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Abstract 

At the high level, the fundamental differences between materials originate from the unique nature of 

the constituent chemical elements. Before specific differences emerge according to the precise ratios of 

elements (composition) in a given crystal structure (phase), the material can be represented by its 

phase field defined simply as the set of the constituent chemical elements. Classification of the 

materials at the level of their phase fields can accelerate materials discovery by selecting the elemental 

combinations that are likely to produce desirable functional properties in synthetically accessible 

materials. Here, we demonstrate that classification of the materials’ phase field with respect to the 

maximum expected value of a target functional property can be combined with the ranking of the 

materials’ synthetic accessibility. 

This end-to-end machine learning approach (PhaseSelect) first derives the atomic characteristics from 

the compositional environments in all computationally and experimentally explored materials, and 

then employs these characteristics to classify the phase field by their merit. PhaseSelect can quantify 

the materials’ potential at the level of the periodic table, which we demonstrate with significant 

accuracy for three avenues of materials’ applications: high-temperature superconducting, high-

temperature magnetic and targetted energy band gap materials. 

 



Introduction 

Conceptualization of novel materials begins at the level of the periodic table with selection of chemical 

elements for synthetic investigation. There is a variety of possible ratios or compositions that can be 

formed from a set of chemical elements leading to different materials (phases); the field of these 

potential realizations can be defined as a material’s phase field. The choice of a phase field to 

investigate ultimately determines the outcome of the synthetic work and the functional properties of 

the prospective materials. 

The fundamental differences between atoms result in the variance in the materials’ properties in 

thousands of compositions accumulated in materials databases1–3. Harvesting these statistical data, 

there has been a surge of machine learning (ML) methods aiming to predict the materials’ properties 

from the knowledge of their structures and compositions4,5. Ranging from formation enthalpy6 to 

energy band gap7 to superconducting transition temperature8, ML predictions enable fast screening of 

functional inorganic materials at scale, overcoming the otherwise forbidding combinatorial challenge 

for precise, but significantly more resource-demanding high-throughput quantum-mechanical 

calculations. At the same time, most of these high-performance ML models are based on the deep 

learning9 or ensembles10 methods that lack interpretability11, hence they are not readily adopted by 

experimental teams. Improvement of interpretability of ML approaches without compromises on 

performance could bridge powerful ML methods with experimental workflows to form trusted ML-

expert systems in material sciences. 

Codification of the materials for statistical treatment involves description of the constituent chemical 

elements, often represented as vectors of their chemical and physical characteristics, that are combined 

linearly to describe a compound6. This approach relies on the expert selection of a number of exploited 

chemical characteristics as well as the relevance of these characteristics and the corresponding weights 

for the atomic descriptions in materials representations. This selection determines the quality of the 

model12. The composition-based models are predisposed to data leakage between training and 



validation datasets via compositionally close datapoints, that impedes the extrapolation of patterns in 

materials-properties relationships onto unexplored materials that have distinct chemistries from those 

in the training set13.  

In this work, our goal is to assess the attractiveness of candidate functional materials at the high level 

of the periodic table by identifying the most promising phase fields that are likely to contain these 

candidates. This circumvents the combinatorial challenge of individual assessment of all possible 

compositions built from the chosen elements and aligns with the experimental challenge of identifying 

new functional materials from previously uncharted chemistry. We demonstrate that unsupervised 

learning of chemical elements combined with the attention technique for learning elemental 

contributions can be used for the accurate classification of the materials’ functional performance at the 

level of the phase fields, while improving interpretability of the ML reasoning. This end-to-end 

integrated machine learning (PhaseSelect) of the materials databases can prioritise the materials with 

respect to both probability of a merit (maximum achievable value of the target property) and synthetic 

accessibility of the phase fields, while the existing vast chemical knowledge is learnt each time in the 

context of the specific target material function. 

In our approach, the machine learns all atomic elements and their specific characteristics responsible 

for materials formation. This is achieved by exploring possible compositional combinations in all 

theoretically and experimentally studied materials14, similarly to the concept in reference15. For each 

atom, a machine learns a vector, that encodes atomic characteristics learnt from the co-existence of 

atoms within some compositional environments and the absence of such co-existence with others. 

Thus built atomic vectors are then combined linearly to form a phase field representation, whereas 

attention mechanism16 is trained to derive the weights to the atomic vectors that magnify the most 

prominent atomic contributions specific to a particular property. This offers a statistically-derived 

alternative to the expert knowledge-based manual selection of relevant chemical characteristics and 

their contributions, and enables the high-level ranking and classification of materials for functional 



applications. Furthermore, by aggregating compositions into the phase fields in the input data, this 

high-level approach eliminates concerns of data leakage at the compositional level as all compositions 

within a phase field represent a single data entry.  

We demonstrate a significant accuracy of PhaseSelect in classification of the materials with respect to 

three different properties: superconducting transition temperature, Curie temperature, and energy band 

gap, when learning the relevant property from SuperCon3 and Materials Platform for Data Science 

(MPDS)1 databases. Within these training and test sets, each phase field is labelled according to the 

maximum reported value of all materials within it. This maximum value is compared to the chosen 

thresholds (10K, 300K, 4.5eV) that reflect practical interests in high-temperature superconducting, 

magnetic materials and dielectrics respectively, and a class label is allocated accordingly. 

