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Abstract—Achieving a low or zero carbon target is to re-
duce the energy demand and improve the energy efficiency of
electricity consumers. One of the main electricity consumers
in power systems is heating, ventilation, and air conditioning
systems (HVACs), which cost around 30% of the total usage
in commercial buildings. This paper investigates the scheduling
problem of HVAC energy consumption taking into account two
uncertainties: the outdoor temperature and human activities.
The distributionally robust optimisation approach (DROA) is
extended to deal with these two uncertainties which are modelled
by the proposed disjoint layered ambiguity sets according to
the historical data. Based on the proposed DROA method,
the distributionally robust chance constraints (DRCCs) will be
formulated as a nonlinear optimisation problem, converted into
a linear optimisation problem using duality theorem and solved
using SeDuMi solver. The simulation results are used to compare
with the existing methods, which shows that the proposed
DROA can decrease 2.81% and 0.14% of the electricity cost in
comparison with the traditional RO method and the DROA based
on a nest layered ambiguity set, respectively. Also, the proposed
DROA decreases the number and maximum of violations from
the comfort level of users. The multi-zone HVAC system model
is used in the case study to verify the proposed DROA with
the disjoint ambiguity set. The consecutive simulation results
illustrate that the proposed DROA approach can provide a stable
performance in a three-day scheduling period.

Index Terms—Distributionally robust optimisation, energy con-
sumption scheduling, HVAC, demand response.

NOMENCLATURE

θref
t The indoor temperature at time t.
T out
t−1 The actual outdoor temperature at time slot t-1.

µt The forecast outdoor temperature at time slot t.
ϕt The forecast of the number of people indoors.
Nt The number of people indoors.
qH A stable heat source.
η1 The heat transfer coefficient of the human body.
pijt The probability of ωt ∈ Bij

t .
Bij

t The two-dimensional interval that encompasses
the outdoor temperature and the number of
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humans indoors.
Bt The maximum interval.
Pij
t The probability distributions of T out

t and Nt.
P0
t (B

ij
t ) The set of all the probability distributions

included in Bt.
P1
t The proposed disjoint layered ambiguity set

that is built using the probabilities of the
disjoint uncertainty intervals.

m The number of the outdoor temperature
intervals in the ambiguity set.

θt The indoor temperature at time t.
θmax The upper bound of the comfort indoor

temperature zone.
θmin The lower bound of the comfort indoor

temperature zone.
T The scheduling horizon.
∆t The time period.
qt−1 The energy consumption of HVAC at

time period t− 1.
qref
t The reference power of HVAC.
qmax The maximum energy consumption of HVAC.
C, R, η The coefficients of the HVAC system.
et The electricity price at time period t.
ϵ The violation probability of HVAC power

consumption.
β, y, λi Auxiliary variables.
lit, ui

t The lower and upper bounds for ‘T out
t ’.

kjt , hj
t The lower and upper bounds for ‘Nt’.

β, y Auxiliary variables.
λij , y Dual variables.

I. INTRODUCTION

Nowadays, energy has already become an essential part of
our daily lives. It has been predicted that energy consumption
across the world will rise by approximately 35% in the
next decade due to increasing consumer demands [1]. The
increasing energy demand is often accompanied by energy
conservation concerns and it has become a challenge to zero
carbon emissions target [2], [3]. According to [4]–[6], com-
mercial sectors is considered that around 80% of people’s time
is spent indoors and HVAC systems occupy more than 20% of
the total energy consumption in the USA. In the Southeastern
cities of China during summer time, there are 30% to 40% of
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total load demand consumed by the residential air conditioning
load [7]. For achieving the zero carbon target, it is necessary to
reduce energy demand and to improve energy management in
commercial, industrial and residential buildings by scheduling
the energyst Energy Consumption Scheduling of HVAC based
on consumption of HVAC intelligently [8].

The building energy use is influenced by two factors:
building system and occupant behaviour. Researchers have
obtained numerous achievements in the area of building
system, such as [1], which proposed the building energy
consumption optimisation based on the factors of the phys-
ical design, e.g., building features and the effect of outdoor
temperature instead of the interaction effect from buildings
to occupants. On the other hand, there is only tiny minority
of the researchers studying occupant behaviour [9], [10]. [11]
provides the American Society of Heating, Refrigeration, and
Air-Conditioning Engineers (ASHRAE) Standard 90.1, which
only concentrates on building systems such as HVAC, building
envelopes system and lighting system, and it does not focus
on the occupant behaviour. In [9], the author point out that
the Net Zero Energy (NZE) buildings can not achieve the
objective because the occupants are not willing to follow
the original architectural concept of the NZE buildings. In
building performance simulation, some representative profiles
of the deterministic occupant status are utilised, which leads to
incorrect simulation results of the total energy use in buildings
[12]. A fixed operation schedule according to some customer
surveys or certain standards such as ASHRAE is utilised by
some conventional building systems [13] and results in energy
waste and the uncomfortableness of occupants [14].

Therefore, the detecting and modelling of occupant be-
haviours are necessary for the energy consumption of buildings
by scheduling the energy consumption of HVAC [15]. The
accurate estimation of occupant behaviours ensures the con-
sistency between the simulation results of the user’s energy
consumption and the user’s actual energy consumption [16].
Also, the accurate estimation of occupant behaviours can
result in significant savings in the HVAC energy consumption
schedule [1]. Besides, the information collection of occupant
behaviours can improve building performance and services
to all occupants [12]. In order to address the inaccurate
estimation of occupant behaviours and low energy efficiency
of the HVAC system, this paper investigates the scheduling
problem of HVAC energy consumption taking into account two
uncertainties: the outdoor temperature and human activities
(occupant behaviour). According to existing research, the
human comfort level is highly affected by the error of the
outdoor temperature forecast [5] which is one of the main
concerns in the HVAC energy consumption scheduling [17].

