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ABSTRACT 26 

Acquiring resources for self-maintenance and reproduction is a key challenge for wild 27 

animals, and the methods that individuals employ are, in part, shaped by environmental 28 

conditions that vary in time and space. For birds, rainfall may affect behavior, impairing 29 

senses and increasing energetic costs, but its consequences on movement patterns are 30 

poorly explored. We investigated the influence of rainfall on the foraging behavior of 31 

the magnificent frigatebird, Fregata magnificens. This peculiar tropical seabird lacks 32 

feather waterproofing and is known to track environmental conditions while searching 33 

for food. Thus, its foraging behavior should be highly sensitive to the effects of rainfall. 34 

By GPS-tracking chick-rearing adults, we showed that frigatebirds did not avoid areas 35 

with rainfall during foraging trips, nor did rainfall influence trip characteristics. 36 

However, rainfall decreased time devoted to foraging and increased time spent 37 

perching. Moreover, it affected flight mode, inducing birds to fly slower and at lower 38 

altitudes. Wind speed, which was not correlated with rainfall, only affected behavior 39 

during night-time, with strong winds decreasing time spent perching. Our results 40 

indicate that rainfall does not affect the spatial distribution of foraging frigatebirds but 41 

does alter fine-scale foraging behavior by reducing flight activity. We suggest that the 42 

ongoing environmental change in this region, including an increase of rainfall events, 43 

has the potential to impair foraging and negatively affect fitness. 44 

Running title: Rainfall alters foraging activity in a tropical seabird 45 

Keywords: magnificent frigatebird, spatial behavior, environmental drivers, Hidden 46 

Markov Models, precipitation, Resource Selection Function, wind speed 47 

 48 
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INTRODUCTION 50 

Wild animals must overcome a range of challenges to maximize their fitness. Locating 51 

ample food is one such challenge, essential not only for survival but also for 52 

successfully rearing offspring, evading predators and migrating (Kramer 2001). The 53 

search for food can favour cooperation between individuals (Dumke et al. 2018), such 54 

as social information exchange (Hasenjager et al. 2020), potentially leading to drastic 55 

changes in species’ ecology (Lancaster et al. 2000). Acquiring ample resources is 56 

however hindered by several factors, including inter- and intra-specific interactions (e.g. 57 

competition and predation: Ashmole 1963; Krebs 1980), physiological constraints, prior 58 

experience (Smith and Metcalfe 1994; Aubret et al. 2015), luck (Wilson et al. 2018) and 59 

environmental conditions. The latter include climatic and atmospheric components, 60 

which can act indirectly on foraging by affecting trophic interactions, influencing food 61 

webs and potentially driving long-term change in communities (Zhang et al. 2007; 62 

Bogdziewicz et al. 2020). Moreover, environmental conditions can alter foraging 63 

behavior more directly, promoting or disrupting foraging activities at fine spatial and 64 

temporal scales, by affecting the timing of feeding (e.g. ground air temperature: Kasper 65 

et al. 2008) or selection of foraging areas (Sunde et al. 2014; Udyawer et al. 2015). In 66 

birds, weather conditions and landscape features are well-known drivers of foraging 67 

behavior (Duerr et al. 2015; Scacco et al. 2019; Ventura et al. 2020), with a growing 68 

number of studies demonstrating flexibly in the tactics employed by birds in response to 69 

a varying external environment (Clay et al. 2019; Cecere et al. 2020; De Pascalis et al. 70 

2020).  71 

Rainfall is a key weather component, known to affect avian activity and 72 

movement patterns (Elkins 2010). Wet plumage can result in severe heat loss 73 



4 
 

(Stalmaster and Gessaman 1984; Wilson et al. 2004), impair locomotor performance 74 

and flight capabilities, and increase body mass and consequently wing loading 75 

(Mahoney 1984; Ortega-Jiménez et al. 2010; Ortega-Jimenez and Dudley 2012a), all 76 

conditions that are expected to increase energy expenditure (Hertel and Ballance 1999). 77 

In addition to direct effects on energy expenditure, rainfall has the potential to impair 78 

vision and hearing, reducing the perceptive accuracy of the surrounding environment 79 

