time

dimension. Specificallywewill concern ourselveswith those theorieswhich enjoyN = 4 supersymmetry. We

will be investigating the lowest energy states, or vacuum states, of these theories. The field content and gauge

symmetries of the theories of concern will be expressed compactly using a quiver, a type of graph wherein

nodes and edges have specific interpretations in terms of fields and symmetries. This area of research lies at

the rich junction between particle physics by way of quantum field theory, mathematics by way of algebraic

geometry, and string theory by way of the dynamics of branes. These three areas overlap and complement

one another it myriad ways that prove to be a bountiful vein of new ideas and insights.

The 3dN = 4 quiver gauge theories we will be investigating involvemany fields. These fields are formally

combined into representations of the supersymmetry called hypermultiplets and vector multiplets. Included

among these fields are (potentially a great many) scalar fields arising in both types of multiplet. Generally

there are numerous different possible vacuum states, |v⟩, for such theories. These vacua are distinguished

from one another by the vacuum expectation values (VEVs), ϕv = ⟨v|ϕ(x)|v⟩, for each of the scalar fields.

These VEVs are independent of spacetime position. This plethora of vacua can be organised and understood

through the introduction of themoduli space of vacua. Themoduli space of vacua is an affine variety in which

each point corresponds to a different set of VEVs for the scalar fields. The study of this space involves tools

from algebraic geometry, and a detailed study of the singularity structure of this space allows us to investigate

aspects such as gauge symmetry breaking in a highly regimented fashion. The theories we investigate also

often have an interpretation as the low-energy dynamics of particular brane configurations in string theory.

Outline

In Section 2 we first review the field content of the hypermultiplets and vector multiplets in 3dN = 4 quan-

tum field theories. After that we recall the bare-bones of how to represent the field content and symmetries

of the specific theories of interest using quivers. We then say a little more about the broader structures that

will appear in our study of the moduli spaces of vacua for these theories. We then review the brane config-
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urations whose low-energy dynamics are given by the quiver gauge theories we are looking at. Finally we

combine everything we have introduced into an example, specifically 3d N = 4 supersymmetric quantum

electrodynamics (SQED) with N flavors. For this example we write the quiver which charecterises the field

content and symmetries, provide a brane construction in type IIB string theory whose low energy dynamics

is given by 3dN = 4 SQED with N flavors, and perform an explicit calculation to determine the branch of

the moduli space of vacua parameterised by those scalar fields which live inside the hypermultiplets of the

theory. These well known results provide a firm grounding in the fundamental ideas of later sections.

In Section 3 we give an overview of the study of nilpotent varieties in Lie algebras, especially the theory

of nilpotent orbits. These varieties form the algebro-geometric backbone of our work. The moduli spaces of

vacua for a great many of the theories of interest either are these varieties, or are based upon them, and so a

firm grasp of these objects is essential.

In Section 4 we review linear quivers and the Kraft-Procesi transition [4, 5]. This transition is a physical

realisation of maneuvering which can be made within the singularity structure of the moduli space of vacua.

We review the original brane realisation as well as providing a field-theory-only explanation. We conclude

the section by enumerating those quiver gauge theories which realise nilpotent varieties in sln for small n.

In Section 5 we move from reviewing linear quivers with unitary gauge nodes to circular quivers with

unitary gauge nodes [1]. These theories’ moduli spaces of vacua have an unknown global structure. Never-

theless, we use the physical realisation of the local singularity structure by way of Kraft-Procesi transitions

to build up an understanding of the moduli spaces of vacua for these theories. The process is delicate and

complicated, however we successfully describe the singularity structure of vast affine varieties. Since the pub-

lication of this work it has been found that there are subtle problems with our constructions. We make more

extensive remarks in the conclusions section to Part I.

In Section 6 we turn the previous considerations on their head somewhat when looking at quivers whose

gauge nodes form a D-type Dynkin diagram [2]. Instead of considering some large class of quiver gauge

theories and investigating the singularity structure via maneuvers which remove singularities (a ‘top-down’

approach), we first premise a quiver shape and then investigate which singularities can be added while main-

taining the quiver shape. We investigate all those quivers whose gauge nodes and bifundamental hypermul-

tiplets strictly form a D-type Dynkin diagram. We successfully characterise the singularity structure of the

moduli space of vacua for all such theories. Note that this is a subtly different question to asking which quiver

gauge theories have moduli spaces of vacua corresponding to nilpotent varieties in so2n. While there is some

overlap (in a region we call the special slice), in this work we take the quiver structure to be fixed and inves-

tigate the geometry, rather than trying to realise the geometry by changing the quiver structure. This means

that we do not consider all possible quiver additions for these theories, but restrict ourselves to only those for

which the gauge node structure is not changed.

Finally, in Section 7 we draw our conclusions for Part I, reviewing what we have discussed, and saying a

few words about the strengths and short-comings of our analyses and potential future directions.
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Quivers, moduli spaces, and branes

In this section we are going introduce some of the core concepts that will appear throughout the subsequent

work. This should not be considered as a from-first-principles rendition of every detail of the topics at hand,

instead this chapter will be a prompt reminder of the salient issues for a reader who is already familiar with

them. We assume a working knowledge of supersymmetric quantum field theory. This is a vast and deep

topic, some classic references are [6–8] and we refer the reader to the references in those texts for a history

of the subject. First we will give a run-down of the field content of the multiplets present in the 3d N = 4

theories with which we shall be working. After that we will review the use of quivers [9, 10] to encapsulate the

field content and symmetries of the theories. Then we will make some general comments about the overall

structure of the moduli spaces of vacua for these theories. Then we will cover how 3d N = 4 quiver gauge

theories arise as the low-energy dynamics of certain brane systems in type IIB superstring theory. As this final

point may be less familiar to the reader than the earlier, more general topics, we enter into commensurately

more detail. Finally we give an example combining everything we have mentioned, that of 3dN = 4 SQED

withN flavors.

2.1 Multiplets

Here we we briefly enumerate the fields in the theories we will be examining. These fields are arranged into

representations of the supersymmetry known as supermultiplets. Asmentioned in the introduction, there are

two types of multiplet with which will be concerning ourselves, the hypermultiplet and the vector multiplet.

The 3dN = 4 hypermultiplet consists of two complex scalars (for four total bosonic degrees of freedom)

and twoDirac spinors (for four total fermionic degrees of freedom). This can also be viewed as two 3dN = 2

chiral multiplets (consisting of one complex scalar and one Dirac spinor each). These two chiral multiplets

transform in conjugate representations of the gauge groupG.

The 3dN = 4 vector multiplet can be viewed as a combination of a 3dN = 2 chiral multiplet (a complex

scalar and a Dirac spinor), and a 3d N = 2 vector multiplet consisting of gauge field, a Dirac spinor, and a

real scalar. In three dimensions, massless gauge fields have only one bosonic degree of freedom. This hints to

their duality with scalar fields which we discuss in a moment.
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2.2 Quivers

The field content and gauge and flavor symmetries for the 3d N = 4 gauge field theories with which we

shall be concerned may be represented by a particular kind of graph called a quiver. We will be considering

theories with gauge groups given by
∏
i∈I U(i), for I some set of positive integers. A circular node in the

quiver with label k denotes a vector multiplet transforming in the adjoint of U(k). There will be a single

circular node, labelled ki, for each U(ki) factor of the gauge group. Square nodes labelled k represent a

SU(k) flavour symmetry. Edges connecting two circular nodes correspond to hypermultiplets transforming

in the bifundamental of the groups given by those nodes. Edges connecting a circular node and a square node

represent hypermultiplets transforming in the fundamental representation of the gauge node.

2.3 Moduli space branches

Amoduli space of vacua is an affine varietywherein each point represents a possible set of vacuumexpectation

values for the scalar fields in a theory. The study ofmoduli spaces of vacua for theories with eight supercharges

have been closely studied for some decades [11, 12], including the study of 3d N = 4 theories specifically

[13, 14]. As we just mentioned, the scalar fields are packaged as part of either hyper- or vector multiplets.

The hypermultiplet contains four scalar degrees of freedom and the vector multiplet contains three scalar and

one vector degree of freedom. In three dimension a vector is dual to a scalar and as such both multiplets

contribute four dimensions worth of parameters to the moduli space of vacua. The part of the moduli space

of vacua parameterised by the scalars in the hypermultiplets is called the Higgs branch,MH , and the part of

the moduli space of vacua parameterised by the fields in the vector multiplets is called the Coulomb branch,

MC . These branches are exchanged under mirror symmetry. Generically these branches are highly singular

algebraic varieties of some quaternionic dimension. Evenmore generically there may also be mixed branches

of the moduli space where some of the non-zero scalar VEVs arise from hypermultiplets and others from

vector multiplets. In this work we will concentrate on the Higgs and Coloumb branches, however.

2.4 Brane constructions

We are now going to describe a brane construction in a type IIB superstring background whose low energy

dynamics are captured by 3dN = 4 quiver gauge theories [14–16]. This construction will involve D3 branes,

D5 branes, and NS5 branes. Generically, having three types of brane would break the supersymmetry in

half [17, 18] three times, leaving only four out of the thirty-two supercharges in the bulk still associated with

unbroken supersymmetry. However, in a particular arrangement described below, these three types of brane

may leave eight supercharges preserved.

Consider the ten spacetime dimensions of the bulk type IIB background, (x0, . . . , x9). Place the D3, D5,

and NS5 branes such that they are extended in the direction marked with an×.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × × - - - -
D5 × × × - - - - × × ×
D3 × × × - - - × - - -
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The NS5 branes, labelled with an i, take positions w⃗i = (x7i , x
8
i , x

9
i ) and the D5 branes, labelled with a j,

take positions z⃗i = (x3j , x
4
j , x

5
j ). Between them these branes only preserve eight of the bulk supercharges. In

order for the D3 branes to not subsequently break to four supercharges, they must have constant positions in

both the w⃗ and z⃗ directions. We label the D3 branes with a k and denote their positions as x⃗k = (x3k, x
4
k, x

5
k)

and y⃗k = (x7k, x
8
k, x

9
k). The only remaining option is that they are extended in the x6 as shown. A D3 brane

can be suspended between two D5 branes if y⃗ = z⃗1 = z⃗2, in this case it is free to move in the x⃗ direction. A

D3 brane can be suspended between two NS5 branes if x⃗ = w⃗1 = w⃗2, in this case it is free to move in the y⃗

direction. The low energy dynamics of this system is considered to be the theory living on these D3 branes.

Due to their finite extent in x6 and the 8 preserved supercharges of the system, this is necessarily 3dN = 4

quantum field theory. The freedoms of the D3 branes to move in certain directions now have interpretations

as dynamical scalar fields in the effective field theory, and so part-parameterise the moduli space of vacua. A

D3 brane suspended between a D5 and and NS5 brane is frozen and cannot move, as such these branes do

not contribute to the low energy dynamics.

This brane set-up breaks the Lorentz group as SO(1, 9)→ SO(1, 2)× SO(3)× SO(3). The SO(3) groups

act on (x3, x4, x5) and (x7, x8, x9) respectively. The SO(4) = SU(2) × SU(2) R-symmetry of 3d N = 4

supersymmetry is realised as the double cover of this SO(3)× SO(3).

Let us nowmove to determine which fields andmultiplets arise on which D3 branes. Consider an infinite

D3 brane on which lives a four dimensional field theory. The four dimensional field theory is that of a U(1)

vectormultiplet [19]. Performing dimensional reduction from the vectormultiplet to three dimensions yields

the sum of a vector multiplet and a hypermultiplet. Now consider a D3 brane ending on 5-branes. Dirichlet

or Neumann boundary conditions are imposed by the five branes. For ϕ, a scalar field, Dirichlet conditions

provide ϕ = 0 on the boundary and Neumann conditions provide ∂iϕ = 0 for directions normal to the

boundary. A vector field, Am, in four dimensions reduces to two fields in three dimensions. We are taking

the D3 branes to be finite in x6 so these fields are a three dimensional U(1) gauge field aµ (µ = 0, 1, 2)

and a scalar b such that ∂µb = Fµ6 where Fmn is the field strength of Am. Dirichlet boundary conditions

on Am cause components of Fmn with m,n tangent to x6 to vanish, whereas Neumann conditions cause

components of Fmn where only one ofm or n is tangent to the boundary to vanish. Dirichlet conditions set

aµ to zero whereas Neumann set b to zero. The three dimensional vector aµ lives in the 3d N = 4 vector

multiplet whereas b lives in the hypermultiplet. A three dimensional vector field is dual to a compact scalar

field, we can write fµν = ϵµνρ∂
ρα for some zero-form α. We therefore conclude that the field theory living

on a D3 brane suspended between NS5 branes in that of a U(1) vector multiplet and the field theory living

on a D3 brane suspended between D5 branes is that of a hypermultiplet. It is clear then that when the D3

branes are suspended between NS5 branes we are within the Coloumb branch of the moduli space of vacua

and when they are suspended between D5 branes we are within the Higgs branch. For a D3 brane suspended

between one of each type of 5-brane all of the massless modes are projected out by the boundary conditions

which is why we stated earlier that they do not contribute to the low energy dynamics. They will be removed

from our considerations via Hanany-Witten transitions, discussed in a moment.

Now we come to the potentially tricky business of illustrating our set-up. Happily there is a reasonably

straight-forwardway of capturing the essential features given in Fig. 2.1. We take the directions (x3, x4, x5) to

be one axis. Since the branes are either point-like in all three of these directions or infinite in all three of these
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(x3,x4,x5)

(x7,x8,x9)

x6

NS51 NS52

D51 D52

D31

D32

D33

× ×

x⃗2

x⃗1

x⃗3

y⃗3

w⃗1

Figure 2.1: The ten spacetime dimensions for our brane set-up can be usefully illustrated using just three.
Directions (x0, x1, x2), which are spanned by all branes, are suppressed. In the remainder of Part I we
will reduce even this diagram to just two dimensions for illustrative purposes, one of which will be look-
ing ’straight-on’ to the (x3, x4, x5) − x6 plane (and so the D5 branes will be denoted with ×), and one of
which will be ‘top-down’ onto the (x7, x8, x9)− x6 plane (so the NS5 branes will be denoted with⊗).

directions, we can draw the branes as lines either parallel to the axis for NS5, or lines perpendicular to the axis

in the case of D3 and D5. We take another axis to be the directions (x7, x8, x9). Using the same reasoning,

D5 branes will be parallel to this axis whereas D3s and NS5s will be perpendicular. We take the third drawn

axis to be x6 to which D5 and NS5 branes will be perpendicular and D3 will be parallel. We suppress x0,

x1, and x2 since all branes are infinite in these directions. The D5 branes will be drawn as dashed lines to

distinguish them from solidly drawn NS5 branes. The D3 branes will always be distinguishable because they

are horizontal in our diagrams, and will also be drawn solid.

It is simple to read the quiver for the gauge theory from the brane setup which is described at low energies

by that theory. In the Coulomb brane configuration we have D3 branes on which there are vector multiplets

transforming in the adjoint representation of some group. ForN D3branes in an interval betweenNS5 branes

this group is naively U(1)N , promoted to U(N) when the D3 branes converge. So for every interval between

NS5 branes withNi D3 branes, we draw a circular U(Ni) gauge node. If the interval contains ki D5 branes,

we draw a square SU(ki) flavour node attached to the appropriate gauge node by an edge. We attach the gauge

nodes of adjacent NS5 brane intervals by edges representing bifundamental hypermultiplets.

2.4.1 Example: 3dN = 4 SQED with 2 flavors

Three dimensional N = 4 SQED with 2 flavours has two hypermultiplets transforming in the fundamental

representation of the SU(2) flavour group and one vector multiplet transforming in the adjoint of the U(1)

gauge group. The quiver and relevant brane configurations are given in Fig. 2.2

While the D3 brane is suspended between the NS5 branes, the vector multiplet is massless and the hypers
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1

2

(a)

× ×

(b)

⊗ ⊗

(c)

Figure 2.2: The (a) quiver, (b) Coulomb brane configuration and (c) Higgs brane configuration for 3dN = 4
SQED with 2 flavours

acquire mass. Since the massless scalars on the D3 come from the vector multiplets, we are in the Coulomb

branch of the moduli space. While the D3 brane is suspended between the D5 branes, one of the hypers is

massless whilst the other is eaten by the vectormultiplet which now acquires amass via theHiggsmechanism.

We are now in the Higgs branch of the moduli space.

There is a singular point in the moduli space where the D3 aligns with the NS5 branes and the D5 branes.

All the fields become massless here and the Coulomb and the Higgs branches meet. Both branches have 4

real dimensions with a singular point. Any variety of the form C2

Γ with Γ a finite subgroup of SU(2) is a good

candidate. We provide the answer here without ceremony. It is the simplest non-trivial groupZ2 and we have

that both branches are

MC =MH =
C2

Z2
.

There is only one D3 brane and therefore there can be no circumstance wherein there are simultaneously D3

branes suspended between NS5 branes and D3 branes suspended between D5 branes. This tells us immedi-

ately that there are no mixed branches for this theory and that the full moduli space of vacua is a union of the

Coulomb and Higgs branches,

M =
C2

Z2
∪ C2

Z2
.

We can also see that the Coulomb and Higgs branches intersect only at a single point (the singular point of

both branches),

MC ∩MH = {0}.

2.4.2 Higgs mechanism

As hinted at in the example above, we can now give a physical, braney interpretation to the Higgs mechanism

in our theories. From the Coulomb brane configuration we first align the D3 with the D5 branes. From

the perspective of the moduli space this is realized as moving through the Coulomb branch to the singular

point where it meets the Higgs branch. We then split the D3 across the D5 branes. The left and right hand

pieces of the D3 are now frozen, since they have fixed positions for x⃗ and y⃗. The middle segment is now free

to move along (x7, x8, x9) but has fixed position in (x3, x4, x5). From a moduli space perspective we have

moved through the Coulomb branch to the singular point where it meets the Higgs branch and moved into

the Higgs branch. This is illustrated in Fig. 2.3.
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× ×

(a)

× ×

(b)

⊗ ⊗

(c)

Figure 2.3: The brane configuration interpretation of the Higgs mechanism in our theories. In (a) we begin
in the Coulomb brane configuration with a D3 brane suspended between NS5 branes. In (b) we move it to
align with the D5 branes. In the moduli space this moves to the singular point of the Coulomb branch where
it meets the Higgs branch. In (c) we split the D3 brane so that the center peice can move along the D5 branes.
The remaining frozen sections must be removed via Hanany-Witten transitions.

2.4.3 Hanany-Witten transitions

Let us consider the simplest possible system with a frozen D3 brane. The two brane configurations for this

simple system are

× ⊗and .

Consider those quantities that are preserved when we move 5 branes around. There is the number of each

type of 5 brane, denoted ns and nd for NS5 and D5 branes respectively, and the linking number. The linking

number of a 5 brane is related to the magnetic charge on the brane and is therefore conserved, for further

information the reader is directed to [15]. The linking number for a 5 brane is the net number of D3 branes

ending on the 5 brane from the right (the number on the right minus the number on the left), plus the total

number of the opposite type of 5 brane to its left. We denote the linking number of a brane as ld,i for D5

branes and ls,i for NS5 branes. Given a brane system we write the linking number of all of the branes of the

same type as a tuple, ld or ls.

In our simple frozen D3 system, the conserved quantities are ns = 1, nd = 1, ls = 1 and ld = 0. If we

nowmove the D5 brane so it is left of the NS5 brane we have a new brane system, whereN is a number of D3

branes that we need to determine using conservation of linking number.

× ⊗N N

In the new system, ns = 1, nd = 1, ls = 1 − N and ld = N , so by conservation of linking number,

N = 0. We have annihilated the frozenD3 by exchanging the branes to which it is attached. The exact reverse
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1

N

(a)

× ×
︷ ︸︸ ︷N

(b)

⊗ ⊗

(c)

︷ ︸︸ ︷N

Figure 2.4: (a) Quiver (b) Coulomb brane configuration (c) Higgs brane configuration for 3dN = 4 SQED
withN flavours

of this process shows that exchanging a D5 and NS5 brane which do not have a D3 suspended between them

results in the creation of a D3 brane. Also, there can be at most one D3 suspended between a given D5-NS5

pair. It is important we keep this in mind throughout.

2.5 Example: 3dN = 4 SQED withN flavors

This is the generalization of the previous example with two flavours. Since theories can be completely deter-

mined by the linking number data, we shall begin by giving this data for this one parameter family of theories,

ns = 2, nd = N , ls = (1, 1, ..., 1) and ld = (1, N − 1). The quiver, Coulomb brane configuration, and

Higgs brane configuration are depicted in Fig. 2.4.

There is only one D3 brane in the Coulomb brane configuration and so the Coulomb branch has two

complex dimensions in every theory in this family. There is also one singular point where the D3 brane aligns

with all the D5 branes in the system. Once again the Coulomb branch must be a two dimensional with one

singular point, and any variety of the form C2

Γ with Γ a finite subgroup of SU(2) is a good candidate. The

monopole formula [20–25] can be used to show that the answer is in fact Γ = ZN . This exactly generalizes

the result from the previous example. The Coulomb branches of these theories are exactly the A-type du Val

singularities. But what about the Higgs branch? In our previous example with two flavours, the Higgs branch

was C2

Z2
. This will also generalize, but in a different way.

Geometric information concerning the Higgs branch has traditionally been calculated via a hyperkähler

quotient [26–30]. We give a more rough-and-ready derivation of the Higgs branch in this specific instance,

characterising it as a restricted set of matrices. First we have to identify all of the scalars arising from hy-

permulitplets that admit non-zero vacuum expectation values as these are the scalars that parametrizeMH .

This is more easily done from the point of view of the four supercharge theory (N = 2). In this perspective

the hypermultiplet splits into 2 chiral mulptiplets and the vector multiplet splits into a chiral and a vector

multiplet. An N = 2 chiral multiplet consists of a complex scalar and a Dirac spinor. The scalars we then

have are,

• N complex scalars, denotedQi, in the rep [1, 0, ..., 0] of SU(N) with charge−1 under U(1).

• N complex scalars, denoted Q̄j , in the rep [0, ..., 0, 1] of SU(N) with charge 1 under U(1).
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• One complex scalar in the adjoint rep of U(1), denoted ϕ, that is the singlet of charge 0.

Nowwemust determine the affine variety parametrised by those scalars arising from the hypermultiplets,

since this will be the Higgs branch. These scalars are Qi and Q̄j . We are also only interested in those com-

binations of scalars whose VEVs are gauge invariant. The VEVs of Qi and Q̄j , and therefore the VEVs of

thier combinations, are space-time independent. The ring of gauge invariant operators is generated by the

combination QiQ̄j . We can characterise the corresponding variety in terms of a restricted set of matrices.

DefiningM j
i = Q̄jQi, or as a matrix equation,M = Q̄Q, the variety determined by possible values for the

VEVs of these gauge invariant operators is the set of N × N matrices with complex entries and with rank

at most 1 (since rank(M) ≤ min(rank(Q̄), rank(Q)) = 1 ). This is not the Higgs branch however because

we have not yet fixed ourselves to be in the vacuum state, that is, at a minimum of the scalar potential. The

complex scalar part of the superpotential for this theory is proportional to,

W = Tr(QiϕQ̄i), (2.1)

and the zero energy conditions are,

∂W

∂ϕ
= 0,

∂W

∂Qi
= 0,

∂W

∂Q̄j
= 0. (2.2)

The field ϕ arises from the N = 4 vector multiplet and so is set to zero when considering the Higgs branch

of the theory. The only meaningful constraint is then,

QiQ̄
i = 0. (2.3)

With this extra constraint the Higgs branch may be characterised the set of N × N complex matrices,

Rank(M) = 0 satisfying the zero energy condition. The relationQjQ̄j = 0 implies that Tr(M) = 0 and that

M2 = 0. Therefore

MH = {MN×N |M j
i ∈ C, rank(M) ≤ 1, Tr(M) = 0, M2 = 0}. (2.4)

These restricted sets ofmatrices are affine varieties known as closures of nilpotent orbits, in this case the closure

of the smallest non-trivial nilpotent orbit in the Lie algebra sl(N,C). These structures will be ubiquitous

throughout the remainder of Part I. A detailed study of these and associated varieties is the subject of the next

section.



3

Nilpotent varieties in Lie algebras

In chapter 2 we reminded ourselves of the field content of 3d N = 4 quantum field theories, discussed the

brane constructions corresponding to 3dN = 4 quiver gauge theories, and mentioned some features of the

moduli spaces of vacua of these theories. Finally we made an explicit calculation for the Higgs branch of

3d N = 4 SQED with N flavors and found that it could be characterised by a restricted set of matrices.

In this section we introduce the necessary geometry to understand the moduli spaces of vacua that can be

characterised similarly, namely nilpotent varieties in semisimple Lie algebras, and especially the closures of

nilpotent orbits in those Lie algebras. The classic text for this subject is [31]. Other works on which this

section is based are [32–38]. The relationship between these varieties and the theories we will be considering

has been extensively studied in a large number of papers. A selection of these include [25, 39–51] and with

especial reference made in [52–55].

3.1 Nilpotent elements of Lie algebras

In order to define a nilpotent orbits (and more general varieties of interest) of a complex semi-simple Lie

algebra g, we must first define nilpotency. Take V to be a complex vector space. Take Y to be an element of

End(V ). That is Y is a linear map from V to itself. We say Y is nilpotent if Y m = Y ◦ Y ◦ Y ◦
m
... ◦ Y = 0

for somem > 0.

Choosing a representation ρ : g → End(V ) we say an element X of g is nilpotent if ρ(X)m = ρ(X) ◦

ρ(X) ◦ ... ◦ ρ(X) = 0 for some m > 0. All such elements together make up the nilpotent cone, N , of g.

The adjoint representation (the instance where V is chosen to be g itself) seems an obvious choice since the

adjoint rep is faithful for semi-simple Lie algebras. This neatly sidesteps the potential issue if X ∈ ker(ρ).

In order to permanently sidestep the issue, we assume ρ is faithful, it can be shown that our definition of

nilpotency is independant of the (faithful) rep ρ chosen. We will work with the adjoint rep unless otherwise

stated.

An example of a nilpotent element in a Lie algebra is
(
0 1
0 0

)
∈ sl2. Nilpotency can be checked by simple

matrix multiplication
(
0 1
0 0

)(
0 1
0 0

)
=
(
0 0
0 0

)
.
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Amore general example for sln is

X =



Jλ1
0 0 . . . 0 0

0 Jλ2
0 . . . 0 0

0 0 Jλ3
. . . 0 0

...
...

...
. . . 0 0

0 0 0 0 Jλk−1
0

0 0 0 0 0 Jλk


(3.5)

where the λi are positive integers whose sum is n, and Jλi is the order λi Jordan normal block defined as the

λi × λi matrix with 1 on the off-diagonal,

Jλi =


0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

. . . 1

0 0 0 0 0

 . (3.6)

It can be seen thatXλ is a nilpotent endomorphism of Cn and so is a nilpotent element of sln.

Given set of λi the order in which they appear inX will be irrelevant due to the uniqueness of the Jordan

normal form. We therefore see that the theory of nilpotent orbits for sln is intimately related to the study

of integer partitions of n. We will also find that the theory of nilpotent orbits for s02n is related to integer

partitions of a restricted form. We present the details of integer partitions next.

3.2 Integer partitions

Apartition, µ, of magnitude n, is a weakly decreasing tuple of non-negative integers (parts) µ = (µ1, . . . , µj)

such that
∑j
i=1 µi = n. Partitions are usually written using exponential notation where each part is labelled

with its multiplicity within the partition. A general partition of n, in exponential notation, is written

µ = (nkn , (n− 1)kn−1 , . . . , 3k3 , 2k2 , 1k1 , 0k0), (3.7)

where
∑n
i=0 iki = n. The length of a partition is the number of non-zero parts it has, counted withmultiplic-

ity, so length(µ) =
∑n
i=1 ki := l(µ). The value of k0 ∈ Z≥0 can be changedwithout changing themagnitude

of µ, partitions are usually written with k0 = 0, however it will also prove useful to take k0 = n− l(µ). This

is called ‘padding the partition’ with zeroes.

Partitions can be represented by Young tableaux, which are left-justified rows of boxes where the number

of boxes in row i is µi. The transpose of a partition, µt, is found by reflecting the corresponding Young tableau

in the NE-SW diagonal. Alternatively the transpose can be found by considering the tableau column-wise,

or, without appealing to tableaux at all, by taking the difference between the ith and (i+ 1)th parts of µ to be

the multiplicity of i in µt.

The set of partitions of n, denotedP(n), is a partially ordered set with ordering defined by the dominance
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...
...

. . .

. . .

Figure 3.5: The two procedures in the Young tableaux that move from one partition to an adjacent partition
in the dominance ordering.

relation for the partitions. A partition µ dominates a partition ν if,

m∑
i=1

µi ≥
m∑
i=1

νi, (3.8)

for all 1 ≤ m ≤ n. If there is no partition ρ such that µ > ρ > ν the partitions µ and ν are said to be adjacent

in the ordering. Adjacent partitions are related by one of two procedures at the level of the Young tableaux.

(1) A single block is moved down one row and left at least one column.

(2) A single block is moved down at least one row and left one column.

Tableaux demonstrating these two procedures are given in Fig 3.5.

3.2.1 Hasse diagrams

This (partial) ordering can be represented in a Hasse diagram in which the nodes are partitions, more domi-

nant nodes are placed higher, and nodes are connected by edges if the partitions are adjacent. Given a mag-

nitude n, there is a unique most dominant partition, (n). This will always be at the top of the Hasse diagram.

There is also a unique lowest partition, (1n), which will always be at the bottom of the diagram. Moreover,

when considering all possible partitions of an integer, there are unique partitions (2, 1n−2), one above the

lowest partition, and (22, 1n−4), two above the lowest partition. There are also unique partitions (n− 1, 1),

one below the highest partition and (n− 2, 2), two below the highest partition. An example Hasse diagram

for n = 6 is given in Fig 3.6.

Transposition of the partitions is an involution on P(n) where each partition gets mapped uniquely to a

partition (perhaps itself). This involution reflects the Hasse diagram top-bottom. It is clear that if µ > ν then

µt < νt.

3.2.2 Restricted partitions

A restricted set of partitions is one limited to partitions of n that fulfil certain criteria. The nilpotent orbits in

so2n are related to the set of partitions of 2n where even parts occur with evenmultiplicity (including zero).

This set is written P+(2n). The dominance ordering can once again be used to realise the structure of a

partially ordered set and hence construct a Hasse diagram. Some example Hasse diagrams are given in Fig

3.7. However there are complications in defining transpose in P+(2n) because µ ∈ P+(2n) doesn’t imply
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(6)

(5, 1)

(4, 2)

(4, 12)(32)

(3, 2, 1)

(23) (3, 13)

(22, 12)

(2, 14)

(16)

Figure 3.6: The Hasse diagram for the partitions of n = 6.

Hasse
Diagram Partition

P+(6)

(16)

(22, 12)

(3, 13)

(32)

(5, 1)

Hasse
Diagram Partition

P+(8)

(18)

(22, 14)

(3, 22, 1)

(32, 12)

(5, 3)

(7, 1)

(24) (3, 15)

(42) (5, 13)

Figure 3.7: Hasse diagrams for restricted sets of partitions P+(6) and P+(8). Hollow nodes ((3, 22, 1) ∈
P+(8)) are non-special, see discussion.
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that µt ∈ P+(2n). Since transpose maps P+(2n) → P(2n), one defines another map called the D-collapse

which maps P(2n) → P+(2n). The D-collapse takes a partition σ to the largest partition in P+(2n) that

is equal to, or dominated by, σ. Clearly σD = σ for σ ∈ P+(2n). If σ /∈ P(2n) then (at least one) even

part, say σj = 2r, must have odd multiplicity. In this case, take the final 2r to 2r − 1 and take the largest

part σi < 2r − 1 to σi + 1. Repeat this process until the resulting partition is in P+(2n). D-collapse is

many-to-one.

The Lusztig-Spaltenstein map, dLS , is transposition followed by D-collapse. It is a many-to-one (due to

the D-collapse) map P+(2n) → P+(2n). Note that d3LS = dLS . A partition is called special if d2LS is the

identity on the partition. Non-special partitions’ nodes are drawn hollow in the Hasse diagram.

There are several important partitions to highlight. For every n ≥ 4 there are unique, special partitions

which are the highest, next-to-highest, lowest and next-to lowest partitions in the set. These are (2n− 1, 1),

(2n − 3, 3), (12n) and (22, 12n−4) respectively. For n ≥ 4 there are the highest and lowest non-special

partitions. These always take the form (2n − 5, 22, 1) and (3, 22, 12n−7) respectively (these coincide for

n = 4).

3.3 Nilpotent orbits

The standard text for nilpotent orbits in Lie algebras is [31]. The orbit,OX , of a nilpotent elementX of some

Lie algebra g is the conjugacy class ofX under the natural action of the associated Lie group,G,

OX = G ·X = {A ·X ·A−1|A ∈ G}. (3.9)

For example takeX =
(
0 1
0 0

)
∈ sl2. A simple calculation using A =

(
a b
c d

)
with ad− bc = 1 shows that

a generic element ofOX can be written as (
−ac a2

−c2 ac

)
. (3.10)

It is simple to verify that all such matrices are nilpotent.

All of the nilpotent elements of sln are conjugate to one in Jordan block form with the ordering of the

λi conventionally taken to be largest first. The nilpotent orbits of sln can therefore be placed in one-to-one

correspondence with the partitions of n. The nilpotent orbit associated with the partition µ is denotedOµ.

Nilpotent orbits in so2n are in one-to-one correspondence with the restricted set P+(2n) of partitions of

2n in which even parts occur with even multiplicity. There are some caveats however. The exception comes

for very even partitions, consisting of only even parts. Under the action of SO(2n) these partitions yield two

orbits, but under the action of O(2n) these orbits combine into a single orbit. For example there are twelve

nilpotent orbits in so8 under the action of SO(2n), these are O(7,1), O(5,3),OI(42), O
II
(42), O(5,13), O(32,12),

O(3,22,1),OI(24),O
II
(24),O(3,15),O(22,14) andO(18). Under the action of O(2n) there are ten nilpotent orbits,

all of the non-very-even orbits and the two orbitsOI(42) ∪ O
II
(42) andO

I
(24) ∪ O

II
(24). When discussing orbits

in so2n these unions of orbits will be what we mean byOλ for very even λ.
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3.4 Closures of nilpotent orbits

The closure of a nilpotent orbitOµ is defined as the union of that orbit with all of those orbits whose partitions

its partition dominates,

Ōµ =
⋃
ν≤µ

Oν . (3.11)

For sln the closure of a nilpotent orbit is a hyperkähler singular variety of quaternionic dimension

dimH(Ōµ) =
1

2

(
n2 −

∑
i

(µti)
2
)
. (3.12)

For so2n, writing a general partition µ = ((2n)r2n , . . . , 3r3 , 2r2 , 1r1 , 0r0), the closures of nilpotent

orbits are algebraic varieties of quaternionic dimension

dimH(Ōµ) =
1

2

(
2n2 − n− 1

2

∑
i

(µti)
2 +

1

2

∑
i odd

ri

)
. (3.13)

The set of nilpotent orbit closures in sln has the same partial ordering as the partitions of n (for so2n,

the partitions in P+(2n)), with the dominance relations taken as the inclusion relations between the orbit

closures. Associating nilpotent orbits to the nodes in the Hasse diagram corresponding to their partitions,

we may consider that the closure of the nilpotent orbitOµ involves all of the orbits in a Hasse diagram from

µ down to (1N ). Given Ōµ and Ōν which form a degeneration, Ōν ⊂ Ōµ, we call the degenerationminimal

if there is no orbit closure Ōρ such that Ōν ⊂ Ōρ ⊂ Ōµ. Minimal degenerations correspond to adjacent

partitions.

Orbits associated to non-special partitions are themselves called non-special. Orbit closures which only

have special nodes in their Hasse sub-diagram play an important role in our discussion of D-type Dynkin

quiver moduli spaces of vacua. These are exactly the closures of those orbits with height two or less. The

height of a nilpotent orbit in so2n is

ht(Oµ) =

m1 +m2 − 2, m2 ≥ m1 − 1

2m1 − 4, m2 ≤ m1 − 2
. (3.14)

Themi here are from the non-exponential notation for µ. Low-height orbit closures are important because

ht(Oµ) ≤ 2 nilpotent orbits always have a realisation as the Coulomb branch of aDn Dynkin quiver.

3.4.1 Singularity structure and labelled Hasse diagrams

An orbit closure is singular within the closure of an adjacent, dominating orbit closure. In [33–35], Kraft and

Procesi determined Sing(Ōµ, Ōν) for all minimal degenerations in the classical Lie algebras. The edges of the

Hasse diagram for nilpotent orbit closures may be labelled with these singularities.

For sln the singularity of the closure of the subregular orbit, Ō(n−1,1), inside the closure of the maximal
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(or regular) orbit, Ō(n), is, [32],

Sing(Ō(n), Ō(n−1,1)) = An−1 =
C2

Zn
. (3.15)

There is a similar result concerning the zero orbit closure Ō(1n) = 0, and minimal orbit closure, Ō(2,1n−2).

In this case, the type of singularity that zero is within the minimal orbit of sln can be taken as a definition

and is denoted an−1,

Sing(Ō(2,1n−2), Ō(1n)) := an−1. (3.16)

It was exactly this variety which we determined was the Higgs branch of 3dN = 4 SQED withN flavours in

the example at the end of the previous chapter. Kraft and Procesi generalised these results in order to write

down the type of singularity equivalent to any minimal degeneration in sln. Given a minimal degeneration

Ōν ⊂ Ōµ,

Sing(Ōµ, Ōν) =

Am for somem < n if dimH(Ōµ)− dimH(Ōν) = 1

am for somem < n if dimH(Ōµ)− dimH(Ōν) = m.
(3.17)

Moreover if Sing(Ōµ, Ōν) = Am then Sing(Ōνt , Ōµt) = am and vice versa.

For so2n the situation is more complicated and also involves singularities such as C2

Γ for other finite sub-

groups of SU(2), and the closure of the minimal nilpotent orbits in other semi simple Lie algebras. Examples

(following obvious naming conventions) are given in Fig. 3.8.

In our previous example with sl2 we saw that the orbit of the elementX(2) =
(
0 1
0 0

)
, which we now recog-

nise as being associated to the partition (2) of n = 2, can be written as (3.10) with a and c not simultaneously

0 (as this would break the condition ad − bc = 1). The other orbit of sln is associated to the partition (12),

and so the element
(
0 0
0 0

)
, which is trivially nilpotent, and constitutes the whole of the orbit O(12) and its

closure. We form the closure ofO(2), denoted Ō(2), by taking the union

Ō(2) = O(2) ∪ O(12)

Taking this closure is the same as allowing a and c in (3.10) to simultaneously be 0. We note then that Ō(2)

is generated by three generators

a2 = q, c2 = r, ac = s,

which satisfy the relation qr = s2. This is exactly the variety A1 = C2

Z2
.
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Figure 3.8: Labelled Hasse diagrams for sln for n = 2, ..., 8 and for so2n for n = 2, ..., 5.
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3.5 Slodowy slices and intersections

We can now consider more general varieties arising as subvarieties of the nilpotent cone of some Lie algebra.

GivenX ∈ N for a Lie algebra g, the Jacob-Morozov Theorem states that there are two elements, Y andH ,

such that (X,Y,H) form a standard sl2 triple. That is, givenX , we are always able to find Y andH such that

[
X,Y

]
= H,

[
H,X

]
= 2X,

[
H,Y

]
= −2Y.

Such triples are not unique, but are SLn(C) conjugate. We then define the Slodowy slice atX as

SX := X + ker(ad(Y )),

where ker(ad(Y )) gives all those elements of g that commute with Y . Take X to be conjugate to the block

Jordon normal form associated to the partition λ. Since this triple is unique up to conjugacy, this defines a

transverse slice to the orbitOλ. We can label each slice with the partition associated to the conjugacy class of

theX from which it is formed. The slice Sλ meets allOσ for σ > λ transversely.

Let us explore an example for sln. For an (r + 1) × (r + 1) Jordan normal block, we can realize these

elements of the sl2 triple as

JX =


0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

. . . 1

0 0 0 0 0

 JY =


r 0 0 . . . 0

0 r − 2 0 . . . 0

0 0 r − 4 . . . 0
...

...
...

. . . 0

0 0 0 0 −r

 JH =


0 0 0 . . . 0

µ1 0 0 . . . 0

0 µ2 0 . . . 0
...

...
...

. . . 0

0 0 0 µr 0


(3.18)

where µi = i(r+1− i) for 1 ≤ i ≤ r. For an element in the form (3.5) we follow an analogous construction

from Jordan normal blocks to find the appropriate Y andH out of JY and JH .

To give more specific examples consider the orbits of sl3. There is the maximal orbit associated with the

partition (3). The subregular and minimal orbits coincide and are associated with (2, 1), and the trivial orbit

is associated to (13). Simple calculations give us the following results:

For the maximal orbit

X =

0 1 0

0 0 1

0 0 0

 and Y =

0 0 0

2 0 0

0 2 0



S(3) =

{0 1 0

a 0 1

b a 0

∣∣∣∣∣ a, b ∈ C

}
(3.19)

For the minimal / subregular orbit

X =

0 1 0

0 0 0

0 0 0

 and Y =

0 0 0

1 0 0

0 0 0


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S(2,1) =

{a 1 0

b a c

d 0 −2a

∣∣∣∣∣ a, b, c, d ∈ C

}
(3.20)

For the trivial orbit

X =

0 0 0

0 0 0

0 0 0

 and Y =

0 0 0

0 0 0

0 0 0


and S(13) is the whole of sl3.

These slices are not currently subvarieties of the nilpotent cone, we have to take the intersection with the

nilpotent cone to obtain the varieties we are after.

3.5.1 Intersections for sln

The intersection of a Slodowy slice with the nilpotent cone, Sλ ∩ N = Sλ ∩ Ō(n), is a hyperKähler singular

variety of dimension,

dimH(Sλ ∩ Ō(n)) =
1

2

(∑
i

(λti)
2 − n

)
. (3.21)

On aHasse diagram of the nilpotent cone as split into nilpotent orbit closures, wemay consider thatSλ∩Ō(n)

involves all of the orbits from λ up to (n).

To continue the above example we first restrict ourselves to this intersection by imposing on the matrices,

M , given in (3.19) and (3.20) that det(λI −M) = λ3 (this being equivalent to nilpotency for a 3× 3matrix)

and determining relations between the variables. We needn’t do this for the trivial orbit, we foundS(13) = sl3

and so we easily see that S(13) ∩N = N = Ō(3).

For the maximal orbit we find a = 0 and b = 0, giving us

S(3) ∩N = S(3) ∩ Ō(3) =

0 1 0

0 0 1

0 0 0

 (3.22)

which is exactly theX weused to define the slice in the first place. This is a general feature,S(n)∩Ō(n) = {X}.

The intersection is therefore at a single point, which is the trivial variety.

For the minimal / subregular orbit we find−3a2 − b = 0 and 2a(b− a2) + cd = 0, plugging these into

(3.20) we find

S(2,1) ∩N = S(2,1) ∩ Ō(3) =

{ a 1 0

−3a2 a c

d 0 −2a

∣∣∣∣∣ a, c, d ∈ C, (2a)3 = cd

}
(3.23)

This is exactly the variety C2

Z3
.

When we restrict in this manner to the intersection of the slice with the nilpotent cone, the complex
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Ō(32)

a5

a3

A1A1

a2a2

A2A2

A1A1

A3

A5

a5

a3

A1A1

a2a2

A2A2

A1A1

A3

A5

Ō(6) ∩ S(3,13)

a5

a3

A1A1

a2

Ō(32) ∩ S(3,13)

a2

A2A2

A1A1

A3

A5

(6)

(5, 1)

(4, 2)

(4, 12)(32)

(3, 2, 1)

(23) (3, 13)

(22, 12)

(2, 14)

(16)

Figure 3.9: A demonstration in the Hasse diagrams of the minimal degenerations (edges) and orbits (nodes)
involved in the varieties Ō(32) (the closure of the (32) orbit), Ō(6)∩S(3,13) (the transverse slice to the (3, 13)
orbit intersected with the nilpotent cone) and their intersection Ō(32) ∩ S(3,13). It can be seen immediately
that sl6 ⊃ Ō(32) ∩ S(3,13) ∼ Ō(3) ⊂ sl3.

dimension of the variety is

dim(Sλ ∩N ) = dim(N )− dim(Oλ)

= dim(O(n))− dim(Oλ)

= n2 − n− n2 +
∑
i

(λti)
2

=
∑
i

(λti)
2 − n.

(3.24)

Finally we can consider the intersection of a given slice with a given orbit closure. This is a hyperKähler

variety of dimension

dimH(Sλ ∩ Ōµ) =
1

2

(∑
i

(λti)
2 −

∑
i

(µti)
2
)
. (3.25)

This corresponds to a run on the Hasse diagram from the partition λ up to the partition µ. Viewing the

singularities above as dimH(Ōµ)−dimH(Ōν) dimensional varieties, we interpret the work of Brieskorn [32]

as the realisation that S(n−1,1) ∩ Ō(n) = C2

Zn
and the work of Kraft and Procesi as the generalisation that

Sν ∩ Ōµ is given by the right hand side of (3.17) when µ and ν are adjacent partitions. Some examples are

given in Fig. 3.9.

For every variety Sλ ∩ Ōµ for µ, λ ∈ P(n) and µ > λ, we can associate a pair of Young tableaux

corresponding to those same partitions. The condition µ > λ guarantees that there is a (not necessarily

unique) sequence of moves of type (1) or (2) which takes us from the tableau for µ to the tableau for λ.
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Taking the association of these moves with the minimal singularities in (3.17), we can build up exactly the

labelling of the edges between µ and λ on theHasse diagram. Themoves of type (1) or (2) allow us to navigate

the set of varieties Sλ ∩ Ōµ. Given the starting pair µ = (n) and λ = (1n), corresponding to the variety

S(1n) ∩ Ō(n) = Ō(n) = N , we can manufacture the tableaux for any other variety Sλ ∩ Ōµ by performing

moves on the tableau for (n) and reversals of the moves on the tableau for (1n) until the tableaux correspond

to the appropriate partitions. On the level of the Hasse diagram, this is the same as starting with a variety

corresponding to the entire diagram and removing edges and nodes from our consideration by performing

the appropriate moves in the Young tableaux. From the point of view of the varieties these moves correspond

to the removal of transverse slices of the type found in (3.17) from the varieties.

Kraft-Procesi transitions are the physical realisation of the process of navigating these varieties. By per-

forming certain manoeuvres in type IIB brane embeddings whose low-energy descriptions are field theories

which have moduli space branches which are these nilpotent varieties, one can give ordering and structure

to the class of such theories.

3.5.2 Intersections for so2n

For so2n the story is essentially similar. Restricting the Slodowy slice to nilpotent elements by intersecting the

variety with the nilpotent cone, N = Ō(2n−1,1), gives a variety which corresponds to a run from the node

ν up to the top of the Hasse diagram. From here on a slice written Sν means the intersection of the full slice

with the nilpotent cone.

Writing ν in exponential notationwith exponents ti, the Slodowy sliceSν is a hyperkähler singular variety

of quaternionic dimension

dimH(Sν) =
1

2

(1
2

∑
i

(νti )
2 − 1

2

∑
i odd

ti − n
)
. (3.26)

Once again those varieties whose Hasse diagrams contain only special nodes will play an important role

in our discussion. Slodowy slices that correspond to runs at the top of the Hasse diagram which contain no

non-special nodes shall be referred to as special slices. These special slices (and their subvarieties) will have

realisations as the Higgs branches ofDn Dynkin quivers.

There always exists a largest special slice in an algebra. This is due to the presence of a highest non-special

partition whose node must be avoided. Recall that this non-special node was (2n− 5, 22, 1). In order for the

Hasse diagram for a slice Sν to avoid containing this node, ν must not be dominated by (2n− 5, 22, 1). The

lowest partition not dominated by (2n− 5, 22, 1) always takes the form (n− 12, 12). Therefore themaximal

special slice in an algebra so2n is always S(n−12,12) ∈ so2n. It is this variety and its subvarieties that have

realisations as the Higgs branches ofDn Dynkin quivers. Note that

ht(dLS((n− 12, 12))) =

ht((32, 2n−3)) = 4 > 2, n odd

ht((32, 2n−4, 12)) = 4 > 2, n even,
(3.27)

so while all the Dynkin quivers which realise nilpotent orbit closures as their Coulomb branches also realise

Slodowy slices with their Higgs branches, the reverse doesn’t necessarily follow.
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Happily, Hasse diagrams pertaining tomaximal special slices in so2n take regular formswhich allow them

to be written generally. It transpires that there are two forms for the Hasse diagrams for S(2m−12,12) ∈ so4m

or S(2m2,12) ∈ so4m+2. The Hasse diagrams are given in Fig. 3.10. The nilpotent varieties which appear as

the Higgs branches of Dn Dynkin quivers are subvarieties of the maximal special slices and so their Hasse

diagrams appear as subdiagrams of Fig. 3.10.

Some obvious subvarieties of the maximal special slice are all the Slodowy slices Sν where ν > (2m −

12, 12) (resp. (2m2, 12)). Further subvarieties can be found by considering slice and orbit-closure intersec-

tions.

The intersection of a Slodowy slice with a closure of a nilpotent orbit is a subvariety which corresponds

to some run of nodes in the Hasse diagram. An intersection Ōµ ∩ Sν corresponds to a run from a node µ

down to a node ν for µ > ν. The subvarieties of the maximal special slice are those varieties Ōµ ∩ Sν where

µ > ν ≥ (2m− 12, 12) (resp. (2m2, 12)). Intersections are hyperkähler varieties of dimension

dimH(Ōµ ∩ Sν) =
1

2

(1
2

∑
i

(νti )
2 − 1

2

∑
i

(µti)
2 +

1

2

∑
i odd

ri −
1

2

∑
i odd

ti

)
, (3.28)

when µ and ν are written using the aforementioned exponential notation. Note that this equation gener-

alises (3.13) and (3.26), in which the nilpotent orbits’ dimensions are obtained by setting ν to be the minimal

partition, and the Slodowy slices’ dimensions obtained by setting µ to be the maximal partition.

To characterise the general subvarieties of the maximal special slices note that the partitions in each

maximal special slice fall into a small number of general forms. In so4m the partitions are all of the form

ψj = (4m− (2j + 1), 2j + 1) or φj = (4m− (2j + 3), 2j + 1, 12), for 0 ≤ j ≤ m− 1, or (2m2). There

are therefore five general forms for subvarieties V ⊆ S(2m−12,12) ⊂ so4m,

V =



Ōψj
∩ Sψk

for k > j

Ōψj
∩ Sφk

for k > j − 1 ≥ 0

Ōφj
∩ Sφk

for k > j

Ōψj
∩ S(2m2)

Ō(2m2) ∩ S(2m−12,12) = A2m−1 ∪A2m−1.

(3.29)

In so4m+2 the maximal special slice partitions all take the form ψ′
j = (4m − (2j − 1), 2j + 1) or φ′

j =

(4m − (2j + 1), 2j + 1, 12), for 0 ≤ j ≤ m, or (2m2, 12). There are therefore five general forms for

subvarieties V ⊆ S(2m2,12) ⊂ so4m+2,

V =



Ōψ′
j
∩ Sψ′

k
for k > j

Ōψ′
j
∩ Sφ′

k
for k > j − 1 ≥ 0

Ōφ′
j
∩ Sφ′

k
for k > j

Ōψ′
j
∩ S(2m2,12)

Ōφ′
j
∩ S(2m2,12).

(3.30)
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(2m2) (2m+ 1, 2m− 3, 12)

(2m+ 1, 2m− 1) (2m+ 3, 2m− 5, 12)

(2m+ 3, 2m− 3) (2m+ 5, 2m− 7, 12)

(4m− 1, 1)

(4m− 3, 3)

(4m− 5, 5) (4m− 3, 13)

(4m− 7, 7) (4m− 5, 3, 12)

(4m− 9, 9) (4m− 7, 5, 12)
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(2m+ 12) (2m+ 3, 2m− 3, 12)
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(4m+ 1, 1)
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(4m− 3, 5) (4m− 1, 13)

(4m− 5, 7) (4m− 3, 3, 12)

(4m− 7, 9) (4m− 5, 5, 12)

...

Figure 3.10: TheHasse diagrams for themaximal special slices,S(2m−12,12) ∈ so4m andS(2m2,12) ∈ so4m+2.
The Higgs branches of theDn Dynkin quivers in this section will be subvarieties appearing as runs in these
Hasse diagrams.
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There are some varieties that appear in both maximal special slices. These are identified by looking for iden-

tical Hasse subdiagrams in the two maximal special slice Hasse diagrams. Hasse subdiagrams shared by both

diagrams in Fig. 3.10 are: the individual singularities of types Al andDl, and varieties with Hasse diagrams

that take the form of a chain of Dl singularities for odd or even l. Casting these shared subvarieties in the

notation above gives the equalities

Ōψj
∩ Sψk

= Ōφ′
j
∩ Sφ′

k
,

Ōφj ∩ Sφk
= Ōψ′

j+1
∩ Sψ′

k+1
,

Ōψj ∩ S(2m2) = Ōφ′
j
∩ S(2m2,12).

