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• The modified formulation of hyperbolic relation based on the DEM data is generated to capture stiffness degra-
dation, which can take the various types of an S-shaped curve due to the initial mean effective stress and the
sample density.

• DEM results reveal that inclusion of the coordination number in both forms of the void ratio function serve a
better role in the removal of void ratio effects on the stiffness degradation curve.

• Several DEM simulations were performed to assess effects of the coefficient of uniformity (Cu) on the non-linear
behaviour of granular materials, arriving at some key observations that: (i) a higher amount of work should be
input for samples with coarse particles to attain a particular strain level; and (ii) more energy dissipation is
observed for samples with a lower Cu value.

• The framework of kinematic modified yielding points proposed by Jardine (1992) that identifies three main zones
(i.e. linear elastic behaviour, non-linear elastic behaviour and elasto-plastic behaviour) provides a benchmark
for the gap between the dynamic stiffness and the static stiffness to be studied in an effective manner.

• A key observation is that the dynamic shear stiffness tends to increase to a peak value before experiencing of a
decrease in magnitude.
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ABSTRACT

This contribution considers the nonlinearity of stiffness in granularmaterials using 3DDEMsim-
ulations, with a primary focus being placed on three issues. First, it assesses stress-dependent
stiffness and density-dependent stiffness based on DEM simulations of monotonic triaxial tests.
The modified formulation of hyperbolic relation based on the DEM data is generated to capture
stiffness degradation, which can take the various types of an S-shaped curve due to the initial
mean effective stress and the sample density. The use of various void ratio correction functions
is made to remove the effect of density on the stiffness curve. DEM results reveal that inclu-
sion of the coordination number in both forms of the void ratio function serve a better role in
unifying the stiffness dataset from samples with different densities. Second, the framework of
kinematic modified yielding points proposed by Jardine (1992) that identifies three main zones
(i.e. linear elastic behaviour, non-linear elastic behaviour and elasto-plastic behaviour) provides
a benchmark for the gap between the dynamic stiffness and the static stiffness to be studied in
an effective manner. A key observation is that the dynamic shear stiffness tends to increase to a
peak value before experiencing of a decrease in magnitude. Third, the investigation into the na-
ture of energy dissipation during triaxial shearing tests is made. Several DEM simulations were
performed to assess effects of the coefficient of uniformity (Cu) on the non-linear behaviour of
granular materials, arriving at some key observations that: (i) a higher amount of work should
be input for samples with coarse particles to attain a particular strain level; and (ii) more energy
dissipation is observed for samples with a lower Cu value.

1. Introduction

Several geotechnical engineering problems require information on the non-linear evolution of stiffness with strain.
Different types of infrastructure (i.e. retaining walls, foundations and tunnels) impose a deformation with a differ-
ent range of strains. It is well-known that the behaviour of granular materials is highly non-linear (Atkinson, 2000;
Atkinson et al., 1990). In particular, the stiffness has a non-linear dependency on the strain level. Use of normalised
stiffness and consideration of the variation of this normalised stiffness with strain allow the nonlinearity of stiffness to
be investigated (Oztoprak and Bolton, 2013; Houlsby andWroth, 1991). The extent to which the shear stiffness decays
with shear deformation depends on the stress state, sample density, stress paths (Atkinson et al., 1990; Oztoprak and
Bolton, 2013). At small-strain levels (Clayton, 2011), the elastic stiffness remains constant at its maximum value,
followed by a drop in stiffness as the strain level increases. Experimental data indicate that the shear stiffness decays
rapidly as the plastic strains become more significant than the elastic strains (Jardine et al., 1984, 1986). It is useful
to express the stiffness degradation curve in terms of hyperbolic expressions (Darendeli, 2001; Hardin and Drnevich,
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1972; Fahey and Carter, 1993; Menq, 2003; Oztoprak and Bolton, 2013) with the use of a few parameters, allowing
the secant stiffness at a certain strain level to be predicted.

It is well-known that the shear modulus is strain dependent. At a given strain level, this parameter can be mea-
sured using different types of test, with the appropriate technique. The extent to which these techniques will give the
different stiffness values remains poorly understood. In the triaxial test, for example, the bender elements and the
stress:deformation data from both monotonic triaxial tests have been widely used to measure the shear stiffness. At
small-strain levels, bender elements provide a useful means to measure soil stiffness in the laboratory testing (Vig-
giani and Atkinson, 1995; Bellotti et al., 1996; Jovičić and Coop, 1998; Greening and Nash, 2004; Clayton, 2011).
At a higher strain level, the shear stiffness is widely inferred from the stress-deformation data from local gauges and
conventional soil testing (Atkinson, 2000). Herein we use both the shear wave velocity and the stress-strain relation-
ship to estimate the shear modulus, allowing the gap between statically determined static and dynamic stiffness to be
investigated. For convenience in making comparisons between these methods, the term “dynamic stiffness” is used to
mean stiffness measured from stress wave propagation data and the term “static stiffness” is used to mean the stiffness
measured from the stress-strain relationship. Due to the fact that these methods to measure stiffness are based on dif-
ferent mechanisms, it is worth exploring difference between the stiffnesses measured from each of these approaches in
the triaxial apparatus. The relevant questions are raised as follows:

1. Over which strain range does the ratio of the dynamically measured stiffness to the statically calculated stiffness
remain unchanged?

