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Abstract 

To make structural seismic response simulation more efficient, a meta-model model method which is 

based on the time delay neural network is proposed. And an accuracy evaluation method that considers 

the drift peak amplitudes and maximum amplitudes in each intensity as performance parameters is also 

proposed, this method can make a balance between accuracy and training time. Exampled by 4 frame 

structures which are all 20 stories, and accuracy evaluating results show that more than 80% of samples, 

which include training models and testing models of these performance parameters can be explained by 

meta models’ fitting. The average time to simulate by this method is 0.08s and faster than the finite 

element method which spends 24 min averagely. 
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1. Introduction 

Earthquakes are one of the most dangerous natural hazards for building structures. The seismic 

damage to frame structures, which are the most widely used structural forms, is a relationship between 

interstory deformation and bearing capacity. Performance-based seismic design is a formal process for 

the design of new buildings, or seismic upgrades of existing buildings, which includes a specific intent 

to achieve defined performance objectives in future earthquakes (FEMA P.58 2012). Performance 

objectives should be based on resisting seismic technical methods and economic conditions and should 

relate to building uses, seismic precautionary intensity, the degree of structural irregularity and structural 

types, ductility requirements, manufacturing cost, and reparability after expected earthquakes (GB50011 

2010). The process includes defining performance objectives, conceptual design, objective checking 

calculation and analysis, and structural seismic reliability analysis. With the improvement of computers 

and the requirements of structural design, reliability analysis, such as Monte Carlo analysis, has been 

introduced to structural engineering. Furthermore, in the last 30 years, China has built a huge monitoring 

system for earthquakes, and the transmission time of earthquake data can obviously be reduced by 5G 

communications technology, which provides early warning structural safety by simulating the structural 

response in the transmission time difference between the 5G signal and the earthquake vibration. These 

two areas require as fast a calculation speed as possible. However, the traditional methods to simulate 

structural seismic responses are based on methods such as finite element methods (FEMs), such as beam 

elements with plastic hinges (Powell, G. H. 1986), and finite fiber elements (Rahman, M.M. 2021) are 

not efficient enough. 

The relationship between earthquake signals such as ground motion acceleration time histories and 

structural responses such as frame structure interstory drift can be treated as a time series functional 



 

 

relationship. When a structure is in elastic status, the relationship is a group of linear differential 

equations, and beginning in elastoplastic status, the functional relationship changes to be complex. The 

neural network is a method to imitate the input-output relationship of a system (White, H 2014). In 

addition, the neural network is efficient (Pomerleau, D. 1991), and advances are developable (Kikkawa, 

H. 1993). The structural response calculation process can be treated as inputting earthquake signals to 

the structural system and outputting response data. 

To predict structural seismic responses, meta models based on recurrent neural networks (RNNs) 

and a long short-term memory network (LSTM), which is a special kind of RNN (Sherstinsky, A, 2020), 

have been proposed, such as Zhang R. (2019) predicted responses of a steel moment resisting frame by 

LSTM and Huang Y. (2021) predicted shake table test results of slope (Zhou J. 2019) by RNN. For small 

and simple systems, their prediction results are well matched. However, Molina D. (2011) made a 

comparison of the time-delay neural network (TDNN) and RNN to predict dynamic responses of power 

systems. RNN was not observed to offer noticeable improvements in the precision of the identified model 

for systems with dynamics and coupling relationships, and TDNNs can converge faster by a suitable 

training method when applied to large systems. The relationship between ground motions and responses 

of a high-raise frame structure can be treated as a kind of coupling system, and the future structural 

response that will happen is related not only to the future signals but also to the loading and response 

histories that have happened. Thus, this process is suitable to be imitated by time-delay neural networks 

(TDNNs) (Chen y. 2010), which can evaluate the effect of histories on new outputs. 

However, for large and compound systems such as the seismic response of high-rise frame 

structures, it is difficult to realize that each time step is the same, in addition to setting up a large-scale 

neural network that has multiple hidden layers and contains a large number of neurons. However, its 



 

 

training time is also large. Thus, a method to balance the training time and accuracy must be proposed. 