To tackle the uncertainty of the forecast error to the schedul-
ing, many papers focus on the optimisation-based method
[18] - [19]. For example, a neural network (NN) based
approach and the stochastic optimisation approach (SOA) to
calculate the consumed HVAC energy are proposed in [18],
[20], respectively. However, these methods require numerous
data of the historical temperature or a specific probability
distribution of the outdoor temperature, which are not practical
in real implementation. Furthermore, the decision is vulnerable

to risk if the consumed energy is scheduled based on the
temperature with a pre-defined distribution. On the other hand,
a robust optimisation approach (ROA) is proposed in [19] to
deal with the forecast error by considering the worst situation
in the scheduling. ROA does not require the exact probability
distribution of the temperature, however, this method is too
conservative to calculate the solution of the scheduling because
the ROA sacrifice its performance for enhancing the robustness
to the maximum forecast error.

Different from SOA and ROA, the distributionally robust
optimisation approach (DROA) utilises historical data to build
an ambiguity set that presents the probability information of
the outdoor temperature such that the uncertain variables do
not need to be assumed while reducing the conservativeness by
incorporating observed probabilistic information [21]. Existing
research [5] about the DROA was proposed based on a nest
layered ambiguity set which divides the probability distribu-
tion into multiple subintervals. This method is proved to be
able to deal with the uncertainty of the outdoor temperature.
However, the nest layered ambiguity set is interlaced together
and the repeated used subintervals assume that the distribution
of the uncertain temperature is symmetrical [22].

In this paper, the DROA based on the disjoint layered
ambiguity set is proposed. Furthermore, the ambiguity set
is extended into two dimensions: outdoor temperature and
human activity. The proposed DROA divides the distribu-
tion into several independent disjoint subintervals and the
probability information with respect to each subinterval has
a low correlation to others. This advantage further reduce
the conservativeness of the optimisation of the HVAC energy
consumption scheduling. The nonlinear optimisation problem
is expressed as a nonlinear problem with DRCCs and is
reformulated into a linear problem via duality theorem and
solved by the SeDuMi solver provided by the Yalmip toolbox.
In comparison, the DROA based on a nest layered ambiguity
set [5] and the ROA are also implemented, whose electricity
cost, and the number and maximum of violations from a user’s
thermal comfort zone are used to compare with the proposed
approach. In addition, the multi-zone HVAC system model and
consecutive simulation are also implemented and considered
in the case studies to verify the effectiveness and the advantage
of the proposed approach in complex models and consecutive
scenarios.

The main contributions of this paper are shown below:
• The HVAC energy consumption scheduling problem and

the corresponding solution methodology have been ex-
tended and consider the aforementioned two uncertain-
ties.

• The proposed DROA is developed to deal with these
two uncertainties, which are modelled by the proposed
disjoint layered ambiguity sets. The historical data of
outdoor temperature and the number of humans in a
conference room are utilised in this proposed method.

• The HVAC energy consumption scheduling problem is
formulated and solved as a linear programming problem
after reformulating DRCCs.

The remaining part of the paper is organized as follows.
The HVAC energy consumption scheduling is formulated as
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an optimisation problem with DRCC considering two uncer-
tainties is introduced in Section II and Section III presents the
solution methodology to this nonlinear optimisation problem.
The simulation results are given in Section IV to verify the
effectiveness of the proposed DROA under two uncertainties
and the conclusions are given in V.

II. PROBLEM FORMULATION CONSIDERING DOUBLE
UNCERTAINTIES

In this section, the HVAC energy consumption scheduling
considering two uncertainties, i.e., forecast errors of the tem-
perature and human activities is formulated as a nonlinear
optimisation problem. Then, the proposed disjoint layered
ambiguity sets are built based on the uncertainties. Finally, the
HVAC’s energy consumption optimisation model is demon-
strated.

A. HVAC system model considering temperature and human
activity

1) HVAC system model: The HVAC system model is given
by the followed equations which has been illustrated in exist-
ing paper [5], [22]:

θref
t = θt−1 −

∆t

C ·R
· (θt−1 − T out

t−1 + η ·R · qt−1) (1)

where ∆t is the time period; θref
t , T out

t−1, qt−1 are the indoor
temperature at time t, the actual outdoor temperature and the
power consumption of HVAC, respectively. The C(kWh/◦F),
R(◦F/kW), and η are thermal capacity, thermal resistance
and coefficient of the functioning of HVAC, respectively.
HVAC system model with the constant values of C(kWh/◦F),
η, R(◦F/kW) cannot represent the real thermal dynamics.
However, the time varying parameters of HVAC systems is
complex for some control and optimisation applications. This
simplification is acceptable for the proposed methodology, and
used by the recent research of the HVAC optimisation problem
[3], [5], [23], [24].

2) Human activity model: The human is a heat source and
the effect of indoor human activity needs to be included in
the HVAC’s energy scheduling [25]. In this paper, the human
activity (∆Ta) is defined as the indoor temperature variation
caused by humans, which is shown as follows:

∆Ta = η1 ·R ·Nt · qH (2)

where η1 is the heat transfer coefficient of the human body,
qH is the heat generated by one human body (100 watt/hour),
Nt is the number of humans.

3) HVAC considering human activity: Integrate the above
two models together, a completed indoor temperature model
that combines the weather forecast error, the HVAC system
and human activities is built as follows:

θref
t = θt−1−

∆t

C ·R
·(θt−1−T out

t−1+η·R·qt−1+η1·R·Nt−1·qH)

(3)
The influence of the outdoor temperature forecast error and

the difference of the number of people indoors can be elimi-
nated by DROA due to the fact that the energy consumption

of HVAC is constantly adjusted according to the forecast error
of the outdoor temperature and the number of people indoors.

qt = qref
t +

1

η ·R
· (T out

t − µt)−
η1
η

· qH · (Nt − ϕt) (4a)

Pt{qt ≥ 0} ≥ 1− ε,∀Pt ∈ P1
t (4b)

Pt{qt ≤ qmax} ≥ 1− ε, ∀Pt ∈ P1
t (4c)

where qreft and qmax are the reference power and the maximum
power consumption of HVAC, respectively. µt and ϕt are
expressed as the forecast of the outdoor temperature and the
number of humans, respectively.