(Yorzinski 2020). Overall, rain can reduce foraging efficiency in several ways, for 80 

example by impairing the localization of prey, inhibiting detection of predators and thus 81 

increasing the need for vigilance, or inducing shifts in preferred foraging areas (Hilton 82 

et al. 1999; Sergio 2003; Whittingham et al. 2004; Fernández-Juricic 2012).  83 

Despite its potential to disrupt foraging and alter time-activity budgets, the 84 

behavioral strategies that birds have evolved to cope with rainfall are poorly 85 

investigated. Avoidance of rain by sheltering has been documented (e.g. Cauchard and 86 

Borderie 2016; Wilkinson, et al. 2019), especially in the tropics where intense but 87 

transient downpours can take place (Elkins 2010). If sheltering is not possible due to 88 

habitat and/or body size (e.g. large raptors), individuals can remain perched to minimise 89 

exposure to rain (Elkins 2010). Relocating to more distant areas, to avoid strong rain 90 

and wind, has been observed in some species prior to the arrival of perturbation fronts, 91 

as birds are believed to be capable of sensing - to some extent - the arrival of storms 92 

(Blomqvist and Peterz 1984; Streby et al. 2015; Weimerskirch and Prudor 2019). 93 

Finally, some species have evolved morphological or behavioral adaptations to cope 94 

with rainfall. For example, birds with high feeding rates such as hummingbirds can 95 

actively fly and forage in the rain, using both aerial and perched shaking techniques to 96 

expel water from their plumage (Ortega-Jimenez and Dudley 2012b). While most of the 97 
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existing studies provide anecdotal evidence for behavioral responses to rainfall, or 98 

performed investigations at the foraging trip level (Pistorius et al. 2015; Lane et al. 99 

2019), a fine-scale understanding of the influence of rain on foraging behavior, 100 

particularly during energy-demanding periods of the life cycle such as chick-rearing, is 101 

currently lacking. 102 

Frigatebirds are intriguing candidate species to investigate the effect of rainfall 103 

on foraging, given their ecology and life-history traits. They are large-bodied marine 104 

predators (1-1.9 kg; Diamond and Schreiber 2002) widely distributed across the tropics, 105 

an area that experiences fluctuating and sometimes heavy rates of rainfall (Mandeep et 106 

al. 2011). Owing to their unusual morphological characteristics (limited feather 107 

waterproofing and partially webbed feet), frigatebirds are obligate opportunistic surface 108 

feeders that rely heavily on visual cues to detect prey (Diamond and Schreiber 2002). 109 

They are highly efficient flyers due to their low wing loading (Weimerskirch et al. 110 

2004) and are thus capable of ranging over large distances to search for food 111 

(Weimerskirch et al. 2016; Austin et al. 2019). Furthermore, they are known to track 112 

environmental components such as frontal regions and transport fronts to increase 113 

foraging opportunities (Tew-Kai et al. 2009; De Monte et al. 2012) and may be one of 114 

the few bird species able to ride out a storm (Cramp and Simmons 1977). While 115 

provisioning offspring, frigatebirds act as central-place foragers, implying that they 116 

have spatial and temporal constraints on their movements (Orians and Pearson 1979). 117 

To meet the high energetic demands associated with this phase of the life cycle, 118 

frigatebirds are expected to adjust foraging behavior to maximise efficiency in the 119 

spatio-temporally variable environments that they inhabit (Weimerskirch et al. 2003a; 120 
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De Monte et al. 2012). However, their functional traits may render them particularly 121 

susceptible to foraging disruption caused by rainfall. 122 

In this study, we investigated whether rainfall alters the foraging behavior of 123 

chick-rearing magnificent frigatebirds (Fregata magnificens, hereafter referred to as 124 

‘frigatebirds’). Assuming that searching for food under rainy conditions results in 125 

increased energy expenditure, and given that frigatebirds show some capability to 126 

anticipate the arrival of perturbation fronts (Weimerskirch and Prudor 2019), we 127 

hypothesise that chick-rearing frigatebirds should: 1) avoid foraging in areas subjected 128 

to heavy rainfall; and 2) modify their at-sea behavior when encountering rain. The latter 129 

could be achieved by a) increasing flight height above the rainy cloud front and 130 

avoiding rainfall (frigatebirds are capable of flying at very high altitudes; 131 