2. How does dynamic stiffness evolve with strain level?
In order to address the above questions, both DEM simulations of monotonic triaxial tests and DEM simulations of

planar wave propagationwere carried out on assemblies ofmonodisperse size, with two different densities. The samples
were sheared along conventional triaxial stress paths in which both lateral stress components were kept constant and
the vertical stress increased. At discrete strain levels, the shear modulus was calculated using two methods, allowing
differences between the static and dynamic measures of stiffness to be investigated. The yielding points proposed by
Jardine (1992) provides useful strain thresholds at which these comparisons are made. There is also a discussion and
observation of the evolution of dynamic stiffness with increasing strain levels.

It is widely recognised that the numerical modelling using the discrete element method (DEM) proposed by Cun-
dall and Strack (1979) provides a powerful means to further fundamental understanding of the grain-scale mechanisms
underlying observations from macro-scale laboratory testing. Over recent decades, the use of DEM simulations in
geomechanics studies has continued to grow, as noted by O’Sullivan (2011a). DEM models have the following char-
acteristics: (i) they can capture the highly complex behaviour of sand; (ii) using particulates in the simulations does
not require the continuum assumptions to be adopted; and (iii) they can provide micro-scale parameters for fundamen-
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tal research into the grain-scale mechanisms. High-performance computing (HPC) facilities allow a large number of
particles to be considered in the analysis for the study on stiffness using DEM simulations (O’Sullivan, 2011b). DEM
simulations of triaxial tests can be used to measure the stiffness of granular materials while also providing micro-
scale data to further a fundamental understanding of the grain-scale mechanisms. As outlined by O’Sullivan (2011a),
while the use of this discrete numerical approach to study soil stiffness has grown, a limited number of studies us-
ing micromechanics-based tools have looked at the small-strain stiffness under anisotropic stress conditions and the
stiffness degradation curve.

In addition, DEM data allow the dissipation of both micro-scale and macro-scale energy during triaxial shearing
to be investigated. Building on the contribution of Hanley et al. (2018), the individual components of energy are
analysed using the DEM simulations of the triaxial test which are sheared along different stress paths. As noted by
Hanley et al. (2018), a key element of the development of a model is the consideration of energy conservation. The
Cam-Clay model, for instance, is based on the assumption that much of plastic dissipation is due to friction. This
provides motivation for a study that compare the work input per unit volume with the frictional dissipation associated
with sliding friction during shearing, with an expectation that both energies should be almost equal (Hanley et al.,
2018). Although the evolution of each energy component (i.e. translational and rotational energy) is mainly dependent
upon the path along which the sample is sheared, this issue has not previously been given detailed consideration. We
re-examine the assumption that frictional dissipation and boundary are equal in magnitude. Although particle crushing
is also attributed to energy dissipation (Bolton et al., 2008), this source of energy dissipation is ignored in this study.

It is widely accepted that the particle shape (Houlsby, 2009) has a significant effect on the granular material. Cho
et al. (2007) experimentally confirmed that increasing particle irregularity results in a reduction in the shear stiffness.
Liu and Yang (2018) stated that the small-strain stiffness reduces when the sand grains become more rounded. It is
reported by Xiao et al. (2019) that a rise in the combined overall regularity leads to a significant drop in the compressive
strength and the secant shear modulus. However, herein DEM simulations of triaxial tests (O’Sullivan, 2011b; Nguyen
et al., 2017, 2018; Nguyen and O’Sullivan, 2019; Nguyen, 2020, 2021a) were performed on the spherical particles to
further the fundamental understanding of the non-linear stiffness of soil which is a long-standing topic of interest in
geomechanics, with the degree of nonlinearity being influenced by many factors, including the stress path, the sample
density and the particle size distribution. Both the macro-scale and the micro-scale data gathered from the true-triaxial
DEM simulations allow the non-linearity of stiffness and the interactions at the particle scale to be further understood.
Although the sample size and the representative element volume (REV) has a certain effect on both micro and macro-
scale responses (Huang et al., 2014; Ciantia et al., 2019; Adesina et al., 2022), herein the combination of both periodic
and rigid boundaries is appropriate for measurements of both static and dynamic stiffnesses. The coordination number
provides a complementary insight to further understand the macro-scale response of granular materials. The static
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stiffness and the dynamic stiffness are measured at a certain strain level, allowing the degree of nonlinearity of stiffness
to be studied. Comparison with the static stiffness is made to assess the gap between the dynamic and static stiffness
as the shear strain increases. The postulation that these discrepancies between two different measurements of the shear
stiffness dependents on the interpretative techniques is achieved, in which the frequency domain gives the dynamic
stiffness closer to the static stiffness. The framework of kinematic modified yielding points proposed by Jardine (1992)
that identifies three main zones (i.e. linear elastic behaviour, non-linear elastic behaviour and elastoplastic behaviour)
provides a benchmark for the nature of non-linear stiffness to be studied effectively. The mathematical formulations
used to capture the non-linear stiffness degradation curves are examined in detail, the hyperbolic form is found to
closely capture the reductions in shear stiffness with increasing strain. Following prior experimental contributions
(Liu and Yang, 2018; Liu et al., 2016; Wichtmann and Triantafyllidis, 2009), several DEM simulations on samples
with various coefficients of uniformity (Cu) that vary from 2 to 6 were carried out, leading to some key observations
that: (i) samples with lower values of Cu have higher stiffness at small-strain levels; (ii) a higher amount of work
should be input for samples with coarse particles to attain a particular strain level; and (iii) more energy dissipation is
observed for samples with a lower Cu value.