In conventional approaches, the constraint of 0 ≤ qt ≤ qmax
t

was used for HVAC power consumption scheduling [17].
However, [5] points out that 0 ≤ qt ≤ qmax

t is too conservative
to schedule the HVAC’s power consumption. This results in
higher electricity cost for users. To reduce the conservative-
ness, distributionally robust chance constraints (DRCCs) is
used in this paper following the research in [5] and [21].
The DRCCs approach introduces two extra constraints (4b)
and (4c) into the model. These two constraints make the
power consumption qt possible to excess its limit with the
possibility of ε, which reduces the conservativeness but also
makes the original problem nonlinear. Section III will discuss
the transformation of this nonlinear problem into the linear.

B. Modified optimisation model of HVAC’s energy consump-
tion scheduling

The objective of this modified HVAC energy consumption
scheduling optimisation model considering double uncertain-
ties is to minimise the electricity cost and satisfy customer’s
indoor temperature thermal comfort zone by scheduling the
power consumption of HVAC qreft . The parameters of the
model, i.e. the electricity price and the consumer’s preset
comfort indoor temperature zone, is provided by [5], [22]. The
HVAC’s energy consumption optimisation model considering
the uncertainties of outdoor temperature and human activities
is formulated with the proposed disjoint layered ambiguity set
as follows:

min
qref
t

E{
T∑

t=1

(et · qt ·∆t)} (5a)

s.t. θref
t = θt−1 −

∆t

C ·R
· (θt−1 − T out

t−1 + η ·R · qt−1

(5b)
+ η1 ·R ·Nt−1 · qH)

qt = qref
t +

1

η ·R
· (T out

t − µt)−
η1
η

· qH · (Nt − ϕt)

(5c)

θmin ≤ θreft ≤ θmax (5d)
Pt{qt ≥ 0} ≥ 1− ε, ∀Pt ∈ P1

t (5e)
Pt{qt ≤ qmax} ≥ 1− ε, ∀Pt ∈ P1

t (5f)

where et is denoted as the electricity price at time period
t. The comfortable indoor temperature zone boundaries are
limited to θmax and θmin respectively. The scheduling horizon
is expressed as T .
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C. Disjoint layered ambiguity set

The distributionally robust optimisation approach (DROA)
is a data-driven method and it does not rely on a specific
probability distribution, in contrast, it can obtain probability
information obtained from historical data. By introducing the
soft margin of the energy limit and incorporating observed
probabilistic information, the DROA can reduce the conser-
vativeness significantly [21]. In this subsection, the historical
data of the outdoor temperature and the number of humans
is used to generate a disjoint layered ambiguity set, which
contains the probability information of these two variables.

The proposed DROA based on a disjoint layered ambiguity
set considers the forecast error of the outdoor temperature and
the forecast error of the number of people in a conference
room. The proposed ambiguity set is established as follows,

P1
t =

{
Pt ∈ P0

t (Bt)

EPt{ωt} = ρt

ωt = (T out
t , Nt)

T,ρt = (µt, ϕt)
T

Pt{ωt ∈ Bij
t } = pijt , i = 1, · · · ,m,

j = 1, · · · , n
Bt = {ωt ∈ R2|

T out(min)
t ≤ T out

t ≤ T out(max)
t

Nmin
t ≤ Nt ≤ Nmax

t }
Bij
t = {ωt ∈ R2|

lit ≤ T out
t ≤ ui

t

kjt ≤ Nt ≤ hj
t}

∀i, j ≤ m,Bij
t ⊆ Bt, Pt = 1

m∑
i=1

n∑
j=1

Bij
t = Bt,

m∑
i=1

n∑
j=1

pijt = Pt

}

(6)

where pijt denotes the probability of ωt ∈ Bij
t . The number

of outdoor temperature intervals and the number of human
activities intervals in the ambiguity set are expressed as m
and n respectively. Bij

t is the two-dimensional interval which
includes the outdoor temperature and the number of humans
in the conference room. The probability distributions of T out

t

and Nt are represented by Pij
t . Bt is the maximum interval.

The set of all the probability distributions included in Bt is
expressed by P0

t (B
ij
t ). P1

t is the proposed disjoint layered
ambiguity set that is built using the probabilities of the disjoint
outdoor temperature subintervals and the number of humans
in the conference room. For P1

t , the lower and upper bounds
for ‘T out

t ’ are shown below:

lit = T out(min)
t + (i− 1) · T out(max)

t −T out(min)
t

m

ui
t = T out(min)

t + i · T out(max)
t −T out(min)

t

m , i = 1, 2, · · · ,m.
(7)

For P1
t , the lower and upper bounds for ‘Nt’ are shown

below:

kjt = Nmin
t + (j − 1) · Nmax

t −Nmin
t

m

hj
t = Nmin

t + j · Nmax
t −Nmin

t

m , j = 1, 2, · · · , n.
(8)

Fig. 1 and Fig. 2 depict the example of a disjoint layered
ambiguity set with m = n = 3 for P1

t and a nest layered
ambiguity set with m = n = 5 for P1

t respectively.
Unlike [22], the human activity model has been built first

according to the number of people in a conference room,

and the modified model of the HVAC system is established
with the consideration of this human activity model. Based on
historical data of the forecast of human activities and outdoor
temperature, the proposed disjoint layered ambiguity set is
built.

Fig. 1. Disjoint layered ambiguity set

Fig. 2. Nest layered ambiguity set

III. REFORMULATION OF DRCCS

As mentioned, to reduce the conservativeness of the opti-
misation problem, the DRCCs are introduced and makes the
HVAC energy consumption scheduling problem a nonlinear
problem. In this section, a reformulation via Theorem 1 is
utilised to convert the nonlinear optimisation problem into a
linear problem, i.e., constraints (5e) and (5f) are converted to
(13a) - (13i) such that the HVAC scheduling problem can be
solved by a linear solver.

