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Abstract 

Brown adipose tissue (BAT) was first identified by Conrad Gessner in 1551, but it was only in 

1961 that it was firmly identified as a thermogenic organ. Key developments in the subsequent 

two decades demonstrated that: (i) BAT is quantitatively important to non-shivering 

thermogenesis in rodents, (ii) uncoupling of oxidative phosphorylation through a mitochondrial 

proton conductance pathway is the central mechanism by which heat is generated, (iii) 

uncoupling protein-1 is the critical factor regulating proton leakage in BAT mitochondria. 

Following pivotal studies on cafeteria-fed rats and obese ob/ob mice, BAT was then shown to 

have a central role in the regulation of energy balance and the aetiology of obesity. The 

application of fluorodeoxyglucose positron emission tomography in the late 2000s confirmed 

that BAT is present and active in adults, resulting in renewed interest in the tissue in human 

energetics and obesity. Subsequent studies have demonstrated a broad metabolic role for BAT, 

the tissue being an important site of glucose disposal and triglyceride clearance, as well as of 

insulin action. BAT continues to be a potential target for the treatment of obesity and related 

metabolic disorders. 

 

 

Key words  Brown adipose tissue, Diet-induced thermogenesis, Energy metabolism, 

Mitochondria, Non-shivering thermogenesis, Nutritional energetics, Obesity, Uncoupling 

protein-1 (UCP1), White adipose tissue 
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1 Introduction 

Many tissues have their dedicated enthusiasts, but those who study brown adipose tissue (BAT) 

exhibit a particularly strong devotion to their chosen subject. This may at first have been partly 

because the tissue defies what was considered as a central axiom of metabolic systems – that they 

operate to minimise energy leakage and to maximise energetic efficiency. It may also be due 

partly to the considerable adaptive capacity of BAT with the direct and immediate influence of 

the external environment in the form of the ambient temperature. In the 1970’s, the community 

of researchers who focused on brown fat was both small and relatively localised with much of 

the pioneering work being performed by scientists based in Canada, France, Sweden and the 

UK. These are, of course, northern countries with cold winter climates, as David Nicholls and I 

noted in the Preface to the volume on ‘Brown Adipose Tissue’ (1986) that we had edited [1]. 

This book was in effect a successor to the volume of the same name edited by Lindberg and 

published in 1970 [2], the appearance of the 1986 book reflecting the extensive developments 

that had occurred during the 1970’s and early 1980’s.  

 

The Swiss naturalist Conrad Gessner is credited with being the first to describe brown fat. In 

1551 he identified BAT in marmots, a species which has large quantities of the tissue [3]. Since 

marmots are hibernators, BAT was described as the ‘hibernating gland’, a descriptor that 

prevailed for a considerable period. The subsequent evolving perspectives on the functions of 

this fascinating tissue are described here, highlighting the major developments over the past 50 

years.  

 

2 Early History 

Views on the central function(s) of brown fat have changed several times over the nearly five 

hundred years since the discovery of the tissue [4]. Between 1670 and 1817 it was considered to 

be part of the thymus, while from 1817 to 1863 it was thought to be an endocrine gland and 

active in the formation of blood (Table 1). This was followed (1863-1902) by the view that BAT 

was a modified form of fat tissue which acted as a reservoir for food substances. From 1902 

until 1961 it was once more considered to be an endocrine organ – a role which has 

subsequently been shown to be true in part, as noted later (section 6.2). There were also 

suggestions during this period that BAT is involved in thermoregulation [5].  

 

The central function of BAT was finally identified in 1961 when Smith in California 

demonstrated that the tissue is thermogenic - generating heat for the maintenance of body 
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temperature by non-shivering mechanisms [6, 7]. All tissues produce heat, of course, as a by-

product of normal metabolic processes, but heat is recognised as being the primary – desired – 

endpoint of the metabolic activity of BAT. 

 

Following the identification of brown fat as a specific thermogenic organ, three physiological 

states were recognised in which the tissue is prominent and active in the generation of 

thermoregulatory heat. These are: (i) the arousal from hibernation, (ii) cold-stressed mammalian 

neonates where ‘normal’ environmental temperatures in effect represent a considerable thermal 

challenge, and (iii) small adult rodents in response to cold environments [8, 9, 7]. The association 

with arousing hibernators is, of course, congruent with the original observations of Gessner and 

the subsequent use of the descriptor ‘hibernating gland’.  

