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Abstract

This work presents an application of the recently-developed Sequential Ensemble Monte Carlo sampler in performing on-line Bayesian
model updating for the Prognostics Health Management of a passive component of an Advanced Reactor. The passive component
involves a stainless-steel material subjected to a thermal creep deformation whose growth rate is modelled by a continuous piece-wise
model consisting of 3 models, each representing a creep-growth stage.
There are 2 investigations done in this research. For the first investigation, the model identification capability of the Sequential

Monte Carlo sampler is evaluated in identifying the most probable model for each creep-growth stage. For the second investigation,
the on-line Bayesian model updating procedure via the aforementioned sampler is then undertaken. In addition, a method is proposed
where the model updating approach will be done for each model sequentially across the different creep-growth stage. This process
involves utilising information of the boundary conditions obtained from the model output interval at the transition times to determine
the prior bounds for each model parameter to be updated. This method seeks to minimise the discontinuity in the updated piece-wise
model at the transition times. From there, the Remaining Useful Life analysis on the component is performed.
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1. Introduction

In recent years, on-line Bayesian model updating tech-
nique has been gaining popularity as a technique to address
numerous problems in engineering. This involves the up-
dating of knowledge of the inferred parameter(s) while the
distinct data-sets are obtained sequentially across different
times. As such, this technique is of importance in the con-
text of Prognostics Health Management where real-time
monitoring of the component’s state of health is of impor-
tance for timely maintenance and Remaining Useful Life
(RUL) prediction [1]. There are 2 significant advantages to
such approach: 1) it does not require a complete data-set to
be present in order to perform Bayesian inference; and 2)
it allows for condition-based maintenance to be done rather
than time-based maintenance which is more frequent and
costly [1].

For the work presented in this paper, on-line Bayesian
model updating is implemented to perform probabilistic
model updating on a continuous piece-wise model. To the
best of the authors’ knowledge, such work has not been
done previously which will be addressed here. This re-
search comprises of 2 key objectives: 1) to assess and
evaluate the capability of the recently-developed Sequen-
tial Ensemble Monte Carlo (SEMC) [2] sampler to identify
the most probable model for the corresponding sub-domain
under uncertainty; and 2) to propose a method to account
for boundary conditions when determining the prior bounds
for the selected inferred model parameters based on interval
arithmetic [3]. The eventual goal of this research is to arrive
at an approach to ensure that the updated piece-wise model
captures most of the information contained by the observed
data whilst ensuring minimal discontinuities between the
sub-domains.
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1.1. Bayesian Model Updating

A well-known probabilistic model updating technique
commonly used in engineering is Bayesian model updating
[4]. The framework based on Bayesian inference [5]:

𝑃(𝜽 |𝑫, 𝑀) = 𝑃(𝜽 |𝑀) · 𝑃(𝑫 |𝜽 , 𝑀)
𝑃(𝑫 |𝑀) (1)

The terms in Eq. (1) follows: 𝜽 is the vector of the inferred
epistemic parameters; 𝑫 is the vector of measurements; 𝑀
is themathematical model which predicts the observed 𝑫 as
a function of 𝜽; 𝑃(𝜽 |𝑀) is the prior distribution; 𝑃(𝑫 |𝜽 , 𝑀)
is the likelihood function; 𝑃(𝜽 |𝑫, 𝑀) is the posterior distri-
bution; and 𝑃(𝑫 |𝑀) is the evidence. Detailed explanations
to the above terms are found in [6].

In the on-line Bayesian model updating framework, data
is obtained sequentially at different time 𝑡𝑠 where 𝑠 denotes
the time index. Such set-up is used to infer 𝜽 which can
be either time-invariant or time-varying. In this paper, we
shall only consider the case where 𝜽 is time-invariant. As
such, assuming independence between the data obtained at
different 𝑡𝑠 , the posterior at a given 𝑡𝑠 is defined [7]:

𝑃(𝜽 |𝑫1:𝑠 , 𝑀) ∝ 𝑃(𝜽 |𝑀) ·
𝑠𝑒𝑛𝑑∏
𝑠=1

𝑃(𝑫𝑠 |𝜽 , 𝑀) (2)

where 𝑠𝑒𝑛𝑑 is the index for the terminal time.

