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Abstract: Cross-correlated random fields are widely used to model multiple uncertain parameters and/or phenomena 11 
with inherent spatial/temporal variability in numerous engineering systems. The effective representation of such 12 
fields is therefore the key element in the stochastic simulation, reliability analysis and safety assessment of 13 
engineering problems with mutual correlations. However, the simulation of such fields is generally not 14 
straightforward given the complexity of correlation structure. In this paper, we develop a unified framework for 15 
simulating non-Gaussian and non-stationary cross-correlated random fields that have been specified by their 16 
correlation structure and marginal cumulative distribution functions. Our method firstly represents the cross-17 
correlated random fields by means of a new general stochastic expansion, in which the fields are expanded in terms 18 
of a set of deterministic functions with corresponding random variables. A finite element discretization scheme is 19 
then developed to further approximate the fields, so that the sets of deterministic functions reflecting the cross-20 
covariance structure can be straightforwardly determined from the spectral decomposition of the resulting discretized 21 
fields. For non-Gaussian random fields, an iterative mapping procedure is developed to generate random variables to 22 
fit non-Gaussian marginal distribution of the fields. By virtue of the remarkable property of the presented stochastic 23 
expansion, i.e., various random fields share an identical set of random variables, the framework we develop is 24 
conceptually simple for simulating non-Gaussian cross-correlated fields with arbitrary covariance functions, which 25 
need not be stationary. In particular, the developed method is further generalized to a consistent framework for the 26 
simulation of multi-dimensional random fields. Five illustrative examples, including a spatially varying non-Gaussian 27 
and nonstationary seismic ground motions, are used to demonstrate the application of the developed method. 28 
Keywords: Cross-correlation; Random field simulation; Finite element discretization; Dimension reduction; Non-29 
Gaussian. 30 
________________________________________________________________________________________ 31 

1. Introduction 32 

In the numerical modeling of many engineering applications, the uncertainties of the propagating media may 33 
significantly influence the stochastic solution and reliability analysis of structural systems [1-4]. This led the scientific 34 
community to recognize the importance of a probabilistic approach to engineering problems. In a probabilistic 35 
treatment of uncertainties in analyzing and designing physical systems, the use of random fields gained momentum 36 
due to the continued increase in available computational resources and nowadays is commonly used in 37 
multidisciplinary fields [5-9]. For instance, many real-life problems of interest, such as earthquake ground motions, 38 
fluid-structure interaction, acoustic propagation, multi-scale modeling of materials, to mention a few, involve 39 
multiple uncertain parameters and/or phenomena with inherent spatial variability. This type of uncertainty should be 40 
modeled and synthesized by means of random fields with mutual correlations, known as cross-correlated random 41 
fields [10-12]. The stochastic response and subsequent safety assessment of these engineering problems are often 42 



obtained though simulation-based approaches, which are the most commonly used among the procedures available 43 
in the literature. Since the crux of the simulation-based techniques is the ability to accurately generate realizations of 44 
the random fields that possess the desired probability law to a reasonable degree, it is of fundamental importance to 45 
develop appropriate mathematical frameworks to model and simulate cross-correlated random fields effectively 46 
[1,13]. 47 

Over the years various approaches have been developed for the simulation of non-Gaussian and non-stationary 48 
cross-correlated random fields with specified non-Gaussian marginal distributions and second-order correlations, i.e., 49 
correlation functions or evolutionary power spectral density (PSD) functions. A first class of approach is the spectral 50 
representation method (SRM), which was originally developed for the simulation of Gaussian scalar fields. Since 51 
there is no theoretical obstacle for the extension of simulation of scalar fields to that of cross-correlated Gaussian 52 
fields [14], the SRM has been generalized to the simulation of non-Gaussian non-stationary cross-correlated fields 53 
by further using the translation process theory [15]. In particular, SRM has been successfully applied for modelling 54 
phenomena with inherent spatial variability in real-life problems of interest, e.g. wind velocity, earthquake ground 55 
motions, etc [11,16,17]. Another class of method is based on Karhunen-Loeve (KL) expansion, which was also 56 
initially utilized for simulating Gaussian scalar fields [17]. Phoon et al. extended the KL expansion to simulate non-57 
Gaussian scalar fields by iteratively updating the distribution of the underlying non-Gaussian K-L random variables 58 
[19,20]. However, the most significant challenge to generalize the method for simulating cross-correlated fields is 59 
that the KL expansion cannot expand the cross-correlated fields into consistent expansions in a straightforward 60 
manner, and one has to assume that the cross-correlated fields share the same auto-correlation structure and that the 61 
cross-correlation structure can be simplified as a cross-correlation coefficient, such as those by Vořechovský [21]. 62 
Although such assumptions facilitate the eigen-decomposition of the correlation structure, undesired spurious cross-63 
correlation may arise among cross-correlated random fields. In order to obviate these limitations, the cross-correlation 64 
structure was further represented in terms of correlated random variables in [22]. Nevertheless, the extension of the 65 
method to non-Gaussian fields is not straightforward. For this line of approach to be successful in practice, it is crucial 66 
to have a general-purpose and highly effective scheme for the simulation of cross-correlated random fields with 67 
arbitrary correlation structures. 68 

The goal of the present paper is to develop a conceptually simple methodology for the simulation of non-69 
Gaussian and non-stationary cross-correlated random fields with arbitrary correlation structures and marginal 70 
distributions. In order to circumvent the difficulties in representing correlation structures encountered in KL 71 
expansion, a general stochastic expansion scheme is firstly presented to represent the cross-correlated random fields, 72 
in which the fields are expanded in terms of a complete set of deterministic basis functions with corresponding 73 
random coefficients. By virtue of a significant property of the presented expansion, i.e., multiple random fields can 74 
be expanded under an identical set of random variables, both auto-covariances and cross-covariances among all 75 
components of the fields can be simultaneously reflected. A finite element discretization scheme is subsequently 76 
developed to further approximate the fields, so that the spectral decomposition might be readily utilized on the 77 
resulting discretized covariance matrix of the fields. By further coupling with a dimension reduction technique, the 78 
sets of deterministic functions associated with each component of the fields, together with the optimal number of 79 
these functions, can be straightforwardly determined. For Gaussian cross-correlated field, uncorrelated random 80 
coefficients are Gaussian and thereby can be completely determined by the first two order statistics. However, such 81 
simplification does not exist in general non-Gaussian fields. For non-Gaussian cross-correlated fields, an iterative 82 
mapping procedure is developed to fit the non-Gaussian marginal distribution of all components. In this manner, the 83 
target fields can be synthesized on the basis of the set of obtained deterministic functions and the corresponding 84 
random variables. The developed methodology thereby offers a unified framework for simulating non-Gaussian 85 
cross-correlated random fields with arbitrary covariance functions, which need not be stationary. In addition, the 86 



developed methodology is further generalized to a consistent framework for the simulation of multi-dimensional 87 
random fields. 88 

The rest of this paper is organized as follows: the present non-Gaussian KL expansion for scalar non-Gaussian 89 
fields is firstly introduced in Section 2. The developed methodology for simulating non-Gaussian and non-stationary 90 
cross-correlated random fields is described in Section 3, followed by the extension of the method for the simulation 91 
of multi-dimensional random fields in Section 4. Five illustrative examples are finally given in Section 5 to 92 
demonstrate the application of the developed method. 93 

