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Abstract

A new approach is developed for improving the point estimation and predictions of para-

metric time-series models. The method targets performance criteria such as estimation

bias, root mean squared error, variance, or prediction error, and produces closed-form es-

timators focused towards these targets via a computational approximation method. This

is done for an autoregression coefficient, for the mean reversion parameter in Vasicek and

CIR diffusion models, for the Binomial thinning parameter in integer-valued autoregres-

sive (INAR) models, and for predictions from a CIR model. The success of the prediction

targeting approach is shown in Monte Carlo simulations and in out-of-sample forecasting

of the US Federal Funds rate.
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1. Introduction

A number of papers have addressed in different ways the difficulty in, or impossibility of,

applying exact likelihood estimation to certain time-series models by providing approximate

likelihood methods, see for example Aı̈t-Sahalia (2002), likelihood-free methods based on

simulation including Indirect Inference, see Gourieroux et al. (1993), Efficient Method of

Moments, see Gallant and Tauchen (1996), and Approximate Bayesian Computation, see

for example Martin et al. (2019). Many of the models considered are small but widely

used and difficult to estimate. There is, moreover, a sizable literature on the correction

of estimation bias for parameters of time series models, and a substantial part of this has

focused on methods involving asymptotic expansion and approximation of the true bias. A

number of papers have addressed the estimation of continuous-time interest rate diffusion

models recently, where the bias in estimation of the mean reversion parameter can be

particularly severe, and a review can be found in Iglesias and Phillips (2020).

The aim in what follows is to demonstrate the effectiveness of a new approach to

estimation and prediction improvement for parametric models, where simple closed-form

correction terms similar to those obtained by asymptotic approximation, power series in

1/n, are found computationally. The method relies on initial consistent estimates of the

parameters being available. For the purpose of comparison with other methods the focus

is mainly on the reduction of estimation bias, though it is illustrated how improvements

in RMSE or variance can be targeted, and with a small modification the prediction error

as well. The approach is then applied to prediction improvement in a CIR model of the

Federal Funds rate. When targeting a reduction in estimation bias, the new approach

involves training a bias correction functional for a given model and estimator using Monte

Carlo generated data and moment computation, with the overall aim being to obtain a

closed-form correction to the initial estimator that can be applied subsequently to different

initial estimates and a range of sample sizes. This is different to some other numerical

bias correction approaches, e.g. MacKinnon and Smith (1998) and Nielsen (2019), where

the numerical correction is computed separately for each estimation. The approach is

not limited to addressing estimation bias, and can be used to address more general risk

objectives in relation to estimation performance.

The methodology is presented in Section 2 using least squares estimation of a first-

order autoregressive model as an illustrative example, and comparisons are made with the

existing numerical approaches to reducing estimation bias mentioned above. Section 3

illustrates the performance of the methodology for reduced-bias estimation of the mean
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reversion parameter in a CIR diffusion model, where Maximum Likelihood (ML) methods

can be severely biased, then uses the methodology to target prediction of the Effective

Federal Funds Rate for overnight lending in the United States. A further motivation for

addressing estimation of diffusion models is that there are only a few cases where exact ML

is possible, and we are able to compare the performance of the new approach with results

in Tang and Chen (2009) for estimation by Bootstrap, Jackknife and Indirect Inference.

Section 4 concludes.

A Supplementary Appendix contains full details and results for mean reversion param-

eter estimation in Vasicek and CIR diffusion models, and to integer autoregressive (INAR)

models, where the estimation is also biased, and where exact ML estimation (particularly in

the more general INARMA class) is difficult, motivating for example the Efficient Method

of Moments (EMM) approach in Martin et al. (2014).

2. Methodology

The AR(1) with constant is used here to illustrate the methodology as it is widely fa-

miliar, and has received substantial attention in the literature on correction of estimation

bias. Kiviet and Phillips (2012, 2014) obtain theoretical results for asymptotic approxima-

tion of the estimation bias, of the variance and for analytically corrected estimation, while

Chambers (2013) develops an improved jackknife methodology for autoregressions, see also

Liu-Evans and Phillips (2012) who compare bootstrap, jackknife and analytical correc-

tion methods. Despite its relatively simple form, the AR(1) model continues to appear

abundantly in empirical work, a recent example being Baltussen et al. (2019) on return

predictability. The AR(1) also arises as a discrete-time counterpart to the Vasicek diffu-

sion model for short term interest rates. Some further discussion relating to interpretation

and generalisation of the methodology, and comparison with other numerical correction

approaches, is in Section 2.3.

2.1. Correcting OLS bias in estimation of an AR(1)

The following specification is considered:

yt = α+ λyt−1 + ut, (1)

t = 1, . . . , n, where ut
i.i.d.∼ N(0, σ2), σ2 <∞, and |λ| < 1. The bias in estimation of λ can

be substantial, see in particular the % bias entries in Table 1 for λ̂ at n = 35, which are
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in the range -12.7% to -27.7%. A sample size of 35 is small, but is consistent with other

studies addressing the AR(1) estimation bias.1 The estimation biases for the diffusion

model in Section 3 are more severe at larger sample sizes, while the INAR models in the

Supplementary Appendix are designed for short series of count data.

Kendall (1954) and Marriott and Pope (1954) found that the bias in OLS estimation

of λ in (1) could be asymptotically approximated as

b(λ) = −1 + 3λ

n
+ o(n−1), (2)

and this can be used to form a Corrected OLS (COLS) estimator

λ̂COLS := λ̂OLS +
1

n
(1 + 3λ̂OLS), (3)

which is unbiased to order O(n−1) in the sense that E[λ̂COLS − λ] is o(n−1). Similar

bias-correction results have been obtained for other models and estimators, as noted in the

Introduction, and the analytical approach has worked well in simulation experiments, see

for example the early study by Orcutt and Winokur (1969).

