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Abstract: Owing to the influence of manufacturing and assembly errors, material 

performance degradation, external loads and unpredictability of the environment during 

service, structural response analysis should consider the time-invariant uncertainties 

and time-variant uncertainties simultaneously. In this paper, a mixed uncertainty model 

with random variable and stochastic process is adopted to handle this issue. A time-

variant uncertain structural response analysis method is proposed based on recurrent 

neural network using gated recurrent units (GRU) combined with ensemble learning. 

In the proposed method, by performing Latin hypercube sampling (LHS) of random 



variables, multiple GRU networks can be trained to estimate the time-variant system 

response under fixed random variables. During the process of training GRU models, an 

active learning strategy is developed and applied to improve model accuracy and reduce 

training samples. On this basis, a set of augmented data is generated using the trained 

GRU models. Then the mapping relationship between random variables and structural 

responses through the Gaussian process (GP) regression is built accordingly. Eventually, 

the global surrogate model of time-variant uncertain structural response can be obtained 

by integrating the GRU networks and the GP models. Two numerical examples are used 

to demonstrate the effectiveness and accuracy of the proposed method. The results 

indicate that the proposed method can effectively calculate the expectation and standard 

deviation of the system response under the mixed uncertainty model with random 

variables and stochastic processes. In addition, it has higher computational efficiency 

under the premise of ensuring the calculation accuracy. 

Keywords: GRU, time-variant response, active learning, Gaussian process, ensemble 

learning 

1.Introduction 

Traditional response analysis and optimization of structures are generally based 

on deterministic parameters. However, it is inevitable that uncertainties exist in 

practical engineering problems. The uncertainties are mainly deriving from two aspects. 

One is that the environmental load of the engineering structure is generally random, 

such as sea waves, earthquakes and wind force. The other is, due to the incomplete 

controllability of measurement and manufacturing accuracy, there are uncertainties 



existing in the structure itself. Thus, considering the randomness of the external load 

and the uncertainty existing in the model simultaneously during the structural response 

analysis process deserves the attention of researchers to obtain results with valued 

engineering application. Regardless of these ubiquitous uncertainties and treating them 

as deterministic information, the response prediction and the optimal design of a 

structure may fail. 

For uncertainty analysis, when enough sample data can be obtained, time-

invariant stochastic model and time-variant stochastic model are two ideal non-

deterministic mathematical models. The time-invariant stochastic model is developed 

for time-independent uncertain parameters, and is the most widely used uncertain 

model by far. The stochastic perturbation method is a popular method [1 ,2, 3 ]. In 

engineering practice, the first-order and second-order truncated expansion of Taylor 

series are usually used, and the solutions considering higher-order will become very 

complicated. Therefore, the stochastic perturbation method is generally only applicable 

to random problems with small-scale variation, which is its inherent defect. The spectral 

stochastic method is another effective stochastic numerical analysis method [4,5,6]. 

The advantage of the spectral stochastic method is that it can obtain the expectation, 

variance and probability density function of the random response at the same time. 

However, the computational accuracy of the spectral stochastic method increases with 

the increase of the number of chaotic polynomial terms, but the computational 

efficiency decreases [7,8]. Therefore, the spectral stochastic method is mainly used to 

solve random problems with small degrees of freedom. The Monte Carlo method is a 



simple and robust approach to deal with the random structural response analysis 

[9,10,11,12, 13]. Its obvious shortcoming lies in the problem of convergence rate. In 

order to obtain reliable calculation results, a huge number of samples is required. In 

order to solve this problem, researchers have proposed several fast Monte Carlo 

sampling methods, including important sampling method [ 14 , 15 ], line sampling 

method [ 16 ] and control-variable Monte Carlo method [ 17 ,18 ]. The time-variant 

stochastic model is an effective mathematical model for dealing with time-variant 

uncertainties. Shinozuka et al. used the homogeneous stochastic oscillation process to 

analyze the power spectrum under multi-dimensional excitation [ 19 ]. Cho et al. 

simulated multi-correlated non-stationary stochastic processes by Karhunen–Loève 

expansion [20]. Kim et al. modeled non-Gaussian and non-stationary random processes 

using Karhunen–Loève expansion and iterative translation approximation method [21]. 

Grigoriu et al. studied the accuracy of polynomial chaos expansion of non-Gaussian 

random processes [ 22 ]. Mao et al. proposed a non-stationary random process 

representation method based on Hilbert spectrum [23].  

Due to the complexity of practical engineering problems, multiple types of 

uncertainties may exist simultaneously. Elishakoff and Colombi used mixed random 

and interval models for the uncertain structural response analysis under random 

excitations, and used anti-optimization technology to find the least favorable values of 

the mean square response [24]. Wang et al. proposed a stochastic interval finite volume 

method to predict the steady-state temperature field with hybrid random and interval 

uncertainties [25]. Wang et al. presented a reliability-based topology optimization for 



heterogeneous composite structures under interval and convex mixed uncertainties [26]. 

Xia et al. proposed a hybrid probabilistic interval perturbation methods for structural–

acoustic problem with random and interval variables [27 ]. Chen et al. introduced a 

bounded hybrid uncertain model with interval variable and bounded random variable 

for the response analysis of the composite structure-acoustic system [28]. Zhu et al. 

proposed a probability-box-based method for propagation of multiple types of 

epistemic uncertainties [ 29 ]. In the researches mentioned above, the time-variant 

characteristics of the uncertain parameters are not considered in the hybrid uncertain 

models. Whereas, owing to the influence of material performance degradation, external 

loads and unpredictability of the environment during service, the uncertain parameters 

in the structure system may be time-dependent. Up to now, the uncertain response 

analysis of the structure system involving a mixture of stochastic variables and 

stochastic processes has seldom been investigated.  

In addition, most of current approaches for time-variant uncertain problems rely 

on sampling-based methods and analytical approximation methods, which may cause a 

fatally computational burden [30,31]. However, to the best of our knowledge, using 

deep learning to build surrogate models has not been widely used in the response 

analysis of structures with time-variant uncertainties. While other works in the field of 

time-dependent reliability analysis have demonstrated the potential of deep learning 

models [32,33]. Zhou et al. [34] proposed a framework combining the autoencoder and 

the Gaussian process regression to address high-dimensional reliability analysis 

problems. Xiang et al. [35] proposed an active learning method combining deep neural 



network and weighted sampling for structural reliability analysis. In recent years, with 

rapid advances in computing power, deep learning techniques have improved the state-

of-the-art in image processing, natural language processing, audio processing, and 

many other appealing domains [36]. Recurrent neural network (RNN) [37,38] is a kind 

of neural network, which is able to handle a variable-length sequence input. GRU model 

[39,40] is a special kind of RNN that can solve its long-term dependence problem. 