In these applications, PhaseSelect demonstrates 80.4, 86.2, 75.6 % accuracy and 72.9, 84.2, 75.3% F1 

score respectively. Furthermore, the phase field representations derived during properties classification 

are exploited to recognise patterns in elemental combinations that afford stable compositions in 

material databases and produce the ranking of synthetic accessibility for unexplored phase fields. The 

arising metrics of the phase fields – the merit probability (probability of achieving a high value of a 

property) and synthetic uncertainty (accessibility ranking) – can be orthogonally applied to any 

combination of elements at scale, creating a map of potentially attractive phase fields that can provide 

guidance to human researchers in the consequential and costly choice of phase fields for investigations 

and discovery of functional materials. 

Results and discussion 

PhaseSelect model architecture 

At the level of the phase fields, relationships between elemental combinations and their synthetic 

accessibility have been studied with unsupervised machine learning and validated experimentally12. 

Here, we employ an integrated statistical description of atomic elements and their combinations to 



learn what elemental combinations have high probabilities of both synthetic realization and high 

values of target properties. The architecture of the model is illustrated in Figure 1.  

 

Figure 1. PhaseSelect predicts properties and chemical accessibility of phase fields. Model architecture. Arrows 

show the information flow between the various components described in this paper: 1) experimentally confirmed 

compositions are aggregated into the phase fields; the maximum values of the properties in the phase fields are 

selected; 2) compositional environments (elemental co-occurrence in materials) are aggregated from all theoretically 

and experimentally studied materials; 3) unsupervised learning of atomic representation from data collected in 2); 4) 

supervised classification of phase fields by maximum achievable values of the properties; the predicted probability of 

entering the high-value class is used as a merit probability; 5) unsupervised ranking of the phase fields by synthetic 

uncertainty; metrics derived in 4) and 5) result in a map of the phase fields’ likelihood to form stable compounds with 

desired properties. The model is trained end-to-end so the losses of learning the atomic representation (3) and 

classification (4) are minimised simultaneously. 

 

PhaseSelect consists of several connected modules (depicted as the sharp-corner rectangles in Figure 

1) that pass information from the databases, while transforming the data (different data representations 

are depicted as the rounded-corner windows in Figure 1) and are trained simultaneously, while 

minimising the compound loss. We describe the data processing and the mechanisms of these modules 

in the following sections. 



Aggregation of compositions into phase fields 

For the classification and accessibility ranking of the phase fields (See bottom stream in Figure 1) we 

process the materials databases, where experimentally verified values of the target property are 

reported for a large number of compositions1,3. Materials built from the same constituent elements are 

aggregated into one phase field, with the associated property value corresponding to the maximum 

reported property value among all reported materials within this phase field. For example, in the 

SuperCon database, there are many compositions reported in Y-Ba-Cu-O phase field with a high 

critical temperature, including YBa2Cu3O7 (Tc = 93 K) and Y3Ba5Cu8O18 (Tc = 100.1 K) – the highest 

reported temperature in Y-Ba-Cu-O. Hence, Y-Ba-Cu-O enters the data for training our classification 

model for superconductors with 100.1 K as the corresponding maximum value. Aggregation of 

materials with reported superconducting transition temperature, Curie temperature and energy band 

gap forms three datasets with 4826, 4753 and 40452 phase fields respectively. Division of the datasets 

into two classes by the threshold values for the corresponding properties – 10 K, 300 K and 4.5 eV for 

superconducting transition temperature, Curie temperature and energy band gap, respectively – forms 

reasonably balanced data classes with 3311:1515, 2726:2027 and 20910:19690 phase fields, 

respectively, with data distributions illustrated in Figure 2a-c. Furthermore, the remaining imbalances 

are taken into account by class-weighting in the corresponding classification models17. The rapidly 

decreasing number of explored phase fields with reported superconducting properties at temperatures 

above 10 K (See Figure 2b) proves development of reliable models for classification with respect to 

temperatures higher than 10 K challenging (See Supplementary Fig. 1)8. Nevertheless, despite the 

broad aggregation of high-temperature superconducting materials into a single class (with Tc > 10 K), 

accurate classification of unexplored materials into the two classes divided by the chosen threshold 

value would allow fast screening for novel high-temperature superconductors. Similarly, a binary 

classification enables fast screening of novel materials for applications as high-temperature magnetic 

materials and targetted band gap materials. 



Across the three property datasets, the phase fields are formed from up to 12 constituent elements, with 

the majority of data represented by ternary, quaternary and quinary phase fields (See Figure 2d). The 

abundance of chemical elements among the explored materials in the databases is illustrated in Figure 

2e. All datasets have similar trends with peaks for materials containing, e.g., carbon, oxygen, sulphur, 

with an especially pronounced match between elemental distribution in datasets with materials for 

superconducting and magnetic applications (See inset in Figure 2e). The data distributions across 

different chemical elements observed in Figure 2e, reflect the biases in the input data: e.g., magnetism 

is associated with Fe predominantly, while superconductivity with Cu, etc.  