It is important to evaluate whether the results are acceptable, and an accuracy evaluation method must 

be proposed. 

The most widely used objective to divide the structural performance (damage) level is interstory 

drift, which was adopted by the Chinese “Code for seismic design of buildings” (GB50011 2010) and 

“PRESTANDARD AND COMMENTARY FOR THE SEISMIC REHABILITATION OF BUILDINGS” 

(FEMA356 2000). Based on interstory drift, the failure boundaries of SRC-RC hybrid frame structures, 

which are a type of frame structure in which lower story columns are made of steel reinforced concrete 

(SRC) and upper story columns are made of reinforcd concrete (RC), have been proposed by Zhang, H. 

(2019-a). These failure boundaries correspond to three seismic resistance requirements (failure levels) of 

GB50011: 

(1) Level 1, for the requirement “no damage after structure suffers frequent earthquakes”, failure 

boundaries are structural elastic bearing capacity and its elastic drift limit value 1/550; 

(2) Level 2, for the requirement “repairable after structure suffer moderate earthquakes”, failure 

boundaries are structural elastoplastic drift limit value 3/550; and 

(3) Level 3, for the requirement “no collapse after structure suffers rare earthquakes”, failure 

boundaries are structural collapse drift limit value 2.0%. 

Thus, an accuracy evaluation method that can evaluate whether the results of the TDNN-based 

metamodel are acceptable can be proposed based on interstory maximum drift values with a serious 

earthquake input. 

In this paper, taking Zhang, H. (2019-a) SRC-RC frame structure schemes that are 20 stories, 5×5 

spans as an example, a method to build metamodels for relationships between earthquake acceleration 



 

 

signals and interstory drift in high-rise frame structures by using time-delay neural works is introduced, 

and a method to evaluate the fitting accuracy of the models has been proposed. 

2. Method to establish and train TDNN Metamodel 

2.1 Architectures of TDNN 

Time delay neural network (TDNN) (Waibel, A. 1989) is a multilayer artificial neural network 

architecture whose purpose is to classify patterns with shift invariance and model context at each layer 

of the network. In the time series problem that is addressed by the TDNN, the predicted values of y(t) 

from the previous values of x(t) are shown in Eq.1. In addition, d is the delay number. 

 

y(t) = f(x(t – 1)..., x(t – d)) (1) 

 

Fig. 1 is the architectures of TDNN. R is the number of elements in the input vector, S is the number 

of neurons in the layer, P is the input vector, IW is the input weight matrix, LW is the layer weight matrix, 

a is the output vector, b is the bias vector, and TDL is the tapped delay lines (Mayhan, J. 1981). a is 

labeled y. Layers in the TDNN play different roles. The layer that produces the network output (the last 

layer) is called the output layer, and all other layers are called hidden layers. The layer that links and 

transfers input data is called the input layer; normally, it is the first layer in the network (Shoaib, M. 

2019). In each layer i, the jth neuron has a summary that gathers its weighted inputs and bias to form its 

scalar output n(i,j). The various n(i,j) taken together form an S-element net input vector n(i). fi is the 

logical function of layer i. 



 

 

 

Fig. 1 Architectures of TDNN 

2.2 Process of frame seismic response simulation by TDNN instead of FEM 

There are two methods to prepare TDNN models for a multiple story frame structure, as shown in 

Fig. 2: set one neural network for entire structures and set individual networks for stories. The first 

method can respond to all compound relationships between stories, but the neural network is large and 

can simulate complex and nonlinear systems, and its training time is much longer than training of 

individual networks. 

As shown in Fig. 2, earthquake accelerations are treated as input data for TDNN model training, 

and interstory drifts of each story are selected and treated as target data for each TDNN model training. 

Each story can output two directions (x and y) of data, for all are 2n groups. Thus, for each story, two 

networks were set up corresponding to the x- and y-directions. In addition, these 2n networks construct 

a TDNN group NETS. When new earthquake acceleration signals are put into the TDNN group NETS, 

each interstory drift response of the structure will be outputted, as shown in Fig. 3. 