Despite the success of the approach and its strong theoretical basis it might be possible

to choose, according to some overall bias criterion, an even better correction function than

the one in (3) implied by large-n asymptotic expansion. If attention is restricted to specific

values of n in a small interval, for example, or just to a single value, this may seem quite

plausible. There are, moreover, models and estimators where no asymptotic refinement

to the bias is available. The investigator’s primary interest may also not be in the bias,

but in improving some other property of the estimator, such as the RMSE or variance,

and analytical refinement towards one of these objectives may be challenging. Section 3

illustrates a case where a model used for prediction may be better served by an estimator

focused specifically towards reduced prediction error rather than reduced estimation bias.

Continuing with the theme of bias reduction, a basic requirement is that the estimation

bias be reduced from the original corresponding to ordinary least squares, and a comparison

can also be made with the analytically corrected estimator in (3). Initially, our question is

therefore whether it is possible to find a function g in (4) below, via a numerical optimi-

sation, without knowing the bias approximation in (2), such that λ̃ is less biased in some

1See for example Chambers (2013), where Monte Carlo results are presented for n = 24, 48, 96 and 192,

and Kiviet and Phillips (2014) where n = 20 and 50.
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overall sense than λ̂OLS :

λ̃ := λ̂OLS +
1

n
g(λ̂OLS). (4)

There are additional arguments besides λ̂OLS that may be useful to have in g, and this

issue is addressed in Section 2.3, but it is known that the bias in this case depends mainly

on λ.2

The approach requires an overall performance measure to be decided for the new esti-

mator λ̃ in (4), which should capture some aspect of estimation performance across different

possible values of λ, α and σ2, then the performance of λ̃ can be adjusted by choice of g.

With a view toward reducing relative bias in estimation of λ, a loss of L(λ̃, λ) = | λ̃−λλ | is

defined for a given choice of λ, α and σ2, and for a given sample size. Risk values E[L(λ̃, λ)]

are then computed by Monte Carlo and collected at different points in the parameter space

and at different sample sizes, all in a vector R, and the objective is to minimise a norm

||R|| as a measure of overall performance. An ideal choice of g in (4) is then taken to be

g? := argmin
g∈G

||R|| (5)

where G is a chosen class of approximating functions. The measure of overall performance

can be viewed in terms of global risk, see for example Lehmann (1983), and this is outlined

in Section 2.3. Beyond the main objective in (5), it may be preferable that the choice

of g results in an estimator that performs no worse than the original in terms of bias

or root mean square error. This relative performance constraint can be imposed at the

parameterisations used for training g, and it is generally implemented in the examples that

follow including those in the present section.3

Provided the chosen approximating functions can be parameterised, say by a vector w,

then a numerical search can be used to minimise ||R||. A minimisation of ||R|| by choice

of g in a space of polynomials, for example, could potentially yield g?(λ̂OLS) = 1 + 3λ̂,

which would make (4) the same as the COLS estimator in (3). Instead of polynomials,

we mainly use univariate rational approximants in the Padé form, though a more general

neural network approach is detailed in Section 2.3 and used in the Supplementary Appendix

2Note that the parameters α and σ2 do not enter (2), though they do enter the higher-order O(n−2)

bias approximation, see Bao (2007) and Kiviet and Phillips (2012).
3See Section 2.3 and the Appendix for details.
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for the Vasicek model. The idea of parameterising rational approximants in the Padé form

computationally has been used in Chen et al. (2018), see in particular their RationalNet.

If the class of [m1/m2] Pade approximants is used for g, then g as a mapping from λ̂ is

in the form

g(λ̂) =

∑m1
i=0 aiλ̂

i

1 +
∑m2

j=1 bj λ̂
j

(6)

where ai and bj , i = 0, . . . ,m1 and j = 1, . . . ,m2, are the parameters in w to be selected

by a numerical search. Analogous to a higher-order bias correction, see for example Bao

(2007) and Kiviet and Phillips (2012), a 1
n2 term can be added to (4), then there are two

mappings g1 and g2 to select as in (7). In this section we choose among estimators in the

form

λ̃ := λ̂OLS +
1

n
g1(λ̂OLS) +

1

n2
g2(λ̂OLS) (7)

where g1 and g2 are as in (6) with m1 = 4 and m2 = 5, so that there are 10 parameters

to specify in each case. The following version is also considered, where the first two terms

form the COLS estimator in (3), and the search is therefore for an improvement on the

COLS estimator:

λ̃COLS := λ̂OLS +
1

n
(1 + 3λ̂OLS) +

1

n
g1(λ̂OLS) +

1

n2
g2(λ̂OLS). (8)

The value for the overall performance ||R|| at given choices of g1 and g2 will depend

on the parameterisation and sample size choices used to obtain each element of R, and

therefore these choices will shape the resulting estimator obtained by minimising ||R||. The

collection of parameter and sample size combinations used for each element of R is, in what

follows, denoted by T . These are training points for choosing g1 and g2, whose performance

can later be assessed at other points in the parameter space and at other sample sizes. In

the current section, g1 and g2 are trained on the three values of λ in {0.1, 0.5, 0.97} with

α = 0 and σ2 = 1, and on the two sample sizes in {20, 50}, then assessed at various other

positive values of λ, at two choices of α, with σ2 at 9 rather than 1, and at a sample

size midway between the two sample sizes used for the training. Estimators in the form

(7) and (8) are found for alternative objectives in Section 2.2, namely RMSE reduction

and variance reduction, and for this reason the bias-reducing versions of λ̃ and λ̃COLS are

denoted by λ̃bias and λ̃biasCOLS .