 

Figure 2. Aggregation of compositions into phase fields. a Distribution of phase fields of magnetic materials in 

MPDS1 with respect to the maximum associated Curie temperature TC. The materials’ classes “low-temperature” and 

“high-temperature” magnets are divided at TC = 300 K as 2726:2027 phase fields. b Distribution of phase fields of 

superconducting materials (joined datasets from SuperCon3 and MPDS) with respect to the maximum associated 

superconducting transition temperature Tc. The materials’ classes “low-temperature” and “high-temperature” 

superconductors are divided around Tc = 10 K as 3311:1515 phase fields. c Distribution of phase fields of materials 

with reported value of energy gap in MPDS with respect to the maximum associated band gap. The materials’ classes 

“small-gap” and “large-gap” are divided around E = 4.5 eV as 20910:19690 phase fields. d Distributions of materials 

with respect to the number of constituent elements are similar for all datasets: the majority of the reported 



compositions belong to ternary, quaternary and quinary phase fields. e Content of individual chemical elements 

among the explored materials in the databases; the total numbers of phase fields in the corresponding datasets are 

given in the legend. All datasets have similar trends with pronounced peaks for materials containing, e.g. carbon, 

oxygen, silicon. The inset illustrates overlap in trends for elemental distribution in explored materials for 

superconducting and magnetic applications. 

Description of atoms by means of their compositional environments, which are shared by chemically 

similar elements, should mitigate the biases in the data accumulated over time due to the focused 

studies of particular families of materials. 

Atomic representation and phase field representation 

To learn atomic characteristics from the compositional environments – explored chemical 

compositions, where the atoms are found to form the variety of stable and metastable materials – we 

build a module for atomic representation based on a large materials database that includes both 

experimental and theoretical materials14,15. For each chemical element one can build a one-hot 

encoding vector from its instances in the database. The database is expanded into a table similarly to 

the approach proposed in reference15 (depicted as a matrix of coexisting elements and compositional 

environments in the materials in Figure 1, 2)). The rows of the table correspond to the chemical 

elements, the columns are the remainders of the compositional formulas of the reported compounds, 

which we define here as compositional environments. For example, from stability of Li3PO4 we can 

learn about its constituent elements, Li, P, O and their compositional environments, “()3PO4”, 

“()Li3O4” and “()4Li3P” respectively. In this notation, empty parentheses denote an element that by 

combining with the compositional environment forms a composition. Similarly, all alkali metals form 

the tri-“element” phosphates with “()3PO4”, while trivalent elements do not, as they form the one-

“element” phosphates with “()PO4” instead. In the proposed matrix representation15, the intersections 

of the rows for elements with the columns for compositional environments are filled with ones if the 

resulting composition is reported in 14 and with zeros otherwise. The resulting sparse matrix represents 

coexistence of the chemical elements and compositional environments in the materials. We then 



employ a shallow autoencoder neural network – an unsupervised ML technique – to reduce the 

dimensionality of this matrix, and to condense the information into the rich latent space of 

dimensionality k, in which similar atomic vectors (of length k) are grouped close to each other. We 

study the effects of the size of dimensionality k of thus derived atomic vectors on the classification 

accuracy to select the most efficient atomic description (Supplementary Fig. 1). We use the vectors of 

the most efficient latent space as atomic representations to build up the phase fields descriptions 

(Figure 3a).  

Figure 3. Atomic representations and their contributions to the phase fields’ properties. a Atomic representation 

vectors in k = 20 dimensions for the 1st, 2nd, 16th and 17th atomic groups of the periodic table. The values 

(corresponding colour) illustrate differences and correlations between derived atomic features (vectors’ components) 

in the neighbouring atoms and groups. The full stack of atomic vectors for the whole periodic table is extracted by 

PhaseSelect’s atomic autoencoder shallow neural network, from the sparse matrix of chemical elements and 

compositional environments built for the Materials Project database14,15;  for an example unexplored quaternary phase 

field, O-Ba-Ca-Mg, the corresponding contributions of the atomic elements to the likelihood of high-temperature 

superconductivity of this combination are calculated as the attention scores16 (Supplementary Fig. 2-6).  b Attention 



scores are trained during the fitting of the model for phase fields classification by the target property. Here, attention 

to the atomic contributions to superconducting behaviour is visualised: combinations with e.g., Fe, Nb, Cu, Ni, Mo 

receive high attention in prediction of high-temperature superconductivity. 

 

To emphasise the differences in the contributions of individual atoms to the phase field’s properties, 

we employ the multi-head local attention16 that calculates the attention scores – weights for the 

constituent atomic vectors contributing to the accuracy of the phase field classification for the target 

property. The attention scores are derived during the training and highlight the intermediate and 

interpretable results of the ML reasoning process well-aligned with the human understanding of 

chemistry of materials (See Figure 3b, Supplementary Fig. 2-6). When building a phase field 

representation for the downstream tasks of property classification and synthetic accessibility ranking, 

the phase field’s atomic vectors are multiplied by their attention scores and then concatenated to form 

a (n ´ k)-dimensional vector, where n is a number of constituent elements in a phase field, k is a 

chosen length of the atomic vector.  

Classification by properties’ values and ranking by synthetic accessibility 

Classification in PhaseSelect is performed by a deep neural network (NN) that assigns the phase fields 

representation vectors to the corresponding classes of the properties’ values. The phase fields in each 

dataset are divided into two classes (Figure 2a-c) that are labelled with ‘1’ for the phase fields with 

associated property values above the chosen thresholds, and with ‘0’ for the remaining phase fields. 

