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bounds analysis (PBA) is a collection of mathematical methods generalising interval analysis and
A can be utilised for uncertainty quantification for both aleatory and epistemic uncertainty acr
entific fields. PBA is most useful when information about variables is only partially known and c
uiring untenable assumptions to be made about parameter values, distribution shapes or dependen
his paper introduces a PBA library for the Python programming language.

ounds Analysis, Probability Boxes, P-boxes, Intervals, Uncertainty Quantification
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uction

es of uncertainty, aleatory and epistemic, appear in the numerical calculations essential to scien
leatory uncertainty arises from the natural variability in dynamical environments and material

nufacturing processes or inconsistencies in the realisation of systems. Aleatory uncertainty cannot
l effort. Epistemic uncertainty is caused by measurement imperfections or a lack of understanding
hysics or biology of a system. This could be due to not knowing the full specification of a system
gineering design or simplifying the mathematics of a simulation to save computational resources.
ity bounds analysis (PBA) is a tool that can be used to compute with both types of uncertaint
ten untenable assumptions to be made about the parameters involved in calculations and any
s between them. Probability bounds analysis has many applications across diverse disciplines ra
gineering [23] to conservation biology [12]. The Wikipedia page lists many applications to variou
It is particularly popular when undertaking risk or reliability analyses when data is not perfe

BA objects and methods can also be used within machine learning techniques [15, 25, 26].
aper, we discuss the fundamental components of PBA, intervals and p-boxes, and how calcu
ith them within PBA for Python. We make use of SciPy [29], NumPy [16] and Matplotlib [18]
, display and perform calculations with p-boxes and intervals within PBA.

bility Bounds Analysis

e two main objects used for PBA, intervals and probability boxes (p-boxes). An interval is a va
known even though it may be fixed and unchanging, or perhaps an uncertain number represen
unknown distribution prescribed only by a specified range [4, 11, 17, 19, 20]. Intervals allow fo
to be propagated through calculations.
is a generalisation of intervals and probability distributions in a single structure that allows the p
temic and aleatory uncertainty through calculations in a rigorous way. A p-box can be considered

probability distribution [8, 9, 10]. Within PBA it is convenient to think of a probability distri
of a p-box with precise inputs. Calculations performed with p-boxes yield results that are guarantee
distributions of the output variable if the input p-boxes were also sure to enclose their respective di
may be best-possible if only valid distributions are enclosed within the p-box, although the output
distributions that could not arise under any dependence between the two input distributions. Th
to be used for automatic verification of computer codes [10, 21].

als
own real number x can be represented by an interval [x, x], where x ≤ x ≤ x. This implies that
n be any number within x ≤ x ≤ x. Intervals do not make any futher assumptions about which va
e more or less likely than other values.
.wikipedia.org/wiki/Applications_of_p-boxes_and_probability_bounds_analysis
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Within the context of probability bounds analysis, it is useful to consider intervals as the set of all possible distributions
that lie with

In PBA
[
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in the endpoints of the interval, this definition is discussed further in Section 2.3.
intervals can be defined by setting the left and right edges of the interval. If a = [a, a] and b =
en the following arithmetic operations can currently be performed in PBA:

ion
a + b = [a + b, a + b]

action
a − b = [a − b, a − b]

plication
a ∗ b =

[
min

(
a ∗ b, a ∗ b, a ∗ b, a ∗ b

)
, max

(
a ∗ b, a ∗ b, a ∗ b, a ∗ b

)]

ion
a/b =

[
min

(
a/b, a/b, a/b, a/b

)
, max

(
a/b, a/b, a/b, a/b

)]

a/b returns a division-by-zero error. If there is dependence between two intervals then PBA allo
to be included within the calculation. For intervals, perfect and opposite dependence calculations a
ndence between a and b implies that larger values of a correspond to larger values of b. In this s
perations become

a ◦ b =
[
a ◦ b, a ◦ b

]

, −, ∗, /). Whereas, under opposite dependence smaller values of a imply larger values of b, meani
perations become

a ◦ b =
[
a ◦ b, a ◦ b

]
.

val can be propagated through a function producing an interval output, f ([x, x]) =
[
y, y

]
whe

ossible value of f(x) for all x ∈ [x, x] and y is the maximum possible value. This calculation is
unctions. For instance, increasing monotonicity implies that the end points of the input interval
oints of the output interval, i.e.

f([a, a]) = [f(a), f(a)] .