Eq. (2), implies that 𝑃(𝜽 |𝑫1:𝑠 , 𝑀) is time-varying. As
such, samples have to be obtained sequentially across all 𝑡𝑠 .
To do this, several sampling techniques can be employed
such as Kalman Filter [8], Gaussian Sum Filters [9], [10],
and Sequential Monte Carlo samplers [11]. For the research
work presented here, a new variant of Sequential Monte
Carlo sampler, known as the Sequential Ensemble Monte
Carlo (SEMC) sampler [2], will be implemented.



1.2. Review of the Sequential Ensemble Monte Carlo
The SEMC sampler presents 2 key features: 1) the use

of the Affine-invariant Ensemble sampler (AIES) in place
of the Metropolis-Hastings (MH) sampler for the Markov
Chain Monte Carlo (MCMC) step; and 2) an adaptive-
tuning algorithm which tunes automatically the step-size
parameter of the AIES [2].

1.2.1. Affine-invariant Ensemble sampler
The AIES is a MCMC algorithm developed by Good-

man and Weare in 2010 which involves the use of multiple
chains (i.e. an ensemble) to explore the sample space de-
fined by the target distribution. From which, it utilises an
affine-invariant stretch-move kernel to generate candidate
samples 𝜽∗ between chains contrary to the MH algorithm
which utilises a proposal distribution (i.e. a Normal distri-
bution) to generate 𝜽∗ for one chain at a time which does
not exhibit the affine-invariant property [12]. As a result,
the AIES is able to sample from highly-skewed, anisotropic
distributions compared to its MH counterpart. To highlight
this, extensive studies have been done in [12], [13] to which
readers can refer for details.
The AIES generates 𝑁𝑒 ensemble as follows: Defin-

ing the 𝑖𝑡ℎ ensemble ®𝜽 𝑖 = {𝜽1,𝑖 , 𝜽2,𝑖 , . . . , 𝜽𝑁𝑐−1,𝑖 , 𝜽𝑁𝑐 ,𝑖
},

where 𝑁𝑐 is the total number of chains; and 𝑖 = 1, . . . , 𝑁 is
the iteration number. It needs to be noted that 𝑁𝑐 ≥ 2× 𝑁𝑑

where 𝑁𝑑 is the total number of inferred parameters [12].
For each iteration 𝑖, a given chain 𝑘 , for 𝑘 = 1, . . . , 𝑁𝑐, is
updated through the stretch-move kernel [12]:

𝜽∗𝑘 = 𝜽∗[𝑘 ] + _ · (𝜽∗𝑘,𝑖 − 𝜽∗[𝑘 ]) (3)

where 𝜽∗
𝑘
is the candidate sample of the 𝑘 𝑡ℎ chain; 𝜽 [𝑘 ] is

a randomly chosen sample from the complementary set
®𝜽 [𝑘 ] = {𝜽1,𝑖+1, . . . , 𝜽𝑘−1,𝑖+1, 𝜽𝑘+1,𝑖 , . . . , 𝜽𝑁𝑐 ,𝑖

}; and _ is
real-valued scalar proposal stretch factor. _ is a random
variable following a proposal distribution 𝑔(_):

𝑔(_) =


1
2· (

√
𝑢− 1√

𝑢
) ·

1√
_
if _ ∈ [ 1

𝑢
, 𝑢]

0 otherwise
(4)

where 𝑢 ≥ 1 is the user-defined step-size auxiliary param-
eter of the AIES sampler. From there, 𝜽∗

𝑘
is accepted with

probability 𝛼𝑘 :

𝛼𝑘 = 𝑚𝑖𝑛

[
1, _𝑁𝑑−1 ·

𝑃(𝜽∗
𝑘
|𝑫1:𝑠 , 𝑀)

𝑃(𝜽
𝑘,𝑖

|𝑫1:𝑠 , 𝑀)

]
(5)

This process is repeated for all 𝑁𝑐 chains upon which when
this is done, the algorithm proceeds to iteration 𝑖 = 𝑖+1 and
repeats the above procedure until 𝑖 = 𝑁𝑒.

