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1. Introduction

A persistent challenge for Industrial Economists has been to credibly explain homoge-
neous goods selling at different prices within the same market.? The classical models
of Bertrand and Bertrand-Edgeworth price competition struggle to explain pure strat-
egy price dispersion, especially where consumers purchase at different prices, because
in these models a pure strategy equilibrium would usually occur at the minimum
price posted in the market. Therefore, price dispersion has tended to be explained
as the outcome of sellers following mixed strategies, as a consequence of incomplete
seller information or non-standard consumer decision-making procedures.?

The idea that firms randomize their price following a mixed strategy process has
always remained contentious. As Friedman (1988, p.608) remarked “it is doubtful
that the decision-makers in firms shoot dice as an aid to selecting output or price.”
In practice, prices also do not appear to oscillate as frequently as is implied by the ex
post regret associated with the outcome of a mixed strategy for any firm; a further
profitable deviation always exists, theoretically causing prices to perpetually cycle.
Furthermore, the use of mixed strategies by individuals has been consistently re-
futed in experimental examinations of price competition and, in particular, Bertrand-
Edgeworth competition where sellers face capacity constraints (Buchheit & Feltovich,
2011; Fonseca & Normann, 2013; Heymann et al, 2014; Kruse et al, 1994). This mo-
tivates our search for a new explanation for non-random price dispersion in markets
with capacity-constrained sellers of homogeneous goods.

In this paper we present a novel and intuitively appealing explanation for pure
strategy price dispersion arising from sellers holding incomplete and asymmetric infor-
mation regarding the future market demand.* We start with the classical Bertrand-
Edgeworth duopoly, where capacity constrained sellers compete directly in prices,
and we introduce asymmetric information of the type usually studied in the context
of general equilibrium models.® The uncertainty that sellers face is modelled by an
information partition. Sellers cannot distinguish between demand states within the
same partition and prices must be measurable with respect to their private infor-

2See Baye et al (2004) for a large empirical study of this phenomenon examining internet prices.

3Some classic and recent papers using mixed strategies to illustrate price dispersion include
Shilony (1977), Varian (1980), Burdett and Judd (1983), Vives (1986), Baye and Morgan (2001),
Janssen and Rasmusen (2002). See Vives (1999) for a textbook treatment of Bertrand-Edgeworth
games.

4Demand uncertainty can also stem from inter-temporal variations in demand as identified in
domestic electricity markets (See Green & Newbery, 1992; Lemus & Moreno, 2017).

Glycopantis and Yannelis (2005) contains many papers which analyze asymmetric information
of the type which we introduce in the Bertrand-Edgeworth game.



mation. Intuitively, this requires that sellers set the same price for future demand
states over which they are uncertain. The market demand is distributed in propor-
tion to the sellers’ capacities if prices are tied and efficient rationing occurs if different
prices are posted in the market and the cheapest seller is unable to satisfy all of their
forthcoming demand.

Beyond providing a new explanation for non-random price dispersion, our frame-
work also contributes new results on the existence of pure strategy equilibria in
Bertrand-Edgeworth competition under incomplete information. Even with com-
plete information, it is well-known that a pure strategy equilibrium generally fails to
exist because it can be profitable for a seller to deviate to a higher price than their
rival and sell only to the residual demand that their competitor cannot meet due
to their capacity constraint. This induces price cycles, referred to as the Edgeworth
paradox (Dasgupta & Maskin, 1986; Dixon, 1992; Maskin, 1986). This problem of
non-existence of pure strategy equilibrium is exacerbated by asymmetric information
amongst sellers because we must specify how each seller evaluates ex ante uncer-
tain profits. To address this, we consider ambiguity averse sellers with Maximin
expected utilities (MEU), following Gilboa & Schmeidler (1989). Using this ex ante
decision rule, sellers focus on the lowest possible ex post profits they know could be
realised from each partition of the possible demand states. In this context, we pro-
vide conditions that guarantee the existence of a pure strategy equilibrium, which are
straight-forward to understand, interpret and implement.