(Weimerskirch et al. 2003b) or b) reducing activity until the unfavourable conditions 132 

pass. Rainfall events can be associated with light-to-strong changes in wind intensity, 133 

since clouds form in frontal depression systems where air masses move (Ahrens 2011). 134 

Thus, to account for confounding effects of wind speed on fine-scale behavioral 135 

responses to rain, we included wind speed in our analysis.  136 

 137 

MATERIALS AND METHODS 138 

Animal capture, handling and data preparation 139 

During the main chick-rearing periods (February to May) in 2017 and 2019, 44 (2017: n 140 

= 22; 2019: n = 22) breeding adults were equipped with solar-powered GPS-GSM 141 

biologgers (Movetech Telemetry) at a colony on Little Cayman, Cayman Islands, in the 142 

Central Caribbean (19° 39.8’N, 80° 4.9’W). Individuals were caught on the nest with a 143 
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noose-pole, and devices were attached to a small number of contour feathers on the 144 

back using waterproof tape (mean ± SD handling duration: 15 ± 3 min). In all cases, 145 

birds were observed returning to attend the chick shortly after release. Owing to 146 

difficulties in recapturing birds after first capture, loggers were not retrieved and were 147 

assumed to have been shed when transmissions ceased. Devices were set to record 148 

positions on three dimensions (latitude, longitude and altitude) every 15 mins. Device 149 

mass ranged between 23.2 and 25.8 g, and relative device load (including attachment) 150 

was 2.9 ± 0.4 % (mean ± SD) of body mass. To assess the potential impact of handling 151 

and device attachment, we recorded breeding success (proportion of nests that fledged a 152 

chick) of all experimental nests and a group of unhandled control nests. No significant 153 

difference in fledging success of experimental and control nests was observed (2017: 154 

Austin et al. 2019; 2019: control, n = 99, fledging success = 0.63; experimental, n = 22, 155 

fledging success = 0.45, Fisher’s exact test, P = 0.16, odds ratio = 0.50, power = 0.27). 156 

Fieldwork was performed under permissions of the Department of Environment, 157 

Cayman Islands Government and National Trust of the Cayman Islands.  158 

 Foraging trips were identified as movements ≥1 km from the colony, lasting ≥ 159 

30 min (Austin et al. 2019). Incomplete trips and very short trips (≤ 2-3 locations; n = 160 

33), likely to represent colony-based movements inside the reef, were also removed 161 

from further analyses. Only foraging trips undertaken when the tracked bird was 162 

actively rearing a chick were retained. For birds that lost their chick during the tracking 163 

period, we only included trips performed before the last date the chick was recorded 164 

alive. Duplicate and unrealistic locations based on derived ground speed, were 165 

identified and removed using the ‘SDLfilter’ R package (Shimada 2019). Overall, we 166 

obtained information on 517 complete foraging trips from 33 birds (15 males and 18 167 
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females; mean ± SD; trip duration: 30 ± 43 hours; foraging trips per individual: 16 ± 35; 168 

Fig. 1). The tracking period spanned March to late May in 2017 (n = 14 individuals) and 169 

March to late October in 2019 (n = 19 individuals). GPS locations were matched to 170 

gridded environmental data (cell size: 0.25° × 0.25°; ~ 27 km × 27 km, temporal 171 

resolution: 1 h). Precipitation data (mm/h, a measure of rainfall), and both U and V 172 

wind component data, from the ERA5 dataset (Hersbach et al. 2020) were downloaded 173 

from the Copernicus Climate Change Service 174 

(https://cds.climate.copernicus.eu/cdsapp#!/home). Wind speed (m/s) was then derived 175 

from U and V wind components using the “rWind” R package (Fernández-López and 176 

Schliep 2019).  177 

 178 

Statistical analyses 179 

Effect of rainfall on spatial distribution - A Resource Selection Function (RSF) 180 

approach was used to investigate whether frigatebirds avoided areas with high rainfall 181 

during foraging trips. Environmental features at locations visited by the animal (i.e. 182 

‘used locations’) were compared to the features at a set of random locations drawn from 183 

an area assumed to be available to the animal (i.e. ‘available locations’) (Muff et al. 184 

