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Abstract The primary objective of resilience engineering is to analyse and mitigate
the risk of a system once a vulnerability has been triggered by an attack. Resilience is
a multidimensional concept in the field of engineering and incorporates restoration in
the form of a performance and time. Nodal restoration is a key factor in the analysis
of resilience in systems, and the properties of the nodes can be analysed to assess the
states on the system.Themodel proposed for the power grid to demonstrate the failure
of the network has been used to simulate probability of contingencies on the system
and applies a Sequential Monte Carlo simulation to simulate the energy supplied.
Additionally, a weather model incorporating the effects of both severe winds and
lightning storms has been applied to act as a trigger to the contingency. Once failure
of one component has occurred, it cannot be repaired until the network’s performance
reaches zero. Given failure of all components, the network will immediately start its
restoration phase, and using the same algorithm for optimal power flowcalculations, a
DC power flow approach is implemented to assess the energy supplied to the whole
network in a transient model until the network’s loads meet the demand criteria
completely.
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1 Introduction

The power grid is an essential tool for modern society and its function is crucial for
the wellbeing of people. A failure of the system can lead to major consequences,
in a socio-economic scale. The assessment of reliability in power grid systems and
the parameters incorporating reliability in the power grid such as availability, conse-
quence modelling and energy not supplied has been an important field of research
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for the IEEE community. Past events such as the 2003 British National Power Grid
Corporation outage which was responsible for the load loss of 724 MW, or approx-
imately 20% of London’s power load have costed the UK a significant economic
burden [1].

The reliability of any system can be defined as the probability of success of the
system at a given period of time, and the knowledge of reliability plays a role for
system engineering to enable system maintenance planning to optimize risk miti-
gation [2]. System reliability can be thought of as a multidimensional analysis and
incorporates many parameters. The user can analyse a single metric or multiple
metrics simultaneously. The constraint with complex systems is developing the most
computationally inexpensive technique and producing themost accurate results, with
the aim to maximise the efficiency of the simulation.

Rochetta et al. developed a load flow approach to calculate failure probabilities
from contingencies incorporating a wind model [3]. This was further developed
with an artificial neural network surrogate model to act as a meta model for the
analysis in order to minimise computational time when applied to AC optimal power
flow calculations [4]. This model was developed on the basis of a severe weather
model which was developed by Cadrini et al. [5] which combines stochastic extreme
weather model and realistic power grid fault dynamics in order to model a restoration
model quantified by sequential Monte Carlo. The constraint placed when applying
this model is the high computational cost for the resilience function, especially when
assessing networks with large scales of nodes.

There are various definitions of resilience available, both in a scientific context
and a general context. The United Nations International Strategy for Disaster Reduc-
tion defines resilience as “The capacity of a system, community or society potentially
exposed to hazards to adapt, by resisting or changing to reach andmaintain an accept-
able level of functioning and structure” [6]. However in a more specific context from
that of extreme weather events, the definition of resilience can be thought of as “the
network ability to withstand high impact low probability events, rapidly recovering
and improving operations and structures tomitigate the impact of similar events in the
future” [7]. Efforts placed on quantification of resilience analysis have been limited
and have only been tested in the last 20 years. Additionally, such efforts placed into
resilience analysis applied to the power grid have been performed, which includes
various techniques such as transient performance modelling for the case study of
typhoon Bolaven in South Korea [8]. However the authors mentioned that the limi-
tations in their study included only computing resilience in the form of restorative
and absorptive capacity without considering anticipated and adaptive capacities and
also did not include a cost benefit analysis for the quantification of resilience in an
economic sense. Panteli et al. developed a method to quantify resilience in the power
function n with extreme weather events by developing the three phase resilience
trapezoid [9]. This is an extension to the traditional resilience triangle developed in
prior literature [10] which involves three stages to the disintegration, stagnation and
recovery of the structure. The author divides resilience into two types, infrastructural
and operational, stating that infrastructural resilience is in a more vulnerable condi-
tion given its recovery times and damage done to the system. Kim et. al developed
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a novel function to analyse the South Korean power grid network using cascading
failure analysis using three different node centrality metrics; degree, clustering coef-
ficient and betweenness [11]. A high clustering coefficient of a network indicates
a more resilient network as it contains a higher redundancy potential as alternative
paths in the network’s nodes are present. Resilience has also been portrayed in the
field of structural engineering [12] by associating a structural resilience index to
for both a pre-event and post-event state. The arbitrary structural resilience index is
conformed from certain parameters deduced by the nature of the structure as stated
in the article.