 

2.1 Brown Fat as the Major Thermogenic Organ 

Two key questions were under consideration in the early-mid 1970’s, a decade after the 

functional role of BAT had been established. One was the quantitative importance of BAT to 

the total capacity for non-shivering thermogenesis (NST), while the other was the molecular 

mechanisms by which heat is generated in the tissue. In small mammals adapted to the cold, the 

energy expenditure on thermoregulatory NST can be 2-3 times, or more, than the resting 

metabolic rate at thermoneutrality, with concomitant increases in food intake [10]. However, 

BAT was seen to comprise only a few percent of body mass at most, a value of 0.5-2% being 

common in rodents [4]. Thus the extent to which such a small tissue could account for NST was 

viewed as problematic.  

 

The importance of BAT to the capacity for NST was addressed directly by Foster and Frydman 

in Ottawa in a series of studies measuring regional blood flow in rats. Previous work employing 

what was then the widely used approach to determining blood distribution involving soluble 

indicators - particularly 86Rb+ - had indicated that blood flow to BAT increased following 

exposure to cold or the administration of noradrenaline. Nevertheless, the scale of the increase 

was such that BAT could not make more than a minor contribution to NST. Foster and 

Frydman [11] demonstrated that studies with 86Rb+ seriously under-estimated the blood flow to 

BAT, while over-estimating that to skeletal muscle, compared to what had become the gold 

standard for measuring blood distribution - the radioactively labelled microsphere technique. In 

further studies using 86Rb+-labelled microspheres (15 µM in diameter), together with 

measurements of cardiac output and oxygen extraction, BAT was shown to be the dominant site 
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of NST in rats acclimated to the cold [12]. Furthermore, when thermogenesis was maximally 

stimulated following the administration of noradrenaline, a figure of 60% was calculated as the 

contribution of BAT to NST in rats [13].  

 

Subsequent studies employing similar experimental techniques, including in mice [14], supported 

the view that BAT is the key site of NST in small rodents. However, a smaller contribution to 

NST was suggested for warm-acclimated, as opposed to cold-acclimated, rats [15]. 

 

2.2 How Heat is Generated in Brown Adipose Tissue 

Understanding how heat is generated in BAT was a major focus of Lindberg and his group at the 

Wenner-Gren Institute in Stockholm. Rapid progress in determining the central molecular 

mechanism occurred following the application of Mitchell’s chemiosmosis concept by Nicholls 

(initially in Stockholm and then Dundee). During normal oxidative phosphorylation the proton 

gradient generated across the inner mitochondrial membrane is harnessed to the synthesis of 

ATP. In marked contrast, in a series of studies the proton gradient was shown to be dissipated in 

BAT as heat rather than being coupled to ATP synthesis. This proton conductance pathway acts 

in effect to short circuit the mitochondrial proton gradient [16, 17].  

 

The proton conductance across the inner mitochondrial membrane is regulated by a tissue-

specific protein, now termed uncoupling protein-1. It was first identified as a 32,000 Mr band on 

SDS-polyacrylamide gels of brown fat mitochondria by Ricquier in Paris, the level being 

markedly increased in rats exposed to the cold [18, 19]. This cold-inducible protein was 

subsequently shown to be the factor regulating proton conductance and the uncoupling of BAT 

mitochondria [20, 19]. The protein was initially known by two different names – uncoupling 

protein and thermogenin. The former is more literal, while the latter, which was introduced by 

Cannon and Nedergaard in Stockholm, is more literary. Uncoupling protein (UCP) became the 

name of choice, but this was itself later modified to uncoupling protein-1 (UCP1) when two new 

uncoupling proteins (UCP2, UCP3) were discovered in the late 1990s [21, 22].  

 

As animals adapt to a cold environment the total amount of UCP1 in brown fat depots increases, 

thereby raising the thermogenic capacity of the depot and of the animal as a whole. This occurs 

both through the recruitment of new brown adipocytes and by increases in the quantity of UCP1 

in pre-existing brown fat cells [23]. Within individual brown adipocytes there are in turn two 

distinct mechanisms by which the total UCP1 rises: (i) increases in concentration per unit 
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mitochondrial mass (protein), and (ii) mitochondriogenesis, there being mitochondrial 

proliferation as part of the adaptive response to cold [23].  