1.2.2. Adaptive Tuning Algorithm
The adaptive tuning algorithm was proposed in [13] to

allow for the automatised tuning of 𝑢which, in turn, helps to
control the acceptance-rates of the sampler at each iteration
𝑗 . The algorithm works as such: At 𝑗 = 1, an initial value
of 𝑢 is set. Although the recommended value is 2, as this
is the “optimal" value for most problems [12], this initial
value can vary depending on the complexity of the problem

and the number of parameters to be inferred. From this
initial value, the nominal step-size 𝑢𝑛𝑜𝑚 is computed after
the MCMC step:

𝑢𝑛𝑜𝑚 = 𝑢 𝑗 · 𝑒𝑥𝑝
[
𝛼 𝑗 − 𝛼𝑡𝑟

]
(6)

where 𝛼 𝑗 is the overall acceptance rate of the AIES sampler
at iteration 𝑗 of the SEMC sampler, while 𝛼𝑡𝑟 is the target
acceptance rate defined as [14]:

𝛼𝑡𝑟 =
0.21
𝑁𝑑

+ 0.23 (7)

If 𝑢𝑛𝑜𝑚 > 1, set 𝑢 𝑗+1 = 𝑢𝑛𝑜𝑚. Else, set 𝑢 𝑗+1 = 1.01.

1.2.3. SEMC Sampling Algorithm
The SEMC algorithm generates 𝑁 samples from the pos-

terior as such [2]:

1. Initialise sampler (i.e. 𝑗 = 0). Sample 𝑁 samples of
𝜽 𝑗+1
𝑖

∼ 𝑃(𝜽 |𝑀) for 𝑖 = 1, . . . , 𝑁;

2. Set 𝑗 = 1 and 𝑢 𝑗=1 = 2.

3. Compute the weights �̂� 𝑗

𝑖
=

𝑃 (𝑫 𝑗 |𝜽 𝑗

𝑖
,𝑀)∑𝑁

𝑖=1 𝑃 (𝑫 𝑗 |𝜽 𝑗

𝑖
,𝑀)
;

4. Compute 𝑁𝑒 𝑓 𝑓 =
1∑𝑁

𝑖=1

(
�̂�

𝑗

𝑖

)2 ;
5. If 𝑁𝑒 𝑓 𝑓 <

𝑁
2 , resample 𝑁 𝜽 𝑗

𝑖
∼ �̂�

𝑗

𝑖
and set �̂� 𝑗

𝑖
= 1

𝑁
.

6. Resample 𝑁 samples of 𝜽 𝑗

𝑖
∼ �̂�

𝑗

𝑖
and set them as initial

ensemble ®𝜽1. Generate ®𝜽2 via 1 iteration of the AIES
algorithm according to 𝑃(𝜽 𝑗 |𝑫1: 𝑗 , 𝑀);

7. Compute 𝑢𝑛𝑜𝑚 via Eq. (6).

8. If 𝑢𝑛𝑜𝑚 > 1, set 𝑢𝑡+1 = 𝑢𝑛𝑜𝑚. Else, set 𝑢𝑡+1 = 1.01;

9. Set 𝑃(𝜽 𝑗 |𝑫1: 𝑗 , 𝑀) as the new prior PDF and 𝜽 𝑗

𝑖
as the

new prior samples;

10. Compute evidence:
𝑃(𝑫1: 𝑗 |𝑀) ≈ 1

𝑁

∏ 𝑗

𝑚=1
∑𝑁

𝑖=1 𝑃(𝑫𝑚 |𝜽𝑚𝑖 , 𝑀);

11. Set 𝑗 = 𝑗 + 1 and repeat Steps 3 to 10 until 𝑗 = 𝑗𝑒𝑛𝑑
(Terminal iteration).

2. Case Study

Figure 1. Schematic diagram of the Advanced Reactor passive
component with its corresponding dimensions. Image adopted
from [15].