Our approach for capturing ambiguity aversion is motivated by experimental and
empirical evidence, which has spurred the adoption of Maximin utilities throughout
the theoretical literature (Cerreia-Vioglio et al, 2011; Correia-Da-Silva and Hervés-
Beloso, 2009, 2012; De Castro, Liu and Yannelis, 2017; He and Yannelis, 2015a,
2016, 2017; and Pulford & Colman, 2007). One appealing property of Maximin
preferences stems from the ability to explain classic examples of behaviour that are
incompatible with Subjective Expected Utility (SEU) theory, including the Ellsberg
and Allais Paradoxes (Ellsberg, 1961; Halpern & Leung, 2016). Recent empirical
evidence includes Giordani et al (2010), who analyse responses to the European Values
Survey to understand how individuals approach uncertain possibilities. Maximin
utilities play a substantive role and underpin the behaviour of 23% of individuals
surveyed, with significant geographical variation. In Italy, 46% of individuals exhibit
Maximin preferences, whilst 25% act as Bayesians. This motivates our inclusion of
Maximin utilities as a legitimate approach to decision-making under uncertainty for
at least some market players and contexts.

The main mechanics of our results operate as follows: In the complete information
benchmark, the only candidate for a pure strategy equilibrium is the competitive price



(See Dixon, 1992; Shubik, 1959) but the incentive to charge a higher price and sell only
to the residual demand that their competitor cannot meet generally destabilises this
equilibrium. Therefore, following Tasnadi (1999), demand must be sufficiently elastic
to shut down such upward price deviations and sustain a pure strategy equilibrium at
the competitive level. We now develop this line of argument to a general incomplete
information environment.

When sellers possess incomplete but symmetric information, we show that sellers
choose the minimum competitive price for each of their information partitions. If
a seller deviated above the lowest competitive price and the lowest demand state
prevailed, the firm would have earned higher profit at the competitive price, violating
the Maximin utilities of the sellers. This constitutes the incomplete information
analogue of Shubik’s (1959) well-known results in the complete information game.
Interestingly, excess demand also arises in equilibrium whenever the realised demand
is not the lowest possible demand from one of the sellers’ (symmetric) information
partitions.

When we introduce asymmetric information, sellers can charge different prices in
a pure strategy equilibrium, violating the law of one price. Interestingly, demand
can also be rationed across sellers charging different prices, which is consistent with
empirical findings but rarely identified in the theoretical literature. Therefore, we
are able to explain pure strategy price dispersion, consumers purchasing at different
prices and equilibrium excess demand as direct consequences of intuitively plausible
and empirically observed seller uncertainty regarding market demand.® These results
are also salient for competition authorities as the Bertrand-Edgeworth framework
continues to act as a benchmark for competition policy analyses.”

Equilibria in Bertrand-Edgeworth games can also be difficult to find and/or char-
acterize. Our model has an additional advantage that the equilibrium is easy to
construct and analyze. One simply has to find the competitive equilibrium for each
state of the market demand and construct the sellers’ price strategies based upon
their information partitions (see the example in Section 2.4).

Following the literature review, Section 2 outlines the Bertrand-Edgeworth game.

SFor example, The Wall Street Journal note CEO Tim Cook’s statement in reference to iPhone
sales: “It’s very hard to gauge demand, as you know, when you’re selling everything you’re making”
(Mims, 2017). Moreover, this statement is consistent with the excess demand that we observe in
equilibrium.

"For example, see the European Commission’s merger appraisals of Holcim/Cemex West
(COMP/M.7009) and, in particular, Outokumpu/INOXUM (COMP/M.6471) where the Bertrand-
Edgeworth framework “provides the best approximation to important industry features” (p. 166).



Section 2.1 explores the ex post payoffs for sellers and Section 2.2 analyses their ex
ante payoffs under Maximin expected utilities. In Section 2.3 we present our main
results on the existence of pure strategy equilibrium and we provide precise conditions
under which the law of one price is violated. Section 2.4 provides a simple example
that illustrates the intuitive and analytically tractable nature of our results. We
conclude with a discussion of our findings in Section 3.