general functions alternative strategies are needed to insure correct calculations.
son operations can be performed on intervals, however, the uncertainty associated with the inter
in the Boolean operations. For example, if a decision relies on some value x being less than 1, whe
x accurately then it is easy to make such a comparison. However, if there is some uncertainty abou
is comparison may not be so easy. The comparison becomes

x < 1 =





1 if x < 1
0 if x ≥ 1
[0, 1] otherwise

1 denoting false and true respectively, and [0,1] being the Boolean equivalent of “I don’t know”. W
no interval. Similarly,

x > 1 =





1 if x > 1
0 if x ≤ 1
[0, 1] otherwise.

s it is often impossible to say whether an interval is equal to a value,

x == 1 =
{

[0, 1] if 1 ∈ x

0 otherwise

rvals can also be compared to each other. For intervals x = [x, x] and y = [y, y], then

x < y =





1 if x < y

0 if x ≥ y

[0, 1] otherwise
3
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x > y =



0 if x ≤ y

1 if x > y

[0, 1] otherwise
that we cannot say whether an uncertain value characterised by an interval is larger or smaller th
terval is entirely greater or less than the other interval. For the equality comparison,

x == y =
{

[0, 1] if x ∪ y ̸= ∅
0 otherwise,

ossible to say that one value is equal to another. We can introduce a new Boolean operator (===
uncertain numbers are equivalent in form,

x === y =
{

1 if x = y and x = y

0 otherwise.

terval can be converted into a true Boolean using operators such as always or sometimes

always ([0, 1]) = 0
sometimes ([0, 1]) = 1

an get

always (x < y) =
{

1 x < y

0 otherwise

sometimes (x < y) =
{

1 x < y

0 otherwise.

bility Distributions and Probability Boxes
bility distribution is a mathematical function that gives the probabilities of occurrence for differe
ariable. Probability boxes (p-boxes) represent interval bounds on probability distributions. The sim
be expressed mathematically as

F(x) = [F (x), F (x)], F (x) ≥ F (x) ∀x ∈ R

(x) is the function that defines the left bound of the p-box and F (x) defines the right bound of th
t and right bounds are each stored as a NumPy array containing the percent point function (th
ive distribution function) for N evenly spaced values between 0 and 1, where N is the number of s
xes can be defined using all the probability distributions that are available through SciPy’s statis
ows a p-box that defined by a normal distribution with µ = [−1, 1] and σ = [0.5, 1.5].

y, precise probability distributions can be defined in PBA by defining a p-box with precise inputs.
probability bounds analysis probability distributions are considered a special case of a p-box with
all methodology that applies to p-boxes can also be applied to probability distributions. Figure

rmal distribution (µ = 0, σ = 1).
tion-free p-boxes can also be generated when the underlying distribution is unknown but paramet
ariance or minimum/maximum bounds are known. Such p-boxes make no assumption about the s
and instead return bounds expressing all possible distributions that are valid given the known in
s can be constructed making use of Chebyshev, Markov and Cantelli inequalities from probability
d by min = −3 ,max = 3, µ = [0, 1] and σ = 1 is shown in Figure 1c.
intervals, standard arithmetic operations can be performed on p-boxes (and therefore probability d
ecial cases of p-boxes). For two p-boxes A(x) = [A(x), A(x)] and B(x) = [B(x), B(x)],

C(x) = A(x) ◦ B(x) = [C(x), C(x)]

C(z) = inf
z=x◦y

[
min

(
A(x) ◦ B(y), 1

)]

[ ( )]

C(z) = sup

z=x◦y
max A(x) ◦ B(y) − 1, 0 (20b)

4
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Figure 1: Probability distributions and probability boxes.

Figure 2: Adding together two p-boxes with different dependencies.

, or

C(z) = 1 + inf
z=x◦y

[
min

(
A(x) ◦ B(y), 0

)]

C(z) = sup
z=x◦y

[
max

(
A(x) ◦ B(y), 0

)]

. If 0 ∈ B then the division returns a error [9, p. 89].
ge of what the dependence is between the two p-boxes can reduce the amount of uncertainty present
x. Figure 2 shows the result of adding a normal p-box A = N([−1, 1], 1) to a uniform p-box B = U([
t dependencies between A and B. When the dependence between A and B is unknown, the operat
19–21 yields the most general bounds guaranteed to enclose the true distribution of A+B which ar

nds. As depicted in Figure 2, the Fréchet bounds enclose all the other dependencies. Perfect (or co
is where there is a perfect positive relationship between the two variables, with the highest possible
Opposite (or countermonotonic) dependence creates a perfect negative relationship between the tw
est possible correlation coefficient. Independence is where there is no dependence between the tw
t be assumed that variables are independent unless this is known because wrongly assuming in
incorrectly reducing the amount of uncertainty and understating tail risks.

arison between objects
ioned within Section 2.1, intervals can be considered as the set of all possible distributions that
ts of the interval. This feature implies that interval objects can be converted into p-boxes by tr
into a box-shaped p-box, such an object is shown in Figure 3a, this property means that arithm
etween p-boxes and intervals by casting the interval as a p-box when performing the calculation.
operations that can be performed on intervals can be performed on p-boxes. This can be done by

ntervals, performing the operation before sorting and recombining the intervals back into a p-box.