Therefore, a GRU-based ensemble learning approach is developed for response 

analysis of structures with time-variant uncertainties in this paper. As shown in Fig. 1, 

multiple GRU networks are trained to learn the time-variant system response under 

fixed stochastic variables firstly. In the process of training GRU networks, an active 

learning strategy is proposed and applied to improve model accuracy and reduce the 

amount of training data needed. Furthermore, a set of augmented data can be collected 

based on multiple trained GRU networks. As a result, the mapping relationship between 

stochastic variables and structural responses can be built through the GP model. Finally, 

the global surrogate model of time-variant structural response is constructed by 

integrating the GRU network and the GP model.  

The remainder of this paper is organized as follows. Section 2 starts with the 

theoretical background of finite element method for structure with uncertain parameters. 

Section 3 introduces the details of the proposed GRU-based ensemble learning 

framework. Section 4 presents two engineering examples to prove the accuracy and 

feasibility of the proposed method. Section 5 draws some conclusions about the paper. 

 



 

Fig.1 Sketch of the GRU-based ensemble learning (CUSRF: conditional uncertain 

structural response function) 

2. Finite element equation with time-variant uncertainties 

After discretization, the element displacement matrix 𝒅𝒅 can be expressed as 

 𝒅𝒅 = 𝑵𝑵𝜹𝜹𝑒𝑒 (1) 

where 𝑵𝑵  represents the shape function matrix and 𝜹𝜹𝑒𝑒  is a vector of the global 

displacement components at all nodal points, respectively. The strain within each 

element 𝜺𝜺 can be evaluated by establishing strain-displacement relationship  

 𝜺𝜺 = 𝑩𝑩𝜹𝜹𝑒𝑒 (2) 

where 𝑩𝑩 stands for the strain matrix. According to the relationship between stress and 

strain, physical equations can be established 

 𝝈𝝈 = 𝑫𝑫𝑩𝑩𝜹𝜹𝑒𝑒 (3) 

where 𝑫𝑫  is the elasticity matrix determined by the elastic constant of the element 

material. According to the principle of virtual displacements, the element stiffness 

equation can be expressed as 



 𝒌𝒌𝑒𝑒𝜹𝜹𝑒𝑒 = 𝑭𝑭𝐸𝐸𝑒𝑒  (4) 

where 𝑭𝑭𝐸𝐸𝑒𝑒   represents the element equivalent nodal forces vector caused by external 

effects. 𝒌𝒌𝑒𝑒 is the element stiffness matrix, which can be obtained by 

 𝒌𝒌𝑒𝑒 = ∫ 𝑩𝑩𝑇𝑇𝑫𝑫𝑩𝑩𝑑𝑑ΩΩ𝑒𝑒
 (5) 

Eventually, by utilizing the direct stiffness method, each element stiffness matrix and 

element equivalent nodal forces vector are assembled to establish the nodal equilibrium 

equations for the entire system 

 𝑲𝑲𝑲𝑲 = 𝑭𝑭 (6) 

where 𝑲𝑲 is the global stiffness matrix; 𝑭𝑭 is the global nodal force vector; 𝑲𝑲 is the global 

nodal displacement vector. The nodal displacements can be obtained as 

 𝑲𝑲 = 𝑲𝑲−1𝑭𝑭 (7) 

It is noted that in this work, it is assumed that the time-variant parameters change 

slowly, so no additional inertial force is considered in the system. Therefore, 

considering the random variable and stochastic process mixed uncertain variables 

vector 𝐶𝐶(𝒙𝒙,𝒛𝒛(𝑡𝑡)), the Eq. (7) can be rewritten as 

 𝑲𝑲 = 𝑲𝑲−1(𝐶𝐶)𝑭𝑭(𝐶𝐶) = 𝐺𝐺(𝒙𝒙,𝒛𝒛(𝑡𝑡), 𝑡𝑡)  (8) 

3 GRU-based ensemble learning 

3.1 GRU-based modeling 

The RNN is an extension of a conventional feedforward neural network, which is 

able to handle time-series data by storing prior information with a feed-back loop. 

Unfortunately, it is difficult to train RNNs to capture long-term dependencies due to the 



gradients tend to either vanish or explode. To reduce the negative impacts of this issue, 

all RNNs have the form of a chain of recurrent units such as LSTM unit or GRU. 

Compared with LSTM, GRU can achieve considerable results and is easier to train, 

which can greatly improve training efficiency. So we choose to use GRU in this paper. 

Similarly to the LSTM unit, two gated units are used in GRU, including a reset gate 

and update gate. Fig.2 shows the graphical depiction of GRU, which reflects that the 

core idea of GRU is to transmit the information flow by utilizing the cell state. 

 The effectiveness of the GRU network for handling time-dependent problems has 

been illustrated in countless research work. However, a lack of ability to take the time-

independent random variables into account, which generally is the shortcoming of the 

GRU. Accordingly, instead of modeling the uncertain system 𝐺𝐺(𝒙𝒙,𝒛𝒛(𝑡𝑡), 𝑡𝑡)  with mixed 

random variable and stochastic process directly, the concept of conditional uncertain 

structural response functions is introduced for GRU modeling. In the proposed 

approach, 𝑛𝑛 samples of the random variables and the stochastic processes are generated 

using LHS. They can be expressed as 𝑿𝑿 = [𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛]  and 𝒁𝒁 =

[𝒛𝒛1(𝑡𝑡), 𝒛𝒛2(𝑡𝑡), … , 𝒛𝒛𝑛𝑛(𝑡𝑡)] respectively. Compared with the simple random sampling of 

MCS, the LHS method produces a higher sample space coverage and can achieve 

higher sampling accuracy with a small sampling scale. For each sample 𝒙𝒙𝑖𝑖 in X, the 

conditional uncertain structural response function 𝑔𝑔𝑖𝑖(𝒛𝒛𝑖𝑖(𝑡𝑡), 𝑡𝑡) can be expressed as 

 𝑔𝑔𝑖𝑖(𝒛𝒛𝑖𝑖(𝑡𝑡), 𝑡𝑡) = 𝐺𝐺(𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖(𝑡𝑡), 𝑡𝑡), 𝑖𝑖 = 1,2, … ,𝑛𝑛 (9) 

where 𝒛𝒛𝑖𝑖(𝑡𝑡)  represents the 𝑖𝑖 th realizations of the stochastic processes 𝒛𝒛(𝒕𝒕)  and  𝒙𝒙𝑖𝑖  

denotes the 𝑖𝑖th realizations of the stochastic variables 𝒙𝒙.  