2. Background to the non-linearity of stiffness

It is widely accepted that much of the focus of studies on the shear modulus is placed on two main aspects. The first
is the form of the void ratio function, while the second is principally concerned with the changes in the parameters that
describe the stiffness:strain relationship (i.e. Gsec = Cp()F (e)p′n()). This chapter considers the void ratio correction
function over a wider range of strain levels (i.e. from the very small strain, �a < 0.001% to the medium strain level,
�a < 0.5%). Apart from investigations into the function F(e), both Cp() and n() are reexamined using DEM data.
Experimental studies (Oztoprak and Bolton, 2013) indicate that Cp() reduces with increasing shear strain and this
trend is in contrast with the variation in n() (i.e. n() varies from 0.5 to 1.0 as  increases). These findings are
revisited by using data obtained from true-triaxial DEM simulations with stress-induced anisotropy. In order to assess
the variations in Cp and m with  , a void ratio function of the form F (e) = (1 + e)−3 was adopted in the work of
Oztoprak and Bolton (2013). Plot of Gsec∕F (e)pa against p′∕pa give the value of both Cp and n at a given strain
level. It is important to recognise that the void ratio correction function selected changes the value of both Cp and m
(Nguyen, 2020). This provides the motivation to use two types of the void ratio correction function to estimate Cp and
m as discussed by Nguyen (2020).

Much prior study research has shown that the nonlinearity of stiffness is hyperbolic in shape, so various forms
of hyperbola have been adopted to describe the variation of stiffness with strain. In geotechnical design, a simple
formulation that can capture the stiffness curve is useful. Hardin and Drnevich (1972) related stiffness at a given strain
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level to the maximum stiffness by the following formulation

G0 = Gsec

(

1 +

r

)

(1)

where G0 is the maximum shear modulus, Gsec is the secant shear modulus at a given strain level,  is the shear strain,
and r is the reference shear strain measured at �max∕G0. Central to this formulation is quantifying the value of the
reference strain, r. Instead of using shear strain levels in the normalised formulation, Darendeli (2001) included shear
stress in the hyperbolic formulation such that

G0 = Gsec

(

1 − m
[

�
�max

]n)

(2)

where m and n are two empirical parameters, � is the shear stress at a certain level of  . It is also recognized that the
measurement of �max is also the main challenge in this mathematical formulation.

Darendeli (2001) used the formulation proposed by Hardin and Drnevich (1972), but took the reference strain to
be at Gsec∕G0 = 0.5 and proposed a curvature parameter that accounts for the nonlinearity of stiffness as described in
the following expression:

G0 = Gsec

(

1 − 
[


r

]m)

(3)

Following the earlier contributions, Oztoprak and Bolton (2013) introduced a hyperbolic relationship to capture stiff-
ness degradation that can take the form of an S-shaped curve. This newly modified formulation is based on a large set
of test data on various sands. The best-fit functional relationship is similar to the expression proposed by Darendeli
(2001), but considers the difference between the given shear strain and the elastic strain threshold, e as shown in the
following expression:

G0 = Gsec

(

1 +
[

 − e
r

]m)

(4)

In the study of Darendeli (2001), the stiffness at a strain level of 0.0001% is considered to be the maximum stiffness
(i.e. G0 at  = 0.0001%). The elastic strain threshold can be mapped using the schematic of multiple yield surfaces
proposed by Jardine (1992). In particular, the location of yield point Y1 is the value of e. Due to the path-dependent
and density-dependent nature of stiffness, using these two strain levels as bounds to bracket the stiffness degradation
region provides some advantages. Adjustment of the parameters in Equation 4 (i.e. e and r) is required to accurately
capture the stiffness degradation region.
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In addition, the curvature parameter, m is dependent on the sample density (Darendeli, 2001; Menq, 2003; Ozto-
prak and Bolton, 2013). A brief overview of studies on this parameter is given here. A curvature parameter of 0.92was
adopted for undisturbed sandy and gravelly soils in the study of Darendeli (2001). Using the results of tests on Toy-
oura sand, Menq (2003) concluded that the curvature parameter is likely to be independent of the confining pressure;
however, for dry sandy and gravelly soil m values can be estimated as m = 0.86+ 0.1log(p′∕pa). Oztoprak and Bolton
(2013) reported that the value of m is independent upon the mean effective stress but changes with soil type and state
(i.e. mean grain size, uniformity coefficient and void ratio). The values of m vary from 0.75 to 1.0 when the whole
database is considered. Oztoprak and Bolton (2013) found that there is a correlation between m and the coefficient of
uniformity, Cu, as given by the following relationship:

m = C−0.075u (5)