 

The profound effect of cold on the total UCP1 content of BAT depots is illustrated by data 

from 1987 by my own group in Cambridge (Fig. 1) in which rats were acclimated for three weeks 

at different temperatures between thermoneutrality (29oC) and 4oC [24]. A stepwise increase in 

the mitochondrial content of the interscapular depot (as assessed from measurements of 

cytochrome c oxidase activity) and of the UCP1 content per mg of mitochondrial protein is 

evident, the values in the animals at 4oC being 11.2 and 9.3 times higher, respectively, than those 

at thermoneutrality [24]. Similarly, the total UCP1 content in the depot, calculated from the 

changes in cytochrome c oxidase activity and the UCP1 concentration per mg mitochondrial 

protein, follows a similar pattern. The total amount of UCP1 in the interscapular depot of 

animals at 4oC was 104-fold higher than those at 29oC (Fig. 1) [24]. These, and other, studies in 

which UCP1 was measured immunologically were enabled by the relative ease with which 

antibodies could be raised against the protein [25-27]. This in turn had been facilitated by the 

publication of a method for the isolation and purification of UCP1 from BAT mitochondria of 

rats and hamsters [28]. 

 

The sympathetic nervous system was recognised to play a central role in the regulation of BAT 

thermogenesis [29]. Brown fat is densely innervated by sympathetic nerve endings with the 

release of noradrenaline leading to the direct stimulation of heat production, both acutely and 

chronically [29, 23]. The sympathetic system is also central to the increases in thermogenic 

capacity that occur with chronic stimulation of thermogenesis, driving the increases in the 

amount of UCP1. One of the key developments in the mid 1980s was the report that BAT 

contains what was a novel – or ‘atypical’ as it was originally described – β-adrenoceptor [30]. 

This was subsequently named the β3-adrenoceptor, distinguishing it from the then recognised β1- 

and β2-subtypes [31].  

 

The β3-adrenoceptor provided a defined target for the development of specific agents to increase 

energy expenditure based on the stimulation of BAT thermogenesis. Several selective β3-agonists 

were developed, including BRL35135 and 37344, L-796568 and CL316243, each of which was 

effective in rodents [31]. However, they were ineffective, or not sufficiently effective, in humans 

and this is in part because of sequence differences between the rodent and human β3-
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adreonceptor genes [31]. In addition, in some cases such as L-796568 which has good selectivity 

to the human receptor, poor oral bioavailability has limited the effectiveness. 

 

2.3 UCP1 in the Identification of BAT 

The presence of UCP1 in a tissue has been regarded as the critical diagnostic feature of whether 

that tissue is brown fat, or contains brown adipocytes. This has usually been a question primarily 

in relation to differentiating between brown and white adipose tissue depots. However, with the 

discovery of beige adipocytes (see section 6.1) the situation has become less clear-cut. UCP1, and 

by implication BAT, has been identified in a wide range of mammalian species [32]. In many 

cases the tissue is present and active throughout life, while in others it is relatively transient being 

detectable only in the early post-natal period. Neonates of some large agricultural species, such as 

cattle and sheep, provide potent examples of where BAT is evident at birth and for only a short 

period post-natally. The perirenal fat in cattle, lambs, goats and reindeer is rich in UCP1 at birth, 

but by approximately 1-2 months of post-natal life immunoreactive UCP1 cannot be detected, 

and the tissue takes on the appearance and properties of white fat [33-36].  

 

Following the identification of UCP1 and the rapid development of molecular genetics, the 

UCP1 gene was cloned in the early 1980s by Ricquier and colleagues [37, 38]. Several studies 

were soon reported examining the key factors that modulate expression of the UCP1 gene, with 

both acute cold exposure and the administration of noradrenaline being shown to lead to a rapid 

and substantial increase in mRNA level [39].  

  

3 BAT in Nutritional Energetics and Obesity 

By the end of the 1970s/early 1980s the central role of BAT in NST had been demonstrated and 

the mechanism by which heat is generated established with UCP1 identified as the critical 

regulator of the process. In the last two years of the 1970s, a new dimension to the functional 

role of BAT emerged – in nutritional energetics.  