It can be seen from the left panel in Figure 1 that the new estimator λ̃bias is highly

effective at bias reduction across all the sample sizes and λ values considered. The right
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panel plots the relative RMSE values for the new estimator compared with the initial

estimator, and it can be seen that these are either around 1 or substantially lower than 1.

There also does not appear to be any over-training at the three values of λ used in T or at

the two specific sample sizes used in the training. By searching for single choices of g1 and

g2 that work well at both n = 20 and n = 50 and at several different parameterisations,

the numerical search has found a correction functional that works well for any n between

the two values used in T and for a fine grid of positive values of λ between 0 and 1. These

cases also use α = 10 rather than the training value of 0, and σ2 = 9 rather than the

training value of 1.4 Throughout the paper, a minimum of 20,000 replications are used for

results in tables and figures.

<Figure 1 here>

Table 1 presents the bias and RMSE values for the initial estimator λ̂, for the new

reduced bias estimators λ̃bias and λ̃biasCOLS , and for λ̂COLS . It can be seen that λ̃biasCOLS ,

making use of the asymptotic approximation in addition to the methodology here, tends

to do a little better than λ̃bias, and that both seem marginally better than λ̂COLS in terms

of bias when λ ≥ 0.65. There are only six training points in T in the current section, and

better results could potentially be obtained by using more.

4It may be unsurprising that these alternative values of α and σ2 have a limited effect on the performance

of the estimator, as they only enter asymptotic bias approximations for λ̂ at order O(n−2).
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Table 1: Percentage bias and RMSE in estimation of λ with σ2 = 9, n = 35

α λ λ̂ λ̃bias λ̂COLS λ̃biasCOLS λ̃RMSE
COLS

% Bias 0 0.15 -27.7 -2.30 -2.15 -2.04 7.05

0.25 -19.3 -2.59 -1.77 -2.79 -2.89

0.35 -16.5 -2.98 -1.20 -2.82 -4.71

0.45 -14.8 -2.71 -1.26 -2.76 -5.10

0.55 -13.7 -2.05 -1.26 -2.03 -4.93

0.65 -13.0 -1.17 -1.21 -1.20 -4.56

0.75 -12.8 -0.370 -1.50 -0.319 -4.57

0.85 -12.7 0.622 -1.90 0.383 -5.14

0.95 -13.5 1.23 -2.93 0.853 -6.87

10 0.15 -27.7 -2.32 -1.98 -1.45 7.05

0.25 -19.4 -2.64 -1.45 -2.72 -2.80

0.35 -16.0 -2.50 -1.21 -2.92 -4.97

0.45 -14.8 -2.69 -1.31 -2.67 -5.11

0.55 -13.7 -1.99 -1.22 -1.89 -4.76

0.65 -13.0 -1.23 -1.26 -1.19 -4.63

0.75 -12.9 -0.521 -1.50 -0.493 -4.59

0.85 -12.8 0.611 -1.92 0.442 -5.18

0.95 -13.3 1.36 -2.92 0.843 -6.87

RMSE 0 0.15 0.170 0.170 0.179 0.170 0.143

0.25 0.169 0.170 0.177 0.171 0.153

0.35 0.170 0.171 0.174 0.171 0.160

0.45 0.170 0.170 0.170 0.170 0.164

0.55 0.169 0.169 0.164 0.169 0.163

0.65 0.167 0.165 0.157 0.165 0.158

0.75 0.166 0.161 0.149 0.160 0.150

0.85 0.166 0.157 0.138 0.155 0.138

0.95 0.173 0.154 0.131 0.151 0.130

10 0.15 0.169 0.170 0.178 0.170 0.143

0.25 0.170 0.170 0.176 0.171 0.154

0.35 0.169 0.171 0.174 0.171 0.160

0.45 0.170 0.170 0.170 0.170 0.164

0.55 0.169 0.169 0.165 0.168 0.163

0.65 0.167 0.165 0.157 0.165 0.158

0.75 0.168 0.162 0.148 0.161 0.150

0.85 0.167 0.157 0.139 0.155 0.138

0.95 0.172 0.153 0.130 0.149 0.130
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2.2. Reducing RMSE and Variance

It has been seen from Figure 1 and Table 1 that the reduced bias estimators tend to

have better RMSE performance than the original estimator. It is possible, however, to

target a reduction in RMSE directly, by changing the loss function L specified earlier to

L(λ, λ̃) = (λ̃ − λ)2 and filling R with RMSE values (E[L(λ, λ̃)])
1
2 , while keeping the rest

of the setup unchanged. As the original reduced-bias estimator available from asymptotic

expansion of the bias, λ̂COLS , already performs well in terms of bias correction, it seems

interesting to ask whether some of this bias correction behaviour will remain after adding

additional terms to improve the RMSE performance. The resulting estimator in the form

(8) is denoted by λ̃RMSE
COLS , and it can be seen in Table 1 and Figure 2 that the RMSE

performance of this estimator is superior to the others while, in Table 1, the bias is still

substantially reduced from the original OLS estimator.

