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Inconsistencies in handling missing data across stages of prediction modelling: 
a review of methods used 

Authors: Tsvetanova et al. 

Dear Editor,  

Thank you for the opportunity to submit the above titled manuscript for consideration of 
publication in the Journal of Clinical Epidemiology. 

Our paper is a review of methods used to handle missing data across the pipeline of a clinical 
prediction model (CPM). Commonly, CPMs are increasingly developed and validated using 
routinely collected data, such as electronic health records, where missing data are present 
and need careful handling. Whilst methods for handling missing data have received 
considerable attention at the development stage of CPMs, we feel that this has been under-
explored in the external validation and implementation stages. In turn, this lack of guidance 
has potentially resulted in inconsistency between imputation methods used across the stages 
of development, validation, and implementation of a CPM. Notably, the extent to which these 
methods are inconsistent is currently unclear.  

In the paper we review twenty three CPMs that are currently recommended for use in the UK 
healthcare and summarise the methods used to handle missing data at the development, 
external validation and implementation stages. This paper will be of a value to those, facing 
the issue of missing data in prediction modelling.  

We have uploaded our manuscript and supplemental material.  

There are no conflicts of interest. 
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Yours sincerely,  
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University of Manchester 
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antonia.tsvetanova@manchester.ac.uk 

Antonia Tsvetanova, BSc (Hons) MRes 
PhD candidate 
University of Manchester 
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Abstract 
Objective:  No clear guidance exists on handling missing data at each stage of developing, 

validating and implementing a clinical prediction model (CPM). We aimed to review the 

approaches to handling missing data that underly the CPMs currently recommended for use 

in UK healthcare. 

Study design and Setting: A methods review to identify CPMs recommended by the National 

Institute for Health and Care Excellence (NICE), which summarized how missing data is 

handled across their pipelines. 

Results: 23 CPMs were included. Six missing data strategies were identified: complete case 

analysis (CCA), multiple imputation, imputation of mean values, k-nearest neighbours 

imputation, using an additional category for missingness, considering missing values as risk-

factor-absent. 52% of the development articles and 48% of the validation articles did not report 

how missing data were handled. CCA was the most common approach used for development 

(40%) and validation (44%). At implementation, 57% of the CPMs required complete data 

entry, whilst 43% allowed missing values. 3 CPMs had consistent paths in their pipelines. 

Conclusion: A broad variety of methods for handling missing data underly the CPMs currently 
recommended for use in UK healthcare. Missing data handling strategies were generally 
inconsistent. Better quality assurance of CPMs needs greater clarity and consistency in 
handling of missing data. 
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Statistical models; Prognosis; Predictive medicine; Missing data; Imputation. 

Running title: Inconsistencies in handling missing data across stages of prediction 

modelling: a review of methods used 
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What is New? 

Key findings 

 To date, missing data has been well-addressed at the development stage of a CPM, 

whilst it has been under-explored in the stages of external validation and 

implementation. 

 Missing data has been generally handled inconsistently across the pipeline of CPMs 

used in the UK healthcare. 

 Missing data and their handling has been poorly reported and accounted for. 

What this adds to what was known 

 No examples in which missing data were allowed in practice and where missing data 

were handled consistently between validation and implementation stages was found. 

What is the implication and what should change now? 

 A framework for handling missing data is needed to quality assure CPM pipelines. 
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1. Introduction 

Clinical prediction models (CPMs) are statistical models or algorithms that use a set of 

predictor variables to calculate an individual’s chance of developing or having a certain 

condition, and thus aid clinicians with the associated clinical reasoning and decision-making1. 

Three major phases can be identified in the CPM pipeline: (i) developing and internally 

validating a CPM; (ii) validating the model on new independent cohorts of patients (external 

validation), potentially adjusting or updating the model as needed; and (iii) implementing the 

model in clinical practice while monitoring its impacts2. 