While the particle size distribution is amajor influence on the stress-deformation relationships in granularmaterials,
very little investigation into the fundamental origin of this sensitivity has been made in the literature. Using DEM
simulations with linear PSDs (Shire, 2014; Shire and O’Sullivan, 2016; Otsubo et al., 2017; Liu et al., 2021) and
systematically varying the Cu value allows the effects of PSDs on the stiffness degradation curve to be explored.
Herein, the focus is placed on altering the stiffness degradation curve as the particle size distributions are varied from
uniform to broadly-graded samples. Two bounds expressed as hyperbolic formulations are then proposed. In addition,
the suggestion of Oztoprak and Bolton (2013) that the curvature parameter is a function of Cu (i.e. m = C−0.075u ) is
reexamined using DEM data generated here.

Hanley et al. (2018) reported that the boundary work is almost equal to the frictional dissipation, regardless of
the sample density. DEM simulations of samples with PSDs allow the gap between the energy dissipation and the
input work to be revisited. Although changes in PSDs result in variations in plastic dilatancy at a given strain level,
investigations into this change have not been addressed in the literature. The DEM simulations of triaxial compression
tests on samples with differing PSDs allows this issue to be explored. The dependency of contacts on the material PSD
is then studied, focusing on the change in this dissipation with axial strain. Two components of the boundary work,
i.e. volumetric and distortional work, are computed to assess the effects of the material PSD on the evolution in these
energies with increasing shear strain. Assessments of contact distributions due to variations in grain sizes are made,
with a focus on the sensitivity of the preferential orientations to the PSD.
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Table 1

DEM simulation parameters.

Parameter Notation Value Unit

Particle size dp 2.54 mm
Particle density �p 2230 kg/m3

Interparticle friction �p 0.35 NA
Particle shear modulus Gp 25×109 Pa
Particle Poisson's ratio �p 0.2 NA
Transmitter frequency f 20 kHz

Amplitude of sinusoidal motion A 2.5 nm

3. DEM simulations

Simulations of triaxial compression tests were conducted on samples with two different densities using a modified
version of the granular LAMMPS code (Plimpton, 1995), with a simplified Hertz-Mindlin contact model. Each sam-
ple was created from an initial cloud of 34, 986 non-contacting monodisperse spherical particles. The samples were
enclosed in the vertical direction by two rigid, planar, horizontal boundaries; periodic boundaries were used in the
lateral direction as illustrated in Figure 1. To vary density, two values of inter-friction were used as the sample was
isotropically compressed to an initial mean effective stress of p′0 = 1kPa; the randomly monodisperse dense sample
(RMD) was created using �p = 0, while �p = 0.15 was used to generate the randomly monodisperse loose sam-
ple (RML). These two samples were isotropically compressed to three different mean effective confining pressures,
p′0 = 50kPa, p

′
0 = 300kPa and p′0 = 1000kPa using a servo-control algorithm (Thornton and Antony, 1998), with the

use of the same value of �p = 0.35 for both samples in this process. It should be noted that periodic boundaries were
used to control the lateral stresses, �x and �y, while the vertical stress was controlled using the rigid wall boundaries
�z. Once a desired value of the mean effective pressure was achieved, DEM simulations of triaxial shearing tests were
performed, along the path in which constant �x = �y and increasing �z are satisfied. At a given stress state or strain
level, the secant shear modulus, Gsec such that Gsec = Δq

3Δ�s
. The deviator stress is taken as Δq = �z − 0.5(�x + �y);

and the deviator strain, �s was calculated as �s = 2∕3(�z − �x) where �z and �x are the major and minor normal strains.
Apart from calculation of static stiffness, DEM simulations were performed to estimate the dynamic stiffness based

on the shear wave velocity. At a stress level, shear waves were then generated by applying a single-period sine motion
to one rigid wall in a particular direction and the opposite wall was used to analyse received signals. For example,
exciting a rigid wall, for instance in the x− direction aims to deduce wave propagation in the horizontal plane as
illustrated in Figure 1. The speed of wave transmitted, Vzx can be estimated by considering changes in the shear stress
in the exciting direction of both rigid walls with time. The elastic behaviour of granular systems allows calculating the
corresponding shear modulus, Gzx as shown in Figure 1.

Following the work of Shire (2014) and and the experimental study (Liu and Yang, 2018), several DEM simulations
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Figure 1: Illustrations of measurements of shear sti�ness: (a) the static method using DEM simulations of triaxial probes;
and (b) the dynamic method using DEM simulations of shear wave propagation.

were performed on samples of linear PSDs with varying Cu values from from as low as 2 to as high as 6. In particular,
samples with linearly graded PSDs which have Cu = 2, 3, 5, 6 were generated, with the minimum particle diameter
being 1 mm in all cases (Figure 2). The size of samples is the same as that of monodisperse samples and a simplified
Hertz-Mindlin contact model was adopted in all simulations, having mixed periodic and rigid wall boundaries as
illustrated in Figure 1 (dmin = 1mm, �p = 2230kg∕m3, interparticle friction coefficient �p = 0.35, Gp = 25GPa

and particle Poison’s ratio �p = 0.2). Starting from an initial cloud of non contacting particles the samples were
isotropically compressed to 1 kPa using three different inter-particle friction values (i.e. �p = 0.0, �p = 0.1 and
�p = 0.2 ), so as to generate samples with different values of density. The terms “dense”, “medium” and “loose” were
then adopted respectively in line with Shire (2014). Once a stable condition of p′0 = 1kPa was achieved, all samples
were then compressed to isotropic confining pressures of p′0 = 100kPa, p′0 = 300kPa and p′0 = 1000kPa using the
same value of �p = 0.35. At each initial mean effective stress, these samples were sheared along the stress path that
both the �x and the �y were maintained constant while the �z was increased.