As shown in Eq. (9), each conditional uncertain structural response function is a 

simplified version of the original 𝐺𝐺(𝒙𝒙,𝒛𝒛(𝑡𝑡), 𝑡𝑡) with fixed random variables. For the 𝑖𝑖th 

conditional uncertain structural response function, substituting the inputs  𝒙𝒙𝑖𝑖 and 𝒛𝒛𝑖𝑖(𝑡𝑡)  

into Eq. (9), the time-variant structural responses 𝒚𝒚𝑖𝑖 can be obtained. The GRU is a 

predictive model which can be trained to approximate the conditional uncertain 

structural response function. The input of the training data is expressed as a matrix 

 �

𝜼𝜼1
𝜼𝜼2
⋮
𝜼𝜼𝑠𝑠

� = �

𝒛𝒛𝑖𝑖(𝑡𝑡1)
𝒛𝒛𝑖𝑖(𝑡𝑡2)
⋮

𝒛𝒛𝑖𝑖(𝑡𝑡𝑠𝑠)

𝑡𝑡1
𝑡𝑡2
⋮
𝑡𝑡𝑠𝑠

� (10) 

where 𝒛𝒛𝑖𝑖(𝑡𝑡𝑗𝑗)  represents the stochastic processes value at the 𝑗𝑗 th time instant. 

Correspondingly, the training label for the GRU can be expressed as 𝒚𝒚𝑖𝑖 =

[𝑦𝑦𝑖𝑖(𝑡𝑡1),𝑦𝑦𝑖𝑖(𝑡𝑡2), … ,𝑦𝑦𝑖𝑖(𝑡𝑡𝑠𝑠)], which is a vector with 𝑠𝑠 elements. 

 

Fig.2 Recurrent units of GRU 

First, in the recurrent units, the inputs at the particular time instant 𝜼𝜼𝑗𝑗  and the 

previous cell hidden state 𝒉𝒉𝑗𝑗−1 are provided to the reset gate, which is multiplied with 



weight matrices and followed by bias. It can be expressed as 

 𝒓𝒓𝑗𝑗 = 𝜎𝜎�𝑾𝑾𝑟𝑟𝜼𝜼𝑗𝑗 + 𝑲𝑲𝑟𝑟𝒉𝒉𝑗𝑗−1 + 𝒃𝒃𝑟𝑟� (11) 

where 𝜎𝜎(∙) stands for the activation function. Usually, the logistic sigmoid function is 

adopted as the activation function of reset gate. 𝒓𝒓𝑗𝑗 represents the reset gate output. 𝑾𝑾𝑟𝑟, 

𝑲𝑲𝑟𝑟 and 𝒃𝒃𝑟𝑟 represents the learned input weights, recurrent weights and bias, respectively. 

Similar to the reset gate, the update gate output 𝒛𝒛𝑗𝑗 is computed as 

 𝒛𝒛𝑗𝑗 = 𝜎𝜎�𝑾𝑾𝑧𝑧𝜼𝜼𝑗𝑗 + 𝑲𝑲𝑧𝑧𝒉𝒉𝑗𝑗−1 + 𝒃𝒃𝑧𝑧� (12) 

Next, we need to decide what new information should be stored in the candidate 

hidden state. First, the reset gate determines how much information from the previous 

hidden state will be ignored. Then, a hyperbolic tangent activation function creates a 

candidate hidden state with current time instant input and the preserved information 

from the previous hidden state. The computation process can be expressed as 

 𝒉𝒉𝚥𝚥� = tanh (𝑾𝑾ℎ𝜼𝜼𝑗𝑗 + 𝑲𝑲ℎ�𝒓𝒓𝑗𝑗 ⨀ 𝒉𝒉𝑗𝑗−1� + 𝒃𝒃ℎ) (13) 

where 𝑾𝑾ℎ, 𝑲𝑲ℎ and 𝒃𝒃ℎ are the input weights, recurrent weights and bias, respectively, 

𝒉𝒉𝚥𝚥�  represents the cell candidate hidden state and ⨀ is an element-wise multiplication. 

Then, all the outputs of Eqs. (12) and (13) are utilized to update the current hidden 

state, written as 

 𝒉𝒉𝑗𝑗 = �1 − 𝒛𝒛𝑗𝑗� ⨀ 𝒉𝒉𝑗𝑗−1 + 𝒛𝒛𝑗𝑗  ⨀ 𝒉𝒉𝚥𝚥�  (14) 

In which, the first term represents selective forgetting of the previous hidden state, 

and the second term represents how much information from the new candidate hidden 

state should be retained in the current hidden layer. In addition, the weights of forgetting 

the previous hidden state and remembering the candidate hidden state are interrelated 



to maintain a constant state. 

In this study, the output 𝒉𝒉𝑗𝑗 is directly linked to the fully connected layer and then 

the fully connected hidden layer is connected to the regression output layer, which is 

related with training label. The identical unit is repeated at each time step. According 

to the GRU structure introduced above, the gradients of weights and biases term need 

be calculated accordingly with the purpose of minimizing the loss function. Given the 

training data, in order to learn the weight matrices and biases of the GRU, we can 

choose optimization algorithms such as stochastic gradient descent with momentum 

(SGDM), root mean square propagation (RMSProp), and Adam to update the model 

parameters. In this work, the root mean square error (RMSE) is adopted as the loss 

function. The Adam is utilized as the optimization algorithm. 𝑛𝑛  GRU models are 

respectively constructed to capture the relationship between the stochastic processes 

and time-variant responses of the conditional uncertain structural response functions.  

3.2 Active learning strategy 

The accuracy of the surrogate model is a challenge in the uncertain analysis. 

Surrogate model approaches based on deep learning are data-hungry as we all know. 

The more training data, the better the training results will be. Nevertheless, preparing 

considerable training samples is time-consuming and impractical in many applications. 

Active learning can help to ensure the model accuracy and reduce the amount of 

training data. On the other hand, in many engineering practices, uncertain variables are 

generally subject to a certain probability distribution. It needs relatively sufficient 

sample data to accurately propagate the statistical characteristics of the uncertainties 



when using surrogate model. Otherwise the estimated probability characteristics will 

deviate from the true value, the uncertain system response will be unreliable. Then 

optimization based on the unreliable uncertain system response may fail to achieve the 

expected effect. Iteratively updating the surrogate model through active learning 

strategy can alleviate this situation to a certain extent. With comprehensive 

consideration, an active learning strategy is proposed here to reduce the amount of 

training data in the process of training GRU model while ensuring its accuracy. 