(3.31)



4

Linear quivers and the Kraft-Procesi

transition

We now review linear quivers and the Kraft-Procesi transition first developed in [4, 5]. This transition is

the realisation in physical systems of the manipulations translating between nilpotent varieties as discussed

above, wherein the moduli space of vacua of the field theoretic construction is the nilpotent variety. We will

discuss the manifestation of this transition in the brane configurations discussed earlier, and through purely

field theoretic considerations, in order to give complimentary perspectives on the subject. In this section we

will concentrate on linear quivers as an illustrative example and relegate any further considerations specific to

circular or D-type Dynkin quivers to later sections. We then use this transition to navigate the sets of linear

quivers whose moduli spaces of vacua are nilpotent varieties for sln for small values of n. While well known,

this will provide a robust grounding in the ideas central to later discussion.

4.1 Linear quivers

A linear quiver is one where the gauge nodes are connected in sequence such that the gauge group for the

theory is U(k1) × U(k2) × · · · × U(kN−1). Linear quivers are denoted as T νµt(SU(N)) where µ and ν are

partitions ofN . These theories arise as the low energy dynamics of type IIB superstring embeddings involving

D3, D5 and NS5 branes in a standard configuration already discussed. In these configurations the partitions

are related to the linking numbers of the five branes. The linking number of a five brane can be defined as the

net number D3 branes ending on the five brane from the right plus the number of the opposite type of five

brane to the left. The linking numbers for each type of five brane are written as a tuple, ls for NS5 branes and

ld for D5 branes. The ith part of the tuple is the linking number of the ith 5-brane of a given type from the

left. Set ld = (NN ) − ν and ls =
←→
µt , where↔ indicates order reversal. Pad the partitions with zeroes if

necessary. To find the brane system in the Higgs brane configuration we can place all of the NS5 branes in

the appropriate gaps between D5 branes then realise the D5 linking number by adding D3 branes suspended

between D5 branes. The Coulomb brane configuration for a given theory can be found by performing a
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complete Higgsing on the Higgs brane configuration. The quiver for the theory can be read from the Coulomb

brane configuration. Recall that when reading the quiver each circular gauge node labelled ni entails a stack

of ni D3 branes suspended between two NS5 branes and each square flavour node labelledmi entailsmi D5

branes in the same gap as the gauge node to which it attaches.

The Higgs and Coulomb branches of these theories are therefore also related to the partition data. For a

theory in the class T νµt(SU(N)), the Higgs branch is given by

MH(T νµt(SU(N))) = Ōµ ∩ Sν , (4.32)

and the Coulomb branch by

MC(T
ν
µt(SU(N))) = Sµt ∩ Ōνt . (4.33)

A convenient visual intuition for these branches can be found by marking the orbits on the Hasse diagram

for nilpotent orbits of slN which correspond to the Higgs and Coulomb branch varieties respectively. In

this sense we may discuss how a given theory corresponds to a run of nodes and edges on a Hasse diagram.

T νµt(SU(N)) corresponds to a run from a node labelled ν up to a node labelled µ. A number of aspects of

these theories can now be realised in the manipulation of the Hasse diagram and associated visualisations.

For example, the mirror dual of T νµt(SU(N)) is Tµt

ν (SU(N)). The mirror theory is a theory in which the

Higgs branch and Coulomb branch varieties have been exchanged. Mirror symmetry is realised as S-duality

in these brane configurations, NS5 branes turn to D5 branes and vice versa while D3 branes remain the same.

At the level of the Hasse diagram, mirror symmetry is therefore realised as the involution on P(N) which

flips the diagram top-bottom, that is, transposition of the partitions. The naming of the mirror class matches

this. At the level of the Young tableaux, mirror symmetry is realised as the reflection in the NE-SW diagonal

of both of the tableaux. The brane systems corresponding to the theories whose moduli space branches are

the Am and am minimal singularities must therefore be S-dual (mirror dual) to one another. Removal of an

Am minimal singularity from the Higgs branch means the removal of an am minimal singularity from the

Coulomb branch and vice versa.

4.1.1 An alternative class of linear theories

A theory in the class T νµt(SU(N)) requires two pieces of data to fully specify: two partitions, µ and ν, of equal

magnitude, N . However this formulation will not generalise in a manner which captures the entire class of

circular quivers. To prepare the ground for our discussion of circular quivers we will define a broader class

of linear quiver gauge theories. In the linear case this broader class degenerates to the class T νµt(SU(N)),

however this degeneration doesn’t hold for circular quivers so the broader class of linear quivers generalises

more naturally to the circular case.

To define the broader class, we require that the two partitions µ and ν are of the same magnitude, now

M , and that their Young tableaux may be contained within a frame N1 blocks wide and N2 blocks tall. The

partitions ofM can clearly be placed within anM×M frame and so this restriction subsumes the traditional

one. We temporarily call the class of theories attainable under these looser conditions τνµt(M,N1, N2) and

will show that this class contains exactly the same theories as T νµt(SU(M))). These tableaux restrictions may
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⊗ ⊗ ⊗ ⊗ ⊗
1 1 2 2 4

2 3 3 3 4

1 2 3 1

1 3 1

Figure 4.11: An example theory, τ (3,2
3,1)

(4,22,12)(10, 5, 5). The Young tableaux and frames for each partition are
given on the left. The Higgs brane configuration is given in the center along with the linking number of each
of the five branes in the system. Finally the quiver itself is given, recall that the quiver must be read from
the Coulomb brane configuration, so we have to fully Higgs the brane system displayed in order to read the
quiver.

be realised as the following for the partitions: µmust have no part that is larger thanN1 and the partition ν

has no more thanN2 parts. Since µ is the highest partition, it will contain the (perhaps joint) largest part of

those partitions bounded by µ and ν, and since ν is the lowest, it will be the (perhaps joint) longest partition.

The bounds imposed on the largest part of µ and length of ν are therefore bounds for these values for all of

the partitions between µ and ν. The requirements also impose that 0 ≤ M ≤ N1N2 since the partitions

must be contained in theN1 ×N2 frame. Fig. 4.11 contains an example.

The new requirements on the partitions have consequences in the brane configuration. The linking num-

bers of the five branes are now assigned as ld = (NN2
1 )− ν and ls =

←→
µt . Limiting the largest part of µ to be

no larger than N1 means that the length of µt is no larger than N1. The number of NS5 branes that receive

non-zero linking number is exactly the length of µt. As such, no more thanN1 NS5 branes receive non-zero

linking number. The number of D5 branes that receive a linking number other thanN1 is exactly the length

of the partition ν, which is no more thanN2. Therefore restricting ν to be no longer thanN2 means no more

than N2 D5 branes receive non-N1 linking number. The only way for a D5 brane to have a linking number

of N1, given we assign linking numbers from left to right, is if it lies to the right of all NS5 branes and isn’t

attached to any D3 branes. Likewise the only way for an NS5 brane to have a linking number of zero is if it is

to the left of all the D5 branes and isn’t attached to any D3 branes. Therefore, for the linear case, NS5 branes

with a linking number of 0 and D5 branes with a linking number of N1 do not play a role in the infrared

physics as they don’t meet D3 branes in the appropriate manner.

The effect this has on the class τνµt(M,N1, N2) is diagrammed in Fig. 4.12. Givenµ, ν ∈ P(M), the linear

quiver is independent ofN1 andN2 providing they form a frame large enough to contain the partitions. The

choiceM = N1 = N2 is the smallest for which this is guaranteed. This choice recovers T νµt(SU(M)). For

circular quiver gauge theories, there are no possible linking numbers for the five branes which make them

irrelevant for the infrared physics. Therefore we are not free to choose the frame size arbitrarily as every

different size of frame gives a different theory. The class of circular theories is therefore much larger than the

class of linear theories.

The theories in the class T νµt(SU(M)) can be matched to the nilpotent varieties via consideration of their

moduli space branches. There are diagrammatic techniques for navigating these varieties bymanipulating the
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µ ν

⊗ ⊗ ⊗
1 2 2

1 1 2

⊗ ⊗ ⊗ ⊗ ⊗
0 0 1 2 2

3 3 4 5 5

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
0 0 0 1 2 2

4 4 5 6 6 6 6 6

⊗ ⊗ ⊗ ⊗ ⊗︸ ︷︷ ︸
N1 − 3

. . .

. . .

︷ ︸︸ ︷N2 − 3

0 0 1 2 2

N1 − 2 N1 − 2 N1 − 1 N1 N1

...
...

. . .

. . .

... N1 ×N2
...

...

. . .

. . .

... N1 ×N2

1 1

2 1

Figure 4.12: An explicit demonstration of the independence of the infrared physics in the class
τνµt(M,N1, N2) fromN1 orN2. The brane system and linking numbers for the theory τ (2

2,1)
(22,1) (5, 3, 3) along

with the tableaux for both µ and ν is given first. Then the tableaux and the brane system for τ (2
2,1)

(22,1) (5, 5, 5)

and then τ (2
2,1)

(22,1) (5, 6, 8) and finally for τ
(22,1)
(22,1) (5, N1, N2) for anyN1 ≥ 3 andN2 ≥ 3. The quiver encapsu-

lating the infrared physics of all of these brane constructions is given, which is the same for all of the brane
set-ups.
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⊗⊗⊗⊗
m+1︷ ︸︸ ︷. . .⊗⊗

m−1︷ ︸︸ ︷
. . .

× × × ×
m+1︷ ︸︸ ︷. . . × ×

m−1︷ ︸︸ ︷
. . .

. . .︸ ︷︷ ︸
m

1

m+ 1 1 1

11
11

Figure 4.13: The quiver, Coulomb brane configuration, and Higgs brane configuration for 3dN = 4 SQED
with m + 1 flavours (left) and its mirror dual (right). The moduli space branches for 3d N = 4 SQED are
MC = Am andMH = am and vice versa for the mirror theory.

Young tableaux. Thesemoves, as they changed the tableaux, changed the partitions. There is a prescription for

writing the brane system with the appropriate low energy dynamics in terms of partitions by appealing to the

linking number of the five branes. The Kraft-Procesi transition is a manipulation in the brane system which

gives the appropriate change in linking number such that the change in partitions realises the transverse slice

structure from chapter 3.

4.2 Kraft-Procesi transitions in brane configurations

A Kraft-Procesi transition involves two steps. The first step is the identification of a brane subsystem with a

moduli space branch that is a transverse slice. The second is removing this subsystem via the Higgs mecha-

nism in order to move to a different theory. The minimal singularities in sln come in two types,Am and am,

and so only two types of Kraft-Procesi transition need to be developed corresponding to brane subsystems

whose moduli space branches are these varieties. The theories with these varieties as moduli space branches

are 3dN = 4 SQEDwithm+1 flavours and its mirror dual. The brane configurations for the corresponding

subsystems are given in Fig. 4.13.

To perform step two of a Kraft-Procesi transition, align the D3 branes for the subsystem corresponding to

a minimal singularity with the five branes between which the D3 branes are not suspended given the config-

uration. For example, in the Higgs brane configuration, D3 branes are suspended between D5 branes so the

initial process is to slide the D3 branes so they align with the NS5 branes. Then push the sections of D3 brane

suspended between the five branes with which the D3 branes have been aligned to infinity along these branes,

that is, into the other brane configuration. This removes them from the system. Starting in the Higgs brane

configuration and pushing D3 branes to infinity in the Coulomb configuration removes the corresponding

minimal singularity from the top of the Higgs branch Hasse diagram and bottom of the Coulomb branch

Hasse diagram. Starting in the Coulomb configuration and pushing D3 branes to infinity in the Higgs brane
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Figure 4.14: The Higgs brane configuration brane manipulation for an Am Kraft-Procesi transition (right)
and an am Kraft-Procesi transition (left). In both cases, the D3 branes are aligned with the NS5 branes and
the centre parts are pushed to infinity. Hanany-Witten transitions are then performed to remove the frozen
D3 segments.

configuration removes the corresponding minimal singularity from the top of the Coulomb branch Hasse di-

agram and bottom of the Higgs branch Hasse diagram. To complete the transition, perform Hanany-Witten

transitions to remove the frozen sections of D3 brane that remain between the D5 and NS5 branes. Fig. 4.14

shows the process starting in the Higgs brane configuration.

Mirror symmetry, realised as S-duality in the brane configurations, swaps the Higgs and Coulomb branch

varieties. Removal of anAm (am) minimal singularity in one branch is therefore the removal the same min-

imal singularity in the other branch of the mirror theory. Kraft-Procesi transitions remove minimal singu-

larities from one branch starting at the top of the Hasse diagram, working down, and also remove minimal

singularities from the other branch variety of that same theory, starting at the bottom of the Hasse diagram,

working up. In order to find aT νµt(SU(M)) theory fromT (SU(M)), for example, performKraft-Procesi tran-

sitions in the Higgs brane configuration down to the orbit µ and Kraft-Procesi transitions in the Coulomb

brane configuration down to the orbit νt. A worked example is given in Fig. 4.15 in which Kraft-Procesi

transitions are used to find T (2,13)
(22,1) (SU(5)) starting from T (SU(5)).

A descendant theory for a given theory T is another theory, U , which can be found by performing Kraft-

Procesi transitions on T . We denote the collection of descendant theories of T as K(T ). For this class of

linear quivers

K(T νµt(SU(M))) = {Tσρt(SU(M)) | ρ ≤ µ, σ ≥ ν}. (4.34)
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T
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Figure 4.15: Demonstration of the use of Kraft-Procesi transitions to find T (2,13)
(22,1) (SU(5)) within T (SU(5)).

The tableaux for the partitions defining the theories are given with corresponding block movements indi-
cated. Then the quiver for each of the theories. Finally, on the right, the Higgs brane configuration (top) and
Coulomb brane configuration (bottom) for the theories.
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4.3 Kraft-Procesi transitions in field theory

Kraft-Procesi transitions can be interpreted in the field theory without reference to the brane configurations

used in the previous section.

Consider a field theory with the gauge group U(n1) × U(n2) with nf fundamental flavours Qi where

i = 1, . . . , nf , and their complex conjugate, for the group U(n1), and bifundamental fields Aãa, Baã with

a = 1, . . . , n1; ã = 1, . . . , n2 in the (n1, n̄2) and (n̄1, n2) representations of the gauge group. This set up

corresponds to the 3dN = 4 quiver:

n1 n2.

nf

A general discussion of moduli spaces for four dimensionalN = 1 theories with product group U(n1)×

U(n2) and fundamental flavours has been developed in [56]. Their starting point was a four dimensional

N = 2 theory with mass terms for the chiral adjoint fields and for fundamental fields. They also considered

various limits for the masses of the adjoint field and the fundamental flavours. Here, N = 4 theories in

three dimensions (which descend from N = 2 theories in four dimensions by dimensional reduction) are

considered, when the masses of the adjoint fields and the masses of fundamental flavours are taken to zero.

The field theory superpotential is, [56],

Tr
( nf∑
i=1

QiΦ1Q̃i +AΦ1B +BΦ2A
)
, (4.35)

where the trace is over the gauge group. The F-term equations from derivatives with the fields Φi imply

nf∑
i=1

Qai Q̃ib +
∑
ã

Aaã B
ã
b = 0 and

∑
ã

Aaã B
ã
b = 0. (4.36)

The D-term equations for a supersymmetric vacuum are

[Φ1,Φ
†
1] = [Φ2,Φ

†
2] = 0, (4.37)

A A† +

nf∑
i=1

Qi(Q†)i −
nf∑
i=1

(Q̃†)iQ̃i −B† B = 0. (4.38)

The vanishing of the terms in equation (4.37) was explained in [57].

The difference between our case and the one of [56] concerns the moduli space. In [56] the authors

considered the vacua withQ = 0 when the bifundamental fieldsA,B could be simultaneously diagonalized

by a colour rotation and haveN = min(n1, n2) diagonal entries. The only solution appears whenA = B = 0

and the Coulomb branch is a product of Abelian factors.

For our case, consider the Higgs branch when some or all of the expectation values for fieldsQ, Q̃ are non

zero and the fieldsA,B cannot be fully diagonalised. WithQ, Q̃ as n1 × nf matrices, consider first the case
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when the nonzero entry of Q is Q1
1 = k1 and for Q̃, Q̃3

1 = k1 as in [57]. This breaks the flavour group to

SU(nf − 2) and the first gauge group to U(n1 − 1).

The bifundamental fieldA is an n1×n2 matrix whereasB is an n2×n1 matrix. When the fundamental

fields have zero expectation values they can both be diagonalised by a U(n1)×U(n2) gauge transformation.

WhenQ1
1 = k1 and Q̃3

1 = k1, equation (4.38) becomes

A A† −B† B = 0. (4.39)

What about the diagonalisation of A and B? The surviving U(n1 − 1) × U(n2) gauge transformation can

only partially diagonalise A and B and does not fix the values of the first row in A (A1
1, · · · , A1

n2
) and the

first column in B(B1
1 , · · · , B

n2
1 ). If we define

qã = A1
ã, q̃ã = Bã1 , ã = 1, · · · , n2, (4.40)

the equation (4.39) implies that a D-term equation for q is satisfied. q and q̃ represent matter in the funda-

mental representation of U(n2).

The conclusion is that when the product group U(n1) × U(n2) with nf fundamental flavours is broken

to U(n1− 1)×U(n2) by a vacuum expectation value for a field in the fundamental representation of U(n1),

there are nf −2 fundamental flavours for U(n1−1) and one for U(n2). This is exactly the result of anAnf−1

Coulombbrane configurationKraft-Procesi transition in the brane interval corresponding to theU(n1) gauge

group.

n1 n2

nf
Anf−1

n1 − 1 n2.

nf − 2 1

When moreQ and Q̃ fields have a nonzero expectation value,

Q1
1 = k1 = Q̃3

1, Q2
2 = k1 = Q̃4

2, (4.41)

the gauge group is broken to U(n1 − 2) × U(n2) and the gauge transformations leave more components of

A andB unfixed. The first two rows inA and first two columns inB are not fixed and they correspond to an

SU(2) fundamental flavour group for U(n2) gauge group. The resulting theory is U(n1 − 2) × U(n2) with

nf−4 fundamental flavours for U(n1−2) and two for U(n2). This is exactly what is obtained by a succession

of an Anf−1 and an Anf−3 Kraft-Procesi transition:

n1 n2

nf
Anf−1

n1 − 1 n2

nf − 2 1
Anf−3

n1 − 2 n2.

nf − 4 2

When there are an even number of fundamental flavours for U(n1), nf = 2r, r < n1, the case when all

the fields Q, Q̃ have an expectation value breaks the gauge group to U(n1 − r) × U(n2). Now r rows of A

and r rows ofB are not fixed which correspond to r fundamental flavours for U(n2). This could be obtained

by a sequence of Anf−1, Anf−3, . . . , Anf−r+1 Kraft-Procesi transitions.



37 QUIVER VACUA GEOMETRY

n1 n2

nf
Anf−1

n1 − 1 n2

nf − 2 1
Anf−3

n1 − 2 n2

nf − 4 2
Anf−5

...
Anf−2r+1

n1 − r n2.

nf − 2r r

Now consider the case of an odd number of flavours for U(n1), nf = 2r + 1. First consider r = 1,

nf = 3. A VEV for oneQ, Q̃ leads us to U(n1 − 1)× U(n2) with one remaining flavourQ3 for U(n1 − 1)

and one flavour q for U(n2). This step is familiar as the Anf−1 transition just discussed. The fields A and

B are (n1 − 1) × n2 and n2 × (n1 − 1) matrices respectively, Q3 is a vector with n1 − 1 components and

q a vector with n2 components. The D-term and F-term equations are satisfied if the first components of

Q3, Q̃3, q , q̃ and the elements A1
1, B1

1 of the matrices A, B are nonzero. This breaks the gauge group to

U(n1 − 2)×U(n2 − 1) with no fundamental flavours for any of the groups. This is the same as the result of

an a2 Coulomb brane configuration Kraft-Procesi transition. We have therefore considered anA2 transition

followed by an a2 transition.

n1 n2

3
A2

n1 − 1 n2

1 1 a2

n1 − 2 n2 − 1

This can be generalised to any initial theory with product of gauge groups
∏m
k=1 U(nk) and nf flavours

for the first gauge group U(n1). There are m − 1 sets of bifundamental fields Ak, Bk in the (nk, n̄k+1)

and (n̄k, nk+1) representations. As before, a vev for two fundamental and two antifundamental flavours will

change the theory into one with U(n1 − 2)×
∏m
k=2 U(nk) with nf − 4 flavours for U(n1 − 2) and two for

U(n2). Thebifundamental fieldsA(1)
1 , B

(1)
1 are now in the (n1−1, n̄2) representation and its conjugate. What

happens when the U(n2) flavours get a vacuum expectation value and break the second group to U(n2− 1)?

The first row ofA(1) corresponds to a new fundamental flavour for U(n1−1) and the first column ofB(1) to

a new antifundamental flavour of U(n1 − 1). On the other hand, the same change should be applied to A2,

B2, the bifundamental fields between U(n2)×U(n3) . Their first row (column) will become the components

of an (anti) fundamental field of U(n3):

n1 n2 n3 nm−1 nm

nf

...

Anf−1

n1 − 1 n2 n3 nm−1 nm

nf − 2 1

...

Anf−3

n1 − 2 n2 n3 nm−1 nm

nf − 4 2

...

Anf
−5

A
1

n1 − 3 n2 n3 nm−1 nm

nf − 6 3

...

n1 − 2 n2 − 1 n3 nm−1 nm

nf − 3 1

...

The result is a theory with gauge group U(n1 − 2)×U(n2 − 1)×
∏m
k=3 U(nk) with nf − 3 flavours for

U(n1 − 2) and one flavour for U(n3).
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When nf = 4, m = 3 there is a U(n1 − 2) × U(n2 − 1) × U(n3) with one flavour Q for U(n1 − 2)

and one flavour q for U(n3). Making the products QA1A2q and q̃B2B1Q̃ nonzero, the surviving group is

U(n1 − 3)× U(n1 − 2)× U(n3 − 1). This is just an a3 Kraft-Procesi transition:

n1 n2 n3

4
A3

n1 − 1 n2 n3

2 1
A1

n1 − 2 n2 n3

2
A1

n1 − 2 n2 − 1 n3

1 1 a3

n1 − 3

n2 − 2

n3 − 1

All the possible Kraft-Procesi transitions can be understood by looking at the various bifundamental fields

in the theory. An Ak Kraft-Procesi transition occurs when one bifundamental field between two adjacent

groups in the product group loses a row or a column which becomes a fundamental flavour for one of the

adjacent groups. An ak Kraft-Procesi transition occurs when several successive bifundamental fields have a

nonzero entry such that their products with two fundamental fields are nonzero.

4.4 Tables of descendant theories for slN

Starting with T (SU(M)) and finding descendant theories should uncover the entire class T νµt(SU(M)). De-

scendant theories were defined in (4.34). Every run on the Hasse diagram between nodes where one dom-

inates the other corresponds to a theory ‘in’ that Hasse diagram. The number of (non trivial) descendant

theories at a givenM is given by

|K(T (SU(M)))| =
∑

µ∈P(M)

#{ν|ν < µ}. (4.42)

Including the trivial theories replaces the requirement on ν with ν ≤ µ. The number of descendant theories

whenM ≥ 4 is bounded from below by the partition function, |K(T (SU(M)))| ≥ |P(M)| = p(M). As

p(M) is asymptotically equivalent, ([31], 3.5.4), to 1
4
√
3M

exp(π
√

2M
3 ), the number of theories in the class

T νµt(SU(M)) for a givenM quickly becomes large.

In order to rapidly perform the Kraft-Procesi transitions, we use thematrixmethod as developed in [4]. A

brane configuration is written as a 2× (M +1)matrix with integer elements. The bottom row is the number

of D3 branes in the 0th through toM th gap and the top row is the number of the other type of five brane in

that gap, such that the brane configuration for, say, T (SU(4)), is written(
0 4 0 0 0

0 3 2 1 0

)
. (4.43)

The two types of Kraft-Procesi transition then correspond to(
... f1 m+ 1 f2 ...

... g1 g2 g3 ...

)
Am−−→

(
... f1 + 1 m− 1 f2 + 1 ...

... g1 g2 − 1 g3 ...

)
(4.44)
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Figure 4.16: K(T (SU(2))) and K(T (SU(3)). The tables of non-trivial descendant theories of T (SU(2)) and
T (SU(3)). For K(T (SU(2)) there is only one non trivial theory, T (SU(2)) itself. SinceMC(T (SU(2))) =
MH(T (SU(2))) = Ō(2) = A1, the theory is simply 3d SQED with 2 flavours. For T (SU(3)) there are three
non trivial theories, T (SU(3)) and the theories with the two minimal singularities as moduli space branches.

(
... f1 1 0 ... 0 1 f2 ...

... g0 g1 g2 ... gm−1 gm gm+1 ...

)
am−−→(

... f1 + 1 0 0 ... 0 0 f2 + 1 ...

... g0 g1 − 1 g2 − 1 ... gm−1 − 1 gm − 1 gm+1 ...

)
.

(4.45)

Tables are arranged with µt labelling columns and ν labelling rows. All the theories in the tables are

descendants of T (SU(M)), which appears in the top left corner. Theories whose Higgs branches are the clo-

sures of a nilpotent orbit (Coulomb branches are Slodowy slices) make up the top row of each table. Theories

whose Coulomb branches are nilpotent orbit closures (Higgs branches are Slodowy slices) make up the left

hand column of each table. Theories in the body of each table are those whose moduli space branches are

other nilpotent varieties. The trivial theories have been left blank. Boxes corresponding to pairs of parti-

tions where neither dominate have been crossed out. ForM < 6 mirror symmetric theories occupy boxes

which are reflections of each other in the NW-SE diagonal. Larger Hasse diagrams branch in ways which

obscure this. Performing a Higgs brane configuration Kraft-Procesi transition moves right through the table.

For branching Hasse diagrams this is not necessarily the box immediately to the right. Performing Coulomb

brane configuration Kraft-Procesi transitions moves down through the table, again not necessarily to the box

immediately below for branching Hasse diagrams.

The goal for circular quivers will be to write down the general form for a collection of Hasse diagrams

whose corresponding gauge theories’ descendants encompass every good circular quiver gauge theory. In

this way, the singularity structure of the general form will include the Hasse diagram for any circular theory.
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Figure 4.17: K(T (SU(4))). The descendants of T (SU(4)) contain the first quiver theory that is not in the
classes Tρ(SU(M)) or T ρ(SU(M)), nor a minimal singularity. Namely the theory T (2,12)

(2,12) (SU(4)) with the
quiver [2]− (1)− (1)− [1] and the moduli space • −A1 − • −A1 − •.
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Figure 4.18: K(T (SU(5))). Table for the descendants of T (SU(5)).
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Circular quivers

Application of Kraft-Procesi transitions in the case of circular quiver gauge theories will be the subject of

this chapter. Circular quivers should be thought of as linear quivers with an extra U(k0) gauge node which

connects to the first and last nodes of a linear quiver. They have been considered before for example in [58],

however as we will see, their treatment there is incomplete. Much of the work of this section is taken directly

from [1]. The field content and symmetries of circular quiver gauge theories is read in the same way as for

linear quivers. There are now bifundamental hypermultiplets transforming under U(k1)×U(k0) and under

U(kN−1)×U(k0) as well as an extra U(k0) vector multiplet corresponding to the additional node. The extra

node can also be attached to a square node representing flavour for U(k0).

Circular quivers can once again be realised as the low energy dynamics of a type IIB superstring em-

bedding. This time the x6 direction is taken to be a circle. The extra node in the quiver corresponds to the

‘zeroth’ gap which can now contain D3 segments which are finite in the x6 direction and so contribute to the

low energy dynamics, i.e. the effective 3dN = 4 field theory. We wish to relate this embedding, via linking

numbers, to some data as we saw in the linear case. However there are some immediately apparent differences

that need to be addressed. The first is that the linking number for the five branes depended on a notion of

‘left of ’ and ‘right of ’ in the x6 direction, which breaks down when x6 is periodic. In order to define linking

number a gap between five branes from which we will count needs to be chosen. We choose the zeroth gap.

Counting from the 0th gap for linking numbers means this gap will always have the (perhaps joint) min-

imum number of D3 branes in its stack. Correspondingly, the extra gauge node will always have (perhaps

joint) minimal rank, that is, k0 ≤ ki for i ̸= 0. An equivalent statement to there being L D3 branes in the

stack for the 0th gap is that there areLD3 branes that completely wrap the x6 direction. Starting with a good

circular quiver and uniformly changing the rank of all the gauge nodes results in another good quiver. Note

also that the fully wrapped D3 branes have no effect on the linking number of the five branes.

5.1 The full class of good circular quiver gauge theories

Thebrane configuration for circular quiver gauge theories can be thought of as consisting of a linear part and a

wrapped part. The linear part is defined using the broader class definition discussed previously. The wrapped
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Figure 5.19: The theory π(3,23,1)
(4,22,12)(10, 7, 7, 3). The Higgs brane configuration (center) is drawn so the 1st

gap is the one directly clockwise from the horizontal (as drawn) D5 brane. The 0th gap is therefore the one
immediately anticlockwise from the horizontal D5 brane. This is the gap from which we start counting with
regards to linking number. The quiver for the theory can be read from the Coulomb brane configuration after
fully Higgsing the system.

part is captured by the non-negative integer L which counts the number of fully wrapped D3 branes.

For linear quivers there were places in the brane configuration where five branes could exist without

entering into the infrared physics. NS5 branes with a linking number of zero or D5 branes with a linking

number of N2 could not affect the quiver. For circular quivers this is no longer the case. The D3 branes

wrapping the entire circle mean there are no gaps in which five branes can live where they do not affect

the infrared physics and hence quiver. In the linear case the degeneracy led to the canonical identification

N1 = N2 =M , for circular quivers with L ≥ 1 this is not possible. We call the class of circular quiver gauge

theories πνµt(M,N1, N2, L)
1. An example theory is given in Fig. 5.19. Once again when one of the partitions

is of the form (1M ) it is dropped from the notation so that π(1M )

(1M )
(M,N1, N2, L) = π(M,N1, N2, L). This

includes whenM = 0. The degeneracy that was observed in the broader class of linear quivers is broken

by the presence of L ≥ 1 fully wrapped D3 branes. In the Higgs brane configuration, a linking number for

an NS5 brane of 0 or N2 means the brane resides in the 0th gap between the D5 branes (and vice versa for

Coulomb brane configuration andN1), however for L ≥ 1 this still effects the low energy dynamics. When

L = 0 the rank of the extra gauge node, k0, is zero, and circular quivers degenerate to linear quivers. Fig.

5.20 demonstrates that the same partitions and same L but differentN1 andN2 result in markedly different

circular quiver gauge theories, whereas analogous data for the linear case gave the same theory.

Mirror symmetry can once again be realised as S-duality, exchanging D5 branes and NS5 branes whilst

leaving the D3 branes alone. Recall that, in the linear case, mirror symmetry corresponded to a involution on

the Hasse diagram or equivalently a transposition of the partitions such that the mirror of T νµt(SU(N)) was

Tµ
t

ν (SU(N)). In the circular case we can again interpret mirror symmetry as a transposition of the partitions,

however the tableaux framemust also be transposed. Transposition on this frame exchangesN1 andN2. The

mirror dual to the theory πνµt(M,N1, N2, L) is therefore πµ
t

ν (M,N2, N1, L).

Throughout our discussion we will work with theories where the D3 branes can be moved between brane
1In [58], the class Cν

µt (SU(N), L) is discussed. This class can be found by setting M = N1 = N2 = N in the class
πν
µt (M,N1, N2, L). It is the most direct generalisation of the traditional linear quiver discussion, but does not include all of the

possible good circular quivers.
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Figure 5.20: An explicit example of the breaking of degeneracy in the class of circular quivers when L ̸= 0.
The Higgs brane configuration for π(3,13)

(22,12)(6, 4, 4, 2) is on the left, π(3,13)
(22,12)(6, 6, 6, 2) is in the center and

π
(3,13)
(22,12)(6, 4, 8, 2) is on the right. They do not yield the same quiver despite having the same partition data.
N1 andN2 remain important parameters for defining a specific circular quiver gauge theory.

⊗

⊗

L
1 1

L L

Figure 5.21: The Higgs brane configuration and quiver for the theories π(1, 2, 2, L) and π(3, 2, 2, L). These
theories are pathological from a Kraft-Procesi perspective because the D3 brane segments cannot be moved
between brane configurations using the identified Kraft-Procesi transitions.

configurations using Kraft-Procesi transitions. This is only impossible whenN1 andN2 are both very small.

The criterionwere first explored in [59] in the case ofmoving from theCoulomb to theHiggs branch, although

the reverse is analogous. The requirement (3.4) in [59] translates to the requirements Ni ≥ 2. When N1 =

N2 = 2 there are two further sets of pathological theories from a Kraft-Procesi point of view, these are

π(1, 2, 2, L) and π(3, 2, 2, L), their Higgs brane configuration and quiver are the same and given in Fig.

5.21. Since the D3 branes here cannot be Higgsed in the manner necessary for Kraft-Procesi transitions, they

fall outside of this analysis.

5.2 Moduli space dimension

The quaternionic dimension of the moduli space branches is found by counting D3 segments in the appro-

priate brane configuration. Since circular theories can be considered as a linear part and a wrapped part, the
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dimension of the Higgs and Coulomb branches are given by,

dimH(MH(πνµt(M,N1, N2, L))) =

Linear Part︷ ︸︸ ︷
1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2
)
+

Wrapped Part︷︸︸︷
N2L ,

dimH(MC(π
ν
µt(M,N1, N2, L))) =

1

2

(∑
i

(µi)
2 −

∑
i

(νi)
2
)
+ N1L.

(5.46)

Checking that the dimensions for the Hasse diagrams constructed using Kraft-Procesi transitions are equal to

these expectations is a simple and useful test. A generic path from the top to the bottom of the Hasse diagram

should pass through transverse slices whose dimensions sum to (5.46).

5.3 Performing transitions

Performing Kraft-Procesi transitions in the brane configuration means identifying brane subsystems with A

or a type transverse slices as moduli space branches and Higgsing them out of the system. These subsystems

are precisely the same subsystems identified in the linear case. One can also identify the appropriate operation

that can be performed in the field theory. Consider the following example.

Example: N1 = N2 = 3 Consider two models forN1 = N2 = 3, π(0, 3, 3, L) and π(1, 3, 3, L).

Both have the gauge groupU(L)1×U(L)2×U(L)3 but the first has three flavoursQ1, Q2, Q3 for U(L)1 and

the second has two flavours for U(L)1 and one for U(L)2. There are three bifundamental fieldsA12, A23, A31

and their conjugates. For both models, we first give expectation values to the flavours Q1, Q2. They break

U(L)1 toU(L−1)1, the fieldsA12 and the conjugate ofA31 lose one rowwhich become fundamental flavours

for U(L)2 and U(L)3
This is an A2 Kraft-Procesi transition for the first model and the result is U(L − 1)1 × U(L)2 × U(L)3

with one fundamental flavour for each gauge group q1, q2, q3. The second step is a Kraft-Procesi a2 transition.

We can choose this to correspond to a nonzero value of the product q2A23q3 which can be reached when the

first components of q2 and q3, together with the 11 entry of A23 are all nonzero. The gauge group is broken

to U(L − 1)1 × U(L − 1)2 × U(L − 1)3 Both A12 and A31 lose one row which become fundamentals for

U(L−1)1. We can continue with a succession ofA2 and a2 transitions until the whole gauge group is broken,

as demonstrated in Fig. 5.22.

For the secondmodel the first step is anA1 Kraft-Procesi transitionwhich provides aU(L−1)1×U(L)2×

U(L)3 with two fundamental flavour for U(N2) and one for U(N3). The second fundamental flavour for

U(N2) and the fundamental flavour for U(N3) come from the lost rows of the bifundamentalsA12, A31. All

subsequent steps until complete gauge breaking are A1 Kraft-Procesi transitions and involve giving vevs to

flavours charged under the same gauge group, as demonstrated in Fig. 5.22.

5.4 A minimal set of maximal theories

Investigation of the moduli space singularities for any class of theories requires a starting point fromwhich to

perform the Kraft-Procesi transitions. The starting points for transitions in the linear case were the theories
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Figure 5.22: Quiver demonstrations for the start of the assessment of the Coulomb branch singularities for
π(0, 3, 3, L) (top) and π(1, 3, 3, L) (bottom).

T (SU(N)) whose moduli space branches were closures of the maximal nilpotent orbits. This choice was

obvious since the global structure of the moduli space branches of the class T νµt(SU(N)) was well known to

be that of nilpotent varieties. Analogous global structure is less well understood for circular theories.

A maximal theory can be thought of as one for which there is no larger theory from which the maximal

theory can be recovered using Kraft-Procesi transitions. It is informative to consider a method by which the

set T (SU(N)) can be established to be maximal in the linear case without appealing to the global structure.

At the level of the tableaux, for a theory to be maximal means that there are no procedures which one could

performon the dominant partition or reverse procedures on the dominated partition to arrive at the partitions

for the maximal theory. For linear quivers the arbitrary resizing of the frame becomes essential. The capacity

for frame resizing means that the only possible pair of partitions (µ, ν) fulfilling the criteria is (µ, ν) =

((N), (1N )). This corresponds exactly to T (SU(N)).

For circular quivers each pair of partitions for a given N1 and N2 give a different theory. The effects of

changingL are considered momentarily. Resizing of the frame is not allowed. The tableaux procedures so far

discussed cannot destroy or create boxes, therefore there areN1N2+1 seemingly non-equivalent possibilities

for the value ofM , 0 ≤M ≤ N1N2. For everyN1,N2 there areN1N2 + 1 apparent maximal theories, one

for each value ofM . These theories will have µ given by the partition ofM with the largest possible parts

no larger than N1 and ν the partition ofM with the smallest possible parts but no more than N2 of them.

Theories fulfilling these criteria take the form πλ2

λ1
(M,N1, N2, L) where

λi =
(([M

Ni

]
+ 1
)(M mod Ni)

,
[M
Ni

](Ni−(M mod Ni)))
, (5.47)
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Figure 5.23: TheYoung tableaux for the partitions that correspond to a possible set ofmaximal theories. These
partitions are the highest and lowest (with respect to the dominance ordering) partitions ofM it is possible
to put into an N1 × N2 frame. In exponential notation they are given by (5.47). These maximal theories
don’t account for Kraft-Procesi transitions which remove D3 branes from the zeroth gap and so the set isn’t
minimal.

where [·] means the integer part, Fig. 5.23. It is easy to confirm that this is a partition ofM . Any circular

quiver gauge theory can be found via Kraft-Procesi transitions from a theory of this form. However this set of

maximal theories is not minimal and there is much scope for reducing the number of theories whose Hasse

diagrams need to be found in order to encompass all circular quiver gauge theories.

Given a partition pair in a frame defining a theory, we get precisely the same quiver by considering the

complement to the tableaux inside the framing box, Fig. 5.24. The complement is the partition formed by

those boxes inside the frame that are not part of the original partition. In the brane configurations, taking the

complement of the partitions and assigning linking numbers from the left of the zeroth gap is equivalent to

assigning the linking number from the right, or reversing the x6 direction. This is true in circular and linear

quivers. There is an equivalence in the class of circular quiver gauge theories where, all other things being

equal, taking

M → N1N2 −M, µ→ µc, ν → νc, (5.48)

gives the same theory. That is

πνµt(M,N1, N2, L) = πν
c

(µc)t(N1N2 −M,N1, N2, L). (5.49)

In the linear case T νµt(SU(N)) = T ν
c

(µc)t(SU(N
2 −N)). This arises naturally in the study of the singularities

of nilpotent varieties as the isomorphism Sν ∩Ōµ ∼= Sνc ∩Ōµc . The natural interpretation of this physically

observable equivalence in terms of the singularity theory of the moduli space varieties for the linear case sug-

gests a similar such isomorphism in the circular case. Applying this equivalence to the initial set of maximal

theories reduces the number of different theories fromN1N2 + 1 to [N1N2

2 ] + 1. However this set is still not

minimal.

Due to the periodicity of x6, it is possible for Kraft-Procesi transitions to push five branes from the 0th
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Figure 5.24: A demonstration that assigning linking numbers using complementary tableaux results in the
same quiver gauge theory.

gap to theNi − 1th gap. In the brane picture this is the same as any other transition, only it involves moving

branes ‘round the back’ of the circle. The interpretation in the tableaux is simple but fiddly and doesn’t provide

any further insight to proceedings.

Kraft-Procesi transitions in the linear case always increase the linking number of one five brane by one

whilst decreasing another by one. The total linking number (and hence the magnitude of the defining par-

titions) is unaffected by the transitions. At the level of the tableaux this is realised by the procedures not

creating or destroying blocks and by procedures always making one row and one column one block shorter

whilst making another row and column one longer. Transitions that move five branes ‘round the back’, how-

ever, change the linking number of one five brane by Ni − 1 (depending on which branch we perform the

transition in) and change the linking number of another five brane by 1. This means some transitions change

the total linking number,M , byNi. Theories withM =M ′ and theories withM =M ′ + sN1 + rN2 (with

r and s integers such that 0 ≤M ′ + sN1 + rN2 ≤ N1N2) can be related using Kraft-Procesi transitions.

Incorporating the effects of changing L requires us to change our view of what it means to be a max-

imal theory. Any theory of the form πλ2

λ1
(M,N1, N2, L1) can always be found in the descendants of the

theory πλ2

λ1
(M,N1, N2, L2) with L2 > L1. Instead we will say that two circular quiver gauge theories,

πνµt(M1, N1, N2, L1) and πσρt(M2, N1, N2, L2) are in the same family under Kraft-Procesi transitions, if for

every L1 there exists a L2 such that

πνµt(M1, N1, N2, L1) ∈ K(πσρt(M2, N1, N2, L2)), (5.50)

and vice versa. In essence, two theories are in the same family if we could rearrange the 5 branes using Kraft-

Procesi transitions such that the partition data becomes the same.

The theories that belong to the same family will have moduli space varieties which appear as subvarieties

of one another for sufficiently large Li. This is what it is to be findable via Kraft-Procesi transitions. Theories
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that are not in the same family have moduli space varieties that have no such containment relationship, they

will therefore form entirely separate Hasse diagrams. Given N1 and N2, finding the Hasse diagram for a

representative theory from each family for general L will capture the singularity structure of all theories with

thoseN1 andN2 values.

Recall that every circular quiver theory can be found as a descendant of one of theN1N2 + 1 ‘maximal’

theories so far considered. Classifying these into families is sufficient to classify all circular theories. Once

classified, picking a representative theory from each family gives a minimal set of maximal theories.

Proposition Two sets of theories πλ2

λ1
(M,N1, N2, L) and π

λ′
2

λ′
1
(M ′, N1, N2, L

′) are in the same fam-

ily iffM ′ −M ≡ 0 mod gcd(N1, N2).

Corollary For a givenN1 andN2, there are [ gcd(N1,N2)
2 ]+1 families of circular quiver gauge theories

under Kraft-Procesi transitions. One set of representatives for these families are the theories π(k,N1, N2, L)

for k ∈ {0, . . . , [ gcd(N1,N2)
2 ]}.

Proving the proposition is straight-forward. Kraft-Procesi transitions can only changeM by multiples of

N1 orN2, hence ifM ′−M ̸≡ 0 mod gcd(N1, N2)we have nomethod of moving from a theory withM to

one withM ′. If they are in the same family wemust haveM ′−M ≡ 0 mod gcd(N1, N2). The proposition

also asserts that ifM2 −M1 ≡ 0 mod gcd(N1, N2) then the two sets of naive starters must belong to the

same family. Consider that given sufficient L there is always a sequence of the Kraft-Procesi transitions in

the Higgs brane configuration which can end with a transition that changes total linking number by exactly

N2 or transitions in the Coulomb brane configuration that change the total byN1. Given a starting point and

sufficient L, all values forM of the form 0 ≤M + sN1 + rN2 ≤ N1N2 can be found.

To prove the corollary consider that every theory can be found by performing Kraft-Procesi transitions on

the theoriesπλ2

λ1
(M,N1, N2, L). For each (N1, N2) there areN1N2+1 such theories corresponding to values

forM in the range {0, 1, . . . , N1N2 − 1, N1N2}. There are three circumstances under which these theories

are in the same family. These can be modelled as the equivalence relations on values in this range. Conjugate

theories can bemodelled byM ∼ N1N2−M . Kraft-Procesi transitions that change the total linking number

can bemodelled byM ∼M+N1 andM ∼M+N2 which combine to giveM ∼M+gcd(N1, N2). Under

these equivalence relations, values in this range form [ gcd(N1,N2)
2 ] + 1 equivalence classes. These classes are

those equivalent to values in the range {0, . . . , [ gcd(N1,N2)
2 ]}. Some examples demonstrating this are provided

next.

5.4.1 Examples

N1 = N2 = 4 For N1 = N2 = 4, gcd(N1, N2) = 4. There are 3 families with representatives

π(k, 4, 4, L) for k ∈ {0, 1, 2}. To see this explicitly, first consider those values ofM in the same family as 0.

All of these theories are labelled on a diagram whereby all the values ofM in the same family have the same

symbol. Recalling that 0 ≤M ≤ N1N2,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16M =

⋆ ⋆ ⋆ ⋆ ⋆

are in the same family as zero. Considering the family with representative k = 1,
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Figure 5.25: The Higgs brane configurations for the explicit demonstration of finding π(2,13)
(3,2) (5, 4, 4, L1) ∈

K(π(1, 4, 4, L2)). One has to perform an A2 transition followed by an A1 transition in the Higgs brane
configuration. We require L2 ≥ L1 + 1 in order to perform the appropriate transitions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16M =

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣⋆ ⋆ ⋆ ⋆ ⋆

and finally those values ofM corresponding to theories in the same family as k = 2 complete our con-

siderations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16M =

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣⋆ ⋆ ⋆ ⋆ ⋆△ △ △ △

The families of the three representatives cover all the possible theories. Choosing a theory withM = 5,

say, π(2,13)
(3,2) (5, 4, 4, L1), this theory ought to be findable from the theory π(1, 4, 4, L2) for some L2 ≥ L1.

The Higgs brane configurations are given in Fig. 5.25. An A2 followed by an A1 transition yields the theory

and reveals that we require that L2 = L1 + 1 at minimum.

N1 = 3 N2 = 5 For N1 = 3 and N2 = 5, gcdN1, N2 = 1 and so all theories with these values

ofN1 andN2 appear in the descendants of π(0, 3, 5, L) for sufficient L. The Higgs brane configurations for

finding π(22,12)
(3,2,1) (6, 3, 5, L1) by performing Kraft-Procesi transitions on π(0, 3, 5, L2) are given in Fig. 5.26.

The removal of the a4 and a2 from the bottom of the Higgs branch and the A2 from the top of the Higgs

branch reveals that we require L2 ≥ L1 + 2 .

5.5 Hasse diagrams for family representatives

Calculating theHasse diagrams for themoduli space branches of a set of family representativeswill encompass

the diagrams for all good circular quiver gauge theories. Theoriesπ(k,N1, N2, L) fork ∈ {0, . . . , [ gcd(N1,N2)
2 ]}

have a general Higgs brane configuration and quiver given in Fig. 5.27. The Hasse diagrams will be written

for the Coulomb branch, once again mirror symmetry can be viewed as an involution on the Hasse diagram

top-bottom along with an exchange of An for an. The dimension of the starting theories can be used as a

check for the Hasse diagrams. Any single path from the top to the bottom of the Hasse diagram should have

a dimension given by (5.46). As the starting theories’ partitions are always in the form ν = (1k), µ = (k),

application of (5.46) gives dimH(MH) = 1
2 (k

2 − k) +N2L and dimH(MC) =
1
2 (k

2 − k) +N1L. Recall

also that dimH(Az) = 1 for any z and dimH(az) = z for any z.
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Figure 5.26: The Higgs and Coulomb brane configurations for the explicit demonstration of finding
π
(22,12)
(3,2,1) (6, 3, 5, L1) ∈ K(π(0, 3, 5, L2)). Starting with a Coulomb branch A4 transition (so a removal of

an a4 singularity from the bottom of the Higgs branch) then a Coulomb branch A2 transition, followed by
an A2 Higgs branch transition. L2 ≥ L1 + 2 is required to perform the transitions.
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Figure 5.27: The general form for the Higgs brane configuration and quiver for our choice of a minimal set of
maximal theories, π(k,N1, N2, L), where k takes values in the range {0, ..., [ gcd(N1,N2)

2 ]}. The system hasN1

NS5 branes andN2 D5 branes and hence the quiver hasN1 gauge nodes and the sum of the flavour nodes is
N2. The mirror theories can be found by exchanging the labels 1 and 2. In the case thatN1 = N2 the theory
is self-mirror dual. All good circular quiver theories can be found by performing Kraft-Procesi transitions on
a theory of this form for some L.
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5.5.1 The linear case: L = 0

Setting L = 0 gives rise to the linear quiver case. In Fig. 5.27, setting L = 0 leaves only the linear quiver for

T (SU(k)) remaining. The independence of this theory from N1 and N2 is also evident. The only different

maximal theories which arise when L = 0 are those pertaining to different values of k, as expected.

5.5.2 A single wrapped brane: L = 1

Writing down the Hasse diagram for the Coulomb branch of the L = 1 case requires assessing all of the

different manners by which all the D3 branes may be removed from the Coulomb brane configuration using

Kraft-Procesi transitions. Consider Fig. 5.27 whenL = 1, the D3 branes in the Coulomb brane configuration

can be considered as a linear part and a wrapped part. Initially the linear part takes the form of the theory

T (SU(k)). The Coulomb branch of these theories and their descendants are nilpotent varieties of sln, which

are subvarieties of the closure of the maximal nilpotent orbit. Brane subsystems with moduli space branches

that are maximal nilpotent orbit closures will be referred to as orbit subsystems and the section of the Hasse

diagram corresponding the transitions performed in these subsystemswill be referred to as orbit subdiagrams.

The D3 branes in this system can be removed in many different orders, however there are two sequences

of brane removals that stand out immediately. Removal of the entire Ō(k) orbit subsystem followed by the

wrapped brane, or removal of the entire wrapped brane followed by the orbit subsystem. The wrapped D3

branes do not contribute to the linking number of either type of five brane, therefore completely removing an

entire wrapped brane using Kraft-Procesi transitions does not move any of the five branes’ positions relative

to one another in the end. Removal of amaximal orbit subsystemmoves k−1D5 branes into the gap adjacent

to their starting gap away from the D3 brane tail, and one D5 brane to the other end of the subsystem.

There is a third order of removing the D3 branes which will prove useful to consider. By initially per-

forming anAN2−k−1 transition in the zeroth gap, the single D3 brane in that gap is removed. This procedure

moves oneD5 brane into the gaps either side. This results in there being k+1D5 branes in the first gap. There

is now an Ō(k+1) orbit subsystem in the brane configuration. After removing this, a final aN1−k−1 transition

removes the final D3 branes. These three orders of D3 brane removal form the backbone of a Hasse diagram

schematic for L = 1 theories.

To begin to construct the Hasse diagram it is useful to consider the subdiagrams for the different parts of

the three removal orderings discussed above. The orbit subdiagrams are known to be the Hasse diagrams for

nilpotent orbit closures. The subdiagrams corresponding to the removal of the wrapped brane either before or

after the Ō(k) subsystem are given in Fig. 5.28. These subdiagrams will exist at the very top and very bottom

of the full Hasse diagram as they correspond to some of the first or last transitions it is possible to make.

The schematic for the full Hasse diagram for the L = 1 case is given in Fig. 5.29. The three orbit subdia-

grams and the subdiagrams for the removal of the wrapped brane are all evident. This is not a complete Hasse

diagram however, there are many edges which link between orbit subdiagrams which are yet to be filled in.

These edges will be referred to as traversing structure as they traverse from one orbit subdiagram to another.

From here on the Hasse diagrams that are constructed will be formulated in terms of an orbit subdiagram

skeleton which has been fleshed out with traversing structure.

There are two ‘regions’ of traversing structure in the L = 1 Hasse diagram. The structure between the
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Figure 5.28: The Hasse subdiagrams for the removal of one fully wrapped D3 brane either entirely before
(left) or entirely after (right) the removal of the Ō(k) subsystem. On the right, removal of the orbit subsystem
first has resulted in D5 branes being moved in the manner discussed. The two diagrams are mirror-duals of
one another indicating that they exist at opposite ends of the full Hasse diagram such that they are mapped
into one another under mirror symmetry.
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Ō(k+1)∼

Figure 5.29: The schematic for the general Hasse diagram for π(k,N1, N2, 1). The orbit subdiagrams are
indicated using grey boxes. The subdiagrams corresponding to the removal of the wrapped brane before
or after the orbit subsystems are evident. The edges which connect between orbit subdiagrams are mostly
omitted in this schematic for simplicity (see discussion). The three orderings in the discussion correspond
to moving down the first Ō(k) subdiagram then down to the bottom (this is removing the orbit subsystem
first, then the wrapped brane). Moving across to the top of the lower Ō(k) subdiagram then down to the
bottom (that is removing the wrapped brane first then the orbit subsystem). Or moving across to the Ō(k+1)

subsystem, down, then across to the bottom (this is performing an initial zeroth gap transition, removing the
now larger orbit subsystem, then removing the final part of the wrapped brane).
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higher Ō(k) orbit subdiagram and the Ō(k+1) subdiagram, and the structure between the Ō(k+1) orbit sub-

diagram and the lower Ō(k) subdiagram. Three of the edges in each of these regions have been found already

when considering the removal of the wrapped brane. These two regions of traversing structure go into one

another under mirror symmetry, therefore assessing one of them gives the other with simple adjustment.