Three different classification models, one for each dataset - for superconducting materials and 

magnetic materials, and materials with a reported value of energy gap - are trained end-to-end with the 

architecture described in Fig. 1. Because the atomic characteristic and their relation to the materials 

properties are learnt from the reported chemistry, where the reports of the negatives (materials not 

possessing certain properties) are absent, the classification models are not trained to predict 

manifestation of target properties or their absence. Instead, for the phase fields that may contain 



compositions with target properties, the classification models predict the probability of reaching high 

values of these properties within the phase fields. For example, in the training set for the materials with 

reported values of energy gap, none were reported with zero value (Fig. 2c). To verify the predictive 

power of the model trained on such data for the energy band gap classification, we have tested all 9816 

intermetallic ternaries that do not have energy band gap values reported in MPDS (Supplementary 

discussion). 99.96% of the intermetallic ternary phase fields were classified as low energy gap 

materials (<4.5 eV) demonstrating the model’s ability to extrapolate chemical patterns of atomic 

combinations – properties relationships, in absence of the zero-gap examples. On the other hand, this 

demonstrates vast generalisation of a model for the data regions where information is lacking.  

The validation of the trained models is performed in the 5-fold cross-validation, where 5 models are 

trained on different 80% portions of the available data, with the remaining 20% used for testing. The 

average accuracy across the validation sets is 80.4, 86.2, 75.6 % for classification with respect to 

superconducting transition temperature, Curie temperature, and energy gap respectively. The 

validation datasets are used to tune the parameters of the NN models, such as dropout18, learning rate, 

activisation19, early stopping17 and stochastic optimisation algorithm20. For the predictive models, we 

adopt all available data in the three datasets for training. Noting the stochastic nature of the machine 

learning NN, we employ averaging of the predicted probabilities over the ensemble of 300 models, this 

minimises the differences in training processes and derived models’ parameters (Supplementary Fig. 

10). The ensemble with the minimised variance in predictions enables assessment of the materials’ 

properties not only by the assigned binary classes, that are threshold-dependent (Figure 4d, 

Supplementary Fig. 9, Supplementary Table 1), but also by the continuous values of probabilities as a 

measure of likelihood of achieving a desired property value. The latter helps to prioritise the materials 

for synthesis and further investigation. 

In parallel to the classification module, a deep AutoEncoder neural network learns patterns of chemical 

accessibility from the experimentally verified materials data. Similarly to the procedure in 12, an 



unsupervised de-noising AutoEncoder learns the patterns of similarity in data while reducing 

dimensionality of the phase fields representations. The training consists of two parts: encoding into a 

reduced dimensionality latent space, where phase fields representations are reorganised, so the similar 

phase fields are aligned, and decoding from the latent representation into the reconstructed images of 

original vectors. This reorganisation via the AutoEncoder enables ranking of the phase fields by their 

reconstruction errors, that reflect differences of individual entries from general patterns in data. Hence, 

elemental combinations that are unlikely to manifest conventional bonding chemistry nor to form 

synthetically accessible compositions exhibit high reconstruction errors12. We also find that predicted 

reconstruction errors converge to their average values when an ensemble of models is trained (See 

Supplementary Fig. 10b). 



Figure 4. Probability of high-values properties and synthetic accessibility for unexplored ternary phase fields. 

Materials reported in ICSD2, for which property values are not in SuperCon-v20183,8 or MPDS1 are circled. a 

Unexplored ternary phase fields that are classified to exhibit superconductivity at T > 10 K with more than 70% 

probability and that have high likelihood of forming stable compounds with synthetic uncertainty (accessibility 

ranking)  < 0.2, demonstrate trends in constituent elements: most of the top 50 phase fields are predicted to contain 

Mg, Fe, Nb and N. b Unexplored ternary phase fields that are classified to exhibit an energy band gap > 4.5 eV with 

more than 75% probability and that have high likelihood of forming stable compounds (with synthetic accessibility 

score < 0.1) demonstrate trends in distribution by constituent elements: different combinations of Hg-, F-, Bi-, Hf- 

and Pb-based phase fields have the highest probabilities. c Unexplored ternary phase fields that are classified to 



exhibit magnetic properties at Curie T > 300 K with more than 71% probability and that have high likelihood of 

forming stable compounds (with synthetic accessibility score < 0.1) demonstrate trends in constituent elements: all 

top-ranked phase fields are Fe-based, with many phase fields containing Co and Y. d Receiver operating 

characteristics (ROC) of the classification models demonstrate high sensitivity and specificity of classifications for 

the range of thresholds of probabilities. The corresponding areas under the curves (AUC) demonstrate overall 

excellent performance of the model for magnetic materials, and good performance for both superconducting 

transition temperature and energy gap classifications. The inset illustrates close match of the distributions of 105995 

ternary phase fields with respect to their synthetic accessibility scores for all three datasets. 

 

By applying the trained ensembles of models to 105995 ternary phase fields (Supplementary 

discussion) and focusing on the unexplored materials that do not have any related compositions with 

reported properties in MPDS or SuperCon-v2018, we classify new elemental combinations with 

respect to the threshold values of superconducting transition temperature, Curie temperature and 

energy band gap and orthogonally rank candidate phase fields by their synthetic accessibility - degree 

of similarity with experimentally synthesized materials that are reported to exhibit these properties. We 

also highlight the phase fields, where compositions were synthesized and reported in ICSD, but for 

which there are no information about the properties discussed here in Supercon or MPDS, hence these 

phases fields did not enter the data for training. The large number of such phase fields among the top-

performing candidates with respect to the measure of synthetic accessibility provides verification of 

the developed models and demonstrates that highly ranked candidates are likely to produce 

thermodynamically stable materials observed experimentally (See Figure 4a-c). We report the full list 

of likely candidates for novel superconducting materials among the phase fields that have been 

reported to form stable compounds in ICSD, but were not investigated from the perspectives of 

superconducting applications in 21 and its excerpt in Supplementary Table 7. 