The set-up involves an Advanced Reactor passive com-
ponent whose schematics is illustrated in Figure 1. In [15],



the effect of thermal creep degradation of the component is
studied for the purpose of assessing its Prognostics Health
Management (PHM) framework. To do so, the literature
presented a numerical study using synthetic data of creep-
growth rate 𝑑𝜖

𝑑𝑡
, in units of percent strain, generated from

3 different models representing the corresponding creep-
growth stage: 1) �̂�1 (Primary stage); 2) �̂�2 (Secondary
stage); and 3) �̂�3 (Tertiary stage). These models are de-
fined respectively following [15]:

�̂�1 (𝑡) = 1 − 𝑒𝑥𝑝 (−0.40 · 𝑡) , for 0 ≤ 𝑡 ≤ 6 (8)

�̂�2 (𝑡) = 0.07 · 𝑡 + 0.75, for 6 < 𝑡 ≤ 24 (9)

�̂�3 (𝑡) = 3.52𝑒−04·𝑡3−1𝑒−05·𝑡2−0.63·𝑡+12.93, for 𝑡 > 24
(10)

where 𝑡 is in ℎ𝑟𝑠.
The synthetic data-set 𝑫 (𝑡) is obtained at 𝑡 =

{0, 2, 3, 4, 7, 11, 15, 19, 23, 26, 27, 28, 30} ℎ𝑟𝑠. For each 𝑡,
the corresponding 𝑫 (𝑡) is obtained following [15]:

𝑫 (𝑡) = �̂� (𝑡) + Y, for Y ∼ 𝑁 (0, 0.12) (11)

where �̂� (𝑡) is the creep-growth model (i.e. see Eq. (8)
to (10)), and Y is the simulated “measurement error" term.
The resulting synthetic data is illustrated in Figure 2.
There are 2 investigations involved in this case-study: 1)

to evaluate the capability of the SEMC sampler to identify
the appropriate creep-growth model for each creep-growth
stage; and 2) to propose a methodology for the on-line
model updating of the piece-wise creep-growth rate model.

3. Investigation 1: Model Identification
To identify the most probable model for each creep-

growth stage under uncertainty, at a given 𝑡𝑠 , the model
probability posterior 𝑃(𝑀 |𝑫1:𝑠) is used as the metric. For
a given 𝑣𝑡ℎ model 𝑀𝑣 , its model probability posterior com-
puted as [16]:

𝑃(𝑀𝑣 |𝑫1:𝑠) =
𝑃(𝑀𝑣) · 𝑃(𝑫1:𝑠 |𝑀𝑣)

𝑃(𝑫1:𝑠)
(12)

where 𝑃(𝑀𝑣) is the prior probability of model 𝑀𝑣 ,
𝑃(𝑫1:𝑠 |𝑀𝑣) is the evidence computed from the SEMC sam-
pler (i.e. see Section 1.2.3); and 𝑃(𝑫1:𝑠) =

∑
𝑣 𝑃(𝑀𝑣) ·

𝑃(𝑫1:𝑠 |𝑀𝑣) is the normalisation constant.
In this investigation, it will be assumed that we have no a

priori knowledge that the creep-growth rate model is piece-
wise. As such, the approach would involve the use of 5
different possible models, each defined for 𝑡 ∈ [0, 30] ℎ𝑟𝑠
as follows:

𝑀1 (𝑡) = \2 · [1 − 𝑒𝑥𝑝(−\1 · 𝑡)] (13)

𝑀2 (𝑡) = \2 · 𝑡 + \1 (14)

𝑀3 (𝑡) = \4 · 𝑡3 + \3 · 𝑡2 + \2 · 𝑡1 + \1 (15)

𝑀4 (𝑡) = \2 · 𝑒𝑥𝑝(\1 · 𝑡) (16)