 

CPMs are increasingly developed and validated using routinely collected data, such as 

electronic health records, where missing data are common and need careful handling in the 

CPM pipeline3,4. A simple, but inefficient (and potentially biased), approach is complete case 

analysis (CCA), where all patients with missing values are excluded. This method is only valid 

in situations where the data are missing completely at random and where there is sufficient 

sample size after missing case deletion to enable robust inference5–7. On the other hand, 

multiple imputation (MI) is often seen as the gold standard as it allows all data to be used, 

makes the weaker missing (not completely) at random assumption, and appropriately 

accounts for uncertainty in the missing data8,9. MI, however, is not easily used in clinical 

contexts, because we are dealing with one patient at the time and it often requires knowledge 

about the outcome that is not yet available10–12. 

 

Whilst methods for handling missing data have received considerable attention at the 

development stage of CPMs, there is a lack of research exploring handling missing data in 

external validation and implementation stages. In turn, this lack of guidance has potentially 

resulted in inconsistency between imputation methods used across the stages of 

development, validation, and implementation of a CPM. However, the extent to which missing 

data handling methods are consistent, or otherwise, across the CPM pipeline is currently 

unclear. Hoogland et al claimed that they have not been able to find an example, in which 

missing data were allowed in practice and where missing data were handled in a consistent 

way across validation and implementation13. Notably, any lack of consistency might lead to 

overly optimistic (or pessimistic) assessments of model performance estimated at 

development and validation stages of a CPM, compared with performance at time of 

implementation14,15. For example, suppose a CPM is developed and validated using CCA, 

then at implementation it is applied to all patients with missing data handled using mean 

imputation – that would be inconsistent because the natural variability of the data will be 

compromised if all the missing values are imputed by the mean of those, which are available. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Consistency of imputation methods across the stages of the CPM pipeline would help ensure 

that the predictive performance reported from external validation studies is based upon 

consistent methods (in terms of handling missing data) with those to be applied when the 

model is implemented.  

 

The aim of this study was to review CPMs recommended for use in UK healthcare and to 

summarise the methods used to address missing data across the models’ (i) development, (ii) 

external validation and (iii) implementation stages – the CPM pipeline. 

2. Methods 

We sought to identify and describe existing clinical prediction models used in UK clinical 

practice, with respect to missing data handling across their CPM pipeline. We only included 

models that are recommended by the National Institute for Health and Care Intelligence 

(NICE), which has a role in weighing the evidence around CPMs. We chose this approach, to 

ensure coverage of the whole CPM pipeline, noting that many models are developed but not 

validated or implemented16. We asked NICE for a list of CPMs they recommend. To widen the 

search, we added further CPMs identified in our earlier research and, we reached-out to the 

scientific community on Twitter. The tweet by AT on March 25th 2020 was seen 11,286 times, 

receiving 8 replies and 13 re-tweets – of these, we only included any CPMs that NICE 

recommends but had not mention in their list. A final list of CPMs was established and data 

were summarized in an information extraction table. 

 

2.1. Search Strategy and selection criteria 
We used Google Scholar to search for the original development papers, and papers that aimed 

to externally validate the CPMs. The search for the original development papers included 

synonyms for [development] combined with [prognostic/predictive/prediction model], and 

[developer’s name], with the latter being identified by using MDCalc free online medical 

reference source17. The search for external validation papers was performed using forward 

citations from each of the original development papers, followed by search within citing articles 

option. This option assures that all the validation articles for the specific CPM, have cited the 

original derivation article of the CPM. The search terms for validation papers included [name 

of the CPM] – both abbreviated and extended. As a pragmatic approach to maintain a viable 

number of papers to screen, we selected the top ten most cited (according to Google scholar 

as-of 18/09/20) validation papers for each CPM. For validation papers, articles were included 

if they: (i) performed independent external validation of the CPMs; or (ii) reported a comparison 

between the CPM of interest and another CPM(s) within independent data. Articles that had a 

primary purpose of developing a new prediction model and comparing it with the CPM of 
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interest were excluded. We preferred to get information on the implementation stage for each 

CPM from documentation provided by the CPMs’ developers. If this was not available, we 

obtained the information from the online tools of the model (e.g., stand-alone online calculator 

website or part of MDCalc). Each tool was tested to assess 1) if it is possible to obtain a 

prediction with missing information or not, and 2) if so, how the missing data were being 

handled by the CPM. The information extraction for all stages was completed on 22/09/20. 