4. DEM anlysis

DEM results obtained using the modified LAMMPS code were validated by calculating the the exponential value of
n in the relationshipG0 ∝ p′n. It is widely known that a power-law relationship has been widely considered to describe
the relationship between the dynamic stiffness and the confining pressure. Based on linear regression analysis of the
data plotted in the logarithmic scale, the power values are 0.353 for the RMD sample and 0.341 for the RML sample as
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Figure 2: Samples with linear PSDs with the same size as that of monodisperse samples: (a) Cu = 2 ; (b) Cu = 5; and (c)
Cu = 6.

shown in Figure 3. These power values agree well with the Hertzian contact theory and experimental values on glass
bead ballotini with both smooth and rough surfaces Otsubo (2016).

Figure 3: The power-law relationship between GV s and p′ when samples were sheared at p′0 = 1000kPa.

4.1. Overall responses

Using the deviator stress, qcrit and mean effective stress, pcrit at failure, the critical state angle of shearing resistance
for the triaxial compression test is inferred from the following relationship:

M =
6sin�crit
3 − sin�crit

=
qcrit
pcrit

(6)

where �crit is stress ratio, � dependent. Similar equation is adopted to calculate the friction angle at the peak strength;
however, the use of both q and p′ at the peak strength was made to determine �peak. Using DEM data from the
triaxial compression test, the calculated friction angle at peaks and critical state are �peak = 23.98o and �cri = 17.39o

H.C. Nguyen: Preprint submitted to Elsevier Page 9 of 34



Discrete element method analysis of non-linear sti�ness for granular media

respectively.
The overall response including the evolution of stress ratio and volumetric strain with axial strain are shown in

Figure 4, enabling the variation in secant stiffness with the shear strain to be studied. It is numerically stated by Huang
et al. (2014) and Adesina et al. (2022) that the size of sample should be large enough to avoid fluctuations observed in
the stress-strain responses. It is shown in the Figure 4 that there is no fluctuations observed in the responses, allowing
the stiffness degradation curve to be captured in a accurate manner. It is reasonable to expect that smaller system
sizes are conducted to attain a REV samples where all periodic boundaries are used to avoid the disturbance occurred
between rigid wall boundaries and the particles, and more details of the effect of the REV size on the macro-scale
response can be found in the very recent contribution by Adesina et al. (2022). To analyze the pattern of stiffness
degradation with strain, in which the secant stiffness was determined from the deviatoric stress and the deviatoric
shear strain (i.e. Esec = q∕3�s).

Figure 4: Overall responses of monodisperse sample.

4.2. Stiffness degradation of the monodisperse sample

Esec and Gsec were computed from the load: deformation data for the two monodisperse samples. As is shown in
Figure 5, Esec andGsec depend upon the confining pressure and the sample density; the randomly monodisperse dense
sample has higher values of Esec and Gsec than the randomly monodisperse loose sample. Normalisations of Esec by
E0 and Gsec by G0 were made to enable direct comparison of the degradation of stiffness with strain. Figure 6 shows
reductions in moduli which are of importance in geotechnical designs. As described above, the use of hyperbolic forms
to capture the shape of the degradation of stiffness with strain, i.e. the stiffness degradation curve, are widely adopted,
serving as a useful means to predict stiffness values for use in engineering design with the use of only a few parameters.

Building the earlier contribution of Oztoprak and Bolton (2013), the hyperbolic form ofG0 = Gsec
(

1 +
[

−e
r

]m)

was applied to fit the secant shear modulus degradation data generated here. The analysis focussed on the variation in
Gsec∕G0 with  , taking e to be the shear strain at the yield Y1 and the reference strain, r was taken at Gsec∕G0 = 0.5.
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Figure 5: Sti�ness degradation curves: (a) Esec : the RML sample; (b) Gsec : the RML sample; (c) Esec : the RMD sample;
(d) Gsec : the RMD sample.

Table 2

Variations in the elastic threshold strain and the reference shear strain with the e�ective con�ning pressure and the sample
density.

p′0 ∶ kPa e ∶ % RML e ∶ % RMD vol ∶ % RML vol ∶ % RMD

50 kPa 0.00081 0.00223 0.01738 0.02333
300 kPa 0.00079 0.00743 0.05456 0.07906
1000 kPa 0.00080 0.01182 0.12249 0.17949

The curvature parametermwas adjusted to closely capture the reduction inGsec∕G0. The scheme to mapmultiple yield
surfaces proposed by Jardine (1992) was used to identify the elastic threshold strain, e. The summary data on Table
2 show that the elastic threshold strain increases with the effective confining stress for the dense sample; however, for
the loose sample, this strain level likely remains unchanged when the initial shearing pressure varies from p′0 = 50kPa

to p′0 = 1000kPa.