1.1 Proposed Approach

This paper aims to apply a DC optimal power flow approach to quantify resilience
in a simple power grid system after a network failure has occurred. The novel theme
of this paper is the application of resilience as an extension to the weather induced
model introduced in [3]. The chosen application for modelling will be MATLAB
2020b and the application will be case 9 as obtained from MATPower.

2 Resilience Model

The index of resilience chosen for the power grid system is the Expectation of Energy
Not Supplied which is deemed to be the most appropriate performance and has
historically been used as an indicator of reliability performance and can further be
extended for resilience analysis. The equation listed below states the resilience index
as a dividend of the load received and the expected load:

ENS =
Tsim∑

t=1

∑

i∈N
Lcut,i,t · t (1)

where Tsim is the simulation time and Lcut,I,t is the load curtailed at each individual
node during time t.

2.1 Optimization

In the case of optimization, the twomodels are the DCOptimal Power Flow approach
and theACOptimal Power Flow approach. In the real life power grid system, the elec-
tricity is generated in power plants usingmethods such as fossil fuels, converted fuels
or geothermal steamand transfer this energy through the transmission network at high
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voltage using either DC or AC flow [13]. This high voltage steps down into amedium
voltage range. The primary difference between the DC and AC optimal power flow
models is the convexity. DC power is constantly in a steady state, and therefore is
both a linear and convex optimization problem. However, AC optimal power flow
calculations are non-linear and non-convex leading to much higher computational
expense. It should also be noted that in high-fidelity models, DC optimal power flow
are limited in terms of details for these grids as noted by [14]. This is due to DC
optimal power flow models being an estimation of AC optimal power flow models
and only accounts for active power, without reactive power in the model [15]. The
equations for optimal power flow approach can be denoted below as obtained from
[16]. The standard optimization vector is defined as:

min
x

f (x) (2)

Subject to

g(x) = 0 (3)

h(x) ≤ 0 (4)

xmin ≤ x ≤ xmax (5)

The optimization vector for DC optimal power flow neglects reactive power and
voltage magnitude and is defined as;

x =
[

θ

Pg

]
(6)

Equation 2 is reduced to;

min
θ,Pg

ng∑

i=1

f ip
(
pig

)
(7)

2.2 Load Contingencies

The representation of failure for this model will be in the form of contingencies. In
this context, a contingency is defined as an event occurring that is not considered
predictable at a given time. Contingencies when applied to the power grid network
imply the network’s architecture is the disruption of the load transfer from one bus
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to the next. This is commonly caused by a failure by extremely hot weather, system
failure such as outages in loads and human errors [17].

2.3 Severe Weather Model

In extension to the contingencies faced in the model, a weather model has been
proposed in the simulation algorithm to mimic the real-life application of an event.
These events include lightning strikes, extremely high winds and natural disasters.
The occurrence of normal weather conditions can be modelled as a homogeneous
Poisson process. All equations for this weather model have been taken from [18].