2. Non-Gaussian Karhunen-Loève expansion for scalar random fields 94 

The KL expansion is a series expansion method for the representation of the random fields [23,24]. The 95 

expansion is based on a spectral decomposition of the covariance function of the field [1]. It states that a second-96 

order field ( )w x , which is indexed on a bounded domain , can be approximated by the following truncated KL 97 

series 98 

 ( ) ( ) ( )
1

ˆ
M

n n n
n

w x w x f xλ ξ
=

= +∑  (1) 99 

where ( )w x is the mean function of the field, M is the number of terms of KL series,{ }nξ is a set of uncorrelated 100 

random variables with zero mean and unit variance given by 101 

 ( ) ( ) ( )1
n nD

n

w x w x f x dxξ
λ

= −  ∫  (2) 102 

nλ and ( )nf x are the eigenvalues and eigenfunctions of the covariance function ( )1 2,C x x of the field, obtained from 103 

solving the following homogeneous Fredholm integral equation of the second kind: 104 
 ( ) ( ) ( )1 2 1 1 2, n n nC x x f x dx f xλ=∫  (3) 105 

the solution of which can be determined numerically for problems of practical interests [25]. It is known that, for 106 

fixed M , the resulting random field approximation ( )ŵ x is optimal among series expansion methods with respect to 107 

the global mean square error [1]. 108 

If the field ( )w x  is Gaussian, then { }nξ  are independent standard Gaussian random variables. But for non-109 

Gaussian field,{ }nξ are generally non-Gaussian and, in order to determine their distributions, Eq.(2) must be solved. 110 

The integrand in Eq.(2) is obviously unknown thus requiring iterative method to compute these unknown KL 111 

distributions. The most used iteration algorithm, which has been proven effective in many applications, is briefly 112 

summarized as follows. Details can be found in [19,20]. 113 

Step 1: Generate N sample functions of the non-Gaussian field using the truncated KL expansion as 114 
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where k is the iteration number and m is the sample number, and then estimate the simulated covariance and marginal 116 

CDF as 117 
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and 119 
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N
θ

=

 = ≤ ∑   (6) 120 

where y indicates the value of the empirical distribution function for a non-Gaussian realization, and ( )A is the 121 



indicator function for event A , having the value 1 if event A occurs and the value 0 otherwise. The simulated marginal 122 

CDF ( )ˆ /F x⋅ , which is the probability distribution of ( )ŵ x evaluated at a specific point x , does not necessarily agree 123 

with the target marginal CDF. 124 

Step 2: Transform each sample function to match the target marginal cumulative distribution F  125 

 ( ) ( ) ( ) ( ) ( )1 ˆ ˆ, , , 1, ,k k k
m mx F F w x m Nη θ θ−  = =    (7) 126 

and update the next generation of random variables ( ) ( )1k
nξ θ+ as 127 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 ,k k k
n m m nD

n

x x f x dxξ θ η θ η
λ

+  = − ∫  (8) 128 

where ( ) ( )k xη  is the mean of ( ) ( ),k xη θ  . Since ( ) ( )1k
nξ θ+  is a zero mean vector by virtue of Eq.(8), one needs to 129 

standardize ( ) ( )1k
nξ θ+  to unit variance [19]. In [20], a Latin hypercube orthogonalization technique was further 130 

employed to reduce the product-moment correlations between ( ) ( )1k
nξ θ+ . 131 

Step 3: Repeat step 1 and 2 until the sample functions of the field achieved the target marginal CDF. 132 
In the non-Gaussian KL expansion algorithm, the target covariance function is maintained, while the probability 133 

distributions of KL random variables are updated iteratively. It has been shown that good results can be achieved 134 
when simulating highly skewed non-Gaussian random fields with the method [20]. 135 

3. Simulation of non-Gaussian and non-stationary cross-correlated random fields 136 

Consider a cross-correlated random fields ( )ω x  with a set of components ( ) , 1,2, ,i ix i nω = ⋅ ⋅ ⋅  , the auto/cross 137 

correlation structures between the fields ( ) ( ) ( ){ }1 1 , , n nx xω ω= ⋅ ⋅ ⋅ω x  are defined by its ( )1 / 2n n +  covariance 138 
functions 139 

 ( ) ( ) ( ), , , 1,2, ,ij i j i i j jC x x x x i j nω ω = = ⋅ ⋅ ⋅   (9) 140 

where quantity 1 2( , )ii i iC x x in Eq.(9) is the auto-covariance of field ( )i ixω . It is known that, if components of ( )ω x141 

are mutually independent, the KL expansion can be readily applied, leading to multiple series which can be 142 

constructed separately, i.e., 143 

 ( ) ( )
1

i i ij ij i ij
j

x f xω λ ξ
∞

=

=∑  (10) 144 

where ijξ are uncorrelated random variables with zero means and unit variances, and ijλ and ( )ijf x are the eigenvalues 145 

and eigenfunctions of the covariance function ( )1 2,iiC x x of component ( )i ixω , respectively, obtained from solving 146 

homogenous Fredholm integral equation. The eigenfunctions ( )ijf x form a complete orthogonal set of basis functions 147 

for the random field ( )i ixω . The importance of KL expansion stems from its optimality in the sense that, it minimizes 148 

the total mean-square error. The reduction of a number of expansion terms from such a truncation has a significant 149 

impact on the computational demand for probabilistic investigations. Despite its theoretical importance, the KL 150 

expansion works only for a random field or ensembles of statistically independent random fields. Its generalization 151 

to cross-correlated random fields is not straightforward because practical difficulties arise in the representation of 152 

correlation structures of the fields due to its bi-orthogonal property. The inherent reason is that the sets of variables153 

{ }ijξ and{ }kjξ are statistically independent when i k≠ , and hence the autocorrelation as well as the cross-covariances 154 

can not be simultaneously reflected. In this context, new stochastic expansion scheme needs to be developed to 155 

circumvent the difficulties in simultaneously representing the auto- and cross-correlation of the fields. 156 



3.1. General stochastic expansion of cross-correlated random fields 157 

For a zero mean random field ( )xω , we construct a new stochastic expansion under general form 158 

 ( ) ( )
1

i i
i

x g xω η
∞

=

=∑  (11) 159 

where ( ) ( )i ig x xω η=    , and ( ){ }ig x are a set of complete deterministic functions, and iη are a set of uncorrelated 160 

random variables with mean and covariance function given by 161 
 [ ] 0,i i j ijη ηη δ = =    (12) 162 

where ijδ is the Kronecker-delta function. Note that the set of deterministic functions ( )ig x are not orthogonal nor 163 

normalized. Unlike the KL expansion, the representation of ( )xω in the context of the presented stochastic expansion 164 

is not unique because there is no orthogonal constraint imposed on the set of deterministic functions ( )ig x in Eq.(11). 165 

This distinctive property makes it possible to represent multiple random fields in terms of an identical set of 166 

uncorrelated random variables, which will be quite preferable in the simulation of cross-correlated random fields. As 167 

a direct consequence of the presented stochastic expansion, covariance function ( )1 2,C x x of the field ( )xω yields 168 
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 (13) 169 

For practical implementation, the representation of ( )xω can be obtained by truncating the presented expansion 170 

in Eq.(11) at the M-th term: 171 

 ( ) ( )
1

ˆ
M

i i
i

x g xω η
=

=∑  (14) 172 

and the covariance function corresponding to the truncated series are 173 

 ( ) ( ) ( )1 2 1 2
1

ˆ ,
M

i i
i

C x x g x g x
=

= ∑  (15) 174 

We note that the convergence of the truncated expansion in Eq.(14) has to be affirmed so that the general stochastic 175 
expansion could be a rational candidate in practice. The prove of the convergence can be found in Appendix. 176 

By means of the presented general stochastic expansion, each component of the cross-correlated random field177 

( )ω x is approximated by 178 

 ( ) ( ) ( )
1

, 1,...,i i ij i j
j

x g x i nω η
∞

=

= =∑  (16) 179 

with the resulting auto-covariance functions and cross-correlation functions given by 180 
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and 182 
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As a direct consequence of Eq.(17), the auto-correlation structures of components of a cross-correlated field can be 184 
different from each other, thus the assumption that cross-correlated fields has to share the same auto-correlation 185 
structure in [21] is no longer needed. Correspondingly, truncated versions of such representations have the form 186 

 ( ) ( ) ( )
1

ˆ , 1,...,
N

i i ij i j
j

x g x i nω η
=

= =∑  (19) 187 

 ( ) ( ) ( )1 2 1 2
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ˆ ,
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C x x g x g x
=