Consider the traversing structure between the higher Ō(k) orbit subdiagram and the Ō(k+1) subdiagram.

These edges can be found in general by considering the Coulomb brane configuration carefully. The upper

Ō(k) orbit subdiagramcorresponds to removing the Ō(k) orbit subsystembefore removing any of thewrapped

brane. However at any point during the process of removing the orbit subsystem, it is possible to start to

remove the wrapped brane. There are always D5 branes in the zeroth gap2 and the only D3 segment in the

zeroth gap is part of the wrapped brane. Therefore at any point during the removal of the orbit subdiagram,

there is the option to perform the zeroth gap transition and this option is never part of the orbit subsystem

removal. This option forms the upper traversing structure in the Hasse diagram.

The nodes within an Ō(k) orbital subdiagram can be labelled with partitions of k in the normal way. In

order to write down a general form for the edges in the upper traversing structure it is useful to consider the

nodes in the Ō(k) subdiagram to be labelled as such. The option to perform a zeroth gap transition exists

at all times during the Ō(k) subsystem removal. Therefore every node in the upper Ō(k) subdiagram has a

traversing edge coming from it. This traversing edge corresponds to performing a zeroth gap transition after

having removed some amount of the orbit subsystem. To fully characterise the edge requires two calculations,

one to determine the label which the edge should carry and another to determine which node in Ō(k+1) the

edge should attach to.

Label Consider the traversing edge connecting the node in the upper Ō(k) subdiagram labelled with

a partition κ of k. The label this edge carries is determined by the number of D5 branes in the zeroth gapwhen

the transition is performed. The process of removing the orbit subdiagram moves D5 branes into the zeroth

gap. The number of D5 brane which have been moved into the zeroth gap by removing the orbit subsystem

down to the node κ can be determined by considering the relationship between κ and the subsystem linking

number of the D5 branes. Consider the linking number of five branes as considered just within the orbit

subsystem. D5 branes that have been moved into the zeroth gap correspond to those with linking number

zero. The number of D5 branes in the ith subsystem gap is given by κti . The number of D5 branes that have

been moved into the zeroth gap by descending to a node κ is therefore κt0 = k − l(κt). Before removing

any of the orbit subsystem there were N2 − k D5 branes in the zeroth gap. The label for the traversing edge

connecting to the Ō(k) node κ is therefore AN2−k−1+k−l(κt) = AN2−l(κt)−1.

Ō(k+1) node Performing this transition will move a D5 brane into gaps either side of the zeroth

gap. The D5 brane moved into theN1−1th gap will not be involved in the orbit subsystem3. However the D5

brane moved into the first gap will be involved in the orbit subsystem. Moving this D5 brane from the zeroth

to the first gap increases its orbit subsystem linking number by one without decreasing the linking number

of another D5 in the orbit subsystem. The magnitude of the total linking number, and hence magnitude of

the partitions labelling orbit subdiagram nodes, has increased by one. This confirms that the edge traverses

to the Ō(k+1) subdiagram. The Ō(k+1) to which it connects can be determined by considering the change of

2This is a temporary simplifying assumption about the size ofN2, what happens when it doesn’t hold will be dealt with later.
3This is part of a temporary simplifying assumption about the size ofN1, the breaking of which will be discussed later.
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the partition induced by the moving of the D5 brane. The partition corresponding to the linking number of

the D5 branes in the orbit subsystem has had a zero turn into a one. The edge traversing from a node κ in the

Ō(k) subsystem therefore connects to a node (κt, 1)t in the Ō(k+1) subsystem.

The complete L = 1Hasse diagram is given by Fig. 5.29 with the addition of the traversing edges

AN2
−l(
κ
t )−1 κ

(κt, 1)t

from every node in the top Ō(k) subdiagram to the appropriate nodes in Ō(k+1), and adding the appropriate

mirror dual edges from every node in the lower Ō(k) up to the appropriate nodes in Ō(k+1);

aN1
−l(
κ
′ )−1

κ′

(κ′, 1).

These edges could also have been derived from brane configuration considerations.

Dimensional Check To perform a dimensional check on the construction, choose a general routeR

from the top to the bottom of the Hasse diagram. Such a route can be found by starting at the top, descending

to a node of the upper Ō(k) subdiagram labelled with a partition κ, traversing into the Ō(k+1) subdiagram,

descending further to the node labelled (κ′, 1), traversing again to the lower Ō(k) at the node κ′, and from

there to the bottom. The dimension of this general route is given by

dimH(R) = dimH(Ō(k) ∩ Sκ) + dimH(AN2−l(κt
i)−1) + dimH(Ō(κt,1)t ∩ S(κ′,1))

+ dimH(aN1−l(κ′)−1) + dimH(Ō(κ′))

=
1

2

(∑
i

(κti)
2 − k + 2 +

∑
j

((κ′, 1)tj)
2 −

∑
j

((κt, 1)j)
2

+ 2N1 − 2l(κ′)− 2 + k2 −
∑
i

(κ′
t
i)

2
)
.

(5.51)

Note that
∑
j((κ

t, 1)j)
2 =

∑
i(κ

t
i)

2 + 1 and
∑
j((κ

′, 1)tj)
2 = 1 + 2l(κ′) +

∑
i(κ

′t
i)

2. The second equality

takes a little work, to see it consider the following, writing κ′ = (kpk , . . . , 1p1)means

←−−−→
(κ′, 1)t =

(( k∑
m=k

pm

)
,
( k∑
m=k−1

pm

)
, . . . ,

( k∑
m=2

pm

)
,
( k∑
m=1

pm

)
+ 1
)
, (5.52)

and so,

∑
j

((κ′, 1)tj)
2 =

(( k∑
m=1

pm

)
+ 1
)2

+

k∑
q=2

( k∑
m=q

pm

)2
= 1 + 2

k∑
m=1

pm +

k∑
q=1

( k∑
m=q

pm

)2
= 1 + 2l(κ′) +

∑
i

(κ′
t
i)

2.

(5.53)
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Figure 5.30: Coulomb (left) and Higgs (right) branch Hasse diagrams for π(0, N1, N2, 1).

Applying these simplifications to (5.51) gives,

dimH(R) =
1

2
(k2 − k) +N1. (5.54)

This is exactly the result expected both from previous dimensional discussion and from a simple counting of

the D3 branes in the Coulomb brane configuration.

5.5.3 L = 1 examples

k = 0 The moduli space branches for these quivers have been calculated before, [60], and found to

beMH = AN1−1 × aN2−1 and henceMC = AN2−1 × aN1−1 as reiterated in [61]. This can easily be

reproduced using Kraft-Procesi transitions directly or from the general construction above. Reading from

the general construction, the three orbit subdiagrams all consist of a single node. The upper and lower Ō(k)

subdiagram nodes both carry the partition (0) and the center Ō(k+1) subdiagram the partition (1). Note that

l((0)) = 0. The traversing structure is then easily filled in. The result is given in Fig. 5.30.

k = 1, 2, 3, 4 The results for small values of k when L = 1 are given in Fig. 5.31.

5.5.4 The schematic for L = 2 and orbit lattices

The schematic for L = 2 can be constructed using similar considerations to the L = 1 case. A skeleton

can be found by considering some simple orderings of D3 removal, then traversing structure can be added to

account for more complicated orderings.

Two simplest orders forD3 brane removal are analogous to the simplest cases inL = 1. Remove the entire

orbit subsystem first, then both wrapped branes, or vice versa. The subdiagram for removal of two wrapped

branes in much more complicated than removal of one brane. One method of removing two wrapped branes

is to remove one at a time, so the subdiagram for two wrapped branes should contain a subdiagram which

looks like two of the single-brane removal subdiagrams strung end to end. However any sequence which

begins removing the second wrapped brane before the first has been fully removed will give extra structure

not seen in L = 1 case. Furthermore there is the option to remove one wrapped brane, the orbit subsystem,

then the other wrapped brane. The Hasse diagram for L = 2 therefore ought to contain two copies of the

L = 1Hasse diagram with the lower Ō(k) subdiagram of one being the upper Ō(k) subdiagram of the next.

In the L = 1 case, performing the transition in the zeroth gap moved a D5 brane into the first gap. This

resulted in the Ō(k) subsystem being promoted to a Ō(k+1) subsystem. In the L = 2 case a second zeroth

gap transition can be performed. This will promote the Ō(k+1) subsystem to a Ō(k+2) subsystem. However

this second zeroth gap transition also moves a second D5 brane into theN1− 1th gap. This means that anA1
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Figure 5.31: Coulomb branch Hasse diagrams for π(k,N1, N2, 1) for k ∈ {1, 2, 3, 4}.



57 QUIVER VACUA GEOMETRY

N2 − k
k

N1

2
2

k + 1
k

2 3

MC ∼

Ak−1

Ak−3

A1

AN2−k−1

AN2
−k−

3

AN2
−k−

2

AN2
−k−

1

AN2
−k−

1

Ak

Ak−2

A1

AN2
−k

AN2
−k+

1

AN2
−k+

1

aN1
−3

aN
1
−2

A1

A1

A1

A1

Ak+1

Ak−
1

A1

Ak−1

Ak−3

Ak+1

Ak−
1

A1

aN
1
−
3

aN1
−4

AN2
−k−1

AN2
−k

AN2
−k+

1

Ak

Ak−2

aN1
−2

aN1
−3Ak−1

ak−1

ak−3

A1

aN1−k−1

aN1
−k−

3

aN1
−k−

2

aN1
−k−

1

aN1
−k−

1

ak

ak−2

A1

aN1
−k

aN1
−k+

1

aN1
−k+

1

AN2
−3

AN 2
−2

A1

A1

A1

A1

ak+1

ak−
1

A1

ak−1

ak−3

ak+1

ak−
1

A1

AN 2
−
3

AN2
−4

aN1
−k−1

aN1
−k

aN1
−k+

1

ak

ak−2

AN2
−2

AN2
−3 ak−1

Ō
(k

)

Ō
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Figure 5.32: Schematic Hasse diagram for L = 2. Once again the orbit skeleton has been indicated and the
majority of the traversing edges omitted for brevity. Note that orbit subdiagrams branch at the third node
from the top and the bottom but only one of these branches (labelled A1) has been indicated here. This
schematic works under the assumption that Ni > k + 3 such that all of the edge’s labels are well defined.
What happens when this is not the case is discussed later.

Kraft-Procesi transition is now possible in this gap. This transition is free to be performed at any point during

the removal of the Ō(k+2) subsystem. Therefore the L = 2 Hasse diagram should contain a structure that

looks like a slanted ladder, where two copies of the Ō(k+2) subdiagram are present and every node in one is

connected via an A1 transition to the equivalent node in the other.

Putting all of these considerations together, the schematic for the L = 2 case is given in Fig. 5.32.

The traversing structure between Ō(k) and Ō(k+1) subdiagrams follows exactly from the L = 1 case.

The traversing structure between the Ō(k+1) and Ō(k+2) subdiagrams is complicated by the presence of two

copies of the Ō(k+2) subdiagram.

The two copies of the Ō(k+2) subdiagram arose because performing two zeroth gap Kraft-Procesi transi-

tions moved D5 branes into the adjacent gaps. This not only promoted the orbit subdiagram to Ō(k+2), but

also moved two D5 branes into the N1 − 1th gap, causing the ladder-like structure. This structure will be
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called a lattice of orbit subdiagrams. A lattice denoted (Ō(p); Ō(q)) for p ≥ q will consist of |P(p)| copies

of Ō(q) and |P(q)| copies of Ō(p) arranged such that every node of an Ō(p) subdiagram labelled with the

same partition of p is also in the same Ō(q) subdiagram, and vice versa, in the obvious manner. In this case

the two copies of Ō(k+2) are part of a (Ō(k+2); Ō(2)) lattice. Also, each copy of Ō(k+1) (resp. Ō(k)) can

be considered to be part of the lattices (Ō(k+1); Ō(1)) (resp. (Ō(k); Ō(0))). In these cases the lattices have

degenerated into single orbit subdiagrams because Ō(1) (resp. Ō(0)) both consist of only one node, that is

|P(1)| = 1 = |P(0)|.

These lattices arise as the Hasse subdiagrams associated to two disjoint orbit subsystems in the brane

configuration. Kraft-Procesi transitions may be performed in one orbit subsystem or the other in any order,

hence the lattice. Both of the orbit subsystems in the brane configuration are adjacent to the zeroth gap, with

tails which point away from the zeroth gap and so in opposite directions around the circle. It is assumed

during this discussion that N1 and N2 are sufficiently large that these two orbit subsystems remain disjoint

in both brane configurations. The consequences of this not being the case are discussed later.

The traversing edges now need to be considered to be between lattice subdiagrams rather than orbit sub-

diagrams. The generalisation is exactly analogous to the set-up in theL = 1 case only there are now two orbit

subsystems to contend with. We forgo this generalisation until the case of general L.

5.5.5 Arbitrary L and higher-level Hasse diagrams

The case of general Lmay be treated in the same manner as for specific low values of L. Consider the brane

configuration for π(k,N1, N2, L) given in Fig. 5.27. Because π(k,N1, N2, L) is self mirror dual up to ex-

change ofN1 andN2, replacing the D5 branes with NS5 branes and vice versa, and swappingN1 andN2 in

the Higgs brane configuration in Fig. 5.27 gives the Coulomb brane configuration for the theory.

Consider performing initial Kraft-Procesi transitions in the zeroth gap. The edges representing these

transitions are the highest traversing edges in the Hasse diagram. By definition there are exactly LD3 branes

in the zeroth gap. Assuming for now thatN2 is sufficiently large, this sequence of transitions forms a line of

L nodes at the top of the Hasse diagram. The edges between these nodes are labelled AN2−k−1, AN2−k−3,

AN2−k−5, . . . ,AN2−k−2L−1. Consider a node in this line corresponding to having performed k′ transitions

in the zeroth gap. At this point, the transitions have moved k′ D5 branes into both of the adjacent gaps. This

has promoted the orbit subsystem from Ō(k) to Ō(k+k′), and created a Ō(k′) subsystem. Assuming for now

thatN1 is sufficiently large, these subsystems are disjoint and the Hasse subdiagram for these two subsystems

is the lattice (Ō(k+k′); Ō(k′)). Performing one more zeroth gap transition would push one more D5 brane

into each adjacent gap. The lattice subdiagram would then be (Ō(k+k′+1); Ō(k′+1)). This is demonstrated in

Fig. 5.33.

For arbitrary L, part of the Hasse diagram will consist of this sequence of lattices of increasing size. The

traversing structure between lattices therefore needs to be investigated. Doing so is similar to theL = 1 case,

only there are now two orbit subsystems with which to contend.

In the same way that nodes in an orbit subdiagram were labelled with a partition κ in the L = 1 case,

nodes in a lattice may be labelled with a pair of partitions, (κ;ρ) ∈ (P(k + k′);P(k′)) one for each of the

orbit diagrams which make up the lattice.
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Ō(k+k′)
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Figure 5.33: k′ initial zeroth gap Kraft-Procesi transitions moves to a node from which descends a
(Ō(k+k′); Ō(k′)) lattice. Performing one more transition in the zeroth gap moves to a node from which de-
scends a (Ō(k+k′+1); Ō(k′+1)) lattice. Every node in the (Ō(k+k′); Ō(k′)) lattice has a traversing edge which
attaches to an appropriate node in the (Ō(k+k′+1); Ō(k′+1)) lattice depending on the partition data related
to the Ō(k+k′) and Ō(k′) orbits. These edges have been omitted for clarity here.
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After k′ zeroth gap transitions there is always the option to start removing from the orbit subsystems. This

corresponds to moving from the line of traversing structure, discussed above, to moving down a lattice. At

any point during the lattice removal there is the option to continue performing transitions in the zeroth gap.

Deciding to go back to the zeroth gap is what it is to have the traversing structure between the lattices. Since

the option to perform the zeroth gap transition exists at any point during the lattice removal, every node in

the higher lattice will have a traversing edge coming from it (when in the top half of the overall diagram).

Consider performing k′ initial zeroth gap transitions, followed by removal from the (Ō(k+k′); Ō(k′)) lattice

down to a node labelled by the pair (κ;ρ). The traversing edge from this node to the (Ō(k+k′+1); Ō(k′+1))

lattice will be labelled withAx−1 where x is given by the number of D5 branes in the zeroth gap at that point.

Since the removal of part of the orbit subsystems shifts D5 branes back into the zeroth gap, this will be

x =

Initial D5s︷ ︸︸ ︷
N2 − k−

First Removals︷︸︸︷
2k′ +

From Ō(k+k′)︷ ︸︸ ︷
(k + k′ − l(κt))+

From Ō(k′)︷ ︸︸ ︷
(k′ − l(ρt))

= N2 − l(κt)− l(ρt).

(5.55)

The considerations are precisely the same as those in the label paragraph of the L = 1 section, only this time

two orbits have to be considered.

A transition in the zeroth gap will move one D5 brane into each of the orbit subsystems. This again entails

appending a one to both of the transpose partitions. The total traversing structure between the (Ō(k+k′); Ō(k′))

grid and the (Ō(k+k′+1); Ō(k′+1)) grid can be summarised in the edge diagram:

AN2
−l(

κ
t )−l

(ρ
t )−1

(κ;ρ).

((κt, 1)t; (ρt, 1)t)

Along with these edges, there are their mirror counterparts which descend from a (Ō(k+k′+1); Ō(k′+1))

lattice to a (Ō(k+k′); Ō(k′)) lattice. These can be summarised in the edge diagram:

aN2
−l(

κ
′ )−l

(ρ
′ )−1 ((κ′, 1); (ρ′, 1)).

(κ′;ρ′)

Example: L = 2 In the L = 2 case, the traversing edges from the (Ō(k+1); Ō(1)) lattice to the

(Ō(k+2); Ō(2)) lattice can now be established. Here k′ = 1 and for the Ō(1) orbit, ρ = (1), because

the Hasse diagram for the partitions of one contains one node. Therefore l(ρt) = 1 for all cases. The

transition from the κ = (k + 1) node has l(κt) = l((1k+1)) = k + 1 and so should be labelled with

AN2−1−(k+1)−1 = AN2−k−3. This is exactly as was found. The node it attaches to is ((κt, 1)t; (ρt, 1)t) =

((1k+1, 1)t; (1, 1)t) = ((k + 2); (2)) which is also as expected from previous calculations.

When L becomes large, the explicit Hasse diagrams rapidly become cumbersome. However the essential

features may be represented in a higher-level Hasse diagram. In a higher level Hasse diagram, each node
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represents an entire lattice and each edge represents the whole traversing structure between lattices. Whilst

not every node in the higher lattice strictly dominates every node in the lower lattice, no node in the lower

lattice dominates any node in the higher lattice. To distinguish them from explicit Hasse diagrams, the nodes

in a higher level Hasse diagram will be stars. A node representing the lattice (Ō(k+p); Ō(p)) will be labelled

with the integer p. So for example the Ō(k) = (Ō(k); Ō(0)) lattice will be represented by a star node with

the label 0. In each instance a value of k has to be specified for the entire diagram. Applying the above

considerations in the L = 0, 1 and 2 cases yields the following:

Example: L = 1 WhenL = 1 the Hasse diagram, Fig. 5.29, consists of an (Ō(k+0); Ō(0)) lattice which

traverses down to an (Ō(k+1); Ō(1)) lattice and from there to another (Ō(k+0); Ō(0)) lattice. The higher level

Hasse diagram is therefore:

⋆

⋆

⋆0

1

0

(Ō(k); Ō(0))

(Ō(k+1); Ō(1))

(Ō(k); Ō(0))
′

AN2−l(κ0)−l(ρ0)−1

aN1−l(κ′
0)−l(ρ′

0)−1

⋆

⋆

⋆0

1

0

The notation can be condensed considerably to just the integers labelling the nodes. This is because, once

k is specified, all the other information can be extracted from this label.

The traversing edges from (Ō(k+p); Ō(p))will always traverse to either (Ō(k+p+1); Ō(p+1))or (Ō(k+p−1); Ō(p−1)).

Therefore every edge in a higher level Hasse diagram may be written as

⋆

⋆p

p ± 1

For a given k, all of the details of the structure in the explicit Hasse diagram to which these nodes and

edges correspond may be extracted. Taking the+ corresponds a (Ō(k+p); Ō(p)) lattice traversing down to a

(Ō(k+p+1); Ō(p+1)) lattice. Traversing edges are labelled AN2−l(κt
p)−l(ρt

p)−1. For −, this corresponds to a

(Ō(k+p); Ō(p)) lattice traversing down to a (Ō(k+p−1); Ō(p−1)) lattice, the edge is aN1−l(κp−1)−l(ρp−1)−1.

The partitions in the indices of the edge labels have subscripts indicating which lattice they belong to.

Example: L = 0 WhenL = 0 the Hasse diagram is just the orbit diagram for Ō(k) = (Ō(k+0); Ō(0)).

There is no traversing structure. Once k is specified, the higher level Hasse diagram is therefore a single star

labelled with a 0.

⋆0

Example: L = 2 The higher level Hasse diagram for L = 2 is:

⋆

⋆

⋆

⋆

⋆
⋆0

0

0

1

1

2
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Given k, and once the notation is unpackaged, this diagram contains all of the same information as Fig. 5.32.

Consider once more the L = 2 case. What does it mean, in the brane configuration, to choose different

routes through the higher level Hasse diagram? The answer concerns the order and grouping of the removal

of fully wrapped D3 branes. In the L = 2 case there are two possible routes from the top to the bottom of

the higher level Hasse diagram, either 0 → 1 → 0 → 1 → 0 or 0 → 1 → 2 → 1 → 0. Similarly, when

L = 2 there are twomanners in which the 2 wrapped branes may be removed. Theymay be removed one at a

time, where the second wrapped brane only starts being removed once the first wrapped brane has been fully

removed. Or theymay be removed concurrentlywhere the secondwrapped brane starts being removed before

the first wrapped brane has been fully removed. The structure associated to removal of the orbit subdiagrams

is contained in the nodes andmay be ignored in the following. Consider that onemethod to reach the 2 node

is to perform two Kraft-Procesi transitions in the zeroth gap immediately. This means we arrive at the top of

the (Ō(k+2); Ō(2)) lattice in the explicit Hasse diagram and at the 2 node in the higher-level Hasse diagram.

After these transitions there are no more D3 branes in the zeroth gap, the wrapped branes are being removed

concurrently. The structure of the higher level Hasse diagram captures the manner in which the wrapped

branes are removed. Note however that Kraft-Procesi transitions only remove one D3 brane from a gap at a

time. Hence even when two wrapped branes are removed concurrently, one always starts and finishes being

removed before the other. Therefore the first edge and the final edge of both routes coincide.

To write down the higher level Hasse diagram for π(k,N1, N2, L), it is sufficient to consider those dif-

ferent manners in which L wrapped branes may be removed that are in correspondence with the unordered

partitions of L. For example, 4 wrapped branes may be removed as: 4 concurrently, 3 concurrently then 1, 1

then 3 concurrently, two concurrent pairs, 1 then 1 then 2, 1 then 2 then 1, 2 then 1 then 1 or one at a time.

All of these options constitute a different route through the higher level Hasse diagram. These routes may be

written

0→ 1→ 2→ 3→ 4→ 3→ 2→ 1→ 0

0→ 1→ 2→ 3→ 2→ 1→ 0→ 1→ 0

0→ 1→ 0→ 1→ 2→ 3→ 2→ 1→ 0

0→ 1→ 2→ 1→ 0→ 1→ 2→ 1→ 0

0→ 1→ 2→ 1→ 0→ 1→ 0→ 1→ 0

0→ 1→ 0→ 1→ 2→ 1→ 0→ 1→ 0

0→ 1→ 0→ 1→ 0→ 1→ 2→ 1→ 0

0→ 1→ 0→ 1→ 0→ 1→ 0→ 1→ 0

Consider two routes, of the ith and i + 1th number in the routes are the same, then the arrow between the

numbers in both routes corresponds to the same edge in the higher level Hasse diagram. Using these consid-

erations for arbitrary L, the higher level Hasse diagram for π(k,N1, N2, L) is given in Fig. 5.34.

Each route through Fig. 5.34 is a differentmanner in which the fully wrappedD3 branesmay be removed.

Some of thesemanners correspond to the unordered partitions ofL. For examplemoving from top to bottom

only using the nodes labelled with 0 and 1 corresponds to removing each wrapped brane one at a time. Some
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Figure 5.34: The general structure of the higher-level Hasse diagram for π(k,N1, N2, L) with compact la-
belling (see discussion). Given a value for k, a node labelled p represents an entire (Ō(k+p); Ō(p)) lattice.
Each edge corresponds to an entire traversing structure between the lattices as defined in the discussion. Each
route through this higher level digram represents an manner in which fully wrapped branes can be removed.
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of the manners do not correspond to an unordered partition of L. For example, moving down to the first

node labelled 2, then to the second node labelled 1, then to the second 2, then down to the bottom following

the zeroes and ones corresponds to the following removal sequence: beginning to remove a second wrapped

brane before finishing the first, then beginning to remove a third wrapped brane before finishing the second

but after finishing the first, then only beginning removing a fourth wrapped brane having fully removed the

first three, and finally removing the remaining branes one at a time. In this sense, the label of the node in a

route at any given point is the number of fully wrapped D3 branes in the process of being removed at that

point in the route.

Dimensional Check In order to perform a dimensional check on this construction, a general route

R through Fig. 5.34must be defined. Such a routemust pass through 2L+1 star nodes andmay be defined by

a sequenceRi, i = 1, . . . , 2L+1with the requirements thatRi ≥ 0,R1 = 0 = R2L+1 andRi+1 = Ri±1,

then

R = R1 → R2 → R3 → · · · → R2L−1 → R2L → R2L+1. (5.56)

dimH(R) will have contributions from edges and nodes,

dimH(R) = dime
H(R) + dim⋆

H (R). (5.57)

The route must travel through exactly L edges that represent traversing structure carrying A-type labels and

L edges corresponding to traversing structure carrying a-type labels. Each node represents a lattice in the

explicit Hasse diagram. The route will meet exactly 2L+ 1 nodes in the higher level Hasse diagram. In each

case the route will join the ith lattice at a node (κi;ρi) and leave it again from a node (σi;γi). The two

contributions to the total dimension of the route can be written as:

dime
H(R) =

∑
{i|Ri−Ri+1=−1}

1 +
∑

{i|Ri−Ri+1=1}

N1 − l(κi+1)− l(ρi+1)− 1

=

2L∑
i=1

[( 1

−2

)
(Ri −Ri+1 − 1) +

1

2
(Ri −Ri+1 + 1)(N1 − l(κi+1)− l(ρi+1)− 1)

]

= (R2L+1 −R1) + LN1 −
1

2

2L∑
i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

= N1L−
1

2

2L∑
i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

(5.58)

Where there is a contribution of 1 to dime
H(R)when an edge is ofA-type and a contribution ofN1−l(κi+1)−

l(ρi+1)− 1 when the ith edge is of a-type. In line two the sums are simplified and combined by multiplying

by a factor which picks out the correct values in each case. This factor isRi −Ri+1 − 1 = 0 when the ith

edge is of a-type and −2 when it’s of A-type andRi −Ri+1 + 1 = 0 when the ith edge is of A-type and 2

when it’s of a-type. The second term in line three is equal to LN1 because and routeRmust pass through L
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edges for whichRi −Ri+1 + 1 = 2. Final simplification yields the result. And,

dim⋆
H (R) =

1

2

2L+1∑
i=1

[ l(σt
i)∑

j=1

(σti)
2
j −

l(κt
i)∑

j=1

(κti)
2
j +

l(γt
i)∑

j=1

(γti)
2
j −

l(ρt
i)∑

j=1

(ρti)
2
j

]

=
1

2

∑
{i|Ri−Ri+1=−1}

[∑
j

(σti)
2
j −

∑
j

((σti−1, 1))
2
j +

∑
j

(γti)
2
j −

∑
j

((γti−1, 1))
2
j

]

+
1

2

∑
{i|Ri−Ri+1=1}

[∑
j

((κi+1, 1)
t)2j −

∑
j

(κti)
2
j +

∑
j

((ρi+1, 1)
t)2j −

∑
j

(ρti)
2
j

]

=
1

2

2L+1∑
i=2

[( 1

−2

)
(Ri−1 −Ri − 1)

[∑
j

(σti)
2
j −

∑
j

((σti−1, 1))
2
j +

∑
j

(γti)
2
j −

∑
j

((γti−1, 1))
2
j

]]

+
1

2

(∑
j

(σt1)
2
j −

∑
j

(κt1)
2
j

)
+

1

2

(∑
j

(γt1)
2
j −

∑
j

(ρt1)
2
j

)

+
1

2

2L∑
i=1

[(1
2

)
(Ri −Ri+1 + 1)

[∑
j

((κi+1, 1)
t)2j −

∑
j

(κti)
2
j +

∑
j

((ρi+1, 1)
t)2j −

∑
j

(ρti)
2
j

]]

+
1

2

(∑
j

(σt2L+1)
2
j −

∑
j

(κt2L+1)
2
j

)
+

1

2

(∑
j

(γt2L+1)
2
j −

∑
j

(ρt2L+1)
2
j

)

=
1

2

2L+1∑
i=2

[( 1

−2

)
(Ri−1 −Ri − 1)

[∑
j

(σti)
2
j − 1 +

∑
j

(σti−1)
2
j +

∑
j

(γti)
2
j − 1 +

∑
j

(γti−1)
2
j

]]

+
1

2

(∑
j

(σt1)
2
j − k

)
+

1

2

(∑
j

(γt1)
2
j − 0

)
+

1

2

(
k2 −

∑
j

(κt2L+1)
2
j

)
+

1

2

(
0−

∑
j

(ρt2L+1)
2
j

)

+
1

2

2L∑
i=1

[(1
2

)
(Ri −Ri+1 + 1)

[
1 + l(κi+1) +

∑
j

((κti+1)
2
j −

∑
j

(κti)
2
j

+ 1 + l(ρi+1) +
∑
j

((ρti+1)
2
j −

∑
j

(ρti)
2
j

]]

=
1

2

( 1

−2

)
(R2L −R2L+1 − 1)

[∑
j

(σt2L+1)
2
j +

∑
j

(γt2L+1)
2
j

]
+

1

2

2L+1∑
i=2

(Ri−1 −Ri − 1)− 1

2
k

+
1

2

(1
2

)
(R1 −R2 + 1)

[∑
j

(κt1)
2
j +

∑
j

(ρt1)
2
j

]
+

1

2

2L∑
i=1

(Ri −Ri+1 + 1)

+
1

2
k2 +

1

2

2L∑
i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

=
1

2
(k2 − k) + 1

2

2L∑
i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1)) +
1

2
(2R1 − 2R2L+1)−

1

2
(2L) +

1

2
(2L)

=
1

2
(k2 − k) + 1

2

2L∑
i=1

(Ri −Ri+1 + 1)(l(κi+1) + l(ρi+1))

(5.59)

Where the traversing structure between lattices allows some or all of the partitions for nodes in one lattice to

be written in terms of the partitions for nodes in adjacent lattices. If the ith edge in dimH(R) is of A-type

then the partitions for the node to which it connects in the i+ 1th lattice is known in terms of the partitions

of the node fromwhich it traverses in the ith lattice. If the ith edge is of a-type then the partitions for the node
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from which it traverses in the ith lattice is known in terms of the partitions of the node to which it connects

in the i+1th lattice. Line two uses this to rewrite the i sum as two sums, one overA-type edges and one over

a-type edges. Doing so allows the substitution into the calculation of the relations between nodes in adjacent

lattices. Throughout the calculation the sum over j is taken to mean the sum over all non-zero parts of the

partition.

In line three the same trick as in the calculation for dime
H(R) is employed to rewrite the sums with mul-

tiplicative factors dependant on Ri. The contribution for the first and final lattices are separated from the

rest. This is because the top partitions in the first lattice and the bottom partitions in the final lattice have to

be the top and bottom of the diagram so these contributions play a special role. In line four assessing some

of the sums that have been separated off yields k and k2 since κ1 = (k) and σ2L+1 = (1k). Also in line four

the relations
∑
j((λ

t, 1)j)
2 =

∑
i(λ

t
i)

2+1 and
∑
j((λ, 1)

t
j)

2 = 1+2l(λ)+
∑
i(λ

t
i)

2 have been employed.

In line five the i sum has been assessed for the j sum contributions. Much of these sums cancel with one

another leaving only the i = 2L+ 1 contributions from κ and ρ and the i = 1 contribution from σ and γ,

the remaining i sums have been separated out for clarity. In line six the first and fourth terms in line five have

been assessed to be zero. This is because R2L −R2L+1 − 1 = 0 = R1 −R2 + 1. Terms two and five in

line five mostly cancel amongst themselves leaving terms three, four, and five in line six. These three terms

all cancel to zero yielding the result in line seven.

Together, then, these results do indeed yield

dimH(R) =
1

2
(k2 − k) +N1L, (5.60)

as expected. In essence all contributions cancel in the same style as (5.51) - (5.54). The only contributions that

don’t are from the requirement thatR starts at the partition ((k); (0)) in the first lattice, ends at the partition

((1k); (0)) in the final lattice, and passes through precisely L a-type traversing edges.

5.6 Hasse diagrammodifications whenNi ≤ k + 2L− 1

So far, simplifying assumptions about the size ofN1 andN2 have been made. In the Coulomb brane config-

uration these were: N1 was always large enough that the two orbit subsystems Ō(k+L) and Ō(L) remained

disjoint and N2 was always large enough that performing L initial zeroth gap Kraft-Procesi transitions was

possible without having to move D5 branes back into the zeroth gap by starting to remove the orbit subsys-

tems.

However these two assumptions do not hold in all cases, especially as L becomes large. The failure of

these assumptions to hold is reflected in the explicit Hasse diagrams. When these assumptions break, the

indices carried by the labels for some edges become zero or negative. The transverse slice which the edge

represents is therefore not defined. In the brane configuration this corresponds to the Kraft-Procesi transition

towhich the edge corresponds no longer being possible. Theprecise values ofN1 andN2 atwhich this starts to

become an issue can be ascertained from considering either brane configuration constraints orHasse diagram

constraints.

In the Hasse diagram, only traversing edges carry dependence onNi orL. Consider the topmost travers-
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ing edges of A-type. The topmost traversing edge between the k′th and k′ + 1th lattices carries the label

AN2−k−2k′−1. Notek′ can take amaximumvalue ofL−1. TheA-type traversing edgewith the smallest index

in the whole Hasse diagram is therefore the topmost traversing edge between the upper (Ō(k+L−1); Ō(L−1))

lattice and the (Ō(k+L); Ō(L)) lattice. The edge carries the label AN2−k−2L+1. If this edge is to remain well

defined thenN2 > k+2L−1. Seeing asL can become arbitrarily large for any value ofN2, increasingLwill

always violate this requirement eventually. Consider the interpretation of this bound in the brane configura-

tion. The top most traversing edges between each lattice correspond to performing zeroth gap Kraft-Procesi

transitions without performing any orbit subsystem transitions. Each time a zeroth gap transition is per-

formed it moves twoD5 branes out of the zeroth gap. There areLD3 branes in the zeroth gap. To successfully

perform theLth transition, there needs to be at least 2LD5 branes in the zeroth gap initially. There areN2−k

D5 branes in the zeroth gap initially. ThereforeN2 − k ≥ 2L and so once againN2 > k+ 2L− 1. The con-

straints onN1 are exactly analogous when performed in the Higgs brane configuration since π(k,N1, N2, L)

is mirror dual to π(k,N2, N1, L). Therefore N1 > k + 2L − 1 is necessary for the edges to remain well

defined. The edges that carry the smallest indices with N1 dependence are in the position mirror to the top

most edges considered when discussingN2.

WhenNi ≤ k+2L−1 the explicit Hasse diagram for π(k,N1, N2, L), which can be unpacked from Fig.

5.34, needs to be modified. These modifications involve either removing the structure where edges become

badly defined or replacing it in a systematic way. The effects of N1 and N2 being too small are mapped into

one another bymirror symmetry. Assessing the effects of one of them being too small therefore fully uncovers

the effect of the other being too small. Here the effects ofN2 being too small are assessed using the Coulomb

brane configuration.

5.6.1 One bad edge: Ni = k + 2L− 1

WhenN2 = k + 2L− 1 (andN1 > k + 2L− 1) the only edge in the Hasse diagram which is undefined is

the topmost traversing edge between the upper (Ō(k+L−1); Ō(L−1)) lattice and the (Ō(k+L); Ō(L)) lattice.

In the general Hasse diagram prescription from Fig. 5.34, this edge is now labelled with “A0” which isn’t a

defined transverse slice. In the brane configuration this edge corresponds to an Lth consecutive initial A-

type Kraft-Procesi transition in the zeroth gap. When N2 = k + 2L − 1, the L − 1th transition leaves only

one D5 brane left in the zeroth gap and a further transition cannot be performed. Instead the only options

available are to perform the first transition in one of the orbit subsystems. This will move one D5 brane back

into the zeroth gap and allow the A1 transition which traverses from the two second-highest nodes in the

(Ō(k+L−1); Ō(L−1)) lattice. TheHasse diagrammodification in this case is removing the offending edge, the

topmost node in the (Ō(k+L); Ō(L)) lattice, and both the lattice edges which descend from this node, Fig.

5.35.

However in the specific case of N2 = k + 3 (so L = 2) this changes again. This case is shown in Fig.

5.36. Removal of the offending structure leaves a node in the (Ō(k+2); Ō(k)) lattice without any edge which

descends into it. However in assessing the brane configuration it is apparent that the firstA2 transitionmoves

one D5 brane into theN1−1th gap, leaves one in the zeroth gap and moves one into the first gap. The second

D3 brane in the zeroth gap can therefore be removed either by performing the first orbit transition, then an



CHAPTER 5. CIRCULAR QUIVERS 68

((k + L − 1, 1); (L − 1, 1))

((k + L); (L − 1, 1))

((k + L); (L))

((k + L − 1, 1); (L))

(Ō(k+L); Ō(L))

(Ō(k+L−1); Ō(L−1))

((k + L − 1); (L − 1))

((k + L − 2, 1); (L − 1))

((k + L − 2, 1); (L − 2, 1))

((k + L − 1); (L − 2, 1))

AN2−k−2L+1 =
‘‘A0”

A1

A1

A2

((k + L − 1, 1); (L − 1, 1))

((k + L); (L − 1, 1))

((k + L − 1, 1); (L))

(Ō(k+L); Ō(L))
∗

(Ō(k+L−1); Ō(L−1))

((k + L − 1); (L − 1))

((k + L − 2, 1); (L − 1))

((k + L − 2, 1); (L − 2, 1))

((k + L − 1); (L − 2, 1))A1

A1

A2

Figure 5.35: WhenN2 = k + 2L − 1, the topmost traversing edge between the upper (Ō(k+L−1); Ō(L−1))
lattice and the (Ō(k+L); Ō(L)) lattice carries an undefined label. In the brane configuration, the Kraft-Procesi
transition to which this edge corresponds is no longer possible. The result is that the edge is deleted. The
((k + L); (L)) node is therefore also deleted, as the brane configuration to which this node corresponds is
no longer possible. Finally the two edges which descend from this node are also deleted. (Ō(k+L); Ō(L))

∗ is
used to indicate the lattice after the modifying.
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Ak+1

Ak+1

A1

A1

Ak

Ak−1

‘‘A0
”

A1

A2

A3

(Ō(k+2); Ō(2))

(Ō(k+1); Ō(1))

(Ō(k); Ō(0))

Ak+1
A1

Ak

Ak−1

a2

A1

A2

A3

(Ō(k+2); Ō(2))

(Ō(k+1); Ō(1))

(Ō(k); Ō(0))

Figure 5.36: For the theoryπ(k,N1, k+3, 2), removing the offending structure leaves the node ((k+2); (12))
without an edge descending into it. An edge of appropriate dimension is therefore added, in this case a2. In
the general prescription, whenever a node is left ’floating’ like this, extra structure must be added to the Hasse
diagram (see discussion).

A1, or by performing an a2 transition in theN1 − 1th and zeroth gaps.

5.6.2 A modification prescription

The prescription for modifying the Hasse diagram whenN2 becomes too small comes in two parts. It can be

derived from considering what happens in the brane configuration, and which Kraft-Procesi transitions are

allowed, under the different circumstances. The prescription is as follows:

(1) Having constructed the general Hasse diagram for the appropriate values of k, N1, N2 and L,

identify all of the edges which carry undefined labels. Remove these edges, the nodes to which they traversed,

the edges which descend from those nodes and any nodes which are left without edges as a result.

(2) For every node that remains which no longer has any edge descending into it, identify the

shortest route in the original general prescription from this node to a node in the lattice above it. Add an ay
edge between these two nodes where y is the sum of the dimensions of the edges in the original general Hasse

diagram which this edge replaces.

The modifications necessary when N1 is too small can be found by performing the same prescription

under mirror symmetry.

Example: π(0, N1, 3, 2) The case of π(0, N1, 3, 2) is given in Fig. 5.37. Here the removal of the

offending structure leaves two nodes without edges descending into them. Two a2 edges are therefore added

following the prescription. The right-hand Hasse diagram of Fig. 5.37 can be confirmed to be correct for

MC(π(0, N1, 3, 2)) by explicit calculation using Kraft-Procesi transitions.

This completes the construction for any π(k,N1, N2, L) theory forNi > 2. Since

πνµt(M,N1, N2, L
′) ∈ K(π(k,N1, N2, L))
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aN1−1

aN1−3

A1

A1

‘‘A0”

A2

A1

A1

A2

aN1−1

aN1−1

aN1−3

A1

A2

a2

A1

a2

A2

aN1−1

Figure 5.37: An example of applying the modifying procedure to a general Hasse diagram for the theory
π(0, N1, 3, 2). On the left, the general Hasse diagram has an edge with a undefined label ‘‘A0”. Removing
this edge, the node into which it descends and the edges descending from this node leaves two nodes floating.
These are the ((2); (12)) and the ((12); (2)) nodes. Edges of dimension two therefore need to be added to the
Hasse diagram.

for sufficientL givenL′, this construction encompasses the Hasse diagram for any good circular quiver gauge

theory.



6

D-type Dynkin quivers

We now turn our attention to quivers whose gauge nodes and bifundamental hypermultplets form a Dn

Dynkin diagram. Themoduli spaces of vacua of some small D-type Dynkin quivers with unitary gauge nodes

have been explored before in, for example, [40, 51, 52, 54, 55, 62–64]. Here we give a comprehensive study

for general n.

6.1 Nilpotent varieties as Dynkin quiver Higgs branches

The so2n nilpotent varieties in (3.29) and (3.30) can be realised as the Higgs branches ofDn Dynkin quivers.

A generalDn Dynkin quiver is given in Fig. 6.38.

Themoduli space branches ofDnDynkin quivers have been discussed before in numerous contexts. Their

capacity to realise closures of so2n nilpotent orbits of (characteristic) height ht(Ōρ) ≤ 2 as their Coulomb

branches was considered in [52, 63, 64], to realise so2n Slodowy slices as their Higgs branches in [54], and in

the context of brane constructions for which they are IR descriptions in, for example, [62]. The discussion in

this section will concern the Dynkin quivers which realise nilpotent varieties appearing as a subvariety of the

maximal special slice as a Higgs branch. TheDn Dynkin quivers with ht(Ōρ) ≤ 2 nilpotent orbit Coulomb

branches are a subset of those which realise the Slodowy slices as Higgs branches thanks to (3.27) and so the

f1 f2 f3 fn−3

fn−2

f ′

f ′′g1 g2 g3 gn−3

gn−2

g′

g′′

. . .

Figure 6.38: A general 3dN = 4 unitaryDnDynkin quiver. Thefield content can be read in the standardway.
A circular gauge node labelled g represents a U(g) gauge group and carries an adjoint U(g) vectormultiplet.
Square nodes labelled f represent SU(f) flavour symmetry. Edges between circular nodes are bifundamental
hypermultiplets and edges between a circular and a square node are fundamental hypermultiplets. The gauge
nodes and bifundamental hypermultiplets form the Dynkin diagram so a Dn Dynkin quiver has n gauge
nodes total and a gauge group of U(g′)× U(g′′)×

∏n−2
i=1 U(gi).
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discussion automatically generalises the Coulomb branch results in the same manner.

A central tool to write down these quivers is the Kraft-Procesi transition [4], [5], and its generalization,

quiver subtraction, [64]. These processes identify and remove the transverse slice structure of the moduli

space branches. This work introduces the reverse procedure, quiver addition whereby transverse slices are

‘added’ onto known moduli spaces by the introduction of appropriate fields at the level of the quiver. To

demonstrate the technique’s effectiveness, quiver addition will be used to find the appropriate form for quiv-

ers realising Slodowy slices, then quiver subtraction will be used to identify quivers for subvarieties of the

maximal special slice. In order to perform the addition the quivers for the minimal degenerations must be

determined.

The maximal special slice S(2m−12,12) ∈ so4m has a Hasse diagram given in Fig. 3.10. It is clear that

there are only three types of minimal degenerations needed in order to construct these varieties, Dl, A2l−1

and A2l−1 ∪A2l−1.

Note that the Hasse diagram for partitions and the Hasse diagram of inclusion relations for Slodowy slices

are flipped. The Hasse subdiagram describing the singularity structure of S(2m−12,12) places the partition

(4m− 1, 1) at the top, as it is the most dominant partition. However the Higgs branches are Slodowy slices4

and as such this topmost node corresponds to a theory with trivialHiggs branch. If instead one drew a Hasse

diagram corresponding to the inclusion relations of the Higgs branches of the quivers, the largest branch

would be the slice S(2m−12,12) and this theory would be placed at the top. Labelling the edges of this quiver

Hasse diagram with the transverse slice between the quiver’s Higgs branches then yields a Hasse diagram

which is exactly the partition diagram flipped upside down. When adding transverse slices in order to build

upHiggs branches one builds theHasse diagram for the slice from the top and the theorywith the largest (with

respect to themoduli space inclusion relation) Higgs branch will be associated to the node at the bottom. This

is the convention which preserves the notation for the hierarchy of singularities within the varieties.

The three types of minimal degeneration that are realised as the Higgs branches of the Dynkin quivers are

given in Fig. 6.39. The top and bottom quivers are familiar, however the middle one is not. In the context of

so2n nilpotent varieties, theAk∪Ak singularity is associated to very even partitions and hence to the subtlety

regarding the nilpotent orbits for such partitions discussed previously. However in the broader context ofDn

quivers the Ak ∪ Ak singularity is associated with the choice that exists due to the equivalence of the two

end nodes. Simplistically, swapping the two end nodes doesn’t change the field theory for a Dn Dynkin

quiver, however in the more concrete diagrammatic context of quiver arithmetic, only one at a time will be

realised. There is therefore an important implicit assumption in the remaining discussion: When the flavour

content and/or gauge group of the two end nodes is different, there are implicitly two Dn Dynkin quivers

available, which represent the same field theory. These quivers, when they are both drawn, are labelled I

and II , following the very even nilpotent orbit naming convention. The Ak ∪ Ak singularity exists in two

scenarios, firstly when the end nodes differ and one of the flavours on an end node is 15. The implicit choice

that exists due to the difference in end nodes allows the observation that the true singularity isAk ∪Ak, not

justAk. Alternatively, if both end node flavours are 1 this also corresponds to anAk ∪Ak singularity if either

could be considered as forming an Ak singularity with flavour in the tail of the quiver.

4Which can be considered to be all the edges and nodes from a given node up in the Hasse diagram.
5And this makes anAk singularity with a flavour node on the tail.
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Figure 6.39: The 3dN = 4 quivers which realiseDk, Ak ∪Ak andAk singularities as their Higgs branches.
Each quiver has k nodes in each case. TheAk is familiar from linear quivers. TheDk case has been discussed
before, for example [54]. The Ak ∪Ak singularity is a little more complicated, see discussion.

Note that there areB and C type Dynkin quivers which realise as Coulomb branches two other minimal

degenerations bn and cn that appear inBCD-type orbit Hasse diagrams. However both involve non-simply

laced edges and so do not map onto the topology of theDn Dynkin quiver. Since the non-special nodes for

theDn always appear in the Hasse diagram as the end of an edge labelled with one of these singularities, this

failure of quiver arithmetic is exactly the restriction that non-special nodes can’t be included in the moduli

space branch Hasse diagrams. Hence the diagrams are limited to ht(Ōρ) ≤ 2 nilpotent orbits and their

subvarieties for Coulomb branches, and to the maximal special slice and its subvarieties for Higgs branches.

During quiver addition, the slice added to a given quiver must be such that its removal from the resulting

quiver would give back the flavour arrangement of the quiver being added to. It is important to establish what

happens to the flavour arrangement on the quivers when the slices are removed. Fig. 6.40 and Fig. 6.41 give

two such examples.

The conclusion is that theDk andAk slices ‘push’ a single flavour onto the first gauge node(s) attached to

them which are not part of the slice. A2k−1 ∪ A2k−1 is a little more complicated, the transition still pushes

flavour onto the first gauge nodes attached but not involved, however every time one of these slices is removed

there is an option as to which leg of the Dynkin diagram is chosen. For example if a flavour node 1 is attached

to both, the flavour on the one chosen gets pushed out of the diagram while the flavour on the one that wasn’t

chosen remains and is enhanced.
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Figure 6.40: Quiver addition of a Dn−2 singularity to the Higgs branch of a Dn Dynkin quiver. As per
the discussion, the theory with the larger Higgs branch is placed lower and quiver subtraction works from
the bottom, up. Reinterpreting the diagram as the removal of the singularity via the Higgs mechanism the
behaviour of the flavour becomes clear.
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Figure 6.41: Quiver addition of one case of theAn−3∪An−3 singularity to the Higgs branch of aDn Dynkin
quiver. Reinterpreting the diagram as the removal of the singularity via the Higgs mechanism (working up),
the behaviour of the flavour is clear. TheAk∪Ak transition for uneven initial end flavour is exactly analogous,
only the bottom quiver here has uneven end flavour (with one still 1) and so also comes with two versions, as
per the discussion.
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Figure 6.42: TheHasse diagram for the maximal special slice in so8 filled in with the 3dN = 4 quivers which
realise the Slodowy slices corresponding to each node. The singularity structure of the Higgs branches of the
quivers is therefore exactly all of the structure which dominates the node at which the quiver lives.

6.1.1 D4 quivers and nilpotent varieties of so8

D4 Dynkin quivers will be used several times as examples throughout. Here the quivers which realise so8
nilpotent varieties are studied in detail.

The special slice Hasse diagram for so8 is:

D4

A3 ∪ A3 D3.

A1 A1

(32, 12)

(5, 3)

(7, 1)

(42) (5, 13)

Beginning with a bareD4 Dynkin quiver, the only slice which can push all the flavour out of aD4 quiver

is a D4 transition so this is the topmost singularity in Fig. 6.42. There are now three prior quivers which

might have given this flavour arrangement by subtraction. At first they might all seem equivalent, however

they can be distinguished by considering what may be added to them in subsequent steps. The full sequence

is given in Fig. 6.42. Quiver subtraction can now be used in order to determine the quivers for any subvariety

of the maximal special slice in so8. An example of determining one such slice, namely the quiver with the

Higgs branch S(32,12) ∩ Ō(5,3) is
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Figure 6.43: A table that gives theD4-type Dynkin quivers for all of the subvarieties of the maximal special
slice of so8. The left hand column contains those theories which realise Slodowy slices and so appear in Fig.
6.42. Almost all of the remaining quivers are quivers for singularities, the only one that isn’t is the quiver
QMH

(S(32,12)∩Ō(5,3)). Trivial theories have been left blank and boxes which don’t correspond to a possible
variety have been crossed. Unlike the linear case, the subvarieties of the maximal special slice of so2n fall into
a small number of different types and so writing downmore general quivers for each of these types supersedes
the need to enumerate quivers for small algebras in tables.

QMH
(S(32,12) ∩ Ō(5,3)) = QMH

(S(32,12))− QMH
(S(5,3))

−=

=

1

1

1
2

3

2

2

1

1

2

1

1

1

1

1
1

1

1

1

The full table of such slices is given in Fig. 6.43. The partitions which define the transverse slices Ōµ∩Sν ,

that appear as the Higgs branches, are given as column and row headings.

6.1.2 Quivers for maximal special slices

When writing down the general quiver for a maximal special slice there are two options arising from the two

different Hasse diagrams for a maximal special slices given in Fig. 3.10, S(2m−12,12) ∈ so4m and S(2m2,12) ∈

so4m+2. The quivers associated to each of these general slices are given in Fig. 6.44. These can be established
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Figure 6.44: TheDn Dynkin quivers which realise themaximal special slices of so4m and so4m+2 respectively
as their Higgs branches.

by adding singularity quivers down any given route in the Hasse diagrams in Fig. 3.10, and can be checked

in numerous ways. The first is balance, for a gauge node labelled ci with flavour fi balance means

2ci = fi +
∑

cj linked to ci

cj . (6.61)

It is easy to see that the quiversQ(S(2m−12,12)) andQ(S(2m2,12)) in Fig. 6.44 fulfil this. Another test is Higgs

branch dimension. For a general balanced unitary quiver, the Higgs branch dimension is given by

dimH(MH(Qbal)) =
1

2

∑
i

cifi.

dimH(S(2m2,12)) = m + 2 and dimH(S(2m−12,12)) = m + 1, which the quivers for the maximal special

slices also satisfy.