1.1. Related Literature

The literature on capacity-constrained price competition has primarily focused on
a complete information environment, where several remedies to the non-existence
of pure strategy equilibria have been proposed. Tasnadi (1999) provides conditions
on the elasticity of the demand function that restore pure strategy equilibrium by
ensuring that upward price deviations, which generally destabilize the equilibrium,
decrease revenue. In Section 2.3 we show that our model nests Tasnadi’s (1999)
restrictions as a special case when firms hold complete information. However, we go
further by permitting incomplete information and we show that the resulting pure
strategy equilibrium can involve price dispersion, rationing of demand and excess
demand.

Bade (2005) resolves the non-existence of pure strategy equilibrium by introduc-
ing incomplete preferences amongst sellers with multiple objectives, such as sales and
profit maximisation. In contrast, incomplete information in our setting creates fur-
ther challenges, rather than resolving the non-existence of pure strategy equilibrium.
Iskakov, Iskakov & d’Aspremont (2018) consider cautious sellers, where any profitable
deviation must not induce a counter-deviation by another player that leaves the ini-
tial deviator worse off than their original position. Their solution of equilibrium in
stable strategies is similar to the Von-Neumann Morgenstern stable strategies used
in cooperative game theory.

Alternative methods of delivering pure strategy equilibria include modifying the
timing of the game (Deneckere & Kovenock, 1992; Deneckere & Peck, 2012, Dudey,
1992), allowing sellers to choose list prices and subsequent discount prices (Garcia
Diaz et al, 2009; Myatt & Ronayne, 2019), requiring integer pricing (Chowdhury,
2008), imposing a cost on firms that turn customers away (Dixon, 1990) and intro-
ducing a public social-surplus maximising seller (Récz & Tasnadi, 2016).

More recently, Bos, Marini and Saulle (2021) remedy the non-existence of pure
strategy Nash equilibria by considering Myopic sellers who seek improvements on their
current position, rather than more stringent Nash best responses. Using the Myopic
Stable Set (MSS) solution concept, due to Demuynck, Herings, Saulle & Seel (2019),
they show that MSS prices are equivalent to pure strategy Nash equilibria when the



latter exist. When no pure strategy Nash equilibria exist, MSS offers a solution in
the form of a (pure strategy) price range that contains the mixed strategy interval
and can involve sellers pricing below the competitive level, leading to rationing. In
contrast, our approach focuses on pure strategy Nash equilibria under incomplete
information with ambiguity averse sellers, where rationing can arise as a consequence
of demand uncertainty.

Hunold & Muthers (2019) show that spatial differentiation can drive price dis-
persion in a capacity-constrained price game. Chao et al (2018, 2019) identify price
dispersion when a capacity constrained seller competes against an unconstrained seller
with sequential pricing and scope for ‘all-unit-discounts’ (AUD).® Our model features
symmetric cost structures and captures both symmetric and asymmetric capacities,
but price dispersion is driven only by asymmetric information.

A related literature analyses Bertrand-Edgeworth competition with demand un-
certainty. Dana (1999) considers identical sellers who know the probability of each
demand state. The pure strategy equilibrium involves intra-firm price dispersion,
where sellers specify the output available at each price. Price schemes are identical
across sellers and the price of each specific unit is given by the marginal cost divided
by the probability that it will be sold. In contrast, we do not require that sellers can
attach probabilities to demand states that they are unable to distinguish between
and we consider asymmetric sellers in terms of information and capacities. This
generates our novel pure strategy equilibrium with inter-firm price dispersion, where
consumers are rationed across firms charging different prices. The two frameworks
provide complementary but distinct explanations for non-random price dispersion.

Other papers consider demand uncertainty when sellers choose their capacities
before price competition. In that literature, however, demand is usually realised be-
fore price competition (de Frutos & Fabra, 2011; Lepore, 2012; Reynolds & Wilson,
2000) and there generally exists no pure strategy price equilibrium (Hviid, 1991).
Our model abstracts from preceding capacity investment decisions to zoom in on the
existence and nature of pure strategy price dispersion in Bertrand-Edgeworth mar-
kets. Recent research has also explored the consequences of asymmetric information
across sellers on other dimensions, such as the number of firms a consumer considers
(Bergemann et al, 2020).

8 All-unit-discounts involve a reduction in the price for all purchased units once total quantity
crosses a threshold (Chao et al, 2018).



