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Abstract

For a one-locus haploid infinite population with discrete generations, the celebrated
Kingman’s model describes the evolution of fitness distributions under the competition
of selection and mutation, with a constant mutation probability. This paper generalises
Kingman’s model by using i.i.d. random mutation probabilities, to reflect the influence
of a random environment. The weak convergence of fitness distributions to the globally
stable equilibrium is proved. The condensation occurs when almost surely a positive
proportion of the population travels to and condensates at the largest fitness value. The
condensation may occur when selection is more favoured than mutation. A criterion for
the occurrence of condensation is given.
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1 Motivation and background

Various biological forces interact with each other and drive the evolution of population all
together. One important competing pair consists of selection and mutation. It was as early
as 1937 when Haldane [14] put forward the concept of mutation-selection balance. The
mathematical foundation of this subject was established by Crow and Kimura [7], Ewens
[11], and Kingman [20]. For more details on this topic, we refer to Bürger [5, 6].

A simple setting is to consider a one-locus haploid infinite population with discrete gener-
ations under selection and mutation. The locus is assumed to have infinitely many possible
alleles which have continuous effects on a quantitative type. The continuum-of-alleles mod-
els were introduced by Crow and Kimura [7] and Kimura [17] and are used frequently in
quantitative genetics.

Kingman [18] suggested to explain the tendency that most mutations are deleterious by
the assumption of the independence of the gene before and after mutation. This feature
was named “House of Cards”, as the mutation destroys the biochemical house of cards built
up by evolution, by Kingman in [19] where the most famous one-locus model was proposed.
In this model, a population is characterised by its type distribution, which is a probability
measure on [0, 1] and any x ∈ [0, 1] is a type value. In Kingman’s setting, an individual
with a larger type value is fitter, which means more productive. So the type value can also
be named fitness value. Kingman’s model can be seen as the limit of a finite population
model, see [13].

Bürger [4] generalised the selection mechanism by allowing the gene after mutation to
depend on that before and proved convergence in total variation. The genetic variation of
the equilibrium distribution was computed and discussed. I proposed [22] a more general
selection mechanism which can model general macroscopic epistasis, with the other settings
the same as in Kingman’s model. This model was applied to the modelling of the Lenski
experiment (see [12] for a description of the experiment).

There exist also models on the balance of selection and mutation in the setting of continu-
ous generations. Bürger [3] provided an exact mathematical analysis of Kimura’s continuum-
of-alleles model, focusing on the equilibrium genetic variation. Steinsaltz et al [21] proposed
a multi-loci model using a differential equation to study the ageing effect. Later on the
recombination was incorporated to the model [10]. Betz et al’s model [2] generalised a
continuous-time version of Kingman’s model and other models arising from physics.

However to the author’s best knowledge, Kingman’s model has never been generalised
to a random version. In this paper we will assume that the mutation probabilities of all
generations form an i.i.d. sequence. Biologically, we think of a stable random environment
such that the mutation probabilities vary on time but independently sampled from the same
distribution.

In Kingman’s model, condensation occurs if a certain positive proportion of the popula-
tion travels to and condensates at the largest fitness value. This is due to the dominance of
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selection over mutation. In the random model proposed in this paper, we also consider the
convergence of (random) fitness distributions to the equilibrium and the condensation phe-
nomenon. Moreover, Kingman’s model has been revisited recently in terms of the travelling
wave of mass to the largest fitness value [8]. The random model provides another example
for consideration in this direction.

2 Models

2.1 Kingman’s model with time-varying mutation probabilities

Consider a haploid population of infinite size and discrete generations under the competition
of selection and mutation. We use a sequence of probability measures (Pn) = (Pn)n≥0 on
[0, 1] to describe the distribution of fitness values in the nth generation. We can assume, more
generally, that the probability measures are supported on a finite interval, not necessarily
[0, 1]. But since only fitness ratios will be relevant (see [19] or [22] for a more explicit
explanation), we adopt the setting of [0, 1], which was used by Kingman [19], and which is
equivalent to general finite supports.

Individuals in the nth generation are children of the (n − 1)th generation. First of all,
the fitness distribution of children is initially Pn−1 (an exact copy from parents). Then
selection takes effect, such that the fitness distribution is updated from Pn−1 to the size-
biased distribution

xPn−1(dx)
∫

yPn−1(dy)
.

Here we use
∫

to denote
∫ 1
0 . Basically the new population is re-sampled from the existing

population by using their fitness as a selective criterion. Next, each individual mutates
independent with the same mutation probability which we denote by bn taking values in
[0, 1). Each mutant has the fitness value sampled independently from a common mutant
distribution, that we denote by Q, a probability measure on [0, 1]. Then the resulting
distribution is the distribution of the nth generation

Pn(dx) = (1− bn)
xPn−1(dx)
∫

yPn−1(dy)
+ bnQ(dx). (1)

The fact that we exclude the case that bn equals 1 is because in this situation we have Pn = Q
which loses accumulated evolutionary changes. This is not interesting neither biologically
nor mathematically.

Expanding (1), we can also obtain

Pn(dx) =

(

n−1
∏

l=0

1− bl+1
∫

yPl(dy)

)

xnP0(dx) +
n
∑

j=1





n−1
∏

l=j

1− bl+1
∫

yPl(dy)



 bjmn−jQ
n−j(dx) (2)

where

Qk(dx) :=
xkQ(dx)
∫

ykQ(dy)
, mk :=

∫

xkQ(dx), ∀k ≥ 0.

In particular if Q = δ0, the Dirac measure on {0}, Qk = δ0 for any k ≥ 0.
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When all the bn’s are equal to the same number b ∈ [0, 1), this is the model introduced
by Kingman [19]. In the general setting we allow the mutation probabilities to be different.
We call it Kingman’s model with time-varying mutation probabilities or the general model
for short.

We introduce a few more notations. Let M be the space of (nonnegative) Borel measures
on [0, 1] and M1 the subspace of M consisting of probability measures. Let M,M1 be

endowed with the topology of weak convergence. We use
d
−→ to denote weak convergence.

We say a sequence of measures (un) converges in total variation to a measure u, denoted by

un
TV
−→ u, if the total variation, supB |un(B)− u(B)| where the supremum is taken over all

Borel sets, converges to 0.

For any u ∈M1, define
Su := sup{x : u[x, 1] > 0}. (3)

So Su is interpreted as the largest fitness value in a population of distribution u. Define
h := SP0

. It is not difficult to see that SPn = max{SP0
, SQ} if the equality holds for n − 1

or 0 < bn < 1. Since we are interested in asymptotics, it is thus without loss of generality
to assume that h ≥ SQ. Therefore SQ ≤ h ≤ 1.

Note that the general model has parameters (bn)n≥1, Q, P0, h. Kingman’s model shares
the same parameters, but with bn’s all equal to b. We call (Pn) the forward sequence or just
the sequence. Although h is determined by P0, we still consider h as a parameter as it will
be clear later that for Kingman’s model and the random model considered in this paper,
the limit of (Pn) depends on P0 only through h. This is the so-called global stability.

2.2 Convergence and condensation in Kingman’s model

Kingman [19] proved the convergence of (Pn) when all mutation probabilities are equal, i.e.,
bn = b,∀n ≥ 1.