2.2. Data extraction and synthesis  
Data extraction of included articles was completed by one author (AT). Additionally, 10% of 

the data extraction was independently undertaken by a second author (GPM). We categorised 

the eligible articles into two groups: development articles and external validation articles. The 

following details for each paper were extracted:  

(i) For both development and validation studies, general information such as: author, 

year of publication and paper title. 

(ii) For both development and validation studies, data surrounding the source of data 

used (e.g., cohort, case-control, registry), the sample size and the outcome of 

interest. 

(iii) For development studies: the modelling method used (e.g., logistic, survival), and 

software used for analysis. 

(iv) For both development and validation studies, missing data handling approach 

(e.g., complete case analysis, imputation methods, other or none reported). 

(v) For both development and validation studies, model performance, reported 

strengths and limitations of the studies and any stated assumptions made. 

 

Information on the implementation stage of each CPM was extracted from the original online 

calculator of the CPM, or from MDCalc. 

 

The Transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis (TRIPOD) statement has been applied to all the articles included in this review – 

items 9, 13a and 13b18. 

 

When extracting information on missing data, studies that have reported that missing data is 

present, but have not described how it was handled, were put in the category ‘unclear’. This 

was used for item 13b. Studies where no information on the presence of missing data or any 

handling method was reported, were categorised as ‘not reported’. 
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2.3. Definition of consistency across CPM pipeline 

We define ‘consistency’ as where the missing data handling method used at validation is 

compatible with the method to be used at the implementation stage. (Note that no reference 

made to development approach). Compatibility means that the validation approach will 

accurately reflect the performance at implementation under identical missingness 

mechanisms (e.g. in our case, only permitting MAR). The following cases can be considered 

consistent: 

 

(i) Where the same method is used at both validation and implementation stages 

(noting this excludes CCA – all data required, as this requires MCAR, but includes 

MI – MI, although this is never observed in practice.)  

(ii) MI at validation – all data required at implementation, since MI is designed to reflect 

this appropriately under MAR.  

 

For a CPM pipeline to be considered as having compatible missing data handling methods 

across its development, validation and implementation stages, all combinations of methods 

must comply with the above definition.  

3. Results 
The search strategy identified 23 clinical prediction models that met the eligibility criteria, as 

shown on Figure 1. (The original list of all CPMs could be found in Appendix A) Description of 

each CPM and its corresponding external validation papers are summarised in Table 1. 

 

In total, information from 233 articles was extracted. Development articles were available for 

23 out of 24 CPMs. There was one development article (Waterlow Score), for which access 

to the published paper could not be obtained, therefore, we did not consider this model further. 

A total of 210 external validation articles were included in this study. For six out of 23 CPMs, 

there were less than 10 validation papers available, when the search criteria were applied 

(QRISK, Thoracoscore, The Leicester practice risk score, FRAX, BOADICEA and NEWS2).  

3.1. Missing Data  
Six missing data approaches were identified through the literature search within the 

development and validation papers, summarised in table 2. 

 

3.1.1. Missing data handling at Development stage of a CPM 
From the 23 development papers, 12 (52%) did not report how the analysis handled missing 

data. The most common method for missing data handling was CCA, used in ten (44%) 

articled. MI was used in only one development article (4%). 
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3.1.2. Missing data handling at Validation stage of a CPM 
From the 210 external validation articles, the approach to handling missing data was not 

reported in 100 studies (48%). As with the development studies, CCA was the most common 

method used in the validation articles (n=85, 40%). Multiple imputation was used in thirteen 

(6%) of the 210 studies. Twelve studies (6%) used ‘other methods’ such as single imputation, 

k-nearest neighbour (KNN) imputation, additional category for missing values (missing 

indicator method) or missing values considered as normal (e.g., if a comorbidity is not 

recorded, it is assumed to be absent). 