2020). Defining an availability domain for frigatebirds is challenging, since they are 185 

long-distance foragers that exploit a wide range of environments, including pelagic 186 

waters, coasts, islands and inland areas (see Austin et al. 2019). Therefore, to achieve 187 

the highest possible ecological realism, we generated two sets of random locations by 188 

rotating each foraging trip (anchored at its initial location, i.e. the colony site) by a 189 

randomly selected angle (Freeman et al. 2010; Cecere et al. 2018). For each real trip, we 190 
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calculated the proportion of locations falling on land, and then constrained each rotated 191 

trip to have a similar number of locations on land (± 10%). If the original trip had less 192 

than 10% of locations on land, we allowed the rotated trip to fall entirely over sea. If the 193 

above conditions were not met after 1000 iterations of random rotations, the trip was 194 

discarded (n = 46). This approach allowed us to work on raw presence data, and 195 

prevented biases being introduced by any unrealistic overlap with - or absence of - land. 196 

We generated two rotated trips for each real trip, confirming that these were different to 197 

each other by visual inspection. For both the real and simulated trips, the time of each 198 

location was rounded to the nearest hour, and the most central location in each hourly 199 

time bin was retained with all others discarded. This method was followed to avoid 200 

excessive temporal autocorrelation between subsequent consecutive locations and to 201 

ensure that the temporal resolution of rainfall data matched that of the GPS data.  202 

 Overall, the dataset used for the RSF analysis contained 13330 used (471 trips 203 

from 33 individuals) and 26660 available (942 trips from 33 individuals) locations (see 204 

Supporting information). To investigate the effect of rainfall on the spatial distribution 205 

of frigatebirds, we fitted a weighted logistic regression model to the data, modelling the 206 

probability of having a used vs. available location in relation to rainfall, and including a 207 

by-individual random intercept and slope. The model was fitted with the glmmTMB 208 

function in the “glmmTMB” R package (Magnusson et al. 2020), using the 209 

parametrization recommended by Muff et al. (2020) for RSFs.  210 

Effect of rainfall on foraging trip characteristics – To assess the broad-scale effect of 211 

rainfall on foraging behavior, we calculated the following characteristics for each 212 

foraging trip: trip duration (h), mean distance from colony (km), maximum distance 213 

from colony (km) and total distance travelled (km). We then fitted GLMMs using the 214 
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“lme4” R package (Bates et al. 2015), with each trip characteristic as the response 215 

variable, and mean rainfall experienced during each foraging trip as an explanatory 216 

variable. Bird identity was included as a random intercept, and significance was 217 

assessed using likelihood ratio tests. After visual inspection of frequency distributions, 218 

we fitted a Gamma error distribution with a log-link function. Model assumptions were 219 

checked using the “performance” R package (Lüdecke et al. 2020). 220 

Effect of rainfall and other environmental variables on behaviors - Generalized Hidden 221 

Markov Models (HMMs) were used to test the effect of two environmental variables 222 

associated with perturbation fronts and potentially affecting foraging behavior of 223 

frigatebirds (i.e. rainfall and wind speed) using the “momentuHMM” R package 224 

(McClintock and Michelot 2018). As HMMs require regular time steps, we linearly 225 

interpolated and re-sampled the dataset at 15-min intervals, using the “adehabitatLT” R 226 

package (Calenge 2006). To each interpolated location, we then assigned the closest 227 

matching real-time altitude, rainfall and wind speed values. Since frigatebirds are highly 228 

visual predators, and considering that they can spend a prolonged time aloft (up to 2.1 229 

months, Weimerskirch et al. 2016), it is likely that circadian rhythms and ambient light 230 

could influence their behavioral responses to weather variability. Therefore, we 231 

determined if each location occurred during daytime (coded 1) or night-time (coded 0), 232 

using the crepuscule function (astronomical twilight) from the R package ‘maptools’ 233 

(Bivand and Lewin-Koh 2018). A three-state multivariate HMM was run using the 234 

Viterbi algorithm to estimate the most likely behavioral state sequence (Zucchini et al. 235 