 



 

 

 

Fig. 2 Database of TDNN Metamodel 

 

Fig. 3 Structural seismic response simulation by the TDNN Metamodel 
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2.3 Training method of TDNN Metamodel 

The software MATLAB provides two methods to train the TDNN: batch training and incremental 

training (Wei, Z. 2017). Batch training, in which weights and biases are updated only after all the inputs 

and targets are presented, cannot be adjusted in the training process. If new data are collected and used 

for training the trained network, new data should be combined with old data and input to a new training 

process. However, in incremental training, the weights and biases of the network are updated each time 

an input is presented to the network, which provides access to add and renew data each time (MathWorks 

2021). 

As it is shown in Fig.4, for time-delay networks, the time vector is an unshown independent variable 

in addition to input data. Thus, the sorting of input data will influence network training results. When 

databases are set up for each earthquake event, its structural responses are calculated individually, which 

means inputting one earthquake event EQ1, and the FEM output response RS1, and then the FEM model 

will initialize to be non-damage status. It is the same for EQ2, …., EQm, and their structural responses 

RS2, …., RSm, respectively. Each EQi-RSi couple is not time-correlated to others. However, if the TDNN 

group NETS is trained by the batch method, earthquake events will be put into one matrix side by side 

such as IP = { EQ1, EQ2, …., EQm,}, and the same method will be applied to their structural responses 

to obtain the target database, such as TG = {RS1, RS2, …., RSm}. But it makes a time order for earthquake 

events when the TDNN reads them that from EQ1 to EQ2 and to… EQm-1 is the earliest to later and the 

last. For batch training to IP and TG and d is the number of TDNN time delays, d time-step columns of 

data at the last DB1 are considered, which is the database corresponding to EQ1 as the initial state of DB2, 

which is the database corresponding to EQ2. However, its initial value is no earthquake acceleration, and 

no structural deformation before EQ2 occurred. This error will also appear at the beginning of any other 



 

 

database DBi. Furthermore, to an n-story structure, its input is a 1×∑ stim
i=1   matrix, its target is a 

1×∑ stim
i=1 ×n matrix and sti is the number of time steps of DBi. The entire database is huge and requires a 

long time spent for training, and the collection of data is complex and expensive (Guo, H. 2019). Thus, 

the batch training method is not suitable for this type of model. 

 

Fig. 4 Time order for earthquake events when TDNN reading databases by batch training 

Fig. 5 shows the training process for incremental training. In the beginning, NETS(0) is the initial 

TDNN group, the first database DB1 is inputted, then NETS(0) is adapted to be NETS(1) according to DB1, 

DB2, DB3,…, DBm by turns, and IW. Ir is the input weight parameter of NETS in this training, which 

defines the learning parameters and values for the current learning function of the input layer’s weight 

coming from the input and DB1, r1 is the Pearson product-moment correlation coefficient of NETS(1) 

output, and training target RS1. Then, DB2 is inputted, NETS(1) is adapted to NETS(2), and the Pearson 

product-moment correlation coefficient r2 of this adaptation process is calculated. DB3,…, DBm are 

sequentially inputted, NETS(2),…, NETS(m-1) are sequentially adapted, r2,…, rm is calculated, and finally, 

NETS(m) is obtained. Then, NETS(m) is treated as the new initiative to be NETS(0) and begins a new cyclic 



 

 

adaptation. When the minimum value of r1, r2, r3,…, rm is larger than the required value [r], the adapting 

cycle will break, the training is finished, and the final trained TDNN group NETS is obtained. If new 

earthquake signals are inputted into the NETS, a structurally predicted response can be outputted. When 

the new database DBm+1 is selected, NETS can be treated as the new initiative to be NETS(0), and new 

incremental training will begin with a new value of IW.Ir. By incremental training, networks can be 

renewed for lifelong learning (Chen, Z. 2016) and will be “Learning without Forgetting” (Li, Z. 2017). 