Equations (5e) and (5f) are transformed uniformly into

Pt{at · ωt ≤ ct} ≥ 1− ε, ∀Pt ∈ P1
t (9)

where at and ct are calculated in Table I for (4b) and (4c). The
values of at and ct are different from [22] because the equation
for real-time power consumption of HVAC qt is modified in
this paper based on the uncertainties of outdoor temperature
and number of humans in a conference room. It has been
proven that [26]

P-CVaRε(L(ξ)) = inf
β∈R

{
β + 1

εEP{(L(ξ)− β)+}
}

(10)

CVaR has an appealing feature, which is the convex and
conservative approximation of the DRCCs [27]. It has been
proven that [26]
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Pt - CVaRε(at · ωt − ct) ≤ 0
⇒ Pt{at · ωt ≤ ct} ≥ 1− ε

(11)

On the basis of (10), equation (9) can be met if:

Pt-CVaRε(at · ωt − ct) ≤ 0, ∀Pt ∈ P1
t (12)

where at and ωt are row and column vectors with two
elements respectively. The equivalent linear constraint refor-
mulation is admitted by equation (12) due to the convexity of
CVaR [27].

TABLE I
EXPRESSIONS OF at AND ct

s.t. at ct
(5e) [− 1

η·R
η1
η

· qH ] −qref
t + 1

η·R · µt − η1
η

· qH · ϕt

(5f) [ 1
η·R − η1

η
· qH ] qref

t − qmax − 1
η·R · µt +

η1
η

· qH · ϕt

Theorem 1: For the purpose of constructing the proposed
disjoint layered ambiguity set P1

t , the equation (12) can be
satisfied if there exist λij ∈ R, i=1, · · · ,m, j=1, · · · , n, y ∈
R2, β ∈ R, such that

β +
1

ε
· (ρT

ty +

m∑
i=1

n∑
j=1

λij · P ij
t ) ≤ 0 (13a)

[lit kjt ]y +

m∑
i=1

n∑
j=1

λij ≥ 0 (13b)

[lit hj
t ]y +

m∑
i=1

n∑
j=1

λij ≥ 0 (13c)

[ui
t kjt ]y +

m∑
i=1

n∑
j=1

λij ≥ 0 (13d)

[ui
t hj

t ]y +

m∑
i=1

n∑
j=1

λij ≥ 0 (13e)

[lit kjt ]y +

m∑
i=1

n∑
j=1

λij − ([lit kjt ]at − ct − β) ≥ 0 (13f)

[lit hj
t ]y +

m∑
i=1

n∑
j=1

λij − ([lit hj
t ]at − ct − β) ≥ 0 (13g)

[ui
t kjt ]y +

m∑
i=1

n∑
j=1

λij − ([ui
t kjt ]at − ct − β) ≥ 0 (13h)

[ui
t hj

t ]y +

m∑
i=1

n∑
j=1

λij − ([ui
t hj

t ]at − ct − β) ≥ 0 (13i)

Proof: To start with, equation (12) is equivalent to:

sup
Pt∈P1

t

inf
β∈R

{
β +

1

ε
EPt

{(at · ωt − ct − β)+}
}

= inf
β∈R

{
β +

1

ε
sup

Pt∈P1
t

EPt
{(at · ωt − ct − β)+}

}
≤ 0 (14)

The exchange of inf and sup is supported by a stochastic saddle
point theorem [28]. Equation (14) can be reformulated if the
following part as the worst-case expectation is reconsidered:

sup
Pt∈P1

t

EPt
{(at · ωt − ct − β)+} (15)

The proposed disjoint ambiguity set can be built based on
several possible distributions due to the unknown probability
distribution of the number of people indoors and outdoor
temperature. Equation (15) can be formed as an infinite
dimensional linear optimisation problem, which is expressed
as:

min
∫
Bt

−(at · ωt − ct − β)+Pt(dωt) (16a)

s.t.
∫
Bt

ωtPt(dωt)− ρt = 0 (16b)∫
Bt

IBij
t
Pt(dωt)− pijt = 0 (16c)

Constraint (16) can be rewritten using duality theorem, which
introduces dual variables λij and y.

min
∫
Bt

−(at · ωt − ct − β)+Pt(dωt) + y · (
∫
Bt

ωtPt(dωt)

− ρt) +

m∑
i=1

n∑
j=1

λij · (
∫
Bt

IBij
t
Pt(dωt)− pijt ) (17)

which equals to

min − y · ρt −
m∑
i=1

n∑
j=1

λijP
ij
t +

∫
Bt

[y · ωt +

m∑
i=1

n∑
j=1

λij · IijBt − (at · ωt − ct − β)+]Pt(dωt) (18)

Notice that IBij
t

= 0 if ωt /∈ Bij
t . Then the constraint (16)

becomes:

inf
λij ,y

ρt · y +

m∑
i=1

n∑
j=1

λij · pijt (19a)

s.t. λij ∈ R, y ∈ R2, i = 1, · · · ,m, j = 1, · · · , n (19b)

inf
ωt∈Bt

y · ωt +

m∑
i=1

n∑
j=1

λij · IBij
t
− (at · ωt − ct − β)+


≥ 0. (19c)

The derived constraint (19) is a finite two-dimensional
HVAC energy consumption scheduling optimisation problem
and Bt is divided to m× n mutually disjoint sets Rij

t = Bij
t ,

i = 1, · · · ,m, j = 1, · · · , n, (19c) becomes the following:

inf
ωt∈Rij

t

{
y · ωt +

∑m
i=1

∑n
j=1 λij − (at · ωt − ct − β)+

}
≥ 0, ∀i = 1, · · · ,m, ∀j = 1, · · · , n (20)

Furthermore, (20) converts to

inf
ωt∈Bij

t

{
y · ωt +

∑m
i=1

∑n
j=1 λij − (at · ωt − ct − β)+

}
≥ 0, ∀i = 1, · · · ,m, ∀j = 1, · · · , n (21)

The equation (21) can be met if and only if ∀i = 1, · · · ,m,
∀j = 1, · · · , n, the linear reformulation of equation (12) has
been proved and the HVAC optimisation model can be solved
by linear programming. ■
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IV. SIMULATION RESULTS

A. Case study formulation

The HVAC energy consumption has been scheduled for 12
hours ahead with the time slot T given as 24. The scheduling
cycle is between 9 am and 9 pm, and samples have been taken
every half an hour (the total time slots are 24) [20]. The pa-
rameters of the HVAC energy consumption scheduling system
is shown in Table II. The forecast of outdoor temperature is
based on the historical temperature data taken from Austin on
the 6th of August 2013 between 9 am to 9 pm [29].