2. The Bertrand-Edgeworth Game

The model consists of a finite set of sellers N = {1,2}, who are producing a single
perfectly homogeneous good. The uncertainty will be modelled by a finite set 2 =
{w1, ..., wm }, which is the set of possible states of the world. There is a probability
distribution, u, over the set €2 which describes the probability of each state occurring.
It shall be assumed that pu(w) > 0 for every w € 2 so no state of the world is
redundant. Each seller is endowed with a fixed quantity ¢; > 0 of the good.® The
total quantity of the good which can be traded in the market is ¢; + ¢2. There is
a state-contingent market demand function for the homogeneous good given by
D : R, xQ — R,. The following conditions are imposed upon the demand function,
where x denotes price.

Assumption 1. For every w € Q and every x € (0,00), D(z,w) > 0. The function
D(-,w) is C* and D'(z,w) < 0 for every w € Q and every z € (0,00).

The private information of seller ¢ is modelled by a partition, P;, of the set
). Whenever two states of the world are in the same element of the partition P;, it
means that seller ¢ is unable to distinguish between those two states. The information
partitions are fixed as a primitive of the game and they are common knowledge
amongst the players. This means that a player can know whether their rival has more
information than they hold. If the partitions are symmetric, the sellers have identical
information regarding the future market demand. If the partitions are asymmetric,
the sellers possess asymmetric information regarding the future market demand. The
probability distribution (u) over each of the possible realised states of the market
demand, however, is not common knowledge.

A function f : Q — R, will be called P-measurable if, whenever w, € F and
w, € E for some E € P, then f(w,) = f(w,). Facing these information restrictions,
the strategy set of seller ¢ in the game is:

Li={f:Q— R4y fis P, — measurable}.

Let L = L1 x Ly be the joint strategy set. The primitives of a Bertrand-Edgeworth
game with asymmetric information can be summarized as G = {N,Q, (P}, ¢i)ien, D, 1}
The price elasticity of the market demand in state w € € is:

e(z,w) = D'(x, w)m

9We are assuming that each seller has zero marginal cost to supply the good. However, one could
easily add a constant marginal cost of production and this would make no difference to the results.



The market demand will be called uniformly elastic if ¢(z,w) < —1 for every
z € (0,00) and every w € Q. Let R(z,w) = 2D(z,w) so R(z,w) is the total revenue
available in the market at price z in state w € €. The uniform elasticity condition
on the market demand curve requires that a proportional increase in price results in
a more than proportional decrease in the quantity demanded. Therefore, increases in
price will reduce revenue.

2.1. The Ez Post Payolffs

After fixing a set of strategies f € L, to specify the payoffs which a seller receives ex
post, a rationing rule is required because a seller may not set the lowest price, but
the other seller may not be able to serve all the market demand.'® We consider the
most widely used rationing rule in the literature: efficient, or “surplus-maximizing,”
rationing which is consistent with those buyers with the highest valuation of the good
being served first.!! Under this rule, the demand which the higher-priced seller faces
is a horizontal displacement of the market demand. If the sellers tie at the same
price, we shall make the standard assumption that they split the market demand in
proportion to the quantities of the good they are endowed with.

Given a set of strategies f € L, let D; = min{D(f;(w),w), g;}. The demand which
seller 7 faces under efficient rationing is:

max{0, D(f;(w),w) — D;}, if fi(w) > fi(w);
DF(.ﬁw) = ql?tiD(fi(w)aw)? if fl(w> :fj(("));
D(f;(w),w) if fi(w) < f;(w).

If seller ¢ has the highest price, then seller 7 receives only the residual demand
that seller 7 cannot meet due to their capacity constraint, or zero if seller j satisfies
the market demand. If both sellers have the same price, they share the forthcoming
demand in proportion to their capacities. If seller ¢ has the lowest price, the demand
they face is the entire market demand forthcoming at that price.

As seller 7 is only endowed with ¢; units of the good, the demand which seller ¢
actually meets in state w €  is given by DA(f,w) = min{q, DF(f,w)}. Therefore,
the ex post payoff of seller 7 in state w € ( is:

wi(f,w) = filw)D{(f,w).