= ∑  (20) 188 

 ( ) ( ) ( )
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ˆ ,
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ij i j ik i jk j
k

C x x g x g x
=

= ∑  (21) 189 

where N is the number of expansion term which is related to the approximation accuracy. To this point, the simulation 190 

of field ( )ω x is converted to the determination of sets of deterministic functions ( )ij ig x and the corresponding random 191 

variables jη in Eq.(19) such that covariance in Eqs.(20) and (21) could match the target one. Since all components 192 

of the cross-correlated random fields ( )ω x  share an identical set of random variables, it becomes feasible to 193 

simultaneously represent all correlation structure of the fields, and also, it is natural to firstly determine the sets of 194 

functions ( )ij ig x associated with each component of fields ( )ω x , and then the set of variables jη in practice. 195 
3.2. Finite element discretization of cross-correlated random fields 196 

It is known that, even in the most used KL expansion, the set of deterministic functions are difficult to solve 197 

analytically except for a few covariance functions defined on domains of simple geometric shape. By relaxing the 198 

orthogonality restriction in the presented stochastic expansion, the determination of such functions is more 199 

challenging. In order to overcome this obstacle, we approximate ( )ij ig x in terms of a set of basis functions ( )k iN x : 200 

 ( ) ( )
1

iN

ij i ijk k i
k

g x g N x
=

= ∑  (22) 201 

where{ }
1

iN

ijk k
g

=
are a set of coefficients to be determined, and ( )kN x is selected as shape functions in the finite element 202 

discretization of domain , typically piecewise linear polynomial, having the property ( )k l klN δ=x . The advantage 203 

behind this choice is that the resulting approximation in Eq.(22) can be readily embedded into the framework of 204 

commonly used shape function discretization scheme. By direct application of Eq.(22), each component of the cross-205 

correlated random fields, ( )i ixω , is further written as 206 
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where
1

N

ik ijk j
j

W g η
=

=∑ is referred to the k-th nodal random variable of component ( )i ixω . The truncated version of 208 

Eq.(23) accordingly yields 209 
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ˆˆ
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i k i ik
k

x N x Wω
=

=∑  (24) 210 

where the approximated nodal random variable becomes
1

ˆ
N

ik ijk j
j

W g η
=

=∑ , and N is the number of truncation terms. 211 

Obviously, Eq.(23) discretizes the continuous random field ( )i ixω over each finite element mesh by a combination 212 
of the element shape functions and of the nodal random variables representing the random field at the nodes of the 213 
mesh, leading to a nodal random vector { } 1

iN
i ik k

W
=

=W  . After approximating all components of ( )ω x  in the same 214 
manner, a discretized version of the cross-correlated random fields is obtained as 215 

 { }1, n=W W W  (25) 216 

whose covariance matrix is given by 217 
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1
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ij i j ij i j N N
C x x
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×
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≤ ≤ ≤

C W W
 (26) 218 

where covariance matrix ( , )ij i jC x x with dimension i jN N× is the discretized version of covariance function of the 219 

field ( )ω x . We emphasize that accuracy of the approximation in both W and ijC depends on the discretization of 220 

domain   from finite element mesh, as shown in Eq.(22). Although adaptive discretization procedure based on 221 

iterative mesh refinement, as well as the choice of high-order shape functions can lead to a more accurate 222 

approximation, the application of such techniques is outside the scope of this paper. 223 

It can directly been seen that, with the aid of the finite element discretization scheme in Eq.(25), the problem is 224 

further converted to the determination of sets of coefficients{ }
1

iN

ijk k
g

=
such that the discretized covariance matrix in 225 

Eq.(26) could match the target covariance. To this end, we assemble all covariance matrices ( )1ij i j n≤ ≤ ≤C  of 226 

order i jN N× into matrix C , which defines the correlation structure among all components of cross-correlated random 227 

field ( )ω x , 228 
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 (27) 229 

where elements ijC  are defined in Eq.(26). Note that dimension of covariance matrix C  is thus P P×  , where230 

1

n

i
i

P N
=

= ∑ . By definition, covariance matrix is bounded and non-negative definite. Then, matrix C has the spectral 231 

decomposition 232 

 T=C T ΛT  (28) 233 

whereΛ and T are eigenvalue and eigenvector matrices of C , respectively, obtaining from the solution of matrix 234 

eigenvalue problem. As a direct consequence of the spectral decomposition in Eq.(28), we have 1/2=G Λ T , where 235 

matrix G is assembled by the sets of ( )1 ,1 ,1ijk ig i n j P k N≤ ≤ ≤ ≤ ≤ ≤ as 236 
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In this way, the sets of unknown coefficients ijkg associated with each component of cross-correlated random filed 238 

( )ω x can be determined in a quite straightforward manner. 239 

Note that the number of random variables retained in the stochastic expansion dominates the computational 240 

demand in the simulation of cross-correlated random fields, and more importantly in subsequent probabilistic 241 

investigation, i.e., stochastic finite element analysis. Although a larger value of N implies a better representation of 242 

field ( )ω x , the computational effort in the discretization phase and the subsequent stochastic analysis may increase 243 

prohibitively. Therefore, the value of N in Eq.(29) should be carefully chosen such that the discretized field W in 244 

Eq.(25) achieves sufficient approximation accuracy with the number of N  as small as possible. By ordering the 245 

eigenvalues in matrix Λ according to their magnitude, and accordingly adjusting the order of columns in matrix T , 246 

eigenvalue matrixΛ and eigenvector matrix T can be partitioned under the form: 247 

 1 1

2 2

,
   

= =   
   

Λ T
Λ T

Λ T
 (30) 248 

which will be used for dimension reduction in the simulation of cross-correlated random fields. By Eq.(30), spectral 249 

decomposition of matrix C in Eq.(28) is further written as 250 
 1 1 1 2 2 2  T T= +C T Λ T T Λ T  (31) 251 

with the property 252 
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where , 1,...,i i Nλ = and , 1,...,i i N Pλ = + are elements of matrices 1Λ and 2Λ , respectively, ordering in a descending 254 

manner 1 2 ... Pλ λ λ≥ ≥ ≥  . Since the largest eigenvalues and their corresponding eigenvectors dominate the 255 

decomposition, the second part of the right side of Eq.(31) can be neglected in practical implementation, and the 256 

approximate spectral decomposition of the assembled discretized covariance C reduces to 257 

 

1 1 1
ˆ  ˆT T≈ = =C C T Λ T G G  (33) 258 

where 1/2
1 1

ˆ =G Λ T is an N P× matrix assembled by the sets of ( )1 ,1 ,1ijk ig i n j N k N≤ ≤ ≤ ≤ ≤ ≤ as 259 
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Thus, the proper choice of value N can be achieved according the target approximation accuracy, for example, 261 

 
( )
( )
1 1 1 0.95

 

Ttrace
trace

≥
T Λ T

C
 (35) 262 

Obviously, by retaining dominant components in the above decomposition, a large amount of computer memory can 263 

be saved at a given level of approximation accuracy. With the above-developed dimension reduction technique, the 264 

sets of coefficients ijkg  , as well as the optimal number of these coefficients, can be determined to represent all 265 

components of the discretized cross-correlated random field in Eq.(25). 266 



3.3. Iteration algorithm for non-Gaussian cross-correlated fields simulation 267 

Once having the deterministic part in Eq.(23) solved, approximation accuracy of the field ( )ω x depends solely 268 

on the quality of the set of random variables{ }jη . If the cross-correlated random fields are Gaussian, the set of{ }jη269 

are independent standard Gaussian random variables. However, if the field ( )ω x  is non-Gaussian distributed, 270 

distributions of variables{ }jη are unknown a prior, and numerical algorithms have to be developed to approximate 271 

these variables. In the context of the above developed methodology, the procedure for determining non-Gaussian KL 272 

variables for a random field in [19,20] is further extended to determine non-Gaussian{ }jη in cross-correlated fields. 273 