6.1.3 Quivers for special slice nilpotent varieties in so2n

A theory Q1 descends from another theory, Q2, ifMH(Q1) ⊂MH(Q2). Clearly all theDn Dynkin quivers

concerned here6 are descendants of QMH
(S(2m−12,12)) (resp. QMH

(S(2m2,12))), given in Fig. 6.44. Instead

of giving tables for small algebras, it is possible to write the general form for any theory one would expect to

find as a descendant of QMH
(S(2m−12,12)) or QMH

(S(2m2,12)).

Because of (3.31), one needs to establish quivers for only 7 of the varieties listed in (3.29) and (3.30).

The minimal degeneration Ō(2m2) ∩ S(2m−12,12) = A2m−1 ∪A2m−1 has been discussed, so only 6 general

quivers need to be found. It transpires that all six can be written as one of two general forms given in Fig.

6.45. There are some conventions for reading these quivers also given in Fig. 6.45. The quivers for the six

6Q(V) for V a subvariety of the maximal special slice S(2m−12,12) (resp. S(2m2,12)), enumerated in (3.29) and (3.30).
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Figure 6.45: The general forms for theDn Dynkin quivers which realise so2n nilpotent varieties as their Higgs
branches. TheB(p, q) quiver always has 2m (resp. 2m+ 1) nodes for varieties in so4m (resp. so4m+2). The
conventions are that, in both quivers, when q = −1 this corresponds to having a flavour of 1 on both end
nodes, and when q = −2 this corresponds to having a flavour 2 on one end node.

general nilpotent varieties that are left to find take the forms

QMH
(Ōψj

∩ S(2m2)) = A(m− j,−2)

QMH
(Ōψ′

j
∩ S(2m2,12)) = B(m− j + 1, 2m+ 1)

QMH
(Ōψj

∩ Sψk
) = A(k − j, 2m− 2k − 2)

QMH
(Ōφj

∩ Sφk
) = A(k − j, 2m− 2k − 3)

QMH
(Ōψj

∩ Sφk
) = B(k − j + 1, 2m− 2k − 3)

QMH
(Ōψ′

j
∩ Sφ′

k
) = B(k − j, 2m− 2k − 4).

(6.62)

These have been established using quiver addition and using the Hasse subdiagrams of Fig. 3.10 which cor-

respond to each subvariety as a guide. The claim that these are all the so2n nilpotent varieties appearing as

moduli space branches ofD4 Dynkin quivers is confirmed in the next section. There, the singularity structure

of general good Dn Dynkin quivers is found and a comparison with the known singularity structure of any

further so2n nilpotent varieties is made. This shows that none of the Dn Dynkin quivers have further so2n
varieties as moduli space branches.

D4 example (6.62) can be used to reproduce the results forD4 quivers relatively easily. There were only

4D4 Dynkin quivers which realised nilpotent varieties of so4m (som = 2) which weren’t also singularities.

These were the quivers
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whose appearance as the quivers which realised so8 nilpotent varieties as theirHiggs branches can be checked:

QMH
(Ō(7,1) ∩ S(32,12)) = QMH

(Ōψ0
∩ Sφ1

) = B(2,−1)

QMH
(Ō(7,1) ∩ S(42)) = QMH

(Ōψ0
∩ S(2m2)) = A(2,−2)

QMH
(Ō(7,1) ∩ S(5,13)) = QMH

(Ōψ0 ∩ Sφ0) = B(1, 1)

QMH
(Ō(5,3) ∩ S(32,12)) = QMH

(Ōψ1
∩ Sφ1

) = B(1,−1).

(6.63)

Here the variety is written in the form of (3.29), the type of quiver read from (6.62) and Fig. 6.45 used to draw

the quiver. This reproduces the familiarD4 results.

6.2 BalancedDn Dynkin quivers

Which varieties doDn Dynkin quivers realise with their moduli space branches? And is there a way of writ-

ing down a simple, complete description of every possible good Dn Dynkin quiver which also provides a

simple means by which to extract moduli space information7? This section tackles both problems simulta-

neously. The full singularity structure of the moduli space varieties of Dn Dynkin quivers is provided and

a classification based on that structure established. The analysis is performed without explicit reference to a

brane construction in order to inform generalisations to quivers with no such description.

When discussing Dn Dynkin quivers with nilpotent varieties of so2n as their moduli space branches,

essential building blocks were those quivers which correspond to theminimal degenerations, or singularities.

The singularities are Ak, ak, Ak ∪ Ak and Dk. These are the basic building blocks used to investigate the

local structure of the moduli spaces for Dn Dynkin quivers. In conjuncture with this structure, there is a

natural characterisation of all good Dn Dynkin quivers. The simplest subclass to tackle is that of balanced

Dn Dynkin quivers, which are investigated first.

At the level of the quiver, balance is the requirement that the sum of all the nodes connected to a given

gauge node by an edge (flavours and other gauge nodes) is exactly double the rank of the given gauge node.

This is referred to as the gauge node having zero excess. Consider a general quiver with gauge nodes with

positive rank gi, where the upper index refers to some ordering of the gauge nodes. Attached to these gauge

nodes are flavour nodes with non-negative label f i. For each gauge node gi, consider the set of gauge nodes

which are connected to gi via an edge. This will be a collection of gauge nodes labelled with indices in the set

ji. The condition of balance is then

ei = f i − 2gi +
∑
k∈ji

gk = 0. (6.64)

Balance imposes a general restriction to Dn Dynkin quivers. The difference in the flavour attached to

each of the end nodes must be even. For the quiver in Fig. 6.38 this means that f ′ − f ′′ ≡ 0 mod 2.

For concreteness take f ′′ ≥ f ′. Consider the situation where the difference in flavour is odd, that is, f ′′ =

f ′ + 2b+ 1. Balancing the end nodes requires that g′ = 1
2 (f

′ + gn−2) and so f ′ + gn−2 must be even, but

also that g′′ = 1
2 (f

′ + 2b+ 1 + gn−2), so f ′ + gn−2 must be odd. An odd difference in flavour is therefore

7In analogy to the way the moduli space varieties of a linear (An Dynkin) quiver and the name of that quiver are related.
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Figure 6.46: The only possible balanced singularity to consistently (maintaining balance) add to a bare Dn

Dynkin quiver is the Dn singularity. This is drawn below the bare quiver when constructing the Hasse dia-
gram because the Higgs branches of the quivers realise Slodowy slices which correspond to edges in the Hasse
diagram dominating the node at which the quiver sits, as per the discussion.

unbalanceable. This will become important later for goodDn Dynkin quivers, but for now all it means is that

the balanced quivers must have f ′ − f ′′ even. Using nomenclature that will be introduced in more detail in

the discussion of good quivers, this is the restriction that all balanced Dn Dynkin quivers must be of even

type.

The localmoduli space analysis and classification of balancedDnDynkin quivers arises via the imbuing of

poset structure onto the set of balanced quivers. In this analysis, this structure will be based on the inclusion

relations of the Higgs branches of the theories. This structure will be illustrated using a Hasse diagram built

up using quiver addition.

The premise of quiver addition is that, for a given quiver, there exists at least one ‘larger’ quiver from

which the first quiver could have been found via the removal of a singularity from the larger quiver. Using the

realisation of singularities as (sub)quivers, one can find all of the larger quivers for a given quiver by ‘adding

back’ the singularities. If one does this starting with some minimal quiver, and does so while insisting on

maintaining balance at all times, one can recover any balancedDn Dynkin quiver. This procedure also gives

the set of balancedDn Dynkin quivers the desired poset structure, which is illustrated by the Hasse diagram

one constructs by adding the slices back. Furthermore, since this procedure is based off of the transverse

slice structure of the Higgs branches of the theories, one has automatically generated the Hasse diagram

representing the singularity structure of the varieties that these quivers realise as moduli space branches.

Once this poset structure is uncovered, the classification of balancedDn Dynkin quivers follows simply. As

each node in the Hasse diagram represents a unique balancedDn Dynkin quiver, and every quiver is in the

diagram, a unique label for every node gives a unique label for every quiver.

The smallest balancedDn Dynkin quiver is the flavourless trivial quiver at the top of Fig. 6.46. All gauge

node are trivially balanced. Note that a gauge node of rank zero cannot be balanced unless all gauge nodes are

zero. Therefore the only transverse slice it is possible to add whilst maintaining balance isDn, this addition

is given in Fig. 6.46. Recall that the manipulation of the quivers in performed in the Higgs branch geometry

so the Hasse diagram is drawn descending from the trivial theory at the top.

From here there are two options. The single flavour on the second node might have been the result of an

A1 transition in the end node of the tail, or aDn−2 transition in the third through nth nodes. Both of these
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Figure 6.47: More of the Hasse diagram for completely balanced Dn Dynkin quivers with the added singu-
larities indicated by the labels of the edges. Again, because the quivers’ Higgs branches are Slodowy slices, to
be consistent with how singularity structure is read fromHasse diagrams, the larger quivers are placed lower.

possibilities are added, Fig. 6.47. Now the only transverse slice that can be added to the right hand theory

is Dn−1, whereas the left hand theory could have an A3 or Dn−4 added to it. Note that adding Dn−1 to

the right hand theory or A3 to the left hand theory results in the same parent quiver. Each theory should be

a single node in the Hasse diagram and so the structure drawn in Fig. 6.47 reflects this. This process may

be continued indefinitely but the structure is very regular. For general8 n the structure of the balanced Dn

Dynkin quiver Hasse diagram is given in Fig. 6.48.

The structure of the balanced Hasse diagram is that of Hasse diagrams for partitions of even integers

with Dk traversing structure. This provides the means to classify the balanced Dn Dynkin diagrams very

neatly. The problem of classification is now as follows: For a given n, how can every node of this balanced

Hasse diagram be labelled uniquely? The interpretation of the Hasse diagram as even magnitude partition

subdiagramswith traversing structure provides an easy answer. Assign to every node in Fig. 6.48 the partition,

κ, which denotes the place of that node in its partition Hasse subdiagram9. In this way every balanced Dn

Dynkin quiver can be specified with the integer n and the partition κ. The class of balanced Dn Dynkin

quivers is therefore denotedDκ(n).

Assigning these partitions to the theories has a natural interpretation in terms of the distribution of

flavours across the quiver. By writing the flavours as in Fig. 6.49, the partition to which the theory is as-

8What happens when a specific value of n is chosen is explored momentarily.
9Importantly, these partitions are not partitions for the nilpotent varieties of so2n. These evenmagnitude partitions are not otherwise

restricted.
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Figure 6.48: TheHasse diagram resulting from balanced quiver addition for a genericDn Dynkin quiver. The
diagram takes the formof linear subdiagrams of evenmagnitude partitionHasse diagramswithDk singularity
traversing structure. TheHasse diagram for themaximal special slice is readily identifiable as the top two lines
of traversing structure. Clearly when a specific value of n is chosen, some of the traversing structure edges
become undefined, this is dealt with momentarily via an editing prescription.
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g′

g′′
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Figure 6.49: The necessary form of a balanced Dn Dynkin quiver. This naming convention for the flavours
is the one used for all the quivers of even type and allows for easy interpretation between a theory’s quiver,
name and moduli space singularity structure.

signed is

κ = (nfn , n− 1fn−1 , . . . , 2f2 , 1f1). (6.65)

Having labelled the nodes with these partitions the balanced Hasse diagram can be written more com-

pactly as a sequence of partition Hasse diagrams along with an edge diagram capturing the traversing struc-

ture:

P(2p) ∋ κ

(κt, 12)t ∈ P(2p+ 2).

D
n−l(κ t)

It is necessary to consider when the construction given in Fig. 6.48 needs editing. For a specific and

finite n, there are obvious issues which arise. For a node κ such that n− l(κt) < 2, the traversing edge which

descends from the node represents a singularity which is not defined. In such circumstances one needs to edit

the construction by removing or replacing some nodes and edges in a systematic way. This will be discussed

in a moment.

We begin with a proof that the construction in Fig. 6.48 does indeed contain every balancedDn Dynkin

quiver by proving that balancing the quiver in Fig. 6.49 requires the flavour to be distributed in the quiver

such that the partition (6.65) is of even magnitude. Since two different partitions necessarily give a different

flavour distribution, such a proof demonstrates that every balancedDn quiver lives at a unique node in Fig.

6.48, and so the classification for balanced quivers is complete.

Proposition. A balanced Dn Dynkin quiver must take the form of Fig. 6.49 with an even magnitude

partition. Also l(κ) = g1 and |κ| = 2g′′.

Corollary. The classDκ(n) contains every balancedDn Dynkin quiver.

Proof. Proving the proposition and corollary above requires demonstrating that balancing Fig. 6.49 re-

quires κ to have even magnitude, that is, |κ| =
∑n
i=1 ifi = 2x for some x. Also recall that l(κ) =

∑n
i=1 fi.

The left hand gauge node of Fig. 6.49 is of rank g1. Balancing this node requires 2g1 = f1 + g2 and so

g2 = 2g1 − f1. Now consider balancing the second node, this requires that 2g2 = g1 + f2 + g3 and so

g3 = 2g2− g1− f2 = 3g1− 2f1− f2. Balancing the nodes along the tail one at a time in this manner yields

the balance criteria

gk = kg1 −
k−1∑
i=1

(k − i)fi (6.66)
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for k ≤ n− 2. Applying this to the n− 2th node and rearranging terms yields

gn−2 = (n− 2)g1 −
n−3∑
i=1

(n− 2− i)fi

= (n− 2)g1 − (n− 2)

n−3∑
i=1

fi + |κ| −
n∑

i=n−2

ifi.

(6.67)

This is one of two equations which give a balancing condition on gn−2. The other comes from balancing gn−2

directly such that 2gn−2 = gn−3 + fn−2 + g′ + g′′. Using the balance requirements of g′ and g′′, that is,

2g′ = gn−2 + fn−1 and 2g′′ = gn−2 + fn−1 + 2fn, gives

gn−2 = gn−3 +

n∑
i=n−2

fi (6.68)

Writing gn−3 explicitly using (6.66), equating (6.67) to (6.68) and rearranging for |κ| gives

|κ| = −g1 − (n− 3)
n−4∑
i=1

fi +
n−4∑
i=1

ifi +
n∑

i=n−2

fi + (n− 2)
n−3∑
i=1

fi +
n∑

i=n−2

ifi

= −g1 +
n∑
i=1

ifi − (n− 3)fn−3 − (n− 3)

n−4∑
i=1

fi + (n− 3)

n−3∑
i=1

fi +

n−3∑
i=1

fi +

n∑
i=n−2

fi

= −g1 + l(κ) + |κ|,

so g1 = l(κ). When moving from lines one to two the third and sixth terms go to make the second and third

terms. The first, second and fourth terms are pulled through and the fifth term is split into terms five and six.

From lines two to three, term two is just |κ|, the last two terms come together to form l(κ), the middle three

terms cancel. Returning to (6.67), rearranging for |κ| and using g1 = l(κ) gives

|κ| = gn−2 − (n− 2)l(κ)− (n− 2)

n−3∑
i=1

fi +

n∑
i=n−2

ifi

= gn−2 − (n− 2)(fn−2 + fn−1 + fn) + (n− 2)fn−2 + (n− 1)fn−1 + nfn

= 2fn + fn−1 + gn−2

= 2g′′,

(6.69)

where the g′′ balance requirement was used in the final line (the g′ balance requirement would have also

worked). This completes the proof that balancing the quiver imposes that the magnitude of κ is even, proving

the proposition. Every node in the balanced Hasse diagram is a different quiver. Each quiver is determined

completely by n and κ. Therefore exactly one balanced quiver can be associated to each (n, κ) pair, this is the

quiver which appears in the balanced Hasse diagram, Fig. 6.48. All balancedDn Dynkin quivers are present

so the classDκ(n) contains all balancedDn Dynkin quivers exactly once.

There remains the task of establishing a systematic editing of the Fig. 6.48 construction when a specific

value of n is chosen. This can be investigated in a number of corresponding ways. As mentioned already, for

κ with n − l(κt) < 2 the edge labels become undefined. It is also clear that there is no interpretation in the
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f1 f2 f3 fn−3

fn−2
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g1 g2 g3 gn−3
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g′′

. . .(nfn , n− 1fn−1 , n− 2fn−2 , . . . )

(nfn+1, n− 1fn−1 , n− 2fn−2−1, . . . )

f1 f2 f3 fn−3

fn−2 − 1

fn−1

fn−1 + 2fn + 2
g1 g2 g3 gn−3

gn−2

g′

g′′ + 1

. . .

∼

∼

afn−1+2fn+1

fn−j−1 1

1

2fn + 1

gn−j−2

gn−j−1 gn−j + 1 gn−j+1 + 1

gn−3 + 1

gn−2 + 1

g′ + 1

g′′

. . .. . .

fn−j−1 + 1

2fn + 2

gn−j−2

gn−j−1

gn−j

gn−j+1 gn−3

gn−2

g′

g′′

. . .. . .(nfn+1, n− j − 1fn−j−1+1, . . . )

(nfn , n− 1, n− j, n− j − 1fn−j−1 , . . . )

∼

∼

Aj ∪Aj

Figure 6.50: The editing prescription for the balanced Dn Hasse diagram given in Fig. 6.48 when a specific
value of n is chosen and some edges become undefined. Once the offending edges and nodes have been
removed, some edges must be added back into the Hasse diagram. This can be calculated from the point of
view of the partitions assigned to the nodes between which the edges lie, or by appealing to the structure of
the quiver in those circumstances, both are presented here.

style of (6.65) and Fig. 6.49 when the largest part of κ is larger than n. For n− l(κt) < 2 to be true, it must be

the case that κ contains parts larger than n− 2. Therefore the traversing structure for the nodes labelled with

κ with no parts larger than n − 2 is unaffected in the editing. There is also simply no theory corresponding

to partitions with largest part larger than n. The editing prescription is then as follows:

Editing prescription To write down the balanced Hasse diagram forDn Dynkin quivers for some specific

n, start with the general construction Fig. 6.48. Identify in this construction all of the nodes with parts larger

than n and delete them and all the edges depending on them. Now identify the partitions with one or more

parts equal to n and/or n− 1, change the edges coming from these nodes systematically using Fig. 6.50.

An illustrative example of the editing necessary for the Hasse diagram for Dκ(4) for |κ| ≤ 8 is given in

Fig. 6.51. Notice how those D4 Dynkin quivers which realise so8 nilpotent varieties are the tiny number

living at the very top of the final D4 balanced Hasse diagram. Fig. 6.51 is limited to |κ| ≤ 8 for practical

purposes, the fullD4 balanced Hasse diagram can be expanded using quiver addition forever.

6.2.1 Dimension matching for balanced theories

Calculating the dimension of the moduli space branches of balancedDn Dynkin quivers gives a useful check

of the construction and analysis in Fig. 6.48. The simplest calculation is that of the dimension of the Higgs

branch ofDκ(n) using Fig. 6.48. This requires picking a route from the node corresponding to the theory up

to the top of Fig. 6.48.
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Figure 6.51: An example of the editing prescription for the balanced Hasse diagram to explicitly find the
diagram forDκ(4) for |κ| ≤ 8. On the left we draw the general construction from Fig. 6.48 with n = 4. The
nodes corresponding to partitions with parts that are too big are circled and the labels of those edges which
are no longer viable are in inverted commas. On the right the nodes with parts that are too large and edges
with undefined labels have been removed as per the prescription and the new edges have been edited and
added as per Fig. 6.50. This structure can be explicitly verified using quiver addition onD4 Dynkin quivers.
At the very top of the structure, the top five nodes take on the form of themaximal special slice Hasse diagram
forD4. As observed in Fig. 6.48, the top two lines of traversing structure of the general case gives the Hasse
subdiagram for the maximal special slice of the corresponding so2n algebra. When a specific value of n is
chosen, much of this structure is edited away. Since this subdiagram was the only part which appeared in
both the Hasse diagram for nilpotent orbits of so8 and in the balanced Hasse diagram forD4 Dynkin quivers,
this once again shows that D4 Dynkin quivers cannot realise nilpotent varieties of so8 outside the maximal
special slice (The A1 from partitions (3, 1) to (22) also appears in so8, but is incidental here and is not a
feature repeated for other algebras).
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The simple route to choose is to go from the node labelled κ up to the top of the linear subdiagram of

nodes (covering the sln Slodowy slice to the sln nilpotent orbit Ōκ) then along theDk transitions at the top

of the diagram. This gives

dimH(MH(Dκ(n))) = dimH(Sκ) +
|κ|−2∑
j=0

dimH(Dn−j) =
1

2

(∑
i

(κti)
2 − |κ|

)
+

1

2
|κ| = 1

2

∑
i

(κti)
2,

(6.70)

where the sum over i is the sum over all the nonzero parts of the partition in each summation. The dimension

of sln nilpotent varieties can be found in [31].

A general calculation requires a general route up through Fig. 6.48 from the node κ to the top. This route

will go from κ up to some node in P(|κ|) which dominates κ and is of the form (ηt, 12)t (this is required by

the traversing structure). There the route traverses up to the node η ∈ P(|κ| − 2) and then up to some other

node in P(|κ| − 2) of appropriate form and across again, and so on up to the top of Fig. 6.48.

Denote the lowest visited node in each linear subsystem P(d) as λd. The highest node in P(d) which the

route passes through is then specified via the traversing structure by λd−2. Under this notation λ|κ| = κ and

λ0 = (0). Using this notation the dimension of a general route up through Fig. 6.48 is

dimH(MH(Dκ(n))) =

|κ|−2∑
j=0, even

[
dimH

(
Dn−l(λt

|κ|−j−2
)

)
+ dimH

(
Sλ|κ|−j

∩ Ō(λt
|κ|−j−2

,12)t

)]

=
1

2
|κ|+

|κ|−2∑
j=0, even

1

2

[∑
i

((λt|κ|−j|)i)
2 −

∑
i

((λt|κ|−j−2)i)
2 − 2

]

=
1

2

(∑
i

((λt|κ|)i)
2 −

∑
i

((λt0)i)
2

)

=
1

2

∑
i

(κti)
2.

(6.71)

Once again, sums over imean sums over all the nonzero parts in the partition and the nilpotent varieties are

those found in sln algebras. The general route agrees with the first, simpler, calculation, as expected since the

dimensions ought to be route-independent.

The quaternionic dimension of the Coulomb branch for a unitary quiver gauge theory is the sum of the

ranks of the gauge nodes, therefore the dimension of the Coulomb branch for theDp singularity quiver is

dimH(MC(QMH
(Dp))) = 2p− 3 = dimH(dp), (6.72)

where dp is the mirror variety toDp.

The construction in Fig. 6.48 can be checked by calculating the dimension of the Coulomb branch of a

Dn Dynkin quiver in two different ways. The first way is to sum over the ranks of all the nodes of a general

balancedDn Dynkin quiver, Fig. 6.49. The second way is to sum over the mirror varieties of a general route

up through Fig. 6.48. For sln nilpotent varieties the mirror of Sρ ∩ Ōσ is Sσt ∩ Ōρt .

Before proving the equality of the results of these methods it is worth recalling a small result which will
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form an essential step. Given a general partition η = (zyz , . . . , 1y1),

∑
i

(((η, 1a)t)i)
2 =

(
z∑

m=1

ym + a

)2

+

z∑
q=2

(
z∑

m=q

ym

)2

= a2 + 2l(η)a+
∑
i

(ηti)
2 (6.73)

generalizing the result used previously.

Proposition. Fig. 6.48 passes the Coulomb branch dimension check, that is,

dimH(MC(Dκ(n))) =

n−2∑
k=1

[
kg1 −

k−1∑
i=1

(k − i)fi

]
+ g′ + g′′

=

|κ|−2∑
j=0, even

[
dimH

(
MC

(
QMH

(Dn−l(λt
|κ|−j−2

))
))

+ dimH

(
Mirror(Sλ|κ|−j

∩ Ō(λt
|κ|−j−2

,12)t)
)]

.

(6.74)

In fact

dimH(MC(Dκ(n))) =
1

2
|κ|(2n− 1)− 1

2

∑
i

(κi)
2. (6.75)

Proof. Both lines on the right of (6.74) equal the right side of (6.75). Firstly,

|κ|−2∑
j=0, even

[
dimH

(
MC

(
QMH

(Dn−l(λt
|κ|−j−2

))
))

+ dimH

(
Mirror(Sλ|κ|−j

∩ Ō(λt
|κ|−j−2

,12)t)
)]

=

|κ|−2∑
j=0, even

[
2(n− l(λt|κ|−j−2))− 3 + dimH

(
Ōλt

|κ|−j
∩ S(λt

|κ|−j−2
,12)

)]

=

|κ|−2∑
j=0, even

[
2n− 3− 2l(λt|κ|−j−2) +

1

2

(∑
i

(((λt|κ|−j−2, 1
2)t)i)

2 −
∑
i

((λ|κ|−j)i)
2

)]

=

|κ|−2∑
j=0, even

[
2n− 3− 2l(λt|κ|−j−2)−

1

2

(∑
i

((λ|κ|−j)i)
2

)

+
1

2

(
4 + 4l(λt|κ|−j−2) +

∑
i

((λ|κ|−j−2)i)
2

)]

=

|κ|−2∑
j=0, even

[
2n− 1 +

1

2

∑
i

((λ|κ|−j−2)i)
2 − 1

2

∑
i

((λ|κ|−j)i)
2

]

=
1

2
|κ|(2n− 1) +

1

2

∑
i

((λ0)i)
2 − 1

2

∑
i

((λ|κ|)i)
2

=
1

2
|κ|(2n− 1)− 1

2

∑
i

(κi)
2.

(6.76)

The most important steps in (6.76) are from lines three to four where (6.73) was used and from lines five to

six where the sum over j is assessed, which results in massive cancellation between the i sums.
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For the second part, begin with the realisation that

n−2∑
k=1

[
kg1 −

k−1∑
i=1

(k − i)fi

]
+ g′ + g′′ = g1

n−2∑
k=1

k −
n−2∑
k=1

k∑
i=1

(k − i)fi + g′ + g′′

=
1

2
g1(n− 2)(n− 1) + g′ + g′′ −

n−3∑
l=1

fl n−2−l∑
j=1

j

 (6.77)

which can be found by expanding the second term of the right of the first line directly, and rearranging.

Assessing the j sum and substituting the values of g′ and g′′ in terms of κ and fn known from balancing

yields

1

2
g1(n− 2)(n− 1) + |κ| − fn −

n−3∑
l=1

1

2
fi(n− 2− l)(n− 1− l)

=
1

2

(
n∑
l=1

fl

)
(n− 2)(n− 1) + |κ| − fn

− 1

2

(
n−3∑
l=1

fl

)
(n− 2)(n− 1) +

1

2
(2n− 3)

n−3∑
l=1

lfl −
1

2

n−3∑
l=1

l2fl

=
1

2

(
n∑

l=n−2

fl

)
(n− 2)(n− 1) + |κ| − fn −

1

2
(2n− 3)

n−3∑
l=1

lfl −
1

2

n−3∑
l=1

l2fl

=
1

2
|κ|(2n− 1) +

1

2

[
(n2 − 3n+ 2)

(
n∑

l=n−2

fl

)
− (2n− 3)

(
n∑

l=n−2

lfl

)
− 2fn −

n−3∑
l=1

l2fl

]

=
1

2
|κ|(2n− 1) +

1

2

[
−

n∑
l=1

l2fl

]

=
1

2
|κ|(2n− 1)− 1

2

∑
i

(κi)
2,

(6.78)

as required, completing the proof. From line one to two the (n− 2− l)(n− 1− l) term was expanded and

g1, g′ and g′′ written in terms of flavours and κ. From line two to three, terms one and four mostly cancel

with one another. From lines three to four

n−3∑
l=1

lfl =

n∑
l=1

lfl −
n∑
n−2

lfl = |κ| −
n∑

l=n−2

lfl. (6.79)

was used. From lines four to five the two sums over {n − 2, n − 1, n} were assessed and the terms in the

square brackets simplify considerably.

6.3 From balanced to good quivers

So far the discussion has classified all balanced Dn Dynkin quivers by appealing to their moduli space sin-

gularity structure. The class Dκ(n) of balanced quivers can be ordered into a Hasse diagram as in Fig. 6.48

by appealing to the moduli space inclusion relations. Classification of all good Dn Dynkin quivers can now

also be performed. Whereas the gauge node excesses of balanced quivers must be zero, the excesses for good
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quivers need only be non-negative. Balanced quivers are therefore a subset of good quivers for a given gauge

node topology.

Given a complete set of balanced quivers for a class of quivers with a given gauge node topology, one can

construct a set of good quivers fairly easily using quiver subtraction introduced in [64]. A quiver, Q1, can

only be subtracted from another quiver, Q2, to give a third quiver, Q3, if Q1 and Q2 have the same gauge

node topology and if the gauge nodes in Q3 have non-negative rank10.

Consider two balanced quiversQ1
bal andQ2

bal with gauge nodes with positive rank g1i and g2i respectively11.

Attached to these gauge nodes are non-negative flavour nodeswith label f1i and f2i . Proving thatQ1
bal−Q2

bal =

Q3 is a good quiver is straightforward. Consider that in order for quiver subtraction to make sense requires

g1i ≥ g2i for all i. For each gauge node gi, consider the set of nodes which are connected to gi via an edge. This

will be a collection of gauge nodes labelled with indices in the set ji. The condition of balance then imposes

that the excess e of every gauge node is zero,

eai = fai − 2gai +
∑
k∈ji

gak = 0, (6.80)

where a ∈ {1, 2}. From quiver subtraction, g3i = g1i − g2i ≥ 0 and f3i = f1i . The excess on the gauge nodes

in Q3 is then,

e3i = f3i − 2g3i +
∑
k∈ji

g3k

= f1i − 2(g1i − g2i ) +
∑
k∈ji

(g1k − g2k)

= 2g2i −
∑
k∈ji

g2k

= f2i .

(6.81)

Flavours are non-negative and so the excess is larger than zero, the result of quiver subtraction amongst bal-

anced quivers is always a good quiver. As we will discuss in the next subsection, those good quivers that are

constructable as a difference of balanced quivers are not necessarily all possible good quivers.

6.4 GoodDn Dynkin quivers

This section lays out the characterisation and local moduli space analysis of good Dn Dynkin quivers. Any

two balanced quivers where one can be subtracted from the other yield a good quiver. Having already char-

acterised all the balancedDn Dynkin quivers, a large number of good quivers can be found by examining all

possible subtractions. In the (linear) An Dynkin quiver case this encapsulated all the possible good quivers,

however for the Dn case it does not. When looking at balanced quivers one quickly excluded any quivers

with an odd difference in flavour on the end nodes as being unbalanceable. However loosening the restric-

tion to the class of good quivers means that they have to be included. The trouble is that the difference of

10Note that the rank of some gauge nodes in Q3 may be zero. This changes the gauge node topology since the rank zero nodes are
effectively absent. This includes the possibility that Q3 is a disjoint quiver.

11Where the lower index refers to some ordering of the gauge nodes which is maintained across quivers.
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f1 f2 fn−3

fn−2

f′

f′′
(g1, e1) (g2, e2)

. . .
(gn−3, en−3)

(gn−2,

en−2)

(g′, e′)

(g′′, e′′)

Figure 6.52: The general form for a good Dn Dynkin quiver. Each gauge node is now labelled with a rank
and a non-negative excess. Balanced quivers are the subset of good quivers where the excess on all the gauge
nodes is zero.

f1 f2 fn−3

fn−2

fn−1

fn−1 + 2fn

(g1, e1) (g2, e2)

. . .
(gn−3, en−3)

(gn−2,

en−2)

(g′, en−1)

(g′′, en−1 + 2en)

Figure 6.53: The general form of a good Dn Dynkin quiver of even type. Note that as well as the difference
in flavours on the end nodes having to be even, the difference in excess of the end nodes also has to be even.

two balanced quivers must necessarily have an even difference of end flavours, and good quivers with an odd

difference in end flavours cannot possibly be found as balanced subtractions. The classification of good Dn

Dynkin quivers therefore necessarily divides into two parts: Those with an even difference in end flavours,

even type, and those with an odd difference in end flavours, odd type.

It will be shown that all good Dn Dynkin quivers of even type can be found as the subtraction of two

balanced Dn Dynkin quivers. The moduli space singularity structure can be expressed as a run from one

node down to another node on the balanced Hasse diagram constructed in Fig. 6.48. This is shown by

premising an arbitrary good quiver of even type and describing a general method by which the two relevant

balanced quivers can be found. This will allow a classification of all good even Dn Dynkin quivers using

two even partitions (not necessarily of the same magnitude) and the integer n. Attention is then turned to

good quivers of odd type. This classification requires very similar methods to even type. Poset structure is

established for a class of quivers from which all good odd quivers can be found using quiver subtraction and

the completeness of the classification verified using similar methods to the even case.

6.4.1 Dn quivers of even type

Each gauge node in a good quiver has associated to it, a flavour, a rank, and an excess. Even quivers have an

even difference of flavours on the end nodes. It is simply to establish that the difference in the excess for the

end nodes must also be even for an even quiver. Consider Fig. 6.52, the ‘balance’ (while regarding the excess)

of the lower node requires gn−2 + fn−1 + 2fn = 2g′′ + e′′, and the balance of the upper node requires

gn−2 + fn−1 = 2g′ + e′, putting these together requires e′′− e′ = 2(g′ + fn− g′′) so the difference is even.

A general goodDn Dynkin quiver of even type is given in Fig. 6.53. Using Fig. 6.53, define the following two
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partitions

κ = (nfn , n− 1fn−1 , . . . , 2f2 , 1f1)

λ = (nen , n− 1en−1 , . . . , 2e2 , 1e1).
(6.82)

In direct analogy with (6.66), it is simply established, by ’balancing’ whilst taking into account the excess, that

gk = kg1 −
k−1∑
i=1

(k − i)(fi − ei). (6.83)

for k ≤ n − 2. Repeating the analysis of (6.66) - (6.69) with this extra complication yields the analogous

results

g1 = l(κ)− l(λ)

2g′′ = |κ| − |λ|.
(6.84)

Note that all of this analysis reduces to the balanced case when we take λ to be the zero partition which is

equivalent to there being zero excess on every node. When it comes to examining themoduli space singularity

structure this is the realisation that balanced quivers correspond to a run of edges and nodes in Fig. 6.48 from

the very top to some node κ whereas a good quiver corresponds to a run from a node λ down to a node κ.

For a generic good, even Dn Dynkin quiver one can find two balanced Dn Dynkin quivers which give

the good quiver under quiver subtraction. The larger quiver in quiver subtraction and the resulting quiver

have the same flavour. The larger of the balanced quivers is therefore going to have flavour dictated by the

partition κ. The clue for the smaller balanced quiver comes from (6.81). The flavour of a given node on the

smaller quiver is exactly the excess of the good quiver under construction. The flavour of the smaller quiver

is therefore dictated by the partition λ.

A balanced quiver’s flavour must be dictated by a partition of even magnitude, however there is nothing

about good quivers which restricts (6.82) to be of even magnitude. This must be addressed. Note that the

second relationship in (6.84) tells us that either both |κ| and |λ|must be even, or both must be odd.

The result is straight forward when both κ and λ are of even magnitude. In this case one can construct

balanced quivers using these partitions. The result when both are even is therefore

Q|κ|,|λ| even
good, even = Q(Dκ(n))− Q(Dλ(n)). (6.85)

When both |κ| and |λ| are odd there seems to be an impasse as the analogously defined ‘balanced’ quivers

are unbalanceable. However the gauge node topology of the resulting quiver in quiver subtraction needn’t be

precisely that of the quivers involved in the subtraction. Nodes of rank zero might result from quiver sub-

traction which would change the quiver topology. The partitions which correspond to flavour arrangement

are considered from the end of the tail of the quiver, premising another gauge node of rank g0 = 0 on the

good quiver changes the magnitude of the defining partitions considerably.

For κ and λ to be of odd magnitude, they must have an odd number of odd parts with odd multiplicity.

Adding the zero rank gauge node to the good quiver has the effect of increasing all the parts by one, the odd
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number of odd parts with odd multiplicity is changed to an odd number of even parts with odd multiplicity,

which always gives an even number. However the previously even parts have now been shifted to being odd

parts. If κ, for example, had an odd number of even parts with odd multiplicity, the new partition has an odd

number of odd parts with odd multiplicity and so is odd. An odd magnitude partition with an odd number

of even parts is necessarily of even length. The flavour on the new node can be arbitrary. When κ is odd and

l(κ) is even choose the flavour, f0, of the new zero node to be odd, and when κ is odd and l(κ) odd, choose

f0 even. This guarantees that the partition associated to the flavour for the new good quiver, κ′, is even.

From here construct the quiver of excesses in the normal way. The excess of the new zero node is necessarily

g1 + f0 = l(κ)− l(λ) + f0. The way f0 was chosen now guarantees that the new partition on the quiver of

excesses is also always even. To see this, note that when l(κ) was odd f0 was chosen even, therefore if l(λ)

was odd (and hence λ had an even number of even parts with odd multiplicity) the flavour on the zeroth

node in the excess quiver was even and the magnitude of λ′ is even. And if l(λ) was even (and hence λ had

an odd number of even parts with odd multiplicity) the flavour on this node is odd and so the magnitude of

λ′ is even again. In conclusion, when κ and λ as found from Fig. 6.53 are of odd magnitude, the good quiver

is realised as

Q|κ|,|λ| odd
good, even = Q(Dκ′(n+ 1))− Q(Dλ′(n+ 1)). (6.86)

where

κ′ = (n+ 1fn , nfn−1 , . . . , 2f1 , 1f0)

λ′ = (n+ 1en , nen−1 , . . . , 2e1 , 1l(κ)−l(λ)+f0).
(6.87)

An important check to make on this construction is that the extra node added does indeed achieve a rank

of zero after quiver subtraction. Using that the rank of the first node is the length of the partition for the

balanced quivers constructed, the rank of the first node of their difference is

gκ
′

1 − gλ
′

1 = l(κ′)− l(λ′)

=

n∑
i=0

fi −
n∑
i=1

ei − l(κ) + l(λ)− f0

= l(κ) + f0 − l(λ)− l(κ) + l(λ)− f0

= 0

(6.88)

as required.

6.4.2 An alternative for even theories with odd partitions

There is an alternative construction which allows an easier reading of the moduli space singularity structure

when |κ| and |λ| are odd as compared to when the quiver is described as the difference of balanced quivers.

In Fig. 6.48, the nodes were all labelled with even magnitude partitions. This can be viewed as arising

because the diagram started with a trivial, flavourless quiver with partition (0), and the traversing structure

could only shift partition magnitude by an even amount. Starting with the trivial theory with partition (1)

(at the top of Fig. 6.54) and employing the same style of traversing structure yields a diagram analogous
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Figure 6.54: The beginning of the Hasse diagram for quiver addition of even theories with an odd magnitude
partition. These can be realised as the difference of two balanced quivers with even magnitude partitions, but
an easier way to read off themoduli space singularity structure is to perform quiver addition having premised
that the node at the end of the tail has an excess of one. This arises because the traversing structure fore even
theories necessarily changes the magnitude of the partitions assigned to the theory by an even amount. To
cover all possible assignations therefore, it is proper to construct two Hasse diagrams, one starting at the
partition (0) and the other at the partition (1). This observation will be important later for the D̃n Dynkin
quivers.

to Fig. 6.48 but built entirely of good, even theories with odd partitions dictating flavour and whose only

non-negative excess appears on the end node of the tail, Fig. 6.55. This exactly gives the even type theories

with odd partitions and hence allows a short-cut to their moduli space singularity analysis. As good and

even theories with even partition magnitudes can be found as runs in Fig. 6.48, good and even theories with

odd partitions can be found as runs Fig. 6.55. Along with the previous discussion regarding identifying odd

partitioned theories within Fig. 6.48 this shows that an arbitrarily sized section of Fig. 6.55 can always be

found sufficiently far into Fig. 6.48. Reversing the previous discussion also implies the opposite way round.

The position of a theory in a partition subdiagram of Fig. 6.55 corresponds to the partitions κ and λ that can

be extracted from the quiver in the usual manner via (6.82).

6.4.3 Good, even classification

All good, evenDn Dynkin quivers can be considered as the difference between two balanced quivers. While

it is possible to find all good, even quivers when restricted to even magnitude partitions only and using Fig.

6.48, the moduli space analysis is more direct when allowing odd magnitude partitions as well using Fig.

6.55. Either both partitions have an odd magnitude, or both have an even magnitude. All good even type

Dn Dynkin quivers are classified using two partitions (not necessarily of equal magnitude), say µ and ν, and

a value n. The class is denoted Dµ
ν (n)e, where e denotes even type, µ and ν are restricted in a number of
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Figure 6.55: The general Hasse diagram for even theories with oddmagnitude partitions. This Hasse diagram
is similar to Fig. 6.48. Cutting either this or Fig. 6.48 off at an arbitrary point yields a finite Hasse diagram.
Finite Hasse subdiagrams of arbitrary size for one can be found somewhere in the other. Finding arbitrarily
large subdiagrams inside Fig. 6.48 is the same as the statement that even type theories with odd partitions
can be found as the difference of two balanced theories (whose partitions must necessarily be even), which
we have already seen.



CHAPTER 6. D-TYPE DYNKIN QUIVERS 96

ways such that they are compatible with the value of n (no part is larger than n) and with the need for quiver

subtraction to not produce gauge nodes with negative rank.

The moduli space singularity structure for good quivers can then be read off of Fig. 6.48 almost immedi-

ately by considering runs of nodes and edges. A run on the Hasse diagram is simply a pair of nodes between

which there is a Hasse subdiagram. Take a very simple example, the pair of partitions (6, 12), (32, 12) ∈ P(8)

form a run as there is a Hasse subdiagram suspended between them, whereas (5, 13) and (42) do not form

a run. Runs corresponding to partition Hasse subdiagrams exactly correspond to pairs of partitions where

one dominates the other in the usual partition dominance ordering sense. When the Hasse diagram is more

complicated the notion of dominance is maintained. Dominance in Fig. 6.48 and Fig. 6.55 also needs to act

between partition Hasse subdiagrams as well. For λ ∈ P(2p) and κ ∈ P(2p + 2j) to define a run corre-

sponding to a variety that is realised as aDn Dynkin quiver Higgs branch, it is required that (λt, 12j)t > κ.

This extension of dominance to Fig. 6.48 and Fig. 6.55 depends on the traversing structure. This is just the

usual partition dominance ordering when j = 0. The relationship for λ and κ is exactly the condition that

quiver subtraction needs in order to be well defined (none of the gauge nodes become negative). The edits it

is necessary to perform on Fig. 6.48 correspond to the restrictions on the partitions from the value of n.

6.4.4 Dimension matching for good, even theories

A number of aspects of the analysis can be checked by performing further moduli space dimension calcula-

tions. We start with the calculation of the Higgs branch dimensions for a good, even theory. These theories

are constructed as differences of balanced theories, so it is expected that

dimH(MH(Dµ
ν (n)e)) = dimH(MH(Dν(n)e −Dµ(n)e))

= dimH(MH(Dν(n)e))− dimH(MH(Dµ(n)e))

=
1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2

) (6.89)

which is indeed the case. It may be confirmed by summing over j up to |ν| − |µ| − 2, instead of |ν| − 2 as in

(6.71),

dimH(MH(Dµ
ν (n)e)) =

|ν|−|µ|−2∑
j=0, even

[
dimH

(
Dn−l(λt

|κ|−j−2
)

)
+ dimH

(
Sλ|κ|−j

∩ Ō(λt
|κ|−j−2

,12)t

)]

=
1

2
(|ν| − |µ|) + 1

2

(∑
i

((λt|ν|)i)
2 −

∑
i

((λt|µ|)i)
2

)
− 1

2
(|ν| − |µ|)

=
1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2

)
.

(6.90)

The Coulomb branch dimension check is relatively simple. On the one side the dimension is calculated

by a sum of the dimensions of individual edges of Fig. 6.48, this was done for balanced in (6.76). For good

theories, replace the sum up to |ν| − 2 with a sum to |ν| − |µ| − 2, and skip immediately to line 5 of (6.76)
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replacing the sum’s limits appropriately,

dimH(MC(D
µ
ν (n)e)) =

|ν|−|µ|−2∑
j=0, even

[
2n− 1 +

1

2

∑
i

((λ|κ|−j−2)i)
2 − 1

2

∑
i

((λ|κ|−j)i)
2

]

=
1

2
(|ν| − |µ|)(2n− 1)− 1

2

(∑
i

(νi)
2 −

∑
i

(µi)
2

)
.

(6.91)

When µ = (0), this simplifies to the balanced case exactly as expected.

The other computation of the Coulomb branch dimension check for balanced quivers was (6.77) and

(6.78). For good quivers, consider the extra factor of excess as in (6.83), and the analysis is essentially the

same. Begin with the generalization of (6.77),

n−2∑
k=1

[
kg1 −

k−1∑
i=1

(k − i)(fi − ei)

]
+ g′ + g′′ =

1

2
g1(n− 2)(n− 1) + g′ + g′′ −

n−3∑
l=1

(fl − el) n−2−l∑
j=1

j

 ,
(6.92)

and follow the same analysis as (6.78)

1

2
g1(n− 2)(n− 1) + |κ| − (fn − en)−

n−3∑
l=1

1

2
(fi − ei)(n− 2− l)(n− 1− l)

=
1

2
(|ν| − |µ|)(2n− 1) +

1

2

[
−

n∑
l=1

l2(fl − el)

]

=
1

2
(|ν| − |µ|)(2n− 1)− 1

2

(∑
i

(νi)
2 −

∑
i

(µi)
2

)
.

(6.93)

This matches the result in (6.91) and so the Coulomb branch dimension check is passed for good quivers.

This result generalizes the balanced result where the excesses were zero (µ = (0)).

Explicit calculation of moduli space dimension also allows a consistency check when identifying the the-

ories with an odd partition magnitude as a difference of balanced (and hence even partitioned) theories. The

claim is that for |ν| and |µ| odd,

Dµ
ν (n)e = Dν′(n+ 1))− (Dµ′(n+ 1). (6.94)

with

ν′ = (n+ 1fn , nfn−1 , . . . , 2f1 , 1f0)

µ′ = (n+ 1en , nen−1 , . . . , 2e1 , 1l(ν)−l(µ)+f0).
(6.95)

Alternatively these theories could be read from Fig. 6.55. This alternative construction allows a similar anal-

ysis as the one performed for Fig. 6.48. (Fig. 6.55 is of the same form, using different partitions. The only

change to make is that the j sum is taken over odd instead of even, values). Therefore, from the alternative
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construction in Fig. 6.55, on one hand and from (6.89) and (6.94) on the other, consistency requires

dimH(MH(Dµ
ν (n)e)) =

1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2

)
=

1

2

(∑
i

((ν′)ti)
2 −

∑
i

((µ′)ti)
2

)
. (6.96)

for ν and µ given in the standard way and ν′ and µ′ given by (6.95). Note that for ν′ we have the relation

∑
i

((ν′)ti)
2 =

n∑
q=1

 n∑
j=q

fj

2

+

 n∑
j=0

fj

2

=
∑
i

(νti )
2 + (l(ν) + f0)

2.

(6.97)

Thus

1

2

(∑
i

((ν′)ti)
2 −

∑
i

((µ′)ti)
2

)
=

1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2

)
+ (l(ν) + f0)

2 − (l(µ) + l(ν)− l(µ) + f0)
2

=
1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2

) (6.98)

as required. A second check of the odd partition even theories is a Coulomb branch dimension consideration

which requires

1

2
(|ν| − |µ|)(2n− 1)− 1

2

(∑
i

(νi)
2 −

∑
i

(µi)
2

)

=
1

2
(|ν′| − |µ′|)(2(n+ 1)− 1)− 1

2

(∑
i

((ν′)i)
2 −

∑
i

((µ′)i)
2

)
.

(6.99)

Note that |ν′| =
∑n
j=0(j+1)fj = |ν|+l(ν)+f0 and |µ′| =

∑n
j=0(j+1)ej = |µ|+l(µ)+(l(ν)−l(µ)+f0)

and so it is plain that |ν′| − |µ′| = |ν| − |µ|. Also (writing e0 = l(ν)− l(µ) + f0),

−1

2

(∑
i

((ν′)i)
2 −

∑
i

((µ′)i)
2

)
= −1

2

 n∑
j=0

(j + 1)2(fj − ej)


= −1

2

 n∑
j=0

j2(fj − ej) + 2

n∑
j=0

j(fj − ej) + l(ν′)− l(µ′)


= −(|ν| − |µ|)− 1

2

(∑
i

(νi)
2 −

∑
i

(µi)
2

)
,

(6.100)

which completes the equality in (6.99). We used (6.88) in moving from line two to three.

6.4.5 Recovering so2n nilpotent varieties

The two general quivers given in Fig. 6.45 are those quivers realising nilpotent varieties of so2n. Recasting

these quivers under the classification viamoduli space given here is straight-forward. Realising so2n nilpotent
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f1 f2 fn−3

fn−2

fn−1

fn−1 + 2fn + 1
g1 g2 gn−3

gn−2

g′

g′′

. . .

Figure 6.56: The general structure of a Dn Dynkin quiver of odd type. Note that this quiver is necessarily
unbalanceable like in the alternative construction for good, even theories of odd partitionmagnitude. Because
the difference between the end node flavours is odd, it is implicit that for every quiver of odd type there are
the options I and II discussed earlier. For simplicity these won’t both be written from here on, however one
should always recall that there are two quivers with the same field content at every point.

varieties asDn quivers gives

A(p, q) = D
(n−q−2p−2)
(n−q−2) (n)e = D(2p)(2p+ q + 2)e

B(p, q) = D
(n−q−2p−1)
(n−q−2,1) (n)e

(6.101)

where, in the context of the previous discussion, n = m orm+ 1.

6.4.6 OddDn quiver Hasse diagram

It is time to consider all of the good Dn quivers which are not captured by Dµ
ν (n)e. These are of odd type.

Odd Dn Dynkin quivers have an odd difference in the flavour on the end nodes, and are therefore always

unbalanceable. Without loss of generality one can assume the flavours of the end nodes are fn−1 and fn−1+

2fn + 1 respectively, Fig. 6.56. It can be shown that odd flavour difference requires an odd excess difference

for the end nodes.

In order to give the class of good, odd theories with an appropriate poset structure, and so build a Hasse

diagram like Fig. 6.48, quiver addition is employed once again. This will yield all possible goodDn Dynkin

quivers of odd type under quiver subtraction in the same manner as even theories were determined.

The positions of flavours on Dn Dynkin quivers can be associated to partitions as (6.82) as in Fig. 6.56.

Note that this time there is an extra flavour on one endnode. No singularity changes the fact that the difference

of flavour is odd. Therefore the Hasse diagrams from odd theories never connect with the Hasse diagram for

even theories. The lowest rank quiver, at the top of the Hasse diagram, is the quiver corresponding to the

zero partition. Implicit for odd quivers is the option to swap the flavours and ranks of the end nodes, which

formally gives two options, I and II , for every node in the Hasse diagram. This extra notation is dropped

from here for simplicity.

The only first option under quiver addition is to add a single An−1 ∪ An−1 singularity as in Fig. 6.57.

Note that whilst the ‘extra’ flavour has in a sense swapped nodes, the ‘extra’ excess remains on the lower node.

The full picture is given in Fig. 6.58. Once again a pattern of partitionHasse subdiagram emerges whereby

the partition associated to the node in the subdiagram is the same as the partition associated to the flavours

in the quiver. For balanced cases the structure traversing from a partition subdiagram to another consisted
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Figure 6.57: The beginning of the quiver addition for odd theories. Recall that at all stages there are options
I and II as discussed previously. Note that because the difference of flavour on the end nodes is odd, theDk

traversing structure is never possible. There is Ak ∪Ak traversing structure only. However these transitions
change themagnitude of the assigned partition by one each time, this means that all partitions are included in
this Hasse diagram and there is no need to use two different starting theories to easily find all of the possible
theories. In this sense the Hasse diagram structure for odd theories is simpler than for even theories. Note
that whilst the end node with the excess of one is always as assigned at the top of the diagram, the ‘extra
flavour’ flips back and forth when only one of the two options is written.
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Figure 6.58: The general structure of the quiver addition Hasse diagram for theories of odd type. This is used
in the same way as Fig. 6.48 and Fig. 6.55 were used for even quivers to deduce the moduli space singularity
structure of any goodDn theory of odd type.

of Dk transverse slices which changed the magnitude of the partitions by two. For Fig. 6.58 the traversing

structure consists of Ak ∪ Ak singularities which change the partition magnitude by one at a time. This can

once again be encapsulated as an edge diagram:

P(p) ∋ κ

(κt, 1)t ∈ P(p+ 1).

An−1−l(κt) ∪An−1−l(κt)

Observe that when the partition is of odd magnitude, the node with extra flavour and the node with

excess are opposite, whereas when the partition is of even magnitude, they are on the same node. Since

quiver addition doesn’t change the excess of the nodes one can also observe that the end node with excess

remains the only node with excess. By repeating the analysis (6.66) - (6.69) it can be shown that indeed when

the excess and flavour are on opposite nodes, |κ| = 2g′′ − 1. When they are on the same node |κ| = 2g′′.

Like in the balanced case, the choice of a concrete n will inevitably necessitate editing of the general

structure presented in Fig. 6.58. Once again this can be determined in a systematic way by observing which

quivers and transitions are defined in theHasse diagramor are possible at the level of the quivers and exploring

what happens in the fringe cases.