<Figure 2 here>

It is possible to target a reduction in variance in the same way, still with the relative

performance constraint controlling the bias performance at points in T , and the resulting

estimator is denoted by λ̃V arCOLS . Variance results for all of the estimators are given in Table

2, and it can be seen that λ̃V arCOLS has substantially lower values. The left panel in Figure

3 depicts the variance of λ̃V arCOLS verses the OLS estimator, and it can be seen that the

variance is almost halved for lower values of λ. The right panel presents a comparison of

the absolute biases, and the reduced-variance estimator performs better in this respect as

well for λ ≤ 0.6, while being about the same (marginally worse) for 0.6 < λ < 1.

<Figure 3 here>
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Table 2: Variance in estimation of λ with σ2 = 9, n = 35

α λ λ̂ λ̃bias λ̂biasCOLS λ̃biasCOLS λ̃RMSE
COLS λ̃V ar

COLS

Variance × 102 0 0.15 2.71 2.88 3.21 2.88 2.04 1.59

0.25 2.63 2.88 3.13 2.92 2.34 1.79

0.35 2.57 2.92 3.02 2.91 2.54 1.97

0.45 2.44 2.89 2.87 2.88 2.63 2.05

0.55 2.29 2.83 2.69 2.83 2.58 2.04

0.65 2.07 2.71 2.47 2.70 2.40 1.95

0.75 1.85 2.60 2.21 2.57 2.12 1.78

0.85 1.60 2.45 1.88 2.39 1.71 1.54

0.95 1.39 2.37 1.63 2.27 1.28 1.33

10 0.15 2.70 2.87 3.17 2.88 2.04 1.58

0.25 2.64 2.90 3.11 2.92 2.36 1.79

0.35 2.57 2.92 3.01 2.93 2.54 1.97

0.45 2.44 2.88 2.90 2.88 2.62 2.05

0.55 2.29 2.83 2.71 2.81 2.58 2.03

0.65 2.06 2.70 2.46 2.72 2.41 1.96

0.75 1.87 2.63 2.19 2.58 2.13 1.77

0.85 1.60 2.46 1.90 2.40 1.70 1.56

0.95 1.36 2.34 1.61 2.22 1.27 1.33

2.3. Further methodological notes

A neural network approach

The AR(1) model is relatively simple, and the bias in estimation of λ mainly depends

on one parameter, namely λ itself. This enables the use of univariate approximants for

the bias reduction or other estimation improvement, but a more general approach is de-

sirable. Given the problem of estimating a parameter θ whose estimation bias depends on

parameters in a vector Θ, the general proposal is an estimator of θ in the following form

θ̃ = θ̂ +G(Θ̂, r) (9)

where

G(Θ̂, r) =
r∑
j=1

1

nj
gj(Θ̂), (10)

Θ̂ is an initial estimator of Θ, and r is a small number. The choice of G in (9) may depend

on the interval of sample sizes considered, therefore the mappings G and gj are implicitly
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indexed by n. In a typical situation where the initial estimator Θ̂ is
√
n-consistent, θ̃ will

have the same property under mild conditions on the sequences {gj,n}n. At large sample

sizes it may even be reasonable to assume that zero mappings gj,n = 0 are chosen for

j = 1, . . . , r.

Feedforward neural networks with one or more hidden layers can, for a sufficiently

large number of hidden units, approximate any continuous function on a compact domain

arbitrarily closely and are therefore universal approximants, see for example Hornik (1991).

Mappings of the following form with a single hidden layer for gj are used in the Vasicek

diffusion model application in the Supplementary Appendix:

gj(Θ̂) =
m′∑
i=1

ajiF (bji · Θ̂ + cji) (11)

where F is the sigmoid activation function F (v) = (1 + e−v)−1 and m′ is, in the neural

networks terminology, the number of hidden units. The parameters aji, bji and cji, for

j = 1, . . . , r and i = 1, . . . ,m′, can be collected in a vector w in the same way as for Pade

approximants earlier, with the numerical minimisation of ||R|| again performed over w.

Interpretation in terms of point estimation theory

The methodology can be interpreted in terms of the theoretical framework in Lehmann

(1983) relating to minimisation of global risk. We are interested in estimating θ, an element

of Θ ∈ C ⊂ Rd, and, in the notation of Lehmann, are seeking to choose among candidate

estimators δ(X) that yield estimates δ(x) when given data x. In the same way as earlier, the

cost associated with δ(x) for a given point Θ is denoted by L(Θ, δ(x)), and the average loss

for a given Θ is measured by a risk function R(Θ, δ) = EΘ[L{Θ, δ(X)}]. If no restriction is

put on the functional form of δ, as we have done by requiring it to be an initial estimator

plus a power series in 1/n, then the δ that minimises the average risk,∫
C
R(Θ, δ)w(Θ)dΘ, (12)

is by definition a Bayes estimator, provided the weight function w is specified as a prior for

Θ, and it is otherwise a generalised Bayes estimator. Under a quadratic loss assumption

L(Θ, δ(x)) = (δ(x)− θ)2, for example, its estimate given observations x is known to be the

posterior mean δ(x) =
∫
C θp(Θ|x)dΘ, though this may be difficult or impossible to compute

in practice.
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The solution estimator to (12) under the quadratic loss assumption,

δ(X) =

∫
C
θp(Θ|X)dΘ, (13)

is in the same form for each sample size, and therefore choosing δ(X) as in (13) for each

sample size is the solution to minimisation of the following, where the risk values at different

sample sizes in N are added together:∫
C

(∑
n∈N

Rn(Θ, δ)

)
w(Θ)dΘ. (14)

If C in (14) is replaced by a training set of parameterisations C̃ ⊂ C and we set w(Θ) = 1,

this can be expressed as in (5) where R is the vector of risk values corresponding to points

in T = C̃ × N :

||R||1 =
∑
Θ∈C̃

∑
n∈N

Rn(Θ, δ) (15)

The method subsequently constrains δ(X) to be in the form δ(X) = θ̂(X) + G(Θ̂, r)(X)

and searches numerically for the minimising choices of g1, g2, . . . , gr. While (13) is unlikely

to be recovered for any given n, the result of minimising (15) with δ in its constrained form,

where the loss and risk functions are defined as above, can be viewed for each n as a rough

closed-form approximation of the posterior mean estimator in (13). It is not expected that

this approach will yield accurate approximations of posterior moments, but the method

avoids any significant computation having to be done for each given set of observations,

and the resulting closed-form estimators can be assessed according to frequentist criteria.