 

The background to this radical development was that there had been increasing interest in the 

concept, advanced principally by Miller and Stock in London, that adaptive thermogenesis plays 

a significant role in energy balance and the aetiology of obesity. This was itself a revitalisation of 

the ‘Luxuskonsumption’ proposal from Neumann in 1901. The core proposition was that 

reduced energy expenditure on thermogenesis – particularly diet-induced – was an important 

factor in the initiation and development of obesity. Evidence in favour of this view included the 
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observation that rats induced to overeat when fed a palatable ‘cafeteria’ diet retained less of the 

excess energy than would be expected and that this was through the activation of facultative diet-

induced thermogenesis [40, 41]. The second line of evidence was that obese animals - particularly 

the obese (ob/ob) mouse and other rodent models - exhibit reduced energy expenditure and are 

able to develop obesity on a normal energy intake, this being attributable to a reduction in 

expenditure on NST [42, 43].  

 

An important question for those exploring thermogenesis in the context of nutritional energetics 

and obesity was the tissue localisation and molecular mechanism of adaptive heat production – 

the same issues as previously for those concerned with thermoregulation and adaptation to the 

cold. Several mechanisms had been considered: these included Na+ transport across the plasma 

membrane, tissue protein turnover, and futile (substrate) cycles such as that between fructose-6-

phosphate and fructose-1,6-bisphosphate [44-47]. However, none appeared to meet the central 

criteria: (i) of being specific, or relatively specific, in terms of the tissue(s) involved, and (ii) 

having the potential to provide sufficient quantities of heat [48]. Furthermore, fundamental 

processes such as protein turnover and Na+ transport could not readily be viewed as having the 

capacity to change by the scale that would be required (orders of magnitude) without disrupting 

normal physiological function. 

 

As a consequence of the recognition of BAT as the major site of NST, and the mitochondrial 

proton conductance pathway as the process by which heat is generated, the tissue emerged as a 

new locus for those concerned with energy balance and obesity. Two seminal observations 

quickly linked BAT to nutritional energetics. In the first, Himms-Hagen and Desautels in Ottawa 

found that GDP binding was reduced in BAT mitochondria of ob/ob mice relative to lean 

siblings [49] – at the time GDP binding was the key tool for assessing the activity of the proton 

conductance pathway [50]. These authors also demonstrated that the response to cold was 

attenuated in the obese mutants, there being a reduced increase in GDP binding [49]. 

 

In the second seminal report, Stock and Rothwell in London presented evidence for expansion 

and increased activity of BAT in cafeteria-fed rats exhibiting diet-induced thermogenesis [40]. 

This was accompanied by an increase in the maximum capacity for noradrenaline-stimulated 

thermogenesis, resting O2 consumption in response to administration of the catecholamine being 

elevated in cafeteria-fed animals compared with controls on a normal diet. A follow-up study 

demonstrated a greater mitochondrial content (cytochrome c oxidase activity), and increased 
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mitochondrial GDP binding and GDP-sensitive respiration in BAT of cafeteria-fed rats [51]. 

Subsequent work during the 1980s was consistent with BAT being a locus of facultative diet-

induced thermogenesis in rodents. Among the further changes documented in the tissue in 

cafeteria-fed rats was an increase in the total amount of UCP1 and in the expression of the 

UCP1 gene [52, 53].  

 

These initial observations were quickly followed by a series of studies in which the activity of 

BAT was assessed in a range of physiological and pathological conditions in which energy flux 

and energy balance are altered [42, 54, 48]. These encompassed various types of rodent obesity, 

including dietary and that induced hormonally and through hypothalamic lesioning, as well as 

different types of obese mutation. Physiological and nutritional states in which changes in the 

thermogenic activity and capacity of BAT were demonstrated included fasting-refeeding, 

modifications to diet composition, lactation, the hibernation cycle, and seasonality-induced 

alterations in body fat driven by photoperiod [42, 54, 48]. 

 

Lactation was of particular interest to my group since this condition is associated, certainly in 

rodents and other small mammals, with substantial hyperphagia, the energy costs of milk 

production being high. In rats, for example, food intake at peak lactation is increased 3-fold 

relative to virgin siblings [55, 56]. However, in contrast to animals exhibiting hyperphagia on a 

cafeteria diet, BAT is characterised by a substantial atrophy during lactation. Mitochondrial 

content, GDP binding, and the mitochondrial concentration and total tissue amount of UCP1 

are each markedly reduced [57, 58]. The scale of the alteration can be illustrated (Fig. 2) by the 

total tissue UCP1 content which at peak lactation is <10% of that in virgin mice [43]. The 

consequence of this suppression of BAT during lactation – which is rapidly reversed following 

weaning – is a substantial energy saving that results in a significant contribution to the energy 

costs of milk production. However, this is unlikely to be a specific strategy to conserve energy, 

but rather a reflection of the limited capacity to dissipate excess heat given the large amount of 

metabolic heat generated through the synthesis of milk [59]. 