10See Bos & Vermeulen (2021) for a study of price-quantity competition when not all excess
demand for the lowest priced seller spills over to another seller.

1 An alternative interpretation of the efficient rationing rule is that buyers are served randomly
at first, but are then able to retrade the good amongst themselves, which then results in the same
allocation of the good. See, amongst others, Vives (1999, pp.124-5).



2.2. The Ex Ante Payoffs

Before each seller has received the information regarding which element in P; the
state of the world is in, how should the sellers evaluate their expected payoft? Given
we are assuming that sellers cannot distinguish between different states of the world
contained in the same element in FP;, it is not unreasonable to assume that sellers
cannot assign probabilities to those states. In this context, it is not possible for
sellers to calculate standard Bayesian expected utilities because they do not know
the probabilities of each demand state being realised.

We consider a well-known alternative to Bayesian expected utilites: Maximin
expected utilities (MEU). If a seller knows that the state of the world is contained
in ¥ € P;, we consider the case where the seller is pessimistic and assigns all the
probability associated with event F, which is u(E), to the minimum ex post payoff
in £. Formally, u(E) = Y .pp(w). Let H be the set of probability distributions
over ()

H={hecR": h(w) >0 for every w € Q and Zh(w) =1}
we
Let M; be the set of probability distributions which agree with seller i’s private
information:
M; ={h € H: h(E) = pu(F) for every E € P,;}.

Therefore, h(E) = u(E). Given a set of strategies f € L, the ex ante payoff of
seller ¢ is:
=min[» h(w)u(f,w)]
" hen,
weN

An alternative, but equivalent expression, is:

= 3 w(E)min (£, )]

EePp;

Remark 1. The most prominent early application of Maximin expected utilities was
in Gilboa and Schmeidler (1989) who characterized this type of decision rule and
noted that it can explain the Ellsberg (1961) violations of subjective expected utility
theory. Recently, Mazimin expected utilities have been used in a wide range of papers,
including Correia-da-Silva and Hervés-Beloso (2009), He and Yannelis (2015a) and
de Castro and Yannelis (2018).

Remark 2. This model of a Bertrand-Edgeworth game with asymmetric information
contains, as a special case, the standard complete information game. If one specifies
the information partitions of the sellers to be P; = {{w1}, {wa},...,{wm}} for every
t € N then each seller can distinguish every state of the world and the model is a
complete information game. Moreover, the calculation of Maximin expected utilities
then coincides with standard Bayesian utilities.

9



2.3. Existence of Pure Strateqy Equilibrium and the Law of One Price
Now that the ex ante and ex post payoffs have been defined, we can introduce the
equilibrium concept. A set of strategies f € L is a pure strategy price equilibrium
if, for every ¢ € N;

Ui(f) = Ui(f], f-i) for every f! € L;.

We shall say that a pure strategy price equilibrium, f € L, violates the law of
one price if fij(w) # fa(w) for some w € . That is to say, a pure strategy price
equilibrium violates the law of one price if there is at least one state of the world
when the sellers post different prices in the market. The first result gives some useful
properties of the market demand function, where R(z,w) = xD(z,w) is the total
revenue available in the market at price z in state w € Q.

Proposition 1. Fiz a Bertrand-Edgeworth game with asymmetric information
G = {N,Q, (P;,¢;)ien, D, pu}. If D(z,w) is uniformly elastic then the following are
true:

(1) R'(x,w) <0 for every x € (0, 00).

(1) lim,_,o D(z,w) = 00 and lim,_,o, D(z,w) = 0.

(1) For each w € ) there exist unique prices p®(w) such that D(p®(w),w) = q1+go.

Proof. (i) From the definition R(z,w) = zD(x,w), therefore:
R'(z,w) = D(z,w) + 2D'(x,w) = D(z,w)(1 + €(z,w)).
As e(z,w) < —1 for every z € (0,00), R'(x,w) < 0 for every z € (0, 00).