Sample selection is a key component in the active learning. The strategy of sample 

selection is determined by query function 𝐹𝐹𝑞𝑞, which is expressed as: 

 𝐹𝐹𝑞𝑞 = 𝛼𝛼
𝑑𝑑
∑ ( 2

1+𝑒𝑒
−�
𝜇𝜇𝑝𝑝−𝑥𝑥𝑝𝑝
𝜎𝜎𝑝𝑝

�

𝑑𝑑
𝑝𝑝=1 − 1) + 𝛽𝛽 �𝑦𝑦−𝑦𝑦�

𝑦𝑦
� = 𝛼𝛼𝐹𝐹𝑞𝑞1 + 𝛽𝛽𝐹𝐹𝑞𝑞2 （15） 

where 𝛼𝛼 and 𝛽𝛽 are weighting coefficients which range from 0 to 1. They denote 

the importance of different parts in the query function. The query function consists of 

two parts, which can be interpreted from the perspective of input and output. The first 

part 𝐹𝐹𝑞𝑞1 uncovers the correlation between test set input and training set input, which is 

inspired by the t-test [41]. In addition, the difference between these two data sets is 

scaled to [0,1]  using the variant of sigmoid function. 𝑑𝑑  represents the dimension of 

input variable, 𝜇𝜇𝑝𝑝 and 𝜎𝜎𝑝𝑝 represent the mean value and standard deviation in the current 

training set at the certain dimension 𝑝𝑝. The second part 𝐹𝐹𝑞𝑞2 measures the deviation of 

test set between the predicted value and actual output. For 𝑛𝑛 samples of the stochastic 

processes generated by LHS, we choose one sample of stochastic processes as the initial 

training set, and regard the remaining 𝑛𝑛 − 1 samples as the test set. When 𝛼𝛼 + 𝛽𝛽 = 1, 

the query function is normalized to [0,1] . Next, the threshold 𝜖𝜖𝑡𝑡ℎ  decide if test set 



sample can be added to previous training data for the next iteration of training. The 

detail value of 𝛼𝛼,  𝛽𝛽 and 𝜖𝜖𝑡𝑡ℎ needs to be determined based on specific occasion. 

3.3 Gaussian Process-based global surrogate modeling 

The GRUs have a high prediction accuracy for the conditional uncertain structural 

response functions when 𝑛𝑛 random variables are fixed. Nevertheless, these GRUs still 

endure a drawback that they lack the capability of modeling the global uncertain 

structural response function with the time-independent random variables. To overcome 

this difficulty, Gaussian process regression is used to map the relationship between 

random variables and time-variant system responses at a specific time. Then, a global 

surrogate model can be constructed by integrating multiple Gaussian process 

regressions with GRUs to predict the time-variant system response given any random 

realizations of time-independent variables 𝒙𝒙′ and stochastic processes 𝒛𝒛′(𝑡𝑡). 

In the data preparation process, the random realization 𝒛𝒛′(𝑡𝑡)  is provided to the 

constructed 𝑛𝑛  GRUs for estimating the time-variant responses of the corresponding 

conditional uncertain structural response functions. Therefore, the response predictions 

of all the GRUs can be collected as 

 𝒀𝒀�′ = [𝒚𝒚�1′ ,𝒚𝒚�2′ , … ,𝒚𝒚�𝑛𝑛′ ]𝑇𝑇 = �
𝑦𝑦�1′(𝑡𝑡1) ⋯ 𝑦𝑦�1′(𝑡𝑡𝑠𝑠)
⋮ ⋱ ⋮

𝑦𝑦�𝑛𝑛′ (𝑡𝑡1) ⋯ 𝑦𝑦�𝑛𝑛′ (𝑡𝑡𝑠𝑠)
� (16) 

where the time-variant responses 𝒚𝒚�𝑖𝑖′  are the GRU predictions when giving the 𝒛𝒛′(𝑡𝑡) 

related to the 𝑖𝑖th conditional uncertain structural response function 𝑔𝑔𝑖𝑖, which can be 

expressed as 

 𝒚𝒚�𝑖𝑖′ ≈ 𝑔𝑔𝑖𝑖(𝒛𝒛′(𝑡𝑡), 𝑡𝑡), 𝑡𝑡 =  𝑡𝑡1, … , 𝑡𝑡𝑠𝑠 (17) 



Though the responses are not obtained by directly calculating the actual 

conditional uncertain structural response functions, the prediction accuracy is assured 

due to the benefits of GRU. As a result, the response predictions 𝒀𝒀�′ are referred to as 

augmented data in this paper. To ensure the capability of estimating the time-variant 

responses with input 𝒙𝒙′, GP models are constructed at each time instant based on the 

augmented data. Compared with the general regression method, Gaussian process 

regression is a less parametric tool. Given a specified time instant 𝑡𝑡𝑘𝑘, a GP model is 

built based on the training labels 𝒚𝒚�′(𝑡𝑡𝑘𝑘) extracted from the augmented data, which is 

expressed as 

 𝒚𝒚�′(𝑡𝑡𝑘𝑘) = [𝑦𝑦�1′(𝑡𝑡𝑘𝑘),𝑦𝑦�2′(𝑡𝑡𝑘𝑘), … ,𝑦𝑦�𝑛𝑛′(𝑡𝑡𝑘𝑘)]𝑇𝑇 (18) 

And the training inputs are the random samples 𝑿𝑿 = [𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛] . Gaussian 

process regression is based on the assumption that the functional relationship between 

the input and output data can be modeled by a sample path of a Gaussian process. 

Therefore, the relationship between input and the training label is defined as 

 𝑦𝑦�𝑖𝑖′(𝑡𝑡𝑘𝑘) = 𝑔𝑔(𝒙𝒙𝑖𝑖) + ϵ (19) 

where  ϵ is the Gaussian noise with zero mean and variance 𝜎𝜎𝑛𝑛2. 𝑔𝑔(𝒙𝒙𝑖𝑖) is the learning 

function. From the function-space view, a Gaussian process with a non-zero mean 

function can be written as 

 𝑔𝑔(𝒙𝒙)~𝐺𝐺𝐺𝐺�𝒉𝒉(𝒙𝒙)𝜷𝜷,𝐾𝐾(𝒙𝒙𝑎𝑎,𝒙𝒙𝑏𝑏)� (20) 

where 𝒉𝒉(𝒙𝒙)𝜷𝜷 represents mean function and 𝐾𝐾(𝒙𝒙𝑎𝑎,𝒙𝒙𝑏𝑏) represents covariance function. 