Theorem 1 (Kingman’s Theorem, [19]). 1. If
∫ Q(dx)

1−x/h ≥ b−1, then (Pn) converges in total
variation to

K(dx) =
bθbQ(dx)

θb − (1− b)x
,

with θb, as a function of b, being the unique solution of

∫

bθbQ(dx)

θb − (1− b)x
= 1. (4)

2. If
∫ Q(dx)

1−x/h < b−1, then (Pn) converges weakly to

K(dx) =
bQ(dx)

1− x/h
+
(

1−

∫

bQ(dy)

1− y/h

)

δh(dx).

Note that K is uniquely determined by b,Q, h, but not the choice of P0. In this sense K
is a globally stable equilibrium. For simplicity, for any measure, say µ, its mass on a point x
is denoted by µ(x) instead of µ({x}). Then we say there is condensation at h in Kingman’s
model if Q(h) = 0 but K(h) > 0. We call K(h) the condensate size if Q(h) = 0. In the

case 1 above, there is no condensation. The condition
∫ Q(dx)

1−x/h ≥ b−1 is satisfied only if b is
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big and/or Q is fit (i.e., having more mass on larger values). It means mutation is stronger
against selection, so that the limit does not depend on P0 at all.

In the case 2, the condition
∫ Q(dx)

1−x/h < b−1 implies Q(h) = 0, but we have that K(h) > 0.
So there is condensation. Contrarily to the first case, selection is more favoured so that the
limit depends on P0 through h. If P0(h) = 0 (implying SPn = h and Pn(h) = 0 for any n), a

certain amount of mass K(h) =
(

1−
∫ bQ(dy)

1−y/h

)

travels to the largest fitness value h, by the

force of selection.

Next we introduce the random model, which is the main object of study in this paper.

2.3 Kingman’s model with random mutation probabilities

Let (βn)n≥0 be an i.i.d. sequence of random variables in the common probability space
(Ω,F ,P), taking values in [0, 1) with common distribution L ∈M1 supported on [0, 1). The
Kingman’s model with random mutation probabilities or simply the random model is defined
by the following dynamical system:

Pn(dx) = (1− βn)
xPn−1(dx)
∫

yPn−1(dy)
+ βnQ(dx), n ≥ 1. (5)

The random model has parameters (βn), Q, P0, h. It is a randomisation of Kingman’s model,
as we can set βn’s to equal b with probability 1.

We are interested in the convergence of (Pn) to the equilibrium and the phenomenon
of condensation. Since we are dealing with random probability measures, i.e., random
elements of M1, let us recall the definition of weak convergence in this context. Random
(probability) measures (µn) supported on [0, 1] converge weakly to a limit µ if and only if
for any continuous function f on [0, 1] we have

∫

f(x)µn(dx)
d
−→

∫

f(x)µ(dx).

We refer to [16] for a reference on random measures. The definition of weak convergence
for random measures stated in the follow-up paper [23] is incorrect. But it does not affect
anything there as the weak convergence results are all proved in this paper.

As the sequence (Pn) is completely determined by (βn), Q, P0 and h, the only randomness
arises from (βn). In comparison to the terminology in statistical physics, the weak limit of
(Pn) is an annealed limit, which is obtained given the law of (βn). A quenched limit, which
is obtained by conditioning on (βn), does not exist unless P0 = Q = δ0. A simple reason for
nonexistence is that Pn contains βnQ which fluctuates persistently as (βn) is i.i.d.. However
in Section 4.3 we will see that it is possible to obtain a quenched limit if the evolution is
seen backwards.

For the particular case that Q = δ0, we have

Pn(dx) = (1− βn)
xnP0(dx)
∫

ynP0(dy)
+ βnδ0(dx).

From this, it is easily deduced that the sequence (Pn) converges weakly to the random
element (1− β)δh + βδ0, where β is a random variable with law L, the common law of the
βn’s. So we assume from now on Q 6= δ0.
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3 Main results

3.1 Weak convergence

Recall that the sequence (Pn) in the random model has parameters (βn), Q, P0 and h, with
h = SP0

. Then (Pn) converges weakly to a globally stable equilibrium, in the sense that the
limit depends on P0 only through h. Recall β is a random variable with law L, the common
law of βn’s.

Theorem 2. For the random model (5), the sequence (Pn) converges weakly to a random
probability measure, denoted by I, whose distribution depends on L, Q, h but not on the
choice of P0.

Remark 1. In ([23], P.872), it is written that the distribution of I depends on β,Q, h. The
statement is true in the sense that the distribution of I depends on β via its distribution.
Here we make it more clear by replacing β by L.

Remark 2. If we start with P0 = δh (recall that h ∈ [SQ, 1]), then all Pn’s are supported
on [0, SQ] ∪ {h}, which entails that the limit I is supported on the same set [0, SQ] ∪ {h}.
Moreover we have either I(h) > 0 a.s. or I(h) = 0 a.s. (a justification is provided in
Remark 11 in Section 4.4). In the latter case, I is supported only on [0, SQ] and (the
distribution of) I does not depend on h (see Theorem 3). Therefore, although we say h is
a parameter of I but it should be understood in the sense that I is weak limit of (Pn) with
h = SP0

.

The limit I is introduced in Section 4.3. But the proof of weak convergence is deferred to
a later stage, as it uses other main results such as the condensation criterion for the random
model.

3.2 Condensation criterion

The fact that either I(h) > 0 a.s. or I(h) = 0 a.s. allows us to give the precise definition of
condensation in line with that for Kingman’s model, as follows:

Definition 1. For the random model, we say there is condensation at the largest fitness
value h if Q assigns zero mass at h (i.e., Q(h) = 0) but the limiting measure I assigns
positive mass at it (i.e., I(h) > 0, a.s.).

Next we give the condensation criterion. If h = SQ, we write IQ for I and KQ for K.

Theorem 3 (Condensation criterion). If there is no condensation at h, then I
d
= IQ. The

condensation criterion for I at h is as follows:

1. If h = SQ, then there is no condensation at h if

E

[

ln
SQ(1− β)
∫

yIQ(dy)

]

< 0. (6)

2. If h > SQ, then there is no condensation at h if and only if

E

[

ln
h(1 − β)
∫

yIQ(dy)

]

≤ 0. (7)
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Here E

[

ln 1−β∫
yIQ(dy)

]

is well defined, and takes values in [−∞,− ln
∫

yQ(dy)], and depends

only on the marginal distributions of β and IQ.

Remark 3. In fact, if there is no condensation at h, then I,IQ are the same random
probability measure, based on the definition of I introduced at the end of Section 4.3. But

since here we do not have the definition yet, we write a weaker version I
d
= IQ.

By Remark 12 in Section 4.4, we can only have E
[

ln
SQ(1−β)∫
yIQ(dy)

]

≤ 0. About the occurrence

of condensation in the case where h = SQ, the fact that we cannot say anything when

E

[

ln
SQ(1−β)∫
yIQ(dy)

]

= 0 can be better understood in Kingman’s model, which is a special random

model. In this model, E
[

ln
SQ(1−β)∫
yIQ(dy)

]

= 0 becomes

ln
SQ(1− b)
∫

yKQ(dy)
= 0.