(ii) Suppose a contradiction: that lim, o D(z,w) =y > 0. Then lim, o zD(z,w) =
0. As R'(z,w) < 0, this implies R(z,w) < 0 for every x € (0,00) and contradicts
xD(x,w) > 0 for every x € (0,00). Hence, lim, ,o D(z,w) = co. Suppose a con-
tradiction: lim, ,o, D(z,w) = y > 0. Then lim, ,,, xD(z,w) = oo and contradicts
R'(z,w) < 0 for every x € (0,00). Hence, lim, . D(z,w) = 0.

(iii) It follows from (ii) that the range of D(-,w) is (0,00). Therefore, for each w € Q
there exists a p°(w) such that D(p°(w),w) = ¢1 + ¢2. The uniqueness of such prices
follows from D(-,w) being decreasing on (0,00). W

The p°(w) prices correspond to the competitive price for each state of the market
demand. Using the p°(w) prices defined in part (iii) of the previous result, define the
strategies of the sellers to be as follows. For each F € P; let:

fi (E) = min p®(w).

weFE

By construction these strategies are P;-measurable, so f* € L. The following result
gives some of the properties of these strategies.

10



Proposition 2. Fix a Bertrand-Edgeworth game with asymmetric information
G = {N,Q, (P, qi)ien, D, u}. Suppose the demand D(z,w) is uniformly elastic and
the sellers play the strategies f* € L. Then:

(i) DA(f*,w) = q; for every w € Q.

(i) Us(f*) = X pep, ME) [ (E)gi-

Proof. (i) If the sellers use strategies f* € L then f/(w) < p(w) for every w € €.
Therefore D(ff(w),w) > q1 + g2, DE(f*,w) > ¢, and consequently, DA(f*,w) = ¢;
for every w € €.

(ii) Follows from (i) and the definition of the ex ante utilities. l

The next result demonstrates that the strategies f* € L are a pure strategy price
equilibrium of the Bertrand-Edgeworth game.

Proposition 3. Fiz a Bertrand-Edgeworth game with asymmetric information
G ={N,Q, (P, q)ien, D, u}. If D(z,w) is uniformly elastic, then the strategies f* €
L are a pure strategy price equilibrium.

Proof. Suppose the sellers play the strategies f* € L. It follows from part (i) of
Proposition 2 that using these strategies each seller is able to sell all their quantity of
the good they are endowed with. If for some E € P, seller © were to deviate and play
[i(E) < f{(E), then w;((fi, f}),w) = fi(E)a: < [7(E)¢ = ui(f*,w) for every w € E.
This is not a profitable deviation.

Suppose for some E € P; seller ¢ were to deviate and play f;(E) > f*(F). From
part (i) of Proposition 2 we know that using strategies f* € L seller i obtains the
same payoff f*(E)q; across all states in E. To show that deviating to f;(E) > ff(E)
is not a profitable deviation, given the Maximin ex ante utilities, we only have to find
one state in £ where the payoff does not increase above f*(E)gq;. Consider the state
wp={w € E:pf(w) <p°(w) V ' € E}. In state wg, using strategies f*, seller i
either ties at price p°(wg) with seller j, or seller j posts a strictly lower price. Hence:

ui(f*,we) = p°(we)g = p(we)(D(P°(wE),wE) — ¢;)

where the second equality follows from D(p®(wg),wr) = ¢1 + g2. To show that de-
viating to f;(E) > f(FE) is not a profitable deviation, we need to demonstrate that
the function g(x) = z(D(z,wg) — ¢;) is decreasing in x. The derivative is:

¢ (z) = D(x,wg) — ¢; + D' (z,wg) = D(z,wg)(1 — ¢;/D(x,wg) + €(x,wg)).

As ¢(z,wg) < —1 for every = € (0,00) it follows that ¢’(x) < 0. Therefore, deviating
to fi(E) > ff(FE) is not a profitable deviation in state wg. W

11



At this point, it is helpful to clarify that we are applying the standard Nash
equilibrium solution concept. The key difference from Bayesian Nash equilibrium is
that we are considering an alternative expected utility of the players in the form of
Maximin expected utility due to the ambiguity that players face (He and Yannelis,
2015b, 2016).