The term 𝒉𝒉(𝒙𝒙) are a set of predefined basis function. Linear basis function is used in 

this research. 𝜷𝜷 is a vector of basis function coefficients. The covariance function is 



computed by 

 𝐾𝐾(𝒙𝒙𝑎𝑎,𝒙𝒙𝑏𝑏) = 𝜎𝜎𝑠𝑠2𝑅𝑅(𝒙𝒙𝑎𝑎,𝒙𝒙𝑏𝑏 ,𝜽𝜽) = 𝜎𝜎𝑠𝑠2 exp �∑ 𝜃𝜃𝑝𝑝�𝒙𝒙𝑝𝑝𝑎𝑎 − 𝒙𝒙𝑝𝑝b�
2𝑑𝑑

𝑝𝑝=1 � (21) 

where 𝜎𝜎𝑠𝑠2 is the signal variance and the auto-correlation 𝑅𝑅(∙) defines the nearness or 

similarity between every pair of sample points (𝒙𝒙𝑎𝑎,𝒙𝒙𝑏𝑏)  in the input space. The 

hyperparameters 𝜽𝜽  denote a set of unknowns which characterize the decay of auto-

correlation with distance. In more detail, 𝜃𝜃𝑝𝑝 is the correlation length of each dimension 

𝑝𝑝 ∈ [1,𝑑𝑑] of the input 𝒙𝒙. The GP model 𝑀𝑀𝑘𝑘
′  are described as 

 𝑀𝑀𝑘𝑘
′ (𝒙𝒙)|𝒛𝒛′(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘 ∼ 𝐺𝐺𝐺𝐺(𝒉𝒉(𝒙𝒙)𝜷𝜷,𝐾𝐾(𝒙𝒙𝑎𝑎,𝒙𝒙𝑏𝑏) + 𝜎𝜎𝑛𝑛2𝑰𝑰) (22) 

where 𝑰𝑰 is the identity matrix. For a prediction point 𝒙𝒙′, the joint Gaussian distribution 

of the observed target values and the predicted values is given by 

 �𝒚𝒚
�′(𝑡𝑡𝑘𝑘)
𝑔𝑔(𝒙𝒙′) �~𝐺𝐺𝐺𝐺 ��𝒉𝒉

(𝑿𝑿)𝜷𝜷
𝒉𝒉(𝒙𝒙′)𝜷𝜷� , �𝐾𝐾(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰 𝐾𝐾(𝑿𝑿,𝒙𝒙′)

𝐾𝐾(𝒙𝒙′,𝑿𝑿) 𝐾𝐾(𝒙𝒙′,𝒙𝒙′)
�� (23) 

The predicted mean value 𝑚𝑚(𝒙𝒙′) is given as 

 𝑚𝑚(𝒙𝒙′) = 𝒉𝒉(𝒙𝒙∗)𝜷𝜷 + 𝐾𝐾′𝑇𝑇(𝐾𝐾(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰)−1(𝒚𝒚�′(𝑡𝑡𝑘𝑘) − 𝒉𝒉(𝑿𝑿)𝜷𝜷) (24) 

and the variance 𝑣𝑣(𝒙𝒙′) is 

 𝑣𝑣(𝒙𝒙′) = 𝐾𝐾(𝒙𝒙′,𝒙𝒙′) − 𝐾𝐾′𝑇𝑇(𝐾𝐾(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰)−1𝐾𝐾′ + 𝜎𝜎𝑛𝑛2𝑰𝑰 (25) 

where 𝐾𝐾′ = 𝐾𝐾(𝒙𝒙,𝒙𝒙′) present the correlation vector between 𝒙𝒙′ and training points 𝑿𝑿 . 

The unknown hyperparameters 𝜷𝜷, 𝜎𝜎𝑛𝑛2 and 𝜽𝜽 fully characterize the GP model, which 

can be obtained by maximizing marginal log-likelihood function using standard 

optimization algorithms.  

In this work, the resultant predicted mean value 𝑚𝑚(𝒙𝒙′) is adopted as the response 

estimation of 𝐺𝐺(𝒙𝒙′, 𝒛𝒛′(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘). Given a specific stochastic process, a set of GP models 

can be constructed based on the augmented data set which includes the training inputs 



𝑿𝑿 = [𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛] and the training labels 𝒚𝒚�′(𝑡𝑡𝑘𝑘) 𝑘𝑘 = 1, … , 𝑠𝑠. As a consequence, the 

time-variant responses of 𝐺𝐺(𝒙𝒙′, 𝒛𝒛′(𝑡𝑡), 𝑡𝑡) can be predicted by 𝑠𝑠 GP models. According 

to the probability statistics characteristics of the random variables and the stochastic 

processes, 𝑁𝑁 random realizations are generated respectively as MCS samples, which 

are 𝑿𝑿𝑚𝑚𝑚𝑚𝑠𝑠 = [𝒙𝒙1𝑚𝑚,𝒙𝒙2𝑚𝑚, … ,𝒙𝒙𝑁𝑁𝑚𝑚]  and 𝒁𝒁𝑚𝑚𝑚𝑚𝑠𝑠(𝑡𝑡) = [𝒛𝒛1𝑚𝑚(𝑡𝑡), 𝒛𝒛2𝑚𝑚(𝑡𝑡), … , 𝒛𝒛𝑁𝑁𝑚𝑚(𝑡𝑡)] . For all 

the stochastic processes samples in MCS  𝒁𝒁𝑚𝑚𝑚𝑚𝑠𝑠(𝑡𝑡), a total number of 𝑁𝑁 × 𝑠𝑠 GP models 

can be constructed. By combining the multiple GRUs and the GP models, the global 

surrogate model of the time-variant response can be obtained. Given any realization of 

the random variables and stochastic processes, the proposed ensemble learning 

framework can provide response predictions in a global sense. 

3.4 Response analysis of time-variant uncertain structures  

The main steps of proposed ensemble learning method for response analysis of 

time-variant structural system under the mixed uncertainty model with random 

variables and stochastic processes can be summarized as follows 

Step 1: Produce the sampling data for training multiple GRU models. LHS is employed 

to generate 𝑛𝑛  samples of random variables 𝑿𝑿 = [𝒙𝒙1,𝒙𝒙2, … , 𝒙𝒙𝑛𝑛]  and 𝑛𝑛  realizations of 

the stochastic processes 𝒁𝒁 = [𝒛𝒛1(𝑡𝑡), 𝒛𝒛2(𝑡𝑡), … , 𝒛𝒛𝑛𝑛(𝑡𝑡)]. 

Step 2: Evaluate actual responses of time-variant structural system with the samples 

obtained in last step. 

Step 3: Construct multiple GRUs for conditional uncertain structural response function 

𝑔𝑔𝑖𝑖(𝒛𝒛𝑖𝑖(𝑡𝑡), 𝑡𝑡).  

Step 4: Determine whether active learning is required according to RMSE of test sets. 



Use the query function to update database if necessary. And then, repeat 3-4 until the 

RMSE of test sets is satisfied. 