By some simple computations using Theorem 1, the above display is equivalent to

∫

Q(dx)

1− x/SQ
≤ b−1.

But it covers cases with and without condensation. For full details please see Appendix A,
where the case h > SQ is also analysed.

We give some intuition why Theorem 3 holds true. Consider the unnormalised variant
of the dynamical system that is given by

Pn(dx) = (1− βn)xPn−1(dx) + βn

(∫

yPn−1(dy)

)

Q(dx) (8)

with P 0 = P0. By induction, it can be shown that

Pn = Pn

n−1
∏

i=0

∫

xPi(dx),∀n ≥ 0. (9)

We can roughly think of the growth of Pn as contributed by two parts, the initial P0 and
the subsequently arriving Q’s. If the initial distribution is supported on [0, SQ], by Theorem
2, Pi converges weakly to IQ as i→∞. Then the part of Pn contributed by the Q’s grows
at rate gr(Q) := E[ln

∫

xIQ] (see (9)). In comparison the largest fitness value h in P0 can
be assigned the growth rate gr(h) := E[lnh(1− β)] (due to the term (1 − βn)xP n−1(dx) in
(8)). Then it is clear that the occurrence of condensation is determined by the comparison
of gr(h) and gr(Q). However it is subtle when gr(h) = gr(Q): no condensation if h > SQ

and it is undetermined if h = SQ.

In the follow-up paper [23], we provide a matrix representation for IQ, so the condensation
criterion can be written neatly (Corollary 2, P.877). Moreover, using matrix analysis, we
can compare the fitness of equilibria from different models (Section 3.3-(3), P.878–879).
The challenging problem of finding a necessary and sufficient condition for the occurrence of
condensation in the case h = SQ has not been dealt with anywhere and still remains open.
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3.3 Invariant measure

We introduce the notion of invariant measure, which includes the limit I. We will heavily
use the invariant measures in the proofs.

Definition 2 (Invariant measure). A random probability measure ν is invariant if it is
supported on [0, 1] and satisfies

ν(dx)
d
= (1− β)

xν(dx)
∫

yν(dy)
+ βQ(dx) (10)

where β is independent of ν.

Clearly I is an invariant measure, since it is the weak limit of (Pn) defined by (5).

Theorem 4 (Compoundness of invariant measures). For any invariant measure ν, there
exists a regular conditional distribution of ν on Sν. Moreover, conditional on Sν,

(ν|Sν)
d
= I, almost surely,

where I is the random probability measure introduced in Theorem 2 with parameters L, Q, h =
Sν and satisfies P(SI = Sν |Sν) = 1, a.s..

Remark 4. Remark 2 says that if there is no condensation at h, then I is supported on

[0, SQ]. Since I is an invariant measure, the above theorem entails that I
d
= IQ. This

assertion has been stated in Theorem 3.

Using the notion of invariant measures, we can solve a distributional equation in the
following example. For a survey on distributional equations, we refer to Aldous and Bandy-
opadhyay [1].

Example 1. Consider a particular case: Q is supported only on {c} for some c ∈ (0, 1), and
h ∈ (c, 1). Let ν be an invariant measure supported on {c} ∪ {h}. Then ν can be written as
ν = Xδc + (1−X)δh where X is a random variable taking values in [0, 1], and satisfies

Xδc + (1−X)δh
d
= (1− β)

cXδc + h(1−X)δh
cX + h(1−X)

+ βδc,

where β is independent of X. The above display is equivalent to

X
d
=

c+ (hβ − c)(1 −X)

c+ (h− c)(1 −X)
.

We are interested in a necessary and sufficient condition for the above equation to have a
solution X with 0 ≤ X < 1 a.s. (i.e., ν(h) > 0 a.s.). By Theorem 4, it is equivalently saying
that there is condensation at h. By Theorem 3, the necessary and sufficient condition is
simply E[ln(h(1−β)/c)] > 0. Moreover as such ν is unique (in distribution), the solution X
is also unique (in distribution).

The paper is organised as follows. Section 4.1 and 4.2 provide necessary preparations.
Section 4.3 and 4.4 analyse the finite backward sequence, which is the main tool used in this
paper. Section 4.5 proves Theorem 3. Section 4.6 analyses the invariant measures, and the
results obtained there will be used in Section 4.7 to prove the weak convergence in Theorem
2. Section 4.8 is dedicated to the proof of Theorem 4.
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4 Proofs

4.1 Relations between measures

We introduce some notations to describe relations between measures.

1). For measures u, v ∈M , we say u is a component of v on [0, a] (resp. [0, a)), denoted by
u ≤a v (resp. ≤a−), if

u(A) ≤ v(A), for any measurable set A ⊂ [0, a] (resp. [0, a)).

For random measures µ, ν ∈ M , we write µ ≤d
a ν if there exists a coupling (µ′, ν ′) with

µ′, ν ′ ∈M such that

µ′ ≤a ν ′ a.s. and µ′ d
= µ, ν ′

d
= ν. (11)

The relation µ ≤d
a− ν is defined in a similar way.

2). For measures (un) and u in M , we introduce a notation

un ≤a
TV
−→ u

which means that un ≤a un+1 for any n, and un converges in total variation to u. We define

similarly ≤a−
TV
−→ .

3). For real-valued random variables ξ, η, we write the well known stochastic ordering ξ � η,
which holds if

P(ξ ≤ x) ≥ P(η ≤ x), ∀x ∈ R.

4). For any u ∈M1, let the distribution function of u be

Du(x) := u([0, x]), ∀x ∈ [0, 1].

For any u, v ∈ M1, we use the same notation � of stochastic ordering and write u � v if
Du(x) ≥ Dv(x) for any x ∈ [0, 1]. This definition is natural, as ξ � η is equivalent to u � v,
if u is the distribution of ξ and v is the distribution of η.

Remark 5. We make a comment between ≤a− and � . For two probability measures u, v ∈
M1, assume that Su = Sv = a, then u ≤a− v implies that v � u. But the converse is not
true.

Remark 6. If we use notations ≤a,≤a−,≤a
TV
−→,≤a−

TV
−→,� to describe the relations between

random measures, it should be understood that they hold in the almost sure sense, or even
pointwise sense (i.e., for every ω ∈ Ω) if possible.

Similarly if we use ≤, <,≥, >,=, 6= to compare random variables, it should be understood
in the almost sure sense, or pointwise sense.
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4.2 Three sequences

To study the asymptotic behaviour of (Pn), we also introduce (P ′
n), (P

′′
n ) so that the three

forward sequences correspond respectively to

((βn), Q, P0, h), ((βn), Q
′, P ′

0, h
′), ((βn), Q

′′, P ′′
0 , h

′′).

The parameters of (P ′
n) and (P ′′

n ) will be specified when they are used. The two sequences
will converge weakly when they are used, and (Pn) is compared to them or one of them
to show that (Pn) also converges weakly. The first place where this technique is used is in
Section 4.6.