Required first for the proposed method is the historical data
of outdoor temperature to encode probabilistic information.
To best simulate the historical data of outdoor temperature
and drive the ambiguity set P1

t , 10000 samples have been
generated from the forecast of outdoor temperatures, following
the normal distribution with the standard deviation given by
2.5 [19].

TABLE II
PARAMETERS OF HVAC ENERGY CONSUMPTION SCHEDULING [5]

Parameter Value Units
C 0.33 kWh/◦F
R 13.5 ◦F/kW
η 2.2
qmax 3.5 kW
∆t 30 minutes
m 15
n 15
θmin 60 ◦F
θmax 70 ◦F

Required second for the proposed method is historical data
of the number of humans (NH) in the conference room with
different time slots. This is shown below in the Table III and
is derived from the data given by the University of Liverpool
[30]. To accurately simulate the historical data of the number
of humans and drive the ambiguity set P1

t , 10000 samples have
been generated from the forecast of number of humans, follow-
ing normal distribution with the standard deviation given by
1. The scheduling of the HVAC reference power consumption
(qref

t ) considers the forecast error of the outdoor temperature
and the number of humans in a conference room. The real-
time HVAC power consumption can be modified according
to both of these uncertainties and qref

t to maintain the indoor
temperature within the human comfort zone.

The optimisation problem: the proposed DROA considering
the uncertainty of outdoor temperature and the human activity
in a conference room is implemented using MATLAB with
YALMIP toolbox [31] and solved by the SeDuMi [32]. The
model of the HVAC system is implemented together with
the DRCC as the constraints of the optimisation problem.
The optimisation solves the reference value of the consumed
energy qt. The simulation environment is MATLAB. The
model of the HVAC system is implemented as a discrete
recursive model using the solved qt as input.

B. Performance comparison of the three methods

The proposed DROA based on a disjoint layered ambiguity
set is in comparison with two different methods to solve the

TABLE III
THE NUMBER OF HUMANS IN THE CONFERENCE ROOM WITH DIFFERENT

TIME SLOTS [30]

Time 9:00am-9:30am 9:30am-10:00am 10:00am-10:30am
NH 57 66 75

Time 10:30am-11:00am 11:00am-11:30am 11:30am-12:00pm
NH 69 78 91

Time 12:00pm-12:30pm 12:30pm-13:00pm 13:00pm-13:30pm
NH 101 126 142

Time 13:30pm-14:00pm 14:00pm-14:30pm 14:30pm-15:00pm
NH 143 127 95

Time 15:00pm-15:30pm 15:30pm-16:00pm 16:00pm-16:30pm
NH 86 88 105

Time 16:30pm-17:00pm 17:00pm-17:30pm 17:30pm-18:00pm
NH 104 137 150

Time 18:00pm-18:30pm 18:30pm-19:00pm 19:00pm-19:30pm
NH 153 129 101

Time 19:30pm-20:00pm 20:00pm-20:30pm 20:30pm-21:00pm
NH 99 84 66

HVAC energy consumption scheduling problem considering
two uncertainties, which are weather forecast error and human
activities. The latter is the fluctuating number of humans
within a conference room given in different time slots. For
practicality, the three methods are named M1, M2 and M3.

• M1: The traditional ROA method consider the worst
condition and it does not allow any violation of the indoor
temperature, as shown by the followed robust constraints.

qt ≥ 0,∀ωt ∈ Bij
t (22a)

qt ≤ qmax,∀ωt ∈ Bij
t . (22b)

• M2: The DROA approach with a nest layered ambiguity
set considers probabilistic information of two uncertain-
ties, which is proposed in [5].

• M3: The proposed DROA approach based on a disjoint
layered ambiguity set.

An example will be given to clearly illustrate the calculation
of the ambiguity set. For simplification, the ambiguity set for
the first time slot (t=1) is calculated. An assumption has been
made as only 10 sets of historical data for t=1 and 3 layers
for each dimension have been utilised (In fact, 10000 sets of
historical data will be utilised in the following case studies).
The outdoor temperature is T= [98.04, 100.11, 96.38, 98.43,
95.09, 94.32, 102.85, 98.39, 95.16, 101.37], the human number
Nt is [57, 66, 75, 69, 78, 91, 101, 126, 142, 143]. Firstly, we
will divide the data into 3 groups according to equations (7)
and (8). Then the outdoor temperature becomes T= [[102.85,
101.37], [100.11, 98.43, 98.39, 98.04], [96.38, 95.16, 95.09,
94.32]] and the human number become Nt = [[143, 142, 126],
[101, 91], [78, 69, 75, 66, 57]]. Secondly, the probability of the
T and Nt belonging to each group are [0.2, 0.4, 0.4] and [0.3,
0.2, 0.5], respectively. Finally, the probability information in
the ambiguity set is shown below: 0.06 0.04 0.1

0.12 0.08 0.2
0.2 0.08 0.2

 (23)

The meaning of pij is the probability of a situation whose
outdoor temperature lies on the ith group and human activity
lies on the jth group.
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M1 and M2 are in comparison with M3 considering the
aforementioned two uncertainties. Fig. 3 illustrate the power
consumption of HVAC and indoor temperature for method M3.
For the purpose of keeping the indoor temperature at a user’s
thermal comfort level according to Fig. 3, HVAC schedules
its power consumption at a high level with low electricity
prices from 1 to 5 time slots, and the indoor temperature
starts to decline from 1 to 5 time slots as well. As the
electricity price is high between 5 and 16 time slots, the power
consumption of HVAC remains low to reduce the electricity
costs of the user. From time slot 11 to time slot 24, the indoor
temperature remains the same at 70◦F because the users do not
need to spend more money to decrease indoor temperature. In
order to obtain the lowest electricity cost, HVAC will remain
lowest power level for satisfying the upper limit of the indoor
temperature and the optimal solution is to keep the indoor
temperature at 70◦F.
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Fig. 3. Power consumption and indoor temperature for M3

Fig. 4 demonstrates the changes of outdoor temperature
and the number of humans in a conference room (human
activities). In the upper figure, the forecast temperature is
obtained from historical temperature data. A sample of the
outdoor temperature (test temperature) is obtained according
to the mean value, which is the normal distribution of the
forecast outdoor temperature and the standard deviation of 2.5.