In equilibrium, a seller will never earn a lower payoff than their calculated min-
imum profit associated with the lowest realisation of the market demand. Further-
more, neither seller has an incentive to be yet more pessimistic and set a price lower
than the minimum competitive price (i.e. the competitive price corresponding to
the lowest possible realization of the market demand for each information partition)
because the seller is already guaranteed to sell their entire capacity at the mini-
mum competitive price. Therefore, choosing a lower price will generate no additional
sales (as their capacity constraint is binding), reduce profit and only stimulate excess
demand. Moreover, if one firm (firm 2) were to behave in this way following an out-
of-equilibrium price, the competitor (firm 1) has no incentive to reduce their price
further as they already exhaust their capacity at their minimum competitive price.

Remark 3. One might reasonably ask whether the uniform elasticity of the market
demand can be relaxed and still guarantee the existence of a pure strategy price equi-
librium. As is well-known, Nash equilibria in Bertrand-Edgeworth games often only
exist in mized strategies. However, in the current model, we can be more precise. Sup-
pose there is a market demand D*(x,w) and e(x,w) € (—1,0) for every x € (0, 00)
so demand 1s always inelastic in one state of the world. Then, it is possible to find a
Bertrand-Edgeworth game with asymmetric information G = {N,Q, (P;, ¢;)ien, D, 1t}
with D = D*, such that a pure strategy price equilibrium fails to exist. This result
follows directly from Remark 2, that the current model includes the complete infor-
mation game as a special case, and Proposition 2.3 of Tasnddi (1999). Therefore, it
does not seem possible to significantly weaken the condition of uniform elasticity and
still guarantee the existence of a pure strategy equilibrium.

We are now able to present our main result which gives precise conditions under
which a Bertrand-Edgeworth game with asymmetric information possesses a pure
strategy price equilibrium that violates the law of one price.

Proposition 4. Fiz a Bertrand-Edgeworth game with asymmetric information
G ={N,Q,(P;,q)ien, D, u}. Suppose the following three conditions are satisfied:
(1) The demand D(x,w) is uniformly elastic.
(11) p°(w) # p°(W') whenever w # w'.
(iii) P, # Ps.
Then the game possesses a pure strateqy price equilibrium which violates the law of
one price.

12



Proof. Let the sellers play the strategies f* = (f, fo) € L. It follows from Proposition
3 that these are a pure strategy price equilibrium of the game. Suppose a contradic-
tion: ff(w) = fo5(w) for every w € Q. As ff € Ly and f5 € Lo, f{(w) = f5(w) for
every w € €, together with p¢(w) # p°(w’) whenever w # w’ imply P; = P,. This con-
tradicts P; # P». Hence, there must be at least one w € Q such that fj(w) # f5(w).
[ |

The conditions (i)-(iii) in Proposition 4 are tight in the following sense. If one
were to dispense with (i), but retain (ii) and (iii), it follows from Remark 3 that a
game can be found which fails to possess a pure strategy price equilibrium. More
specifically, when the demand is not uniformly elastic, it can be profitable for a seller
to choose a price above their competitor and sell only to the residual demand that
the rival cannot meet. This generates the classic non-existence of pure strategy price
equilibrium in the Bertrand-Edgeworth framework.

If one retains condition (i), and dispenses with either (ii) or (iii), then a game can
be found in which the pure strategy price equilibrium defined by the p°(w) prices does
not violate the law of one price. More specifically, when (ii) is violated, the competi-
tive equilibrium prices for multiple demand states coincide. Therefore, even if players
have asymmetric information, the law of one price need not be violated. For example,
consider an extreme case where the competitive price in every possible demand state
is identical. This leads each seller to choose the same price, independently of their
information partition or the realised state of the market demand, and the law of one
price would not be violated.

If condition (iii) is violated, the players have the same information. Therefore,
even if the competitive prices vary between each demand state and the demand is
uniformly elastic, a pure strategy equilibrium would exist but the law of one price
would not be violated. Therefore, all three conditions in Proposition 4 are required
to ensure that a pure strategy price equilibrium exists, defined by the p°(w) prices,
which violates the law of one price.