 

3.1.3. Missing data handling at the Implementation stage of a CPM 
When applied to an individual patient during the CPM’s (iii) implementation stage, only one 

(4%) of the 23 CPMs (QRISK254) used mean imputation for a measure of deprivation when 

geographical region is unknown, conditional mean imputation based on ethnicity, age and sex, 

if there are missing values of Cholesterol/HDL ratio, blood pressure and BMI, and it uses zero 

imputation when the SD of the last two blood pressure readings is missing254. Eight CPMs 

(35%) make the assumption for missing values to be the lowest/normal – ABCD2255, TIMI256, 

CRB65257, EuroScore258, FRAX259, CHADVASC260, DG-ROMA261, NEWS2262. Overall, thirteen 

CPMs (57%) require that all data is present when making a prediction at implementation stage; 

these models were Thoracoscore263, NPI264, Leicester Risk Score265, PREDICT266, 

Blatchford267, HAS-BLED268, GRACE269, Framingham270, Gleason271, Braden Scale272, 

APACHE273, APGAR274, MTS76. The remaining CPM – BOADICEA275, (4%) has a category 

‘unknown’ for non-continuous variables, however it is unclear what assumptions have been 

made in relation to missing data handling. 

 

3.2. Consistency of missing data handling across the pipeline of a CPM 
Overall, results showed that missing data were generally handled in an inconsistent way 

across the pipeline of a CPM, according to our definitions of ‘consistency’ as pictured on Figure 

2. Consistent ‘paths’ (MI at validation – All data required at implementation) were observed for 

only three CPMs: Thoracoscore, Manchester Triage system, APGAR score (see 

Supplementary material).  

 

3.3. TRIPOD statement 
Across all the development and external validation articles included, 27 studies (12%) stated 

that potential bias and inconsistency in the results might have occurred owing to missing data. 

Of the development studies, 11 (48%) have followed checklist item 9 from the TRIPOD 

statement, which is to describe how missing data are handled. Similarly, from the 210 external 

validation studies, 112 (53%) have followed checklist item 9. All the development and 
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validation articles have described the flow of participants through the study, including the 

number of participants with and without the outcome and, if applicable, a summary of the 

follow-up time (checklist item 13a from the TRIPOD statement). Of the development studies 

12 (52%) have described the characteristics of the participants, including the number of 

participants with missing data (checklist item 13b). 126 (60%) of the validation studies have 

followed this point. 

4. Discussion 
In this review of CPMs recommended for use by NICE, we showed that there are 

inconsistencies across the CPMs pipeline with regards to missing data handling approaches. 

We found that only three CPMs met one of the two definitions for consistency in handling 

missing data that we have proposed. Indeed, Thoracoscore, Manchester Triage System and 

APGAR score had consistent paths (MI at validation – All data required at implementation). 

We considered this consistent, since MI is designed to reflect this appropriately under the 

weaker MAR assumption for missingness. We did not find any consistency paths where the 

same approach of handling missing data, is used in validation and implementation stages (MI 

– MI). This case has not been observed in practice, perhaps since it is challenging to use MI 

at implementation stage, where extra information and potentially other data is needed. 

Although, CCA – All data required might be also considered as ‘consistent’ by some, since it 

uses the same approach throughout the pipeline, we have excluded it has a possible 

‘consistent’ path option, because it requires the missingness mechanism to be MCAR, which 

is rarely the case. Finally, we did not find any cases where missing data were allowed in 

practice, which is in line with the statement made by Hoogland et al13. It is less clear what the 

prediction made by the CPM will be if we allow missing data to occur at implementation, 

because the missing mechanism is likely to be different from the one at development and 

external validation stages276.  

 

 

CCA was the commonest approach for handling missing data at derivation and external 

validation of a CPM. Almost half of the studies did not report how missing data were handled. 

Furthermore, with exception of a few studies, no assumptions were made explicit in regard to 

the mechanisms of missingness. Overall, only half of the studies have adhered to the items 

from the TRIPOD statement that describe how missing data should be reported277. This could 

be because most of the articles were published before the TRIPOD was published in 2015. 

 

When implementing CPMs in practice, methods for dealing with missing values are often 

driven by practical constraints. Issues with the applicability of multiple imputation (MI) methods 
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arise when the researcher only has access to published parameter estimates (for the CPM). 

For example, during the external validation and implementation stages, to make predictions 

for a new individual with missing data, one would need extra information, such as the 

imputation models and potentially other data. In most cases, this is impractical (for prediction 

models) in real world settings, although a recent work from Nijman et al suggest how this can 

be avoided278. Furthermore, there are alternative to MI methods emerging, such as the pattern 

sub-model, where one fits a pattern mixture model for every missing data pattern, using only 

data from that pattern4.  