Moreover, the method makes it straightforward to compute estimators focused towards

different choices of the global risk, e.g. via different choices of the loss function, without

additional analytical derivation or posterior sampling. Constraints on the performance

relative to a reference estimator can be imposed, along with constraints on the distribution

of the resulting estimator.

The relative performance constraint

It was noted in Section 2.1 that a relative performance constraint can be placed on the

choice of correction function when minimising ||R||, and that we do this in most cases here.

Similarly to the choice of loss function, the choice whether to include a relative performance

constraint can be interpreted in terms of risk preferences. If particular solutions to (5) are
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avoided because the resulting estimator does not strictly outperform a reference set of

performances by another estimator, this can be understood in terms of behavioural theory

for decision making under risk where gains or losses are relative to a reference point, and

where the decision maker is more sensitive to losses from a reference point than to gains,

see for example Tversky and Kahneman (1992). For details about the implementation, see

the Appendix.

A comparison with other numerical methods for bias correction

The methodology in this paper may be useful in situations where Maximum Likelihood

is not tractable, and this motivation is shared by methods based on approximate likeli-

hood. Pedeli et al. (2015), for example, use a very accurate saddlepoint approximation

of the INAR(p) density to obtain an approximate log-likelihood function, which yields a

saddlepoint Maximum Likelihood (SPML) estimator. Unlike Pedeli et al. (2015) and other

approximate likelihood approaches, though, the aim presently is not to recover Maximum

Likelihood estimation, but to target specific aspects of estimation performance, for ex-

ample the bias. This may even be for a likelihood based estimator, as in Section 3 and

the Supplementary Appendix. More in line with the objective of estimation improvement

given an initial estimator in this paper, there have been a number of numerical or simula-

tion approaches proposed to improve estimator performance, particularly in terms of the

estimator bias.

A seminal contribution is by MacKinnon and Smith (1998), who address the same

AR(1) model considered in this section to illustrate three bias correction methods - the

Constant Bias Correcting (CBC) estimator, the Linear Bias Correcting (LBC) estimator,

and the Nonlinear Bias Correcting (NBC) estimator. For estimation of the parameter λ by

the NBC estimator, where α is considered unimportant to the bias, the roots of λ̃+b(λ̃) = λ̂

are found given an initial least squares estimate λ̂, using known numerical values for the

bias function b at different λ as these were available. More generally it is proposed that

a simulated bias function is used for the NBC estimator, or a closed form approximation

when available, and the methodology is applied to reduced-bias estimation of parameters

in a logit model.

A related line of research has been to obtain approximately median-unbiased estimators,

for example recently in Nielsen (2019) in the context of reduced rank vector autoregression

modeling. The aim of the approach, supressing the dependence on sample size as above

and specialising to the simple AR(1) context here, is centered around finding the λ̃ such
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that λ̂ = m(λ̃), where m(λ̃) is the median of the estimator λ̂ when generated under λ̃,

an approach pursued by others e.g. Andrews and Chen (1994). That is to say, the λ̃

is uncovered whose distribution has a median equal to the λ̂, or, noting that m(λ̃) =

bm(λ̃) + λ̃ where bm(λ̃) is the median bias generated by λ̃, the problem is to find λ̃ such

that bm(λ̃) + λ̃ = λ̂, which is in the same form described above for MacKinnon and Smith

(1998).

Nielsen (2019) proposes a bootstrap estimator m̂ of m and, as an alternative to relying

on the number of bootstrap samples being large enough to make m̂ arbitrarily close to

m, enabling deterministic solutions to λ̂ = m(λ̃), a stochastic approximation algorithm is

suggested. λ̃ here for a given n would be the solution to the following iterative sequence,

following Robbins and Monro (1951):

λ̃(j) = λ̃(j−1) + γj(λ̂− m̂(λ̃(j−1))),

where {γj}j=1,2,... is a deterministic sequence of positive step lengths, and where λ̃(0) is set

for example to λ̂.

The proposed new approach differs in that the bias function itself is not sought. Instead,

applied to the AR(1) case, we look directly for a correction term
∑r

j=1
1
nj gj(λ̂) for λ̂

such that λ̃ = λ̂ +
∑r

j=1
1
nj gj(λ̂) performs well according to specified criteria. As seen

above in Section 2.1, it is the parameters of the gj mappings which need to be computed

numerically, in order to minimise a norm on the vector R of risk values E[L(λ̃, λ)] at

parameterisations and sample sizes in a set T of training points. To the extent that

the Monte Carlo estimation of the risk values E[L(λ̃, λ)] is accurate, global optimisation

methods for deterministic problems can be used, though for the examples here an extension

of the popular Nelder-Mead simplex algorithm was used to address remaining noise in the

objective function. A result of the more lengthy computational task of finding g1, . . . , gr

to minimise ||R|| over points in T is a closed-form correction term, which can be used for

different θ̂ and n without further numerical computation. The numerical procedures in

MacKinnon and Smith (1998) and Nielsen (2019) will be shorter, but will also need to be

carried out separately for each estimate.