Using (2), we write
Pn(dx) =Mn(dx) +Wn(dx) (12)

with

Mn(dx) =
(

n−1
∏

l=0

1− βl+1
∫

yPl(dy)

)

xnP0(dx)

and

Wn(dx) =

n
∑

j=1

(

n−1
∏

l=j

1− βl+1
∫

yPl(dy)

)

bjmn−jQ
n−j(dx).

Therefore Mn is the contribution to Pn made by P0, while Wn is the contribution by the
Q’s.

Similarly we introduce
P ′
n(dx) =M

′
n(dx) +W

′
n(dx) (13)

P ′′
n (dx) =M

′′
n(dx) +W

′′
n(dx) (14)

withM′
n,W

′
n,M

′′
n,W

′′
n defined correspondingly.

4.3 Introducing the finite backward sequences

4.3.1 The general model.

We introduce the finite backward sequence (Pn
j ) = (Pn

j )0≤j≤n for the general model which
has parameters n, (bj)1≤j≤n, Q, Pn

n , h with SPn
n
= h:

Pn
j (dx) = (1− bj+1)

xPn
j+1(dx)

∫

yPn
j+1(dy)

+ bj+1Q(dx), ∀ 0 ≤ j ≤ n− 1. (15)

Here h,Q are from the general model and Pn
n can be any measure in M1 satisfying SPn

n
= h.

The (bj)1≤j≤n are the first n mutation probabilities in the general model. Here we use the
index j to indicate that we are dealing with a finite backward sequence.

The sequence is backward in the sense that we use bn to generate Pn
n−1 from Pn

n , and
use bn−1 to generate Pn

n−2 from Pn
n−1, etc. The (bj) are used backwards and the (Pn

j ) are
generated backwards. The advantage to take a backward approach is that (Pn

j ) converges
as n tends to infinity, in contrast to the forward sequence.
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Lemma 1. In the general model, for the finite backward sequence with Pn
n = δh, P

n
j con-

verges in total variation to a limit, denoted by Gj = Gj,h, as n goes to infinity with j fixed,
such that

Gj−1(dx) = (1− bj)
xGj(dx)
∫

yGj(dy)
+ bjQ(dx), j ≥ 1. (16)

As a consequence, G0 : [0, 1)∞ → M1 is a measurable function, with Gj = G0(bj+1, bj+2,···)
supported on [0, SQ] ∪ {h} for any j ≥ 0.

Remark 7. We write Gj,h when h has to be specified for clarity. Otherwise we write Gj.
This logic applies to other terms which will appear later.

Remark 8. Note that, by (16), either Gj(h)’s are all zero or all strictly positive.

Proof. We prove a stronger version below

For any j, Pn
j ≤h−

TV
−→ Gj , as n→∞. (17)

It suffices to show that
Pn
j ≤h− Pn+1

j , (18)

as Pn
j ’s are all supported on [0, SQ] ∪ {h}.

First of all, Pn
n = δh ≤h− Pn+1

n . Assume for some 1 ≤ j ≤ n, we have Pn
j ≤h− Pn+1

j . By
definition

Pn
j−1(dx) = (1−bj)

xPn
j (dx)

∫

yPn
j (dy)

+bjQ(dx), Pn+1
j−1 (dx) = (1−bj)

xPn+1
j (dx)

∫

yPn+1
j (dy)

+bjQ(dx). (19)

Since Pn
j ≤h− Pn+1

j (hence Pn+1
j � Pn

j , see Remark 5), we have

∫

yPn+1
j (dy) ≤

∫

yPn
j (dy)

and thus
x

∫

yPn
j (dy)

≤
x

∫

yPn+1
j (dy)

, ∀x ∈ [0, 1].

Together with Pn
j ≤h− Pn+1

j and (19), we get Pn
j−1 ≤h− Pn+1

j−1 . The induction shows that

Pn
j ≤h− Pn+1

j , for any 0 ≤ j ≤ n, n ≥ 0. (20)

This completes the proof.

The monotonicity analysis in the above proof will be used many times in this paper, as it
applies to both backward and forward sequences. An immediate application is the following:
we can compare (Gj) and (G′j) = (Gj,h′) for SQ ≤ h < h′ ≤ 1 with the same (bj), Q.

Corollary 1. Let (Gj) and (G′j) be the above sequences. Then we have

G′j ≤h− Gj, Gj(h) ≤ G
′
j(h

′), ∀j ≥ 0. (21)

Moreover we have the exact equalities in the above display for any h ∈ [SQ, h
′] if and only if

G′0(h
′) = 0. In this case (Gj) and (G′j) are all supported on [0, SQ], and both equal to (Gj,SQ

).

11



Proof. Let (Pn
j ) be the sequence in Lemma 1. Let (Pn

j,h′) be the variant of (Pn
j ) with

Pn
n = δh′ . By following the same monotonicity analysis for proving (18), we obtain

Pn
j,h′ ≤h− Pn

j , Pn
j (h) ≤ Pn

j,h′(h′), ∀0 ≤ j ≤ n.

By Lemma 1, Pn
j,h′

TV
−→ G′j and Pn

j
TV
−→ Gj , as n→∞. Then we obtain (21).

Now let us prove the if-and-only-if statement. If G′0(h
′) = 0, then by (21), G0(h) = 0.

Using Remark 8, G′j(h
′) = 0,Gj(h) = 0 for any j, and so (21) holds with equalities. For the

other direction, if G′0(h
′) > 0, then again by Remark 8, G′j(h

′) > 0 for any j. Using (21), it
holds that

∫

yG′j(dy) >

∫

yGj(dy), ∀j. (22)

Similar to (19)

Gj−1(dx) = (1− bj)
xGj(dx)
∫

yGj(dy)
+ bjQ(dx), G′j−1(dx) = (1− bj)

xG′j(dx)
∫

yG′j(dy)
+ bjQ(dx).

As (22) entails that
1−bj∫
yGj(dy)

>
1−bj∫
yG′

j(dy)
, and using again (21), we obtain G′j−1 ≤h− Gj−1 but

they are not equal on [0, h). Since they are probability measures, we have Gj−1(h) < G
′
j−1(h

′)
for any j. Then the proof is complete.

If (21) holds with equalities, (Gj) = (G′j) are all supported on [0, SQ]. To show that they
are equal to (Gj,SQ

), we only have to take h = SQ and apply the equalities in (21).

4.3.2 The random model.

Our goal of the paper is the random model, which is a randomised general model. Since
(Gj) has parameters (bj+1, bj+2, · · · ) and Q,h, we can define

Ij = Ij,h := G0(βj+1, βj+2, · · · ).

Therefore Ij is the quenched limit of the finite backward sequences in the random model
with Pn

n = δh. Thanks to Lemma 1, we have the following result.

Corollary 2. The sequence (Ij) = (Ij)j≥0 is stationary ergodic and satisfies

Ij−1(dx) = (1− βj)
xIj(dx)
∫

yIj(dy)
+ βjQ(dx), j ≥ 1. (23)

Remark 9. The equality (23) holds in the pointwise sense. In other words, given any
realisation of (βj) (or equivalently, conditioning on (βj)), the equality holds for any j as in
the general model. In the sequel, when we present results regarding (Ij), then conditioning
on (βj) should be understood as in the pointwise sense. Sometimes we omit saying either of
them when the context is clear.