Step 5: Collect response predictions for 𝒁𝒁𝑚𝑚𝑚𝑚𝑠𝑠 using each GRU. 

Step 6: Obtain training outputs 𝒚𝒚�𝑗𝑗(𝑡𝑡𝑘𝑘)  as the augmented data and build 𝑁𝑁 × 𝑠𝑠  GP 

models for global response analysis of time-variant structural system. 

Step 7: Obtain all the time-variant response predictions for 𝑿𝑿𝑚𝑚𝑚𝑚𝑠𝑠 and calculate the mean 

and standard deviation of system response. 

The flowchart of the proposed ensemble learning method is shown in Fig. 3. 



   

Fig.3 Flowchart of the proposed ensemble learning framework 

4  Numerical example and analysis 

In this section, two engineering examples are considered to verify the effectiveness 

of the proposed approach. All the simulation are carried out by using MATLAB R2020a 



on a 2.90GHz Intel(R) Core(TM) CPU i5-10400. 

4.1 Plane truss structure 

Fig. 4 depicts the geometry of a plane truss structure, which is composed of six 

nodes and nine bars. The plane truss is fixed at point A, hinged at point B and subjected 

to a concentrated stochastic load 𝐹𝐹𝐿𝐿 at point E.  

  

Fig.4 Geometry of the 9-bar truss structure 

In practical engineering, the uncertainties inevitably exist in the truss system. Due 

to the manufacturing error, the cross-sectional area of the connecting rod 𝐴𝐴 (10−4m2) 

and the length of the longest bar 𝑎𝑎(𝑚𝑚) are both treated as a random variable following 

a normal distribution, where 𝐴𝐴 ~ 𝑁𝑁(1, 0.12)  and 𝑎𝑎 ~ 𝑁𝑁(1, 0.12) . Considering the 

unevenness of the material, the Young’s modulus of material 𝐸𝐸  (GPa) is also modeled 

as Gaussian variable, where 𝐸𝐸 ~ 𝑁𝑁(200, 202) . Furthermore, since the influence of 

environmental factors such as humidity and temperature, the material density 

𝜌𝜌(𝑡𝑡) (g/𝑐𝑐𝑚𝑚3) and stochastic load 𝐹𝐹𝐿𝐿(𝑡𝑡) (kN) are assumed to follow a non-stationary 



Gaussian process. Taking the stochastic load as an example, it is characterized by its 

mean function 𝜇𝜇𝐹𝐹𝐿𝐿(𝑡𝑡), standard deviation function 𝜎𝜎𝐹𝐹𝐿𝐿(𝑡𝑡), and autocorrelation function 

𝑝𝑝𝐹𝐹𝐿𝐿(𝑡𝑡), which can be expressed as 

 𝜇𝜇𝐹𝐹𝐿𝐿(𝑡𝑡) = 𝑒𝑒−0.01𝑡𝑡 sin �0.05𝜋𝜋𝑡𝑡 + 𝜋𝜋
4
�+ 𝑚𝑚𝐹𝐹 (25) 

  𝜎𝜎𝐹𝐹𝐿𝐿(𝑡𝑡) = 𝑒𝑒−0.01𝑡𝑡 sin �0.05𝜋𝜋𝑡𝑡 + 𝜋𝜋
4
�+ 𝑠𝑠𝐹𝐹 (26) 

 𝑝𝑝𝐹𝐹𝐿𝐿(𝑡𝑡1, 𝑡𝑡2) = exp �− 0.0001(𝑡𝑡2−𝑡𝑡1)2

𝜆𝜆𝐹𝐹
� (27) 

where 𝑚𝑚𝐹𝐹𝐿𝐿  , 𝑠𝑠𝐹𝐹𝐿𝐿   and 𝜆𝜆𝐹𝐹𝐿𝐿   are assigned to be −1 , 0.08 , 0.005, respectively. Similar to 

stochastic load, the variables 𝑚𝑚𝜌𝜌, 𝑠𝑠𝜌𝜌 and 𝜆𝜆𝜌𝜌 are assigned to be 2, 0.1, 0.01, respectively. 

In this example, the considered time period is 100 𝑠𝑠, which is discretized into 100 time 

nodes. The displacement response at point E is calculated. 

     Firstly, to prepare the training data for the GRU models, eight samples of random 

variables 𝒙𝒙 and stochastic processes 𝒛𝒛(𝑡𝑡) are generated by employing LHS. Then, the 

corresponding time-variant responses are computed based on finite element analysis. 

Given the training data sets, eight GRU models are constructed respectively. Fig. 5(a)-

(b) depicts eight random realizations of the stochastic processes, which are utilized as 

the test set input corresponding to each GRU model. Furthermore, the resultant time-

variant responses are shown in Fig. 5(c). In the GRU model, the layers number of the 

GRU is set to two. Each layer has 50 neurons. The number of layers and neurons is 

decided by manually tuning here. All the GRU models are trained by using Adam 

optimizer to minimize the RMSE with 200 epochs. 



 

(a) 𝜌𝜌(𝑡𝑡)  

 

(b) 𝐹𝐹𝐿𝐿(𝑡𝑡) 
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(c) The displacement of point E 

Fig. 5 Eight realizations of stochastic processes and resultant time-variant responses 

In order to train GRU model better, an active learning strategy is adopted 

according to the RMSE of the test set. Nine sets of weighting and threshold are chose. 

Fig. 6 shows the comparison of the effect of active learning and random sampling under 

different parameter selection. The results demonstrate that active learning can achieve 

better results than random sampling no matter what the parameters are selected. It can 

be seen that the RMSE curve fluctuates greatly during iterations. This phenomenon is 

justified because that the test set is different each time. Therefore, the training accuracy 

of GRU may not be ideal on individual extreme test sets. But the RMSE presents a 

decreasing trend as the number of iterations increases. In addition, the effect of active 

learning becomes worse as the threshold 𝜖𝜖𝑡𝑡ℎ increase. This is because the more severe 

the conditions, the less data will be added to the next round of training, so the training 

results may not be ideal. This is a common trade-off problem in engineering practice, 
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and we need to choose the threshold value according to actual needs. In this case, 𝛼𝛼 =

0.5, 𝛽𝛽 = 0.5 and the threshold 𝜖𝜖𝑡𝑡ℎ is set to 0.2. Fig. 7 depicts the comparison of the 

actual and predicted time-variant responses to demonstrate that the GRU is capable of 

accurately capturing the relationship between the stochastic processes and the time-

variant responses. Fig. 7(a) shows the response comparison of the first GRU on the test 

set implemented randomly and Fig. 7(b) shows the response comparison of the eighth 

GRU on the test set implemented randomly. The results demonstrate that the GRU 

models have been well trained and thus are capable of accurately predicting the time-

variant responses of the conditional uncertain structure with respect to any realizations 

of the stochastic processes.  