Editing prescription Towrite down theHasse diagram for good, oddDnDynkin quivers for some specific

n one starts with the general construction in Fig. 6.58, identifies in this construction all of the nodes with

parts larger than n and deletes them. Also delete any badly defined traversing edges. The final step is to put
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Figure 6.59: The editing prescription for the quiver additionHasse diagram for theories of odd type presented
in the same manner as Fig. 6.50.

in edges following Fig. 6.59.

An example of performing this editing for n = 4 theories and partitions κ with |κ| ≤ 5 in given in Fig.

6.60

Theories living at the nodes of Fig. 6.58, while not balanced, play the same role as balanced quivers in

the even case and may be classified using just one partition and the number n, Dκ(n)o. The moduli space

singularity structure for the theoryDκ(n)o is given by the run on the general construction, after editing, from

the very top to the node labelled with the partition κ. The difference between two quivers in Fig. 6.58 is a

good, odd Dn Dynkin quiver. Taking differences of quivers in Fig. 6.58 will encompass all good, odd Dn

Dynkin quivers, as we will discuss now.

6.4.7 GoodDn quivers of odd type

Any goodDn Dynkin quiver of odd type can be realised as the difference between two quivers living at nodes

in Fig. 6.58 and hence we need to know the two partitions µ and ν (not necessarily of equal magnitude) and

the integer n.

The general goodDn Dynkin quiver of odd type is given in Fig. 6.61, however there is a subtlety that must

be addressed. Since there exist two equivalent quivers at every node, for quiver subtraction to work in the

desired way, the extra single end flavour must be on the same node in the subtraction. This is always possible

since there are always two options, I and II , for odd quivers.

It was previously recognised that the ‘extra’ flavour and the extra excess needn’t be on the same node. But

in Fig. 6.61 it is drawn such that they are both associated to the bottom node. This is allowed because of the

extra freedom in the general good case. A quiver like Fig. 6.61 but with the ‘extra’ end flavour on the upper
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Figure 6.60: An example of the application of the odd type editing prescription to explicitly find the Hasse
diagram for oddD4 Dynkin quivers with |κ| ≤ 5. This can be checked explicitly using quiver arithmetic.

f1 f2 fn−3

fn−2

fn−1

fn−1 + 2fn + 1
(g1, e1) (g2, e2)

. . .
(gn−3, en−3)

(gn−2,

en−2)

(g′, en−1)

(g′′, en−1 + 2en + 1)

Figure 6.61: The general form of a good, odd Dn Dynkin quiver. These can all be found as the difference
of two odd Dn Dynkin quivers from Fig. 6.58 and their moduli space singularity structure is given by the
appropriate run on Fig. 6.58.

node would in fact be of the form of Fig. 6.61 with fn−1 → fn−1 + 1 and fn → fn − 1. When fn = 0 this

transformation isn’t possible which sets the ‘extra’ flavour and excess as having to be on the same node, so all

cases are covered.

The partitions associated to the general good, oddDn Dynkin quiver are

κ = (nfn , n− 1fn−1 , . . . , 2f2 , 1f1)

λ = (nen , n− 1en−1 , . . . , 2e2 , 1e1),
(6.102)

in the usual manner. From here it follows that we have

Qgood, odd = Q(Dκ(n)o)− Q(Dλ(n)o). (6.103)

The singularity structure of the Higgs branch of these theories,MH(Dµ
ν (n)o), is given by the run in Fig.

6.58, after editing, from a node µ down to a node ν.
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6.4.8 Dimension matching for good, odd theories

The calculations for odd theories are similar to those for even theories, only the routes have to be defined on

Fig. 6.58. This is a matter of replacing the sum over even values of j to a sum over all values and replacing

the manner in which partitions for nodes in different partition subdiagrams are determined by one another

in order to be commensurate with theAk ∪Ak traversing structure. Otherwise the construction is the same.

The Higgs branch calculation for good, odd theories is

dimH(MH(Dµ
ν (n)o))

=

|ν|−|µ|−1∑
j=0

(
dimH(An−1−l(λt

|ν|−j−1
) ∪An−1−l(λt

|ν|−j−1
)) + dimH(Sλ|ν|−j

∩ Ō(λt
|ν|−j−1

,1)t)
)

=

|ν|−|µ|−1∑
j=0

(
1

2
+

1

2

[∑
i

((λt|ν|−j)i)
2 −

∑
i

((λt|ν|−j−1)i)
2 − 1

])

=
1

2

(∑
i

(νti )
2 −

∑
i

(µti)
2

)
.

(6.104)

For the Coulomb branch calculation one can observe that an odd and even theory with the same partition

data have the same ranks on the gauge nodes and so should have the same Coulomb branch dimension. For

the even case the partitions either had to be both even or both odd, however for odd theories this needn’t be

the case. The calculation is

dimH(MC(QMH
(Dµ

ν (n)o)))

=

|ν|−|µ|−1∑
j=0

(
dimH(MC(QMH

(An−1−l(λt
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|ν|−j−1

,1) ∩ Ōλt
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)
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(6.105)

In the case of even theories, since both of the partitions had to be odd, or both even, this result was guaranteed

to be an integer, since the differences were always even. For odd theories, however, there can be one odd and

one even partition. In this case, the first term is clearly not an integer. However an odd magnitude partition

must contain an odd number of odd parts with odd multiplicity. Since odd numbers square to odd numbers,

the sum of the squares of the parts has an odd number of odd numbers in it and so is odd. If one term in

(6.105) is a half integer, the other must be a half integer and so the total is an integer.
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Conclusions

7.1 Summary

Part I of this thesis has explored topics concerning the vacuum states of 3d N = 4 quiver gauge theories.

Building on previous work concerning linear quivers, we have constructed descriptions of the local geometric

structure of themoduli spaces of vacua for two generalisations of linear quivers. Firstly circular quivers where

there is an additional gauge node and additional bifundamental hypermultiplets related to the two ends of a

linear quiver. Secondly, D-type Dynkin quivers wherein an extra gauge node is connected to the penultimate

node of a linear quiver via bifundamental hypermultiplets. Nilpotent varieties in semi-simple Lie algebras

have played a central role, as has the physical realisation of the associated singularity structures known as the

Kraft-Procesi transition. For circular quivers we also made extensive use of the realisation of the theories in

question as the infrared dynamics of certain brane constructions.

For circular quivers we first had to determine an appropriate set of theories fromwhich we could perform

Kraft-Procesi transitions in order to uncover the local singularity structure of the moduli spaces of vacua.

This turned out to be significantly more involved than for the linear quiver case, made more complicated by

the fact that a global description, in the spirit of nilpotent orbits for the linear case, was unavailable for the

circular case. Once we had settled on an appropriate such minimal set of maximal theories, we set about

making extensive use of realisation of the Kraft-Procesi transition in an appropriate brane construction to

uncover the Hasse diagram for the moduli space of vacua for these theories. We also provided the necessary

editing procedures which should be employed when dealing with specific cases. We made use of detailed

checks of the dimension of the varieties under construction along the way in order to be sure of the results of

our work.

For D-type Dynkin quivers we dispensed with the construction of appropriate brane systems (despite

their existence in the literature) in order to begin to develop a notion of quiver addition. In quiver addition

we begin with a certain quiver which has a certain moduli space of vacua. A quiver whose moduli space of

vacua is an appropriate transverse slice is then added, following a prescribed set of rules, to the first quiver.

The resulting quiver’s moduli space of vacua is then properly described as a larger singular variety wherein the

entire moduli space of vacua of the initial quiver is singular within a transverse structure given by the moduli



CHAPTER 7. CONCLUSIONS 106

space of vacua of the quiver being added. In this way we were able to build up a Hasse diagram describing the

moduli space of vacua of larger and larger quivers. Indeed for the case of strictly D-type Dynkin quivers we

were able to give general descriptions using this method, and therefore classify all of the quivers of interest

using a minimal set of data. We performed numerous checks of our construction using multiple different

calculations of the dimension of the algebraic varieties under construction. Our results successfully passed

all of these checks.

The work in this Part has resulted in the publication of two papers, one concerning circular quivers [1],

and one concerning D-type Dynkin quivers [2]. Both papers have received praise and criticism and we take

time to mention the latter here.

The work on circular quivers is incomplete. This is a small matter, hinted at by the fact that there are

circular quivers which can bewritten down, with accompanying brane constructions, but whosemoduli space

description was inaccessible by the methods presented here. These theories were given in Fig. 5.21 and are

called π(1, 2, 2, L) and π(3, 2, 2, L). It is clear that the algebraic variety given by the moduli space branches

of the 3dN = 4 quiver gauge theory describing the lower energy dynamics of the brane system given in Fig.

5.21 is not constructed from the transverse slices we are familiar with. This is what it is for it to be impossible

to perform Kraft-Procesi transitions in the familiar way. Indeed, for these constructions, an entire wrapped

branemust be pushed out at a time. For larger quivers this was also the case, we could choose to push an entire

wrapped brane from one moduli space branch into the other in a single go. However for larger brane systems

this manoeuvre was always explicable in terms of familiar Kraft-Procesi transitions, and so the finer structure

could be uncovered. Note that the quiver describing these pathological theories is in fact not simply-laced,

that is, there are multiple sets of bifundamental hypermultiplets transforming in a given pair of gauge node

factors (multiple edges between a given pair of nodes). This feature complicates matters and moves us away

from the techniques used and developed here, and is a ripe area of current and future study.

The work on D-type Dynkin quivers is complete in its initial target. This target was the construction of

the moduli space of vacua for unitary quiver gauge theories whose gauge nodes and bifundamental hyper-

multiplets strictly form a D-type Dynkin diagram. However the method it attempts to set in motion, quiver

addition, is far from complete as a result. In this section we fixed rigid the D-type Dynkin diagram structure

of the quiver, and so ignored any of the transverse slices it may have been possible to add to the quiver which

involved connecting gauge nodes not already connected. This was important for our strict requirement that

the quiver remain of D-type Dynkin. We determined all of those nilpotent varieties of so2n which could

be realised as Higgs branches of quivers which were strictly of D-type Dynkin shape and found these to be

those appearing in the special slice. From there we moved away from strictly using so2n nilpotent varieties in

order to determine the moduli space of vacua singularity structure for all D-type Dynkin quivers. However

a potentially more interesting and complicated question is to turn this on its head. Instead of asking which

varieties could be realised with strictly D-type Dynkin quivers, ask which quivers realise the further nilpotent

varieties of so2n outside of the special slice. We will say more about future work next.
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7.2 Future directions

Numerous open question exist in quiver gauge theory [65]. There is a huge amount of recent, current, and

inevitable future work to be done onmatters related to the topics we have discussed. These especially concern

the relationship that 3dN = 4 quiver gauge theorymoduli spaces have to themoduli spaces of other theories

with eight supercharges in a diverse range of dimensions. There is also much to be done on the subject of

quiver manipulations. We have discussed the first steps towards a notion of quiver addition here, however

quivers maybe added, glued, folded, and perhaps have other procedures applied to them. All of these are

promising lines of research and forays are already being made into them and the associated geometric ma-

nipulations of the moduli spaces of vacua. Furthermore, the study of mixed branches in the moduli space is

in its relative infancy as compared to the Higgs and Coloumb branches specifically, and this may lead on to

a better study of bad quiver gauge theories, which cannot undergo complete Higgsing. An extensive but not

strictly comprehensive list of current efforts is [63–83].

Now we shall discuss some of those potential future directions which the author would findmost person-

ally satisfying. These are not necessarily those mentioned above which represent the direction in which the

thrust of this topic is moving. We mentioned in the criticism section above that a great deal more effort has

been put into realising certain geometric structures as the moduli spaces of vacua of quiver gauge theories

(the geometry is fixed) than has been put into finding the moduli space of vacua of specific classes of quivers

(the quiver shape is fixed, as with our discussion of D-type Dynkin quivers). The work presented here most

naturally generalises to the fixed quiver, not the fixed geometry, scenario. There are two main generalisations

to consider, different gauge groups and different quiver shapes. Different gauge groups are already consid-

ered in some simple cases (such as linear quivers) in the resources mentioned above and we shall not dwell

on them here.

The study of different quiver shapes is a vast untapped area however. There are two main ways in which

the quiver can be changed, shape and lacings. The study of non-simply laced (more than one edge between

two given nodes) quivers with unitary gauge nodes touches upon several topics already mentioned includ-

ing the realisation of the nilpotent varieties of other classical Lie algebras as moduli space branches, and the

encompassing of the pathological quivers encountered in the circular case above (whose quiver is really non-

simply laced). It also touches upon some present work by way of quiver foldings, non-simply laced quivers

being realisable as a folding of a simply laced quiver. The full generalisation of quiver shape has been largely

left untouched so far. The geometry-first approach naturally focuses in on quivers whose shape is a Dynkin

diagram because (some of) these quivers realise nilpotent varieties (and associated varieties) as moduli space

branches. It is clear though that the study of the deep connection between quiver shape, moduli space ge-

ometry, and nilpotent varieties (used as building blocks) is only just beginning. From our work with circular

(which can be though of as the affine A-type Dynkin) quivers, and D-type Dynkin quivers, it is plain that

linear quivers can be thought of as building blocks for more complicated quivers. Since the moduli spaces of

vacua for linear quivers are nilpotent varieties, these nilpotent varieties can be seen as building blocks of sorts

for the moduli spaces of vacua of the more complicated quivers. Tackling the simply-laced exceptional cases

and further affine cases is the obvious next port-of-call. The main impediment to the use of the techniques

here is identifying all of the possible singularities associated to minimal degenerations which it is possible
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to add to or remove from a given quiver. For example, for the simply laced exceptional cases there are the

quivers whose moduli spaces of vacua are the closures of the smallest non-trivial nilpotent orbits of the as-

sociated exceptional Lie algebras. These didn’t appear in either circular or D-type considerations, but would

be necessary to consider there. Before tackling all possible quiver shapes (as surely must be the ultimate goal

of any such line of work) one must be certain of having all of the possible minimal quivers (associated to

fundamental types of singularity in the moduli space) with which one can play.

Further work in and around the topics with which we have concerned ourselves for the last 100 or so

pages are appearing rapidly and regularly. While the work contained in this thesis is about to make a hard

gear-change onto a different subject, the author will always have a fondness for these quiver gauge theories,

and will keep at least tokenly abreast of developments for years to come.
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Introduction

The specific cluster within the Theoretical Physics Division at Liverpool in which I have spent the last four

years is that of String Phenomenology. The work I performed for over half of my PhD, and which forms Part

I, has hardly lived up to this cluster’s line of work in an obvious fashion. In the first term of my third year,

however, I was encouraged and guided to branch out into areas away from quivers, and pursue a more string

phenomenological topic.

StringTheory represents a bewilderingly vast, complicated, and difficult set of tools for someone trying to

do phenomenology. It can be inordinately difficult to extract ‘realistic’ physics, not necessarily because strings

couldn’t hypothetically provide reality, but because finding a ‘nice’ answer amongst what strings can do is

such a herculean task. Compounding this is the fact that full StringTheory is indeed extraordinarily complex

and our understanding is far from complete. Indeed, throughout this Part we won’t really be using String

Theory, but supergravity (which arises in the low energy limit)12 as a stand-in for something that in actuality

is more complicated. Nevertheless even working with eleven and ten dimensional supergravity theories can

prove quite brutal enough. This Part, and the paper [3] that was the result of the work underlying it, pursues

an improved understanding of a single type of ingredient in string phenomenology, namely the fermionic

couplings for field theories living on branes. This type of ingredient appears prominently in many of the most

promising phenomenological pursuits in StringTheory today.

Despite the ubiquity of branes in String Theory and the prominent position of fermions in physics, the

fermionic fields living on branes are often lesswell understood than their bosonic counterparts due in no small

part to their inherent technical complexities. Nevertheless, many phenomena in high-energy physics involve

fermions, and in a large variety of string theoretic scenarios branes are crucial tools, therefore a detailed

understanding of fermions on branes is very important.

Ever since the discovery that branes are objects intrinsic to string theories [84], they have been exten-

sively studied in a multitude of contexts. In type II theories, D-branes provide string theoretic realizations of

gauge theories (an example of which was already discussed at length in Part I), supersymmetry breaking, and

inflation, among others. In many of these studies their worldvolume fermions play central roles in the mech-

12The irony of the fact that four years of work in high energy physics has persistently involved chasing zero- and low- energy limits has
not escaped the author.
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anisms under investigation. Of particular interest recently is the KKLT scenario [85], a proposal to generate

de Sitter vacua in StringTheory, where branes are crucial for multiple purposes. The KKLT construction was

originally described at an effective 4-dimensional level and so the viability of the proposal has now got to

be scrutinized at the 10-dimensional level. This has been done from many perspectives (see e.g. [86–104]).

Initially, KKLT-related works considering fermions on branes focused on counting zero modes of brane in-

stantons (see e.g. [105–107]). More recently new developments in this sector have lead to an interest in

higher order fermion terms on brane actions [108–115], bringing to this context open questions first posed

by Hořava and Witten [116–118]. In the well-understood case of non-localized gauginos, supersymmetry

gives rise to a ‘perfect square’ structure in the action [119], and it is not currently known how this structure

extends to the case of localized gauginos. Shedding light on these terms has been one of the main motiva-

tions that has led to the study of higher-order fermionic couplings in Dp-brane actions pursued in this Part.

Another feature that makes branes extremely promising tools for model building resides in the fact that they

break half of the bulk supersymmetries (this was first observed in [17, 18]). Supersymmetry breaking is still

not completely understood in String Theory proposals, but Dp-branes are good candidates to provide ways

to achieve it without spoiling the solution to the Hierarchy Problem since their fermionic degrees of freedom

can realize supersymmetry non-linearly [17, 18, 120–122]. This is a key reason for devoting our interest to

the topic from a very general point of view. In [107, 123–127], the worldvolume action of Dp- andMp-branes

in an arbitrary bosonic background has been determined up to quadratic terms in fermions. Our aim is to

understand more deeply the mathematical structure underlying the action of a Dp-brane, independently of

the fermionic order of interest, and to set the stage for a concrete determination of the order-4 fermionic

terms in the imminent future. A fundamental feature will be the structure inherited by the Dp-branes from

themore fundamental underlying theory, theM2-brane theory, as part of the web of string dualities. It would

also be possible to inherit the structure from the M5-brane action, but the simplicity of the M2-brane action

makes this choice more practical.

It has been understood for quite some time that the five initially distinct-looking superstring theories

are in fact limiting cases of a single fundamental theory, M-theory [128]. The five string theories and M-

theory are related to each other via a web of dualities that we sketch in Fig. 8.62. In this Part, we are going

to concentrate on three of these related theories, the dualities which connect them, and the fermions on the

branes that the theories contain. We will be investigating the M2-brane from M-theory and the Dp-branes

from the type IIA and type IIB superstring theories (more properly, we will be working with the low-energy

supergravity limit of these theories, i.e. 11-dimensional supergravity, from M-theory, and type IIA and type

IIB supergravities, from type IIA and type IIB string theories). Compactifying the 11-dimensional spacetime

ofM-theory on a circle transforms theM2-brane into a D2-brane (when the circle is orthogonal to the brane),

and then an arbitrary number of T-dualizations along directions wrapped by the brane, or orthogonal to it,

allow us to investigate descriptions of any Dp-brane. Our goal when it comes to these branes is to explore

how to explicitly obtain the terms in the single-brane abelian actions corresponding to high-order couplings

for the fermions. Of critical importance to us is the requirement that our methods are, at least in principle,

applicable to arbitrary order in the fermions. Aswewill show, a central development consists of understanding

how to dimensionally reduce and T-dualize the theories into each other in a manifestly supersymmetric way,
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Figure 8.62: A schematic of the web of dualities between the five 10-dimensional string theories and 11-
dimensional supergravity (and M-theory). We will use the superspace generalization of this web to inves-
tigate the expansion in fermions of the superfields in different theories, and the expansion in fermions of
the actions for the branes those theories contain. The parts of the web relevant for this Part have been high-
lighted with thicker arrows. We begin with the superspace formulation of 11-dimensional supergravity. We
find the expansion in fermions of the superfields therein, and use these to find the fermionic expansion of
the M2-brane action. Compactification on S1 is then performed in order to obtain the fermionic expansion
of the fields in type IIA, and of the D2-brane action. Finally, T-duality between type IIA and type IIB is used
repeatedly to obtain expansions of the fields in type IIB, and so the expansions for Dp-branes for all p.

by working in superspace.

Strategy

We now outline the core details of the strategy that we follow. Due to the existence of the string duality web,

if we have a method for obtaining the high-order fermion couplings in one theory it can in principle be ex-

tended to the others. We start with 11-dimensional supergravity which has a particularly simple formulation

in superspace, wherein the usual dimensions of spacetime are augmented with anticommuting dimensions

with Grassman-valued coordinates. In this formulation the usual fields are combined into superfields which

contain both bosonic and fermionic degrees of freedom. What we then require is a way of systematically ex-

tracting information about the fermionic degrees of freedom from the superfield formulation. The technique

used to do this in a complete way is called the ‘normal coordinate’ method,13 first developed in superspace in

[129], and often simply referred to as NORCOR. The question of determining fermionic couplings is turned

into a question of differential geometry in superspace in a way that is both elegant and powerful. In [130],

many of the results necessary for finding the expansion of the M2-brane action to fourth order in fermions

were developed, this is also the order up to which we will expand in the examples which accompany our

analysis. TheNORCORmethod can be applied to determine expansions of the superfields of 11-dimensional

supergravity at all orders in fermions [131]. Nevertheless, we show that the usefulness of the approach can be

13We shall see in chapter 10 that for our purposes this name is an anachronism and that for the physics we investigate we do not require
the specific use of a normal coordinate system.
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limited because the size of the formulae grows quickly as one computes terms of higher θ-order in the super-

fields. This is the main obstacle we find in our computations, and it will bring us to the conclusion that unless

one succeeds in combining terms obtained with NORCOR together into simple and manageable formulae, it

remains extremely challenging to extract information valuable for physics.

After setting up the problem in M-theory we are going to use the web of string dualities to carry the

information about fermionic expansions to the type II theories. However, in order to use the superspace

formalism when considering the web of dualities, we promote the duality procedures to superspace as well.

This circumvents some of the difficulties in applying NORCOR directly to the type II theories by instead only

requiring the explicit use of NORCOR in the relatively simple world of 11-dimensional supergravity. In this

way a circle compactification will provide us with the superspace formulation of the D2-brane action and

T-dualities will allow us to obtain the Dp-brane actions in superspace for an arbitrary value of p, in both type

IIA and type IIB string theories. We will take advantage of the T-duality rules for fermions [132–134] and

express them in a convenient formalism for our superspace approach, spinor doublet notation.

While our motivations are certainly braney in origin, the techniques we investigate and develop are far

more broadly applicable. The actions of the single M2-brane and for single Dp-branes are just some exam-

ples of composite superfields that can be built from the fundamental superfields of their respective theories,

although, as we have discussed, even these abelian cases are particularly relevant and interesting. We will

structure our discussion, therefore, to concentrate on obtaining the θ-expansions of certain superfields in

each theory, and investigate how they can be combined in order to obtain the brane action expansions in

separate examples.

Outline

This Part is organized as follows. In chapter 9, we review background information about branes which moti-

vates the analysis of later chapters. We concentrate on viewing branes as hypersurfaces in curved superspace,

and the role of the Goldstone fermions arising from the broken supersymmetry caused by the presence of a

brane. In chapter 10, we review the use of the ‘normal coordinate’ method to provide an expansion in or-

ders of fermions starting with the superspace formulation of the fields of 11-dimensional supergravity. In

chapter 11, we consider the application of the normal coordinate expansion to the superspace formulation

of the M2-brane action and we obtain expansions to quartic order in fermions. In chapter 12, we investigate

the superspace generalization of the dimensional reduction of fields in 11-dimensional supergravity to type

IIA. We use this to determine the D2-brane action to quartic order in fermions. In chapter 13, we discuss

the superspace generalization of the T-duality relation between fields in type IIA and type IIB string theories.

We demonstrate how this can be used in principle to move from the action for the D2-brane at a given order

in fermions, to that for any Dp-brane at the same order, and give explicit examples at second order. We end

in chapter 14 with a summary of our results, our conclusions, and a discussion of future lines of inquiry.

Our discussion is complemented by several appendices. Appendix 15.1 summarizes our spinor conventions.

Appendix 15.2 reviews 11-dimensional supergravity. Appendix 15.3 contains details about quartic-order

fermionic expansions in superspace. Appendix 15.4 contains a catalogue of useful identities for the dimen-
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sional reduction from eleven to ten dimensions. Appendix 15.5 is reserved for a discussion of topics related

to T-duality.

Notes on notation

Throughout this Part we perform a large number of steps on a large number of quantities. Making our full

discussion as clear as possible by avoiding notational clashes therefore necessitates the use of a large range

of notation. It is worth our time to take a moment to mention a few of the most consequential choices and

changes we make in this regard.

Indices

We are going to be working with many different sets of indices throughout. We collect details about all of

these index choices here for easy reference. For easy reading we will repeat our conventions in the context of

the chapters when appropriate.

In chapters 9, 10 and 11, we will be working with (11|32)-dimensional superspace. Our superspace con-

ventions are the following. Superspace coordinates are ZM = (xm, θµ), where upper-case letters in the

middle of the alphabet are used to denote superspace coordinates, lower-case Latin letters denote spacetime

indices,m = 0, 1, . . . , 10, and lower-case Greek letters stand for Grassmann indices, µ = 1, . . . , 32. We will

use Latin andGreek indices in the beginning of the alphabet to refer to tangent space directions asA = (a, α),

with a = 0, 1, . . . , 10 and α = 1, . . . , 32. We will use lower-case Latin indices like i, j, k for worldvolume

directions, because we work only with the M2-brane this means that i = 0, 1, 2.

In chapter 12, we will perform dimensional reduction from (11|32)-superspace to (10|32)-superspace.

All 11-dimensional spacetime or tangent spacetime indices will now receive hats such that m̂ = 0, 1, . . . , 10

and â = 0, 1, . . . , 10 whereas the 10-dimensional indices will not receive hats so thatm = 0, 1, . . . , 9 and

a = 0, 1, . . . , 9. Under the dimensional reduction which we perform the M2-brane gets taken to the D2-

brane. Therefore in chapter 12, where only the D2-brane is discussed, we still have i = 0, 1, 2. The Grassman

indices will remain unchanged.

Finally, in chapter 13 we perform T-duality on (10|32)-superspace. This involves singling out a direction

to take as a circle, which we will take to be the direction x9. We will then maintain the convention that 10-

dimensional indices will not receive hats so thatm = 0, 1, . . . , 9, and we shall use a dotted index if referring

only to the directions transverse to the T-duality circle so that ṁ = 0, 1, . . . , 8. We will also shift to using

double spinor notation; however a detailed explanation of this change is given in the chapter itself. When

dealing with Dp-branes, T-duality maps the brane content of the type IIA theory and the brane content of

the type IIB theory into one another, changing the dimensionality. As such, the worldvolume indices k, l

run over all the p + 1 worldvolume directions, whereas indices m′, n′ span the complementary transverse

directions, with p always being clear in context. If the brane wraps the T-dual direction, we will employ a

dot-notation k̇, l̇ when referring to all the worldvolume directions other than the T-dual one14.

14Starting now at k̇ to avoid the notational abominations that would be i̇ j̇.
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Hats

In chapters 10 and 11, we will be working in eleven spacetime dimensions. Then, in chapter 12, we will be

reducing to ten dimensions many of the quantities from previous chapters, and we will also work with them

in chapter 13. In order to distinguish 11-dimensional quantities from 10-dimensional ones when performing

dimensional reduction in chapter 12 we place hats on all 11-dimensional objects and indices. However, be-

cause our use of 11-dimensions is implicit in chapters 10 and 11, and to avoid swamping the notation in those

chapters with hats, we do not use the convention of hatting 11-dimensional quantities until chapter 12 itself.

Similarly, in appendices 15.1 and 15.4, where we discuss both 11-dimensional and 10-dimensional quantities,

we are sure to distinguish them from one another with the hatting convention, however in appendices 15.2

and 15.3 where everything is implicitly 11-dimensional, we drop them.
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Branes, fermions, and superspace

In this chapter we provide some general background information about bothM2-branes andDp-branes. This

will motivate our discussion in the coming chapters. For concreteness we mostly focus on the case of a single

M2-brane, but the ideas apply in a similar way for Dp-branes as well. The ideas in this chapter also hold for

the M5-brane and the Green-Schwarz string, but as we already mentioned we will restrict ourselves to the

M2-brane and Dp-brane cases.

9.1 Braney fermions

M2-branes andDp-branes are solitonic solutions ofM-theory and type II supergravities, respectively. ‘Brane-

only’ solutions are characterized by the breaking of the 11- or 10-dimensional Poincaré symmetry group down

to the Poincaré group on the directions spanned by the brane times the group of rotations in the transverse

space, i.e. ISO(1, 10)→ ISO(1, 2)× SO(8) for M2-branes and ISO(1, 9)→ ISO(1, p)× SO(9− p) for Dp-

branes. The Goldstone modes associated to the breaking of the Poincaré symmetry become bosonic degrees

of freedom living on the brane worldvolume [135]. In these cases, the brane solution also triggers a sponta-

neous breaking of half of the bulk supersymmetries and the associated fermionic Goldstone modes turn into

fermionic degrees of freedom on the brane.

9.1.1 Superspace perspective and the M2-brane action

In this Part we are interested in the action describing these localized branes, with a particular interest in

fermionic modes living on them and their couplings in the brane worldvolumes. For this purpose it is con-

venient to approach branes from a slightly different perspective, that of the superspace formulation of the

supergravity theories. In this formulation, branes can be regarded as extended objects in curved superspace.

This is the approach taken in [136, 137] to construct the action of the M2-brane: the M2-brane is a (2 + 1)-

dimensional object in (11|32)-dimensional superspace and its action consists of a brane worldvolume term,

coupling the brane to the backgroundmetric, and aWess-Zumino term, coupling the brane to the background
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gauge sector. Denoting the coordinates that span the worldvolume as ζi, with i = 0, 1, 2, this action reads

SM2 = −TM2

∫
d3ζ

√
−det (P [G](Z)) + µM2

∫
P [A](Z), (9.106)

where TM2 is the M2-brane tension, µM2 = TM2 is the brane charge, and P [G](Z) and P [A](Z) are the

pullbacks of the 11-dimensional supermetric and three-form gauge potential onto the brane worldvolume

respectively, with ZM representing the superspace coordinates. The pulled-back superfields are built out of

components of the supervielbein E A
M (Z) and the super-three-form AABC(Z).

The above action is a superspace generalization of the standard bosonic action of the M2-brane, where

all fields in the latter are replaced by their superfield counterparts. A product of superfields is a superfield

itself, so what we have above is the M2-brane action superfield. Of course, since all superfields depend on

superspace Grassmann coordinates θµ, so does the action, and both allow for finite expansions in θ. Con-

cretely, because the superfields in the action are the supervielbein E A
M (Z) and the super three-form gauge

potential AABC(Z), if one knows the θ-expansion of these superfields, one can obtain the expansion of the

action superfield. Both 11-dimensional supergravity, and the type II supergravities in ten dimensions con-

sidered in this Part, have 32 supercharges and so the fermionic expansion of the superfields goes up to order

32 in Grassmann coordinates θµ. Note that although we are dealing with the brane action, and although the

presence of the brane leads to partial supersymmetry breaking, we construct the brane action using off-shell

superfields.

9.2 The bulk and κ-symmetry

We mentioned before that, from the perspective of the bulk, the presence of the brane in the brane-only

solutions only preserves half of the supersymmetries. Let us consider the bulk supercharges that are preserved

in this type of solution separately from those that are spontaneously broken. TheGoldstonemodes associated

to the latter are fermionic degrees of freedom localized on the brane, arising from the θµ-directions that

the broken supercharges generate on the (off-shell) superfields. The other supercharges are not affected by

the presence of the brane, and so the brane action must be invariant under the shifts they generate in the

correspondingGrassmanndirections. Combining these ideas together, we see that the superspaceGrassmann

coordinates on the brane action superfield are lifted to localized fermions living on the brane θµ(ζi), with only

half of them (the ones generated by spontaneously broken supercharges) being physical and the other half

being associated to transformations that leave the action invariant. From the brane worldvolume perspective,

when we lift the Grassmann coordinates θµ to fermions living on the brane, because we use the bulk off-shell

superfields to write the action, we find that half of these fermions are physical whereas the other half are not

physical and instead correspond to redundancies. The existence of these redundancies implies a fermionic

gauge symmetry of the action, commonly known asκ-symmetry. In [136] it was shown that the action (9.106)

is indeed invariant under κ-symmetry transformations. More comments about the interplay between bulk

supersymmetry and κ-symmetry are in chapter 11.
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9.3 Our approach

These arguments provide a clear approach for obtaining the fermion couplings of the M2-brane action. One

needs to obtain the θ-expansion of the superfields involved, plug them into the action (9.106), and then lift

the Grassmann coordinates to fermionic fields on the brane θµ(ζi). We will follow this approach in order to

obtain the M2-brane action at order (θ)4, and so obtain fermionic interaction terms up to quartic order. The

approach can in principle be used to obtain the action at all orders in fermions.

Note that we used the brane-only solution to illustrate how to obtain fermion couplings on the brane

worldvolume, but our interest includes much more general solutions with the only demand being that they

include branes. Many points made above change whenmoving from the brane-only solution to more general

solutions with branes, for example some of the fermions on the brane can be massive and not correspond to

the goldstinos of the solution (points of this kind can be found in e.g. [138]). Crucial for our purposes, the

fermion couplings that are obtained in the superspace formulation are completely general and do not restrict

to couplings on the brane-only solution.

In the above analysis we focused on the M2-brane case, but the same ideas can be extended to all other

branes, and in particular to Dp-branes in type II supergravities. Hence, in order to obtain the Dp-brane

action superfields, one ‘only’ needs to know the superfields involved. Unfortunately, there is no known simple

approach to obtain the θ-expansion of superfields that appear in any of the theories in whichwe are interested.

The method we will use, based on a normal coordinate expansion, is systematic but has limitations in its

current form. While effective for the expansion of the M2-brane action, computing the expansion of all

superfields using this method turns out not to be the best strategy for all Dp-branes, as we will explain inmore

detail later. In fact, our strategy will be to use the ‘normal coordinate’ method to obtain the θ-expansion of the

M2-brane action superfield, and then pursue the results for Dp-branes using the superspace generalization of

the duality web in Fig. 8.62.
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The ‘normal coordinate’ method

In chapter 9 we explained that in order to obtain a fermionic expansion of the M2-brane action one requires

the θ-expansions of the superfields involved. In this chapter we review a systematic approach to obtain these

θ-expansions. Later we will specialize and apply this approach to obtain the expansion of some superfields in

11-dimensional supergravity, but the approach discussed here is completely general.

Supergravity in eleven dimensions [139] has a well-established formulation in superspace15 [140, 141].

From this perspective, the θ-expansion of the superfields is just a Taylor expansion describing the dependence

of the superfields on the superspace Grassmann coordinates θµ. We will use this geometric interpretation in

order to obtain the θ-expansions we are after. This approach is known as the ‘normal coordinate method’,

or NORCOR, because the normal coordinate system was very useful for performing the Taylor expansion of

fields in spacetime when the method was originally proposed. We will show, however, that the superspace

analysis in which we are interested does not require any special coordinate system. The normal coordinate

method is a variant of the background field method to obtain covariant expressions in Taylor expansions

of fields. Relevant literature on the development and application of NORCOR is [129, 130, 142–146]. In

particular, [130] proposed the use of this method to obtain the θ-expansion of the M2-brane action. In this

chapter we provide an intuitive and self-contained description of the method.

10.1 Generalities

The purpose of the NORCOR approach is to obtain the value of a (super)field at a point zM1 in (super)space

by starting from the value of the (super)field, and its derivatives, at another point, zM0 , which is close to zM1 ,

with

zM1 = zM0 +ΣM . (10.107)

In other words, we obtain the value of the superfield at points in the proximity of a point zM0 by performing a

Taylor expansion around zM0 . This approach is useful when we have plenty of information about the value of

the superfield and its derivatives at the origin zM0 , but the information available at zM1 is much more limited.
15Appendix 15.1 reports our spinor and Γ-matrix conventions. Appendix 15.2 provides notes on the supergravity constraints and

Bianchi identities necessary to carry out the analysis in this work.
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In our case, we want to Taylor-expand superfields in the Grassmann directions θµ: we will take the space-

time, i.e. the subspace zM0 = (xm, θµ = 0), to be the origin, and perform the expansion along a direction

ΣM that is purely Grassmannian. Let S = S(Z) be any superfield, and let zM0 = (xm, 0) be the starting

point. In order to determine the value S(zM1 ), we demand that there exists a geodesicZM (t)with parameter

t connecting zM0 and zM1 , such that ZM (t = 0) = zM0 and ZM (t = 1) = zM1 . The tangent vector of the

geodesic is yM (t) ≡ dZM (t)/dt. This tangent vector obeys the geodesic equation

yM (t)∇MyA(t) = dyA(t)
dt

+ yM (t)ω A
M ByB(t) = 0, (10.108)

where yA(t) = yM (t)E A
M (ZN (t)) is written with the tangent superspace index because the superspace

covariant derivative∇ comes with a superconnection ω generalizing the spin-connection, but nothing anal-

ogously comparable to the affine connection. We are expanding along a purely Grassmannian direction, so

we want the tangent vector at the origin to point in Grassmann directions, i.e. yM (t = 0) = (ym = 0, yµ).

Before proceeding, let us explain why our approach does not need the normal coordinate system. The

point of the normal coordinate system is to simplify the geodesic equation at the origin. This is usually

achieved because the (affine) connection vanishes there. In our case of interest, however, we can use local

Lorentz transformations to set some components of the superconnection to vanish at the origin of Grassmann

coordinates, i.e. ω A
µ B (θ

µ = 0) = 0. So for us the geodesic equation simplifies at θ = 0 regardless of the

coordinate system used.

Moreover, Lorentz transformations also permit us to fix the supervielbein in the Wess-Zumino-gauge,

such that E α
µ (θ = 0) = δαµ . Then, the solution to the geodesic equation at the origin and its surroundings,

in the region where the approximation is valid, is ZM (t) = zM0 + yM (t = 0) t. The point zM1 = (xm, θµ) is

at t = 1 on the geodesic, and this allows us to effectively identify the Grassmann coordinate and the origin

tangent vector yµ(t = 0)↔ θµ.

We are now ready to obtain the θ-expansion of any superfield S(z0). To do so, we first use the geodesic

above to compute the Taylor expansion with respect to the parameter t around the point at t = 0, i.e.

S(ZM (t))
∣∣
t=0

=

∞∑
k=0

tk

k!

(
δ

δt

)k
S(ZM (t = 0)). (10.109)

Computing variations in t means comparing the superfield at the origin with the superfield after dragging

it along the geodesic, so we can replace the t variations with Lie derivatives, denoted Ly, along the tangent

vector field yM (t). Because we evaluate the derivatives at t = 0 the vector y that appears in the Lie derivatives
will also be evaluated at this point. From here on we simply write it as y and drop that it is evaluated at t = 0,

where it only has components in Grassmann directions. Finally, we are interested in obtaining the value of

the superfield at the point zM1 , where t = 1. Putting these things together we find that

S(ZM (t = 1))
∣∣
t=0

=

∞∑
k=0

(Ly)
k

k!
S(ZM (t = 0)) = (eLyS)

∣∣
t=0

. (10.110)

This means that the θ-expansion of any superfield in this approach is obtained by repeatedly acting with the

Lie derivative. This is effectively the approach followed in [129, 130, 142–146]. It is interesting to point out
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that we can write the expansion using the exponential of a differential operator, because this agrees with the

fact that a product of superfields is a superfield itself: if S is a product of superfields, using the Leibniz rule

and the exponential expansion one finds that there will be an exponential acting on each superfield involved

in the product.

10.2 A note on extra complexities

For applying the NORCOR procedure it is important to note that in superspace we have the superconnection

(that generalizes the spin connection), and we defined a Lorentz covariant derivative, but we did not define

the notion of an affine connection or a fully covariant derivative. For this reason we are often interested

in writing superfields with Lorentz indices. Regular Lie derivatives acting on Lorentz tensors do not lead to

Lorentz tensors. To fix this problem, we need to replace the regular Lie derivative by the Lie-Lorentz derivative

(see e.g. [147, 148] and the original reference [149]). This is a Lorentz covariantization of the regular Lie

derivative, wherein partial derivatives are replaced by their Lorentz-covariant counterparts, complemented

with the inclusion of an extra term that gives an infinitesimal Lorentz transformation. The effect of this

Lorentz transformation is to trivialize the effect on the holonomy group driven by the inclusion of spin-

connection terms in the covariantization. For practical purposes we observe that in (9.106) there are no

free Lorentz indices, so the extra terms demanded by the Lie-Lorentz derivative will cancel each other in the

expansions of the objects we are interested in. For this reason we can (and will) safely ignore the presence

of these extra terms. Physics provides an alternative (and, dare we say it, more intuitive) description of the

same idea: the Lorentz-Lie derivative above is a combination of a supersymmetry transformation and a local

Lorentz transformation, and we will ignore the latter because brane actions have no free Lorentz indices. The

θ-expansion is therefore obtained by repeatedly taking supersymmetry variations of the fields.

Note that we have turned a problem about worldvolume couplings on branes into a differential geometry

problem in superspace, and there is a price to pay for it. If we wish to obtain the superfield expansion system-

atically using this technique we are also required to do some extra work. On the one hand, we need the value

of the superfield at the origin of Grassmann coordinates θ = 0, and on the other hand we need to be able

to manipulate the outcome of the repeated application of the Lie derivative to write the results in terms of

familiar objects. This is substantially easier to accomplish when we focus on computing the expansion of the

individual superfields appearing in the action, rather then trying to treat the full action superfield directly.

We will use some examples to illustrate these points.

10.3 Specifics

As a first example consider the expansion of the 11-dimensional supervielbein that appears in the M2-brane

action. We will employ the conventions and the definitions of 11-dimensional supergravity that are reviewed

in appendix 15.2. For the first term in the expansion one needs the Lie derivative

LyE
A

M = ∇MyA + yCE B
M T A

BC . (10.111)
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This formula is obtained via integration by parts, and involves the (Lorentz) covariant exterior derivative,

∇yA = dyA−yBECω A
BC (where yA = yME A

M ), and the (superspace) torsion tensor T , whose definition

is given in (15.256). Note that we wrote the torsion tensor with all indices in tangent space by introducing

a supervielbein for convenience. Obtaining the order-(θ)1 term in the expansion requires evaluating this

expression at θ = 0, which in turn requires knowledge of the superspace torsion tensor and the supervielbein

evaluated on this subspace. We will shortly explain how to perform this evaluation. For now let us point out

that without the notion of e.g. the superspace torsion tensor, the Lie derivative would be meaningless, and

this makes manifest the need for extra structure to obtain any useful information from this approach.

Let us provide some further formulae necessary to compute higher order terms of the supervielbein ex-

pansion. In particular, we will need

LyG = yA∇AG, (10.112)

LyyA = 0, (10.113)

Ly(∇MyA) = −yBE C
M yDR A

DCB . (10.114)

The first formula indicates how the Lie derivative acts on any Lorentz tensor G. For the second formula

we used the previous one together with the geodesic equation. The last formula is also obtained by using

integration by parts and the geodesic equation, and R there is the superspace Riemann tensor defined in

(15.257). Again, we find the need of extra structure in order to make sense of certain Lie derivatives. It turns

out that the four expressions provided are enough to obtain the θ-expansion of the supervielbein at any order.

We perform computations up to order four in chapter 11 and appendix 15.3.1.

Once the necessary Lie derivatives have been computed, the next step is to evaluate them at the reference

point for the Taylor expansion, that we choose to be θ = 0. Again, we concentrate on the 11-dimensional

supervielbein for concreteness. The first object to evaluate at this point is the supervielbein itself. We use

Lorentz transformations to fix the so-called Wess-Zumino (WZ) gauge16, i.e.

E A
M (θ = 0) =

(
e a
m (x) ψαm(x)

0 δαµ

)
, (10.115)

where e a
m (x) is the 11-dimensional vielbein and ψαm(x) the 11-dimensional gravitino. For all other terms

appearing in the derivatives, there are a few steps to follow. First we must decide which component of the

superfield we are assessing by choosing which of the free indices we would like to be bosonic or Grassmann.

Contractions over superspace indices involve both kind of indices, upon expansionwewill often find that only

one of these kinds contributes. This can be for a number of the reasons including: (1)The supervielbein in the

WZ-gauge has some vanishing component. (2)The vector tangent to the geodesic at the origin is constrained

to be yM = (0, yµ) for our particular expansion. Note that theWZ-gaugemeans that this is yA = (0, yα). (3)
The tangent space structure means nomixing between bosonic and fermionic indices in the superconnection

(and so also nomixing in the superspace Riemann tensor). Thismeansω d
γ = ω γ

d = R d
ABγ = R γ

ABd = 0.

For the terms that survive all of these constraints, one needs to evaluate the superspace tensors involved

16We previously used the WZ-gauge to set to zero the ω AB
µ component of the superconnection. These two choices are not indepen-

dent [6] (equation (5.6.8)).
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and write them in terms of spacetime fields. To do this we make use of the supergravity constraints and

superspace Bianchi identities. It turns out that many components of superspace tensors vanish (for example

T c
αb = 0) or are constant (for example T c

αβ) all over superspace [141]. Fixing the value of the latter is a

matter of conventions. The value of all other components of these superspace tensors can be obtained from

superspace Bianchi identities. A list of supergravity constraints can be found in (15.261a - 15.261d) and a list

of useful formulae derived from Bianchi identities is given in (15.263a - 15.263c).

As a clarifying example, we evaluate some components of (10.111), at θ = 0, using the ideas above. In

both cases we consider that the indexM will be restricted to spacetime, and we evaluate the cases where the

tangent space index A is spacetime and Grassmann separately. We obtain,

LyE
a

m = ∇mya + yγE B
m T a

Bγ = ∇mya + yγE β
m T a

βγ
θ=0
= −iyγ(Γa)βγψβm, (10.116a)

LyE
α

m = ∇myα + yγE B
m T α

Bγ = ∇myα + yγE b
m T α

bγ
θ=0
= ∇myα + yγe b

m T α
bγ . (10.116b)

In both cases we first fixed as many indices as possible to be either spacetime or Grassmann, leaving only

the contraction of B with both types involved, then we got rid of vanishing contributions by using T a
bγ =

T α
βγ = 0. Finally we evaluated the surviving terms using the WZ-gauge for the vielbein (10.115) and our

convention for the constant torsion component T a
βγ = −i(Γa)βγ . We left T α

bγ untouched here, but it is a

simple combination of Γ-matrices and four-form flux, as shown in (15.264a).

Once the formulae for the Lie derivatives have been evaluated at the origin of Grassmann coordinates,

and re-written as described above, one can write the superfield expansion. In order to do so one must replace

the tangent vector y by the Grassmann coordinate θ (this happens when we evaluate the geodesic at t = 1).

For the components of the supervielbein in the above example this gives the expansions up to order (θ)1, i.e.

E a
m (Z) = e a

m (x)− iθ̄Γaψm(x) + . . . , (10.117a)

E α
m (Z) = ψαm(x) +

(
Dm(x)θ

)α
+ . . . . (10.117b)

In the first formula we wrote the fermion bilinear with the Dirac conjugate θ̄ = θTC , with C being the

charge conjugation matrix, see appendix 15.1 for our conventions. For the second formula, we noted that

the torsion can bemanipulated and combined with the covariant derivative into the supercovariant derivative

Dm = ∇m+Ťm, where Ťm is related to Tm by a transposition. An alert reader will notice that the first order

terms in the expansion are (unsurprisingly) the expressions that appear in the supersymmetry variations of

the vielbein and the gravitino.

The above method gives rise to a superfield expansion in terms of familiar objects. This is not the end of

the story, however. Themethod relies on writing all contractions in terms of tangent space indices. This often

requires including numerous supervielbeins, and these can result in a rapidly growing number of terms when

one computes higher and higher order Lie derivatives of any superfield. Higher-order terms, written in terms

of spacetime fields, therefore involve an increasing number of contributions. This can cause the expansion

to become enormously cumbersome unless one finds a way to put contributions at each level together into

more compact and tractable combinations. As a simple example, recall that in the supervielbein expansionwe

combined the covariant derivative of θ together with the term related to the torsion into the supercovariant
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derivative. At higher orders it becomes increasingly complicated to combine terms together into manageable

expressions. This will be the primary cause of the limitations we find in our computations. We will make

further comments about this when we can make more precise statements.

Finally, wewill be concentrating ondetermining expressions for the casewhere the background is bosonic.

Practically speaking, we do this by turning to zero all the terms involving the 11-dimensional gravitino. This

means that we also turn to zero all superspace tensors with an odd number of Grassmann indices, since they

involve the gravitinos when written in terms of spacetime objects. This restriction causes many more terms

in the expansions to vanish. The Lie derivative applied to a bosonic field (a superspace tensor with an even

number of Grassmann indices) an odd number of times will always vanish in bosonic backgrounds, as will

the expression for the Lie derivative applied to a fermionic field an even number of times. In order to study

completely general backgrounds, one would simply not perform this step andmaintain all the gravitino terms

in the discussion as well.

Now that we have explained the approach, we are ready to spell out why it is more convenient to only

use NORCOR in eleven dimensions. In ten dimensions there are more fields and more superspace tensors

involved. This means that one needs to work harder in order to obtain all the supergravity constraints and

useful formulae from Bianchi identities in each theory, and of course applying them to re-write the Taylor

expansions requires performing even more computations. Moreover, the ‘simplicity’ of 11-dimensional su-

pergravity enables us to more clearly capture the structure of the terms involved, and we will show later that

this structure is, in a sense, ‘inherited’ by the 10-dimensional theories. We will make this statement more

precise later. Nevertheless, we already mentioned that even in this ‘more simple’ theory we encounter dif-

ficulties when manipulating higher-order terms. Clearly this problem does not improve for 10-dimensional

type II theories. Computing NORCOR expansions in eleven dimensions is substantially cleaner and allows

us to make insights and extract information about structure more easily. It is a better strategy, then, to obtain

all expansions in this theory and then obtain expansions in ten dimensions via the superspace duality web,

as we describe below.

A final compelling reason to use the method in eleven dimensions only is that higher order expansions

of the M2-brane action can be obtained with essentially just the 11-dimensional supervielbein expansion,

whereas in all other cases one must compute the expansions of more fields. In order to explain what we mean

by ‘essentially’, we can consider the M2-brane action. We can first note that in the volume term of the M2-

brane action we find the (super)metric, whose expansion follows directly from the supervielbein. For the

Wess-Zumino term, what we find is a combination of the supervielbein and of the super-three-form gauge

potential. If we compute the Lie derivative of this combination we find

Ly
(
E A

[m E B
n E C

p] AABC
)
= E A

[m E B
n E C

p] yDHDABC (10.118)

up to total derivatives. This formula is a consequence of how the flux field-strength superfield is defined, in

(15.260). We now apply supergravity constraints (15.261c - 15.261d) which tell us that the only components

of the field-strength superfield that are non-vanishing areHabcd andHαβab = i(Γab)αβ , which is constant.

This has important consequences for expansions of the above combination, and the M2-brane action as a
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whole, namely

(Ly)
n(yDHDABC) = 0, for n ≥ 1. (10.119)

Hence, if we applymore Lie derivatives on the combined superfield appearing in theWZ-part of theM2-brane

action, only the terms with Lie derivatives acting on the supervielbeins survive. This means that knowledge

of the supervielbein expansion is sufficient for computing the expansion of the whole M2-brane action. This

is the final argument supporting our general strategy.

For ease of use, we summarize the computational steps of the strategy here:

1. Compute the derivatives in the superfield expansion superfield. In practice this means using (10.111 -

10.114).

2. Evaluate the expressions at the origin, θ = 0.

3. Apply the relevant supergravity constraints from (15.261a - 15.261d) and those arising as a consequence

of superspaceBianchi Identities (15.264a - 15.267b) in order towrite formulae in terms of familiar fields.

4. Apply the constraints of the bosonic background if appropriate.
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Eleven dimensional supergravity and the

M2-brane

The expansion of the M2-brane action up to order four in fermions was first performed in [130]. In this

chapter, with the aid of appendices, we review and correct the main results; appendix 15.2 contains a review

of the 11-dimensional supergravity conventions and appendix 15.3 discusses useful superfield expansions up

to fermionic order four. Our conventions are described in appendices 15.1 and 15.4.

Let theM2-brane worldvolume coordinates be defined as ζi, with i = 0, 1, 2. The superfield action for the

M2-brane in terms of the superspace embedding coordinates ZM (ζ) = (xm(ζ), θµ(ζ)) is given in (9.106)

which can be written as

SM2(Z) = −TM2

∫
d3ζ

[√
−det (Gij(Z))−

1

6
εijkAijk(Z)

]
, (11.120)

where, using the pullback of the supervielbein

E A
i (Z) =

∂ZM

∂ζi
E A
M (Z), (11.121)

we wrote the Dirac-Born-Infeld (DBI) term in terms of the pullback of the metric and the Wess-Zumino

(WZ) term in terms of the three-form pullback, which respectively read

Gij(Z) = E a
i (Z)E b

j (Z) ηab, (11.122)

Aijk(Z) = E A
i (Z)E B

j (Z)E C
k (Z)AABC(Z). (11.123)

We explained in chapter 9 that in order to obtain the θ-expansion of the action we need to obtain the

θ-expansions of the superfields involved. For the M2-brane we also showed that, because of (10.118), the

only superfield expansion we need is that of the supervielbein. Nevertheless, it is more practical to work

with Lorentz-invariant objects, so in what follows we will compute the expansion of the (super)metric and

the (super)three-form, that appear in the brane action. Obtaining the action expansion from these is then
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simple. Working with these superfields is sufficient and is a convenient middle-ground between dealing with

the full action and dealing with the numerous supervielbeins individually. For a large proportion of the

coming chapters we will compute the Lorentz-invariant superfield expansions.