The proof of Corollary 2 requires the following lemma which is proved by Lemma 9.5 in
[15].

Lemma 2. Let (S,S ) and (S′,S ′) be measurable spaces. Let (αj) ∈ S∞ be a stationary
ergodic sequence of random variables. Let f : S∞ → S′ be a measurable function. Then
(f(αj , αj+1, · · · )) is also stationary ergodic.

12



Proof of Corollary 2. Since (βj) is i.i.d., it is stationary ergodic. As G0 is a measurable
function from [0, 1)∞ to M1, we apply Lemma 2 to obtain that (Ij) = (G0(βj+1, βj+2, · · · ))
is also stationary ergodic. The recursive equation (23) is inherited from (16).

Since (Ij) is stationary ergodic, all Ij’s have the same distribution. We denote by I :=
I0 = I0,h which is the weak limit appeared in Theorem 2. The reason to drop off the index
is to make it stand out from the backward context, when it is appropriate to do so. The
term IQ used in Theorem 3 is in fact I0,SQ

.

We comment further on the importance of finite backward sequences. Let (Pn) be a
forward sequence and (Pn

j ) the finite backward sequence with Pn
n = P0, both in the random

model with the same (βj) and Q. Since (βj) is i.i.d., we have

(P0, P1, · · · , Pn)
d
= (Pn

n , P
n
n−1, · · · , P

n
0 ). (24)

So showing the weak convergence of (Pn)n≥0 is equivalent to showing that of (Pn
0 )n≥0. But

investigating the finite backward sequences, via the general model, appears to be more
convenient. In general a dynamical system is easier to handle if we take a backward point
of view, see Diaconis and Freedman [9].

4.4 Finer analysis of the finite backward sequences

4.4.1 The general model.

We consider (Pn
j ) with Pn

n = δh, the one in Lemma 1. Developing (15) we obtain

Pn
0 (dx) =

(

n
∏

l=1

1− bl
∫

yPn
l (dy)

)

xnPn
n (dx) +

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx) (25)

=

(

n
∏

l=1

h(1− bl)
∫

yPn
l (dy)

)

δh(dx) +

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx). (26)

We refer to (2) for the expansion of the forward sequence (Pn).

Proposition 1. Let (Pn
j ) be the finite backward sequence in the general model with Pn

n = δh.
Then for the sequence (Gj), we have

G0(dx)=G0δh(dx) +

∞
∑

j=0

j
∏

l=1

(1− bl)
∫

yGl(dy)
bj+1mjQ

j(dx), (27)

where the second term on the right side of (26) converges to that of (27):

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx) ≤SQ−

TV
−→

∞
∑

j=0

j
∏

l=1

(1− bl)
∫

yGl(dy)
bj+1mjQ

j(dx) (28)

13



and the term G0 = G0,h satisfies the following assertions:

n
∏

l=1

h(1 − bl)
∫

yPn
l (dy)

decreases in n and converges to G0, (29)

G0 = 1−

∞
∑

j=0

j
∏

l=1

(1− bl)
∫

yGl(dy)
bj+1mj ∈ [0, 1], (30)

G0 = G0(h) , if Q(h) = 0, (31)
∫

(y

h

)n
Gn(dy)

n
∏

l=1

h(1 − bl)
∫

yGl(dy)
decreases in n and converges to G0, if G0 > 0. (32)

Moreover if we define Gj for Gj similarly as G0 for G0, we have

Gj−1 = Gj
h(1− bj)
∫

yGj(dy)
, ∀j ≥ 1. (33)

As a consequence Gj ’s are either all 0 or all strictly positive.

Proof. By (17),
∫

yPn
l (dy) increases in n and converges to

∫

yGl(dy) as n→∞. Then using
(26), we obtain (28). Integrating on both sides of (26), we use (28) to deduce that

n
∏

l=1

h(1 − bl)
∫

yPn
l (dy)

= 1−

∫ n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx)

decreases in n and converges to the limit

1−

∫ ∞
∑

j=0

(

j
∏

l=1

1− bl
∫

yGl(dy)

)

bj+1mjQ
j(dx) =: G0.

So (27), (29) and (30) are proved.

From (27) we observe (31). To show (32), we develop (16) as follows

G0(dx) =

(

n
∏

l=1

1− bl
∫

yGl(dy)

)

xnGn(dx) +
n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yGl(dy)

)

bj+1mjQ
j(dx)

=

(

∫

(y

h

)n
Gn(dy)

n
∏

l=1

h(1− bl)
∫

yGl(dy)

)

xnGn(dx)
∫

ynGn(dy)
+

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yGl(dy)

)

bj+1mjQ
j(dx).

Combining the above display with (27) and (28), we obtain (32), and also that xnGn(dx)∫
ynGn(dy)

converges weakly to δh. Finally, combining (16) and (27) leads to (33).

Remark 10. The proposition implies that (Pn
0 ) with Pn

n = δh in the random model converges
in total variation to I = I0, pointwise. Then by (24), (Pn) in the random model with P0 = δh
converges weakly to I. Therefore Theorem 2 is proved for the particular case with P0 = δh.
As will be clear later (Section 4.7), a complete proof has to deal with different kinds of P0.
The one solved here with P0 = δh is the simplest case.
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4.4.2 The random model.

When carrying over the results of Proposition 1 to the random model, we change the symbol
G to I, similar to the change from G to I. For instance, we set Ij = G0(βj+1, βj+2, · · · ) for
any j ≥ 0. Then we have the following corollary.

Corollary 3. The process (Ij) = (Ij)j≥0 is stationary ergodic. Moreover P({Ij = 0,∀j}) =
P(I0 = 0) ∈ {0, 1}.

Remark 11. If Q(h) > 0, then it must be that h = SQ and I(h) = I0(h) > 0 a.s.. If
Q(h) = 0, then I(h) = I0(h) = I0. So applying Corollary (3), either I(h) > 0 a.s., or
I(h) = 0 a.s..

Proof. By Proposition 1, G0 = G0(b1, b2, · · · ) is a measurable function from [0, 1)∞ to [0, 1].
As (βj) is i.i.d., we obtain that (Ij) = (G0(βj+1, βj+2, · · · )) is stationary ergodic, thanks to
Lemma 2.

By (33), for any k, {Ik = 0} = {Ij = 0,∀j}. Note that {Ij = 0,∀j} is an invariant set in
the sigma algebra generated by (Ij). By ergodicity of (Ij), P({Ij = 0,∀j}) = P(I0 = 0) ∈
{0, 1}.

The following result provides us a tool to know more about I and Q. Let I = I0,h,
and IQ = I0,SQ

. To summarise, I, I,IQ, IQ are identical in value to I0,h, I0,h,I0,SQ
, I0,SQ

respectively.

Corollary 4. The following statements about E
[

ln 1−β∫
yI(dy)

]

hold:

1). E

[

ln 1−β∫
yI(dy)

]

is well defined, and takes values in [−∞,− ln
∫

yQ(dy)], and depends

only on the marginal distributions of β and I.

2). If Q(h) = 0, then

E

[

ln
h(1 − β)
∫

yI(dy)

]

≤ 0.