For a single GRU network, we recorded the average training time 𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛 = 4.25𝑠𝑠. 

Considering the proposed active learning strategy, the final computational time required 

for iteratively training a GRU network can be expressed as 𝑇𝑇𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓 = 𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛 × 𝐼𝐼𝑡𝑡𝑒𝑒. 𝐼𝐼𝑡𝑡𝑒𝑒 

represents the number of iterations. To avoid too many iterations, the maximum number 

of iterations 𝐼𝐼𝑡𝑡𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚  is adopted and set as 15 according to the experimental results, 

which is shown in Fig. 6(h). It is noted that all the GRU models are trained using the 

NVIDIA GeForce GTX 1650 GPU. Because the call time of a GRU model is extremely 

short. Therefore, the entire process of using the GRU model, including the training 

process, has a very small computational cost compared with MCS, especially when a 

time-consuming finite element analysis needs to be implemented to obtain the structural 

response. 



 
Fig. 6 Comparisons the RMSE of the test set between active learning and random 

sampling: (a) 𝛼𝛼 = 0.2, 𝛽𝛽 = 0.8, 𝜖𝜖𝑡𝑡ℎ = 0.8, (b) 𝛼𝛼 = 0.5, 𝛽𝛽 = 0.5, 𝜖𝜖𝑡𝑡ℎ = 0.8, (c) 𝛼𝛼 =
0.8, 𝛽𝛽 = 0.2, 𝜖𝜖𝑡𝑡ℎ = 0.8, (d) 𝛼𝛼 = 0.2, 𝛽𝛽 = 0.8, 𝜖𝜖𝑡𝑡ℎ = 0.5, (e) 𝛼𝛼 = 0.5, 𝛽𝛽 = 0.5, 𝜖𝜖𝑡𝑡ℎ =

0.5, (f) 𝛼𝛼 = 0.8, 𝛽𝛽 = 0.2, 𝜖𝜖𝑡𝑡ℎ = 0.8, (g) 𝛼𝛼 = 0.2, 𝛽𝛽 = 0.8, 𝜖𝜖𝑡𝑡ℎ = 0.2, 
(h) 𝛼𝛼 = 0.5, 𝛽𝛽 = 0.5, 𝜖𝜖𝑡𝑡ℎ = 0.2, (i) 𝛼𝛼 = 0.8, 𝛽𝛽 = 0.2, 𝜖𝜖𝑡𝑡ℎ = 0.2.
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(b) 

Fig. 7 Comparisons between actual responses and estimations by GRU models 

 For each GRU model, 10000 MCS samples of stochastic processes are generated 

for predicting the time-variant structural responses of the conditional uncertain 

structure response functions, which is the augmented data. After obtaining the 

augmented data, GP models at a specific time and a specific random process can be 

constructed. Then, the response of the time-variant uncertain structure can be calculated 

based on the GP models and 10000 MCS samples of the random variables. To 

demonstrate the accuracy of time-variant response predictions using GP models, Fig. 8 

shows the comparison of the accurate and predicted time-variant responses with respect 

to the 50𝑡𝑡ℎ  and 100 𝑡𝑡ℎ  MCS samples, respectively. The results demonstrate that the 

constructed GP models can effectively handle the time-independent variables, and they 

can provide accurate response predictions for the whole time-series data.  

To validate the accuracy of response analysis, the actual time-variant system 
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responses with respect to the 10000 MCS samples of stochastic process and random 

variable are calculated directly, and their resultant mean and standard deviation are 

computed as the reference solution. For comparison, the response surface method 

(RSM) is adopted here for approximating the time-variant response analysis. The 

comparison between the response obtained by using the proposed approach and the 

RSM is shown in Fig. 9. It can be seen that the mean value obtained by the proposed 

method is almost the same as the reference solutions, and the deviation of the standard 

deviation obtained by the proposed method from the reference solutions is very small. 

This indicates that the proposed method can predict the uncertain system response with 

high precision under the mixed model of random variables and random processes. It 

should be noted that the reference solutions here are obtained by the direct MCS method, 

which includes 10000 × 10000 = 108  calls of the uncertain structural response 

function. Whereas, the proposed method only needs 8 calls of the uncertain structural 

response function to obtain the global surrogate model. The following calculations are 

based on the surrogate model to calculate the mean and standard variance, which 

approaches to the reference solutions very well. Furthermore, by utilizing the same 

number calls of the uncertain structural response function, 100  response surface 

surrogate models in total are constructed at different time instants.  The average relative 

error rate throughout the time period is calculated here to quantify the accuracy. The 

average relative error rate of the mean of displacement at node E calculated by the 

proposed approach and RSM are 4.39% and 10.72%, respectively. As for the standard 

deviation of displacement at node E, the average relative error rate calculated by the 



proposed approach and RSM are 3.85%  and 16.92% , respectively. In comparison, 

with the same amount calls of the uncertain structural response function, the 

computational accuracy obtained by the proposed method is much better. 
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Fig. 8 Comparisons between the actual and estimated time-variant responses 
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Fig. 9 The mean and standard deviation of displacement at node E: (a) mean (b) 
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4.2 Continuum shell structure 

In this section, a continuum shell structure under mixed uncertainty model with 

random variable and stochastic process is considered to investigate the effectiveness of 

proposed method. The shell structure is shown in Fig. 10. It is divided into the 

quadrilateral elements. The number of elements is 16 and the number of nodes is 25. 

The shell structure is excited by a stochastic load 𝐹𝐹(𝑡𝑡) 𝑘𝑘𝑁𝑁 along the 𝑧𝑧 axis at the center. 

All of the edges are fixed.  

 

Fig.10 The shell structure 

Considering manufacturing and assembly errors, The length 𝑙𝑙  (m), width 𝑤𝑤  (m) 

height ℎ  (m) and thickness 𝑑𝑑  (m) of cylindrical shell structure are assumed as random 

variables that follow normal distributions, where 𝑙𝑙 ∽ 𝑁𝑁(50, 52), 𝑤𝑤 ∽ 𝑁𝑁(50, 52), ℎ ∽



𝑁𝑁(25, 2.52)  and 𝑑𝑑 ∽ 𝑁𝑁(0.25, 0.0252) . Considering the uncertainty in material 

properties and the unpredictability of environmental load, the Young’s modulus 𝐸𝐸(𝑡𝑡) 

(GPa), the Poisson's ratio 𝑣𝑣(𝑡𝑡)  and the stochastic load 𝐹𝐹(𝑡𝑡)  are treated as non-

stationary Gaussian process. The detail probabilistic information of each non-stationary 

Gaussian process variables are listed in Table 1. In this study, the time interval [0, 100] 

is discretized into 100 time nodes. 5000 MCS samples are generated for the response 

analysis of time-variant uncertain structures after building the GRU-based ensemble 

learning framework. The displacement response at the thirteenth node is calculated. 