 

The issue not well addressed in the literature, however, remains the extent to which these 

methods affect CPM performance. We currently do not know whether there is an effect in 

using different missing data approaches are used across the pipeline, although some of the 

articles suggested that potential bias in the results might have occurred due to missing data. 

One study has stated that ROC, D and R2 statistics were not similar between patients with 

complete data when compared to the results obtained using multiply imputed data set28. 

Another study has stated that the presence of a specific variable could have changed the 

coefficients in the remaining variables32. Furthermore, it has been also pointed out that missing 

data impeded the categorization of some of the patients, which, in turn impaired the ability to 

validate the CPMs more definitively121,251. Many studies have stated that missing data could 

have affected their findings51,54,77,95,238. We propose that the way missing data are handled 

during validation should be compatible to that which will be used when the CPM is 

implemented. Future work should explore the effect of incompatibility in terms of 

reported/estimated predictive performance.  

 

4.1. Strengths and limitations 

To our knowledge, this is the first review of how missing data have been handled across the 

development, external validation and implementation pipeline of CPMs recommended for use 

in UK clinical practice. Although our search for CPMs did not involve a systematic review of 

literature, we used standard reporting guidelines, such as TRIPOD, to evaluate each included 

model. 

 

Our review has certain limitations that are worth mentioning. First, we did not have a 

systematic way to search for CPMs within the NICE guidelines. Therefore, we asked NICE 

directly to provide us with a list of CPM they recommend, the scientific community on Twitter, 

and our research group – of the latter two, we filtered only those CPMs that are recommended 

in the NICE guidelines, in case they were not mentioned by NICE themselves. Therefore, our 

study might suffer lack of generalizability, since other CPMs might be recommended for use 
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in other healthcare settings and our review clearly could not cover all the existing CPMs. 

However, the included models cover a broad spectrum of clinical areas. Second, the external 

validation studies criteria included only the top ten most cited articles for each CPM as a 

pragmatic approach to maintain a viable number of papers to screen. Although there are some 

models, for which the total number of validation studies was less than or equal to 10 (n=7 

CPMs), for the majority of the CPMs, especially those developed before 2010, this inclusion 

criteria would have excluded some validations. Thus, other validation studies might have 

applied alternative imputation strategies to those covered here. 

 

5. Conclusion 
We found considerable diversity, inconsistency and lack of reported detail in how missing data 

are handled across the development, external validation, and implementation stages of 23 

CPMs currently recommended for use in UK healthcare. A framework for handling missing 

data is needed to quality assure CPM pipelines. 
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TABLE TITLES 

 

Table 1. List of CPMs included in this study. 

Table 2. Identified missing data handling methods. 

 

 

FIGURE TITLES AND DESCRIPTION 

Figure 1. CPMs Eligibility criteria. 

 

Figure 2. Missing data handling across the pipeline of a CPM. A Sankey diagram, showing 

different ‘paths’ of handling missing data across the three stages of a CPM’s pipeline. The X 

axis shows the stages of a CPM’s pipeline, whilst the Y axis shows the number possible 

combinations based on the number of validation papers (0 to 210) 

 

SUPPLEMENTARY MATERIAL CAPTION 

Full list of combinations of missing data handling methods across the pipelines of the 

CPMs included in this study showing consistent/inconsistent ‘paths’. 
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CPM identified through 
approaching NICE

N = 16

CPM identified through 
Twitter

N = 2

Total CPMs identified

N = 36

CPMs titles screened

N = 36

CPMs screened through 
a search in the NICE 

guidelines

N = 27

CPMs articles included 
in the analysis

N = 23

CPM known to the 
authors and their 

research group a priori

N = 18

Excluded articles: Not a 
CPM, either checklists 

or questionnaires

N = 9

Excluded articles: Not in 
NICE; No access to 

development article

N = 4
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CPM Description Validation 
articles 