3). If I(h) > 0 a.s. and Q(h) = 0, then

E

[

ln
h(1 − β)
∫

yI(dy)

]

= 0.

4). If h = SQ and Q(SQ) > 0, then

E

[

ln
SQ(1− β)
∫

yI(dy)

]

< 0 and I = 0, a.s..

Remark 12. If h = SQ, we can only have E

[

SQ(1−β)∫
yI(dy)

]

= E

[

SQ(1−β)∫
yIQ(dy)

]

≤ 0.

Proof. 1). By (27), G0 is a convex combination of probability measures {δh, Q,Q1, Q2, · · · }.
As Qj � Qj+1 � δh for any j ≥ 0, we have, in the pointwise sense

Q � I = I0 � δh. (34)
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Then

ln

∫

yQ(dy) ≤ E

[

ln

∫

yI(dy)

]

≤ lnh.

So E
[

ln
∫

yI(dy)
]

is a finite term. Consequently,

E

[

ln
1− β
∫

yI(dy)

]

= E

[

ln(1− β)− ln

∫

yI(dy)

]

= E [ln(1− β)]− E

[

ln

∫

yI(dy)

]

∈

[

−∞,− ln

∫

yQ(dy)

]

.

We observe that the above display depends only on the marginal distributions of β and I.

2). Let (Pn
j ) be the finite backward sequence in the random model with Pn

n = δh. By
assumption, Q(h) = 0. Adapting (26) into the random model and taking the expectation
of the mass on h we obtain

1 ≥ E[Pn
0 (h)] = E

[(

n
∏

l=1

h(1 − βl)
∫

yPn
l (dy)

)]

≥ exp

(

n
∑

l=1

E

[

ln
h(1− βl)
∫

yPn
l (dy)

]

)

where the second inequality is due to Jensen’s inequality. By (17)

E

[

ln
h(1− βl)
∫

yPn
l (dy)

]

increases in n and converges to E

[

ln
h(1− βl)
∫

yIl(dy)

]

= E

[

ln
h(1− β)
∫

yI(dy)

]

.

Combining the above two displays, it must be that E[ln h(1−β)∫
yI(dy)

] ≤ 0.

3). Lemma 1 implies that there exists a measurable function T : [0, 1)∞ 7→ (0,∞) such

that for any j,
h(1−bj)∫
yGj(dy)

= T (bj , bj+1, · · · ). By Lemma 2,

(

h(1 − βj)
∫

yIj(dy)

)

is stationary ergodic.

By (32) and the fact that I(h) = I0(h) = I0 > 0 a.s. (because Q(h) = 0 by assumption),

lim
n→∞

(I0)
1/n = lim

n→∞
exp

(

1

n
ln

∫

(y

h

)n
In(dy) +

1

n

n
∑

l=1

ln
h(1− βl)
∫

yIl(dy)

)

a.s.
= 1. (35)

As (Ij) is stationary ergodic,
∫ ( y

h

)n
In(dy) ∈ [In, 1] converges weakly to I0, which is strictly

positive. Then
[

1

n
ln In, 0

]

∋
1

n
ln

∫

(y

h

)n
In(dy)

d
−→ 0, n→∞.

Moreover, since
(

h(1−βj)∫
yIj(dy)

)

is stationary ergodic, we have

1

n

n
∑

l=1

ln
h(1 − βl)
∫

yIl(dy)

a.s.
−→ E

[

ln
h(1− β)
∫

yI(dy)

]

, n→∞.

The above three displays yield

1 = exp

(

E

[

ln
h(1− β)
∫

yI(dy)

])

or equivalently E

[

ln
h(1 − β)
∫

yI(dy)

]

= 0.
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4). We show I = I0 = 0 a.s. by contradiction. Adapting (26) in the random model

Pn
0 (dx) =

(

n
∏

l=1

SQ(1− βl)
∫

yPn
l (dy)

)

δSQ
(dx) +

n−1
∑

j=0

(

j
∏

l=1

1− βl
∫

yPn
l (dy)

)

βj+1mjQ
j(dx).

If I0 > 0 a.s., we consider the mass on SQ in the above display. Note that mjQ
j(SQ) =

Sj
QQ(SQ). Together with (29) we obtain

1 ≥ Pn
0 (SQ) ≥ Q(SQ)

n−1
∑

j=0

(

j
∏

l=1

SQ(1− βl)
∫

yPn
l (dy)

)

βj+1 ≥ Q(SQ)

n−1
∑

j=0

I0βj+1
d
−→∞.

This is a contradiction. So I0 = 0, a.s.. Note that by (34), I(SQ) = I0(SQ) ≥ Q(SQ) > 0.

Then we get E
[

ln h(1−β)∫
yI(dy)

]

< 0 using (35) and the arguments thereafter.

4.5 Proof of Theorem 3

Proof of Theorem 3. The statement about E
[

ln h(1−β)∫
yIQ(dy)

]

concerns just a subcase of Corol-

lary 4–1). So this is proved.

If there is no condensation at h, then by Corollary 1, I = I0,h = I0,SQ
= IQ, then of

course I
d
= IQ.

The first assertion in the condensation criterion holds due to Corollary 4–3). We consider
the second one. If there is condensation at h, then I0,SQ

6= I0,h. By Corollary 1, I0,h ≤SQ−

I0,SQ
and I0,SQ

(SQ) ≤ I0,h(h), which, together with Corollary 4–3) entails that

E

[

ln
h(1 − β)

∫

yI0,SQ
(dy)

]

> E

[

ln
h(1 − β)
∫

yI0,h(dy)

]

= 0.

The above inequality is strict because I0,SQ
6= I0,h.

If there is no condensation at h, then by Corollary 1, I0,h = I0,SQ
. Using Corollary 4–2),

E

[

ln
h(1 − β)

∫

yI0,SQ
(dy)

]

= E

[

ln
h(1 − β)
∫

yI0,h(dy)

]

≤ 0.

4.6 Some properties of invariant measures

In this section, we prove some results concerning invariant measures. But we leave the
proof of Theorem 4 to the end. Invariant measures will play important roles in the proof of
Theorem 2.

Lemma 3. For any invariant measure ν, E
[

ln 1−β∫
yν(dy)

]

is well defined, and takes values in

[−∞,− ln
∫

yQ(dy)], and depends only on the marginal distributions of β and ν.
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Proof. By the definition of invariant measure

E

[∫

yν(dy)

]

= (1− E[β])E

[
∫

y2ν(dy)
∫

yν(dy)

]

+ E[β]

∫

yQ(dy)

≥ (1− E[β])E

[∫

yν(dy)

]

+ E[β]

∫

yQ(dy)

where the inequality is due to the fact that
∫

y2ν(dy) ≥ (
∫

yν(dy))2. Then we obtain

∫

yQ(dy) ≤ E

[∫

yν(dy)

]

≤ 1.

Proceeding similarly as in the proof of Corollary 4–1), we conclude that this lemma holds.

Corollary 5. IQ is the unique (in distribution) invariant measure supported on [0, SQ].