𝑀5 (𝑡) = 𝑒𝑥𝑝(\2 · 𝑡2 + \1 · 𝑡) (17)

where \1 to \4 are the epistemic model parameters. Mod-
els 𝑀4 and 𝑀5 are introduced as potential functions, in

addition to model 𝑀3, to model the creep-growth rate in
Stage III. There are 2 reasons for this: 1) Model 𝑀3 is a
cubic function which could be too specific of a choice of
function to model Stage III of creep-growth rate; and 2)
Model 𝑀3 introduces more (and possibly unnecessary) in-
ferred parameters to infer whichmakes it relatively complex
compared to models 𝑀4 and 𝑀5 which involve less inferred
parameters and would less-likely over-fit the data in Stage
III (i.e. Occam’s razor [17]).
Another assumption in this investigation is that we do

not have any a priori information on the prior probability
of model 𝑀𝑣 , for 𝑣 = 1, . . . , 5. As such, it will be treated
that all models 𝑀𝑣 are equally probable. Hence, Eq. (12)
is simplified as:

𝑃(𝑀𝑣 |𝑫1:𝑠) =
𝑃(𝑫1:𝑠 |𝑀𝑣)∑
𝑣 𝑃(𝑫1:𝑠 |𝑀𝑣)

(18)

3.1. Bayesian Inference Set-up
For each of the given model in Eq. (13) to (17), its

corresponding epistemic model parameters are assigned a
Uniform prior with the respective bounds presented in Table
1. In addition, the measurement error term 𝜎 will also be
inferred given the lack of prior knowledge and is assigned
a Uniform prior with the interval: [0.001, 1] %.

Table 1. Uniform prior bounds for the respective inferred model
parameters.

Model \1 \2 \3 \4

𝑀1 [−5, 5] [0, 5] − −
𝑀2 [−5, 5] [0, 5] − −
𝑀3 [0, 15] [−1, 1] [−0.1, 0.1] [0, 0.01]
𝑀4 [0.01, 1] [0.01, 50] − −
𝑀5 [0, 1] [−5, 5] − −

The likelihood function at 𝑡𝑠 , given model 𝑀𝑣 , is mod-
elled as a Normal distribution [6]:

𝑃(𝑫𝑠 |𝜽 , 𝑀𝑣) =
1

𝜎 ·
√
2𝜋

𝑒𝑥𝑝

[
− (𝑫𝑠 − 𝑀𝑣 (𝜽))2

2 · 𝜎2

]
(19)

The SEMC sampler is implemented for each 𝑀𝑣 with the
number of samples set at 𝑁 = 1000.

3.2. Results and Discussions
The resulting 𝑃(𝑀𝑣 |𝑫1: 𝑗 ) is computed using Eq. (18)

and the numerical results are presented in Table 2 while
corresponding graphical plots are illustrated in Figure 3.
From Figure 3, it is observed that the SEMC sampler is

able to identify models 𝑀1 and 𝑀2 being the most prob-
able models for creep-growth Stages I and II respectively.
The results are consistent with the true set-up described in
Section 2 as well as the results obtained in the work by Ra-
muhalli et. al [15]. However, from iteration 𝑗 = 9 onwards,
it can be seen that model 𝑀2 is the most probable model
to describe Stage III of creep-growth rate with a probabil-
ity close to 1. In addition, models 𝑀3, 𝑀4, and 𝑀5 are
observed to have probabilities close to 0 which is mathe-



Figure 2. Synthetic data of creep-strain growth rate, 𝑑𝜖
𝑑𝑡
, against time, 𝑡.

Figure 3. Results of 𝑃(𝑀𝑣 |𝑫1: 𝑗 ) for all models 𝑀𝑣 across iterations 𝑗 .

matically inconsistent. This is especially so for the case of
model 𝑀3 to which the result also disagrees to the set-up
described in Section 2.
The above observations imply that the SEMC sampler is

able to effectively identify the most probable models up to
the 9𝑡ℎ data point (i.e. iteration 𝑗 = 9). The reason behind
the failure of the SEMC sampler to correctly identify the
most appropriate model from the 10𝑡ℎ data point onwards is

due to the posterior at iteration 𝑗 = 9 (i.e. 𝑃(𝜽 |𝑫1:9, 𝑀𝑣))
being dominated by 𝑃(𝑫 𝑗 |𝜽 , 𝑀𝑣) obtained from iterations
𝑗 = 1 to 𝑗 = 9. As a result, any further information con-
tained in 𝑃(𝑫 𝑗 |𝜽 , 𝑀𝑣) from 𝑗 = 10 onwards would not
significantly update the posterior obtained from the itera-
tion before. This, in turn, leads to the data in Stage III being
ineffective in providing information towards the identifica-
tion of either models 𝑀3, 𝑀4, or 𝑀5.