 

4 Brown Fat in Humans 

By the middle of the 1980’s it was clear that BAT is involved in nutritional energetics and 

obesity, as well as in thermoregulation, at least in rodent species. Concern with the growing 

public health problem of obesity in both the developed and developing world had become a 

significant driver behind much of the work on BAT. However, by the end of the 1980s the 
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prevailing view was that while BAT is important to energetics in laboratory rodents it was of 

little, or no, relevance to energy metabolism in adult humans. This in part echoed the often cited 

line of Alexander Pope - “the proper study of Mankind is Man” - from his poem “Essay on Man”. 

 

The general view was that although BAT is present in human neonates and infants, particularly 

from the work of Hull in Oxford [60, 61], the tissue atrophies after the early years of life to be 

replaced by white fat. Such a conclusion was based essentially on anatomical and histological 

appearance – primarily the presence of multilocular adipocytes of a ‘brownish appearance’, 

replacement being by unilocular fat cells of a pale yellow/white colour. However, by 1983 UCP1 

had been detected in adult humans as well as in infants [62, 25]. Indeed the protein had been 

isolated from infants and antibodies raised against it [25]. A subsequent survey of different age 

groups observed the presence of UCP1 even in some elderly individuals, although lower 

concentrations were evident in adults compared with infants and children [63]. Thus there was 

clear evidence on the basis of the critical diagnostic feature of BAT that the tissue is present 

throughout much of life [64].  

 

That BAT was in practise active, or had the plasticity to be activated, was demonstrated from 

studies on patients with phaeochromocytoma, these being characterised by a hypersecretion of 

catecholamines. Adipose tissue from around the kidneys and the adrenals of 

phaeochromocytoma patients was shown to be rich in mitochondria, these mitochondria 

exhibiting a well-developed cristae structure and GDP-sensitive respiration [65]. The 

concentration of UCP1 was also found to be increased in (perirenal) adipose tissue in those with 

phaeochromocytoma [66]. As a further indication of active BAT in this condition, UCP1 mRNA 

was detected in the tissue [67]. 

 

Despite the substantial evidence for active BAT in adults, it is not clear why the tissue was 

generally deemed to be of little relevance to human physiology. One explanation may be the 

limited acceptance at the time that reduced energy expenditure, and thermogenesis in particular, 

was a significant factor in the aetiology of obesity in humans. Indeed, this remains an issue of 

continuing debate. Clearly, if energy expenditure on thermogenesis is not considered relevant to 

the development of human obesity, then there appears little reason for any focus on BAT. 

Nevertheless, it can be argued that augmenting energy expenditure through BAT thermogenesis, 

whether by selective β3-adrenoceptor agonists or via other means, is an appropriate strategy to 

treat obesity irrespective of whether reduced energy expenditure as such is aetiologically 
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important. Furthermore, in principle BAT thermogenesis need not be more than a trivial 

component of total energy expenditure under normal conditions for its stimulation to be a 

potential therapeutic route.  

 

As a consequence of the presumption that BAT is not relevant to energy metabolism in adult 

humans, general interest in the tissue declined from the end of the 1980s. BAT continued, of 

course, to be the focus of considerable activity by those concerned with the fundamental biology 

of the tissue.  

 

5 Renaissance – Brown Fat in Humans 

Renewed interest in BAT in humans, particularly in relation to obesity, was catalysed in 2009 

when a trio of papers on the tissue appeared in the ‘New England Journal of Medicine’ [68-70]. 

These reported the application of fluorodeoxyglucose positron emission tomography (FDG-

PET) in adults, a procedure that is customarily used to track the metastasis of tumours in cancer 

investigations by identifying localised areas of high glucose uptake. Adipose tissue areas 

exhibiting a high level of glucose uptake were observed, and these were associated with positive 

immunostaining for UCP1, demonstrating that they represented BAT [68-70]. That FDG-PET 

was serendipitously identifying BAT in adult humans had been highlighted two years previously 

in a review by Cannon and Nedergaard [71]. The sites of BAT identified by FDG-PET include 

the supraclavicular and neck regions, as well as the suprarenal area. 