The values for the curvature parameter obtained for the DEM simulation data are 1.1 for the RML samples and 1.2
for the RMD samples; these values of 1.1 and 1.2 are higher than those derived from Darendeli (2001) (i.e. m = 0.92)
and Oztoprak and Bolton (2013) (i.e. m = 0.82). The stiffness degradation data are compared with data obtained from
the hyperbolic equation in Figure 7 for the RMD and RML samples, respectively. In particular, the curvature value
of m = 1.1 captures the stiffness reduction of the random loose sample very well, while the value of the curvature
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Figure 6: Normalised sti�ness degradation curves: (a) Esec∕E0: the RML sample; (b) Gsec∕G0: the RML sample; (c)
Esec∕E0: the RMD sample; (d) Gsec∕G0: the RMD sample.

parameter that best describes the variation in stiffness with strain for the dense sample is slightly higher than those of
the loose sample. Interestingly, the most suitable curvature parameter value remains unchanged for the three different
initial confining pressures; even both the elastic and reference strain are stress-dependent.

These observations confirm the prior findings (Menq, 2003) that m is likely to be independent of the confining
pressure. Note that both elastic strain threshold, e and the reference strain, r are dependent on the confining pressure.
Therefore, hyperbolic expressions can be used to obtain upper and lower bounds that describe a secant shear modulus
degradation curve that result from shearing the sample at different initial confining pressures as shown in Figure 6. To
address this issue, some modifications can be made using the hyperbolic form of G0 = Gsec

(

1 +
[

−e
r

]n), with a
focus on the choice of both e and r.

It is noted that the role of void ratio correction function in eliminating the effect of sample density on small-
strain stiffness, an extension to the removal of the effect of the void ratio on the shear modulus over a wider range
of strain levels from small to large-scale is considered in this study. Both types of void ratio correction expression
which are expressed in the forms of F (e) = (B+1)2

1+e and F (e) = e−� were considered herein, with the inclusion of
micro-scale parameters. According to Nguyen (2020), the use of the conventional form of the void ratio corrections
does not resolve the gap of the normalised shear stiffness Gsec∕F (e) of two different initial densities. Therefore, the
coordination number,Nc which is easily extracted from DEM simulations was made in the void ratio forms. It is noted
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Figure 7: Comparison of hyperbolic equation with DEM data for the dense (RMD) sample and the loose (RML) sample:
(a) p′0 = 50kPa: the RML sample; (b) p′0 = 300kPa: the RML sample; and (c) p′0 = 1000kPa: the RML sample; (d)
p′0 = 50kPa: the RMD sample; (e) p′0 = 300kPa: the RMD sample; and (f) p′0 = 1000kPa: the RMD sample.

that this micro-scale data is unavailable in the laboratory testing. It is observed from Figure 8 that including Nc in
the void ratio correction function seems to be better able to unify the data, particularly for the case of  < e. First,
the adoption of the hyperbolic form of F (e) = N�

c
(1.186−e)2

1+e was conducted to unify the stiffness data. Second, the
exponential form of F (e) = N�

c e
−� was also considered to remove the effect of the sample density on the stiffness

degradation curve. Figure 8 exhibits that cooperation of the micro-scale data into the void ratio correction forms can
better unify the shear stiffness.

In addition, analyses of the strain-dependency of Cp() and n() in the relationship Gsec = Cp()F (e)p′n() were
conducted, providing knowledges of non-linear behaviour of granular materials. Oztoprak and Bolton (2013) used
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Figure 8: Cooperation the coordination number into both types of void ratio function : (a) F (e) = N�
c
(1.186−e)2

1+e
, � =

3.15; p′0 = 50kPa; (b) F (e) = N�
c
(1.186−e)2

1+e
, � = 2.80; p′0 = 300kPa; (c) F (e) = N�

c
(1.186−e)2

1+e
, � = 2.70; p′0 = 1000kPa; (d)

F (e) = N�
c e

�, � = 2; � = −3.6; p′0 = 50kPa; (e) F (e) = N�
c e

�, � = 2; � = −3.15; p′0 = 300kPa; and (f) F (e) = N�
c e

�,
� = 2; � = −3.0; p′0 = 1000kPa.

F (e) = 1∕(1 + e)3 to calculate strain-dependent parameters, Cp() and n(). Plots of Gsec∕F (e)p′a against p′∕p′a (i.e.
pa = 100kPa) on a log-log scale were used to assess variations in both Cp() and n() with  . Denoting Gsec∕F (e)p′a
as y and naming p′∕p′a as x allows the power relationship y = Cpx′n to be established, for which both Cp and n are
calculated at a given strain level. While Cp() reduces with increasing  , n() varies from 0.5 to 1. Using the DEM
simulation data, the values of Cp() and n() are listed in Table 3. Noting that the choice of F (e) has significant effect
on both values of Cp() and n() as previously discussed. In order to calculate the values of Cp and n, the values
of Gsec , e,Nc , p′ were gathered for both samples. Values of Cp() and n() are calculated by solving the system of
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Table 3

Variations in Cp() and n() with the shear strain for RMD sample being sheared at p′0 =
1000kPa.