Table 2. Numerical results of 𝑃(𝑀𝑣 |𝑫1: 𝑗 ) obtained at each iter-
ation 𝑗 for the corresponding model 𝑀𝑣 .

𝑗 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

1 0.797 0.077 0.000 0.007 0.103
2 0.701 0.053 0.000 0.030 0.214
3 0.899 0.020 0.000 0.016 0.065
4 0.983 0.005 0.000 0.003 0.009
5 0.892 0.074 0.000 0.018 0.017
6 0.815 0.167 0.000 0.014 0.004
7 0.724 0.265 0.000 0.011 0.000
8 0.258 0.728 0.000 0.014 0.000
9 0.047 0.945 0.000 0.008 0.000
10 0.003 0.994 0.000 0.003 0.000
11 0.000 0.998 0.000 0.002 0.000
12 0.000 0.999 0.000 0.001 0.000
13 0.000 0.998 0.000 0.002 0.000

To address this issue, the procedure is repeated involving
only the data in Stage III. Considering that the results from
the previous analysis have concluded that model 𝑀1 is the
most probable model given the data in Stage I, it will be ex-
cluded from this round of the analysis. For models 𝑀2 and
𝑀3, inferredmodel parameters are assigned aUniform prior
with the respective bounds as per in Table 1. For the case of
models 𝑀4 and 𝑀5, the inferred model parameters are also
assigned a Uniform prior with the following bounds pre-
sented in Table 3. It needs to be noted that the logarithmic
scale is used for the bounds to provide numerical stability.

Table 3. Uniform prior bounds for the respective inferred model
parameters of models 𝑀4 and 𝑀5.

Model 𝑙𝑜𝑔(\1) 𝑙𝑜𝑔(\2)
𝑀4 [−4,−1.9] [−4,−1]
𝑀5 [−10,−3] [−3,−2]

The numerical results to 𝑃(𝑀𝑣 |𝑫1: 𝑗 ) across the itera-
tions 𝑗 for the respective models 𝑀𝑣 are presented in Table
4 while the resulting graphical plots are illustrated in Figure
4. From the figure, it is evident that the model posterior
probability is consistently the highest for model 𝑀4 instead
of 𝑀3 which substantiates the hypothesis set-forth by Oc-
cam’s razor.

Table 4. Numerical results of 𝑃(𝑀𝑣 |𝑫1: 𝑗 ) obtained at each iter-
ation 𝑗 for the corresponding model 𝑀𝑣 .

𝑗 𝑀2 𝑀3 𝑀4 𝑀5

1 0.048 0.080 0.832 0.041
2 0.070 0.073 0.850 0.008
3 0.163 0.036 0.799 0.001
4 0.114 0.033 0.852 0.000

Hence, from the results presented in this section, it
can be concluded that the following models are the most
probable to represent the data for the corresponding creep-

growth Stage: I) Model 𝑀1; II) Model 𝑀2; and III) Model
𝑀4. These findings will be used to perform the Bayesian
model updating of the piece-wise creep-growth rate model
to which the procedure is described in Section 4.

4. Investigation 2: Model Updating
In updating the piece-wise creep-growth rate model, the

objective is to minimise discontinuity in the updated model
between the different creep-growth stages. To achieve this,
the following set of procedures are proposed and imple-
mented: 1) For Stage I, model 𝑀1 is updated with informa-
tion from the data in Stage I as well as the first data in Stage
II (i.e. at 𝑡 = 7 ℎ𝑟𝑠); 2) For Stage II, model 𝑀2 is updated
with information from the data in Stage II, the last data in
Stage I (i.e. at 𝑡 = 4 ℎ𝑟𝑠), and the first data in Stage III (i.e.
at 𝑡 = 26 ℎ𝑟𝑠); and 3) For Stage III, model 𝑀4 is updated
with information from the data in Stage III as well as the
last data in Stage II (i.e. at 𝑡 = 23 ℎ𝑟𝑠).
In addition to the above procedures, boundary conditions

are introduced when determining the prior bounds on the
inferred model parameters. This will be done as follows: 1)
Upon updating model 𝑀1, the bounds on the probabilistic
model output at 𝑡 = 6 ℎ𝑟𝑠, denoted as [𝑚1, 𝑚1], are ob-
tained; 2) For a given set of Uniform prior bounds on \2 for
model𝑀2, denoted as [\2, \2]𝑀2 , the Uniform prior bounds
on \1 is computed following:

[\1, \1]𝑀2 = [𝑚1, 𝑚1] − [\2, \2]𝑀2 · 6 (20)

3) Similarly, upon updating model 𝑀2, the bounds on
the probabilistic model output at 𝑡 = 24 ℎ𝑟𝑠, denoted as
[𝑚2, 𝑚2], are obtained; 4) For a given set of Uniform prior
bounds on \1 for model 𝑀4, denoted as [\1, \1]𝑀4 , the
Uniform prior bounds on \2 is computed following:

[\2, \2]𝑀4 =
[𝑚2, 𝑚2]

𝑒𝑥𝑝

(
[\1, \2]𝑀1 · 24

) (21)

4.1. Bayesian Inference Set-up
Based on the methodology described in Section 4, the

Uniform prior bounds of the inferred model parameters for
the respectivemodels are presented in Table 5. Note that the
logarithmic scale is used for the inferred model parameters
for model 𝑀4 to provide numerical stability.

Table 5. Uniform prior bounds for the respective inferred model
parameters.

Model Bounds

𝑀1 \1 ∈ [0, 2]; \2 ∈ [0, 2]
𝑀2 \1 ∈ [\1, \1]𝑀2 ; \2 ∈ [0, 1]
𝑀4 𝑙𝑜𝑔(\1) ∈ [−4, 0]; 𝑙𝑜𝑔(\2) ∈ 𝑙𝑜𝑔

(
[\2, \2]𝑀4

)
As per in Section 3.1, the measurement error term 𝜎

will also be inferred with its aforementioned Uniform prior
bounds and the Normal distribution is assigned as the like-
lihood function (i.e. see Eq. (19)).
The SEMC sampler is implemented to perform Bayesian



Figure 4. Results of 𝑃(𝑀𝑣 |𝑫1: 𝑗 ) for models 𝑀2 to 𝑀5 across iterations 𝑗 .

model updating on each model with a sample size of 𝑁 =

1000.

4.2. Results and Discussions
The resulting graphical plots for the updated piece-wise

creep-growth rate model are illustrated in Figure 5. From
the figure, it can be observed that the updated piece-wise
model generally encompasses the synthetic data points as
well as the true models for the respective creep-growth
rate stage. In addition, the updated piece-wise model is
generally smooth and continuous except at 𝑡 = 6 ℎ𝑟𝑠 and
𝑡 = 24 ℎ𝑟𝑠where small degrees of discontinuity can be seen.
This indicates that the Bayesian model updating procedure,
alongwith the proposedmethodologies presented in Section
4, are effective to a large extent.
Following this, the analysis on the RUL of the

Advanced Reactor component is conducted at 𝑡 =

{7, 11, 15, 19, 23, 26, 27, 28, 30} ℎ𝑟𝑠 with the end-of-life of
the component is set at 𝑡 = 30 ℎ𝑟𝑠 [15]. The mean RUL
at each 𝑡 is computed by first considering the value of 𝑑𝜖

𝑑𝑡

for that particular 𝑡. From there, the output distribution of
𝑡 from the updated piece-wise model given 𝑑𝜖

𝑑𝑡
is obtained

from which the mean RUL is derived. From the output dis-
tribution of 𝑡, the 90 % Credible Interval (CI) of the RUL
estimates can be generated based on the interval obtained by
taking its alpha-cut at 𝛼 = 0.05 level [18]. The numerical
results to the mean RUL and its 90 % CI for the respec-
tive 𝑡 are presented in Table 6 while its graphical plots are
illustrated in Figure 6.
From Table 6 and Figure 6, it can be seen that in most

cases, the 90 % CI of the RUL estimates includes the true
RUL which verifies the Bayesian model updating results
and validates the proposed methodologies. It can be no-

Table 6. Results of the RUL estimates, along with its correspond-
ing 90 % CI, for the respective 𝑡.