 

Fig. 5 The training process of incremental training 

3. Accuracy evaluation method with examples 

3.1 Data-based FEM models 

Four design schemes (M0, M1, M2, and M3) of a 5×5 span and 20 story frame structure are treated 

as case studies, and their layout is shown in Fig. 6. For all schemes, beams are reinforced concrete (RC). 

All columns in scheme M0 are made of steel-reinforced concrete (SRC). Schemes M1, M2, and M3 are 

three SRC-RC hybrid frames, which means columns in their lower stories are SRC made, and in their 
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upper stories are RC made, and between SRC stories and RC stories, there are SRC-RC transfer stories 

that are stiffness and bearing capacity transfer. In these transfer stories, there are SRC columns and SRC-

RC columns that are made of SRC lower parts and RC upper parts. According to the research of Zhang, 

H. (2019-a), SRC-RC hybrid frame is good seismic performance and better construction costs. For M1, 

M2, and M3, their SRC-RC transfer stories are between 10F~12F, as shown in Fig. 7. All these schemes 

match the design requirements of GB50011 and FEMA 356. The section of columns and beams is shown 

in Fig. 8. Models of these schemes were built in FEM (finite element method) analysis software 

SEISMOSTRUCT, and Table 1 shows the material properties. where Ec, Es, and Er are the elastic moduli 

of the concrete, steel, and reinforcement, respectively; fck is the axial compressive strength of the concrete, 

fc is its designed value; fys is the yield strength of the steel, fs is its designed value; fyr is the yield strength 

of the reinforcement, and fr is its designed value. 

 

Fig. 6 Structural layout put of case studies 
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Fig. 7 SRC-RC transfer stories in M1, M2, and M3 

 

Fig. 8 Columns and beams sections of case studies 

Table 1 Material Properties 

Concrete H-shaped Steel Reinforcement Bars 

Ec fck fc Es fys fs Er fyr fr 

N·mm-2 N·mm-2 N·mm-2 N·mm-2 N·mm-2 N·mm-2 N·mm-2 N·mm-2 N·mm-2 

30×103 20.1 14.3 200×103 235 205 200×103 335 300 
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All frame members cross-section behaviors were represented by the fiber element, where each fiber 

was associated with a uniaxial stress-strain relationship; the sectional stress-strain state of the beam-

column elements was then obtained through the integration of the nonlinear uniaxial stress-strain 

response of the individual fibers (typically 100−150), in which the section was subdivided (Zhang, H. 

2019-b). Material constitutive models are the same as Zhang, H. (2019-a), that concrete follows the 

Mander et al. (1988) nonlinear concrete model (con_ma), and steel and reinforcements follow Menegotto 

and Pinto’s (1973) steel model (stl_mp). In addition to training and testing earthquakes, a slab distribution 

load of 8.5 kN/m2 is applied to represent the gravity of the concrete slab and decorative materials and 

live load. 

3.2 Database preparation for Metamodel training 

For the drift-based design method in standards of China (GB50011), Europe (EN1998-1), and 

America (FEMA 356), the maximum value of interstory drift is most interesting to designers and 

researchers. Most seismic damage indices are also related to the maximum deformation value once an 

earthquake occurs (Park, Y. 1985). In addition, according to the design method of Zhang, H. (2019-a), 

failure boundaries were built by drift limits. Thus, the target data and output data of TDNN groups are 

structural drifts between stories. To prepare training data, 4 earthquake acceleration signals {EQ1}, 

{EQ2}, {EQ3} and {EQ4} were generated. Each earthquake is generated by the random method of (Zhang, 

H. 2021) and has 120 s duration, its intensity (I) is gradient-increased from 4.5 degrees to 10 degrees, 

and the increment is 0.5 degrees per 10 s, as shown in Fig. 9. For each design scheme, M0, {EQ1}, {EQ2}, 

{EQ3} and {EQ4} are individually inputted into its FEM model on Seismostruct, and their structural 

responses (interstory drifts) of M0 {RS01}, {RS02}, {RS03} and {RS04} are calculated. With the same 

method as M1, M2 and M3, responses [{RS11}, {RS12}, {RS13} and {RS14}], [{RS21}, {RS22}, {RS23} and 



 

 