In the lower figure, the forecast NH is expressed as the
forecast of number of humans in a conference room, which
is obtained from historical data. Similarly, a sample of the
number of humans (test NH) is obtained based on the mean
value, which is the normal distribution of the number of
humans indoors and the standard deviation of 1. These two test
samples, the forecast temperature, and the forecast of number
of humans (forecast NH) in a conference room are utilised in
the power consumption schedules of HVAC.

Fig. 5 and Fig. 6 show real-time power consumption and
accumulated power consumption for M1 - M3 against the time
slot. In Fig. 5 and Fig. 6, M1 has the greatest consumption of
power when compared to the other two methods because the
highest power consumption of M1 reaches at 2.4 kWh at time
slots 2 and 3 in Fig. 5 and the accumulated power consumption
of M1 is higher than the other two methods at almost every
time slot in Fig. 6. Both of the power consumption of M2
and M3 fluctuates from time slot 1 to 24 but the accumulated
power consumption of M3 is lower in comparison to M2. The
accumulated power consumption for M2 is 34.32 kWh and the
proposed M3 is 33.92 kWh at time slot 24 in Fig. 6.

2 4 6 8 10 12 14 16 18 20 22 24

Time slot

80

90

100

O
u
td

o
o
r 

te
m

p
e
ra

tu
re

 (
°
 F

)

Forecast temperature

Test temperature

2 4 6 8 10 12 14 16 18 20 22 24

Time slot

50

100

150

T
h
e
 n

u
m

b
e
r 

o
f 
h
u
m

a
n
s
 (

N
H

)

Forecast NH

Test NH

Fig. 4. Outdoor temperature and the number of humans

Fig. 7 demonstrates the accumulated electricity cost for M1
- M3. It is apparent from the figure that the accumulated
electricity cost for M1 is higher than M2 and M3 at almost
every time slot and M1 pays the highest electricity cost in
a scheduling cycle. In comparison to M2, the accumulated
electricity cost for the proposed M3 is lower at the majority
of the time slots.
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Fig. 5. The real-time power consumption for M1, M2, and M3
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Fig. 8 depicts the comparison between reference and real-
time power consumption for M1 - M3 against the time slot.
The real-time power consumption for each time slot does
change according to real-time outdoor temperature and the
number of humans in a conference room. According to the
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equation (4a), the real-time power consumption of HVAC for
M1 - M3 can be calculated. As can be seen from this figure,
the real-time power consumption is limited in the range of 0
to qmax (which is shown in dash black line) and it is different
to reference power consumption qref under three methods.
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Fig. 9 shows the comparison between reference and actual
indoor temperatures for M1 - M3. The methods provide a
reference temperature that equates exactly to the actual indoor
temperature and all stay in the comfort temperature zone
outlined in the figure. At the scheduling stage, reference indoor
temperature can be calculated based on the historical data and
reference power consumption qref of HVAC. At the verification
stage, weather forecast error can be adjusted and eliminated
based on the equation (4a) and real-time power consumption
of HVAC qreal is calculated. Therefore, the actual indoor
temperature returns to the reference indoor temperature.
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Fig. 9. Reference and actual indoor temperatures

The electricity cost of users, the number and the maxi-
mum of violations from the thermal comfort level of users
(Num_VioT and Max_VT (◦F)), and the total cost reduction
(CR) are given in Table IV, which illustrates the performances
of three methods in a scheduling cycle. As shown in the
table, M3 has better performance where the electricity cost
are reduced by 2.81% and 0.14% compared with M1 and M2,
respectively. Furthermore, M3 have less violations compared
to M2.

C. Sensitivity analysis of M3
It was decided to test the proposed algorithm’s performance

considering the uncertainties of outdoor temperature and hu-
man activities under different parameters. The following case

TABLE IV
PERFORMANCES OF THE THREE METHODS IN A SCHEDULING CYCLE

Method Cost ($) Num VioT Max VT (◦F) CR (%)
M1 1.2174 0 0 0
M2 1.1849 18 1.1882 2.67
M3 1.1832 11 0.4856 2.81

studies have been carried out: performances of the proposed
method M3 when violation probability of HVAC power con-
sumption (ϵ), the number of layers in the ambiguity set (m)
and human comfort indoor temperature zone are different.
During the scheduling cycle between 9 am and 9 pm on the
6th of August 2013, the electricity cost, the number and the
maximum of violations from the thermal comfort level of users
(Num_VT and Max_VT), the maximum of violations of real-
time power consumption at the lower boundary (M_VEL and
M_VEH), and the total time used for programming, are shown
within Tables V, VI, and VII respectively.

Performance of the proposed method M3 when ϵ is dif-
ferent: Table V outlines the performances of M3 when ϵ is
different, in which it is tested with both 10,000 samples of
the number of humans in a conference room, and the outdoor
temperature. The initial conditions are the human comfort
indoor temperature zone within [60◦F, 70◦F], ϵ = 0.005, and
m = n = 15. Table V illustrates that when ϵ is increasing from
0.005 to 0.085, the number of violations from the thermal
comfort level of users is greatly increased while the cost of
electricity reduces. The reason for this is that the probabilities
of DRCCs of the power consumption constraints (4b) and (4c)
should be bigger than 1- ϵ, which means more violations from
the boundaries are allowed when ϵ is ascending.