We start by applying the method to compute the metric superfield expansion. In order to write the brane

action up to order four in fermions, we need to expand the supermetric to the same order. We write the

necessary Lie derivatives acting on the supermetric in terms of Lie derivatives acting on the supervielbeins

involved and take into account the fact that we consider a bosonic background, which means that several

terms will actually vanish. With the understanding that everything outside of Lie derivatives is evaluated at

the origin, the relevant relations are

(Ly)
2
Gmn = 2

[
(Ly)

2
E a

(m

]
e b
n) ηab, (11.124a)

(Ly)
4
Gmn = 2

[
(Ly)

4
E a

(m

]
e b
n) ηab + 6

[
(Ly)

2
E a

(m

][
(Ly)

2
E b
n)

]
ηab. (11.124b)

For theWZ-term, the analysis is slightly more involved because one has both the supervielbein and the three-

form in the combination (E A
M E B

N E C
P AABC)(Z). We saw in the discussion around (10.118) how to deal

with this combination, so here we simply use those ideas and then follow the same procedure as we did for

the metric. The relevant relations up to fermionic order four in bosonic backgrounds are

(Ly)
2
Amnp = −3i yα

[
LyE

β
[m

]
e c
n e

d
p] (Γcd)βα, (11.125a)

(Ly)
4
Amnp = −3i yα

[
(Ly)

3
E β

[m

]
e c
n e

d
p] (Γcd)βα − 18i yα

[
LyE

β
[m

][
(Ly)

2E c
n

]
e d
p] (Γcd)βα.

(11.125b)

We see that we require different components of the supervielbein expansion for themetric and the three-form.

Happily, using the supergravity constraints it can be shown that in bosonic backgrounds these components

are related by the condition, [131],

(Ly)
2l+2

E a
m = −iyβ(Γa)βγ

[
(Ly)

2l+1
E γ
m

]
, (11.126)

where l is a natural number. Therefore, in order to obtain the action at order four in fermions, we only require

two terms in the expansion of the supervielbein. These are

LyE
α

m = (Dm)αγyγ , (11.127a)

(Ly)
3E α

m = −yβe c
m yδyϵ∇ϵ(R α

δcβ −∇δT α
cβ )− yβ(Dmyγ)yδR α

δγβ − i(ȳΓcDmy)yβT α
cβ .

(11.127b)

Here the first equation involves the supercovariant derivative that was discussed around (10.117b). The su-

percovariant derivative will turn out to be a very important operator for our purposes. In (11.127b) we have

left the expression written in terms of superspace components of the torsion and curvature tensors. Manip-

ulating this expression using superspace Bianchi identities in order to write it in terms of spacetime fields,

though important for our purposes, is a computation that does not add any insight to the present discussion.

For this reason we present the details of that analysis in appendix 15.3.2. The outcome of our manipulations
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is the expression

(Ly)
3E α

m = i(Γbcy)α(ȳWmbcy) + i(Ť dfgh
b y)α(ȳHbmdfghy) (11.128)

where we have defined

Hbmdfgh = ΓbHdfghDm − 6e b
m Γdf [Dg, Dh], (11.129a)

Wmbc = RbcDm +
1

8
Γm[Db, Dc] +

1

4
Γb[Dm, Dc], (11.129b)

Rbc =
1

576

(
ΓbcΓ

dfgh − 8δ
[d
[cΓb]Γ

fgh] − 12δ
[d
[c δ

f
b]Γ

gh]
)
Hdfgh, (11.129c)

Ť dfgh
c =

1

288

(
ΓcΓ

dfgh − 12δ[dc Γ
fgh]

)
. (11.129d)

There are some important points that need to be made about these formulae. First of all, manipulations lead

to some terms involving commutators of supercovariant derivatives. It can be seen in appendix 15.3.2 that

these arise from the first term in (11.127b). There are also terms involving a single supercovariant derivative

andH(4)-flux. These contributions are the outcome ofmanipulating the last two terms in (11.127b). We have

so far been unable to write these parts of the expressions strictly in terms of the supercovariant derivative.

Note that this problem appears for the first time at order (θ)4 for the M2-brane in bosonic backgrounds, and

was therefore not observed in the order-(θ)2 analysis carried out in [125–127, 150] where everything can

be packaged up in a tidy and supercovariant way. The result (11.128) agrees with [151], but there are strong

indications that these formulae should allow for further manipulation into a more compact expression where

supercovariance is made manifest. We will see later that dealing with these complicated objects is the chief

source of the difficulty limiting our computational ability when performing dimensional reduction of the

M2-brane action to obtain the D2-brane action.Put plainly, our manipulation of the higher order expansion

of the supervielbein probably needs to be completed into a manifestly supercovariant formulation that we

would expect to be more compact and more manageable than the one presented above.

11.1 M2-brane at fermionic order two

Now we review the M2-brane action at order two in fermions. We will use this ‘simple’ analysis for two main

purposes. First, it is a warm-up exercise that nicely illustrates how to proceed at higher orders. Second, wewill

use it to make more precise the relation between κ-symmetry and bulk supersymmetry discussed in chapter

9.

Recall that we decided to perform expansions of Lorentz-invariant superfields in the action since obtain-

ing the full action expansion from these is simple. We begin with the metric expansion. We ignore order-

(θ)1 terms since they involve the gravitino and we are interested in bosonic backgrounds. For the order-(θ)2

terms, we combine (11.124), (11.126), and (11.127) to obtain (Ly)
2
Gmn

θ=0
= −2iȳΓ(mDn)y. We can use this

to write a truncation of the metric superfield which includes only the terms relevant for the brane action. We

will use a boldface notation to refer to these truncated superfields. For the metric, the combination is

gmn ≡ gmn(x)− iθ̄Γ(mDn)θ. (11.130)
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The expansion of the three-form superfield can be similarly obtained. In fact, (11.125) and (11.127) combine

to give the order-2 correction in the combination Amnp(Z), whose truncated expansion reads

Amnp ≡ Amnp(x)−
3i

2
θ̄Γ[mnDp]θ. (11.131)

These combinations of bosonic and fermionic fields first appeared in [125, 150] inwhatwas called a ‘superfield-

like form of the action’, allowing one to write the order-(θ)2 expansion of the M2-brane action in a compact

way. Similar combinations appearing in other Dp-brane actions were found and these allowed these actions

to be written in a compact way as well.

Our discussion makes it manifest that the appearance of the truncated superfields is not a mere trick

valid only for the action up to this order, but rather a consequence of how the action superfield is built in the

superspace formulation of supergravity. This means it is valid at any order in fermions. Therefore in what

follows our goal is to provide a systematic approach to compute truncated superfields of this type appearing

in all brane actions. For practical purposes we will often refer to themetric and three formwithout specifying

if we refer to the field, the superfield, or the truncated superfield, as this will always be clear from context.

We are now ready to write theM2-brane action at order (θ)2. Plugging the truncated superfields (11.130)

and (11.131) into the action (9.106) and then Taylor-expanding up to order (θ)2, we get

S
(2)
M2 = −TM2

∫
d3ζ

[√
−det (g)− 1

6
εijkAijk

]
= −TM2

∫
d3ζ

[√
−det (g)− 1

6
εijkAijk

]
+ iTM2

∫
d3ζ

√
−det (g)

[
θ̄P

(0)
− ΓiDiθ

]
.

(11.132)

In the last line, we combined the order-(θ)2 terms together forming the so-called κ-symmetry projector at

order (θ)0, i.e.

P
(0)
− =

1

2

(
1− Γ

(0)
M2

)
, (11.133)

where the Γ-matrix combination defining the operator is

Γ
(0)
M2 =

εijkΓijk

6
√
−det (g)

. (11.134)

This allows us to see explicitly the manifestation of κ-symmetry in the M2-brane action at fermionic order

(θ)2. We comment on κ-symmetry in detail now.

11.2 Supersymmetry and κ-symmetry

We are now in a position to make more precise comments about bulk supersymmetry and κ-symmetry. As

we already mentioned, it is worth taking two perspectives. First, from the bulk perspective, the brane-only

solution spontaneously breaks half of the supersymmetries, while the other half are preserved on-shell. The

corresponding goldstinos turn into the fermionic degrees of freedom on the brane, θµ(ζ). Alternatively,

from the brane worldvolume perspective, we construct the brane action using off-shell superfields with all 32

Grassmann coordinates, therefore only half of them correspond to actual degrees of freedom on the brane
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while the rest are redundancies. This means that there must exist a fermionic gauge symmetry, known as

κ-symmetry, that gets rid of these redundant directions. The presence of such a fermionic gauge symmetry

in the M2-brane action (9.106) was shown in [136]. The κ-symmetry variations are

(δκZ
M )E a

M (Z) = 0, (11.135a)

(δκZ
M )E α

M (Z) = (1 + ΓM2(Z))
α
βκ

β , (11.135b)

where the operator

ΓM2(Z) =
εijkΓijk(Z)

6
√
− det(G(Z))

(11.136)

is a hermitian traceless matrix squaring as (ΓM2(Z))
2 = 1. In the transformations, κ is an arbitrary 32-

component Majorana fermion in 11-dimensional spacetime. Note that these expressions are valid all over

superspace. If we evaluate them at the origin of Grassmann coordinates, using theWZ-gauge (10.115) for the

supervielbein, these variations read

δκx
m = 0, (11.137a)

(δκθ
µ)δαµ = (1 + Γ

(0)
M2)

α
βκ

β , (11.137b)

with thematrix Γ(0)
M2 defined as in (11.134). Hence it is possible to use κ-symmetry transformations to project

out half of the Grassmann coordinates θµ. We see that the appearance of the orthogonal projector P (0)
− in the

M2-brane action at order (θ)2 is not a coincidence, but rather it is a consequence of κ-symmetry and what

we did there was to write the action in such a way as to make this symmetry manifest.

Let us nowderive some bulk supersymmetry properties. We start with theM2-brane-only solution, where

the brane spontaneously breaks half of the supersymmetries. Here we use κ-symmetry to determine whether

a supersymmetry is preserved by the brane or spontaneously broken, following [152, 153]. To make this

point explicit, we need some of the symmetries of the M2-brane action (see e.g. [137]). To start, recall that

superfields transform under global supersymmetry variations, and so does the brane action. Off-shell, super-

symmetry variations are shifts in any Grassmann direction(s) θµ. On-shell, in a background where the brane

is present, only some of those shifts leave the background invariant. We denote the variation generated by the

surviving killing spinors in this background δϵθ = ϵM2. The combination of surviving global supersymmetry

and κ-symmetry leads to a total variation (at the origin of Grassmann coordinates in order to connect with

the above discussion)

δϵ,κθ = ϵM2 + (1 + Γ
(0)
M2)κ. (11.138)

In order to get rid of the fermionic redundancies on the brane, we write the κ-symmetry gauge-fixing con-

dition as Pθ = 0, where P is a projector independent of background fields. This implies that the physical

fermions on the brane are such that θ = (1− P)θ. Once the gauge is fixed, in order to preserve it, it is neces-

sary that δϵ,κ(Pθ) = Pδϵ,κθ = 0 holds, and so δϵ,κθ = 0. The latter formula, together with (11.138) implies

that the surviving global supersymmetry transformations that are compatible with this fact must satisfy

ϵM2 = −(1 + Γ
(0)
M2)κ (11.139)
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on the brane locus. Using this relation, one easily finds that any surviving supersymmetry must satisfy

P
(0)
+ ϵM2 = ϵM2 (equivalently Γ(0)

M2ϵM2 = ϵM2) on the brane locus, where P (0)
+ = (1 + Γ

(0)
M2)/2. On the other

hand, the orthogonal projector P (0)
− selects Grassmann coordinates generated by spontaneously broken su-

percharges, the goldstinos on the brane-only solution. This is the reason why the combination P (0)
− θ appears

on the brane action. (11.139) also shows that preserved bulk supersymmetries are of the same aspect as κ-

symmetry transformations (they both involve P (0)
+ ) and so also leave the M2-brane action invariant thanks

to the presence of P (0)
− in the brane action.

This physical picture is valid not only for the M2-brane, but also for all Dp-branes. In order to study

each case one must replace ΓM2 by the corresponding matrix ΓDp. In [126, 127] it was shown that all Dp-

brane actions at quadratic fermionic order can be written with the corresponding κ-symmetry projector. In

[122] the breaking of supersymmetry by Dp-branes was shown to correspond to a non-linear realization of

supersymmetry, generalizing first results of this type [17, 18].

The brane-only solution is illuminating for deriving multiple facts regarding bulk supersymmetry and

κ-symmetry, but our interest is in more general setups. In the previous configuration all fermions on the

brane are massless goldstinos andmany fermionic couplings on the brane vanish. In general, those couplings

do not vanish and are physically relevant. For example, depending on the particular solution, some (or all)

worldvolume fermions will become massive and will no longer correspond to goldstinos of the solution. The

superspace approach in this paper includes all such couplings and therefore captures all of the relevant physical

features of these general solutions. Moreover, the argument above, telling which supersymmetries survive in

the solutions involving branes, is also valid for such solutions.

Finally, it is worth noting that we evaluated our expressions at the origin of Grassmann coordinates and so

formulae involved the zeroth order κ-symmetry matrix Γ(0)
M2 and the projectors P

(0)
± , that we used to connect

with what we found for the brane action at order (θ)2. Nevertheless, the above arguments work all over

superspace and so the general formulas about preserved supercharges and κ-symmetry involve ΓM2(Z) and

P±(Z).

11.3 M2-brane at fermionic order four

In this section we apply what we learned at the second fermionic order to build the action at order four in

quite a direct way. We saw that in order to do so we need to find the metric and 3-form superfield truncations

up to order (θ)4.

We already provided all of the relevant formulae to write the supervielbein expansion at order (θ)4 in

(11.126) and (11.128). By plugging those results into (11.124) and (11.125), one finds the metric and three-

form superfields up to order (θ)4. The metric is

gmn = gmn − i(θ̄Γ(mDn)θ)−
1

4
(θ̄ΓaD(mθ)(θ̄Γ

aDn)θ)

+
1

12
(θ̄Γ(m|Ť dfgh

b θ)(θ̄Hb|n)dfghθ) +
1

12
(θ̄Γ(m|Γ

bcθ)(θ̄W|n)bcθ),

(11.140)
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where we used the operators defined in (11.129), and, similarly, the three-form is

Amnp = Amnp −
3

2
i(θ̄Γ[mnDp]θ)−

3

4
(θ̄Γa[mDnθ)(θ̄Γ

aDp]θ)

+
1

8
(θ̄Γ[mn|Ť dfgh

b θ)(θ̄Hb|p]dfghθ) +
1

8
(θ̄Γ[mnΓ

bcθ)(θ̄Wp]bcθ).

(11.141)

In the same way as we did at second order, these expressions can be plugged into the action and then we can

perform a Taylor expansion to find the action at quartic order

S
(4)
M2 = − TM2

∫
d3ζ

[√
−det (g)− 1

6
εijkAijk

]
= − TM2

∫
d3ζ

√
−det (g)

[
1− 1

6

εijk√
−det (g)

Aijk

]
+ TM2

∫
d3ζ

√
−det (g)

[
i
(
θ̄P

(0)
− ΓiDiθ

)
+

1

8

(
θ̄ΓiDiθ

)2 − 1

8

(
θ̄ΓiDjθ

)(
θ̄ΓiDjθ

)
− 1

8

(
θ̄ΓiDjθ

)(
θ̄ΓjDiθ

)
+

1

8

(
θ̄ΓmD

iθ
)(
θ̄ΓmDiθ

)
− 1

8

εijk√
−det (g)

(
θ̄Γm[iDjθ

)(
θ̄ΓmDk]θ

)
− 1

12

(
θ̄P

(0)
− ΓiŤ dfgh

b θ
)(
θ̄Hbidfghθ

)
− 1

12

(
θ̄P

(0)
− ΓiΓbcθ

)(
θ̄Wibcθ

)]
.

(11.142)

We see that some of the fourth-order terms, like the second-order terms, may be organized around zeroth-

orderκ-symmetry projectors, whereas some cannot be. Those termswhich cannot be (comingwith a factor of

1/8) are related to the higher-order fermionic expansion of theκ-symmetry projector superfield. We leave the

study of this for future work, and for now continue on without organising these terms around a κ-symmetry

principle.

This completes the expansion of the bosonic background M2-brane action to quartic order. In the next

chapter we will examine the dimensional reduction of these expansions to determine the D2-brane action up

to order four in fermions.
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Superspace dimensional reduction and

the D2-brane

We now know how to obtain the fermion couplings in the M2-brane action up to arbitrary order, and we

have calculated them explicitly up to order four. Our plan is to use this knowledge to compute equivalent

couplings on all Dp-branes. The first step in doing this is compactifying M-theory on a circle, connecting the

M2-brane in 11-dimensional supergravity to the D2-brane in type IIA supergravity. Then, by T-dualizing the

theory, move to branes of arbitrary dimension in both type IIA and IIB theories.

Dp-branes are solutions of 10-dimensional type II supergravities and it is therefore possible to construct

their action using the superspace formulation of those supergravity theories. This is indeed what we will do

in this chapter and the next one. However, as we previously explained, the approach we will use to obtain

the Dp-brane action superfields will not be a direct application of the NORCOR approach of chapter 10.

Instead, in this chapter we use a superspace generalization of the dimensional reduction relating M2-branes

and D2-branes. We start by quickly reviewing the S1-compactification of the 11-dimensional spacetime that

reproduces type IIA supergravity starting from 11-dimensional supergravity. We then consider theM2-brane

and its dimensional reduction to theD2-brane. After revisiting the purely bosonic calculation, we then extend

the compactification method to superspace.

For a detailed account of the notation employed, see appendix 15.1. See appendix 15.4 for an overview of

the relevant dimensional reductions.

12.1 Reduction of 11-dim supergravity to type IIA supergravity

Type IIA string theory can be obtained by dimensional reduction of 11-dimensional supergravity. In this

section we quickly review the main features of this dimensional reduction.

The notation for the dimensional reduction is as follows: 11-dimensional indices are hatted whereas 10-

dimensional indices are not and 11-dimensional objects are also hatted whereas 10-dimensional objects are

not; indices a, b, ... are tangent space and m,n, ... are spacetime indices, with explicit number indices un-
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derlined for tangent space and unadorned for spacetime, while i, j, ... are M2- and D2-brane worldvolume

indices; 11-dimensional spacetime coordinates are x̂m̂ and they split as (xm, x10), while worldvolume coor-

dinates are ζi; we will leave implicit that the pull-back to the brane of an 11-dimensional object is a different

operation than the pull-back to the brane of a 10-dimensional object, but we will keep track of this by observ-

ing whether the object is hatted or not, objects always being pulled back in the appropriate way. Background

fields are independent of x10.

To begin the dimensional reduction, we first deal with bosonic fields. Given the 11-dimensional metric

ĝm̂n̂ = ê â
m̂ ê b̂

n̂ η̂âb̂, where ê
â

m̂ is the 11-dimensional vielbein, the S1-compactification ansatz for the vielbein

leading to the type IIA action in the string frame is

ê â
m̂ =

(
e−

ϕ
3 e a
m e

2ϕ
3 Cm

0 e
2ϕ
3

)
, (12.143)

where e a
m is the 10-dimensional vielbein, ϕ is the dilaton, and Cm is the Ramond-Ramond one-form. The

10-dimensional metric is gmn = e a
m e b

n ηab. The 11-dimensional three-form gauge potential decomposes

as

Âmnp = Cmnp, (12.144a)

Âmn 10 = Bmn, (12.144b)

where C3 is the Ramond-Ramond three-form potential and B2 is the Kalb-Ramond potential. Notice that

our RR-field sign conventions differ from those used in [125, 126]. There are many objects for which we need

the dimensional reduction. Those calculations are crucial, but laborious, so we provide a catalogue of the

dimensional reduction results in appendix 15.4.

Fermions are of course highly relevant for our purposes and sowe needmany details from the dimensional

reduction of fermionic fields. The ansatz for the 11-dimensional gravitino ψ̂m̂ is

ψ̂m = e−ϕ/6
[
ψm −

1

6
Γmλ+

1

3
eϕCmΓ∗λ

]
, (12.145a)

ψ̂10 = e−ϕ/6
[
1

3
eϕΓ∗λ

]
, (12.145b)

where ψm is the 10-dimensional gravitino, λ is the dilatino, and Γ∗ is the 10-dimensonal chirality matrix.

Recall that we start with 11-dimensional Majorana fermions. Upon dimensional reduction, these will split

into pairs of 10-dimensionalMajorana-Weyl fermions of opposite chiralities, so each 10-dimensional fermion

above should be interpreted as a pair of Majorana-Weyl fermions of opposite chirality, e.g. λ = λ+ + λ−,

whereΓ∗λ± = ±λ±. This dimensional reduction leads to the type IIA action in the fermionic frame of [154].

Moreover, any 11-dimensional Majorana fermion, like the supersymmetry parameter or the fermions on the

M2-brane, need to be dimensionally reduced like the gravitino, with a rescaling involving the dilaton, and

further need splitting into pairs of 10-dimensional Majorana-Weyl fermions, so

θ̂ = e−ϕ/6 θ, θ = θ+ + θ−. (12.146)
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Next, we are interested in the type IIA gravitino and dilatino supersymmetry variations arising in the re-

sulting 10-dimensional action. In 11-dimensional supergravity, the gravitino supersymmetry variation reads

δϵ̂ψ̂m̂ = D̂m̂ϵ̂. (12.147)

In the type IIA theory, the supersymmetry variations of fermionic fields are

δϵψm = Dmϵ, (12.148a)

δϵλ = ∆ϵ, (12.148b)

with the 10-dimensional supercovariant derivativeDm and the operator∆ being defined as,

Dm = ∇m +
1

4
H(3)
m Γ∗ − 1

8
eϕ
(
F (2)Γ∗ + F (4)

)
Γm, (12.149a)

∆ = ∂ϕ+
1

2
H(3)Γ∗ − 1

8
eϕΓm

(
F (2)Γ∗ + F (4)

)
Γm. (12.149b)

Using these definitions, the 11- and 10-dimensional operators are related as

D̂m = Dm −
1

6
Γm∆+

1

3
eϕCmΓ∗∆+

1

6
∂mϕ, (12.150a)

D̂10 =
1

3
eϕΓ∗∆. (12.150b)

We see that the 11-dimensional supercovariant derivative essentially splits in terms of the operators deter-

mining the type IIA gravitino and dilatino variations. Recall that we defined these operators from the super-

symmetry variations of the type IIA gravitinos and dilatinos, which depend on the chosen fermionic frame.

Therefore if one makes a different dimensional reduction ansatz for the 11-dimensional gravitino (or equiva-

lently some redefinition in the fermionic sector of type IIA), the definition of these operators will be modified

accordingly.

12.2 Bosonic D2-brane action

Once we know how to dimensionally reduce the background, we can dimensionally reduce the M2-brane

action. We compactify along one direction that is not spanned by the M2-brane, therefore the result is the

D2-brane of type IIA supergravity. We start from the bosonic part of the M2-brane action (9.106). Following

our compactification ansatz, the pull-backs of the 11-dimensionalmetric and of the three-form can be written

in terms of pullbacks of 10-dimensional fields as

ĝij = e−2ϕ/3gij + e4ϕ/3pipj , (12.151)

Âijk = Cijk − 3C[iBjk] + 3 p[iBjk], (12.152)
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where we defined the combination pi = ∂ix
10 + ∂ix

mCm. In terms of these fields, the bosonic M2-brane

action becomes the D2-brane action and it reads

S
(0)
D2 = −TD2

∫
d3ζ e−ϕ

√
−det (g)

√
1 + e2ϕp2+

TD2
6

∫
d3ζ εijk

[
Cijk−3CiBjk+3 piBjk

]
, (12.153)

where TD2 = TM2 is the D2-brane tension. We would like to obtain the action for the D2-brane in a fully

10-dimensional formulation. Currently, however, (12.153) contains factors of pi and so that formulation of

the action implicitly knows about the M-theory circle. We need to get rid of pi. We do this by including a

Lagrange multiplier term involving the one form p1 and its worldvolume dual, the exact 2-form F2 = dA1,

where A1 is the D2-brane worldvolume gauge field. This Lagrange multiplier is

SLM =
TD2
2

∫
d3ζ εijk(pi − Ci)Fjk. (12.154)

A fully 10-dimensional D2-brane action follows from including this term in the action, and then integrating

out pi by plugging the solutions to its equation of motion back into the action. After doing this, and with a

little massaging, we arrive at the familiar form of the bosonic D2-brane action

S
(0)
D2 = −TD2

∫
d3ζ e−ϕ

√
− det(g + f) + TD2

∫
(C3 − C1 ∧ f2), (12.155)

where we made the definition fij = Bij +Fij . This action, obtained from the M-theory dimensional reduc-

tion, is in string frame. It is worth noting explicitly here that the worldvolume field fij is built using one field

that is pulled back from the bulk,Bij , and one that specifically lives only on the worldvolume, Fij .
We have calculated a fully 10-dimensional formulation of the D2-brane bosonic action. Our next goal is

to find fermion couplings on the brane worldvolume. Therefore we turn to the superspace generalization of

the S1-compactification we have just used.

12.3 Superspace dimensional reduction and fermions on the D2-brane

In this section we obtain the fermion couplings on the D2-brane action. Following the same reasoning as

in the case of the M2-brane action discussed in chapter 11, this can be done by moving to the superspace

formulation of type IIA supergravity. One must promote fields in the bosonic action to superfields and then

find the corresponding θ-expansions. From the expansions of the constituent superfields, the expansion of

the brane action superfield may then be determined.

A possible method to obtain the superfield expansions would be to construct all the necessary superfields

using the same geometrical strategy as we applied to the M2-brane, i.e. NORCOR. However this requires

more hard work than is necessary and there exists a better strategy. The key of our approach is the following

observation: the superspace formulation of M-theory is in (11|32)-dimensional superspace, and the super-

space formulation of type IIA strings is in (10|32)-superspace. It is therefore natural to expect that, as for

the basic spacetime case, both superspaces are related via an S1-compactification of a bosonic direction. This

superspace compactification and knowledge of 11-dimensional superfields in the M2-brane action are all we

need to obtain the expansion of the type IIA superfields that appear in the D2-brane action.
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Now we have to determine those 10-dimensional superfields. Same as in the M2-brane case, at zeroth or-

der in the θ-expansion, the superfields are simply the bosonic fields. Those 10-dimensional bosonic fields are

related to the bosonic fields of 11-dimensional supergravity by the dimensional reduction ansatzes (12.143)

and (12.144). The spacetime dimensional reduction is described by those equations, and it is natural to in-

terpret all fields appearing there (both 11- and 10-dimensional fields) as the leading-order terms of the cor-

responding superfield θ-expansions. The superspace dimensional reduction must be described by the super-

space generalization of those equations. Our method to compute the 10-dimensional superfields of interest

will therefore be to use this superfield generalization together with knowledge of the 11-dimensional super-

fields we already gleaned in the previous chapter. Before we write the superspace compactification ansatz,

recall that in eleven dimensions we did not compute the whole expansion of superfields, but rather we re-

stricted to even θ̂ powers because we were interested in bosonic backgrounds and we considered truncations

to quartic order in the fermions. The same holds in ten dimensions, namely we are interested in explicitly

obtaining the same type of restricted and truncated superfield expansions. We promote (12.143) and (12.144)

to the superfield level and use bold notation to indicate that in practice we will expand and truncated them.

We obtain the promoted 11-dimensional metric

ĝm̂n̂ =

(
e−2ϕ/3(gmn + e2ϕCmCn) e4ϕ/3Cm

e4ϕ/3Cn e4ϕ/3

)
(12.156)

and the promoted 11-dimensional three-form17

Âmnp = C ′
mnp, (12.157)

Âmn 10 = Bmn, (12.158)

where gmn is the truncated 10-dimensional supermetric, ϕ is the truncated dilaton superfield, Bmn is the

truncated Kalb-Ramond superfield, andCm andC ′
mnp are the truncated Ramond-Ramond one- and three-

form superfields, respectively.

With these relations in hand, we are ready to obtain the θ-expansions of the 10-dimensional superfields.

We are going to first compute the expansions of the 10-dimensional superfields up to order (θ)2 as an il-

lustrative example. We will do this in detail. Then we will plug the expressions we find into the expression

for D2-brane action superfield, expand, and compare our findings with previous results for the D2-brane

in bosonic backgrounds at second order in fermions obtained with alternative methods. The results match,

confirming the validity of our approach. Finally, we will compute the order-(θ)4 terms of the truncated su-

perfields. We will use these results to support the point we made in previous chapters, i.e. that combining the

terms in θ-expansions into a more compact and manifestly supercovariant formulation is crucial. We argue

strongly that this is the cornerstone of plausible methods for making the calculation of high-order fermionic

couplings in brane actions viable in the future.

17For future convenience, we place a prime on the 10-dimensional RR three-form superfield here. Indulge this for the time being, the
reason will be made clear. The motivation of this choice is explained in (13.228).
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12.4 Order-(θ)2 terms

The superfield relations in (12.156 - 12.158) can be Taylor-expanded, and these expansions can be truncated

at a desired fermion order. This will lead to relations between 11- and 10-dimensional fields. We will use

the number of fermions (both in eleven and ten dimensions) as an ordering principle to relate those 11- and

10-dimensional fields. At leading order, one finds the original bosonic ansatz, which does not have any new

information. For the bosonic backgrounds we are considering, at next order, in eleven dimensions one finds

fermion bilinears with Γ̂-matrices and the 11-dimensional supercovariant derivative in which several bosonic

fields appear. It is natural to expect a similar behaviour in ten dimensions, namely that at this order each

superfield involves a bilinear in θ as well as Γ-matrices and operators involving 10-dimensional fields. We

can therefore make an ansatz for each truncated superfield involving a (for now) unknown fermion bilnear,

i.e.

gmn = gmn + γmn, (12.159a)

ϕ = ϕ+ ρ, (12.159b)

Bmn = Bmn + βmn, (12.159c)

Cm = Cm + τm, (12.159d)

C ′
mnp = Cmnp + α′

mnp. (12.159e)

We now need to obtain expressions for the unknown 10-dimensional bilinears. Our procedure is to take

each component of the 11-dimensional fields in (12.156) - (12.158) and then perform a Taylor expansion in

fermions. We do this by NORCOR for the 11-dimensional left-hand side and by plugging in the ansatzes

(12.159) for the 10-dimensional right-hand side. Then we identify the corresponding 11-dimensional bilin-

ears with the unknown 10-dimensional ones. At that stage one has relations between fermion bilinears in dif-

ferent theories. The equations indicate expressions for the unknown 10-dimensional bilinears in terms of 11-

dimensional fields. In order to write the results for the 10-dimensional bilinears in terms of 10-dimensional

fields, we are required to dimensionally reduce the 11-dimensional expressions. To properly elucidate this

procedure, which is critical to our overall method, we will provide several examples at varying levels of tech-

nical complexity by calculating the bilinear terms for some of fields in (12.159).

Example 1: dilaton

The simplest example case is that of the dilaton, for which we will provide every detail. We read from (12.156)

that it is related to the (10, 10)-component of the 11-dimensional supermetric as ĝ10 10 = e4ϕ/3. We Taylor-

expand both sides of this relation. For the 11-dimensional left-hand side we use the result (11.130) from the

NORCOR procedure. For the 10-dimensional right-hand side we use the expansion ansatz for the dilaton

superfield in (12.159b). Equating the fermion bilinear terms from each side, we find that

− i ˆ̄θΓ̂10D̂10θ̂ = e4ϕ/3
4ρ

3
, (12.160)
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In order to determine an expression for ρ in terms of 10-dimensional fields we are required to dimensionally

reduce the 11-dimensional bilinear. All the necessary results are given in appendix 15.4. We can eventually

write

− i ˆ̄θΓ̂10D̂10θ̂ =
−i
3
e4ϕ/3θ̄∆θ, (12.161)

which means the dilaton superfield fermion bilinear contribution is

ρ = − i
4
θ̄∆θ. (12.162)

We have found an expression for the bilinear ρ that is associated to the operator ∆ which appears in the

supersymmetry variation of the dilatino. This was to be expected: recall that we obtain the θ-expansion by

taking supersymmetry variations. In the first supersymmetry variation of the dilaton one finds the dilatino

and so the supersymmetry variation of the dilatino appears when we take a second variation (on the dilaton).

It is also worth remembering again at this point that, in ten dimensions, θ represents a pair of Majorana-Weyl

fermions of opposite chirality.

Example 2: Ramond-Ramond one-form

For this next example we will move through the steps a little faster. We read from (12.156) that the Ramond-

Ramond one-form superfield in ten dimensions is related to the (m, 10)-component of the 11-dimensional

supermetric as ĝm 10 = e4ϕ/3Cm. Taylor-expanding both sides using (11.130) and (12.159d), and keeping

fermion bilinear terms, we obtain

− i ˆ̄θΓ̂(mD̂10)θ̂ = e4ϕ/3τm −
i

3
e4ϕ/3(θ̄∆θ)Cm. (12.163)

Note that because the superfield relation involved both the dilaton and the Ramond-Ramond one-form, we

were obliged to use (12.162). After a little work for the dimensional reduction of the 11-dimensional bilinear

(again, all the relevant results are given in appendix 15.4), we arrive at

− i ˆ̄θΓ̂(mD̂10)θ̂ = −
i

2
eϕ/3 θ̄Γ∗

(
Dm −

1

2
Γm∆

)
θ − i

3
e4ϕ/3(θ̄∆θ)Cm, (12.164)

which indicates that the bilinear τm must be

τm = − i
2
e−ϕ θ̄Γ∗

(
Dm −

1

2
Γm∆

)
θ. (12.165)

Example 3: metric

Themost complicated superfield relation is that of the (m,n)-component of the 11-dimensonal supermetric.

We read from (12.156) that it is related to the 10-dimensional supermetric, the Ramond-Ramond one-form,

and the dilaton as ĝmn = e−2ϕ/3(gmn + e2ϕCmCn). With the ansatz (12.159a) and the previous results
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(12.162) and (12.165) for ρ and τm, Taylor-expanding in exactly the way we have in previous examples yields

−i ˆ̄θΓ̂(mD̂n)θ̂ = −i e−2ϕ/3

[
− 1

6
(θ̄∆θ)

(
gmn + e2ϕCmCn

)
+ iγmn

+ e2ϕ
(
1

2
(θ̄∆θ)CmCn + C(me

−ϕ θ̄Γ∗
(
Dn) −

1

2
Γn)∆

)
θ

)]
.

(12.166)

Once more applying the results of appendix 15.4, the dimensional reduction of the 11-dimensional bilinear

can be determined to be

−i ˆ̄θΓ̂(mD̂n)θ̂ = −i e−2ϕ/3

[
− 1

6
(θ̄∆θ)

(
gmn + e2ϕCmCn

)
+ θ̄Γ(mDn)θ

+ e2ϕ
(
1

2
(θ̄∆θ)CmCn + C(me

−ϕ θ̄Γ∗
(
Dn) −

1

2
Γn)∆

)
θ

)]
.

(12.167)

By comparison, we are immediately able to discern the result

γmn = −iθ̄Γ(mDn)θ. (12.168)

One should observe that the metric superfield expansion takes on the same shape for the 11- and the 10-

dimensional metrics. In each case the fields and operators involved are not the same, but equivalent objects

appear in the same place. This is once again to be expected. The first-order θ-expansion of themetric involves

the (corresponding) gravitino, and we obtain the expansion by taking supersymmetry variations. Upon a

second variationwe are therefore not surprised to find the supersymmetry operator on the gravitino variation.

Application of our approach to the case of the relations (12.157) and (12.158) connecting the 11-dimensional

three-form superfield to the 10-dimensional superfields is essentially straightforward and we leave the details

of the calculation to the interested reader.

Full results

At the end of the day, the expansions of the 10-dimensional superfields for type IIA supergravity up to

quadratic order in fermions are

gmn = gmn − i θ̄Γ(mDn)θ, (12.169)

ϕ = ϕ− i

4
θ̄∆θ, (12.170)

Bmn = Bmn − i θ̄Γ∗Γ[mDn]θ, (12.171)

Cm = Cm −
i

2
e−ϕ θ̄Γ∗

(
Dm −

1

2
Γm∆

)
θ, (12.172)

C ′
mnp = Cmnp −

i

2
e−ϕ θ̄

(
3Γ[mnDp] −

1

2
Γmnp∆

)
θ − 3i C[m θ̄Γ

∗ΓnDp]θ. (12.173)

All bilinears involve one or both of the operators appearing in the supersymmetry variation of the type IIA

gravitino and dilatino, i.e. the supercovariant derivativeDm and the operator∆, respectively. The Ramond-

Ramond potential C(1) is also present in the expansion of C ′(3). We asked earlier that the reader indulge

us in defining the three-form superfield with a prime for the moment. The reason for this is that it will later
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become advantageous to consider the three-form superfield expansion restricted to that bilinear which does

not come multiplied with C(1), and for notational convenience it will be this restricted expansion which we

shall callC(3). We will say more on this in the next chapter.

Our results preciselymatchwith those used in [125],18 where, however, the approach followedwasmorally

quite different. They used the results of [126], where all Dp-brane actions at order (θ)2 were computed using

a brute-force approach, and noticed that all Dp-brane actions could be written in a particularly compact and

convenient way using field combinations like the ones above. The authors there labelled their observation a

‘superfield-like’ formulation. Using our more conceptually sophisticated approach we can now confidently

remove the ‘like’. We can see clearly that the reason these particular field combinations proved to be so useful

to previous authors is that they are indeed born out of superfield considerations, namely the use of truncated

superfield expansions as we have developed here. Moreover, the brute force approach is very complicated to

manage at higher orders in θ. Our approach, though still somewhat complicated, does allow such computa-

tions to be performed.

D2-brane action at order (θ)2

What bosonic fields do, the superfields do better. Or rather, the superfields do morally the same thing but

carry with them all of the information about the fermion terms. So it went for the dimensional reduction

of individual (super)fields, and so it goes for manipulations of the (super)field quantities built from these

constituent (super)fields. The composite quantity we are concerned with now is the D2-brane action.

In section 12.2 we provided many details of the dimensional reduction of the bosonic M2-brane action

to the bosonic D2-brane one. Now its usefulness is apparent: we are going to interpret the bosonic action as

the zeroth-order fermionic expansion of the corresponding superfield. Based on this idea, we start with the

M2-brane superaction (11.132) and write it in terms of 10-dimensional superfields by using the superspace

dimensional reduction ansatzes (12.156) and (12.157, 12.158). The appearance of pullbacks works exactly as

in the bosonic case, and so the outcome is the D2-brane super action written as

S
(2)
D2 = −TD2

∫
d3ζ e−ϕ

√
−det (g)

√
1 + e2ϕp2 +

TD2
6

∫
d3ζ εijk

[
C ′
ijk − 3CiBjk + 3piBjk

]
,

(12.174)

where pi = ∂ix
10 + ∂ix

mCm. Once again we would like to write this action in a fully 10-dimensional

formulation, and so need to get rid of the explicit dependence onpi (which knows about theM-theory S1). We

do this by once again introducing the Lagrange multiplier (12.154). Notice that the bilinears in the truncated

expansions of pi and Ci cancel in the Lagrange multiplier which depends on the difference (pi − Ci) and

so in effect we can promote these bosonic fields to truncated superfields for free. Integrating out pi proceeds

in formally the same way as integrating out pi did in the bosonic case. After doing so, we are arrive at the

D2-brane action superfield

S
(2)
D2 = −TD2

∫
d3ζ e−ϕ

√
− det(gij + f ij) +

TD2
6

∫
d3ζ εijk(C ′

ijk − 3Cif jk), (12.175)

where we have defined f ij = Bij + Fij . Note the worldvolume flux F2 = dA1 remains purely bosonic

18What we give asC′
ijk here is denotedCstandard

ijk there.
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because it is a brane worldvolume field, not a superfield.

Let us once again stress that this procedure is valid at any order in θ. The right-hand side of (12.175) is

the correct structure fromwhich to obtain the D2-brane action to any order. All one needs to do is plug in the

expansions of the superfields truncated at a given order in θ. The problem of obtaining the D2-brane action

up to a given order in θ has been reduced to the problem of determining the expansions of the individual

superfields involved. Once these superfield expansions are known, the D2-brane action can be written down

immediately.

To elaborate further on this claim, we reproduce the familiar form for theD2-brane action at second order

in fermions. Starting with (12.175), in order to obtain explicit couplings we need only plug in the truncated

superfields (12.169 - 12.173). We successfully reproduce the quadratic D2-brane action

S
(2)
D2 = −TD2

∫
d3ζ e−ϕ

[√
− det(g + f)

[
1−iθ̄P (0)

−

(
MijΓiDj−

1

2
∆

)
θ

]
−(C3−C1∧f2)

]
, (12.176)

whereMij is the inverse of the combinationMij = (gij + Γ∗Bij) and we defined the (zeroth order) D2-

brane κ-symmetry projector

P
(0)
− ≡ 1

2

(
1− ΓD2

)
, (12.177)

where

ΓD2 =
1√

− det(g + f)
εijk

(
1

6
Γijk −

1

2
Γ∗Γifjk

)
. (12.178)

Notice that this is slightly more involved than in the M2-brane case because of the inclusion of worldvolume

flux f2. The outcome is the full D2-brane action at second order in fermions, and it matches exactly with

the results in [126, 127]. This completes the fermionic second-order analysis to exemplify our alternative

approach to obtain the D2-brane action at any fermion level.

12.5 Order-(θ)4 terms

We have developed an improved approach for determining superfield fermionic expansions of fields in type

IIA supergravity. We did this via NORCOR in 11-dimensional supergravity and the string duality that gives

the type IIA theory via an S1-compactification. In the above section we demonstrated in detail how our

approach can be used to obtain the known results at second order in fermions with much less hassle than

previous approaches. In this chapter we move to use our approach to calculate the quartic θ terms for those

same type IIA superfield expansions.

As we discussed above, using our approach, the problem of determining the D2-brane action superfield

expansion gets reduced to the problem of determining the fermionic expansion of the constituent superfields.

Once these expansions have been found, the D2-brane action follows immediately from plugging them into

(12.175). All of the necessary details for this to work function at fourth order just as well as second order, and

indeed at every order.

Since our method is applicable at every fermion order, to find the superfield expansions of the type IIA

fields we can proceed in the sameway aswe did for the quadratic case above. To start, wemake ansatzes for the

order-four terms in the truncated expansions of the 10-dimensional superfields. We have already determined
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the bilinear terms and so can include them immediately. We use the same symbols as we did for the ansatzes

in the order-two case, but now label the unknown quantities with their fermion order. We have

gmn = gmn − i θ̄Γ(mDn)θ + γ(4)mn, (12.179a)

ϕ = ϕ− i

4
θ̄∆θ + ρ(4), (12.179b)

Bmn = Bmn − i θ̄Γ∗Γ[mDn]θ + β(4)
mn, (12.179c)

Cm = Cm −
i

2
e−ϕ θ̄Γ∗

(
Dm −

1

2
Γm∆

)
θ + τ (4)m , (12.179d)

C ′
mnp = Cmnp −

i

2
e−ϕ θ̄

(
3Γ[mnDp] −

1

2
Γijk∆

)
θ − 3iC[m θ̄Γ

∗ΓnDp]θ + α′(4)
mnp. (12.179e)

Once again, we must determine the expressions for these unknown shifts by Taylor-expanding both sides of

(12.156) and (12.157, 12.158), now to quartic order in θ. Again, we appeal to the results of the NORCOR

procedure to Taylor-expand the left-hand side, whereas we plug our quartic ansatzes in to Taylor-expand the

right-hand side. Upon rearrangement, this will result in expressions for the unknowns which contain both

10- and 11-dimensional fields. Wemust then once again dimensionally reduce the 11-dimensional quantities

that appear in order to determine expressions for the unknowns that are entirely in terms of 10-dimensional

quantities.

The mixing of the 10-dimensional metric, the dilaton and the Ramond-Ramond one-form in (12.156)

causes the expressions for the quartic ansatzes to be quite complicated to deal with practically. For ease of no-

tation, let us denote the quartic terms in the truncated expansion of the 11-dimensional supermetric (11.140)

as γ̂(4)m̂n̂. Now, Taylor-expanding the relation ĝ10 10 = e4ϕ/3 and keeping only the terms up to quartic order

in fermions allows us to find that

ρ(4) =
1

24
(θ̄∆θ)2 +

3

4
e−4ϕ/3γ̂

(4)
10 10. (12.180)

Determining a 10-dimensional expression for ρ(4) now requires us to perform dimensional reduction on

γ̂
(4)
10 10. Before that thoughwe also note the results of Taylor-expanding and rearranging the relations that allow

us to determine expressions for τ (4)m and γ(4)mn. First, expanding both sides of the equation ĝm 10 = e4ϕ/3Cm

yields that the quartic shift on the 10-dimensional Ramond-Ramond one-form superfield is given by

eϕτ (4)m =
1

6
(θ̄∆θ)(θ̄Γ∗Dmθ)−

1

12
(θ̄∆θ)(θ̄Γ∗Γm∆θ) +

1

18
eϕ(θ̄∆θ)2Cm

−4

3
eϕρ(4)Cm + e−ϕ/3γ̂

(4)
m 10.

(12.181)

As with the quadratic case, themixing of 10-dimensional superfields in the right-hand side of the supermetric

relation in (12.156) means we are required to use the expressions for the dilaton superfield expansion in this

calculation. Second, we Taylor-expand the relation ĝmn = e−2ϕ/3(gmn+e
2ϕCmCn) in order to determine
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an expression for the quartic fermion term of the expansion of the 10-dimensional supermetric, obtaining

γ(4)mn =
2

3
gmnρ

(4) +
1

4

(
θ̄Γ∗D(mθ

)(
θ̄Γ∗Dn)θ

)
− 1

4

(
θ̄Γ∗D(mθ

)(
θ̄Γ∗Γn)∆θ

)
+

1

16

(
θ̄Γ∗Γ(m∆θ

)(
θ̄Γ∗Γn)∆θ

)
− 1

6

(
θ̄∆θ

)(
θ̄Γ(mDn)θ

)
+

1

72
gmn

(
θ̄∆θ

)2
− 2 e2ϕC(mτ

(4)
n) +

1

3
eϕC(m

(
θ̄∆θ

)(
θ̄Γ∗Dn)θ

)
− 1

6
eϕC(m

(
θ̄∆θ

)(
θ̄Γ∗Γn)∆θ

)
− 4

3
e2ϕC(mCn)ρ

(4) +
1

18
e2ϕC(mCn)

(
θ̄∆θ

)2
+ e2ϕ/3γ̂(4)mn.

(12.182)

Themixing of 10-dimensional superfields in the relation for the 11-dimensional supermetric has againmeant

that we must include the previously calculated quartic terms for the dilaton and the Ramond-Ramond one-

form when making this expansion. Already we can see that the relative complexity of the relation of the

11-dimensional supermetric to the 10-dimensional superfields results in expressions of some length even

before we turn our attention to the dimensional reduction step of our procedure.

As with the quadratic case, the initial Taylor expansion and rearrangement of the relations in (12.157,

12.158) concerning the 11-dimensional three-form at quartic order are essentially straightforward. Denoting

the quartic terms in the NORCOR expansion of the 11-dimensional super three-form (11.141) as α̂′(4)
m̂n̂p̂, it is

clear that the quartic terms in the truncated expansion of the 10-dimensional Ramond-Ramond three-form

superfield is given by α′(4)
mnp = α̂

′(4)
mnp, and for the 10-dimensional Kalb-Ramond form superfield we have

β
(4)
mn = α̂

′(4)
mn 10.

At this point, ‘all’ that is left to do in order to obtain expressions for the quartic terms in the expansions of

the 10-dimensional superfields is to dimensionally reduce the 11-dimensional quantities that appear, namely

the components of γ̂(4)m̂n̂ and α̂(4)
m̂n̂p̂. The calculation is very lengthy, so we provide all of the necessary tools

and results in appendix 15.4. Despite their cumulative length, all the steps are the simple application of the

dimensional reduction procedure with which we are now very familiar. For this reason, we place an example

of the calculation in the case of the dilaton in appendix 15.4.5, but otherwise just report the results of the

calculations here.

Quartic θ-terms for type IIA superfield expansions

In order to simplify the statement of the results, it is convenient to first make a few definitions. Along with

the familiarDm and∆, we will use the combinations

Dm ≡ Dm −
1

6
Γm∆, (12.183)

Kq ≡
[
Dq,Γ∗∆

]
+ (∂qϕ)Γ

∗∆, (12.184)

Kpq ≡
[
Dp,Dq

]
+

1

3
eϕF (2)

pq Γ∗∆, (12.185)
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as well as

Rmn ≡
1

24

[
Γmn

(
eϕF (4) +H(3)Γ∗)− 2Γm

(
eϕF (4)

n +H(3)
n Γ∗)+ (eϕF (4)

mn +H(3)
mnΓ

∗)],
Rm ≡

1

24

[
ΓmΓ∗eϕF (4) + Γ∗eϕF (4)

m

]
.

(12.186)

We are now ready to list the quartic terms in the superfield expansion of the 10-dimensional superfields using

only 10-dimensional operators. The quartic fermionic terms in the dilaton are given by

ρ(4) = − 1

768
(θ̄Γmnpqθ)(θ̄ΓmnKpqθ) +

1

576
(θ̄Γ∗Γmnpθ)

[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]

+
1

384
(θ̄Γ∗Γmnθ)

[
θ̄
[
3Γ∗Kmn − 2ΓmKn

]
θ
]
+

1

48
(θ̄Γ∗Γmnθ)(θ̄RmnΓ

∗∆θ)

− 1

48
(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

576

[
θ̄
[
2Γ∗eϕF (4)

m − ΓmH
(3)
]
θ
]
(θ̄ΓmΓ∗∆θ)

+
1

48
(θ̄∆θ)2 +

1

576

[
θ̄
[
eϕF (4) − 2H(3)Γ∗]θ](θ̄∆θ).

(12.187)

The quartic fermionic terms in the Ramond-Ramond one-form superfield are

eϕτ (4)m =+
1

576

[
θ̄ΓmΓnpqθ

][
θ̄
[
3Γ∗ΓnKpq − ΓnpKq

]
θ
]

+
1

192

[
θ̄Γ∗Γnpqθ

][
θ̄
[
ΓmnKpq + ΓnpKmq

]
θ
]

+
1

576

[
θ̄ΓmΓnpθ

][
θ̄
[
3Γ∗Knp − 2ΓnKp

]
θ
]
+

1

72

[
θ̄ΓmΓnpθ

][
θ̄RnpΓ

∗∆θ
]

+
1

192

[
θ̄Γ∗Γnpθ

][
θ̄
[
ΓmKnp + 2ΓnKmp

]
θ
]
+

1

24

[
θ̄Γ∗Γnpθ

][
θ̄RnpDmθ

]
+

1

144

[
θ̄ΓmΓnΓ∗θ

][
θ̄Γ∗Knθ

]
+

1

36

[
θ̄ΓmΓnΓ∗θ

][
θ̄RnΓ

∗∆θ
]

+
1

12
[θ̄∆θ][θ̄Γ∗Dmθ]−

1

18
[θ̄∆θ][θ̄Γ∗Γm∆θ]− 1

12

[
θ̄ΓnΓ

∗∆θ
][
θ̄ΓnDmθ

]
+

1

288

[
θ̄
[
eϕF (4) − 2H(3)Γ∗]θ][θ̄Γ∗Dmθ

]
+

1

864

[
θ̄ΓmΓ∗[eϕF (4) − 2H(3)Γ∗]θ][θ̄∆θ]

+
1

288

[
θ̄
[
Γ∗Γne

ϕF (4) + ΓnH
(3) − 3Γ∗eϕF (4)

n

]
θ
][
θ̄ΓnDmθ

]
− 1

864

[
θ̄Γm

[
3H(3)

n Γ∗ − Γne
ϕF (4) + 3 eϕF (4)

n − ΓnH
(3)Γ∗]θ][θ̄ΓnΓ∗∆θ

]
.