3. An application - predicting the US Federal Funds rate

Given an initial estimator of the parameter λ considered in Section 2, it was possible

to find closed-form adjustments computationally that were reusable across an interval of
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sample sizes. The focus of the present section is the mean reversion parameter κ in a CIR

diffusion model:

dX(t) = κ(α−X(t))dt+ σ
√
X(t)dB(t)

where 2κα/σ2 > 1, see Cox et al. (1985) and B(t) is standard Brownian Motion. As noted

in the introduction, bias in estimation of κ can be severe, and this is particularly the case

where κ is small, corresponding to cases of low mean reversion. In order to compare directly

with the existing Monte Carlo results in Tang and Chen (2009) for bootstrap and indirect

inference approaches, the Nowman pseudo-ML estimator is used as the initial estimator of

κ, see Nowman (1997), and is denoted by κ̂ in the following.

The Nowman pseudo-ML method, which has been extended to Constant Elasticity

of Variance (CEV) models in Iglesias and Phillips (2020), starts by making a discrete

approximation to the diffusion function in the CIR model, setting X(t) = Xmh for each h

units of time while keeping X(t) continuous in the drift term:

dXt = κ(α−Xt)dt+ σ
√
XmhdB(t)

for t ∈ [mh,mh + h). The approximate process then has an exact discretisation in a

convenient form for quasi maximum likelihood estimation, the result of which is a closed-

form pseudo ML estimation of the CIR parameters:

κ̂ = −h−1ln(β̂1)

where

β̂1 =
n−2

∑n
i=1Xi

∑n
i=1X

−1
i−1 − n−1

∑n
i=1XiX

−1
i−1

n−2
∑n

i=1Xi−1
∑n

i=1X
−1
i−1 − 1

.
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Table 3: Comparison with Tang and Chen (2009), CIR models

Tang and Chen (2009) κ̃biasn , κ̃bias κ̃RMSE,?

(Bias reducing) (RMSE reducing)

n κ̂ B I (1) (2) (2)

Model 1 120 % bias 52.0 0.178 2.68 -0.104 -0.0783 -30.5

RMSE 0.780 0.651 0.603 0.806 0.814 0.303

300 % bias 20.1 -0.447 -3.79 0.0891 -0.120 -2.49

RMSE 0.380 0.326 0.328 0.337 0.362 0.241

500 % bias 12.0 0.826 0.258 0.183 -0.489 -0.188

RMSE 0.269 0.245 0.248 0.255 0.259 0.204

Model 2 120 % bias 228 13.6 43.5 -1.22 -1.22 23.0

RMSE 0.719 0.502 0.495 0.596 0.586 0.275

300 % bias 82.8 3.461 -14.92 0.495 -5.99 16.2

RMSE 0.289 0.226 0.208 0.242 0.235 0.235

500 % bias 48.6 1.325 -6.728 -0.0329 -4.23 9.90

RMSE 0.183 0.15 0.14 0.156 0.142 0.161

Model 3 120 % bias 350 39.597 19.17 3.10 0.067 28.4

RMSE 0.719 0.507 0.484 0.577 0.595 0.314

300 % bias 129 4.459 17.67 1.21 -3.45 18.4

RMSE 0.289 0.214 0.209 0.237 0.202 0.240

500 % bias 74.5 1.83 -8.45 -1.09 -2.14 11.4

RMSE 0.135 0.133 0.122 0.148 0.116 0.160

Table 3 illustrates the performance of three implementations of the proposed approach,

comparing with results in Tang and Chen (2009). The estimators κ̃biasn , and κ̃bias target the

estimation bias while implementing the relative performance constraint, with κ̃biasn being

trained for each specific sample size and κ̃bias trained for sample sizes between 120 and

500. The estimator κ̃RMSE,? targets the RMSE rather than bias, again for sample sizes

between 120 and 500, and without a relative performance constraint. Full details of the

implementation and further simulation results are in the Supplementary Appendix, along

with results for estimation of Vasicek diffusion models and Integer Autoregressive (INAR)
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models.

The same general approach used for producing reduced-bias or reduced-RMSE estima-

tors can also be used to target an improvement in point prediction, and we consider in

particular predictions of the Federal Funds overnight lending rate. A monthly-sampled

series is used, as in Aı̈t-Sahalia (1999), to avoid market microstructure effects, and this

was obtained from the Federal Reserve Bank of St. Louis website for the period July 1st

1954 to January 1st 2020. The series is depicted in Figure 4.

<Figure 4 here>

Given estimates of the parameters in a CIR model for the overnight lending rate r(t),

forecasts s steps ahead can be obtained from the conditional mean,

E[r(t+ s)|r(t)] = α+ {r(t)− α}e−κs, (16)

see e.g. Orlando et al. (2020). Somewhat surprisingly, the use of reduced-bias estimates of

κ was found to result in relatively poor out-of-sample forecast performance, whether via

the computational approximation method proposed here or via two other bias-correction

methods that were tried. The poor forecast performance was accompanied by an increased

prevalance and magnitude of negative estimates of κ, particularly in the case of the Que-

nouille jackknife bias correction, which can potentially be explained by overcorrection of

the bias or by increased variance at small values of κ. The κ̃bias estimator is seen to over-

correct the bias by relatively small amounts in Table 3, while Tables 2 and 3 of Tang and

Chen (2009) show that the Quenouille jackknife over-corrects the bias more substantially.