Time True RUL Mean RUL 90 % CI
[ℎ𝑟𝑠] [ℎ𝑟𝑠] [ℎ𝑟𝑠] [ℎ𝑟𝑠]
7 23 21.09 [20.49, 21.73]
11 19 18.21 [17.69, 18.76]
15 15 16.28 [15.68, 16.87]
19 11 10.47 [9.62, 11.20]
23 7 7.66 [4.04, 8.85]
26 4 3.90 [3.58, 4.45]
27 3 2.95 [2.72, 3.25]
28 2 2.08 [1.76, 2.37]
30 0 0.09 [0, 0.42]

ticed, however, the significantly larger 90 % CI of the RUL
estimate at 𝑡 = 23 ℎ𝑟𝑠. The reason behind this due to the
discontinuity in the updated piece-wise creep-growth rate
model at 𝑡 = 24 ℎ𝑟𝑠 which results in the bounds being
artificially wider.

5. Conclusion
This paper has demonstrated the application of the SEMC

sampler for on-line Bayesian model updating of a contin-
uous piece-wise model in the context of the creep-growth
rate model for an Advanced Reactor passive component.
This is achieved through 2 investigations: 1) the identifica-
tion of the corresponding model for each creep-growth rate
stage; and 2) the introduction of the appropriate boundary
conditions at the model transition times (i.e. at 𝑡 = 6 ℎ𝑟𝑠
and 𝑡 = 24 ℎ𝑟𝑠) for the Bayesian model updating procedure.
For the first investigation, the SEMC sampler serves to



Figure 5. Graphical plots illustrating the updated piece-wise creep-growth model with reference to the synthetic data and the true
models.

Figure 6. Graphical plots illustrating the estimated RUL at 𝑡 = {7, 11, 15, 19, 23, 26, 27, 28, 30} ℎ𝑟𝑠 along with its corresponding 90 %
CI.

facilitate the computation of 𝑃(𝑀𝑣 |𝑫1:𝑠) to determine the
most probable model for the respective creep-growth stage.
Simultaneously, the investigation also serves to evaluate
the capability of the SEMC sampler to identify the most
probable model under such settings. The results shown that
the sampler was able to identify themost probablemodel for

the respective creep-growth stages up to Stage II at 𝑡 = 24
ℎ𝑟𝑠. In addition, for Stage III creep-growth rate, it was
found that the exponential model in Eq. (16) was the most
probable model despite the true model being described by
a cubic equation in Eq. (15) due to a reduced number of
inferred parameters which not only simplifies the model



assumptions, but also eliminates the problem of over-fitting
the data.
For the second investigation, a method of determining

prior bounds for the inferred model parameters is proposed.
This involves using information of the model output bounds
at the model transition times to introduce constraints on
the prior bounds of the selected inferred model parame-
ters which resulted in the reduction in the degree of model
discontinuity at those transition times. From there, the Re-
maining Useful Life analysis was performed where results
show that in general, the interval estimates based on the
90 % credible interval mostly encompass the true values
of the remaining lifetime of the component as shown in
Figure 6. This observation, along with the resulting up-
dated creep-growth rate model encompassing most of the
synthetic data points as shown in Figure 5, provide strong
verification towards the proposed methodology to perform
Bayesian model updating on a piece-wise model.
As an extension to this work, the following investigations

need to be done: 1) to devise methods to improve the per-
formance of the SEMC sampler in its model identification
performance; 2) to look into methods to help further reduce
the discontinuities at the model transition times for piece-
wise continuous models; and 3) to consider the case where
data is obtained at irregular intervals compared to the study
presented here.
The MATLAB codes to the SEMC sampler and

the case study presented in this paper are avail-
able on GitHub: https://github.com/Adolphus8/
Sequential_Ensemble_Monte_Carlo.git
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