{RS24}] and [{RS31}, {RS32}, {RS33} and {RS34}] are calculated. The first three earthquake signals {EQ1}, 

{EQ2}, {EQ3}, and their responses are treated as training databases, and the last earthquake signal {EQ4} 

and its responses {RS04, RS14, RS24, RS34} are treated as testing databases to test the accuracy of 

Metamodels. Fig. 10 shows the structural responses calculated by the FEM models, which are treated as 

targets and testing data, and θ is the inter-story drift. 
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(c) (d) 

Fig. 9 Earthquake time history inputs: (a) {EQ1}, (b) {EQ2}, (c){EQ3} and (d) {EQ4} 
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Fig. 10 Structural responses calculated by FEM models: (a) M0; (b) M1; (c) M2; (e) M3 



 

 

3.3 Design of TDNN groups and outputs 

There are TDNN groups for 4 schemes to be designed. Each building scheme Mi is 20 stories; thus, 

its response contains 20 stories of x-direction drifts and y-directions, and there are 40 networks in each 

TDNN group NETSMi. As shown in Fig. 11, for each TDNN group NETSMi, in each network netsi(x0) 

or netsi(y), in addition to the input layer and the output layer, there are 5 hidden layers, and each contains 

4 neurons. In the training process, for each adaptation, IW. Ir is set as 0.7. Data bases DBi1={EQ1, RSi1}, 

DBi2={EQ2, RSi2} and DBi3={EQ3, RSi3} that correspond to {EQ1}, {EQ2}, {EQ3} are treated as training 

data, and their outputs from NETSMi are {OUTi1}, {OUTi2} and {OUTi3}. Regression evaluations of 

{OUTi1}, {OUTi2} and {OUTi3} to {RSi1}, {RSi2} and {RSi3} are used to describe the fitting similarity. 

{EQ4} and its outputs from NETSMi {OUTi4} are used to test the simulation accuracy of NETSMi. Fig. 

12 is outputs by TDNN groups. 

 

Fig. 11 Construction and training process of NETSMi 
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Fig. 12 Structural responses calculated by FEM models: (a) M0; (b) M1; (c) M2; (e) M3 

 



 

 

3.4 Results and accuracy evaluation 

To evaluate the simulation accuracy and fitting similarity of TDNN groups, performance measures 

must be selected. Each earthquake input{EQ1}, {EQ2}, {EQ3} and {EQ4} can be divided into 12 stages, 

in which the intensity varies from 4.5 to 10. Each FEM result and TDNN output can also be divided into 

12 stages. According to GB50011 and FEMA 356, structural performance level evaluation conditions are 

based on maximum interstory drifts (θmax). Table 2 shows θmax values for failure boundaries 

corresponding to three levels in the Chinese standard GB50011. Thus, it is of interest to evaluate the 

simulation accuracy and fitting similarity of metamodels that are constructed by TDNN groups. Inside 

each stage, earthquake amplitude changes are not drastic. Amplitude θpeak is the absolute value of the 

extrema of interstory drift inside of a stage, as shown in Fig. 13, and it does not change drastically, either. 

Thus, θpeak is also treated as a performance measure to evaluate the simulation accuracy and fitting 

similarity of metamodels that are constructed by TDNN groups. Based on the safety evaluation method 

of GB50011 and FEMA 356, the TDNN models fit the FEM models well if their θmax and θpeak of each 

stage are well matched. 

Table 2 θmax values for failure boundaries stipulated by GB50011 

Failure levels θmax values (%) 

Level 1 0.18 

Level 2 0.54 

Level 3 2.00 



 

 

 

Fig. 13 Amplitudes (θpeak) of interstory drift time history 

Fig. 14 is the CDF (cumulative distribution function) of θpeak for each intensity (I) and each story of 

FEM model simulation results, where x is the drift value. Fig. 15 shows the CDF of θpeak for each intensity 