 

Importantly, the initial group of FDG-PET studies, together with the several subsequent follow-

up reports, demonstrated variations in the metabolic activity of BAT in response to 

environmental stimuli, age and body fat – broadly similar to rodents. For example, BAT in 

humans is activated by exposure to cold and by insulin, and decreases with age and with BMI 

(body mass index) [68-70, 72, 73]. Indeed, there is an inverse relationship between apparent BAT 

activity and BMI. Thus three decades after BAT was first linked to energy balance and obesity 

from rodent studies, it was now evident that this is also true for humans – Alexander Pope’s 

aphorism notwithstanding. This has led to fresh interest in ways of increasing the amount and 

thermogenic activity of BAT in the treatment not only of obesity, but also more widely in 

metabolic disease. Although the β3-adrenoceptor continues to be a target, with mirabregon 

(originally developed to treat an overactive bladder) being a recent selective agonist [74], more 

radical routes for the augmentation of BAT thermogenesis have been proposed such as stem cell 

therapy, brown fat transplantation and the central stimulation of sympathetic activity [75, 76].  
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6 Cellular Heterogeneity and Metabolic Roles 

6.1 Cells 

In addition to the demonstration that BAT is present and functionally active in adult humans, 

there have been other key developments over the past decade. These relate to cellular origin, cell 

heterogeneity and additional metabolic functions. With respect to cellular origin, brown 

adipocytes were found, unexpectedly, to be derived from myogenic precursors in skeletal muscle 

indicating that they and white adipocytes have a different origin [77].  

 

Although, traditionally, there were thought to be only two types of mature adipocyte – brown 

and white – with different ultrastructural and functional characteristics, a third type of fat cell has 

been discovered [78-80]. These cells, termed beige or brite (BRown in whITE), express the 

critical feature of brown adipocytes - UCP1. Beige adipocytes, this having become the most 

widely used name (reflecting their ‘intermediate’ status/colour between white and brown fat 

cells), express in addition to UCP1 some, but not all, of the other molecular signatures of brown 

adipocytes [78, 79]. They are found particularly in what have customarily been regarded as white 

fat depots and can be recruited by cold exposure - a process described as ‘browning’ [81]. 

Different fat depots appear to vary with respect to the presence of, and ability to recruit, beige 

adipocytes.  

 

The extent to which beige adipocytes can contribute to the overall thermogenic capacity is 

unclear, but a number of factors ranging from specific hormones to food components are 

reported to induce browning [82, 83]. These factors and conditions encompass adrenergic stress, 

apelin, thyroid hormones and dietary polyphenols [84-88]. 

 

6.2  Metabolic Roles 

In addition to its direct thermogenic function, BAT has been shown to have a broader metabolic 

role. Specifically, it is a major site of glucose disposal, insulin action and of triglyceride clearance 

[89-91, 82]. That it is important in glucose disposal is perhaps not surprising given that the FDG-

PET studies identifying the tissue in adult humans are based on the high levels of glucose uptake. 

Indeed, some of the studies in rodents in the early 1980s indicated that BAT is an important site 

of glucose uptake. This was shown through measurements of the activity of glycolytic enzymes, 

which increased on cold-acclimation, and by studies on 2-deoxy-D-glucose uptake which was 

stimulated by both noradrenaline and insulin [92, 93]. In addition, evidence was presented at the 
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time that insulin resistance in BAT leads to an impairment in the capacity to activate cold-

induced thermogenesis [94, 95]. 

 

A further, wider metabolic role for BAT, as an endocrine organ, has recently been highlighted 

[96, 97], although this was again suggested in earlier studies where leptin and interleukin-6, for 

example, were shown to be expressed and secreted by brown adipocytes [98, 99]. Brown fat cells 

synthesise and secrete a series of protein factors and signals – ‘batokines’ or ‘brown adipokines’ – 

in addition to leptin and interleukin-6, including insulin-like growth factor I, fibroblast growth 

factor-21 and the chemokine CXCL14 (C-X-C motif chemokine ligand-14) [97, 100]. White 

adipocytes, of course, secrete an extensive range (several hundred) of adipokines with both local 

and distal actions [101, 48], but the secretome of brown adipocytes appears more limited. 