2017). The number of states was chosen based on a priori knowledge of frigatebird 236 

behavior (Austin et al. 2019). Initial parameter priors used in the model were chosen 237 
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after comparing negative log-likelihood values of several candidate models (n = 20), run 238 

iteratively using a range of randomly selected reasonable prior values. 239 

Data streams used in the model were step length (i.e. distance travelled), turning 240 

angle (i.e. change of movement direction) and altitude (i.e. meters above sea level). 241 

Despite GPS-derived altitude being less accurate when compared to latitude and 242 

longitude, it can be reliably used in HMMs (Clark et al. 2019). A Gamma distribution 243 

was used to model step length and altitude, while a Von Mises distribution was used to 244 

model turning angle, and a zero-mass parameter was applied to step length to account 245 

for zero inflation. We modelled the transition probabilities as a function of 246 

daytime/night-time, rainfall and wind speed. The two latter variables were very weakly 247 

correlated (r = 0.03), hence our results were unaffected by collinearity. To test the 248 

relative influence of environmental variables (as well as their combined effect) on 249 

model performance, a set of ecologically meaningful candidate models were compared. 250 

Starting from a null model, we sequentially added each covariate, as well as their two-251 

way interaction, and used AIC to select the most parsimonious model. To assess how 252 

environmental covariates affected the proportion of time spent in each behavior, we 253 

calculated and plotted the stationary-state probabilities (representing the equilibrium of 254 

the process) for each covariate. When plotting rainfall, wind speed was kept at its mean 255 

value (5.11 m/s). When plotting wind speed, rainfall was kept at its mean value (0.09 256 

mm/h). When plotting daytime/night-time, both rainfall and wind speed were kept at 257 

their mean values. Finally, for each covariate we extracted the predicted stationary 258 

probability (with 95% CI) for the minimum and maximum actual values recorded 259 

(rainfall: 0 and 6 mm/h; wind speed: 0 and 13 m/s) during both daytime and night-time. 260 

To assess the effect of covariates on state transition probabilities, we plotted transition 261 
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probabilities as a function of each covariate (keeping the other at its mean value) during 262 

both daytime and night-time, and extracted the transition probability (with 95% CI) on 263 

the real (i.e. natural) scale for the maximum and minimum values recorded. All analyses 264 

were undertaken using R software version 3.5.1 (R Core Team 2018). 265 

RESULTS 266 

Effect of rainfall on spatial distribution and trip characteristics 267 

Frigatebirds encountered rainfall events (>0.005 mm/h) during the majority of foraging 268 

trips (94 %, Fig. 2). The mean number of hourly intervals with rain per trip was 17 ± 23 269 

SD (56.6 % of the mean trip duration). Overall, used locations were similarly rainy 270 

(0.085 mm/h ± 0.002 SE) as available ones (0.084 mm/h ± 0.002 SE). At the population 271 

level, frigatebirds were not significantly more likely to occur in less rainy locations 272 

(weighted logistic regression analysis; 𝛽̂ = -0.026 ± -0.06 SE, P = 0.68). At the 273 

individual level, frigatebirds were rather homogeneous in their lack of a spatial response 274 

to rainfall (random slope effect: σ2 = 0.08 ± 0.29 SD). The spatial distribution of 275 

foraging frigatebirds was thus largely independent of rainfall. 276 

 There was no significant effect of rainfall on foraging trip characteristics (trip 277 

duration: estimate = 0.60 ± 0.03 SE, χ2 = 3.5, df = 1, P = 0.06; mean distance from 278 

colony: estimate= -0.10 ± 0.20 SE, χ2 = 0.1, df = 1, P = 0.70; total distance travelled: 279 

estimate = 0.10 ± 0.30 SE, χ2 = 0.1, df = 1, P = 0.80; maximum distance from colony: 280 

estimate = -0.10 ± 0.20 SE, χ2 = 0.2, df = 1, P = 0.70). 281 

 282 

Characterization of behaviors 283 
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The fitted HMM assigned each location to one of three states, which were considered to 284 

represent the following behaviors: searching/foraging (moderate step length and 285 

altitude, and high turning angle); travelling (large step length, high altitude and low 286 

turning angle); perching (very low step length and altitude, and high turning angles) 287 