The top-performing phase fields according to both probability of exhibiting high values of properties 

and synthetic accessibility rank demonstrate trends produced by the constituent chemical elements: 



Mg, Fe, Nb are predicted to constitute most of the top 50 phase fields that would yield stable 

compositions with superconducting transition temperatures above 10 K; similarly the top 50 magnetic 

ternary materials are Fe-based; while different combinations of Bi, Hf, Hg, Pb and F are predicted as 

most likely phase fields to contain stable compounds with energy gap of more than 4.5 eV, what can 

be expected from the simple bonding considerations as the majority of the latter are fluorides. 

While these predictions may align well with the human experts’ understanding of chemistry, hence 

emphasizing the models’ ability to infer complex atomic characteristics and phase fields-properties 

relationship from historical data, the models can also be used to identify unconventional and rare 

prospective elemental combinations as well as to rank the attractive candidate materials for 

experimental investigations. 

 

Conclusions 

Selection of elements is the cornerstone of the materials design. Quantitative assessment of the 

potential properties of the prospective materials at the level of their constituent elements mitigates the 

high risk of the consequential decisions in elaborate research of materials discovery. Classification of 

the materials for functional applications agglomerated into phase fields is also a route to the several 

orders of magnitude reduction of the combinatorial space. The end-to-end integrated architecture of 

PhaseSelect has demonstrated this capability of rendering the materials’ phase fields in two orthogonal 

and equally challenging dimensions: merit probability and synthetic uncertainty. By employing 

PhaseSelect at the stage of conceptualization of the materials synthesis, human researchers can make 

use of numerical guidance in the selection of chemical elements that are most likely to produce new 

stable compounds with high probability of superior functional properties, combining this statistically 

derived quantitative information with the expert knowledge and understanding. The attention 

mechanism of PhaseSelect presents a route to interpretation of the machine learning for materials 

science and allows extrapolation of the knowledge of materials databases to the large number of 



unexplored phase fields. These include multi-elemental materials, with prospective performance that 

could not be computationally assessed at scale with the methods developed to date. 
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Atomic features encoding 

For unsupervised learning of atomic features from the materials database1, we employ an approach 

similar to reference2, in which we substitute single value decomposition with a shallow autoencoder. A 

shallow autoencoder is a 3-layer neural network, in which the input and output layers have a large 

number of neurons that corresponds to the size of the input vectors – sparse one-hot encoding 



representations of atoms in the database. A single latent layer in between the input and output is a 

bottleneck aiming to extract the essential patterns in the data, while decreasing its dimensionality and 

filtering out the less representative and noisy information. One can further use thus trained 

representations as the atomic features. To maximise the quality and the descriptive power of the 

extracted atomic features, we study the effect of the size of the latent layer on the metrics of the 

downstream classifications. In this work, we train the shallow autoencoder simultaneously with the 

classification neural network in the end-to-end fashion. When trained separately for classification of 

superconducting, magnetic materials, and materials with a reported band gap, the end-to-end models 

based on the different sizes of atomic vectors have the metrics depicted in Supplementary Figure 1 a, 

b, c respectively. Although the best performance for classification of different properties is achieved at 

different numbers of atomic features in each of the three cases, there is similar trend for these 

dependencies. This trend suggests that a small number (< 40) of features cannot fully capture the 

variation in data, and a large set of features (> 80) contains too much noise, hence there is an optimal 

number of atomic descriptors for each model. 

 

Supplementary Figure 1. Changes in classification metrics for models with different number of atomic features. 
a Accuracy and F1 score for classification of materials with respect to the maximum of superconducting transition 
temperature threshold 10 K: the best performing model has 80 atomic features; b Accuracy and F1 score for 
classification of materials with respect to the maximum of Curie transition temperature threshold 300 K: the best 
performing model has 50 atomic features; c Accuracy and F1 score for classification of materials with respect to the 
maximum of energy band gap threshold 4.5 eV: the best performing model has 60 atomic features. 
 

 

Attention to atomic contributions maximizing the properties 



In the end-to-end classification models, we employ an attention mechanism3 to emphasize those 

atomic contributions that minimize the combined loss, and hence maximize classification metrics.  

To incorporate information about atomic bonding interplay from all available data, the variance in size 

of the phase fields is alleviated by zero-padding in the phase fields representation module that further 

allows extrapolation of the patterns derived from the explored materials onto the candidate phase fields 

of arbitrary number of elements. We extract the attention scores obtained during the training of the 

models that illustrate atomic contributions to the properties manifested by the phase fields 

(Supplementary Figures 2-6). For visualisation, the attention scores are averaged across the attention 

heads and across all instances of the atomic pairs in the corresponding datasets. In Supplementary 

Figure 11, distributions of the averaged attention scores are plotted for the atoms that contribute the 

most to identify phase fields that manifest particular properties. 