F (e) = (1 + e)3 F (e) = N�
c
(1.186−e)2

1+e
F (e) = e−�

Strain range Cp n Cp n Cp n

 = 0.0001% 2315.00 0.54 2876.64 0.5452 138.08 0.5463
 = 0.0002% 1133.60 0.87 1411.28 0.8731 121.94 0.0.5937
 = 0.0003% 913.17 0.97 913.17 0.97 1294.29 0.9146
 = 0.001% 859.16 1 1071.06 1 51.24 1
 = 0.003% 830.01 1 1035.13 1 49.50 1
 = 0.01% 786.23 1 985.52 1 46.87 1
 = 0.03% 617.64 1 839.66 1 40.02 1

linear equations such that GsecF (e) = log(Cp) + nlog(p′). The void ratio function F (e) = N�
c
(1.186−e)2

1+e was considered
to determine Cp() and n() with Equation 4.2. Strain-dependent parameters, Cp() and n() are listed in Table 3,
in which the use of F (e) = N�

c
(1.186−e)2

1+e gives identical values of n() to those derived from using F (e) = (1 + e)3.
Numerical values of Cp() and n() reveal that choice of F (e) partly affect the strain-dependent parameters.

4.3. Evolution of particle interactions during shearing

Evolutions of micro-scale fabric during shearing were analysed, giving more understanding of macro-scale re-
sponses of granular materials. Use of a rose diagram was adopted to analyse stress-induced anisotropy on the material
fabric. Micro-scale data (i.e. contact number, contact forces and contact stiffness) are assembled within each bin of 10o
using each rose of 180o. The length of each bin has the information of the magnitude of the number of contacts which
are oriented in a range of direction. Particle-scale fabric anisotropy is analysed using three different planes (i.e. xy, xz
and yz planes), allowing changes in the stress-induced fabric during shearing to be analysed. A particulate emphasis is
placed on the analyses of the stress-induced fabric at three yielding points. Due to fabric isotropy at three yield points,
the normal force is almost isotropic for both samples when viewed on the horizontal plane as shown in Figure 9 and
Figure 10. Although contact force distributions slightly change at Y2, the stress-induced fabric becomes remarkably
when viewing the degree of stress anisotropy at Y3 for the RMD samples. The normal force increases significantly in
the direction of the principal stress, while a drop in the normal forces is observed for bins with angles varying from
45o to 135o. As expected, the patterns of normal force distributions are almost the same for both xz and yz planes.
Regarding the evolution of forces at contacts for the RML samples, less anisotropy of material fabric is observed than
the RMD samples; however, preferential orientation is observed at Y3. Moreover, more forces are observed in the
directions of the principal stress. These analyses reconfirm that the fabric structure is almost unchanged when samples
deform elastically, regardless of the sample density.

Another quantity that can be used to assess changes in material structure is the second-order fabric tensor. This
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Figure 9: Evolutions of the normal force distributions during shearing, with projections onto the xy, xz and yz planes,
respectively for the RMD samples that was sheared at p0=1000 kPa: (a) Y1; (b) Y2; and (c) Y3.

Figure 10: Evolutions of the normal force distributions during shearing, with projections onto the xy, xz and yz planes,
respectively for the RML samples that was sheared at p0=1000 kPa: (a) Y1; (b) Y2; and (c) Y3.

term can be used to determine the dominant orientation of contact distributions in the sample as well as the extent of
any bias in the contact orientations. The second-order fabric tensor (Φij) is given by the following expression (Satake,
1982):

Φij =
1
Nc

c=Nc
∑

c=1
nci n

c
j (7)

where nci is the contact normal orientation for contact i andNc is the total number of contacts in the granular assembly.
The ratio of Φxx with respect to Φzz may provide a useful quantity to assess changes in anisotropic fabric with

the shear deformation. The fabric anisotropy is likely to remain unchanged during the initial stages of shearing. As
 increases, a reduction in Φxx∕Φzz is observed, revealing a rise in degree of fabric anisotropy due to reorientation
of the contacts in both more contact in the z− direction. The nature of the variation in Φxx∕Φzz with  is somewhat
similar to that of the variation in Gsec with  (see Figure 11). Reduction in Φxx∕Φzz occurs at a slightly higher strain
level. However, reductions in bothΦxx∕Φzz and Gsec are observed in zone 2. The changes in contact orientations that
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result in measurable variations in the sample fabric were assessed. As the samples were sheared along the stress path
in which lateral stress is kept constant and only vertical stress is increased, and so the fabric Φxx∕Φzz variation is of
interest. The fabric is nearly unchanged so long as the behaviour of the system is elastic within zone 1 and zone 2; the
ratio Φxx∕Φzz decreases as the stress state move towards the yield 3 point.