P
(
N f (t) = k

) = [λn · t]k
k! e−λn ·t k = 0, 1, ..., N (8)

Where P(Nf (t)= k) represents the probability that k failures happen within the
network given the time (0, t) and Nf (t) is the number of failures per kilometre of grid
line. However, in a more realistic perspective, the weather model is more likely to
affected by uncertainty. Therefore the occurrence of severe weather events is more
suited to be modelled by a Non-homogeneous Poisson process:

P
(
N f (t) = k

) = [λn · t]k
k! e−λn ·t k = 0, 1, ..., N (9)

In this case, Ve(t) represents the time dependent probability of the event occurring
and can be obtained applying the following equation:

Ve(t) = 0∫
t
ve

(
t ′
)
dt ′ (10)

ve(t′) is the rate atwhich the disturbance occurs.Given a severeweather occurrence
in a storm consisting of severe winds and lightning strikes, the time of the event is
obtained from data from previous events and will be carried out using probability
distribution functions obtained from the variables listed in Table 1.

In the case of high winds, the windstorm intensity is obtained via the following
equations:

Wω(t) = Wcrt + �ω(t) (11)

where Ww(t) is the wind speed intensity at time t for the and Wcrt is a datum wind
speed known as the critical wind speed set at 10 m/s.Δw(t) is the difference between
the critical wind speed and the actual wind speed during the event. In terms of the
lightning severe weather model, the intensity of a the weather event is set at the
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Table 1 Variable attributes Distribution Scale (a) Shape (b)

Dω Weibull 9.86 1.17

Dlg Weibull 0.96 0.85

�ω(t) Weibull 1.23 1.05

Mean (μNg) SD (σNg)

Ng(t) Log-normal −5.34 1.07

lightning strike ground density Ng(t)which takes the units of ground flashes per unit
time and area [occh km2] modelled with log-normal variability.

The table below shows the shape and scale factors for the respective variables:
Both high winds and lightning strikes are a cause of contingency and therefore it

is crucial to define an equation which considers both contingencies to calculate the
total failure rate:

λ(t) = λn + λω(Wω(t)) + λlg
(
Ng(t)

)
(12)

λw is the total line failure contributiondue to highwindmeasuredper kmandλ(lg)is
the lightning storms contribution.When considering individual lines, the contribution
to line failure due to high winds can be denoted in the equation;

λω(Wω(t)) = λn

(
Wω(t)2

W 2
crt

− 1

)
αω (13)

αw is the regression parameter for failure data obtained from the literature. The
line failure rate as a result of lightning can be denoted as:

λlg
(
Ng(t)

) = λnβlg Ng(t) (14)

β lg is the regression coefficient obtained from prior data [18].

2.4 Repair Speed

The model for recovery has been obtained from [5] and takes into consideration
the efficiency of the repair crew as they are also affected by the adverse weather
conditions. The assumptions in this model are:

i. Repair is initiated instantly after failure
ii. After a line is repaired, it is considered fully functional
iii. The transitional time between failure and repair is negligible.
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vrepair =

⎧
⎪⎨

⎪⎩

vnorm
1+η·(Wω(t)−Wcrt )

, i f Wω(t) ≥ Wcrt , Ng = 0
vnorm

1+
·Ng
, i f Wω(t)

〈
Wcrt , Ng

〉
0

vnorm
[1+η·(Wω(t)−Wcrt )]+[1+
·Ng] , i f Wω(t) ≥ Wcrt , Ng > 0

In this model and η are positive parameters and vnorm is set at 20[%/h]. The values
for ψ and η are set to 40 and 0.4, respectively.

2.5 Probabilistic Load Uncertainty

It is important to quantify uncertainty in the model used which uses data for vari-
ability in average daily load demand. The aleatory uncertainty of the model can be
considered by implementing a gaussian with parameters fitted on historical data;

f (Li (t)) = 1√
2πσLi (t)

e
− Li (t)−μLi(t)

2σ Li (t)
2 (15)

The parameters implemented are Li(t) is the transient node demand at node i
during a specific hour of the day denoted as t. μLi(t) is the mean load value and
σLi(t) is the standard deviation of node i at time t. The gaussian will be applied at
each output value with the standard deviation obtained from the equation subject to
the variance from the parameters listed. An assumption of this model is that seasonal
effects do not play a role in the parameter values.