It can be seen from (16) that large negative estimates of κ may lead to poor predictions

if the underlying d.g.p. is stationary, particularly in periods of high volatility where r(t)

deviates substantially from its mean α.

Table 4 illustrates the prediction performance resulting from bias-corrected estimation

of κ over rolling windows of 300 and 500 monthly observations starting on July 1st, 1954.5

Regardless of the method of bias correction, the performance in terms of Root Mean

Square Prediction Error (RMSPE) is made worse overall. Besides the new computational

approximation approach to bias reduction, the Quenouille Jackknife method suggested in

Phillips and Yu (2005) was tried, along with a corrected estimator based on the asymptotic

5As the Nowman estimator of α is unbiased to order O(n−1), corrections are only made to estimation

of κ.
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bias approximation for the Nowman estimator in Tang and Chen (2009)6. These are

denoted in what follows by κ̃bias, κ̂QJ , and κ̂TC , respectively. It can be seen that much of

the addition to the RMSPE occured during the 1973-75 oil crisis, which indeed appears to

be a period of high volatility in the Federal Funds rate - the adverse effect of over-correction

of the bias on forecasting would be amplified during this period via the term r(t) − α in

(16).

Table 4: CIR prediction performance by estimation method

n = 300 n = 500

RMSPE κmin κmax RMSPE κmin κmax

Nowman (κ̂) 0.0065 -0.021 0.28 0.0027 -0.025 0.27

Bias target (κ̃bias) 0.057 -0.10 0.027 0.045 -0.074 0.12

Bias corrected, TC (κ̂TC) 0.10 -0.18 0.12 0.078 -0.12 0.18

QJ (κ̂QJ) 0.69 -0.80 -0.038 0.27 -0.30 0.019

ML (κ̂ML) 0.0069 -0.00089 0.32 0.0033 -0.0056 0.27

Prediction target (κ̃pred) 0.0055 -0.015 0.0012 0.0016 -0.00060 0.0087

Root Mean Squared Prediction Error for rolling window one-step forecasts, n = 300 and

n = 500 monthly observations. The κmin and κmax columns record the smallest and largest

estimates of κ yielded by each estimation method over the different time windows, respectively.

κ̂
(2)
ML used Nelder-Mead with the grid search used in cases where convergence failed or where

there was no movement from the starting value, and was used along with ML estimates α̂ML

and σ̂2
ML.

Figure 5 presents Monte Carlo simulations of the RMSPE using the original and bias

corrected estimators on data generated from CIR models with various values of the mean

reversion parameter κ, and this further illustrates the issue. Reduced bias estimation of κ in

a correctly specified CIR model, whether via the computational approximation approach,

the analytical approximation in Tang and Chen (2009) or the (m = 4) Quenouille jackknife,

tends to reduce prediction performance at low levels of mean reversion, while use of the

Quenouille jackknife bias correction also reduces prediction performance at higher levels

of κ. The figure also shows the prediction performance using a new estimator, κ̃pred,

introduced in the next subsection, which adjusts the Nowman estimator specifically for

6Tang and Chen (2009) found, see Theorem 3.2.3, that E[κ̂] = κ+ 4T−1 + o(T−1) where T = nh is the

length of time over which the n observations are taken. We define κ̂TC = κ̂−4T−1 where T = 300/12 = 25.
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the purpose of prediction performance - this prediction targeting estimator performs best

throughout.

<Figure 5 here>

3.1. Prediction targeting

Some attempts were made at modifiying the correction term used in κ̃bias for Figure 5

by placing a constraint on the (Monte Carlo estimated) probability of κ̃bias being negative

when generating it. The bias correction was then relatively conservative at lower values

of κ though, and this also affected the forecast performance adversely. To target the

prediction performance directly, it is possible simply to modify the loss function L in the

general procedure so that R in (5) is filled with the RMSPE values at different training

parameterisations Θ = (α, κ, σ2), rather than with, as for κ̃bias or κ̃RMSE,?, the relative

bias or RMSE values.

Specifically, the vectorR is comprised of the Monte Carlo computed values (E[L(κ̃; Θ)])
1
2

at different training parameter points Θ, with the loss function now defined as

L(κ̃; Θ) = (yf − y)2 (17)

where yf is the predicted value of y using a candidate estimator at the parameter point Θ.

The estimator κ̃pred is then selected in the same way as earlier, by choosing the parame-

terisation for rational approximants g1 and g2 in Padé form that minimise ||R||, possibly

subject to constraints on performance relative to the original estimator or other estimators

though this is not done here. To reflect the relatively small range of Nowman estimates

of κ found at windows sizes n = 300 and n = 500 for the US Federal Funds rate, as seen

by the minimum and maximum values in Table 7, the prediction targeting estimator was

trained using the values κ ∈ {0.01, 0.1, 0.2}, while α and σ2 were set at 0.05.

The Monte Carlo performance of the prediction-targeting approach can be seen in

Figure 5 alongside the prediction performance using other estimators of κ. As noted

earlier, κ̃pred compares well in terms of RMSPE - it outperforms the other estimators at all

values of κ considered, and even performs well at very low values of κ. Across the values

of κ tried, the smallest percentage reduction in RMSPE using κ̃pred was found to be 22%,

while the largest reduction in RMSPE was 36%.

Figure 6 illustrates the rolling-window out-of-sample forecast performance of the ap-

proach using the US Federal Funds rate series. The estimated root mean squared prediction
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errors based on κ̃pred are compared with those based on the Nowman estimator across a

series of window sizes between 120 and 500. As in the Monte Carlo simulation, using the

prediction targeting estimator κ̃pred results in superior out-of-sample forecasts from the

CIR model. The performance is improved substantially at every window size.