By virtue of the property that all components of field ( )ω x share a set of same random variables, an effective iterative 274 

algorithm for digitally generation of random realizations of{ }jη in Eq.(23) is developed as follows: 275 
Step 1: Generate a total of M samples of P-dimensional non-Gaussian random vectors [ ]1 2 ,  , , T

n=W W W W
, 276 

whose elements are calculated as 277 

 ( ) ( ) ( ) ( )
1

ˆ , 1,2, ,
N

l l
ik m ijk i m

j
W g m Mθ η θ

=

= =∑ 
 (36) 278 

where l is the iteration number, and m is the sample number. 279 
Step 2: Estimate the simulated covariance matrix and marginal cumulative distribution functions (CDF) as 280 

 ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
ˆ

1 1

l T l l T T l
l

M M M
θ θ θ θ

= −
− −

W W W UU W
C  (37) 281 

and 282 

 ( ) ( ) ( ) ( )( )
1

1ˆ , 1,2,
M

l l
i i m

m
F y x y i n

M
θ

=

= ≤ =∑ W   (38) 283 

where U is a M-dimensional vector whose entries are all one, y indicates the value of empirical distribution function 284 
for a non-Gaussian realization, and ( )⋅ is the indicator function, having the value1if event occurs and the value 0 285 
otherwise. We note that the simulated marginal CDF does not necessarily agree with the target one. 286 

Step 3: Transform each sample function to match the target marginal cumulative distribution ( )1,2, ,iF i n=   287 

 
( ) ( ) ( ) ( ) ( )1 ˆ

1, , ; 1, ,

l l l
m i i i mF F

m M i n

θ θ−  =  
= =

ξ W

 

 (39) 288 

and update the next generation of random variables ( ) ( )1l
jη θ+ as 289 

 ( ) ( ) ( ) ( ) ( ) Tl l l
j m m jη θ θ = − ξ ξ g  (40) 290 

where jg is a P-dimensional vector with the form 291 
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  

      (41) 292 

Step 4: Steps 1 through 3 are repeated until the sample functions of the field achieve the target marginal CDF. 293 
It is important to noted that, in step 3, the following relation 294 

 ( ) ( )
1

1
1

M M

j m k m j k jk
mM
η θ η θ η η δ

→∞

=

→   = − ∑   (42) 295 

holds for arbitrary two random variables jη and kη . This means that uncorrelated random realizations of variables 296 
( ) ( )l
jη θ can be obtained only for an infinite number of sample size M , and correlation among variables ( ) ( )l

jη θ would 297 

arise with an finite M  , which is the common case in practice. In order to overcome this difficulty, the rank 298 



orthogonalization scheme developed in [20] is further utilized in this step to reduce the product-moment correlation. 299 

According to our experience, a sufficient small correlation coefficient may lead to convergence of the simulated 300 

covariance matrix. It will be shown that, with the presented non-Gaussian iteration algorithm, cross-correlated 301 

random fields that deviate significantly from the Gaussian case can be handled efficiently just by maintaining target 302 

covariance of the fields, and by updating the probability distribution of random variables{ }jη iteratively. 303 

The resulting procedure for the simulation of cross-correlated random fields is summarized in Algorithm 1, 304 

which includes the determination of sets of deterministic functions associated with each component of the field from 305 

step 1 to step 6, and the estimation of set of random variables shared by all components of the field from step 7 to 306 

step 12. Specifically, the developed algorithm starts from the general stochastic expansion of the cross-correlated 307 

random fields in step 1, followed by the finite element discretization of the resulting fields in step 2.  By 308 

implementing spectral decomposition on the assembled discretized covariance matrix in step 3 and 4, and by further 309 

coupling with a dimension technique in step 5, the sets of coefficients ijkg can be straightforwardly obtained in step 310 

6. Note that the optimal number of coefficients ijkg obtained in step 5 has significant importance for the subsequent 311 

stochastic analysis because great amount of computational demand can be saved. After having the deterministic 312 

coefficients ijkg  determined, the corresponding random variables { }jη  are iteratively estimated from generating 313 

samples of non-Gaussian random vector in step 8. By estimating the covariance and marginal CDF from the generated 314 

samples in step 9, all samples are then transformed to match the target marginal CDF so that the random variables 315 

can be further updated to fit the non-Gaussian CDF in step 10. By repeating step 8 through step 10 until the 316 

convergence in step 11 achieved, the set of random variables{ }jη can thus be iteratively determined to fit the non-317 

Gaussian marginal distribution of all components in the cross-correlated random fields. Once having all the 318 

deterministic coefficients ijkg and the corresponding random variables{ }jη determined, the target cross-correlated 319 

random fields can thus be represented in step 13. Since there is no requirement imposed on types of covariances, the 320 

presented algorithm is applicable for the simulation of non-stationary fields. 321 

Algorithm 1 Algorithm for simulating non-Gaussian and non-stationary cross-correlated random fields 
1: General stochastic expansion of fields ( )ω x by Eq.(16). 

2: Finite element discretization from ( )ω x to W by Eq.(23). 

3: Calculate the discretized covariance matrix ijC by Eq.(26). 

4: Spectral decomposition of covariance matrix C by Eq.(28). 

5: Dimension reduction of ( )ijg x by Eq.(31) to Eq.(33). 

6: Determine ijkg in Eq.(34). 

7: Repeat 

8: Generate non-Gaussian random vector  ( )
( )l

θW by Eq.(36). 

9: Calculate covariance 
( )l

C and marginal CDFs ( )ˆ l
iF by Eq.(37) and Eq.(38). 

10: Transform random samples to match target marginal CDFs iF by Eq.(39), and update ( )( 1)l
jη θ+ by Eq.(40). 

11: Employ rank orthogonalization scheme to reduce correlations of ( ) ( )( 1) , 1, 2, ,l
j j Nη θ+ =  . 

12: Until   

( 1) ( 1)ˆ;
l l

i iF F
+ +− < =C C C  



13: Simulate cross-correlated random fields ( )ω x by Eq.(24). 

As mentioned above, relaxing the orthogonality of deterministic function ( )ij ig x leads to the non-uniqueness of 322 

the presented general stochastic expansion in Eq.(19), and thereby enables to simultaneously represent the auto- and 323 

cross-correlations of all components of cross-correlated random fields. However, the optimal convergence in mean-324 

square sense can not be achieved due to the nonorthogonality of ( )ij ig x , that is, more terms N have to be retained in 325 

Eq.(19) to reach a specified accuracy when compared with that in conventional KL expansion. The convergence of 326 

general stochastic expansion of all components ( ) , 1, ,i ix i nω =  depends on the property of covariance matrix C in 327 

Eq.(27). If the decay of eigenvalues of matrix C is fast, a reasonable approximation can be achieved with only a small 328 

value of N , while for matrix C with slowly decaying eigenvalues, for example, cross-correlated fields with wide-329 

banded evolutionary spectral density function, more terms are required for satisfied accuracy. It is also worth 330 

mentioning that the total number of discretized nodes in the finite element discretization of the field, i.e., value of P, 331 

influence the approximation accuracy of Algorithm 1. Although large values of P may lead to a better representation 332 

of cross-correlated random fields, the computational cost of developed method will increase prohibitively, because 333 

the spectral decomposition of resulting assembled discretized covariance matrix C in Eq.(27) can be quite challenging 334 

due to the enormous memory and computational resources required. In this case, the state of the art numerical 335 

strategies, such as hierarchical matrix technique for large eigenvalue problems in Eq.(33) and higher-order 336 

polynomial based Ritz-Galerkin approach for approximating deterministic function ( )ij ig x [26,27], can be introduced 337 

to enhance the computational efficiency. In addition, adaptive mesh refinement technique with an error estimator can 338 

be further embedded into the developed framework for large-scale engineering problems with different precision 339 

requirement [28].  340 

4.Extension to the simulation of multi-dimensional random fields 341 

In engineering applications, many environmental loads need to be modeled as multi-dimensional random fields 342 

to consider spatially correlated vector time histories of motion occurring simultaneously at different locations. Since 343 

there exists an intrinsic relationship between the multi-dimensional fields and cross-correlated fields, as mentioned 344 

in [30], we further extend our method to a consistent framework for the simulation of multi-dimensional random 345 

fields in this section. 346 

 