BA an interval can be considered as the most basic object, for example, if all we know about variable x is that
between -2 and 2 then all we can say is that x = [−2, 2], this is shown in Figure 3a. If more information about

5
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Figure 3: Comparing different PBA objects as the amount of information about x increases

is known then the uncertainty can be reduced, for instance, if we know that x has mean 0.5 an
then we can instead use a distribution-free p-box to model the uncertainty. Such an object can
inally, if we know that x follows a truncated normal distribution then we can model x as shown in

ons with all of these objects can be performed using PBA, analysts can compute with what they k
assumptions that may be unjustified.

ple

tude of a spacecraft is the direction in which it points. It is often important to control the at
solar panels need to be pointed to the sun, communication antennas need to be pointed at th
truments need to point at the correct target. Attitude can be controlled through reaction wheels
ular momentum to the spacecraft to point it in the desired direction.
ce of how powerful a reaction wheel needs to be in depends on the torque needed to change the att
The torque required depends on the moment of inertia of the spacecraft. The moment of inertia
e spacecraft’s solar panels which impacts the power available to the reaction wheels which impacts

d so on. Therefore whilst there is uncertainty about the design of the spacecraft it is useful to make c
cise numbers. There are also additional uncertainties to consider such as the fact that solar radia

tions of motion that determine the required angular momentum from the reaction wheel to change t
aft within 1 dimension are as follows:

h = τtot × ∆torbit (22)

τtot = τslew + τdist (23)

τslew = 4θslew

∆t2
slew

I (24)

τdist = τg + τsp + τm + τa (25)

= 3µ

2(RE + H)3 |Imax + Imin| sin (2θ) (26)

τsp = Lsp
FS

c
As(1 + q) cos (i)

τm = 2MDµ0
(RE + H)3

τa = 1
2LaρCdAV 2

V =
√

m

RE + H

gives definitions and values for all variables within these equations.
Python can be used to perform the calculation using the uncertainty expressed about the vari

ion is available through the linked Code Ocean repository. Figure 4 shows the final step in the
2). The resultant p-box can be used to make decisions about the requirements of the reaction wh

t Overview
e creation of this library, there was not a PBA library for Python. Although versions did exist for Risk Calc
B [2], R [3] and Julia [1, 13], as Python is one of the most popular programming languages [27, 28], especially

6
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bol Variable Type Value Un
Required angular momentum Calculated N m
Total required torque Calculated N m
Slewing torque Calculated N m
Torque due to atomspheric resistance Calculated N m
Torque due to solar radiation pressure Calculated N m
Torque due to gravitational gradient Calculated N m
Velocity of spacecraft Calculated m s
Drag coefficient p-box min=2, max = 4, mean=3.13 unit
Aerodynamic drag torque moment p-box min=0, max=3.75, mean=0.25 m
Solar radiation torque moment p-box min=0, max=3.75, mean=0.25 m
Residual dipole interval [0,1] A m
Sun incidence angle interval [0,90] deg
Atmospheric density interval [3.96 × 10−12, 9.9 × 10−11] kg m
Major moment axis deviation from nadir interval [10,19] deg
Surface reflectivity interval [0.1,0.99] unit
Minimum moment of inertia point 4655 kg m
Maximum moment of inertia point 7315 kg m
Earth gravity constant point 3.98×1014 m3s
Area in the direction of flight point 3.752 m2

Earth radius point 6378.14 km
Orbit altitude point 340 km
Average solar flux point 1367 W m
Maximum slewing angle point 38 deg
Light speed point 2.9979×108 m s
Earth magnetic moment point 7.96×1022 A m

w Minimum maneuver time point 760 s
Area reflecting solar radiation point 3.752 m2

bit Quarter orbit period point 1370 s
Permiability of free space point 4π × 10−7 N A

Table 1: Definitions and values for Equations 22–30

Figure 4: Calculation of Equation 22 using PBA.
7
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 In this paper we introduce a Probability Bounds Analysis (PBA) Library for Python
 PBA is a collecton of  athe atcal  ethods generalising interval analysis and 
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probability theory. 
The PBA library contains class defnitons for intervals and p-boxes as well as key 
functons to enable their use within calculatons
The library is open source and available through both GitHub and pypi
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