Proof. Let ν be any invariant measure on [0, SQ]. We show that ν
d
= IQ. Note that Sν = SQ,

a.s.. Let (Pn) and (P ′
n) be two forward sequences as in Section 4.2 with

Q = Q′; h = h′ = SQ; P0
d
= ν, P ′

0 = δSQ

and P0 is independent of (βn). The two sequences differ only in the starting measures

(satisfying P0 ≤SQ− P ′
0), with other parameters identical. Since ν is invariant, Pn

d
= ν for

any n ≥ 0. Using the notations Mn,M
′
n,Wn,W

′
n in Section 4.2, and by the monotonicity

analysis as in the proof of Lemma 1, we obtain in the pointwise sense,
∫

Mn(dx) ≤

∫

M′
n(dx), W ′

n ≤SQ
Wn. (36)

If IQ = 0 a.s., by (29) in Proposition 1 and (24)
∫

M′
n(dx)

d
−→ IQ

a.s.
= 0.

Remark 10 says that P ′
n(=W

′
n +M′

n)
d
→ IQ. Then

W ′
n

d
−→IQ.

Thus applying (36) and IQ = 0, a.s., we obtain
∫

Mn(dx)
d
−→ 0, Wn

d
−→IQ.

Consequently,

Pn(=Wn +Mn)
d
−→ IQ.

Since ν
d
= Pn for any n, we have ν

d
= IQ.

If IQ > 0, a.s., then by Corollary 4–4), Q(SQ) = 0 and IQ(SQ) = IQ > 0, a.s.. Then by
Corollary 4–3), we have

E

[

ln
SQ(1− β)
∫

yIQ(dy)

]

= 0. (37)
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Using again monotonicity analysis, in a pointwise sense,

P ′
n ≤SQ− Pn, Pn(SQ) ≤ P ′

n(SQ). (38)

As P ′
n

d
→ IQ, and Pn

d
= ν for all n, the above display entails that,

IQ ≤
d
SQ− ν, ν(SQ) � IQ = IQ(SQ).

Assume that ν is not equal to IQ in distribution, then by the above display and (37),

E

[

ln
SQ(1− β)
∫

yν(dy)

]

> 0.

The inequality implies that for ε > 0 small enough, we have

E

[

ln
(SQ − ε)(1 − β)
∫

yν(dy)

]

> 0.

As Sν = SQ almost surely and P0
d
= ν,

∫

( x
SQ−ε)

nP0(dx)
d
→∞, as n→∞. Using again the

decomposition (12) in Section 4.2, we get

1 = E

[∫

P0(dx)

]

≥ E

[∫

Mn(dx)

]

= E

[

exp

(

ln

∫ (

x

SQ − ε

)n

P0(dx) +

n−1
∑

l=0

ln
(SQ − ε)(1− βl+1)

∫

yPn
l (dy)

)]

≥ E

[

exp

(

n−1
∑

l=0

ln
(SQ − ε)(1 − βl+1)

∫

yPn
l (dy)

)]

≥ exp

(

nE

[

(SQ − ε)(1 − β)
∫

yν(dy)

])

n→∞
−→ ∞

where the third inequality is due to Jensen’s inequality. So this is a contradiction, which
means that ν is equal in distribution to IQ.

4.7 Proof of Theorem 2

Case 1. P0 = δh.

Proof of Theorem 2. This is shown in Remark 10.

Case 2. I0,h = 0 a.s..

Proof of Theorem 2. Let (Pn)n≥0, (P
′
n)n≥0 be two forward sequences in Section 4.2 with

Q = Q′, h = h′, P ′
0 = δh.

So the two sequences differ only in the starting measures (satisfying P0 ≤h− P ′
0), with

other parameters identical. Next it suffices to follow the same procedure as in the proof of
Corollary 5 for the case IQ = 0 a.s.. The proof is omitted.
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Case 3. I0,h > 0 a.s. and P0(h) > 0.

First of all, we restate a result from ([22], p.10), where only h = 1 is considered. But it is
easily generalised to any h. Recall also the distribution function Du for u ∈M1, introduced
in Section 4.1.

Lemma 4. Let u1, u2 ∈ M1 be any probability measures satisfying Su1
= Su2

= h and
u1 ≤h− u2. If for some ε > 0 there exists a ∈ (0, h) such that Du1

(a) + ε ≤ Du2
(a), then

∫

yu1(dy) ≥ c(a, ε)

∫

yu2(dy)

where c(a, ε) = 1
1−ε(h−a) > 1.

Proof of Theorem 2. Let (Pn), (P
′
n) be the two forward sequences in the proof of Case 2.

Similarly as (38), conditionally on (βn), we have

P ′
n ≤h− Pn, Pn(h) ≤ P ′

n(h), (39)

implying
∫

yP ′
j(dy) ≥

∫

yPj(dy), ∀j ≥ 0.

For any ε > 0, a ∈ (0, h), let

κn := #{n : DP ′

j
(a) + ε ≤ DPj

(a), 0 ≤ j ≤ n}.

Note that by Proposition 1–4), Q(h) = 0. So using (12) and (13) in Section 4.2

P ′
n(h) =

n−1
∏

l=0

h(1− βl+1)
∫

yP ′
l (dy)

, Pn(h) =

(

n−1
∏

l=0

h(1− βl+1)
∫

yPl(dy)

)

P0(h).

Then by Lemma 4, we have
∏n

l=0

∫

yP ′
l (dy) ≥ c(a, ε)κn

∏n
l=0

∫

yPl(dy). Therefore

P ′
n(h) ≤

1

c(a, ε)κn

(

n−1
∏

l=0

h(1 − βl+1)
∫

yPl(dy)

)

=
Pn(h)

c(a, ε)κnP0(h)
≤

1

c(a, ε)κnP0(h)
.

But (29) of Proposition 1 and (24) entail that P ′
n(h) converges weakly to I0,h which is

by assumption non-zero almost surely. Then limn→∞ κn < ∞ a.s.. As a, ε are arbitrary

numbers and by Case 1 of this theorem P ′
n

d
−→ I0,h, we use (39) to conclude that Pn also

converges weakly to I0,h.

Case 4. I0,h > 0 a.s. and P0(h) = 0.

Proof of Theorem 2. The idea is to use a tripling argument similarly as in the proof of
Theorem 5 in [22]. For any u ∈M1 and any a ∈ [0, 1], define

ua = u[0,a) + u([a, 1])δa, a < h

where u[0,a) is the restriction of u on [0, a).
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We distinguish between h > SQ and h = SQ. For the former, let (Pn), (P
′
n), (P

′′
n ) be three

forward sequences in Section 4.2 with

SQ < h′′ < h = h′; Q′ = Q, Q′′ = Qh′′

= Q; P ′
0 = δh, P ′′

0 = P h′′

0 .

So the three sequences differ in the starting measures including the largest fitness values,
but with the same Q and (βn). Since P ′

0(h
′) = δh(h) = 1 and 0 < P ′′

0 (h
′′) ≤ 1 and, we use

Case 1 for (P ′
n) and Case 2, Case 3 for (P ′′

n ) to obtain that,

P ′
n

d
−→ I0,h, P ′′

n
d
−→ I0,h′′ . (40)

Applying the monotonicity analysis, the following holds in the pointwise sense:

P ′
n ≤h− Pn ≤h′′− P ′′

n . (41)

Letting h′′ → h and using Corollary 1, conditionally on (βj), I0,h′′ converges weakly to
a limit in M1, denoted by ν. So ν is a (pointwise) weak limit of I0,h′′ as h′′ → h. We prove
next that ν = I0,h.