Fig.1. Relationship between domain
ix ,

jx and  

We will conceptually present our method from a two-dimensional random field, and then generalize the method 347 

to a multi-dimensional case. Consider a two-dimensional random field ( ),x yω indexed on a bounded domain , as 348 

shown in Fig.1. Without loss of generality, we assume that the field has a zero mean and a finite covariance function349 

( )1 2 1 2, ; ,C x x y y , which is bounded for all ,x y∈ . It is known that the KL expansion of the field ( ),x yω is written 350 

as 351 

 ( ) ( )
1

, ,i i i
i

x y f x yω λ ξ
∞

=

=∑  (43) 352 

where the eigenvalues { } 1i i
λ ∞

=
 and eigenfunctions ( ){ } 1

,i i
f x y

∞

=
 are the solution of the following multi-dimensional 353 

Fredholm integral equation: 354 

 ( ) ( ) ( )1 1 2 2 2 2 1 1 1 1, ; , , ,i i iC x y x y f x y dx dy f x yλ=∫  (44) 355 

Since it is generally not feasible to obtain the numerical solution of the Fredholm integral multi-dimensional 356 
eigenvalue problem, the KL expansion mostly applied in the simulation of one-dimensional random field in the last 357 
few years. 358 

In order to overcome this difficulty, we firstly define a sub-domain
ix ∈  by fixing a coordinate ix on x-axis, 359 

such that the two-dimensional field ( ),x yω could be reduced to a one-dimensional random field ( ),ix yω for
ixy∈ . 360 

Similarly, the two-dimensional field ( ),x yω can be further converted to a set of one-dimensional fields ( ),jx yω for361 

jxy∈ , by fixing corresponding coordinates jx on x-axis. In this manner, the original two-dimensional random field 362 

( ),x yω can be discretized to a cross-correlated random fields 363 

 ( ) ( ) ( ) ( ){ }, , , , , , , ,l i ux y x y x y x yω ω ω ω⇔ ⋅⋅ ⋅ ⋅ ⋅ ⋅  (45) 364 

whose components are a set of discretized one-dimensional random fields. Obviously, with the increasing of the 365 

number of discretized coordinates ix  , the resulting cross-correlated random fields better represent the two-366 

dimensional random field ( ),x yω . The second-order correlations between arbitrary two components of the produced 367 

cross-correlated fields, i.e., ( ),ix yω and ( ),jx yω , are defined by 368 
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 (46) 369 

Once the two-dimensional field ( ),x yω is converted to the cross-correlated random field as defined in Eq.(45) and 370 

Eq.(46), Algorithm 1 presented in Section 3 can be readily employed for simulating ( ),x yω . 371 

The above method can be straightforwardly extended for the simulation of a multi-dimensional random field, 372 

which is summarized in Algorithm 2. Suppose ( )1,..., nx xω is an n-dimensional random field indexed on a bounded 373 

domain  . By application of the above procedure, the original n-dimensional random field ( )1,..., nx xω  is firstly 374 

converted to a cross-correlated random field whose components are a set of (n-1)-dimensional random fields375 

( )1 ,...,i nx xω for
12( ,..., )

in xx x ∈ , where
1ix is a sub-domain of . It is seen that dimension of the field is reduced by 376 

one in this round of discretization process. Next, each obtained (n-1)-dimensional component ( )1 ,...,i nx xω is further 377 

converted to a new cross-correlated random field whose components are a set of (n-2)-dimensional random fields378 

( )1 2, ...,i j nx x xω for
23( ,..., )

jn xx x ∈ , where
2 jx is a sub-domain of

1ix . Obviously, the dimension is further reduced 379 

by one after this round of discretization process. By further repeating the above dimension reduction process until 380 

the cross-correlated random field with a set of one-dimensional components is obtained, Algorithm 1 is then readily 381 



utilized to simulate the resulting cross-correlated random field. It can be deduced that, by multiple application of the 382 

method presented in Section 3, the sets of intermediate cross-correlated random fields and thereby the original n-383 

dimensional random field ( )1,..., nx xω can be successively simulated in a consistent framework. 384 

Algorithm 2 A unified framework for simulating multi-dimensional random fields 
1: Define = ∅W  

2: For 1 =1i to
1i

N do 

3: For 2 =1i to
2i

N do 

4:         


 

5:         For =1ni to
ni

N do 

6:             ( )11 , ,
ni nix xω= ∪W W   

7:         end for 

8:         


 

9:     end for 

10: end for 

11: Simulate W by using step 3 to step 12 in Algorithm 1. 

12: Approximate multi-dimensional field ( )1, , nx xω  by W . 

5. Numerical examples 385 

Five illustrative examples demonstrating the application of the proposed method to the synthesis of non-386 

Gaussian and non-stationary cross-correlated random fields, as well as the multi-dimensional random fields, are 387 

presented in this section. The first two demonstrate the applicability of the method to stationary cross-correlated 388 

random field whose components possess different correlation structures. In the former, the marginal distribution of 389 

components of the field are weakly non-Gaussian, while the latter considers a highly non-Gaussian case. These two 390 

examples are deliberately chosen to represent the approximate range of non-Gaussian characteristics that are typically 391 

met in real-world problems. The third example shows the application to a non-stationary and strongly non-Gaussian 392 

cross-correlated random fields. We note that existing KL-based methods, e.g. [21,22], are incapable of simulating 393 

these three non-Gaussian cross-correlated fields. In example 4, a two-dimensional random field is used to 394 

conceptually illustrate the extension of the developed method in the simulation of a multi-dimensional random field. 395 

In the last example, a spatially varying non-Gaussian and nonstationary seismic ground motions is investigated to 396 

illustrate the application of proposed method in engineering practice. In all examples, the number of discretized nodes 397 

in the finite element discretization of each component of the field is chosen as 100, and the number of expansion 398 

terms is chosen as 10N = , if not mentioned. In addition, the sample size M for the generation of non-Gaussian random 399 

variables is adopted as 410 . To implement, all computer programs have been run on a notepad (core i5-6300HQ CPU 400 

and 16GB RAM). 401 



  
Fig.2. The first ten ( )ig x of ( )xω . 

  
Fig.3. The first ten ( )ig y of ( )yω . 

5.1. Stationary and weakly non-Gaussian cross-correlated random field with same marginal 402 
distribution 403 

In practical engineering implementations, random fields characterized by covariance kernels decaying 404 
exponentially is commonly encountered. Unfortunately, this type of covariance kernel has low efficiency with respect 405 
to the KL expansion of random fields. In addition, the exponential kernel is not differentiable at its origin, which is 406 
not necessarily dictated in experimental data. Therefore, in this section the modified exponential covariance kernel 407 
exhibiting enhanced computational efficiency is chosen as auto-correlations of the cross-correlated field [29]. 408 

Consider a zero-mean cross-correlated random field ( ) ( ){ },x yω ω=ω . The covariance function of component 409 

( )xω is given by 410 

 ( ) ( )1 2
1 2 1 2

1, 1 , 0,
2

d x x
xx iC x x e d x x x− −  = + − ∈  

 (47) 411 

where d is a parameter that is used to adjust the distance 1 2x x− of null correlation between ( )1xω and ( )2xω . In this 412 

example, d is adopted as two. The marginal non-Gaussian CDF of ( )xω is Beta distributed, with the CDF given by 413 

 ( ) ( )
( ) ( ) ( ) 11

0
; , 1

u qpp q
F x p q z z dz

p q
−−Γ +

= −
Γ Γ ∫  (48) 414 

where ( ) ( )min max minu x x x x= − − with upper and lower bounds minx and maxx , and the ( )Γ ⋅ is the Gamma function. The 415 
distribution parameters are chosen as 4p = and 2q = so that the mean is zero and the variance is one. Note that the 416 
realizations of this distribution are bounded between min 3.74x = − and max 1.87x = . According to [19,20], the target 417 
Beta distribution is considered as weakly non-Gaussian and the correlation distortion of this Beta distribution is small. 418 
Another component of the field, ( )yω , is a stationary random field with modified exponential covariance given by 419 

 ( ) ( ) [ ]1 24
1 2 1 2, 1 4 , 0,1x x

yy iC x x e x x x− −= + − ∈  (49) 420 



 
Fig.4. Exact correlations, simulated results and absolute error. (Top: ( )1 2,xxC x x ; middle: ( )1 2,yyC y y ; bottom: ( ),xyC x y .) 