<Figure 6 here>

3.2. Further investigation of κ̃pred

The remaining analysis explores κ̃pred further, in order to understand its properties

better. Figure 7 illustrates how the individual out-of-sample forecast errors for the Fed-

eral Funds rate relate to the initial Nowman estimates κ̂, and provides the mapping of κ̂

estimates to κ̃pred estimates and box plots for κ̃pred. The plot of prediction error vs ˆkappa

appears to show a ’fanning’ effect either side of estimates of κ slightly above zero, where

there is also a relatively dense concentration of estimates - at n = 150 this happens at

around κ = 0.1, while at n = 450 it is at around κ = 0.02. Meanwhile, it can be seen

from the mapping of κ̂ to κ̃pred that the estimates from the new methodology are far more

concentrated near zero and, when they are negative, they are often much less negative. As

noted, this seems important for making forecasts in volatile periods more reliable.

<Figure 7 here>

Figure 8 illustrates the performance of the prediction-targeting estimator in terms of

bias, RMSE and variance, while Figure 9 plots the frequency distribution of the Nowman

estimator, the reduced bias estimator and the prediction-targeting estimator at κ = 0.02

and κ = 0.2. The prediction targeting estimator is less biased, far less so at small values

of κ, though it over-corrects the Nowman estimator on average, and is more biased than

the reduced bias estimator κ̃bias. It seems possible that the bias and distribution of κ̃pred

itself could be improved by putting constraints on the minimal bias performance of κ̃pred

at parameter points in the training set when computing the estimator. A wider training

set than κ ∈ {0.01, 0.3} could also be used, though the estimated values of κ are typically

within this range in applications.

<Figure 9 here>
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4. Conclusion

A simple computational approximation approach has been shown to work well for the

reduction of estimation bias in small parametric time series models, inspired by existing

correction methods based on asymptotic approximation. The methodology aims to find,

via Monte Carlo and numerical search, a small-order adjustment to an initial estimator in

a similar form to what might be found theoretically. The restriction on the form of the

added terms seems to limit issues of overtraining at particular parameterisations or sample

sizes. The approach has been found effective at removing estimation bias and reducing

RMSE in small parametric time-series models that have received substantial attention in

the bias-correction literature, and may be especially useful where no asymptotic expansion

of the bias exists, or as a second layer of bias reduction after correcting to some asymptotic

order via an existing asymptotic approximation. The new estimators share with corrected

estimators based on asymptotic expansion the characteristic of being closed-form and fast

to compute once found.

The approach has also been shown to work well when targeting a reduction in forecast

error, in particular it has been possible to improve the one-step-ahead prediction from a

CIR model both in Monte Carlo simulations and in out-of-sample forecasts of the Federal

Funds rate over a wide range of window lengths. The presentation and examples here

have focused on point estimation and point prediction, but it seems possible to extend the

approach to interval estimation and prediction, mirroring the type of asymptotic corrections

that can be obtained theoretically by methods such as Edgeworth expansion7. The adjusted

coefficient estimates are also computationally simple and could potentially be bootstrapped.

Regularised optimisation methods commonly used within the deep learning literature may

offer a means to extend the methodology to substantially larger models, and this is being

investigated in related work.

7See for example Rothenberg (1984) and Hausman and Palmer (2012).
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Figures

Figure 1: Bias targeting ( λ̃bias ), percentage bias and relative RMSE comparison
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RMSE(λ̃bias)/RMSE(λ̂) are shaded when less than 1.

Figure 2: RMSE targeting ( λ̃RMSE
COLS ), n = 35.
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Figure 3: Variance targeting with bias constraint ( λ̃V arCOLS ), n = 35

Variance Absolute % bias

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

5
0.

02
0

0.
02

5

λ

λ̂
λ~

Var

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
35

λ

λ̂
λ~

Var

26



Figure 4: US Federal Funds rate, July 1st 1954 to January 1st 2020
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Figure 6: Out-of-sample prediction performance by window size.
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Figure 7: Out-of-sample prediction error vs κ estimates, the κ̂ to κ̃pred mapping, and

κ̃pred box plots. Window sizes n = 150 (left) and n = 450 (right).
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Figure 8: Further Monte Carlo investigation of κ̃pred - Bias and RMSE, n = 200.
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Figure 9: Further Monte Carlo investigation of κ̃pred - frequency distribution, n = 200.
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Appendix

Implementation of the relative performance constraint

The implementation in the examples of Sections 2 and 3 and the Supplementary Ap-

pendix requires that the bias and RMSE values of the new estimator be no greater than

those of the original at each point in the training set T . Let abo and RMSEo denote the

vectors of absolute bias and RMSE values for the original estimator corresponding to points

in T , while ab and RMSE are similar vectors for the new estimator. Let dab and dRMSE

then denote the maximal (signed) elements of the vectors ab− abo and RMSE−RMSEo,

respectively. It is required that dab ≤ 0 and dRMSE ≤ 0, and to achieve this the parameter

vector w, which defines G in (9) once G is chosen, is selected to minimise the value of the

penalised objective function:

L = ||E||+ λ{max(dab, 0)2 +max(dRMSE , 0)2}

where λ > 0 is large. This simple penalty function method was sufficient for the applica-

tions that were considered, using the subplex global optimisation algorithm.

The data and code for the application and methods used in Section 5 are available at the

author’s GitHub page. There is no conflict of interest relating to the author and this paper.
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