Certainly, brown adipokines are unlikely to make a significant contribution to circulating levels 

when these same factors are released by white adipocytes and other cells.  

 

The ability of brown adipocytes to secrete protein signals parallels the secretory actions of a 

growing diversity of cell types – from myocytes (secreting myokines) to hepatocytes (secreting 

hepatokines).  

 

7  Concluding comments 

Perspectives on BAT have evolved markedly and continuously over the past 50+ years. While 

both BAT itself and particularly brown adipocytes appear highly specialised for heat production, 

it is evident that there is in effect not inconsiderable multi-functionality. A central action in the 

generation of thermoregulatory heat, through a unique mechanism for uncoupling mitochondrial 

oxidative phosphorylation, has extended to a direct role in energy balance and nutritional 

energetics. These functions have been further amplified by the recognition that BAT has a broad 

role in metabolic homeostasis. The brown adipocyte is far from unique in having a more 

extensive set of actions than was initially envisaged. White adipocytes, for example, are now 

recognised as complex endocrine and signalling cells in a manner that far transcends the earlier 

assumption that they were simply passive vehicles for lipid storage.  

 

An emerging area of interest is the interaction between brown adipocytes and the other types of 

cell within BAT, particularly the immune cells [102]. This also has parallels with white adipose 

tissue, where the importance of the different cell types and especially the various cells of the 
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immune system has been a growing focus - beginning from when macrophages were shown to 

be key players in the inflammatory response of white fat in obesity [103, 104].  
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Table 1. Evolving views on the physiological role and functions of brown adipose tissue 

 

 

Year Function 

  

1551 Formal description by Conrad Gessner – the ‘hibernating gland’  

1670-1817 Considered part of the thymus 

1817-63 An endocrine gland - active in the formation of blood 

1863-1902 A form of fat tissue serving as a reservoir for food substances 

1902-61 An endocrine gland - again 

1912-59 Some references of a link to thermoregulation 

1961- A thermogenic organ – thermoregulatory non-shivering thermogenesis 

1974-8 Mechanism of heat generation identified - uncoupling of mitochondrial 

oxidative phosphorylation - through application of chemiosmosis 

1976-8 Discovery of uncoupling protein – subsequently named uncoupling 

protein-1 (UCP1) 

1978 Demonstration of quantitative importance to non-shivering thermogenesis 

in cold-acclimated rodents 

1978/9- Involved in energy balance (diet-induced thermogenesis) and obesity 

2009- Definitive identification of BAT in adult humans, and its metabolic 

plasticity, by FDG-PET and immunostaining for UCP1  

2010/12 Discovery of ‘beige’/’brite’ adipocytes 

2011/12 Role in metabolic homeostasis - glucose disposal, triglyceride clearance and 

insulin sensitivity  

  

 
 
Modified and updated from [4]. 
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Legends to Figures 

 

Fig. 1 Illustration of the effect of cold-acclimation on the amount of UCP1 in brown adipose 

tissue (interscapular) of rats. The rats were acclimated at either thermoneutrality (29oC) or 4oC 

for three weeks. Total tissue cytochrome c oxidase activity (CO activity) is given as an indicator 

of mitochondrial content, and mitochondrial GDP binding (per mg mitochondrial protein) as an 

index of thermogenic ‘activity’ (GDP bind). UCP1 conc, UCP1 per mg of mitochondrial protein;  

UCP1 total, UCP1 in the interscapular fat depot. The fold changes at 4oC are shown relative to 

the values at 29oC. Data is derived from [24]. 

 

Fig. 2 Illustration of changes in the amount of UCP1 in brown adipose tissue (interscapular) of 

lactating mice. The mice were taken at late (peak) lactation and compared with virgin mice as 

controls. Total tissue cytochrome c oxidase activity (CO activity) is given as an indicator of 

mitochondrial content, and mitochondrial GDP binding (per mg mitochondrial protein) as an 

index of thermogenic ‘activity’ (GDP bind). UCP1 conc, UCP1 per mg of mitochondrial protein;  

UCP1 total, UCP1 in the interscapular fat depot. The fold changes at late lactation are shown 

relative to the values in the virgin mice. Data is derived from [58]. 
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