QRISK18–20  10-year risk of 

developing CVD 
21–29 

Thoracoscore30 NSCLC pre-operative 

risk of death 
31–39 

Nottingham Prognostic index40 Risk of recurrence 

and overall survival 

in breast cancer 

41–50 

The Leicester practice risk score51  Screening for 

undiagnosed T2DM 
52,53 

PREDICT54 Breast and prostate 

cancers 
55–64 

FRAX65 10-year risk of 

developing 

osteoporotic & hip 

fracture 

66–74 

Manchester Triage System75 Assign clinical priority 

to patients 
76–85 

CRB6586 Assessment of 

community acquired 

pneumonia 

87–96 

Blatchford97 Upper 

Gastrointestinal 

bleeding 

98–107 

APGAR108 Evaluate the 

prognosis of a 

newborn baby 

109–118 

ABCD2119 Stroke/Transient 

ischaemic attack 
120–129 

GRACE130 Adverse CVD 

outcomes 
131–140 

APACHE141 ICU scoring systems 

for predicting 

mortality 

142–151 

CHADVASC152 Atrial fibrillation 

stroke risk  
153–162 

DG-ROMA163 Risk of ovarian 

malignancy 
164–173 

TIMI174 Thrombolysis in 

myocardial infarction 
175–183, 

HAS-BLED184 Major Bleeding risk  185–194 

BOADICEA195 Breast cancer risk 

prediction model 
196–201 

Gleason score202 Prostate cancer 203–212 

Braden Scale213 Predicting pressure 

ulcer risk  
214–223 

EuroScore224 Short-term mortality 

after cardiac surgery 
225–234 
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Framingham235 Risk of CVD over 10 

years 
236–245 

NEWS2246 Identifying acutely ill 

patients 
247–252 

   

 



Method Development Validation Implementation 

 Pros Cons Pros Cons Pros Cons 

Complete Case 
Analysis 

Simple Loss of information Simple Selection bias N/A 
Equivalent of CCA 
for Implementation: 
“Model requires all 

data” 
 

N/A 
Equivalent of CCA for 

Implementation: 
“Model requires all 

data” 
  

Mean Imputation Short 
computation 

time 

Only works for the 
average individual 

Short 
computation 

time 

Only works for the 
average individual 

Computationally 
achievable 

Only works for the 
average individual 

Multiple 
Imputation 

Original 
data/Conditio

nal 
distribution 

High computational 
cost; Large 

bias/trade-off for 
MNAR 

Resembling a 
‘real-world’ 
situation 

High computational 
cost; Large 

bias/trade-off for 
MNAR 

Original 
data/Conditional 

distribution 

Cannot be applied to 
an individual patient; 
Outcome required 

KNN imputation Can be more 
accurate 

than 
mean/media
n imputation 

High computational 
cost; Sensitive to 

outliers 

Can be more 
accurate than 
mean/median 

imputation 

High computational 
cost; Sensitive to 

outliers 

N/A N/A 

Additional 
Category for 
Missingness 

Simple Known to be biased, 
even in MCAR 

Simple Unstable to 
changes in 

missingness 
mechanism 

No loss of 
information 

Unstable to changes 
in missingness 

mechanism 

Missing values 
considered as 

Normal 

None Simple Will be 
biased even 

in MCAR 

simple Biased Simple Bias 
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Model requires 
all data 

All information 
needed 

N/A 
Only 

applicable to 
implementati

on stage 

N/A 
Only 

applicable to 
implementati

on stage 

N/A 
Only applicable 

to 
implementation 

stage 

N/A 
Only 

applicable 
to 

implement
ation stage 

No 
loss of 
inform
ation 

Cannot be applied to 
individuals with missing 

values 

 



CPM review Antonia Tsvetanova 

Conflicts of interest: none to declare 

Conflict of Interest



  

Appendix A

Click here to access/download
Supplementary Material

Appendix A_Antonia Tsvetanova.docx

https://www.editorialmanager.com/jcepi/download.aspx?id=75574&guid=042c79dc-0377-44c2-9c68-7f82c4d79939&scheme=1


  

Supplementary Material

Click here to access/download
Supplementary Material

Supplementary Material_Antonia Tsvetanova.csv

https://www.editorialmanager.com/jcepi/download.aspx?id=75575&guid=bd536c07-7b38-4448-8143-5c38fb659829&scheme=1