  
(a). Marginal CDF of ( )( )0.25x xω =  (b). Marginal CDF of ( )( )0.5y yω =  

Fig. 5. Exact and simulated marginal CDFs of cross-correlated fieldω . 
The marginal non-Gaussian CDF of ( )yω is also Beta distributed, with distribution parameters the same as those in421 

( )xω . Cross-covariance of the two components, ( )xω and ( )yω , is given by 422 

 ( ) ( )( )2 1 4 1
1 2, 1 2 1 1 4 1x y

xyC x x e x y− − − −= + − + −  (50) 423 

where [ ]0,1 2ix ∈ , [ ]0,1iy ∈ . 424 

Fig.2 and Fig.3 describe the first ten deterministic functions ( )gi x  and ( )gi y  associated with the stochastic 425 

expansion of ( )xω  and ( )yω  , respectively. The exact auto-covariance and cross-covariance, the approximated 426 

covariances, and the associated errors are shown in Fig.4. It is seen that the approximations of both auto-covariance 427 

and cross-covariance agree well with the exact ones although the two components ofω have the different correlation 428 

structure and the different correlation length. 429 

The program converges after two iterations, which only needs 0.48s. Fig.5a and Fig.5b further compare the exact 430 

and the approximated marginal CDFs for both components ofω at 0.25x = and 0.5y = , respectively. It is found that 431 

the approximated marginal CDFs are in good accordance with the exact ones for both ( )xω and ( )yω , illustrating the 432 

proposed method could accurately simulate the weakly non-Gaussian cross-correlated fields. No wonder, with the 433 



increase of the values of N and P , the approximation accuracy can be further improved. 434 
5.2. Stationary and strongly non-Gaussian cross-correlated random field with different marginal 435 
distributions 436 

The second example considers a zero-mean cross-correlated random field ( ) ( ){ },x yω ω=ω . The covariance function 437 

of component ( )xω is given by 438 

 ( ) ( ) [ ]1 2 1 2, 1 , 0,1xx iC x x x x x= − − =  (51) 439 

The marginal non-Gaussian CDF of ( )xω is shifted exponential distributed, with the CDF given by 440 

 
Fig.6. Exact correlations, simulated results and absolute errors. (Top: ( )1 2,xxC x x ; middle: ( )1 2,yyC y y ; bottom: ( ),xyC x y .) 

  
(a). Marginal CDF of ( )( )0.5x xω =  (b). Marginal CDF of ( )( )0.5y yω =  

Fig. 7. Exact and simulated marginal CDFs of cross-correlated fieldω . 

 ( ) ( ); , 1 xF x e λ µµ λ − −= −  (52) 441 
The mean and variance of the marginal CDF are 442 
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 (53) 443 

In this example, the distribution parameters 1λ = and 1µ = − are selected to produce zero mean and unit variance. 444 
Another component, ( )yω , is described by the following exponential covariance kernel 445 



 ( ) [ ]1 2
1 2, , 0,1y y

yy iC y y e y− −= =  (54) 446 
The marginal non-Gaussian CDF of ( )yω is selected as shifted lognormal distribution, whose CDF is given by 447 

 ( ) ( )ln
; , ,

y
F x

δ µ
µ σ δ

σ
− − 
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 (55) 448 

with mean and variance 449 
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 (56) 450 

Distribution parameters 0.7707µ = , 1σ = and 0.7628δ = are selected such that the non-Gaussian CDF has zero mean 451 

and unit variance. According to [19,20], the distribution function of both shifted exponential distribution and shifted 452 

lognormal distribution deviate significantly from the Gaussian case, and thus can be considered as strongly non-453 

Gaussian. Cross-correlation between ( )xω and ( )yω is defined by 454 

 ( ) ( ) ( ) [ ] [ ]1, 1 1 , , 0,1 0,1y
xyC x y e x x y− −= − − ∈ ×  (57) 455 

The program converges after four iterations, which only needs 1.02s. The exact covariances, the approximated 456 

covariances, and the associated errors are compared in Fig.6. Similar observations can be found as Example 1, the 457 

approximations of both auto-covariance and cross-covariance generally agree well with the exact ones, illustrating 458 

the effectiveness of the proposed method in the representation of correlation structures for cross-correlated random 459 

fieldω . Fig.7 depicts the exact and the approximated marginal CDFs for both components ofω at 0.5x = and 0.5y = , 460 

respectively. Similar as the results in Example 1, the approximated marginal CDFs once again achieve very good 461 

match with the exact ones even for strongly non-Gaussian marginal distributions. Results of the above-two examples 462 

indicate the success of the proposed method in the simulation of strongly non-Gaussian cross-correlated fields with 463 

different marginal distributions. 464 

 
Fig.8. Exact correlations, simulated results and absolute errors.(Top: ( )1 2,xxC x x ; middle: ( )1 2,yyC y y ; bottom: ( ),xyC x y .) 



  
(a). Marginal CDF of ( )( )0.5x xω =  (b). Marginal CDF of ( )( )0.5y yω =  

Fig. 9. Exact and simulated marginal CDFs of cross-correlated fieldω . 

5.3. Non-stationary and strongly non-Gaussian cross-correlated field 465 
In order to further examine the capacity of the proposed method in dealing with non-stationary cross-correlated 466 

random fields, which is the common case in practice, the third example considers a zero-mean cross-correlated 467 
random field ( ) ( ){ },x yω ω=ω . Covariance functions of both components of the field are given by 468 

 ( ) ( ) [ ]1 2 1 2, 0.5min , , 0,1xx iC x x x x x= =  (58) 469 

and 470 

 ( ) ( ) [ ]1 2 1 2, min , , 0,1yy iC y y y y y= =  (59) 471 

Cross-correlation between two components of the field, ( )xω and ( )yω , is defined by 472 

 ( ) ( ) [ ] [ ]min 0.5 , , , 0,1 0,1xyC x y x y= ∈ ×  (60) 473 

  
Fig.10. Exact variance v.s. simulated variance of cross-correlated fieldω . Left: ( )xω . Right: ( )yω . 

 
Fig.11. Description of example 4: L-shaped spatial domain Ω  



Since both auto-covariances and cross-covariance are of the type of Wiener-Levy fields, this example can be used to 474 

investigate the performance for simulating a non-stationary cross-correlated field. The marginal non-Gaussian CDF 475 

of ( )xω is shifted log-normal distributed, with the CDF given by 476 

 ( )
( )( ) ( )ln

; , ,
y x x

F x
δ µ

µ σ δ
σ

 − −
= Φ  

 
 (61) 477 

where the shape parameterσ is chosen to be one, the scaling parameter and the position parameter are respectively 478 

chosen as ( ) ( )1 ln 0.5 0.7707
2

x xµ = − and ( ) 0.291x xδ = , so that the target mean of the distribution is zero, i.e., 479 

 
Fig.12. The first nine approximated eigenfunctions of ( ),x yκ . 

   
Fig.13. Exact correlations, simulated results and absolute errors. 