(12.188)
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The quartic fermionic terms for the 10-dimensional metric expansion read

γ(4)mn =− 1

384
gmn(θ̄Γ

pqrsθ)(θ̄ΓpqKrsθ) +
1

96

[
θ̄Γ(m|Γ

pqrθ
][
θ̄
[
Γ|n)pKqr + ΓpqK|n)r

]
θ
]

+
1

288

[
θ̄Γ(m|Γ

pqΓ∗θ
][
θ̄
[
2Γ|n)pKq + ΓpqK|n) + 3Γ|n)Γ

∗Kpq − 6ΓpΓ
∗K|n)q

]
θ
]

+
1

576
gmn(θ̄Γ

∗Γpqθ)
[
θ̄
[
3Γ∗Kpq − 2ΓpKq

]
θ
]
+

1

72
gmn(θ̄Γ

∗Γpqθ)(θ̄RpqΓ
∗∆θ)

+
1

96

[
θ̄Γ(m|Γ

pqθ
][
θ̄
[
Γ|n)Kpq + 2ΓpK|n)q

]
θ
]
+

1

12

[
θ̄Γ(m|Γ

pqθ
][
θ̄RpqD|n)θ

]
+

1

144

[
θ̄Γ(m|Γ

pΓ∗θ
][
θ̄
[
Γ|n)Kp + ΓpK|n) − 3Γ∗K|n)p

]
θ
]
+

1

6

[
θ̄Γ(m|Γ

pΓ∗θ
][
θ̄RpD|n)θ

]
− 1

72
gmn(θ̄ΓpΓ

∗∆θ)(θ̄ΓpΓ∗∆θ)− 1

4

[
θ̄ΓpD(mθ

][
θ̄ΓpDn)θ

]
+

1

36
(θ̄Γ∗Γ(m∆θ)(θ̄Γ∗Γn)∆θ)−

1

6
(θ̄Γ∗Γ(m∆θ)(θ̄Γ∗Dn)θ)−

1

6
(θ̄∆θ)(θ̄Γ(mDn)θ)

− 1

864
gmn

[
θ̄
[
2Γ∗eϕF (4)

p − ΓpH
(3)
]
θ
]
(θ̄ΓpΓ∗∆θ)

− 1

144

[
θ̄Γ(m|

[
3H(3)

p Γ∗ − Γpe
ϕF (4) − ΓpH

(3)Γ∗ + 3eϕF (4)
p

]
θ
][
θ̄ΓpD|n)θ

]
− 1

144

[
θ̄Γ(m|Γ

∗[2H(3)Γ∗ − eϕF (4)
]
θ
][
θ̄Γ∗D|n)θ

]
+

1

864
gmn(θ̄∆θ)

[
θ̄
[
eϕF (4) − 2H(3)Γ∗]θ].

(12.189)

The quartic fermionic terms for the Kalb-Ramond two-form are

β(4)
mn = − 1

384
(θ̄Γ∗ΓmnΓ

pqrsθ)
[
θ̄ΓpqKrsθ

]
− 1

96
(θ̄Γ[m|Γ

∗Γpqrθ)
[
θ̄
[
Γ|n]pKqr + ΓpqK|n]r

]
θ
]

+
1

576
(θ̄ΓmnΓ

pqθ)
[
θ̄
[
3Γ∗Kpq − 2ΓpKq

]
θ
]
+

1

72
(θ̄ΓmnΓ

pqθ)
[
θ̄RpqΓ

∗∆θ
]

− 1

96
(θ̄Γ[m|Γ

∗Γpqθ)
[
θ̄
[
Γ|n]Kpq + 2ΓpK|n]q

]
θ
]
− 1

12
(θ̄Γ[m|Γ

∗Γpqθ)
[
θ̄RpqD|n]θ

]
− 1

288
(θ̄Γ[m|Γ

pqθ)
[
θ̄
[
2Γ|n]pKq + ΓpqK|n] + 3Γ|n]Γ

∗Kpq − 6ΓpΓ
∗K|n]q

]
θ
]

+
1

144
(θ̄ΓmnΓ

pΓ∗θ)
[
θ̄Γ∗Kpθ

]
+

1

36
(θ̄ΓmnΓ

pΓ∗θ)
[
θ̄ŘpΓ

∗∆θ
]
+

1

6
(θ̄Γ[m|Γ

pθ)
[
θ̄RpD|n]θ

]
+

1

144
(θ̄Γ[m|Γ

pθ)
[
θ̄
[
Γ|n]Kp + ΓpK|n] − 3Γ∗K|n]p

]
θ
]
− 1

12
(θ̄ΓpΓ[mDn]θ)(θ̄ΓpΓ∗∆θ)

− 1

4
(θ̄ΓpΓ

∗D[mθ)(θ̄Γ
pDn]θ) +

1

12
(θ̄ΓpΓ[mΓ∗∆θ)(θ̄ΓpDn]θ)−

1

12
(θ̄Γ∗Γ[mDn]θ)(θ̄∆θ)

− 1

12
(θ̄Γ[m∆θ)(θ̄Γ∗Dn]θ)−

1

12
(θ̄Γ∗∆θ)(θ̄Γ[mDn]θ)−

1

12
(θ̄D[mθ)(θ̄Γn]Γ

∗∆θ)

− 1

144

[
θ̄Γ[m|

[
Γ∗Γpe

ϕF (4) + ΓpH
(3) − 3Γ∗eϕF (4)

p − 3H(3)
p

]
θ
][
θ̄ΓpD|n]θ

]
+

1

864

[
θ̄Γmn

[
Γpe

ϕF (4) + ΓpH
(3)Γ∗ − 3H(3)

p Γ∗ − 3eϕF (4)
p

]
θ
][
θ̄ΓpΓ∗∆θ

]
− 1

144

[
θ̄Γ[m|Γ

∗[eϕΓ∗F (4) + 2H(3)
]
θ
][
θ̄Γ∗D|n]θ

]
+

1

864

[
θ̄Γmn

[
Γ∗eϕF (4) + 2H(3)

]
θ
][
θ̄∆θ

]
.

(12.190)
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Finally, the quartic fermionic terms for the Ramond-Ramond three-form superfield can be written as

α′(4)
mnp = α′′(4)

mnp + 3β
(4)
[mnCp], (12.191)

where α′′(4)
mnp is given by the expression,

eϕα′′(4)
mnp =−

1

384
(θ̄ΓmnpΓ

qrstθ)
[
θ̄ΓqrKstθ

]
− 1

576
(θ̄ΓmnpΓ

qrsΓ∗θ)
[
θ̄
[
ΓqrKs − 3Γ∗ΓqKrs

]
θ
]

+
1

64
(θ̄Γ[mn|Γ

qrsθ)
[
θ̄
[
Γ|p]qKrs + ΓqrK|p]s

]
θ
]

+
1

192
(θ̄Γ[mn|Γ

qrΓ∗θ)
[
θ̄
[
2Γ|p]qKr + ΓqrK|p] + 3Γ|p]Γ

∗Kqr − 6ΓqΓ
∗K|p]r

]
θ
]

+
1

64
(θ̄Γ[mn|Γ

qrθ)
[
θ̄
[
Γ|p]Kqr + 2ΓqK|p]r

]
θ
]
+

1

8
(θ̄Γ[mn|Γ

qrθ)
[
θ̄RqrD|p]θ

]
+

1

96
(θ̄Γ[mn|Γ

qΓ∗θ)
[
θ̄
[
Γ|p]Kq + ΓqK|p] − 3Γ∗K|p]q

]
θ
]
+

1

4
(θ̄Γ[mn|Γ

qΓ∗θ)(θ̄RqD|p]θ)

− 3

4
(θ̄ΓqΓ[mDnθ)(θ̄ΓqDp]θ)−

3

4
(θ̄D[mθ)(θ̄ΓnDp]θ)−

3

4
(θ̄Γ∗Γ[mDnθ)(θ̄Γ∗Dp]θ)

+
1

96

[
θ̄Γ[mn|

[
Γqe

ϕF (4) + ΓqH
(3)Γ∗ − 3eϕF (4)

q − 3H(3)
q Γ∗]θ][θ̄ΓqD|p]θ

]
+

1

96

[
θ̄Γ[mn|

[
2H(3) + Γ∗eϕF (4)

]
θ
][
θ̄Γ∗D|p]θ

]
.

(12.192)

A few comments are due, as in the above formulae the 10-dimensional quartic fermionic terms look compli-

cated and have an enormous length. With current understanding, the quartic fermion expansions of type IIA

superfields seem unavoidably lengthy, as also seen in [155]. We will discuss some promising avenues for im-

proving this quality of these results in what follows. On the other hand, the most prominent feature of these

results is their completeness. The robustness and systematicity of the methods we have employed guarantee

that these are the full and complete quartic fermion terms for the type IIA superfield expansions. This is the

first time that some of these terms have been calculated and our results will serve as a foundation for future

understanding of such expansions.

Avenues to simplification

Our current expressions for the results for the quartic order fermion terms in the type IIA superfield expan-

sions are unwieldy. It is therefore worthwhile to discuss how they might be made more manageable.

The first thought that might occur is to try and tidy up the large number of ‘loose’ flux terms in the

expansions. One would do this by attempting to package these terms up using the operatorsDm and∆ (or

combinations thereof) just as everything at second order was packaged neatly. Indeed, this idea is met with

some initial success, for example, with a little effort, one can see that three of the terms appearing above in

the dilaton shift come together to give

1

128
(θ̄Γ∗Γmnθ)

(
θ̄Γ∗Kmnθ

)
+

1

48
(θ̄∆θ)2 +

1

576

[
θ̄
[
eϕF (4) − 2H(3)Γ∗]θ](θ̄∆θ) =

=
1

128
(θ̄Γ∗Γmnθ)

(
θ̄Γ∗[Dm , Dn]θ)+ 1

72
(θ̄∆θ)2.

(12.193)

However, reorganizations along these lines often require spotting tricks in the calculations, for example with
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Γ-matrix identities, with the symmetry properties of bilinears, and potentially with Fierz identities. It rapidly

becomes utterly impractical to hope to significantly reorganize these shifts as they currently stand in this way.

We must try and find a better strategy.

We can see in the quadratic and quartic cases that the process of dimensional reduction sharply increases

the number and complexity of terms in the expansions. However, dimensional reduction will not generate

the capacity for any significant recombination or reorganization of terms all by itself. Any game-changing

reorganizational principle for the 10-dimensional quartic terms should be identifiable in the simpler quartic

terms in the 11-dimensional description. The most promising line, therefore, is not to try and massage the

many terms appearing in ten dimensions, but to return to 11 dimensions and fix them there. The quartic

fermion terms in the expansions of the supermetric and super three-form in 11-dimensional supergravity

are given in (11.140) and (11.141). We saw in our discussion of the M2-brane that in actuality the only 11-

dimensional superfield we need to expand using NORCOR in order to obtain the expansions required for the

brane action is the supervielbein E A
M (Z). All the components of the expansion of this superfield that we

require to get to quartic fermion order for the M2-brane are given in (11.127) in conjucture with (11.126).

Recall that we also performed significant manipulation of the higher-order expansions using Bianchi iden-

tities until we arrived at (11.128). We can see then that it is the relative unwieldiness of these expressions

for components of the NORCOR expansion of the 11-dimensional supervielbein where the vastness of the

quartic 10-dimensional terms has its origin. Meaningful rearrangement or simplification of the quartic terms

in the type IIA superfield expansion will be identifiable at the level of improvements of (11.128). These im-

provements have the potential to come from a couple of different lines of reasoning. The most obvious is by

improving the application of the Bianchi identities (and litany of other subtle identities that emerge in their

combination) whenmoving from (11.127) to (11.128). Another directionmight be to improve the NORCOR

procedure itself, or making significant geometrical insight there, such that the left-hand side of (11.128) can

be made more and more amenable.

Crucial to note, however, is that even with these improvements to the treatment of the 11-dimensional

supervielbein, the best subsequent method for obtaining the type IIA quartic terms is still the one we have

presented here, when applied to the improved formulation. We will say some more about how the quartic

results might be improved once we have explored the next step in our procedure and obtained information

about both type II supergravities.
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Superspace T-duality and Dp-branes

In this chapter we complete the task initiated in chapter 12 and provide a systematic method to compute

fermion couplings on all Dp-branes. The method is based on ideas analogous to the ones in chapter 12, and

for this reason we will make reference to explanations there when possible to avoid repetition.

Let us briefly summarize the approach. Our proposal relies on two facts. First, Dp-branes are solutions of

type II supergravities related by T-dualities. Second, fermion couplings on Dp-brane actions arise naturally

in the superspace formulation of the corresponding supergravity theory. For reasons analogous to the ones in

the previous chapter, here we combine those two facts and extend the relation between the T-dual geometries

to the superspace level. Using this generalization we find relations between superfields in curved superspaces

that are T-dual to each other. We use those relations to find the θ-expansions of superfields appearing in

Dp-brane actions. We already explained that this is equivalent to finding fermion couplings on all Dp-brane

actions.

13.1 T-duality toolkit

With the general picture in mind, we can move into the details. In type II theories,19 T-duality represents

the equivalence of type IIA strings on a background with an isometry along a non-trivial circle S1 of size R

and type IIB strings compactified on another background also with an isometric on a non-trivial circle S̃1,

this time with size R̃ = l2s/R (in our conventions, the string length is ls = 2π
√
α′). We are interested in

this underlying structure that connects the two theories. The relations for Neveu-Schwarz fields were first

given by Buscher [156, 157] and expanded to Ramond-Ramond fields in [158], and then they were extended

to fermionic fields in [132–134].

13.1.1 Bosons

Analogously to the dimensional reduction, we begin with a reminder of the standard T-duality relations for

bosonic fields. We take the T-duality S1-direction to be x9. Our notation will be the following: the indices
19T-duality is a more general concept in StringTheory and it also relates heterotic strings, but here we are interested in type II theories

only.



151 FERMIONS ON BRANES

m,n = 0, . . . , 9 run through all spacetime directions, and the indices ṁ, ṅ = 0, . . . , 8 through all but the

circle S1, that we take to be x9 ∼ x9+R. We indicate which fields belong to each theory by introducing a tilde

for fields in one theory and no adornment of symbols for fields in the other one. All fields are independent

of the T-duality direction. We start by providing the well-known Buscher rules20

ϕ̃ = ϕ− 1

2
ln g99, (13.194a)

g̃ṁṅ = gṁṅ − g−1
99

(
gṁ9gṅ9 −Bṁ9Bṅ9

)
, (13.194b)

g̃ṁ9 = g−1
99 Bṁ9, (13.194c)

g̃99 = g−1
99 , (13.194d)

B̃ṁṅ = gṁṅ − g−1
99

(
Bṁ9gṅ9 − gṁ9Bṅ9

)
, (13.194e)

B̃ṁ9 = g−1
99 gṁ9. (13.194f)

The Ramond-Ramond gauge potentials are related by the mutually implicative expressions

C̃
(n)
9ṁ2...ṁn

= C
(n−1)
ṁ2...ṁn

− (n− 1) g−1
99 g9[ṁ2

C
(n−1)
|9|ṁ3...ṁn]

, (13.195a)

C̃
(n)
ṁ1...ṁn

= C
(n+1)
9ṁ1...ṁn

− nB9[ṁ1
C

(n−1)
ṁ2...ṁn]

+ n(n− 1) g−1
99 g9[ṁ1|B9|ṁ2

C
(n−1)
ṁ3...ṁn]

. (13.195b)

13.1.2 Spinors, supersymmetry operators, and spinor doublet notation

When fermions are involved, T-duality becomes somewhat more subtle and complicated. The groundwork

for the treatment of fermions under T-duality is represented by the Hassan rules [132–134].

The intricate world of fermion T-duality begins with making an observation concerning the T-duality

rules for fields in the Neveu-Schwarz sector: there are two different vielbeins that are dual to the original

one. Properly dealing with this fact requires the introduction of some extra structure. We denote the ‘initial’

vielbein as e m
a , and the two possible ‘final’ dual vielbeins as (ẽ+) m

a and (ẽ−)
m
a . Both choices give the

correct T-dual metric. The initial and final vielbeins are related according to the T-duality rules

(ẽ±)
n
a = e m

a (Q±)
n

m , (13.196a)

(ẽ±)
a

m = (Q−1
± ) n

m e a
n , (13.196b)

where we have defined

(Q±)
n

m =

(
δ ṅ
ṁ ∓(g9ṁ ±B9ṁ)

0 ∓g99

)
, (13.197a)

(Q−1
± ) n

m =

(
δ ṅ
ṁ −g−1

99 (g9ṁ ±B9ṁ)

0 ∓g−1
99

)
. (13.197b)

Notice that (Q̃−1
± ) n

m = (Q±)
n

m . The two vielbeins (ẽ+) a
m and (ẽ−) a

m are related to one another by a local

20Notice that fields are dimensionless in this setup, e.g. g99 = (R/ls)2. Forms therefore have length dimension with the string
length ls as a reference length. Integrals such as

∫ 1
0 dx9 √g99 = R give dimensionful volumes with the appropriate dimension.
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Lorentz transformation as (ẽ+) a
m = Λab(ẽ−)

b
m , with Λab = e mb (Q−)

p
m (Q−1

+ ) n
p e a

n . This is irrelevant

for the Lorentz-invariant quantities in the bosonic analysis, but it plays a vital role when considering fermions.

For example there are now two choices for Γ-matrices in the dual theory, i.e.

(Γ̃±)m = (Q−1
± ) n

m Γn = (ẽ±)
a

m Γa. (13.198)

These are naturally related by a spinorial representation Ω of the Lorentz transformation Λ, defined via

ΩΓaΩ
−1 = Γb (Λ

−1) ba, as

Ω(Γ̃+)m Ω−1 = (Γ̃−)m. (13.199)

It can be determined that this matrix reads (also notice it squares as Ω2 = −1)

Ω = Ω̃ =
1
√
g99

Γ∗Γ9. (13.200)

The extra complication when T-dualizing objects that are sensitive to the difference between the two choices

of vielbein, such as spinors and Γ-matrices, is that for self-consistency it is necessary that all Lorentz tensors

in the dual theory are computed with respect to the same vielbein. We will choose (ẽ−) a
n as our reference

dual vielbein. Let us point out that this does not imply that we will write all duality relations using Q−: we

will often find it convenient to transform objects usingQ+ and then perform Lorentz transformations.

With these tools in hand, we are in principle ready to provide all of the rules for fermion T-dualization

introduced by Hassan. Before doing so, however, we introduce a new notation that allows us to perform

computations in a clean and compact way: the spinor doublet notation. The spinor doublet notation we

introduce has differences to the ones found in the literature, e.g. in [102, 125–127, 159]. These differences

will make performing the necessary T-duality computations cleaner. The motivation for this new notation is

the following: in type II theories spinors come in doublets of Majorana-Weyl spinors. In type IIA these have

opposite chirality whereas in IIB they have the same chirality, which we take to be positive for the gravitinos

and supersymmetry parameters, and negative for dilatinos. It is therefore convenient to use spinor doublet

in the latter in order to write most combinations, such as fermion bilinears, in a compact way. We define the

IIB doublets

ϵB =

(
ϵ1
ϵ2

)
, ψB

m =

(
ψ1m

ψ2m

)
, λB =

(
λ1
λ2

)
. (13.201)

It is also convenient to do the same in the type IIA theory. In this case, wemust bear inmind that chirality plays

a crucial role in organizing fermion bilinears in this theory, and so we need to use chirality as an organizing

principle. Our convention will be to have positive chirality fermions on the top of type IIA fermion doublets.

We can now define

ϵA =

(
ϵ+
ϵ−

)
, ψA

m =

(
ψ+m

ψ−m

)
, λA =

(
λ+
λ−

)
. (13.202)

Given these doublets, the naturalmatrices that act on themcan always bewritten in terms of the 2-dimensional

identity 12 and the Pauli matrices σ1, σ2, σ3. This also comes with further implications. For instance, chiral-

ity matrices in type IIA theory can always be replaced by σ3 in our conventions, as in Γ∗ϵA = σ3ϵA. Also, to
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account for the fact that multiplications by a Γ-matrix flip chiralities, onemust introduce a σ1 matrix for each

Γ-matrix when moving to the spinor doublet notation from the one in the previous section. The appearance

of multiple Pauli matrices in this notation change can make formulae more complicated to read. In order to

make them more readable, we compute the product of Pauli matrices and just give the resulting one, such

that all other operators appearing in the expressions now come with 12. For example, the type IIA product

ΓmΓ∗ϵ leads to (σ1 ⊗ Γm)σ3ϵA = (12 ⊗ Γm)(−iσ2)ϵA = (−iσ2)⊗ Γmϵ
A in our doublet notation. We will

omit ‘⊗’ symbols from now on. Hence operators implicitly come with 12. We will also write Γm = 12⊗Γm.

In type IIB strings, chirality cannot be used as an organizing principle, instead the Pauli-matrix structure is

inherited from type IIA.

As clarifying examples, and because they will be useful for later purposes, we provide here the second-

order truncated superfields (12.169 - 12.173) that appeared in the D2-brane action with fermion bilinears

written in this notation. These are

gmn = gmn − i θ̄Aσ1Γ(mDA
n)θ

A, (13.203)

ϕ = ϕ− i

4
θ̄A∆AθA, (13.204)

Bmn = Bmn − i θ̄A(iσ2)Γ[mDA
n]θ

A, (13.205)

Cm = Cm −
i

2
e−ϕ θ̄Aσ3

(
DA
m −

1

2
σ1Γm∆A

)
θA, (13.206)

C ′
mnp = Cmnp −

i

2
e−ϕ θ̄A

(
3Γ[mnD

A
p] −

1

2
σ1Γmnp∆

A
)
θA − 3i C[m θ̄

A(iσ2)ΓnD
A
p]θ

A. (13.207)

In order to write the superfields, we used the operators appearing in the type IIA gravitino and dilatino su-

persymmetry variations, that in the spinor doublet notation are

δϵψ
A
m = DA

mϵ
A, (13.208)

δϵλ
A = ∆AϵA, (13.209)

with

DA
m ≡ 12∇m +

1

4
σ3H(3)

m −
1

8
eϕ
[
iσ2F (2) + σ1F (4)

]
Γm, (13.210)

∆A ≡ σ1∂ϕ+
1

2
iσ2H(3) − 1

8
eϕ Γm

[
σ3F (2) + 12F

(4)
]
Γm. (13.211)

We also need to define the equivalent operators in type IIB. For doing so we first give the supersymmetry

variations in the spinor doublet notation

δϵψ
B
m = DB

mϵ
B, (13.212)

δϵλ
B = ∆BϵB, (13.213)
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and this time

DB
m ≡ 12∇m +

1

4
σ3H(3)

m +
1

8
eϕ
[
iσ2
(
F (1) + F (5)

)
+ σ1F (3)

]
Γm, (13.214)

∆B ≡ σ1∂ϕ+
1

2
iσ2H(3) +

1

8
eϕ Γm

[
σ3
(
F (1) + F (5)

)
+ 12F

(3)
]
Γm. (13.215)

Now we have to express the basic T-duality relations in this spinor doublet notation. The extensions of

Q± and Ω can be simply achieved by defining

(Q±)
n

m =

(
(Q±)

n
m 0

0 (Q∓)
n

m

)
(13.216)

and

Υ =

(
1 0

0 Ω

)
. (13.217)

These definitions allow us to extend the T-duality rules for many objects to the spinor doublet notation which

will be used later on. For instance, oncewe take (ẽ−) a
m as the reference frame in the dual theory, theΓ-matrix

rule can be manipulated to give

Γ̃m = (Q−1
− ) n

m ΥΓnΥ
−1. (13.218)

Adapting the notation of [125, 126, 132–134] to our conventions, spinors in type IIA and type IIB theories

are related to each other by the T-duality rules

ϵB = ΥϵA, (13.219)

ψB
m = (Q−1

+ ) n
m ΥψA

n, (13.220)

λB = (σ1Υσ1)
[
λA − 2 g−1

99 σ
1Γ9 ψ

A
9

]
, (13.221)

Related to the above formulae, it is convenient to define the Dirac conjugate doublets because these appear in

fermion bilinears. Based on chirality arguments above this is ϵ̄A = (ϵ̄−, ϵ̄+) for type IIA and we extend the

structure to IIB by defining ϵ̄B = (ϵ̄2, ϵ̄1). The T-duality relation between them is ϵ̄B = ϵ̄Aσ1Υ−1σ1.

A point worthmaking here is that if we invert the relations above, the outcome is similar but involvesΥ−1,

instead ofΥ itself, so there is a slight difference between going from type IIA to type IIB or taking the opposite

route. This did not happen for bosonic fields above, where the relations found worked the same regardless

of the direction taken to perform the duality. To conclude, the T-duality rules between the supersymmetry

operators read

DB
m = (Q−1

+ ) n
m ΥDA

nΥ
−1, (13.222a)

∆B = σ1Υσ1
[
∆A − 2 g−1

99 σ
1Γ9D

A
9

]
Υ−1, (13.222b)

The above results are in precise agreement with the existing literature. As should be apparent, the spinor

doublet notation approach we have employed here is highly successful in compactly capturing the T-duality

relationships for the fermions and supersymmetry variations in type IIA and type IIB supergravity.
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13.1.3 T-duality and bosonic Dp-branes

We will now review how bosonic Dp-brane actions are related to each other under T-duality. This is instru-

mental in explaining our superspace approach below. In general, the basic idea is that T-dualising a theory

with aDp-brane produces a theory with aD(p±1)-brane, depending onwhether the original brane wraps the

T-duality circle S1 or not. This is consistent with the fact that type IIA and type IIB theories are exchanged,

as the former only admits even-p branes and the latter only odd-p ones. Starting from the bosonic D2-brane

action, one can repeatedly T-dualise the theory to infer that the bosonic action of a generic Dp-brane is

S
(0)
Dp = −TDp

∫
dp+1ζ e−ϕ

√
− det (g + f) + TDp

∫
C e−f , (13.223)

where the brane tension is TDp = 2π/lp+1
s . All bulk fields are pulled-back onto the brane worldvolume. The

WZ-term contains a formal sum C =
∑
q C

(q) over forms of all degrees and we let the integral pick out the

appropriate forms each time.

In order to show in some detail how the machinery of T-duality works for Dp-branes, we consider a

bosonic Dp-brane wrapping the T-duality circle S1 in the direction x9 and, with simple manipulations, we

integrate its action over the circle S1 to obtain the action of the dual D(p − 1)-brane that is localized on the

dual circle. The initial Dp-brane wraps a (p + 1)-cycle Σp+1 that is an S1-fibration over Σp, which is the

cycle wrapped by the final D(p− 1)-brane. Indices k = 0, . . . , p− 1, 9 span the Dp-brane worldvolume and

indices k̇ = 0, . . . , p − 1 are parallel to the D(p − 1)-brane, excluding the direction x9. For simplicity, we

fix the static gauge for the brane embedding, with all fields independent of the S1-direction. For clarity, we

manipulate the DBI- and the WZ-terms of the action separately. See [160, 161] for details.

First, we deal with the DBI-action. Integrating over the circle S1 goes as

SDBI
Dp = −TDp

∫
Σp+1

dp+1ζ e−ϕ
√
− det

[
φ(g + f)kl

]
= −TDp

∫
Σp

dpζ
∫ 1

0

dx9 e−ϕ√g99
√
− det

[
φ(g + f)k̇l̇ − g

−1
99 φ(g + f)k̇9φ(g + f)9l̇

]
= −T̃D(p−1)

∫
Σp

dpζ e−ϕ̃
√
− det

[
φ̃(g̃ + f̃)k̇l̇

]
.

(13.224)

To achieve this, we first expressed the determinant of the block matrix singling out the S1-direction and

observed that, once the T-dualized fields are defined, the leftover terms coming from the off-diagonal blocks

allow the writing of the pullback φ in terms of the pullback φ̃. Finally, we integrated over the circle, whose

volume reads vol S̃1 =
∫ 1

0
dx9
√
g̃99 = R̃ and recognised theD(p−1)-brane tensionTDpR̃/

√
g̃99 = lsTDp =

T̃D(p−1). The outcome of these manipulations is the DBI-term in the resulting D(p− 1)-brane action, also in

the static gauge, as expected. This approach provides an alternative derivation of the Buscher rules (13.194).

We can proceed analogously for the WZ-term. This calculation is greatly simplified by the fact that the
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WZ-term depends on the combinationK = C e−B . We have

SWZ
Dp = TDp

∞∑
n=0

(−1)n

n!

∫
Σp+1

(φK)(p+1−2n) Fn

= TDp

∞∑
n=0

(−1)n(p+ 1)

2nn!(p+ 1− 2n)!

∫ 1

0

dx9
∫
Σp

dpζ ϵ̃9l̇1...l̇p
[
(φK)

(p+1−2n)

9l̇1...l̇p−2n
Fl̇p−2n+1 l̇p−2n+2

. . .Fl̇p−1 l̇p

]

= lsTDp

∞∑
n=0

(−1)n

2nn!(p− 2n)!

∫
Σp

dpζ ϵ̃l̇1...l̇p
[
(φ̃K̃)

(p−2n)

l̇1...l̇p−2n
Fl̇p−2n+1 l̇p−2n+2

. . .Fl̇p−1 l̇p

]
= T̃D(p−1)

∫
Σp

(φ̃K̃) e−F̃.

(13.225)

Wehave expanded out the integrand andwe have expressed the T-duality rules as K̃(n)
9ṁ2...ṁn

= K
(n−1)
ṁ2...ṁn

and

K̃
(n)
ṁ1...ṁn

= K
(n+1)
9ṁ1...ṁn

. This allows one to map the WZ-term of Dp-branes into D(p − 1)-branes directly.

These T-duality rules are in fact equivalent to the Ramond-Ramond gauge potential relations (13.195), as

shown by [134], which means that the calculation above can also be seen as an alternative derivation of them.

In detail, we have used the general identityX[mm1...mn−1] =
1
n

∑n−1
j=0 X[m1...mj |m|mj+1...mn−1] to write

the integrand for a given n as

(φK)
(p+1−2n)

[9l̇1...l̇p−2n
Fl̇p−2n+1 l̇p−2n+2

. . .Fl̇p−1 l̇p]
=

1

p+ 1

[
(p+ 1− 2n)(φK)

(p+1−2n)

9[l̇1...l̇p−2n
Fl̇p−2n+1 l̇p−2n+2

. . .Fl̇p−1 l̇p]

+ (−1)p2n (φK)
(p+1−2n)

[l̇1...l̇p−2n+1
Fl̇p−2n+2|9|. . .Fl̇p−1 l̇p]

]
.

(13.226)

Now, given the T-duality rules forK(n), it is clear that the n = m and n = m+1 terms of the sum over n for

this integrandwill both contribute to then = m term in the sum for our target integrand. Specifically the first

term on the right-hand side contributes for n = m and the second term on the right-hand side contributes

for n = m+ 1. Concentrating on only these contributing terms for simplicity, we can write

(−1)m(p+ 1)

2mm!(p+ 1− 2m)!

p+ 1− 2m

p+ 1
(φK)

(p+1−2m)

9[l̇1...l̇p−2m
Fl̇p−2m+1 l̇p−2m+2

. . .Fl̇p−1 l̇p]

+
(−1)m+1(p+ 1)

2m+1(m+ 1)!(p− 1− 2m)!

(−1)p2(m+ 1)

p+ 1
(φK)

(p−1−2m)

[l̇1...l̇p−2m−1
Fl̇p−2m|9|. . .Fl̇p−1 l̇p]

=

=
(−1)m

2mm!(p− 2m)!

[
∂xm1

∂ζ [l̇1
. . .

∂xmp−2m

∂ζ l̇p−2m|

]
K

(p+1−2m)
9m1...mp−2m

F|l̇p−2m+1 l̇p−2m+2
. . .Fl̇p−1 l̇p]

+
(−1)m+1(−1)p(p− 2m)

2mm!(p− 2m)!

[
∂xm1

∂ζ [l̇1
. . .

∂xmp−2m−1

∂ζ l̇p−2m−1|

]
K

(p−1−2m)
ṁ1...ṁp−2m−1

F|l̇p−2m|9|. . .Fl̇p−1 l̇p]

=
(−1)m

2mm!(p− 2m)!

[
∂xṁ1

∂ζ [l̇1
. . .

∂xṁp−2m

∂ζ l̇p−2m|

]
K̃

(p−2m)
ṁ1...ṁp−2m

F|l̇p−2m+1 l̇p−2m+2
. . .Fl̇p−1 l̇p]

+
(−1)m(p− 2m)

2mm!(p− 2m)!

[
∂xṁ1

∂ζ [l̇1
. . .

∂xṁp−2m−1

∂ζ l̇p−2m−1

∂x9

∂ζ l̇p−2m|

]
K̃

(p−2m)
ṁ1...ṁp−2m−1|9|F|l̇p−2m+1 l̇p−2m+2

. . .Fl̇p−1 l̇p]

=
(−1)m

2mm!(p− 2m)!
(φ̃K̃)

(p−2m)

[l̇1...l̇p−2m
Fl̇p−2m+1 l̇p−2m+2

. . .Fl̇p−1 l̇p]
,

(13.227)
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which when considered over all m delivers the required result. We first wrote the pullbacks explicitly and

rearranged factors in a useful way. Then, we performed several tasks at once. WeT-dualized the formK while

paying close attention to index ordering to give the correct factors of −1, we used the T-duality condition

Fk̇9 = ∂k̇φ
9, andwe used (anti)symmetry to see that themj indices in the pullbacks of the second line cannot

equal 9, and so receive dots. Finally, to move to the final line, we recognised that this resulted in precisely the

structure for the appropriate pullback of K̃ .

This completes our review of the behaviour of the bosonic brane actions under T-duality. One should

notice a fundamental fact: T-duality maps the DBI- and WZ-actions of a Dp-brane into the DBI- and WZ-

actions of a D(p − 1)-brane, respectively, and there is no mixing among the two in the transformation. A

similar calculation to the ones above may be engineered to move from a Dp-brane to a D(p+ 1)-brane.

13.2 A useful rearrangement

We just showed how to obtain all the bosonic Dp-brane actions by T-dualizing the bosonic D2-brane one.

Moreover, in the superspace formulation, the structure of the D2-brane action is formally the same both at

zeroth order and in superspace at any fermionic order. Therefore, the structure of fermion couplings on all

Dp-branes just follows from the D2-brane one. Because our goal is to compute these fermionic couplings for

all Dp-branes, here we present a useful rearrangement that simplifies the computation of such couplings. In

fact, because the fermion couplings are inherited from the superfield expansions appearing on the brane, the

rearrangement is a neat manipulation of the superfields appearing on the D2-brane action that will simplify

the computation of those appearing in the rest of Dp-branes.

In chapter 12, we defined the promoted Ramond-Ramond three-form field in type IIA with a prime sym-

bol. That is the standard three-form superfield obtained from dimensional reduction of 11-dimensional su-

pergravity. Rather than working with that superfield, it will be convenient to work with a related one. We

define a new unprimed three-form superfield as

Cmnp = C ′
mnp − 3C [m(Bnp] −Bnp]). (13.228)

From here on we will work using this unprimed three-form rather than the standard one. This new superfield

is such that the last term in the superfieldC ′
mnp in (13.207) is removed, and at order (θ)2 it reads

Cmnp = Cmnp −
i

2
e−ϕ θ̄A

(
3Γ[mnD

A
p] −

1

2
σ1Γmnp∆

A
)
θA. (13.229)

The reason why we defined this rearrangement is easily explained: the super-D2-brane action now reads

SD2 = −TD2
∫

d3ζ e−ϕ
√
− det (g + f) +

TD2
6

∫
d3ζ εijk(Cijk − 3Cifjk). (13.230)

In other words, we have engineered a superspace action where the Neveu-Schwarz fields appear as superfields

in the DBI-term but only as bosonic fields in theWZ-term. Ramond-Ramond fields instead appear as super-

fields in the WZ-term. From the discussion in section 13.1.3 we conclude that this combination of fields and

superfields will hold for any Dp-brane if we obtain the brane superspace actions by T-dualizing this one.
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13.3 Superspace T-duality and fermions on Dp-branes

We will once again be following the reasoning of the example already laid out with dimensional reduction

in chapter 12. We interpret the bosonic T-duality relations (13.194) and (13.195) as the zeroth-order terms

in the fermionic expansions of superspace T-duality relationships and extend them to superspace relations.

T-duality in the context of full superfields was also discussed in [162].

Now, since T-duality maps the DBI-action of Dp-branes into the DBI-action of D(p ± 1)-branes, and

since this mapping allows one to derive the Buscher rules (13.194), one can simply conclude that the Buscher

rules for the Neveu-Schwarz fields in superspace read

ϕ̃ = ϕ− 1

2
ln g99, (13.231a)

g̃ṁṅ = gṁṅ − g−1
99

(
gṁ9gṅ9 −Bṁ9Bṅ9

)
, (13.231b)

g̃ṁ9 = g−1
99 Bṁ9, (13.231c)

g̃99 = g−1
99 , (13.231d)

B̃ṁṅ = gṁṅ − g−1
99

(
Bṁ9gṅ9 − gṁ9Bṅ9

)
, (13.231e)

B̃ṁ9 = g−1
99 gṁ9. (13.231f)

Some of these rules partially appeared in [150], where they found the T-duality relation between Green-

Schwarz superstrings in type IIA and type IIB with fermionic expansions up to quadratic terms.

Similarly, T-duality maps the WZ-action of Dp-branes into the WZ-action of D(p ± 1)-branes and this

mapping allows one to derive the T-duality rules for Ramond-Ramond fields (13.232). Because in the WZ-

action of (13.230) the Neveu-Schwarz field appear only bosonically and the Ramond-Ramond fields appear

as superfields, we conclude that the Ramond-Ramond T-duality rules we will use are

C̃
(n)

9ṁ2...ṁn
= C

(n−1)
ṁ2...ṁn

− (n− 1)g−1
99 g9[ṁ2

C
(n−1)
|9|ṁ3...ṁn]

, (13.232a)

C̃
(n)

ṁ1...ṁn
= C

(n+1)
9ṁ1...ṁn

− nB9[ṁ1
C

(n−1)
ṁ2...ṁn]

+ n(n− 1) g−1
99 g9[ṁ1|B9|ṁ2

C
(n−1)
ṁ3...ṁn]

. (13.232b)

This mechanism was used in [126] for the quadratic fermionic action and we have extended that observa-

tion to any fermionic order. Note that without our manipulation on the super-three-form, one would have

obtained similar results involving Neveu-Schwarz superfields rather than fields. Those are the actual super-

space T-duality rules for Ramond-Ramond superfields, but for our purposes it will be more convenient to use

(13.232).

13.3.1 Order-(θ)2 terms

In the following, we will use the promoted T-duality relations (13.231) and (13.232) to calculate the second-

order fermionic expansions of all the superfields that appear in type IIA and type IIB under repeated T-

dualizations. Just as in section 12.4, wewill provide illuminating examples of the necessary calculations before

listing the full results.
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Example: type IIB metric

We will now use the simplest superspace T-duality relationships in order to provide an example of how to

obtain the fermionic expansions of type IIB operators from type IIA description by using the conventional

T-duality rules applied to quadratic fermionic quantities. We will focus on the supermetric.

Consider the superspace T-duality rule (13.231d), i.e. g̃99 = g−1
99 . Starting from the type IIA supermetric

gmn, in order to determine an expression for the quadratic fermionic expansion of the type IIB supermetric

g̃mn, we Taylor-expand both sides, concentrating on the components of interest. On the type IIB left-hand

side, we set the ansatz g̃99 = g̃99 + γ̃99, whereas on the type IIA right-hand side we use the result of the di-

mensional reduction (13.203). Using the spinor doublet notation and keeping only the second-order fermion

terms from both sides (as the zeroth-order terms just reproduce the bosonic identities), one determines an

expression for the type IIB shift γ̃99 in terms of type IIA quantities, i.e.

γ̃99 = ig−2
99 θ̄

Aσ1Γ9D
A
9θ

A. (13.233)

We are now required to perform conventional T-duality on the term on the right-hand side in order to de-

termine an expression for the expansion ansatz of the type IIB metric in terms of type IIB quantities. We can

use the basic T-duality rules in spinor doublet notation in section 13.1.2 to write

γ̃99 = ig̃299 (θ̄
Bσ1Υσ1)σ1

[
(Q̃−1

− ) p
9 Υ−1Γ̃pΥ

][
(Q̃−1

+ ) q
9 Υ−1DB

qΥ
]
Υ−1θB

= ig̃299 θ̄
Bσ1(Q̃−1

− ) p
9 (Q̃−1

+ ) q
9 Γ̃pD

B
qθ

B

= ig̃299 θ̄
Bσ1(−g̃−1

99 σ
3)(g̃−1

99 σ
3)Γ̃9D

B
9θ

B

= −i θ̄Bσ1Γ̃9D
B
9θ

B.

(13.234)

The result is exactly as expected. The quadratic terms in the expansions of the type IIB metric take precisely

the same form as the type IIA metric, just with all of the operators and spinors being the type IIB ones and

not the type IIA versions. One can proceed analogously to get the generic second-order shift of the type IIB

dilaton and Kalb-Ramond superfields.

Example: Ramond-Ramond two-form

The superspace promotion of the dimensional reduction from 11-dimensional supergravity to type IIA su-

pergravity allowed us to determine the fermionic expansions for the Ramond-Ramond superfields of degrees

one and three. Now that we are considering T-duality between type IIA and type IIB, we must confront the

requirement that we calculate the fermionic expansions of Ramond-Ramond superfields of any degree.

Our strategy will be to take the promoted Ramond-Ramond T-duality rule (13.232a), expand in orders

of fermions and keep only the quadratic contribution. Writing C(q) = C(q) + χ(q), where χ(q) is the cor-

responding fermion bilinear, we are interested in obtaining χ(2). Following our standard procedure, from
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(13.232a) we find

χ̃
(2)
9ṁ = χ

(1)
9ṁ − g

−1
99 g9ṁχ

(1)
9

= − i
2
e−ϕ θ̄Aσ3

[(
DA
ṁ − g−1

99 g9ṁDA
9

)
− 1

2

(
Γṁ − g−1

99 g9ṁΓ9

)
σ1∆A

]
θA

(13.235)

where for the one-form shift we have made use of (13.206). We now need to manipulate the right-hand side

in order to obtain an expression for the type IIB Ramond-Ramond two-form superfield in terms of type IIB

operators. We will use identities similar to (13.218)

Υ
(
DA
ṁ − g−1

99 g9ṁDA
9

)
Υ−1 = DB

ṁ − g̃−1
99 g̃9ṁDB

9, (13.236)

Υ
(
Γṁ − g−1

99 g9ṁΓ9

)
Υ−1 = Γ̃ṁ − g̃−1

99 g̃9ṁΓ̃9. (13.237)

and
√
g̃99 σ

1Υσ1σ3Υ−1 = Γ∗Γ̃9. Splitting the first and the second term in (13.235), using (13.236) and

(13.237), we find

e−ϕ θ̄Aσ3
(
DA
ṁ − g−1

99 g9ṁDA
9

)
θA = e−ϕ̃ θ̄BΓ∗(Γ̃9D

B
ṁ − g̃−1

99 g̃9ṁΓ̃9D
B
9

)
θB, (13.238)

e−ϕ θ̄Aσ3 σ1
(
Γṁ − g−1

99 g9ṁΓ9

)
∆AθA = e−ϕ̃ θ̄BΓ∗

[
σ1Γ̃9ṁ∆B + 2 g̃−1

99 (Γ̃9g̃ṁ9 − Γ̃ṁg̃99)D
B
9

]
θB. (13.239)

Therefore, putting together the expressions we have

χ̃
(2)
9ṁ =

i

2
e−ϕ̃ θ̄B

[
2 Γ̃[9D

B
ṁ] −

1

2
σ1Γ̃9ṁ∆B

]
θB. (13.240)

One can proceed analogously to obtain all the type IIA and type IIB bilinears in Ramond-Ramond superfields,

going up in the degree of the T-dualized form one at a time. Alternatively, a generalised discussion of the

Ramond-Ramond superfields in appendix 15.5 demonstrates that all of these expansions can be calculated

together.

Full results

To conclude, we list all the relevant superfields up to quadratic order both in theNeveu-Schwarz andRamond-

Ramond sectors.

The expansions for the Neveu-Schwarz superfields at order (θ)2 look same in both theories in our spinor

doublet notation. They are

gmn = gmn − i θ̄IIσ1Γ(mDII
n)θ

II, (13.241)

ϕ = ϕ− i

4
θ̄II∆IIθII, (13.242)

Bmn = Bmn − i θ̄II(iσ2)Γ[mDII
n]θ

II, (13.243)

where the superscript ’II’ indicates that one must introduce the appropriate object in each theory. The order-
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(θ)2 terms in the Ramond-Ramond superfields in type IIA and type IIB theories can also bewritten compactly

C(n)
m1...mn

= C(n)
m1...mn

− i

2
e−ϕ θ̄II

[
(−1)n(σ3)1+⌊n2⌋

][
nΓ[m1

DII
...mn]

− 1

2
Γm1...mn

σ1∆II
]
θII, (13.244)

where the parity of n determines whether the spinor doublet and the supersymmetry operators are the type

IIA or type IIB ones.

Dp-branes

Now that we have determined the fermionic expansion of the all the fundamental superfields in type IIA

and type IIB theories, we can turn our attention to the composite superfields of greatest interest, namely the

worldvolume actions of a Dp-brane for arbitrary p.

Since the formal structure of purely bosonic Dp-brane is equivalent to the structure of the action in su-

perspace, the T-duality mechanism is also the same as the one leading to the bosonic action (13.223). The

only precaution one needs to take regards the fact that the starting point, i.e. the superspace D2-brane action

(13.230), and consequently the T-duality rules, are such that the Neveu-Scwharz T-duality rules see all fields

in superspace whereas the Ramond-Ramond ones only contain the Ramond-Ramond fields in superspace, as

exemplified in (13.231) and (13.232). At the end of the day, the action of any Dp-brane in superspace takes

the form

SDp = −TDp
∫

dp+1ζ e−ϕ
√
− det(g + f) + TDp

∫
C e−f , (13.245)

where gij is the supermetric pullback, f ij = Bij + Fij is the natural superspace combination of the Kalb-

Ramond field with the worldvolume flux term, with fij = Bij + Fij being its bosonic component, and

where we have defined the formal sumC =
∑
qC

(q) over promoted Ramond-Ramond q-form pulled-back

superfieldsC(q). Once again, this result holds at all orders in fermions. In order to determine the expansion

of the Dp-brane action superfield to an arbitrary order in fermions, one needs to plug the expansions of

the fundamental superfields from the corresponding type II supergravity into (13.245). The second-order

expansions in spinor doublet notation are in (13.241) - (13.244) for both type II theories.

13.3.2 Order-(θ)4 terms

We have already made some comments in section 12.5 regarding the unwieldy size of the expressions ob-

tained for the quartic fermionic couplings after dimensional reduction. There we also discussed how these

expressionsmight be improved and simplified going forward, in order that they becomemoremanageable. In

their current formulation the calculation necessary for their full T-dualization is impractically lengthy. Im-

portant to note, however, is that there is no technical impediment. Just like the quadratic fermionic couplings,

the quartic couplings may in principle be T-dualized using the techniques and results we have reviewed and

developed in this chapter. Actively pursuing this full calculation is better delayed until such a time that the

possible simplifying procedures for the quartic terms have been implemented.

Nevertheless there are some observations that can be made concretely at quadratic fermion level that we

can fully expect to also happen at quartic level. Firstly, the NS superfield expansions take on the same shape

in both type II supergravities. The same holds for the expansion of the 11-dimensional supermetric, that at
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order two has the same structure as the 10-dimensional supermetrics. This is not a coincidence: the super-

vielbein expansion looks schematically the same in all these theories (even though in each theory there is a

different notion of what the gravitino or the supercovariant derivative are) and the outcome of manipula-

tions at quadratic order makes this point manifest. Moreover, the existing relations go beyond that. The type

IIA metric and B2 superfield expansions came from different 11 dimensional superfields but at quadratic

order turned out to be very similar. If it were not for this, it would have been impossible to find again this

structure in type IIB upon T-duality. This extends to the whole NSNS sector, that allowed us to write those

superfields up to quadratic order at once both for type IIA and type IIB (13.241 - 13.243). In principle there is

no argument against the structure extending to all levels in θ, but unfortunately, the current form of quartic

terms did not quite allow us to make this point manifest. For example, the 10 dimensional metric expansion

and the 11-dimensional one do not seem to allow for such comparisons in their order (θ)4 terms. On the

other hand, there are indeedmany similarities between themetric and theB2-field order (θ)4 terms (modulo

(anti)symmetry of indices and chirality matrices), which is a positive observation, but there are also differ-

ences on certain terms (that maybe could be manipulated to make them similar to each other). These ideas

could also be used e.g. to obtain quartic terms of NSNS fields in type IIB by ‘simply’ writing type IIA for-

mulae (12.187), (12.189), and (12.190) in spinor doublet notation. It would be nice to compare that with the

outcome of performing the computation using the Hassan rules.

Finally, something that might be possible given the current formulation of the quartic order fermionic

couplings for the D2-brane is to identify those parts of the expressions which would lead to particularly

sought-after terms in Dp-brane actions. For example, the work in [115] posits a particular quartic term in

the action of the D7-brane. It could be possible to hunt for this term via T-dualization without laboriously

T-dualizing everything appearing after dimensional reduction, however we leave this possibility for future

study.
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Conclusions

In Part II of this thesis we have developed an understanding of the mathematical structures involved when

examining the fermionic degrees of freedom which live on the M2-brane and Dp-branes. We have drawn

our primary motivation from the fact that the current level of knowledge about the fermions living on branes

requires significant improvement. One of the core reasons that fermions on branes are under-studied is that

obtaining their couplings explicitly turns out to be surprisingly difficult. Higher-order couplings of fermions

in brane actions have been invoked recently [108–114], however the impracticality of the existing methods

used to obtain these terms limited their use. Even more recently, a proposal for obtaining specific quartic

couplings on D7-branes that can be pertinent for understanding KKLT has also been put forward [115].

Over the course of two years of initial study and late research we have made significant progress in improving

both the conceptual understanding and the practical techniques needed to pursue these terms. Furthermore,

the insights we have had and connections we have made are applicable far beyond the calculation of specific

couplings in brane worldvolume theories. In fact we have presented the calculation of these terms as a single,

if pertinent, example of a place where our more general methods come into use.

14.1 Summary

The structure at the heart of this Part is the web of string dualities given in Fig. 8.62. The approaches that we

have developed, and used to obtain brane actions, rest upon the superspace generalizations of the connections

in thisweb. Such connections allowedus to take advantage of the elegance of techniquesmore easily applicable

to a theory in one part of the web in order to achieve progress in others. More concretely, the connections

we have concentrated on are the circle compactification linking 11-dimensional to type IIA supergravity and

the T-duality relating type IIA and type IIB theories to each other. Fig. 14.63 presents a map of the concepts

used.

The reasons for which this particular generalization has proved to be so useful are twofold. First, our

starting point of 11-dimensional supergravity has a particularly elegant formulation in (11|32)-superspace.

Second, we have access to a systematic, complete, and manageable geometrical method for determining ex-

plicit fermionic expansions of this theory’s superfields, namely NORCOR.The small number of superfields in
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promotion to
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11d spacetime
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Figure 14.63: A schematic map of the procedures investigated. We work in superspace, and in order to do
so profitably we generalize the string duality web to superspace. We generalize the S1 compactification from
11-dimensional supergravity to type IIA, and we generalize the T-duality procedure connecting type IIA and
type IIB to superspace. This allows us to carry the elegant geometric treatment of the ‘normal coordinate’
(NORCOR)method in 11-dimensional supergravity over to type II supergravity, circumventing the difficulty
in applying that treatment directly in those theories. This method allows us to calculate the expansion of
actions of branes in orders of the worldvolume fermions. We have presented example calculations up to
quartic order in fermions for the M2-brane and the D2-brane in this work, although the methods we have
presented are in principle applicable to any order in fermions.
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11-dimensional supergravity in conjunction with NORCOR means we can readily obtain the fermionic ex-

pansions of all the fundamental superfields in the theory. Obtaining the fermionic expansions for composite

superfields built out of these fundamental superfields is then a conceptually simple matter. The example com-

posite superfield we have chosen to concentrate on in this case is the action for a singleM2-brane. This action

is constructed using the pullbacks of the supervielbein and super three-form in 11-dimensional supergravity.

With our starting point of 11-dimensional supergravity and the M2-brane firmly in hand, we then pur-

sued the superspace generalization of the S1-compactification to type IIA supergravity and the D2-brane.

Our goal was to use the expansion of the 11-dimensional superfields together with this connection in the

web to determine the expansion of the type IIA superfields. The regular dimensional reduction ansatz relates

the 11-dimensional vielbein and three-form to the 10-dimensional vielbein, dilaton, Ramond-Ramond one-

form, Kalb-Ramond two-form and Ramond-Ramond three-form. We took the view that these bosonic rela-

tions represented the ‘zeroth-order’ fermionic expansion of the corresponding superfield relations. As such,

we promoted the dimensional reduction ansatz relations to superfields, taking the fermionic expansions of

the 10-dimensional superfields (to some desired order) as unknowns to be determined. We then used the

NORCOR results of the Taylor expansion of the 11-dimensional fields to determine explicit expressions for

these 10-dimensional unknowns in terms of 11-dimensional fields. Finally we dimensionally reduced the

11-dimensional fermionic terms and compared the results with the expansion in terms 10-dimensional un-

known fermionic terms in order to read off the desired results. We demonstrated how known second-order

results for fundamental superfield expansions in type IIA can be recovered painlessly using this method. Fur-

thermore we demonstrated how labourious manipulations of the D2-brane action can be completed almost

trivially in this superfield paradigm, and how the form for the quadratic fermion terms on the D2-brane can

be recovered, again relatively painlessly. Finally we calculated the fermionic expansion of the type IIA fields

relevant for the D2-brane all the way up to order four in fermions. Unfortunately these terms, while system-

atic and complete, are unwieldy in their present formulation. We discussed some promising lines of research

regarding their simplification, something we will come back to in a moment.

Finally we turned our attention to the second strand on the web of dualities that we sought to generalize

to superspace. This was the T-duality relation between type IIA and type IIB theories. The structure of work

mirrored that of the generalization of the dimensional reduction just discussed. Wefirst observed the relations

the T-duality demanded of the bosonic fields in either theory. These were the Buscher rules and the Ramond-

Ramond field rules. We once again interpreted these relations as representing the ‘zeroth-order’ fermionic

expansion of the corresponding superfield relations, and as such promoted these T-duality rules to superfields.