(Table 1, see also Supporting information). Locations assigned to each behavior were 288 

visually inspected. The vast majority of locations classified as perching (95.7%) were 289 

tightly clustered on land, while only 4.3% were interspersed within other behavioral 290 

states at sea, reflecting either infrequent inaccuracies in behavioral assignment and/or 291 

perching on boats or other floating objects (e.g. channel markers, buoys). We are 292 

therefore confident that most perching behaviors were correctly identified by the model. 293 

 294 

Effect of rainfall and other environmental variables on behaviors 295 

Including environmental covariates strongly improved model fit (ΔAIC = 1042.5 296 

compared to the null model). The best fitting model included all candidate 297 

environmental covariates, as well as a two-way interaction between wind speed and 298 

daytime/night-time (Table 2). Overall, time spent in each behavior changed according to 299 

daytime/night-time, with higher probability of perching during night-time than during 300 

the day (Supporting information). Changing levels of rainfall (range 0.0 - 6.9 mm/h) 301 

affected the time spent in each behavior in a similar fashion during both day and night 302 

(Fig. 3a,b): with increasing rainfall, perching probability increased almost to 1 while 303 

travelling and foraging/searching probability decreased to near zero. During daytime, 304 

the probability of being in a given behavioral state remained relatively constant as wind 305 

speed increased (Fig 3c). However, during night-time (Fig 3d), the probability of 306 
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perching decreased from 0.78 (95% CI 0.71-0.84) when there was no wind (0 m/s) to 307 

0.07 (95% CI 0.04-0.12) at high wind speeds (13 m/s). In contrast, the probabilities of 308 

travelling and search/foraging increased with increasing wind speed: travelling 309 

increased from 0.10 (95% CI 0.07-0.15, 0 m/s) to 0.35 (95% CI 0.29-0.42, 13 m/s), 310 

while search/foraging increased from 0.12 (95% CI 0.09-0.16, 0 m/s) to 0.58 (95% CI 311 

0.51-0.64, 123 m/s).  312 

Transition state probabilities were only weakly influenced by wind speed (see 313 

Supporting information) and ambient light conditions (see Supporting information), 314 

while a small effect was found for rainfall (see Supporting information): the probability 315 

of remaining in a travelling state decreased with increasing rainfall, from 0.86 (95% CI 316 

0.85-0.86, 0 mm/h) to 0.51 (95% CI 0.27-0.75, 6 mm/h) during daytime, and from 0.92 317 

(95% CI 0.91-0.93, 0 mm/h) to 0.61 (95% CI 0.30-0.85, 6 mm/h) during night-time. In 318 

contrast, the probability of transitioning from travelling to search/foraging slightly 319 

increased with increasing rainfall, from 0.14 (95% CI 0.14-0.15, 0 mm/h) to 0.40 (95% 320 

CI 0.17-0.68, 6 mm/h) during daytime, and from 0.07 (95% CI 0.07-0.08, 0 mm/h) to 321 

0.23 (95% CI 0.08-0.50, 6 mm/h) during night-time. The probability to transitioning 322 

from travelling to perching slightly increased with increasing rainfall, but the 323 

confidence interval around mean values was large (see Supporting information). 324 

 325 

DISCUSSION 326 

We provide novel evidence for the influence of rainfall on the fine-scale foraging 327 

behavior of a seabird, which we expected to be especially sensitive to rainfall. Foraging 328 

frigatebirds did not avoid areas with rain, nor was there an effect on foraging trip 329 
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characteristics. However, when encountering rainfall, individuals modified their activity 330 

patterns, increasing time spent perching and decreasing time devoted to foraging. In 331 

addition, with increasing rain intensity, birds were more likely to switch from travelling 332 

to either perching or foraging/searching. The responses of birds to rainfall were similar 333 

during both daytime and night-time. In contrast, wind speed did not affect behaviors 334 

during daytime. However, during night-time birds engaged more frequently in travelling 335 

and foraging/searching, and spent less time perching with strong winds.  336 

The observed fine-scale response to rainfall suggests that foraging frigatebirds do 337 

not avoid rain by riding storms and flying high above perturbation fronts. In contrast, 338 

birds searched for a perching site above a certain rainfall threshold (~2 mm/h), 339 

presumably to wait until the rain event was over, adopting a strategy that minimizes 340 

energy expenditure and rain exposure.  This suggests that the time-activity budget of 341 