 

Supplementary Figure 2. Attention to atomic pairs that maximize accuracy of classification of high-temperature 
superconducting materials. Attention scores vary from 0 to 1. By focusing on the atomic pairs with the highest scores, 
when describing the phase field, accuracy of classification of these phase fields is maximized. This suggests the atomic 
pairs with the most prominent contributions allowing high-temperature superconductivity, e.g. Nb-Al, Nb-Ni, Cu-O 
and Fe-As. 



 

Supplementary Figure 3. Attention to atomic pairs that maximize the accuracy of classification of high-
temperature magnetic materials. Attention scores vary from 0 to 1. By focusing on the atomic pairs with the highest 
scores, when describing the phase field, accuracy of classification of these phase fields is maximized. This suggests the 
atomic pairs with the most prominent contributions allowing high-temperature magnetic behaviour, with Mn, Fe and 
Co included in the majority of such pairs. 

 

Supplementary Figure 4. Attention to atomic pairs that maximize accuracy of classification of materials with 
energy gap <4.5 eV. Attention scores vary from 0 to 1. By focusing on the atomic pairs with the highest scores, when 
describing the phase field, accuracy of classification of these phase fields is maximized. The majority of the atoms in 
the phase fields have 0.3-0.5 attention score, and contribute equally to identification of low energy gaps. 



 
Supplementary Figure 5. Attention to atomic pairs that maximize accuracy of classification of materials with 
energy gap > 4.5 eV. Attention scores vary from 0 to 1. By focusing on the atomic pairs with the highest scores, when 
describing the phase field, accuracy of classification of these phase fields is maximized. This suggests atoms and atomic 
pairs with the most prominent contributions to the materials with energy gap > 4.5 eV, e.g. I, Br, Se, Cl, Si. 
 

 

Supplementary Figure 6. Distribution of attention scores for the most contributing atoms to the functional 

materials a High-temperature superconducting materials; b high-temperature magnetic materials. 

The atomic contributions weights are also used for building a model for an arbitrary number of elements 

in a phase field. For this, we create all phase fields representations vectors of an equal size l, 



corresponding to the largest phase field in a database, and pad the smaller phase field vectors, of size s, 

with l - s zeros, that will have zero attention weights, but will further enable formation of a neural 

network layer for processing of all input data in a single model. The described construction of a phase 

field representation with local attention weights also makes the model insensitive to the order in which 

atomic elements are listed in a phase field, without the need to take into account all possible permutation 

of the elements. 
 

Models’ training and validation 

To validate the models’ performance we employ 5-fold cross-validation for each dataset: phase fields 

with reported values of superconducting transition temperature, phase fields with reported values of 

Curie transition temperature, phase fields with reported values of energy gap. In 5-fold cross-

validation, the data is divided into the training and test sets (80% and 20% of data respectively) in 5 

different ways so 5 different models are examined with respect to the ability of the models’ chosen 

architecture to generalise and extrapolate the information learnt from 5 different subsets of data onto 

the unseen areas. The accuracy and F1 scores of the classification models are presented in 

Supplementary Table 1. 

Supplementary Table 1. Accuracy and F1 scores for classification models in 5-fold cross-validation  

 Superconducting Tc=10K Magnetic Tc=300K Energy gap 4.5 eV 

test data subset Accuracy,% F1 score,% Accuracy,% F1 score,% Accuracy,% F1 score,% 

0-20% 80.9 73.3 86.8 84.5 75.5 75.6 

21-40% 83.6 77.1 86.7 85.7 75.2 74.8 

41-60% 78.7 71.7 85.9 82.1 75.9 75.6 

61-80% 79.7 71.3 85.5 84.1 76.0 75.1 

81-100% 79.2 71.0 86.0 84.4 75.7 75.5 

Average: 80.4 72.9 86.2 84.2 75.6 75.3 

 

The performance metrics from the 5 models for each dataset are then averaged to describe a general 

ability of the models’ architecture to learn from the available data. During the training of the end-to-

end classification models, the weights and biases of the autoencoder and classifier neural networks are 

trained simultaneously, while the corresponding losses – reconstruction error and binary cross-entropy, 



respectively – are minimized as a combined loss during back propagation with Adam optimization4. 

The typical training of the classification models for the superconducting, magnetic and energy band 

gap datasets are converged under 50 epochs as illustrated in the Supplementary Figure 7. 

 
Supplementary Figure 7. Training progress of the end-to-end classification models. a Classification of the 

superconducting materials, training on 4826 phase fields; b Classification of the magnetic materials, training on 4753 

phase fields; c Classification of the materials’ energy band gap, training on 40452 phase fields. 

 

For validation of the unsupervised models for the phase fields ranking with respect to synthetic 

accessibility, we employ an approach developed in 5. We perform 5-fold cross validation, in which the 

validation error is defined as the percentage of entries in the test set that evaluated with normalized 

reconstruction errors in the 20% of the maximum Supplementary Table 2. Additionally, we compare 

the predicted reconstruction errors for the validation sets with the ground truth reconstruction errors 

obtained for the same entries in unsupervised training, when the entries are included in the training 

data (Supplementary Fig. 8) and calculate the mutual information score adjusted against chance6 

(Supplementary Table 2). The typical training process of the ranking autoencoder neural network for 

different datasets are depicted in Supplementary Fig. 9. 