This required observing that the discussion of the Ramond-Ramond sector can be substantially simplified by

conveniently arranging the D2-brane action. Then it was the repeated application of these promoted rules

which we used to determine the fermion terms in the superfield expansions for all the superfields in both

type II supergravities. When we performed the T-duality transformations, we had to become familiar with

precisely how fermions behaved. This transpired to be an area of much subtle complexity, but one which we

greatly streamlined by moving to spinor doublet notation. Once again, we chose as a crucial example case

the calculation of the fermionic expansion of brane actions. In this case repeated T-duality transformations

allowed us to leverage the knowledge we had built about the D2-brane in the previous stage to determine

features of the Dp-brane actions in general. We once again wrote down a form of the action which will yield
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the fermion couplings on the Dp-brane to any order if provided with the expansions of the fundamental fields

of the type II supergravity in which the brane lives. We noticed that in this formulation Ramond-Ramond

fields of every degree are used implicitly, yet the first dimensional reduction step had furnished us with only

degree 1 and 3. This is where the careful study of fermions under T-duality became invaluable as explicit

T-dualization of these two superfield expansions allowed us to determine the expansions for all the fields we

desired to quadratic order. The only remaining impediments to a full calculation at quartic order for all Dp-

branes are then of a practical nature. The expressions we have obtained, since they represent all couplings

of the brane fermions to an arbitrary bosonic background, have many terms, and the calculation for each

term is non-trivial. There is no technical impediment to T-dualization and we provide all the necessary tools,

however we consider it prudent to first make a proper investigation of how the expressions we have obtained

for type IIA fields and D2-brane might be improved. We discuss this, and other future lines of work, next.

14.2 Future directions

The directions in which this work will progress in the future come in two main classes: those directions that

improve and build upon the work and those that use it.

The most obvious direction in which the present work might be improved is in seeking to simplify the

results at quartic order in fermions. We have already discussed at the end of section 12.5 how significant

simplifications of the current formulation of the complete quartic order terms for the superfield expansions

in type II supergravities will have their roots in a better treatment of the 11-dimensional supervielbein expan-

sion. This might be achieved via something as simple as a more adroit rearrangement and application of the

constraints imposed by Bianchi identities than we have managed here, or it could require an improvement

at a higher level in the set-up of NORCOR. Pursuing such a better treatment is an obvious and tantalising

direction of future study.

For the brane actions specifically, these results might be improved by getting a firmer grasp of how to

arrange higher order fermionic expansions around a κ-symmetry organizational principle. As early in our

process as our expression for the M2-brane action in (11.142), we neglected to explicitly organize all our

terms around such a principle. When calculating the quartic terms in the M2 brane, one can interpret all

of the different terms as arising from the variation of different parts of the quadratic fermionic term. Those

quartic terms that came with the same, ‘zeroth-order’ projector as in the quadratic term are interpreted as

arising from varying the supercovariant derivative that appeared in the quadratic term. The remaining quartic

terms (coming with a factor 1
8 ) can be interpreted as arising from further variations of the projector, inverse

metric, etc, appearing at quadratic order. The higher-order expansion of the kappa symmetry projector may

be calculated directly by expanding the superfield projector (11.136). Better understanding of the structure

here could then be carried over to type II theories using the duality promotion method we have presented.

At second order the Dp-brane actions were able to be organized into a similar form as the M2-brane, that is,

a bilinear containing a kappa projector and some operators. The expectation would be that whatever further

structure is found in the M2-brane should provide analogous arrangements of the Dp-brane action through

the promoted duality web.

Withmore agile control over Dp-brane actions, it becomes natural to revisit theD7-brane quartic gaugino



167 FERMIONS ON BRANES

couplings and compare them with the existing literature, among other things. This would be instrumental in

shedding further light on gaugino condensation in the stabilization of volume moduli à la KKLT. A proposal

for the specific quartic gaugino terms on D7-branes necessary to achieve this was recently put forward in

[115], and hunting for the specific terms which that proposal requires within our results is a promising line of

inquiry. In a different area, a further result that is now in reach is the determination of the F1-string action at

arbitrary fermionic order. In fact, once the M2-brane action is known at a given order, a circle compactifica-

tion along a directionwrapped by the brane (a double dimensional reduction) gives theGreen-Schwarz-string

action [150] in a similar way to the compactification along an unwrapped direction, which gave the D2-brane

action. Finally, we have worked in bosonic backgrounds. To do so we simply set to zero those terms pro-

portional to the gravitino in the expansions of the superfields of 11-dimensional supergravity. By keeping

these terms, however, the methods we employed can also be used to explore more general backgrounds than

purely bosonic ones. In this way, one would obtain the M2-brane couplings to the 11-dimensional gravitino

and hence, upon dimensional reduction and T-dualization, the Dp-brane couplings to the 10-dimensional

gravitino and dilatino. Finally, we have concentrated in this work on obtaining the fermion couplings on

brane actions in the abelian case of a single brane. Expanding this work to the non-abelian case of multiple

branes, or to even more complicated brane set-ups, is yet another promising line of inquiry.
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Appendices

15.1 Spinor conventions

Wesummarize the conventions thatweuse in themain text regarding spinors defined in 11- and 10-dimensional

spacetime. Here we denote terms intrinsically living in 11-dimensional spacetime with a hat in order to dis-

tinguish them from the ones defined in 10-dimensional spacetime (with no hats). This is also the case in

appendix 15.4, which explains the details about dimensional reduction. In the main text we often drop hats

for the sake of clarity, as the spacetime dimension is always clear from the context, only using hats for 11-

dimensional objects at the point of performing dimensional reduction.

In the 11-dimensional spacetime, we use realMajorana anticommuting 32-component spinors denoted as

θ̂µ, withµ representing spinor indices in the curved superspacemanifold andα representing spinor indices on

the corresponding tangent space. Spinor indices can generally be suppressed without loss of clarity. Explicitly,

Dirac conjugation is defined in terms of the antisymmetric conjugationmatrixC = Cαβ , withCαβ = −Cβα,

as
ˆ̄θβ = θ̂αCαβ . (15.246)

More generally spinor indices are raised and lowered by the conjugation matrix and its inverse C−1 = Cαβ ,

with CαβCβγ = δγα, according to the rule

M β
α = CαγM

γ
δC

δβ . (15.247)

In the index-free notation, one can write ˆ̄θ = θ̂TC and ˆ̄θMθ̂ = ˆ̄θαM
α
β ξ̂

β = θ̂αMαβ ξ̂
β . We work with the

mostly-plus Minkowksi metric η̂âb̂, with signature (−1, (+1)10) and indices running as â = 0, . . . , 10, and

employ Γ-matrices Γ̂â fulfilling the Clifford algebra

{Γ̂â, Γ̂b̂} = 2η̂âb̂. (15.248)
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The antisymmetrized Γ-matrix products are defined as

Γ̂â1â2...ân = Γ̂[â1 Γ̂â2 . . . Γ̂ân]. (15.249)

The combinations (Γ̂â1â2...ân)αβ are symmetrical in their spinor indices for n = 1, 2 mod 4 and antisym-

metrical otherwise, i.e.

(Γ̂â1â2...ân)αβ = +(Γ̂â1â2...ân)βα, n = 1, 2 mod 4; (15.250a)

(Γ̂â1â2...ân)αβ = −(Γ̂â1â2...ân)βα, n = 0, 3 mod 4. (15.250b)

The Majorana nature of the anticommuting fermions θ̂ means that ˆ̄θ Γ̂â1â2...ân θ̂ = 0 for n = 1, 2 mod 4.

The master equation for practical Γ-matrix manipulation (in any number of dimensions) is

Γ̂â1...âm Γ̂b̂1...b̂n =

min(m,n)∑
r=0

r!

(
m

r

)(
n

r

)
δ
[âm

[b̂1
. . . δ

âm+1−r

b̂r
Γ̂
â1...âm−r]

b̂r+1...b̂n]
. (15.251)

After the dimensional reduction to a 10-dimensional space spanned by indices a = 0, . . . , 9, where the

direction x10 is compactified, it is necessary to introduce a chirality matrix. In tangent spacetime, the first ten

Γ-matrices are the same because theClifford algebra reads {Γ̂a, Γ̂b} = 2η̂ab = 2ηab = {Γa,Γb}, so Γ̂a = Γa,

where ηab = η̂ab is the 10-dimensional Minkowski metric; the last 11-dimensional Γ-matrix defined to be

the 10-dimensional chirality matrix Γ̂10 ≡ Γ∗. All the other rules on spinor indices are unchanged. Because

in ten dimensions there is a notion of chirality, we split 11-dimensional Majorana spinors into pairs of 10-

dimensional Majorana-Weyl spinors as θ = θ++ θ−, where Γ∗θ± = ±θ±. For type IIB strings, we relate the

previous pair of Majorana-Weyl spinors to another pair of Majorana-Weyl spinors, but this time with equal

chirality, i.e. θ1,2 with Γ∗θ1,2 = +θ1,2. In this case it is convenient to rearrange these fermion pairs into a

Pauli matrix-valued spinor

θ =

(
θ1
θ2

)
, (15.252)

which is acted on by the 2-dimensional identity 12 and the three Pauli matrices σ1, σ2 and σ3. All the Γ-

matrices and the chiralitymatrix that need to act on the spinor θ can be redefined bymeans of a tensor product

with the 2-dimensional identity 12 in such a way as to act appropriately on the two spinor components θ1,2.

Note on spinor indices

In dealing with spinor contractions, we often find it useful to rearrange expressions bymoving spinor indices.

Given a matrixMαβ acting on the spinor space, we define its transpose as the matrix M̌αβ = Mβα. As an

example, consider the torsion T̂â and its transpose ˆ̌Tâ

T̂â =
1

288

(
Γ̂ b̂ĉd̂ê
â + 8δb̂âΓ̂

ĉd̂ê
)
Ĥb̂ĉd̂ê,

ˆ̌Tâ =
1

288

(
Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂

ĉd̂ê
)
Ĥb̂ĉd̂ê.
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Notice that it is not the position of the spinor indices that is used to make the distinction between T̂â and ˆ̌Tâ:

both are defined as in themain text and the position of the indices can be changedwith the charge conjugation

matrix Cαβ and its inverse Cαβ . In fact, we can write for instance (T̂m̂) β
α = −( ˆ̌Tm̂)βα.

15.2 11-dimensional supergravity

Here we summarize the set-up and conventions for 11-dimensional supergravity [139–141], including the

field content, the constraints on the torsion which are equivalent to the equations of motions, and the Bianchi

identities [163].

In 11-dimensional supergravity, let us consider the (11|32)-dimensional supermanifold spanned by co-

ordinates ZM = (xm, θµ), whereM is a generalized superspace index, withm = 0, . . . , 10 representing the

original spacetime directions and µ = 1, . . . , 32 representing the corresponding spinor directions. In this

formalism, one defines the supervielbein as

EA(x, θ) = dZME A
M (x, θ), (15.253)

where the indexA corresponds to the tangent space, with the possibility to introduce local coordinates yA =

(ya, yα), with a = 0, . . . , 10 and α = 1, . . . , 32. Let us also introduce a superconnection, i.e. the super-one-

form ω B
A , with Lorentzian structure group, in terms of which we define the superspace covariant derivative,

∇XA1...
B1...

= dXA1...
B1...

+XDA2...
B1...

ECω A1

CD · · ·+XA1...
DB2...

ECω D
B1C . . . . (15.254)

The superconnection is comnpatible with the structure of the tangent space Lorentz group, and it is related

to the spin connection according to

ω β
a = ω a

β = 0 , ω β
α =

1

4
ωab(Γ

ab) β
α (15.255)

We can then define the supertorsion TA and the supercurvatureR A
B as

TA = ∇EA = dEA + EBω A
B =

1

2
ECEBT A

CB , (15.256)

R A
B = dω A

B + ω C
B ω A

C =
1

2
EDECR A

DCB . (15.257)

Finally, we define the super-three-form

A =
1

3!
ECEBEAACBA, (15.258)

along with its field-strength, i.e. the super-four-form

H = dA =
1

4!
EAEBECEDHDCBA, (15.259)
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whose components explicitly read

HDCBA =
∑

(ABCD)

∇DACBA + T E
DC AEBA, (15.260)

where∇A = (E−1) M
A ∇M .

In this formulation, 11-dimensional supergravity has only two dynamical superfields, namely the vielbein

E A
M (x, θ) and the super-three-form AMNP (x, θ). The equations of motion can be shown to be equivalent

to constraints placed upon the components of the supertorsion and the super-four-form [140, 141, 163]. These

supergravity constraints read

T a
γβ = −i(Γa)γβ , (15.261a)

T α
γβ = T a

γb = T a
cb = 0, (15.261b)

Hδγβα = Hδγβa = Hδcba = 0, (15.261c)

Hδγba = i(Γba)δγ . (15.261d)

Using this superspace formulation, the physical fields of 11-dimensional supergravity only appear through

their covariant field strengths, namely the top component of the supercurvatureR d
abc , the supertorsion com-

ponent T α
ab , and the four-formHabcd. To see exactly how this is the case, wemust use the Bianchi identities.

It is possible to observe that the supertorsion and the supercurvature obey the Bianchi identities

∇TA = EBR A
B , (15.262a)

∇R A
B = 0. (15.262b)

These, along with the closure relationship dH = 0, can be expressed more explicitly as

∑
(ABC)

(
R D
ABC −∇AT D

BC − T E
AB T D

EC

)
= 0, (15.263a)

∑
(ABCD)

(
∇AR E

BCD + T F
AB R E

FCD

)
= 0, (15.263b)

∑
(ABCDE)

(
∇AHBCDE + T F

AB HFCDE

)
= 0. (15.263c)

Starting from these identities, we can determine expressions concerning the remaining components of the

supertorsion, i.e.

T α
cβ =

1

288

(
Γ dfgh
c + 8δdcΓ

fgh
) α

β
Hdfgh =

(
T dfgh
c

) α

β
Hdfgh, (15.264a)

T α
ab =

i

42
(Γcd)αβ∇βHabcd, (15.264b)

(Γabc)αβT
β

bc = 0. (15.264c)
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and the remaining components of the supercurvature, i.e.

Rδγba = −2i
(
ΓbŤ dfgh

a

)
(δγ)

Hdfgh, (15.265a)

Rδcba =
i

2

[
(Γc)δϵT

ϵ
ba + 2(Γ[a)δϵT

ϵ
b]c

]
, (15.265b)

R α
dcβ = 2∇[dT

α
c]β + 2T ϵ

[d|β T α
|c]ϵ +∇βT α

dc , . (15.265c)

Note that the Riemann tensor is built from the superconnection and obeys

R β
DCa = R a

DCβ = 0 , R α
DCβ =

1

4
RDCba(Γ

ba) α
β . (15.266)

The Γ-matrix combination T is defined in (15.264a) and Ť is its transposition. Finally, the Bianchi identities

also give the expressions

∇αHbcde = −6i(Γ[bc)αβT
β

de] , (15.267a)

∇αRbcde = 2∇[b|Rα|c]de + 2T γ
[b|α Rγ|c]de − T

γ
bc Rβαde. (15.267b)

15.3 Order-4 vielbein manipulations

Expansion of the M2-brane action only requires knowledge of the expansion of the supervielbein. Therefore

we record the expansion of the frame super-form to quartic order.

15.3.1 Normal coordinate expansion of frame super-form

Using the expressions for the behaviour of the Lie derivative Ly along the tangent field y = yM , it can be

established that the repeated action on the supervielbein EA gives [130]21

LyE
A = ∇yA + yCEBT A

BC , (15.268)

(
Ly
)2
EA = −yBECyDR A

DCB + yCEByD∇DT A
BC + yC

(
∇yB + yEEDT B

DE

)
T A
BC , (15.269)(

Ly
)3
EA =− yD

(
∇yB + yFEGT B

GF

)
yCR A

CBD − yDEByCyF∇FR A
CBD

+ 2yC
(
∇yB + yFEGT B

GF

)
yD∇DT A

BC + yCEByDyE∇E∇DT A
BC

+ yCyG
(
∇yD + yEEFT D

FE

)
T B
DG T A

BC − yCyDEF yER B
EFD T A

BC

+ yCyFEDyE
(
∇ET B

DF

)
T A
BC ,

(15.270)

21Note that (15.270) corrects (4.7, [130]), in which there is an erroneous extra term.
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(
Ly
)4
EA =+ 3yCyF

(
∇yE + yGEHT E

HG

)
T B
EF yD∇DT A

BC

+ 3yC
(
∇yB + yFEGT B

GF

)
yDyE∇E∇DT A

BC

− yCyD
(
∇yF + yGEHT F

HG

)
yER B

EFD T A
BC

+ 2yCyF
(
∇yD + yEEGT D

GE

)
yH
(
∇HT B

DF

)
T A
BC

− yDyF
(
∇yE + yHEGT E

GH

)
T B
EF yCR A

CBD

− 2yD
(
∇yB + yFEGT B

GF

)
yCyE∇ER A

CBD

+ yCyGyE
(
∇yF + yIEHT F

HI

)
T D
FE T B

DG T A
BC

+ yDyEEF yGR B
GFE yCR A

CBD − yDyFEGyE
(
∇ET B

GF

)
yCR A

CBD

− yDEByCyEyF∇F∇ER A
CBD + yCEByDyEyF∇F∇E∇DT A

BC

− yCyDEF yEyG
(
∇GR B

EFD

)
T A
BC − 3yCyDEF yER B

EFD yG∇GT A
BC

− yCyEyFEGyHR D
HGF T B

DE T A
BC + yCyGyEEF yH

(
∇HT D

FE

)
T B
DG T A

BC

+ yCyFEDyEyG
(
∇G∇ET B

DF

)
T A
BC + 3yCyFEDyE

(
∇ET B

DF

)
yG∇GT A

BC .

(15.271)

Notice thatmany terms can be rearranged in terms of the supercovariant derivative. However, while the order-

1 variation can be written entirely in terms of this (in a bosonic bacgkround, one has∇myα+ yβe c
m T α

cβ =

Dmy
α), higher orders contain components of the super-Riemann tensor and operators involving the torsion

that are difficult to rearrange in compact ways.

15.3.2 Rearranging the expanded supervielbein using Bianchi identities

Starting from the order-4 term in (11.127) andusing (15.266) to perform some straightforward rearrangement

while making use of Γ-matrix symmetries, we may write

(
Ly
)4
E a
m =

i

4
(yδRδϵbcDmyϵ)(ȳΓabcy) + (ȳΓbDmy)(ȳΓaŤ dfgh

b y)Hdfgh

+
i

4
yδyχe e

m yδyξ∇ξ
(
Rδebc(Γ

bc) β
χ − 4∇δT β

eχ

)
(Γa)βγ .

Nowwe will use (15.265a) in the first term and (15.264a, 15.265b, 15.267a) in the third term, and we also split

the third term. We also use the spinor index symmetry properties of Γ-matrices to write

(ΓbŤ dfgh
c )(δϵ) =

1

288

(
ΓbcΓ

dfgh − 8δ
[d
[cΓb]Γ

fgh] − 12δ
[d
[c δ

f
b]Γ

gh]
)
δϵ
Hdfgh ≡ 2R dfgh

bc Hdfgh,

so we eventually arrive at

(
Ly
)4
E a
m =

[
ȳ(R dfgh

bc HdfghDmy
]
(ȳΓabcy) + (ȳHdfghΓ

bDmy)(ȳΓaŤ dfgh
b y)

+
1

8
(ȳΓabcy)e e

m yδ
[
(Γe)δσyξ∇ξT σ

bc + 2(Γb)δσyξ∇ξT σ
ec

]
−6 (ȳΓaŤ dfgh

b y)e b
m yδ(Γdf )δσyξ∇ξT σ

gh .

We see that a number of previously nasty-looking curvature and torsion terms are all reducible to expres-

sions involving gamma matrices and the spinor derivative of the supercovariantized gravitino fields strength
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∇ξT σ
gh .

To assess this we step back to superspace momentarily. Using the superspace covariant derivative

∇Mv B
A = ∂Mv

B
A + v C

A ω B
MC − ω C

MA v B
C ,

we have
[
∇M ,∇N

]
vA = −R B

MNA vB , and so

[
E M
A ∇M , E N

B ∇N
]
vC =

(
E M
A E N

B

[
∇M ,∇N

]
− 2E M

[A E N
B] (∇ME D

N )∇D
)
vC

= −R D
ABC vD − T D

AB ∇DvC .

This means that we have R δ
abγ = −[∇a,∇b] δγ − T

µ
ab (∇µ) δ

γ , which in bosonic backgrounds is R δ
abγ =

−[∇a,∇b] δγ . Using Bianchi identity results, we have in bosonic backgrounds,

∇γT δ
ab = R δ

abγ − 2∇[aT
δ

b]γ − 2T σ
[a|γ T δ

σ|b] = −
[
∇a + Ta,∇b + Tb

] δ

γ
.

In terms of the supercovariant derivativeDm we can eventually write∇γT δ
ab = e m

a e nb
[
Dm, Dn

]δ
γ
. Ap-

plying this result we see that the two objects defined in (11.128) arise naturally by combining terms, as we

have

(
Ly
)4
E a
m = (ȳΓabcy)

[
ȳ
(
R dfgh
bc HdfghDm +

1

8
Γee

e
m e pb e

q
c [Dp, Dq] +

1

4
Γbe

q
c [Dm, Dq]

)
y
]

+(ȳΓaŤ dfgh
b y

)[
ȳ
(
HdfghΓ

bDm − 6e b
m Γdfe

p
g e

q
h [Dp, Dq]

)
y
]
,

which means (
Ly
)4
E a
m = (ȳΓabcy)(ȳWmbcy) + (ȳΓaŤ dfgh

b y)(ȳHbmdfghy). (15.272)

15.4 Catalogue of dimensional reductions

In this appendix we catalogue the details of the dimensional reductions of all the terms appearing in the main

text.

Notation

In the M-theory formulation, we consider the 11-dimensional spacetime to be spanned by the coordinates

xm̂. This is reduced to a 10-dimensional string background via the split xm̂ = (xm, x10). Unless differently

stated, 11-dimensional indices are hatted whereas 10-dimensional indices are not; 11-dimensional objects are

also hatted and 10-dimensional objects are not. So vectors in the 11- and 10-dimensional spacetimes read

ω̂ = ω̂m̂ dxm̂ and ω = ωm dxm, respectively, and similarly for tensors of arbitrary rank. Indices â, b̂ and

a, b are 11- and 10-dimensional tangent spacetime indices, respectively, with explicit number indices being

underlined for tangent space and unadorned for spacetime. Background fields are always independent of the

extra M-theory coordinate x10.

TheM2- andD2-brane 3-dimensional worldvolumes are spanned by the coordinates ξi. Pulling an object

back from eleven dimensions and pulling an object back from ten dimensions are different manoeuvres: for
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ease of notation, instead of writing these pullbacks explicitly, we shall keep track of which is being used by

noting whether the object itself it hatted or not. For instance, denoting for a moment the pullback from the

11-dimensional spacetime to the 3-dimensional M2-brane worldvolume with φ⋆ and the pullback from the

10-dimensional spacetime to the 3-dimensional D2-brane worldvolume with ϕ⋆, for two vectors ω̂m̂ and ωm
we will write ω̂i = (φ⋆ω̂)i = ∂ix

m̂ω̂m̂ and ωi = (ϕ⋆ω)i = ∂ix
mωm.

The n-dimensional Levi-Civita symbol εµ1...µn
is normalized as ε1...n = +1 and the Levi-Civita tensor

is defined as ϵµ1...µn
= (−det g)1/2 εµ1...µn

, where gµ1µ2
is the associated n-dimensional metric. Similarly,

we define the symbol εµ1...µn ≡ −εµ1...µn
and ϵµ1...µn = (−det g)−1/2 εµ1...µn .

Antisymmetric and symmetric combinations of a number n of indices are denoted by square brackets

and parentheses, respectively, and include a normalization factor 1/n!. For instance, we have Γ[1 . . .Γn] =∑
σ∈Sn

sgn(σ) Γσ(1) . . .Γσ(n)/n!, where σ ∈ Sn are the permutations of n elements.

15.4.1 Basic dimensional reductions

We report details about the dimensional reductions of the essential quantities that are needed in the analysis

of M2- and D2-branes.

Metric

In terms of 10-dimensional quantities, the 11-dimensional vielbein splits according to the standard ansatz

ê â
m̂ =

(
e−

ϕ
3 e a
m e

2ϕ
3 Cm

0 e
2ϕ
3

)
, (15.273)

where e a
m is the 10-dimensional string frame vielbein, ϕ is the dilaton, andC(1) = dxmCm is the Ramond-

Ramond one-form. The vielbein is invertible and its inverse reads

ê m̂
â =

(
e

ϕ
3 e m
a −e

ϕ
3Ca

0 e−
2ϕ
3

)
. (15.274)

The 11-dimensional metric is defined in terms of the vielbein as ĝm̂n̂ = ê â
m̂ ê b̂

n̂ η̂âb̂, where η̂âb̂ is the 11-

dimensional Minkowski metric, so it reads

ĝm̂n̂ =

(
e−

2ϕ
3 gmn + e

4ϕ
3 CmCn e

4ϕ
3 Cm

e
4ϕ
3 Cn e

4ϕ
3

)
,

where the 10-dimensional metric is defined as gmn = e a
m e b

n ηab, with ηab the 10-dimensional Minkowski

metric.

Three-form field

We describe the dimensional reduction of the 11-dimensional three-form Â = dxm̂∧dxn̂∧dxp̂Âp̂n̂m̂/3! in

terms of two 10-dimensional form fieldsC(3) = dxm ∧ dxn ∧ dxpCpnm/3! andB(2) = dxm ∧ dxnBnm/2!
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defined as

Âmnp = Cmnp, (15.275a)

Âmn 10 = Bmn, (15.275b)

The 11-dimensional flux is defined as Ĥ = dÂ, while in the 10-dimensional formulation we have F (4) =

dC(3) andH(3) = dB(2), so the 10-dimensional form field strengths are such that

Ĥmnpq = Fmnpq, (15.276a)

Ĥmnp 10 = Hmnp. (15.276b)

An analysis of the dimensional-reduction ansatz shows that the tangent-space 11-dimensional flux is re-

lated to the 10-dimensional field-strength tensors as

Ĥabc10 = e
ϕ
3 e m

a e nb e
p
c Hmnp, (15.277a)

Ĥabcd = e
4ϕ
3 e m

a e nb e
p
c e

q
d (Fmnpq − 4H[mnpCq]) = e

4ϕ
3 e m

a e nb e
p
c e

q
d F

(4)
mnpq, (15.277b)

where we defined the combination F (4) = dC(3) − C(1) ∧H(3).

Γ̂-matrices

In tangent spacetime, the first ten Γ̂-matrices are the same, i.e. Γ̂a = Γa, since the Clifford algebra is the same

as a consequence of the equality η̂ab = ηab; the last Γ̂-matrix defined as the chirality matrix Γ̂10 ≡ Γ∗. In

curved spacetime, the 11-dimensional Γ̂-matrices and 10-dimensional Γ-matrices are then related as

Γ̂m = e−
ϕ
3

(
Γm + eϕCmΓ∗), (15.278)

Γ̂10 = e
2ϕ
3 Γ∗. (15.279)

One also finds,

Γ̂mn = e−
2ϕ
3

(
Γmn − 2 eϕC[mΓn]Γ

∗), (15.280)

Γ̂mnp = e−ϕ
(
Γmnp + 3 eϕC[mΓnp]Γ

∗). (15.281)

For contractions of the components of a form field ωp with a number n of 10-dimensional curved-

spacetime Γ-matrices Γm, we employ the underlined notation

ωq1 q2...qm =
1

n!
ωq1...qmp1...pnΓ

p1...pn . (15.282)
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15.4.2 Supercovariant derivatives

Spin connection

The 11-dimensional spin connection is defined in terms of the anhomology coefficients as

ω̂ ĉ
âb̂

=
1

2

(
Ω̂ ĉ
âb̂
− Ω̂ ê

âd̂
η̂ĉd̂η̂b̂ê − Ω̂ ê

b̂d̂
η̂ĉd̂η̂âê

)
, (15.283)

where the latter read

Ω̂ ĉ
âb̂

= ê m̂
â ê n̂

b̂

(
∂̂m̂ê

ĉ
n̂ − ∂̂n̂ê ĉ

m̂

)
.

These allow us to express the 11-dimensional spin connection in terms of 10-dimensional operators as

ω̂ c
ab = e

ϕ
3

[
ω c
ab +

1

3
∂bϕδ

c
a −

1

3
∂cϕηba

]
, (15.284a)

ω̂
10

ab =
1

2
e

4ϕ
3 Fab, (15.284b)

ω̂ c
10 a = ω̂ c

a10 = −1

2
e

4ϕ
3 F c

a , (15.284c)

ω̂
10

10 a = −2

3
e

ϕ
3 ∂aϕ, (15.284d)

ω̂ c
10 10 =

2

3
e

ϕ
3 ∂cϕ, (15.284e)

where all the remaining combinations are vanishing, i.e. ω̂ 10
a10 = ω̂

10
10 10 = 0.

Torsion

The 11-dimensional torsion term that appears in the M2-brane action is the Γ-matrix valued term

ˆ̌Tâ =
1

288

(
Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂

ĉd̂ê
)
Ĥb̂ĉd̂ê. (15.285)

In terms of 10-dimensional operators, the 11-dimensional torsion components can be seen to split as

ˆ̌Ta =
1

12
e

ϕ
3

[
Γa(e

ϕF (4) +H(3)Γ∗)− 3 e m
a (eϕF (4)

m +H(3)
m Γ∗)

]
, (15.286a)

ˆ̌T10 =
1

12
e

ϕ
3

[
Γ∗(eϕF (4) − 2H(3)Γ∗)

]
. (15.286b)

Supercovariant derivative

In dealing with the M2-brane action, the spinor kinetic term contains the worldvolume pullback of the 11-

dimensional spacetime operator

D̂m̂ = ∇̂m̂ − ˆ̌Tm̂, (15.287)

where ∇̂m̂ is the 11-dimensional spinor covariant derivative and ˆ̌Tm̂ is the 11-dimensional torsion, which are

defined in the tangent spacetime as

∇â = ∂â +
1

4
ω̂ b̂ĉ
â Γ̂ĉd̂, (15.288a)
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ˆ̌Tâ =
1

288

(
Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂

ĉd̂ê
)
Ĥb̂ĉd̂ê. (15.288b)

Using the above relations one can dimensionally reduce the 11 dimensional supercovariant derivative and

write it in terms of 10 dimensional operators (12.149), recovering the relations (12.150).

15.4.3 Pullbacks

We report details about the relationships between pullbacks onto M2- and D2-brane worldvolumes.

Metric

Defining the combination

pi = ∂ix
10 + ∂ix

mCm, (15.289)

which is the dual to the world volume flux on the D2-brane, we can express the metric pullback as

ĝij = e−
2ϕ
3 gij + e

4ϕ
3 pipj . (15.290)

Equivalently, the pullback of the vielbein is

ê ai = e−
ϕ
3 e ai , (15.291a)

ê
10
i = e

2ϕ
3 pi. (15.291b)

Since the pulled-back metrics are 3-dimensional, using the shorthand gijpipj = p2, we get the exact

relationship

det(ĝij) = e−2ϕ det(gij)
(
1 + e2ϕp2

)
, (15.292)

To conclude, the relationship between the inverses of the pulled-back metrics can be seen to be

ĝij = e
2ϕ
3

(
gij − e2ϕpipj

1 + e2ϕp2

)
. (15.293)

Three-form field

For the three-form field, we can write

Âijk = Cijk − 3C[iBjk] + 3 p[iBjk]. (15.294)

Γ̂-matrices

The relationship between the 11-dimensional Γ̂-matrix pullbacks and 10-dimensional Γ-matrix pullbacks is

Γ̂i = e−
ϕ
3

(
Γi + eϕpiΓ

∗). (15.295)
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Starting from this, we can then express the antisymmetric combinations of Γ̂-matrices as

Γ̂ij = e−
2ϕ
3

(
Γij − 2 eϕ p[iΓj]Γ

∗), (15.296)

Γ̂ijk = e−ϕ
(
Γijk + 3 eϕ p[iΓjk]Γ

∗). (15.297)

Matrices with upper indices are defined by use of themetric pullback inverse, i.e. Γ̂i = ĝijΓ̂j andΓi = gijΓj ,

and they are related as

Γ̂i = e
ϕ
3

[
Γi +

eϕpi

1 + e2ϕp2

(
Γ∗ − eϕΓkpk

)]
. (15.298)

Supercovariant derivative pullback

The operator that appears in the M2-brane action is the 11-dimensional spinor covariant derivative pullback

D̂iθ̂. By making use of the results above, we can determine that in terms of the D2-brane operators this reads

D̂iθ̂ = e−
ϕ
6

[
Di −

1

6
Γi∆+

1

3
eϕpiΓ

∗∆

]
θ. (15.299)

15.4.4 Order-4 combinations

In the order-4 fermion expansions we find combinations of the operators that appear at second order. These

are discussed in detail below.

Γ̂-matrices and fluxes

We now treat the term

R̂b̂ĉ =
1

576

(
Γ̂b̂ĉΓ̂

d̂f̂ ĝĥ − 8δd̂[ĉΓ̂b̂]Γ̂
f̂ ĝĥ − 12δd̂[ĉδ

f̂

b̂]
Γ̂ĝĥ
)
Ĥd̂f̂ ĝĥ. (15.300)

Upon dimensional reduction, this allows us to define

Rbc ≡ e−
ϕ
3 R̂bc =

1

24

[
Γbc
(
eϕF (4)+H(3)Γ∗)− 2Γ[b

(
eϕF

(4)
c] +H

(3)
c] Γ∗)+ (eϕF (4)

bc +H
(3)
bc Γ

∗)],
(15.301a)

Rb ≡ e−
ϕ
3 R̂b 10 = − 1

24
eϕΓ∗

[
ΓbF

(4)− F (4)
b

]
. (15.301b)

Supercovariant derivative commutator

An operator appearing frequently in the order-4 fermionic expansion is the commutator of supercovariant

derivatives on which we must perform dimensional reduction. First of all, we have

[
D̂p, D̂10

]
ŷ =

1

3
e−

ϕ
6 eϕKpθ,
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where we have defined the operator

Kp ≡
[
Dp −

1

6
Γp∆,Γ

∗∆

]
+ (∂pϕ)Γ

∗∆. (15.302)

The other non-zero commutator reads

[
D̂p, D̂q

]
ŷ = e−

ϕ
6Kpqθ −

2

3
e−

ϕ
6 eϕC[pKq],

where we have defined the operator

Kpq =
[
Dp −

1

6
Γp∆, Dq −

1

6
Γq∆

]
+

1

3
eϕF (2)

pq Γ∗∆. (15.303)

To conclude, we notice that ê p̂
10 ê

q̂
10

[
D̂p̂, D̂q̂

]
ŷ = ê 10

10 ê 10
10

[
D̂10, D̂10

]
ŷ = 0. From these results, one can

immediately derive

[D̂a, D̂b]θ̂ = e
ϕ
2 e p
a e

q
b Kpqθ, (15.304a)

[D̂a, D̂10]θ̂ =
1

3
e

ϕ
2 e p
a Kpθ. (15.304b)

15.4.5 Dimensional reductionof the quartic 11-dimensional shiftedfields for thedila-
ton

In this appendix we provide an example of the dimensional reduction calculation for the quartic fermionic

terms. We will concentrate on the dilaton as these terms are the least formidable, however the approach is

fundamentally the same for the dimensional reduction for all the quartic fermonic terms in 11 dimensions.

We will make heavy use of the results in appendix 15.4.

The relationship between the quartic fermionic expansion of the 11-dimensional metric ĝm̂n̂ and the

quartic fermionic expansions of the 10-dimensional metric gmn, Ramond-Ramond one-formC(1)
m , and dila-

tonϕ is (12.156). The expansion of the 11-dimensional metric is (11.140). Plugging in (11.129) we can write

the 11-dimensional shifted metric as

γ̂m̂n̂ = − 1

4

( ˆ̄θΓ̂âD̂(m̂θ̂
)( ˆ̄θΓ̂âD̂n̂)θ̂

)
+

1

12

( ˆ̄θΓ̂(m̂|
ˆ̌Tâ θ̂
)( ˆ̄θΓ̂âD̂|n̂)θ̂

)
− 1

576
ĝm̂n̂

( ˆ̄θΓ̂âb̂ĉd̂θ̂)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂
)
+

1

96

( ˆ̄θΓ̂(m̂Γ̂âb̂ĉθ̂
)( ˆ̄θΓ̂n̂)â[D̂b̂, D̂ĉ]θ̂

)
+

1

96

( ˆ̄θΓ̂(m̂Γ̂âb̂ĉ]θ̂
)( ˆ̄θΓ̂âb̂[D̂|n̂), D̂ĉ]θ̂

)
+

1

12

( ˆ̄θΓ̂(m̂|Γ̂
âb̂θ̂
)( ˆ̄θR̂

âb̂
D̂|n̂)θ̂

)
+

1

96

( ˆ̄θΓ̂(m̂|Γ̂
âb̂θ̂
)( ˆ̄θΓ̂n̂)[D̂â, D̂b̂]θ̂

)
+

1

48

( ˆ̄θΓ̂(m̂|Γ̂
âb̂θ̂
)( ˆ̄θΓ̂â[D̂|n̂), D̂b̂]θ̂

)
.

(15.305)

Plugging this into (12.180) allows us to write the dilaton quartic shift as

ρ(4) = − 1

768

( ˆ̄θΓ̂âb̂ĉd̂θ̂)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂
)
+

1

128
e−

4ϕ
3

( ˆ̄θΓ̂10Γ̂
âb̂ĉθ̂

)( ˆ̄θ(Γ̂10â[D̂b̂, D̂ĉ] + Γ̂âb̂[D̂10, D̂ĉ]
)
θ̂
)

+
1

128
e−

4ϕ
3

( ˆ̄θΓ̂10Γ̂
âb̂θ̂
)( ˆ̄θ(Γ̂10[D̂â, D̂b̂] + 2Γ̂â[D̂10, D̂b̂]

)
θ̂
)
− 3

16
e−

4ϕ
3

( ˆ̄θΓ̂âD̂10θ̂
)( ˆ̄θΓ̂âD̂10θ̂

)
+

1

16
e−

4ϕ
3

( ˆ̄θΓ̂10
ˆ̌Tâ θ̂
)( ˆ̄θΓ̂âD̂10θ̂

)
+

1

16
e−

4ϕ
3

( ˆ̄θΓ̂10Γ̂
âb̂θ̂
)( ˆ̄θR̂

âb̂
D̂10θ̂

)
+

1

24

(
θ̄∆θ

)2
.
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We will demonstrate the dimensional reduction of these terms in detail. The dimensional reduction of the

terms involved in the quartic shifts of the other type IIA fields follows in a very similar way, so we will forgo

spelling these out. Let us tackle the dilaton shift one term at a time. We will variously require, (15.279),

(15.286a), (15.286b), (15.301a), (15.301b), (15.304a), and (15.304b), at different stages of the calculations. In

the order in which the terms appear, we have from the first term

− 1

768
(ˆ̄θΓ̂âb̂ĉd̂θ̂)(ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂) =

= − 1

768
(ˆ̄θΓabcdθ̂)(ˆ̄θΓab[D̂c, D̂d]θ̂)−

1

192
(ˆ̄θΓ10bcdθ̂)(ˆ̄θΓ[10b[D̂c, D̂d]]θ̂)

= − 1

768
(θ̄Γmnpqθ)(θ̄ΓmnKpqθ)−

1

1152
(θ̄Γ∗Γmnpθ)

[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]
.

In moving to the final line we used many of the results derived previously, and we move vielbeins around in

order to write everything with spacetime indices rather than tangent space. In the second term, we have

1

128
e−

4ϕ
3 (ˆ̄θΓ̂10Γ̂

âb̂ĉθ̂)(ˆ̄θ
(
Γ̂10â[D̂b̂, D̂ĉ] + Γ̂âb̂[D̂10, D̂ĉ]

)
θ̂) =

1

384
(θ̄Γ∗Γmnpθ)

[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]
,

where the term with âb̂ĉ→ 10bc vanishes by symmetry of the first bilinear. Next, we have

1

128
e−

4ϕ
3 (ˆ̄θΓ̂10Γ̂

âb̂θ̂)(ˆ̄θ
(
Γ̂10[D̂â, D̂b̂] + 2Γ̂â[D̂10, D̂b̂]

)
θ̂) =

1

384
(θ̄Γ∗Γmnθ)

[
θ̄
[
3Γ∗Kmn − 2ΓmKn

]
θ
]
,

where symmetry considerations of the first bilinear causes the âb̂ → 10b terms to vanish. Moving to the

fourth term, we have

− 3

16
e−

4ϕ
3 (ˆ̄θΓ̂âD̂10θ̂)(

ˆ̄θΓ̂âD̂10θ̂) = −
1

48
(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

48
(θ̄∆θ)2.

The fifth term gives us

1

16
e−

4ϕ
3 (ˆ̄θΓ̂10

ˆ̌Tâ θ̂)(
ˆ̄θΓ̂âD̂10θ̂) =

= − 1

576

[
θ̄
[
2Γ∗eϕF (4)

m − ΓmH
(3)
]
θ
]
(θ̄ΓmΓ∗∆θ) +

1

576

[
θ̄
[
eϕF (4) − 2H(3)Γ∗]θ](θ̄∆θ),

where we have once again been able to use the symmetries of the Γ-matrices to combine some terms together.

Finally, we have

1

16
e−

4ϕ
3 (ˆ̄θΓ̂10Γ̂

âb̂θ̂)(ˆ̄θR̂
âb̂
D̂10θ̂) =

1

48
(θ̄Γ∗Γmnθ)(θ̄RmnΓ

∗∆θ).

We also must not forget the final term (θ̄∆θ)2/24 in the dilaton shift, which was already built out of 10-
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dimensional fields. If we combine everything together, we obtain the dilaton quartic order shift

ρ(4) = − 1

768
(θ̄Γmnpqθ)(θ̄ΓmnKpqθ) +

1

576
(θ̄Γ∗Γmnpθ)

[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]

+
1

384
(θ̄Γ∗Γmnθ)

[
θ̄
[
3Γ∗Kmn − 2ΓmKn

]
θ
]
+

1

48
(θ̄Γ∗Γmnθ)(θ̄RmnΓ

∗∆θ)

− 1

48
(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

576

[
θ̄
[
2Γ∗eϕF (4)

m − ΓmH
(3)
]
θ
]
(θ̄ΓmΓ∗∆θ)

+
1

48
(θ̄∆θ)2 +

1

576

[
θ̄
[
eϕF (4) − 2H(3)Γ∗]θ](θ̄∆θ).

(15.306)

This is the shift given in the main text for the dilaton.

For the sake of completion, let us also note here that the expanded expression for the quartic terms in the

expansion of the three-form superfield, obtained by plugging (11.129) into (11.141), is

α̂m̂n̂p̂ = −
3

4

( ˆ̄θΓ̂â[m̂D̂n̂θ̂
)( ˆ̄θΓ̂âD̂p̂])θ̂

)
+

1

8

( ˆ̄θΓ̂[m̂n̂|
ˆ̌Tâ θ̂
)( ˆ̄θΓ̂âD̂|p̂]θ̂

)
− 1

384

( ˆ̄θΓ̂m̂n̂p̂Γ̂âb̂ĉd̂θ̂)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂
)
+

1

64

( ˆ̄θΓ̂[m̂n̂Γ̂
âb̂ĉθ̂

)( ˆ̄θΓ̂p̂]â[D̂b̂, D̂ĉ]θ̂
)

+
1

64

( ˆ̄θΓ̂[m̂n̂|Γ̂
âb̂ĉ]θ̂

)( ˆ̄θΓ̂âb̂[D̂|p̂], D̂ĉ]θ̂
)
+

1

8

( ˆ̄θΓ̂[m̂n̂|Γ̂
âb̂θ̂
)( ˆ̄θR̂

âb̂
D̂|p̂]θ̂

)
+

1

64

( ˆ̄θΓ̂[m̂n̂Γ̂
âb̂θ̂
)( ˆ̄θΓ̂p̂][D̂â, D̂b̂]θ̂

)
+

1

32

( ˆ̄θΓ̂[m̂n̂|Γ̂
âb̂θ̂
)( ˆ̄θΓ̂â[D̂|p̂], D̂b̂]θ̂

)
.

(15.307)

15.5 Further comments on T-duality

Here we discuss the T-duality calculation for the general Ramond-Ramond superfield expansions at second

order in fermions. Notice that all three of the quadratic shifts so far calculated have been of the form

C(n)
m1...mn

= C(n)
m1...mn

−


i

2
e−ϕ θ̄Aan

[
nΓ[m1...mn−1

DA
mn]
− 1

2
Γm1...mnσ

1∆A
]
θA, n = 2p− 1,

i

2
e−ϕ̃ θ̄Bbn

[
n Γ̃[m1...mn−1

DB
mn]
− 1

2
Γ̃m1...mn

σ1∆B
]
θB, n = 2p,

where the an and bn are some Pauli matrix combinations that need to be determined. We will show that this

is the form for all the quadratic RR shifts, and determine an and bn for all n, starting from the known results

for n = 1, 3. The key equations to T-dualize these superfields into each other is the Ramond-Ramond super-

field T-duality rule (13.232). In particular, defining the quadratic Ramond-Ramond superfield expansions as

C(n) = C(n) + χ(n), one can write

χ̃
(n+1)
9ṁ2...ṁn+1

= χ
(n)
ṁ2...ṁn+1

− n g−1
99 g9[ṁ2

χ
(n)
|9|ṁ3...ṁn+1]

. (15.308)

Let us first concentrate on the terms outside of the square brackets. For now we will neglect to write what

appears inside the square brackets after applying (15.308), instead we shall just label it [IIA] or [IIB] to keep

track of whether it has yet been T-dualized. Under T-dualization, moving from type IIA to type IIB we can
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write,

− i
2
e−ϕ θ̄Aa2p−1[IIA]θA = − i

2
e−ϕ̃

√
g̃99 (θ̄

Bσ1Υσ1)a2p−1Υ
−1Υ[IIA]Υ−1θB

= − i
2
e−ϕ̃ θ̄Bb2pΓ̃9Υ[IIA]Υ−1θB.

We will see shortly that we will require Γ̃9 when T-dualizing the terms inside the square brackets, so write

it separately in line two and treat that part in a moment. Moving from type IIB to type IIA, instead, we can

write

i

2
e−ϕ̃ θ̄Bb2p[IIB]θB = − i

2
e−ϕ
√
g99 (θ̄

Aσ1Υ−1σ1)b2pΥΥ−1[IIB]ΥθA

= − i
2
e−ϕ θ̄Aa2p+1Γ9Υ

−1[IIB]ΥθA.

Weknow from the expansions in (13.244) that a1 = σ3 and a3 = 12. We also know from the definitions of the

T-duality operators in section 13 that
√
g̃99 σ

1Υσ1σ3Υ−1 = Γ∗Γ̃9, which allows to conclude that θ̄Bb2Γ̃9 =

θ̄BΓ∗Γ̃9, meaning that b2 = −12. From θ̄Aa3Γ9 =
√
g99 θ̄

Aσ1Υ−1σ1b2Υ = −√g99 θ̄Aσ1Υ−1σ1Υ = θ̄AΓ9,

we recover a3 = 12. Going on, from θ̄Bb4Γ̃9 =
√
g̃99 θ̄

Bσ1Υσ1a3Υ
−1 = −σ3θ̄BΓ9, we find b4 = −σ3. Fi-

nally, from the chain of relationships θ̄Aa5Γ9 =
√
g99 θ̄

Aσ1Υ−1σ1b4Υ = −√g99 θ̄Aσ1Υ−1σ1σ3Υ = σ3θ̄AΓ9,

we obtain a5 = σ3. In conclusion we have

a1 = σ3, b2 = −12, a3 = 12, b4 = −σ3, a5 = σ3. (15.309)

The pattern continues, multiplying by−12 whenmoving from IIB to IIA and by−σ3 whenmoving from IIA

to IIB.

Now let us concentrate on the expressions [IIA] and [IIB] inside the square brackets. Here we will look at

moving from type IIA to type IIB, however moving from type IIB to type IIA employs an essentially identical

structure. More specifically, when we use (15.308) to determine the shift on C(n+1)
m1...mn+1

from the shift on

C(n)
m1...mn

to move from IIA to IIB, we have to consider Γ̃9Υ[IIB]Υ−1, and vice versa. The explicit terms are

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1
= Γ̃9Υ

[
nΓ[ṁ2...ṁn

DA
ṁn+1]

− n(n− 1)g−1
99 g9[ṁ2

Γ|9|ṁ3...ṁn
DA
ṁn+1]

−(−1)n−1ng−1
99 g9[ṁ2

Γṁ3...ṁn+1]D
A
9

−1

2

(
Γṁ2...ṁn+1

− ng−1
99 g9[ṁ2

Γ|9|ṁ3...mn+1]

)
σ1∆A

]
Υ−1.

After a little work and using (−1)n−1ng−1
99 g9[ṁ2

Γṁ3...ṁn+1]D9 = ng−1
99 g9[ṁn+1

Γṁ2...ṁn]D9, this can be

written as

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1
= Γ̃9Υ

[
n
(
Γ[ṁ2

− g−1
99 g9[ṁ2|Γ9

)
. . .
(
Γṁn − g−1

99 g9|ṁn|Γ9

)(
DA
ṁn+1]

− g−1
99 g9|ṁn+1]D

A
9

)
−1

2

(
Γ[ṁ2

− g−1
99 g9[ṁ2|Γ9

)
. . .
(
Γṁn+1] − g

−1
99 g9|ṁn+1]Γ9

)
σ1∆A

]
Υ−1.
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At this point, we can use (13.236) and (13.237) to T-dualize almost everything immediately, obtaining

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1
= Γ̃9

[
n
(
Γ̃[ṁ2

− g̃−1
99 g̃9[ṁ2|Γ̃9

)
. . .
(
Γ̃ṁn − g̃−1

99 g̃9|ṁn|Γ̃9

)(
DB
ṁn+1]

− g̃−1
99 g̃9|ṁn+1]D

B
9

)
− 1

2

(
Γ̃[ṁ2

− g̃−1
99 g̃9[ṁ2|Γ̃9

)
. . .
(
Γ̃ṁn+1] − g̃

−1
99 g̃9|ṁn+1]Γ̃9

)(
σ1∆B − 2g̃−1

99 Γ̃9D
B
9

)]
=

[
n Γ̃9Γ̃[ṁ2...ṁn

(
DB
ṁn+1]

− g̃−1
99 g̃9|ṁn+1]D

B
9

)
− n(n− 1)g̃9[ṁ2

Γ̃ṁ3...ṁn
DB
ṁn+1]

− 1

2
Γ̃9Γ̃ṁ2...ṁn+1

(
σ1∆B − 2g̃−1

99 Γ̃9D
B
9

)
+
n

2
g̃9[ṁ2

Γ̃ṁ3...ṁn+1]

(
σ1∆B − 2g̃−1

99 Γ̃9D
B
9

)]
=

[
n Γ̃9[ṁ2...ṁn

DB
ṁn+1]

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9

+ (−1)nΓ̃ṁ2...ṁn+19g̃
−1
99 Γ̃9D

B
9 −

1

2
Γ̃9ṁ2...ṁn+1

σ1∆B
]
,

where in the final step we combined some Γ-matrices, distributed the final term and eventually rearranged

some indices. A further use of useful Γ-matrix identities and a little further massaging results in some more

cancellations, to give

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1
=

[
n Γ̃9[ṁ2...ṁn

DB
ṁn+1]

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9

+ (−1)n
(
Γ̃ṁ2...ṁn+1

Γ̃9 − n Γ̃[ṁ2...ṁn
g̃|9|ṁn+1]

)
g̃−1
99 Γ̃9D

B
9 −

1

2
Γ̃9ṁ2...ṁn+1

σ1∆B
]

=

[
n Γ̃9[ṁ2...ṁn

DB
ṁn+1]

+ (−1)nΓ̃ṁ2...ṁn+1 Γ̃9g̃
−1
99 Γ̃9D

B
9 −

1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9 − (−1)nn Γ̃[ṁ2...ṁn

g̃|9|ṁn+1]g̃
−1
99 Γ̃9D

B
9

]
=

[
n Γ̃9[ṁ2...ṁn

DB
ṁn+1]

+ (−1)nΓ̃ṁ2...ṁn+1D
B
9 −

1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9 − (−1)2n−1n Γ̃9[ṁ2...ṁn

g̃|9|ṁn+1]g̃
−1
99 DB

9

]
=

[
n Γ̃9[ṁ2...ṁn

DB
ṁn+1]

+ (−1)nΓ̃ṁ2...ṁn+1
DB
9 −

1

2
Γ̃9ṁ2...ṁn+1

σ1∆B
]

=

[
(n+ 1)Γ̃[9ṁ2...ṁn

DB
ṁn+1]

− 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B
]
,

which is exactly the desired result. Note that while powers of (−1) depending on n appeared, nowhere did

we rely on n being odd for the specific case of moving from type IIA to type IIB, and indeed the derivation

moving the other way has precisely the same structure. Thanks to this procedure, one can verify the general

second-order Ramond-Ramond shifts in (13.244).
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