(I) and each story of neural network outputs. According to the FEM simulation model results and neural 

network outputs, θmax can be selected, and Fig. 16 is a θmax comparison of the FEM results and network 

outputs. In the RS-OUT Coordinate System for each intensity value, data are observed to be distributed 

aside from a line of which the slope is approximately 1, reflecting that θmax values of FEM results and 

network outputs of each intensity are highly similar. According to their CFD, θmean, which is the mean 

value of θpeak for each intensity (I), and each story of FEM model simulation results and neural network 

outputs were calculated. Because the amplitudes of EQ for each intensity stage are nearly constant, θpeak 

in each story of each intensity is nearly constant, and θmean can be a representative value for all θpeak 

values in this story of this intensity stage. Fig. b17 is θmean comparison of FEM results and network 

outputs. In the RS-OUT Coordinate System for each intensity value, data are observed to be distributed 

aside from a line of which the slope is approximately 1, reflecting that θmean values of FEM results and 

network outputs of each intensity are also highly similar. 
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Fig. 14 CDF of θpeak of FEM simulation results: (a) M0; (b) M1; (c) M2; (e) M3 
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Fig. 15 CDF of θpeak of neural network outputs: (a) M0; (b) M1; (c) M2; (e) M3 
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Fig. 16 θmax comparison of FEM results and network outputs: (a) M0-x; (b) M0-y; (c) M1-x; (d) M1-y; (e) 

M2-x; (f) M2-y; (g) M3-x; (h) M3-y; 
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Fig. 17 θmean comparison of FEM results and network outputs: (a) M0-x; (b) M0-y; (c) M1-x; (d) M1-y; 

(e) M2-x; (f) M2-y; (g) M3-x; (h) M3-y; 



 

 

The coefficient of determination (r2) represents quantifying the goodness-of-fit, of which the value 

is between 0 and 1 and is as large as better fitting (Ritter, A. 2013). It is a statistical measurement to 

examine the explanation of differences in one variable by the difference in a second variable. For 

variables x1, x2, x3, …, x4, their predicted values are x1� , x2� , x3� , …xn� , respectively, and r2 of this fitting is 

shown as Eq.2. 

r2=
∑ (yi�-y�)2n

i=1

∑ (yi-y�)
2n

i=1
 (2) 

and y� is the mean value of variables. 
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(b) 

Fig. 18 r2 of θmax: (a) x-direction; (b) y-direction 
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Fig. 19 r2 of θmean: (a) x-direction; (b) y-direction 

r2 values of θmax and θmean between simulation results of FEM models and neural networks output 

each story and earthquake events EQ1, EQ2, EQ3, and EQ4 are used for describing networking fitting 

accuracy. As shown in Fig. 18 and Fig. 19, the r2 values of θmax and θmean are all larger than 0.8, which 

reflects that more than 80% of the samples, including the training models and testing models of both θmax 

and θmean, can be explained by TDNN group fitting. Thus, the Metamodel method, which is based on 

TDNN groups, can accurately imitate the relationship between earthquake acceleration signals and the 

seismic response of the frame structure if θmax of each story is selected as the performance objective to 

measure the failure statuses of frame structures. 

4. Conclusions 

In this study, a method to build the meta-model for the seismic response of frame structures using 

TDNN groups was proposed. An accuracy evaluation method that can balance both training time and 



 

 

accelerable accuracy was proposed. Four frame structure FEM models that are 5×5 spans and 20 stories 

are applied as examples to show the model establishment and accuracy evaluation process. 

Comparing θmax and θmean of training targets with outputs by TDNN and of testing targets with 

predicted data by TDNN, in RS-OUT Coordinate System for each intensity value, data are distributed 

aside from a line of which the slope is approximately 1. For these two safety evaluation factors, the FEM 

results and network outputs of each intensity are highly similar. 

The r2 results reflect that more than 80% of samples, which include training models and testing 

models of both θmax and θmean, can be explained by TDNN group fitting. If θmax of each story is selected 

as the performance objective to measure the failure status of frame structures, these metamodels are 

sufficiently accurate. 

The average calculation time of these example models is 24 min, and the average time spent by the 

TDNN models is 0.08 s. The calculation time obviously increased, and it can be applied to Monte Carlo 

analysis and structural seismic safety early warning. 
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