TABLE V
PERFORMANCE OF THE PROPOSED METHOD BASED ON DIFFERENT ϵ

ϵ Cost($) Num_VT Max_VT(◦F) M_VEL T(s)
0.005 1.1832 11 0.4856 0.0782 3.6287
0.025 1.1789 90 0.5413 0.1051 3.4257
0.045 1.1772 148 0.5794 0.1659 3.3526
0.065 1.1769 297 0.6079 0.2146 3.2571
0.085 1.1765 319 0.7641 0.2321 3.1664

Performance of the proposed method M3 when human
comfort indoor temperature zones are changed: Table VI
outlines the performances of M3 when human comfort indoor
temperature zones are changed, in which it is tested with both
10,000 samples of the number of humans in a conference
room and the outdoor temperature. The initial conditions are
as previously defined. Table VI illustrates that, as the human
comfort indoor temperature boundary is decreased, electricity
costs start to increase. The human comfort indoor tempera-
ture zones are one of the constraints in power consumption
scheduling of HVAC. Also, the boundaries of this constraint
become more compact. That leads to a slight increase in the
electricity cost as the optimisation result in order to satisfy all
the constraints.

Performance of the proposed method M3 when m is dif-
ferent: Table VII outlines the performances of M3 when m is
different, in which it is tested with both 10,000 samples of
the number of humans in a conference room, and the outdoor
temperature. The initial conditions are as previously defined.
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TABLE VI
PERFORMANCE OF THE PROPOSED METHOD BASED ON DIFFERENT

HUMAN COMFORT INDOOR TEMPERATURE ZONES (TZS)

TZ(◦F) Cost($) Num_VT Max_VT(◦F) M_VEL T(s)
[60-70] 1.1832 11 0.4856 0.0782 3.6287
[62-70] 1.1835 9 0.3951 0.0764 3.6522
[64-70] 1.1838 8 0.2133 0.0734 3.1525
[66-70] 1.1840 6 0.1087 0.0677 3.2108
[68-70] 1.1843 3 0.0746 0.0658 3.8337

Table VII illustrates that the indoor temperature resides largely
within the comfortable zone outlined. When more probabilistic
information on the number of people indoors and outdoor
temperature is considered (m and n are increasing) the compu-
tation time to solve this schedule problem is increasing while
the user’s electricity cost is reducing.

TABLE VII
PERFORMANCE OF THE PROPOSED METHOD BASED ON DIFFERENT M

m Cost($) Num_VT Max_VT(◦F) M_VEL T(s)
15 1.1832 11 0.4856 0.0782 3.6287
35 1.1830 16 0.5547 0.0837 3.8854
55 1.1829 9 0.6369 0.0868 4.3267
75 1.1829 23 0.2887 0.0904 4.6834
95 1.1826 18 0.1458 0.0951 4.9689

D. Performances of the three methods considering multi-zone
commercial building HVAC system

AHU, VAV boxes and chiller are included in the HVAC
systems’ typical configuration of a multi-zone commercial
building. N zones’ commercial HVAC systems are considered
here with i = 1, ..., n (i expresses each temperature zone),
a VAV box is associated with each temperature zone and its
temperature evolution is described by the following simple
model [33],

Ci dT
i(t)

dt
=

To(t)− T i(t)

Ri
+ qi(t) + qix(t) (24)

qi(t) = −qic(t) + qih(t) (25)

qic(t) = caṁ
i(t)

(
T i(t)− Tc(t)

)
(26)

qih(t) = caṁ
i(t)

(
T i
s(t)− Tc(t)

)
(27)

ṁ =

n∑
i=1

ṁi (28)

where T i(t) is zone temperature, Ri and Ci are thermal
resistance and thermal capacitance at different temperature
zones respectively; To(t) is the outdoor temperature; qic(t) is
the cooling power produced by the cooling coil and qih(t) is
the reheating power provided by the VAV box; qix(t) is the
external disturbance from occupancy; the specific heat of air
is denoted as ca and the discharge air temperature is expressed
as Tc(t); ṁi(t)) is the supply airflow rate. [33] describes these
parameters in detail. Note that the consumed power qi in the
paper refers to the energy for cooling/heating the room instead
of the power for the fan. Therefore, the energy consumed for
each zone hold:

qmax ≥
n∑

i=1

qi (29)

The parameters of the scenario are given by Table VIII.
Three zones are considered in the multi-zone HVAC system
and the results of the DROA optimisation and simulation are
given by the following figures.

TABLE VIII
THE PARAMETERS OF THE SCENARIO

Parameters C (kWh/◦F) R (◦F/kW) η
Zone 1 0.33 13.5 2.2
Zone 2 0.35 13.2 2.3
Zone 3 0.35 13.2 2.3
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Fig. 10. The indoor temperature of each zone when the M3 is used
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Fig. 11. Actual value of power consumption for each zone when the M3 is
used
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Fig. 12. Total power consumption in comparison of M1, M2 and M3

Fig.10 and Fig.11 show the indoor temperature and the
actual consumed power for each zone when the M3 is used,
respectively. Fig.12 and Fig.13 show the advantage of the
proposed DROA based on disjoint layered ambiguity set by
comparing the total power consumption and the accumulative
electricity price of three methods. As shown in the Fig.13, the
accumulative electricity price for M3 is about $2.38, however,
those of the M1 and M2 are about $2.44. This data shows that
the proposed method can reduce the electricity cost by 2.5%.
This case study also shows that the proposed method is able
to deal with the uncertainty in a multi-zone scenario.

E. Performances of the M3 in consecutive cycles
The proposed DROA’s performance is derived from con-

secutive cycles between 9 am on August the 6th to 9 pm



10

2 4 6 8 10 12 14 16 18 20 22 24
Time slot

0

0.5

1

1.5

2

2.5

A
c
c
u

m
u

la
te

d
 e

le
c
tr

ic
it
y
 p

ri
c
e

 (
$

)

20 21 22 23 24

2.38

2.4

2.42

2.44

2.46

Fig. 13. Accumulative electricity price of three methods

on August the 9th 2013. There are six consecutive cycles in
total and in each scheduling cycle. The scheduling period is
12 hours (∆t = 0.5h, T = 24). The initial conditions are the
human comfort indoor temperature zone within [60◦F, 70◦F],
ϵ = 0.005, and m = n = 15. The starting indoor temperature is
70 ◦F, and the end of day indoor temperature is taken as the
starting temperature for the next day.