 
2

exp 0
2SL
σµ δ µ

 
= + + = 

 
 (62) 480 

In such a case, the target variance of the distribution becomes 481 

 ( ) ( ) ( )2 2 2 1 1exp 2 exp 1 ,
2 2SE xxC x x xσ µ σ σ = + − = =   (63) 482 

The marginal CDF of ( )yω is also shifted log-normal distributed, with the distribution parameters given by 483 
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 (64) 484 

Thus the target mean of the distribution is zero, and the target variance can be obtained as 485 

 ( ) ( ) ( )2 2 2exp 2 exp 1 ,SE yyC y y yσ µ σ σ = + − = =   (65) 486 

The program converges after five iterations, which only needs 1.57s. The exact covariances, the approximated 487 

covariances, and the associated errors are compared in Fig.8. Although the approximation accuracy is not as good as 488 

that in the stationary cases (i.e., results in Example 1 and 2), quality of the approximation is sufficient for simulating 489 

non-stationary covariance kernels in practice. If higher accuracy is desired, one can increase the number of N and P 490 

in the stochastic expansion. Fig.9 shows the exact and the approximated marginal CDFs for both components ofω at491 

0.5x = and 0.5y = , respectively. Again, the approximated marginal CDFs are in good accordance with the exact 492 

ones for strongly non-Gaussian marginal distributions. Since variance of the marginal CDF depends on its argument 493 

in a non-stationary case, we further compare the exact variance and the approximate one of marginal CDF of the two 494 

components in Fig.10, respectively. It can be found that there is a small deviation between the approximated variance 495 

and the exact one for both cases. Nevertheless, the approximation accuracy is satisfactory for the whole distribution, 496 

demonstrating the high accuracy of the proposed method in the simulation of non-stationary and strongly non-497 

Gaussian cross-correlated random fields. 498 

 
Fig.14. Target CDF v.s. simulated CDF ( )0.4, 0.7x y= = . 

5.4. A two-dimensional random field with exponential covariance  499 

In this example, a two-dimensional random field is considered to illustrate the extension of the proposed method 500 

in the simulation of a multi-dimensional random fields by conceptually establishing the relation between cross-501 

correlated field and multi-dimensional field. We note that this field can also be directly discretized by combining 502 

two-dimensional shape functions with corresponding nodal random vector. Consider a classical stationary heat 503 

diffusion problem defined on a L-shaped spatial domainΩ (see Fig.11). Volumic heat source is imposed onΩ . The 504 

conductivity parameterκ  is modeled as a two-dimensional random field ( ),x yκ  with the exponential covariance 505 

given by 506 

 ( ) ( ) ( )2 2
1 2 1 2

1 2 1 2 2, , , exp
x x y y

C x x y y
L

 − + −
 = −
 
 

 (66) 507 

where 0.5L = for ( ),i ix y ∈Ω . The marginal CDF of ( ),x yκ is Gamma distributed, with the CDF given by 508 



 ( ) ( )
1 /

0
; ,

zx z eF x dz
α β

αα β
β α

− −

=
Γ∫  (67) 509 

where distribution parameters are selected as 4α = , and 0.5β = , and symbolΓ denotes the Gamma function. 510 

As described in Algorithm 2, the proposed method needs to convert a n-dimensional random field to a cross-511 

correlated random field whose components are a set of (n-1)-dimensional random fields. In this example, the 2-512 

dimensional conductivity field ( ),x yκ  is discretized at a set of equally spaced coordinates iy  on y-axis, i.e.,513 

1 0.05i iy y y+∆ ≡ − = , leading to a cross-correlated field 514 

 ( ) ( ){ }21

1
, , i i

x y x yκ κ
=

⇔  (68) 515 

with components being one-dimensional fields. The correlation of the resulting cross-correlated random field is then 516 

defined by a total of ( )21 21 1 / 2 231+ = covariance functions which is specified by Eq.(66). Once having the multi-517 

dimensional field converted to the cross-correlated field, the proposed method can be readily used for the simulation 518 

of cross-correlated field derived in Eq.(68), and thereby the conductivity field ( ),x yκ . In this context, finite element 519 

approximation is used to discretize each component ( ), ix yκ  with step size 0.05x y∆ = ∆ =  , so that the resulting 520 

dimension of the problem becomes 341. The program converges after three iterations, which only needs 0.93s. The 521 

approximated first nine eigenfunctions of the 2-dimensional conductivity field ( ),x yκ are depicted in Fig.12. The 522 

exact covariances, the approximated covariances, and the associated errors are compared in Fig.13. Similar 523 

observations can be found as the previous examples, the approximations of covariance functions are in very good 524 

accordance with the exact ones, validating the proposed method in the simulation of multi-dimensional fields. Fig.14 525 

shows the exact and the approximated marginal CDFs at point ( )0.4,0.7 (red star in Fig.11). The high approximation 526 

accuracy once again demonstrates the developed non-Gaussian iteration algorithm even in a multi-dimensional case. 527 
5.5. A spatially varying non-Gaussian and nonstationary seismic ground motions  528 

Consider the seismic ground motions which occur at three locations on the ground surface along the line spatially 529 

located at 0, 100 and 200m. The acceleration time histories are modelled as a tri-variate nonstationary process530 

( ) ( ) ( ) ( )( )1 2 3, ,t X t X t X t=X with the same evolutionary spectrum, i.e., the Kanai-Tajimi acceleration spectrum with 531 

Clough-Penzien correction possessing both frequency and amplitude modulation 532 
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 (69) 533 

where 534 
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 (70) 535 
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 (71) 536 

whereσ is the standard deviation, and gω and gζ are characteristic frequency and damping of the ground, respectively.537 

fω and fζ are the filtering parameters of the Clough-Penzien correction, which are typically taken to be 0.1f gω ω= ,538 

f gζ ζ=  . The parameters definitions used in the example are 3 2110cm sσ =  , ( )30 1.25g t rad sω = −  ,539 

0.5 0.005g tζ = + , 1 2t s= , 2 10t s= , and 0.4λ = .The correlation feature between the ground motions is characterized 540 



by following coherency model 541 
 ( ) ( ) ( ) ( ) ( ) ( )exp 2 1 1 exp 2 1jk jk jkA d A A A d A Aγ ω α αθ ω α θ ω   = − − + + − − − +     (72) 542 

where ( ) ( )
1 2

01 2 bK fθ ω ω π
−

 = +   , and 0.636A =  , 0.0186α =  , 31200K =  , 0 1.51f =  and 2.95b =  . The wave 543 

velocity of seismic ground motion is set to be 500m s . The corresponding auto/cross-correlation functions can be 544 
determined by 545 

 ( ) ( ) ( ) ( )1 2
1 2 1 2, , , i t tC t t S t S t e dωω ω ω

+∞ −

−∞
= ∫  (73) 546 

For illustration, Fig.15 shows the auto evolution spectrum along with the corresponding correlation, and Fig.16 shows 547 

the module of cross evolution spectrum ( )12 ,S tω and the corresponding cross-correlation ( )12 1 2,C t t . 548 

  

Fig.15 Clough–Penzien spectrum with amplitude and frequency modulation and corresponding non-stationary 
auto-correlation function: left: evolution spectral; right: auto-correlation function. 

  

Fig.16: The module of cross evolution spectrum ( )12 ,S tω and the corresponding cross-correlation ( )12 1 2,C t t .left: 

( )12 ,S tω ; right: ( )12 1 2,C t t . 
The non-Gaussian marginal distribution of seismic ground motions is the Students’s t-distribution 549 
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( )( )
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1
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c x a b
f x

cb c cπ

+
−

 Γ + −
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 Γ  

 (74) 550 

where 0a = such that the distribution has zero-mean and skewness. The constant c is adopted as 6c = such that the 551 
constant b can be determined by ( )2 22b c cσ= −  . In this example, a total of 16s seismic ground motions are 552 
simulated, and the time is discretized as 0.04t s∆ = . The number of expansion terms in Eq.(19) is chosen as 806N =  553 
such that 99% energy are retained.  554 



 

 

Fig.17 Simulated non-Gaussian seismic ground motions. (Top: ( )1X t ; middle: ( )2X t ; bottom: ( )3X t .  