frigatebirds during foraging trips is flexible, possibly allowing individuals to buffer the 342 

costs of short-term adverse environmental conditions. This is further supported by the 343 

lack of an overall effect of rainfall on trip characteristics. However, it remains to be 344 

elucidated to what extent such rainfall-mediated reduction of foraging activity affected 345 

chick provisioning rates, and hence chick growth and survival.  346 

Individuals that encountered heavy rainfall while travelling were more likely to 347 

switch not only to perching but also to foraging/searching (despite large CI). This could 348 

be explained by the direct effect of rain on flight mode rather than an actual switch to 349 

foraging: with rainfall, rain drops may force downward momentum of the body, 350 

increasing the power required to stay airborne (Ortega-Jimenez and Dudley, 2012a). In 351 

addition to reduced visibility, this downward force may cause individuals to fly slower 352 

at lower altitudes with higher turning angles, which may appear similar to searching and 353 
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foraging behavior. Alternatively, rainfall may cause birds to circle more, as they exploit 354 

maritime cumulous clouds that are associated with thermals and often form in rain 355 

(Rauber et al. 2007). The effect on rainfall on marine fish is still poorly known, but it 356 

has been shown that rainfall events can alter diel rhythm and vertical movements of 357 

fish, resulting in a rain-mediated increased catchability of some species (Payne et al. 358 

2013; Payne et al. 2015). Therefore, we cannot rule out the possibility that the increased 359 

surface-availability of some prey species with rain, coupled with reduced in-air 360 

visibility and increased water turbidity (Corbari et al. 2016), may inhibit the ability of 361 

frigatebirds to spot prey aggregations from high altitudes, causing them to switch to a 362 

lower altitude search mode and increase foraging effort (Ortega et al. 2020). The same 363 

mechanisms appeared to operate during both daytime and night-time. This is consistent 364 

with evidence for night-time foraging in frigatebirds, which are known to scavenge on 365 

fishery discards and target vertically migrating species with the aid of moonlight 366 

(Gilmour et al. 2012) or bioluminescence, and are often on the wing during darkness 367 

(Weimerskirch et al. 2004).  368 

The spatial distribution of foraging frigatebirds was unaffected by rainfall, 369 

implying that birds did not actively avoid perturbation fronts. In an oligotrophic 370 

environment with scattered resources, such as the Caribbean Sea (Longhurst and Pauly 371 

1987; Bertrand et al. 2002), the ability to cover large areas in search of food likely 372 

overrides the need to regularly adapt movements in response to a highly dynamic (and 373 

frequently occurring) environmental component (i.e. rain). Furthermore, the high 374 

probability of perching in heavy rainfall predicted by our model (daytime: 0.98, 95% CI 375 

0.85-1.00; night-time: 1.00, 95% CI 0.99-1.00) may suggest that, when there is a strong 376 

perturbation front, frigatebirds are mostly close to areas where they can rapidly perch. 377 
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Therefore, despite not avoiding rainfall, their ability to track environmental conditions 378 

(Tew-Kai et al. 2009; De Monte et al. 2012; Weimerskirch et al. 2016) could help them 379 

sense the arrival of strong perturbation fronts, and pre-emptively position themselves 380 

closer to land. Frigatebird associations with mesoscale transport fronts and cumulous 381 

clouds (Tew-Kai et al. 2009; De Monte et al. 2012; Weimerskirch et al. 2016) makes 382 

them particularly likely to encounter rainfall. Warm ocean eddies can provide heat (and 383 

therefore energy) to storms, intensifying them (Wu et al. 2007), and shallow maritime 384 

cumulous clouds often form rain (Rauber et al. 2007). Therefore, a mechanism of 385 

sensing potentially dangerous perturbation fronts and then moving close to land seems 386 

plausible in these species. However, we did not detect an effect of rainfall on distance to 387 

the coast at the trip scale (Supporting information). Therefore, if such a mechanism is 388 

present, it is likely to operate at a very fine spatial scale that is difficult to detect with 389 

our tracking data.  390 

 The behavioral responses to rainfall were not explained by an increase in wind 391 

speed, often linked to barometric depressions that favour rainfall. Rather, wind speed, 392 

which was not associated with rainfall in the present dataset, had a distinct effect on 393 

behavior during night-time, when individuals were more likely to spend time 394 

searching/foraging with increasing wind speed. Since wind facilitates take-off 395 

capabilities in seabirds, reducing energy expenditure (Diamond and Schreiber 2002, 396 