Fig. 14 illustrates the power consumption of HVAC and
indoor temperature for method M3 in continuous cycles. For
the purpose of keeping the indoor temperature at a user’s
thermal comfort level, HVAC starts to schedule its power
consumption at relatively low prices from 1 to 4 time slots
based on Fig. 14, and therefore the indoor temperature starts
to decline from 1 to 5 time slots. As the electricity price is
high between 5 and 16 time slots, the power consumption of
HVAC remains low to reduce the electricity costs of the users.

The similar pattern has been followed in continuous sched-
ule cycles. There are six drops in the indoor temperature.
The first drop is different from the other five drops because
of the difference of the electricity price. HVAC continues to
schedule its power consumption at the lowest price, it leads
to two significant drops in indoor temperature to minimise the
electricity cost for users.

Fig. 15 depicts that the real-time power consumption for
each time slot does change according to real-time outdoor
temperature and the number of humans in a conference room
in continuous cycles. Fig. 16 illustrates the comparison be-
tween reference and actual indoor temperatures. Method M3
provides a reference temperature that equates exactly to the
actual indoor temperature and stays within the comfortable
temperature zone outlined in the figure.
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Fig. 14. Power consumption and indoor temperature for M3 in continuous
cycles

Table IX outlines the three methods’ performances in con-
tinuous cycles, in which it is tested with both 10,000 samples
of the the number of humans in a conference room, and
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Fig. 15. The adjusted power consumption for M3 in continuous cycles
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Fig. 16. Reference and actual indoor temperatures for M3 in continuous
cycles

outdoor temperature. The initial conditions are the human
comfort indoor temperature zone within [60◦F, 70◦F], ϵ =
0.005, and m = n = 15. Table IX illustrates that the proposed
method M3 pays less electricity cost compared with M2 in
continuous cycles. Also, Num_VioT, Max_VT, and M_VEL
for M3 are smaller as well compared with M2. Although the
total number of violations from human comfortable indoor
temperature for M1 is zero, the highest electricity cost is paid
by RO in continuous cycles.

TABLE IX
THE THREE METHODS’ PERFORMANCES IN CONTINUOUS CYCLES

Cost ($) Num_VT Max_VT (◦F) M_VEL T (s)
M1 3.4724 0 0 0 2.3195
M2 3.4483 15 1.0014 0.1446 2.3664
M3 3.4465 8 0.4929 0.1331 2.3181

F. Effects of human activity

In this subsection, the effectiveness of the proposed method
considering human activities as the fluctuation of the number
of humans in a conference room will be demonstrated. The
comparison will be made between the proposed method and
the traditional method which considers human activities as the
constant indoor temperature variations caused by human.

As can be seen from Figure 17, there are three dimen-
sions in this figure: Ratio_Schedule, Ratio_Real Human and
Perc_NotVioHum. Ratio_Schedule is referred to the applied
constant human activity in a scheduling period in the tra-
ditional method [5], [22]. If the Ratio_Schedule is equal to
0.5, the constant human activity in the traditional method
has reduced to its half value. Perc_NotVioHum refers to the
percentage of test samples of indoor temperature which are
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within human comfortable temperature zones [60◦F, 70◦F].
Ratio_Real Human denotes the number of humans in a
conference room from 1 (the original number of humans
indoors) to 0 (there is no one indoors) in the simulation stage.
Perc_NotVioHum is calculated by firstly adopting the refer-
ence power consumption using the traditional method with the
Ratio_Schedule, and secondly calculating Perc_NotVioHum in
the simulation using this reference power consumption and the
Ratio_Real Human.

As shown in Figure 17, when Ratio_Real Human = 1,
‘Perc_NotVioHum’ is rising with the Ratio_Schedule increas-
ing from 0 to 1. It means that if we did not consider the human
activity at HVAC scheduling, the indoor temperature will not
be within the comfortable zone (at about 20% probability).
Even if when Ratio_Schedule = 0.5, the Perc_NotVioHum is
still about 0.6. It means that the traditional method to deal
with human activity cannot provide a satisfactory performance
unless the applied constant human activity in a scheduling
period is exactly equal to the real human activity.

Fig. 17. The traditional method considering the effect of human activity

Figure 18 illustrates the proposed method with the consid-
eration of human activities as the fluctuation of the number
of humans in a conference room. In contrast to the traditional
method, ‘Perc_NotVioHum’ for the proposed method is closed
to 1 as the ratio increases from 0 to 1.
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Fig. 18. The proposed method considering the effect of human activity

V. CONCLUSION

This paper proposes a DROA based on disjoint layered
ambiguity set to optimise the energy consumption in the

HVAC energy scheduling problem. Furthermore, two uncer-
tainties are considered in the problem: the weather predicted
error and human activities, which are two of the main factors
that influence the indoor temperature, and cause a violation
of human optimum comfort temperature level. The HVAC
energy scheduling problem considering two uncertainties is
formulated as an optimisation problem with nonlinear DRCCs.
Then, these two nonlinear constraints are transformed into
linear inequalities via duality theorem.

The simulation results considering the multi-zone HVAC
system model and the consecutive time period demonstrate that
the proposed DROA approach can provide better performance
compared to existing research. Numerical results illustrate
that the proposed DROA can decrease 2.81% and 0.14%
of the electricity cost, and the number and maximum of
violations are smaller compared with the two aforementioned
methods. The comparison simulation demonstrates that the
traditional method considers the impact of human activity as
fixed indoor temperature variations caused by human activities,
which leads to inaccurate optimisation results. However, the
proposed DROA constructing the ambiguity set using the
historical data of the number of people indoors can accurately
consider the impact of human activity on the HVAC energy
consumption scheduling and provide better performance on
avoiding violation of human optimum comfort temperature
level.
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