   

 

Fig.18 Target auto/cross-correlations and the approximated correlations at some typical time points.  

   

 

Fig.19 Target CDFs and simulated CDFs of tri-variate seismic process ( ) ( ) ( ) ( )( )1 2 3, ,t X t X t X t=X at some 
typical time points. 

 

 

 

Fig.20 Target and simulated variances of tri-variate seismic process ( ) ( ) ( ) ( )( )1 2 3, ,t X t X t X t=X .  
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The program converges after two iterations, which only needs 4.38s. Fig.17 depicts one sample of the simulated non-555 

stationary non-Gaussian seismic ground motions ( ) ( ) ( ) ( )( )1 2 3, ,t X t X t X t=X  . Fig.18 shows the target and the 556 

approximated auto/cross-correlations at some typical time points. It is evident that the approximations of both auto-557 

covariance and cross-covariance generally agree well with the exact ones, illustrating the effectiveness of the 558 

proposed method in the representation of correlation structures for spatially varying seismic ground motions. Fig.19 559 

depicts the target and the simulated non-Gaussian marginal CDFs of process ( ) ( ) ( ) ( )( )1 2 3, ,t X t X t X t=X at some 560 

typical time points, the simulated marginal CDFs once again achieve very good match with the exact ones. Since 561 

variance of the marginal CDF is time dependent in non-stationary seismic ground motion, we further compare the 562 

target and the simulated variances of the three components in Fig.20. It can be found that there is a small deviation 563 

between the approximated variances and the exact one. Nevertheless, the approximation accuracy is satisfactory for 564 

the whole distribution and can be further improved by retaining more terms N in Eq.(19), demonstrating the high 565 

accuracy of the proposed method in the simulation of spatially varying non-Gaussian and nonstationary seismic 566 

ground motions. 567 

6. Conclusion 568 

A practical framework has been developed for the simulation of non-Gaussian and non-stationary cross-569 
correlated random fields. The developed methodology firstly represents the cross-correlated random fields by means 570 
of a general stochastic expansion scheme, in which all components of the fields are expanded under an identical set 571 
of random variables. A finite element discretization scheme is subsequently developed to further approximate the 572 
fields so that spectral decomposition might be readily utilized on the resulting discretized covariance matrix of the 573 
field. By further coupling with a dimension reduction technique, the sets of deterministic functions associated with 574 
each component of the fields, together with the optimal number of these functions, can be quite straightforwardly 575 
determined. For non-Gaussian identical fields, by virtue of the remarkable property of the general expansion, i.e., all 576 
components of the field can be represented under a set of same random variables, an iterative mapping procedure is 577 
then developed to fit the non-Gaussian marginal distribution of all components of the field. In this manner, the target 578 
field can be efficiently simulated from the presented stochastic expansion scheme, and the developed methodology 579 
thereby offers a unified framework for simulating non-Gaussian cross-correlated random fields with arbitrary 580 
covariance functions, which need not be stationary. In addition, we further generalize our method to a consistent 581 
framework for the simulation of multi-dimensional random fields. Five illustrative numerical examples, including a 582 
spatially varying non-Gaussian and nonstationary seismic ground motions, are utilized to demonstrate the 583 
effectiveness and range of applicability of the method. In addition to being suitable for simulating cross-correlated 584 
random fields, the new method is highly desirable for implementation with the non-intrusive stochastic finite element 585 
analysis as well as reliability analysis to a wide class of problems involving multi-correlations. 586 
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Appendix 591 

In this appendix, we prove the convergence of the presented general stochastic expansion presented in Section 592 

3.1. In general, global error measures are applied to compare the random field discretization methods and to quantify 593 

the overall quality of a random field approximation. In case of the truncated general expansion, the mean square error 594 

can be derived by application of the orthogonality of random variables iη as 595 
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    (75) 596 

On the basis of the mean square error as derived in Eq.(75), the convergence of the general stochastic expansion in 597 

Eq.(11) is further investigated. To this end, we assume that ( ) ( ){ }1 , , Mg x g x⋅ ⋅ ⋅  are a set of linearly independent 598 

deterministic functions defined on a bounded interval   , which span a M-dimensional subspace599 

( ) ( ){ }1 , , MS span g x g x= ⋅ ⋅ ⋅  of ( )2L   . The following propositions summarize essential features of the presented 600 

expansion. 601 

Proposition 1. Given a finite set of orthonormal basis ( ) ( ){ }1 , , Mf x f x⋅ ⋅ ⋅  on the subspace S  , then 602 

( ) ( ){ }1 , , Mg x g x⋅ ⋅ ⋅ and ( ) ( ){ }1 , , Mf x f x⋅ ⋅ ⋅ are related by 603 

 ( ) ( )
1

M

i j ij j
j

g x q f xλ
=

=∑  (76) 604 

where ijq are elements of an orthogonal matrix Q , and jλ are elements of a diagonal matrixΛ . 605 
Proof. By application of property of orthonormal functions, we immediately have 606 

 ( ) ( )
1

M

i ij j
j

g x f xα
=

=∑  (77) 607 

where ( ) ( ),ij ji i jg x f xα α= = , equipped with the inner product ,⋅ ⋅ , such that for ( )u x and ( )v x in ( )2L  , 608 

 ( ) ( ) ( ) ( ),u x v x u x v x dx= ∫  (78) 609 

Multiplying both sides of Eq.(77) by ( )kg x , and integrating over the domainwith respect to x, yields 610 

 ( ) ( ) ( ) ( )
1 1 1

=
M M M

i k ij kl j l ij kj
j l j

g x g x dx f x f x dxα α α α
= = =

= ∑∑ ∑∫ ∫ 
 (79) 611 

which can be rewritten in a concise form as: 612 

 TG = AA  (80) 613 

where [ ]ik M M
G

×
=G is defined by ( ) ( )ik i kG g x g x dx= ∫ , and A is an M M× matrix with elements ijα . Obviously, 614 

G is a symmetric and positive definite matrix with real-valued elements. Then, there must exist an orthogonal matrix 615 

ij M M
q

×
 =  Q and a diagonal matrix ( )1, , Mdiag λ λ= ⋅ ⋅ ⋅Λ , such that relation TG = QΛQ holds. That is 616 

 ( ) ( )
1

M

i j ij j
j

g x q f xλ
=

=∑  (81) 617 
This completes the proof.                     618 

Proposition 2. Sequence of random field representation ( ){ }ˆ , 1,2,M x Mω = ⋅ ⋅ ⋅  converges in mean square (m.s.) to619 

( )xω , i.e., ( ) ( )( )2ˆ 0Mx xω ω − →
 

 , as M →∞ , where ( )ˆM xω denotes the M-th truncated series. 620 

Proof. By substituting the relation between ( ) ( ){ }1 , , Mg x g x⋅ ⋅ ⋅  and ( ) ( ){ }1 , , Mf x f x⋅ ⋅ ⋅  given in Proposition 1 into 621 



Eq.(14), we have 622 
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 (82) 623 

where variable jξ is defined by
1

M

j ij i
i

qξ η
=

=∑ . Further, by virtue of the orthogonality property of Q , we readily have624 
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1

, , 1,2, ,
M
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q q k j Mδ
=

= = ⋅ ⋅ ⋅∑ . Then, with the aid of this relation and the orthogonality of random variables iη leads 625 

to 626 
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 (84) 628 

illustrating that random variable jξ  has zero mean and unit variance. Consequently, the covariance function 629 

corresponding to the truncated series in Eq.(82) becomes 630 
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 (85) 631 

By comparing the truncated series representation in Eq.(82) and the resulting covariance function as derived in Eq.(85) 632 
with those in KL expansion, the convergence of the presented stochastic expansion directly follows from the Mercer 633 

theorem [31]. By the property ( ) ( )( )2ˆ 0Mx xω ω − →
 

 , the truncation error can be made as small as desired.   634 
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