Since I0,h > 0, a.s. and h > SQ, by Theorem 3,

E

[

ln
h(1− β)

∫

yI0,SQ
(dy)

]

> 0.

Then for h′′ close enough to h, we also have

E

[

ln
h′′(1− β)
∫

yI0,SQ
(dy)

]

> 0.

The above display entails that there is condensation at h′′, thanks to Theorem 3. Together
with Corollary 4–3), we have

E

[

ln
h′′(1 − β)
∫

yI0,h′′(dy)

]

= 0, I0,h′′ > 0, a.s. (42)

Since I0,h′′ is an invariant measure, the limit ν is still an invariant measure. Using (42) and
Corollary 1, the pointwise convergence of I0,h′′ to ν as h′′ → h entails

E

[

ln
h(1 − β)
∫

yν(dy)

]

= 0, ν(h) > 0 a.s.. (43)

Using Corollary 1 again, in the pointwise sense

I0,h ≤h′′− I0,h′′ , I0,h′′(h′′) ≤ I0,h(h),

implying in the pointwise sense (since ν is a pointwise weak limit of I0,h′′),

I0,h ≤h− ν, ν(h) ≤ I0,h. (44)

On the other hand, by assumption I0,h > 0, a.s., so using Corollary 4–3),

E

[

ln
h(1− β)
∫

yI0,h(dy)

]

= 0.
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The above display with (43) and (44) entails that

ν = I0,h, pointwise. (45)

Therefore we proved that I0,h′′ converges pointwise to the weak limit I0,h as h′′ → h.

Now taking into account (40), for any continuous function f,

∫

f(x)P ′′
n (dx)

d
−→

∫

f(x)I0,h′′(dx)

pointwise
−−−−−−→

h′′→h

∫

f(x)I0,h(dx)
d
←−

∫

f(x)P ′
n(dx). (46)

Note that using (41), for any bounded continuous increasing function g we have

∫

g(x)P ′′
n (dx) �

∫

g(x)Pn(dx) �

∫

g(x)P ′
n(dx).

Together with (46), we obtain

∫

g(x)Pn(dx)
d
−→

∫

g(x)I0,h(dx).

Since by (41), P ′
n ≤h− Pn pointwise for any n, the above display entails that Pn converges

weakly to I0,h, the same weak limit of (P ′
n).

If h = SQ, we follow the same procedure, except that to prove (45), we require Corollary
5.

4.8 Proof of Theorem 4

Firstly we prove two lemmas. Recall the definition of Su for u ∈M1.

Lemma 5. S(·) is a continuous (hence measurable) function on M1 with the topology of the
weak convergence.

Proof. Assume that a sequence (un) converges weakly to u. If Sun does not converge to Su,
then there exists a subsequence (unk

) such that Sunk
converges to a limit a with a < Su

or a > Su. Without loss of generality, assume a < Su. We take a positive and continuous
function f supported on (a+Su

2 , Su] and then
∫

f(x)u(dx) > 0. But
∫

f(x)unk
(dx) converges

to 0. This is against the weak convergence. The proof is then completed.

The next lemma generalises Corollary 5.

Lemma 6. For any invariant measure ν with Sν = h a.s., we have ν
d
= I.

Proof. Let (Pn) be the forward sequence in the random model with P0
d
= ν and P0 indepen-

dent of (βn). By Theorem 2, conditionally on P0, Pn converges in distribution to the same

random measure I. Then unconditionally Pn
d
= ν converges in distribution to I, implying

ν
d
= I.
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Proof of Theorem 4. Let ν be any invariant measure. By Definition (10), Sν ∈ [SQ, 1], a.s..
By Lemma 5, Sν is a random variable and then by Theorem 5.3 in [15], there exists a regular
conditional distribution of ν on Sν .

Conditioning on Sν for both sides of (10), we see that (ν|Sν) must be an invariant

measure almost surely. By Lemma 6, conditionally on Sν , we have (ν|Sν)
d
= I almost

surely, where I is the random probability measure with parameters L, Q, h = Sν and satisfies
P(SI = Sν|Sν) = 1, a.s.. Then the proof is finished.

A Analysis of ln
h(1−b)

∫

xKQ(dx)
in Kingman’s model

We discuss respectively Theorem 1-1 (i.e.,
∫ Q(dx)

1−x/h ≥ b−1) and Theorem 1-2 (i.e.,
∫ Q(dx)

1−x/h <

b−1). For the former, let us compute
∫

xKQ(dx) first.

∫

xKQ(dx) =

∫

bθbxQ(dx)

θb − (1− b)x

=

∫

bθb(x− θb/(1 − b))Q(dx) + bθ2b/(1− b)Q(dx)

θb − (1− b)x

=
bθb
1− b

+
bθ2b
1− b

∫

Q(dx)

θb − (1− b)x

= θb (47)

where the last equality is due to the fact that θb is the solution of the equation (4). The
equation (4) also implies

∫

θbQ(dx)

θb − (1− b)x
=

∫

Q(dx)

1− (1− b)x/θb
= b−1.

Recall
∫ Q(dx)

1−x/h ≥ b−1. Then the above display entails that

1

h
≥

1− b

θb
.

Taking into account (47), we arrive at

h(1− b)
∫

xKQ(dx)
≤ 1, or equivalently, ln

h(1− b)
∫

xKQ(dx)
≤ 0.

The equality holds if and only if
∫ Q(dx)

1−x/h = b−1.

For Theorem 1-2, we have

∫

xKQ(dx) =

∫

bxQ(dx)

1− x/SQ
+

(

1−

∫

bQ(dx)

1− x/SQ

)

SQ

= SQ +

∫

b(x− SQ)Q(dx)

1− x/SQ

= (1− b)SQ.
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Then we obtain

ln
h(1 − b)
∫

xKQ(dx)
= ln

h

SQ
≥ 0

where the equality holds if and only if h = SQ.

In conclusion, if h > SQ, ln
h(1−b)∫
xKQ(dx)

≤ 0 is equivalent to
∫ Q(dx)

1−x/h ≥ b−1 (non-condensation

case), and ln
(1−b)SQ∫
xKQ(dx)

> 0 is equivalent to
∫ Q(dx)

1−x/h < b−1 (condensation case).

If h = SQ, ln
h(1−b)∫
xKQ(dx)

= 0 is equivalent to either
∫ Q(dx)

1−x/SQ
= b−1 (non-condensation case)

or
∫ Q(dx)

1−x/SQ
< b−1 (condensation case), and ln

SQ(1−b)∫
xKQ(dx)

< 0 is equivalent to
∫ Q(dx)

1−x/SQ
> b−1

(non-condensation case). The case ln
SQ(1−b)∫
xKQ(dx)

> 0 does not exist, which is in line with

Remark 12.

Therefore, if h = SQ, knowing only ln h(1−b)∫
xKQ(dx)

= 0 cannot tell whether the condensation

occurs or not.
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