Table 1 The probabilistic information of non-stationary Gaussian process variables 

Variable Mean function Standard deviation function Autocorrelation function 

𝐹𝐹(𝑡𝑡) (kN) 𝑒𝑒−0.01𝑡𝑡 sin �0.05𝜋𝜋𝑡𝑡 +
𝜋𝜋
4� + 5 𝑒𝑒−0.01𝑡𝑡 sin�0.05𝜋𝜋𝑡𝑡 +

𝜋𝜋
4
� + 0.15 𝑒𝑒𝑒𝑒𝑝𝑝 (−0.01(𝑡𝑡2 − 𝑡𝑡1)2) 

𝑣𝑣(𝑡𝑡) 𝑒𝑒−0.01𝑡𝑡−2 + 0.25 2𝑒𝑒−0.01𝑡𝑡−20 + 0.005 𝑒𝑒𝑒𝑒𝑝𝑝 (−
0.1(𝑡𝑡2 − 𝑡𝑡1)2

5 ) 

𝐸𝐸(𝑡𝑡) (GPa) 𝑡𝑡 + 206 0.05𝑡𝑡 + 5 𝑒𝑒𝑒𝑒𝑝𝑝 (−
0.01(𝑡𝑡2 − 𝑡𝑡1)2

3 ) 

  The proposed approach is employed to solve the displacement response problem 

of shell structure, where forty training data sets are utilized for training the GRU models. 

In the GRU model, the layers number of the GRU is set to two. Each layer has 40 

neurons. The GRU models are trained with a maximum epochs 1000. To validate the 

effectiveness of the active learning strategy, the comparison of the effect of active 

learning and random sampling when 𝛼𝛼 = 0.5, 𝛽𝛽 = 0.5 and 𝜖𝜖𝑡𝑡ℎ = 0.2 is shown in Fig. 

11. The results demonstrate that the use of active learning can achieve high training 

accuracy with a relatively small amount of data. At the same time, for large-scale 

engineering problems, less data will reduce training time. The iterative update process 



also makes the proposed method robust. Fig. 12 shows the convergence of the RMSE 

loss function for the first GRU. Similar convergence curves can be observed for other 

GRU models. To validate the accuracy and effectiveness of the GRU, the comparison 

of the actual responses and the predicted responses by the first GRU model on the test 

set implemented randomly is shown in Fig. 13. The results demonstrate that GRU 

models can make accurate response predictions for the conditional uncertain structure 

response functions with respect to any random realizations of the stochastic processes. 

Therefore, although the augmented data are not collected directly from the uncertain 

structural functions, the accuracy is guaranteed due to the good training effect of the 

GRU model. 

 

Fig. 11 The comparison of the effect of active learning and random sampling 
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Fig. 12 Convergence of the loss function for the first GRU model 

 

Fig. 13 Comparisons between actual responses and estimations from GRU models 

For each GRU model, 5000 MCS samples of stochastic processes are fed into to 

obtain the responses of the conditional uncertain structure response functions as 

augmented data. Once all the augmented data have been collected from all GRU models, 
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GP models for modeling the time-variant response can be constructed as introduced in 

Sec. 3.3. Fig. 14 shows the comparison of the accurate and predicted time-variant 

responses with respect to the 100 𝑡𝑡ℎ  MCS samples, which further demonstrates that 

time-variant response predictions can be achieved accurately by utilizing the 

constructed GP models.  

 

 

Fig. 14 Comparisons between the actual and estimated time-variant responses 

To demonstrate the accuracy of the proposed approach, the direct MCS method is 

adopted as the reference solution. In the direct MCS method, the sampling number for 

random variables is 5000 and the sampling number for stochastic processes is also 5000, 

which means the total sampling number is 25000000. It can be seen from the Fig. 15 

that the calculation results of the proposed approach are very consistent with the 

reference solutions calculated by the direct MCS method. Similarly, the RSM method 

is employed for comparison by utilizing the same number calls of the uncertain 
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structural response function. The average relative error rate of the mean of displacement 

at node 13 calculated by the proposed approach and RSM are 1.51%  and 1.71% , 

respectively. As for the standard deviation of displacement at node 13, the average 

relative error rate calculated by the proposed approach and RSM are 2.34%  and 

12.75%, respectively. This further verifies that the proposed approach can be used for 

the response analysis of time-variant uncertain structures with mixed random variables 

and stochastic processes, and can obtain very good accuracy. In addition, compared 

with the calculation amount of 25000000 samplings of the direct MCS method, the 

proposed approach only needs 40  calculations of the uncertain structural response 

function to obtain the global surrogate model, which is very small. Its calculation 

efficiency is much higher than that of the direct MCS method.  
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(b) 

Fig. 15 The mean and standard deviation of displacement at node 13: (a) mean (b) 

standard deviation 

5  Conclusion 

In this paper, a GRU-based ensemble learning framework is proposed, where MCS 

is adopted for the response analysis of time-variant uncertain structures based on the 

combination of GRU networks and the GP modelling technique. By introducing the 

conditional uncertain structural response function, the GRU networks are employed to 

learn the relationship between stochastic processes and time-variant structural 

responses. Given one time-series data, a GRU model can be constructed, which can be 

well-trained and can accurately approximate the conditional uncertain structural 

response function. For multiple sets of time-independent random variables and time-

dependent stochastic processes sampled by LHS, multiple GRU models can be obtained. 
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Based on the MCS samples of stochastic processes, the time-variant response 

predictions can be collected as augmented data through multiple trained GRU models. 

At a specific time instant, GP models are constructed to model the mapping relationship 

between random variables and time-variant structural responses after reorganizing the 

augmented data. As a result, time-variant structural response prediction can be 

calculated based on the GP models with respect to the MCS samples of random 

variables. Two engineering examples, including a plane truss structure and a continuum 

shell structure considering a mixed uncertainty model with random variable and 

stochastic process, verify the effectiveness of the proposed method. Numerical results 

demonstrate that the proposed approach can achieve both accuracy and efficiency. 

Moreover, the proposed approach is capable of accurately predicting the overall time-

variant responses, even if the uncertainty of the time-variant structure is relative large. 

Compared with the direct MCS method, the computational burden of the GRU-based 

ensemble learning framework is much reduced due to the high computational efficiency 

of the GRU local surrogate model and the GP process global surrogate model. Thus, 

the GRU-based ensemble learning framework provides a good platform for the 

response analysis of time-variant uncertain structures. 
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