Shaffer 2011, Clay et al. 2020), frigatebirds could take advantage of it during night-time 397 

to become airborne, starting their foraging trips in darkness and commuting to areas 398 

where they then forage in higher light conditions.  399 

Fully understanding how animals react to environmental conditions, such as rainfall, 400 

is important for assessing their resilience to climate change, and it is currently 401 
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considered a research priority in behavioral studies (Buchholz et al. 2019). Severe 402 

increases in the rate and extent of rainfall, as well as changes in rainfall seasonality 403 

(Feng et al. 2013), are expected to occur in the near future within tropical regions 404 

(Collins et al. 2013; Fischer and Knutti 2016). Under this scenario, increasing rainfall 405 

rates may disrupt foraging and negatively affect chick survival and fitness. These 406 

potential negative effects of rainfall, coupled with predicted increases in extreme 407 

climatic events such as hurricanes (Stocker et al. 2013), increasing rates of chick 408 

mortality following storms (Schreiber and Burger, 2001) and a wide range of other 409 

human-induced pressures, may contribute to threaten frigatebird populations, some of 410 

which are already experiencing declines (Birdlife International 2018).  411 
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TABLES 667 

Table 1. Estimated parameters from the fitted three-state Hidden Markov Model. Parameter 668 

estimates (means) of step length (kilometers), turning angle (radians) and altitude (meters above sea 669 

level) from the fitted three-state HMM, with standard deviation (concentration for turning angle) in 670 

parenthesis.  671 

Variable Searching/foraging Travelling Perching 

Step length (km) 1.56 (1.30)  4.60 (2.16) 0.01 (0.01) 

Turning angle (rad) -0.02 (1.42) -0.01 (12.83) 0.03 (0.57) 

Altitude (m a.s.l.) 125.63 (112.90) 255.66 (244.88) 23.61 (24.98) 

 672 

 673 

 674 

 675 

 676 

  677 
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Table 2. AIC comparison of a set of candidate three-state Hidden Markov Models. List of 8 678 

ecologically meaningful candidate models with their AIC and respective difference in AIC (ΔAIC) 679 

from the best-fitting model (highlighted in bold). 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

Model AIC ΔAIC 

Null model  837378.9 1042.5 

Rainfall 837358.7 1022.3 

Rainfall + wind speed 837171.1 834.7 

Rainfall + wind speed + daytime/night-time 836357.1 20.7 

Rainfall + wind speed + daytime/night-time +  

(rainfall × wind speed) 
836367.1 30.7 

Rainfall + wind speed + daytime/night-time +  

(rainfall × daytime/night-time) 
836353.2 16.8 

Rainfall + wind speed+daytime/night-time +  

(wind speed × daytime/night-time) 
836336.4 0 
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FIGURES LEGENDS 703 

Figure 1. Foraging trips of chick-rearing magnificent frigatebirds. Foraging trips (n = 517) of 704 

chick-rearing magnificent frigatebirds (n = 33) tracked with GPS-GSM loggers during 2017 and 705 

2019 from a colony on Little Cayman, Cayman Islands (colony location indicated with a star). Trips 706 

from different individuals are displayed with different colours. 707 

 708 

 709 
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Figure 2. Rainfall experienced during a foraging trip of a chick-rearing magnificent frigatebird. 710 

Mean rainfall experienced per cell (0.25° x 0.25°) while the bird was present is reported in mm/h. 711 

Colony location is represented with a star.  712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 
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Figure 3. Stationary state probabilities for three HMM-estimated behaviors (orange: search/forage, 722 

green: travel, purple: perch) with respect to differing rates of rainfall and wind speed (a: daytime 723 

rainfall rate, b: night-time rainfall rate, c: daytime wind speed, d: night-time wind speed). Solid 724 

lines show means and error bars show 95% confidence intervals. For rainfall plots (panels a & b), 725 

wind speed was kept at its mean value (5.11 m/s), and for wind speed plots (panels c - d) rainfall 726 

was kept at its mean value (0.09 mm/h). 727 
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