Supplementary Table 2. Accuracy and Adjusted Mutual Information Score (AMIS) for ranking 

autoencoder models in 5-fold cross-validation  

 Superconducting materials Magnetic materials Energy gap materials 

test data subset Accuracy,% AMIS Accuracy,% AMIS Accuracy,% AMIS 

0-20% 96.1 0.69 94.7 0.64 97.2 0.77 



21-40% 97.4 0.76 95.3 0.66 98.6 0.78 

41-60% 97.7 0.68 93.5 0.66 97.7 0.75 

61-80% 95.1 0.79 94.9 0.64 98.7 0.75 

81-100% 96.6 0.72 93.9 0.68 97.8 0.81 

Average: 96.6 0.73 94.5 0.66 98.0 0.77 

 

 

Supplementary Figure 8. Distribution of reconstructions errors (RE) for the phase fields. RE for the same phase 

fields are calculated in two approaches: 1) in unsupervised learning, as a part of a training set – used as ground truth 

RE for AMIS calculation in Supplementary Table 2; 2) predicted by the model trained on 80% of the remaining data – 

as a validation set. a Superconducting materials; b magnetic materials; c materials with reported energy gap. 

 

Supplementary Figure 9. Training progress of the ranking autoencoder models. a ranking of the superconducting 

materials, training on 4826 phase fields; b ranking of the magnetic materials, training on 4753 phase fields; c ranking 

of the materials with the reported energy band gap, training on 40452 phase fields. 

To take into account statistical variance in both supervised and unsupervised results from the neural 

networks trained at different instances, we average the results across the ensemble of 250 neural 

networks. Convergence of deviations of results in terms of the mean square errors from the running 



average values is illustrated in Supplementary Figure 10. For all datasets, for both supervised classifying 

neural network and ranking autoencoders, the average values converge when more than 200 models are 

considered. 

 

Supplementary Figure 10. Convergence of the mean square errors (MSE) of the average predicted scores with 

the number of models in the ensemble. a Probabilities of phase fields belonging to a binary class are averaged over 

an ensemble of models. MSE of the average scores decrease below 0.001 for ensembles larger than 200 models for all 

datasets. b MSE of the average reconstruction errors, used as synthetic accessibility scores of phase fields decrease 

below 0.005 for ensembles larger than 200 models. 

 

The ensembles of the trained models for each dataset are then used to classify the phase fields with 

respect to the corresponding properties. For randomly selected 20% of the phase fields from each dataset, 

the classification predictions are illustrated with the confusion matrices in Supplementary Figure 11. 

 



Supplementary Figure 11. Confusion matrices for binary classification models with threshold probability 0.5. a 

Superconducting materials classification of 20% of the collected data from MPDS7 and SuperCon8 with respect to 

transition temperature 10 K; b magnetic materials classification of 20% of the collected data from MPDS, with respect 

to Curie temperature 300 K; c classification materials with reported values of energy band gap with respect to energy 

gap value 4.5 eV, test set is 20% of randomly selected data collected from MPDS. 

 

The corresponding average accuracy, F1 score and the Matthews’ correlation coefficients (MCC) are 

presented for the three models in Supplementary Table 3. 

Supplementary Table 3. Average binary classifications metrics of the maximum values of exhibited 

properties in the phase field.  

Metrics Superconducting Tc >10 K Magnetic Tc > 300 K Energy gap > 4.5 eV 

Accuracy, % 80.4 86.2 75.6 

F1 score, % 72.9 84.2 75.3 

MCC 0.608 0.711 0.523 

 

Combination of probabilities of high-values properties (merit probability) and synthetic 

uncertainties 

We combine the outcomes of the classifying neural network and autoencoder to rank unexplored 

ternary combinations of elements. For the unexplored ternary combinations we consider all possible 

combinations of 87 atoms, that exclude rare and toxic elements and have sufficient data in Materials 

Project to be reasonably well learnt with the proposed unsupervised approach described above. The 

total number of ternary combinations, therefore, is 87 ´ 86 ´ 85 / 3! = 105995, among them 12297 

have a reported value of energy band gap in MPDS (and in a peer-reviewed literature), 1953 are 

reported to have magnetic properties and a corresponding Curie temperature in MPDS, and 1716 are 

reported to have superconducting properties and a corresponding critical temperature in a combined 

data from SuperCon and MPDS.   

The best ranking combinations, illustrated in Figure 4 in the main text are presented in the 

Supplementary Tables 4-6. Among the considered phase field there are entries that have been 



synthesized and reported in ICSD-v20219, but do not have records in MPDS and SuperCon concerning 

the properties studied here. These entries did not enter the training datasets and are highlighted in bold 

in the Supplementary Tables 4-6. These entries have been predicted to have low synthetic uncertainty, 

that provides experimental verification of the proposed method for ML assessment of synthetic 

accessibility. The full list of the predicted scores for the yet experimentally unexplored ternary phase 

fields can be found along with the PhaseSelect software10. 

Supplementary Table 4. Predicted probabilities of the best unexplored ternary phase fields to manifest 

superconducting Tc > 10 K and their synthetic uncertainty scores. The phase fields, in which compounds 

are synthesized9 but were not included into the training data7,8 are highlighted in bold. 