2.4. An Illustrative Example

Consider a market in which there are three states of the world, 2 = {w;, ws, w3}, and
the prior is pu(w;) = p(ws) = p(ws) = 1/3. The market demands in the three states
are D(z,w;) = 27, D(z,wy) = 72 and D(z,ws) = =% The quantities of the good
the sellers are endowed with are ¢; = 4 and ¢ = 12. The information partitions of the
two sellers are P, = {{wy,wa}, {ws}} and Py = {{w1}, {w2,ws3}}. Given these market
primitives, the p° prices are p®(wy) = 7=, p°(w2) = 1 and p°(w3) = 3, as illustrated in
Figure 1.
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Figure 1: State-Contingent Competitive Prices

It follows from Proposition 3 that the strategies:

fi(fonw)) = and o) = 5
falwn) = 6 " fo({wa, w3}) = 1

are a pure strategy price equilibrium. The ex ante expected utilities of the sellers at
the equilibrium are Uy(f*) = 2 and Us(f*) = 2. This example violates the law of
one price because f;(ws2) # fo(w2) and ff(w3) # fo(ws). As u({wq,ws}) = 2/3, the
sellers post different prices in the market with ex ante probability 2/3.

3. Discussion and Conclusion

This paper provides a theoretical foundation for the commonly observed phenomenon
of perfectly homogeneous goods selling at different prices within the same market,
without resorting to the usual, but contentious, device of sellers using mixed strate-
gies. Our main result demonstrates that if the market demand is uniformly elastic,
the competitive equilibrium prices differ in each state of the world, and if the sellers
have different information partitions, then a pure strategy price equilibrium exists
which violates the law of one price. Furthermore, given the rationing rule, even the
seller posting a higher price may make positive sales in equilibrium.
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If firms have the same information, the law of one price is restored but excess
demand exists whenever the lowest possible demand from one of the sellers’ informa-
tion partitions is not realised. The intuition is that with Maximin utilities, a seller
cannot increase their price ex ante because they would earn a lower payoff than at
the minimum competitive price if the lowest demand state occurred.

The advantage of the models of Bertrand and Bertrand-Edgeworth competition is
that they provide a direct foundation for prices in the marketplace without resorting
to the fiction of the Walrasian auctioneer. The model we have analyzed assumed
constant zero marginal costs. Most of the literature indicates that with more gen-
eral convex costs an equilibrium only exists in mixed strategies, and is often difficult
to characterize. However, Dixon (1992) noted that if sellers are permitted to spec-
ify both price and quantity pairs, and provided all but one seller could supply the
whole market demand subject to a no bankruptcy constraint, then the competitive
equilibrium of the market could be sustained as a pure strategy equilibrium. More
recently, Bos & Vermeulen (2021) demonstrate that the existence of a pure strategy
equilibrium is driven primarily by demand and costs, rather than whether firms also
choose quantities simultaneous to prices. It would therefore be interesting to explore
whether the framework of sellers posting both price and quantity pairs in the market
could be extended to permit asymmetries of information of the type studied in this
paper, and what the implications are for the law of one price.

It would also be of interest to explore a deeper degree of uncertainty, where the
capacity of each seller is state dependent. In this case, each seller’s endowment would
be a function ¢; : 2 — R, . One could impose that ¢; is measurable with respect to
each seller’s private information so that no seller could infer more about the state of
the market by observing their endowment. In this richer model, it is an open question
whether the strategies defined by the p¢(w) prices still constitute a pure strategy price
equilibrium, and whether conditions, such as those in Proposition 4, which determine
when the law of one price is violated could be found.

Whilst Maximin utilities are a standard approach for modelling utilities under
ambiguity, it would also be interesting to explore the extent to which our results
continue to pass through in models of ambiguity that adopt alternative preferences.
One alternative approach could be to consider the Hurwicz criterion (Eichberger and
Kelsey, 2014), where decision-makers adopt a weighted utility of the best and worst
possible outcomes. In this context, Maximin preferences correspond to the case where
all weight is assigned to the worst possible outcome.

The extent to which our results extend to an oligopoly setting with n > 2 sellers
also remains an interesting direction for further research. We suspect that the main
insights will continue to survive in an oligopoly setting. However, in our environment

15



of asymmetric information, (possibly) asymmetric capacities and many possible real-
isations of the market demand, the number of case distinctions makes a formal proof
more challenging.
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