3 Methodology

The proposed approach applied is a DC optimal power flow approach to quantify
the energy not supplied during the severe weather contingency, which has been
applied to quantify the resilience function of energy supplied after disaster through
the same algorithm. The implementation of the methodology is applied using
MATLAB 2020b, and the inputs are the parameters listed in Table 1. The network
is presented with failure from a single continency simulated from the risk model
combining high winds and lightning strikes from Eqs. 10–14 and is implemented
on the power flow equations to calculate the loss of load for disaster, and following
this, the energy supplied after the disaster has occurred. The simulation is repeated
until the network’s performance has been fully restored. The pseudocode below
displays the steps of the proposed approach below;
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Algorithm 1 DC Optimal Power Flow model

1: procedure ENS (Risk Assessment based on DC-OPF)

2: Input = {λn, β lg, αw, Wcrt , bDw, aDlg, bDlg, aΔw, bΔw, νnorm, μNg, σNg}

3: t = 0, e = 1, f = 0

4: Sample failure events for [0, Tsim]

5: t = TTE(e)

6: if event i is a failure then

7: f = f + 1

8: Sample Xf and Lf for t

9: Update repair speed and time to repair

10: else Sample Te and (Ng, Δw)

11: Compute failure rates

12: if t + TTF(f) > t + Td then

13: Compute load

14: Compute ENS(f) using Lcut(f) and TTR(f)

15: else set t = t + Td and f = f + 1

16: Sample Xf and Lf for t

17: Update repair speed and time to repair

18: OUTPUT - Energy Not Supplied

4 Case Study

This paper implements case 9 as an example fromMATPower’s default folders [19].
It is composed of a 9-node, 9-line network which is assumed to be equidistant in all
lines. This filewas chosen due to the ring style topologywhich represents a simplified
version of a small landlocked country in nature (Fig. 1).

The power grid’s network lines represent the various branches with a 10-mile
length.The failure rates of each branch have been obtained from the original
MATPower file and have been implemented in the table. The failure rate is given as
a relative probability of a line contingency for each individual line (Table 2).

4.1 Results

The recovery time initiates after 1× 10–4 s in the simulation and continues to restore
the energy supplied to the nodes are fully recovered after 4 × 10–4 s, in which the
system has fully recovered and therefore all the energy required for the nodes in the
whole network is being supplied. The uncertainty applied from Eq. 15 shows the
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Fig. 1 Topology of case 9 network under matter to remain

Table 2 Branch failure rates
[19]

Branch Relative failure rate

1–4 0.1455

4–5 0.8693

5–6 0.5797

3–6 0.5499

6–7 0.1450

7–8 0.8530

8–2 0.6221

8–9 0.3510

9–4 0.5132

possible ranges of the energy supplied to the recovery function which also converges
in the latter stages of the simulation. The model restores energy to each individual
node simultaneously and therefore the restoration of all nodes improves rapidly
during initial recovery, however, requires a start-up time in which no nodes are
recovering. This initial period lasts less than 1 s of the simulation time and then
increases rapidly. The drive for a lower range of uncertainty can be trialled by using
more Monte Carlo simulations which are likely to sample more simulations on the
same target output, energy not supplied leading to lower variance in results in output
energies (Fig. 2).
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Fig. 2 Results for DC-OPF simulation under matter to remain

5 Conclusion

This paper demonstrates the application of a restoration function applied to a simple
power network when DC optimal power flow is applied to the 9-node example
provided in MATPower by applying a Monte Carlo approach. The work presented
has innovated the weather model applied to contingencies in the general power grid
to the application of resilience for the energy supplied after disaster. Further work
that could be done on this topic includes developing a cost model for resilience
quantification for the respective nodes in the network, and further expanding this
application into three phase resilience models for realistic and complex networks
using real time event timelines, rather than timelines based on simulation only.
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