Phase fields Probability Tc > 10 K Synthetic uncertainty 

N Fe Nb 0.7433 0.1643 

Mg Fe As 0.7295 0.1557 

Mg Fe Nb 0.7278 0.1016 

Fe As Nb 0.7261 0.0903 

N Cl Nb 0.7238 0.1781 

Fe Se Nb 0.7212 0.124 

N Mg Zr 0.72 0.1776 

N K Nb 0.7194 0.1798 

Mg V Fe 0.7189 0.1589 

N Na Nb 0.7187 0.1774 

Ca Fe As 0.7162 0.1477 

V Fe As 0.7154 0.1299 

Fe Ga As 0.7126 0.1709 

N Ca Nb 0.7111 0.1665 

 

Supplementary Table 5. Predicted probabilities of the best unexplored ternary phase fields to manifest 

Curie Tc > 300 K and their synthetic uncertainty scores. The phase fields, in which compounds are 

synthesized9 but were not included into the training data7 are highlighted in bold. 



Phase fields Probability Tc > 300 K Synthetic uncertainty 

Ti Fe Ta 0.7181 0.0658 

Fe Mo Hf 0.717 0.0685 

Ti Fe Hf 0.716 0.0603 

Fe Y Nb 0.7159 0.0681 

Fe Y Hf 0.7154 0.0557 

V Fe Ta 0.7136 0.0631 

Cr Fe Ta 0.7131 0.057 

Ti Fe Hg 0.7123 0.0642 

Cr Fe Zr 0.7123 0.0619 

Fe Hf Ta 0.7117 0.0467 

Fe Zr Hf 0.7113 0.0426 

Fe Nb Ta 0.7111 0.0522 

Fe Y Hg 0.7106 0.0598 

V Fe Nb 0.7106 0.0699 

V Fe Hf 0.7101 0.0575 

 

Supplementary Table 6. Predicted probabilities of the best unexplored ternary phase fields to manifest 

energy band gap > 4.5 eV and their synthetic uncertainty scores. The phase fields, in which compounds are 

synthesized9 but were not included into the training data7 are highlighted in bold. 

Phase fields Probability Eg > 4.5 eV Synthetic uncertainty 

Cs F Pb 0.7613 0.8852 

F Hg Bi 0.7603 0.0897 

F Hg Pb 0.759 0.0811 

F Te Hf 0.7575 0.0975 

F Y Bi 0.7575 0.0984 

F Hf Bi 0.7574 0.0906 

F As Hf 0.7572 0.0984 



Cl I Hf 0.7561 0.0999 

F Cd Bi 0.7561 0.0882 

F Au Pb 0.7556 0.0932 

F Hf Pb 0.7556 0.082 

F Cd Pb 0.755 0.0796 

F V Bi 0.7531 0.0904 

 

Prediction of superconducting behaviour for reported phase fields in ICSD-v2021 

We apply PhaseSelect ensembles of classification models to identify likely candidates for novel 

superconducting materials among the phase fields that have been reported to form stable compounds in 

ICSD-v2021, but were not investigated from the perspectives of superconducting applications and 

reported in MPDS and SuperCon (hence were not included into the training dataset). The excerpt of 

these predictions is presented in Supplementary Table 7; classification of all binary, ternary and 

quaternary phase field in ICSD with respect to the maximum accessible value of superconducting critical 

temperature is uploaded in10. 

 

Supplementary Table 7. Predicted probabilities of superconducting behaviour at Tc > 10 K for the best 

ternary phase fields reported to form stable structures in ICSD. (Excerpt for p > 0.7. The full list is in10). 

Phase fields Probability Tc > 10 K Phase fields Probability Tc > 10 K 

Fe N Nb 0.7466 Mo N Nb 0.7142 

Fe Li N 0.7391 C Li N 0.7131 

Fe Ga N 0.7383 As Fe Nb 0.7113 

C Fe N 0.7352 Al N Nb 0.7111 

Fe Mo N 0.7343 C Ga N 0.7102 

Ba Fe N 0.733 Ga N V 0.7101 

Fe N Se 0.7324 N Nb V 0.7096 

Ca Fe N 0.7322 Ca Fe O 0.709 

C Mg N 0.7305 C N V 0.709 

Fe Mg O 0.7302 Ba Fe O 0.7087 

Li Mg N 0.7291 B Mg N 0.7077 

Ga N Nb 0.7262 Fe Nb Se 0.7075 

Ga Mg N 0.7261 C K N 0.7075 

C N Nb 0.726 Ca Mg N 0.7065 



Fe N Zr 0.725 As Ca Fe 0.7058 

Mg Mo N 0.7229 C Cl N 0.7056 

Fe Ga Nb 0.7227 N Na Nb 0.7056 

Fe N Sr 0.7226 As Fe V 0.7055 

Cl Mg N 0.7218 N Nb Zr 0.7054 

Cu Fe O 0.7197 Ba N Nb 0.7037 

Fe N Sn 0.7194 As Fe Ga 0.7034 

Fe Mn N 0.7192 Fe N Pt 0.7023 

Fe N O 0.7186 C N Na 0.702 

As Fe O 0.7175 Ca N Nb 0.7019 

Fe N Y 0.7173 As Ba Fe 0.7017 

C Mo N 0.717 C Ca N 0.7014 

Fe Ga V 0.7157 As Fe K 0.7007 

Li N Nb 0.7143   

 

 

Tools and Libraries 

PhaseSelect10 has been built using Python 3.7.4, Tensorflow 2.4.1, Scikit-learn 0.24.0, Numpy 0.19.2, 

Pandas 1.1.4. The figures in the main text and Supplementary figures are created using Matplotlib 

3.3.4. 
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