Figure 11: Linking macro-scale yield to the second-order fabric tensor ratio Φxx∕Φzz for the RMD sample: (a) p′0 = 50kPa;
(b) p′0 = 300kPa; and (d) p′0 = 1000kPa
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Analyses of normal stiffness are made, giving supplement for changes in stress-induced anisotropy at yield points.
It is clear from Figure 12 that normal contact stiffnesses are oriented isotropically on the horizontal plane. However,
the degree of anisotropy is observed at Y3. As expected, the pattern of contact stiffness distribution is identical to that
of the force orientations. In contrast, less preferential orientation is exhibited for the RML sample as shown in Figure
13, indicating the density-dependent fabric during shearing.

Figure 12: Evolutions of the normal contact sti�ness distributions during shearing, with projections onto the xy, xz and yz
planes, respectively for the RMD samples that was sheared at p0=1000 kPa: (a) Y1; (b) Y2; and (c) Y3.

Figure 13: Evolutions of the normal contact sti�ness distributions during shearing, with projections onto the xy, xz and yz
planes, respectively for the RML samples that was sheared at p0=1000 kPa: (a) Y1; (b) Y2; and (c) Y3.

It is widely accepted that the link between macro-scale yield and particle scale interactions is dependent upon
many factors, the sample density, the stress paths and mean effective stress. Therefore the DEM samples considered
had different initial density states. The positions of the yield surfaces were identified from the overall load:deformation
behaviour, just as in a laboratory test. The overall sample responses observed in these DEM simulations allow size and
positions of the sub-yield surfaces largely depend upon the sample density to be investigated.Evolution of yield surfaces
of the RMD sample with the initial confining pressure was shown in Figure 14, reconfirming that sub-yield surfaces
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are stress-dependent. In addition, both samples were sheared at an initial confining pressure of p′0 = 1000kPa. The
procedure that three yield points are located is the same as that previously described for both samples being sheared
along the conventional stress paths. Illustrations of the yield surfaces are shown in Figure 15 where the yield loci are
dependent on the stress path. This feature is in excellent agreement with experimental results on sand and clay (Jardine,
1992; Smith et al, 1992; Kuwano and Jardine, 2002).

Figure 14: Evolution of yield surfaces of the RMD sample with the initial con�ning pressure: (a) p′0 = 50kPa; (b)
p′0 = 300kPa; and (c) p′0 = 1000kPa.

Figure 15: Dependency of sub-yield surfaces on the sample density: (a) RMD samples being sheared at p′0 = 1000kPa;
and (b) RML samples being sheared at p′0 = 1000kPa.

4.4. Evolutions of dynamic responses during triaxial shearing

Investigations into evolutions of the shear wave velocities with strain levels were made for both the RMD and RML
samples, allowing strain-dependent dynamic stiffness to be explored. Figure 16a shows a comprehensive change in
S-wave signals recorded on two rigid walls when the strain level increases, in which the first peaks of the input and
output signals tend to reduces when �a varies from 0.0002% to 0.18%, followed by an expansion of the first peak of
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receiving signals. This indicates that the shear wave velocity increases to its peak, after which there is a drop in the
magnitude of shear wave velocity. Figure 16b shows changes in the time-domain responses on two rigid walls for
the RML samples at different strain levels. Although evolutions of the first-peak responses of S-waves with times are
identical to those of the RMD sample, the travel time which is inferred from the first two peaks of signals reduces as the
strain level increases. For all cases considered, variations in the cross-correlation signals computed from time-domain
responses with time form the same pattern as those of the time-domain responses on two rigid walls. These feature
agree very well with experimental work on glass ballotini spheres reported by Otsubo (2016).

Figure 16: Evolutions of S-wave and P-wave responses for samples that were sheared at p0=1000kPa: (a) S-wave responses
on the rigid walls for the RMD sample; and (b) S-wave responses on the rigid walls for the RML sample.
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In addition, analyses of the dependency of the gap between the dynamic stiffness and the static stiffness on the
sample density and the initial confining pressure were made using DEM dataset. At each confining stress state, a stress
probe of 1kPa was used for all samples. These small stress probes aimed at applying very small strain increments so
the equivalent stiffnessGequ = �q∕��s could be compared with the stiffness from shear wave velocities (GV s = �pV 2s ).
The data obtained confirmed that secant stiffness calculated from the stress-strain relationship is almost the same
stiffness from dynamic methods for the dense sample as shown in Figure 17. However, observations show that, in
contrast to dense specimens, stiffnesses derived from shear wave velocities are about 60% to 70% higher than those
from the quasi-static loading for the loose sample. It should be noted that Burland’s data (1989) revealed that the
stiffness measured by in situ dynamic tests is about 30% higher than those from stress probes at �a = 0.01%. Referring
to Figure 18 where variations in GV s with  is plotted for RML samples. Interestingly, the GV s is by far higher than
Gsec as  increases. Clearly, in the elastic region GV s remains unchanged while as widely accepted that Gsec starts
to decay when stress states move to zone 2, implying that gap between GV s and Gsec strongly depends on the sample
density when use of the peak-peak method is made to interpret the travel time that shear wave velocity is transmitted
through the sample. No evidence is found to explain why there exists the gap; however, motivation in seeking how this
gap depends upon the interpretative techniques. This provides some encouragements that various techniques should
be adopted to measure GV s.

It is widely accepted that although the investigation into sensitivity of dynamically measured stiffness to the inter-
pretative method has been the focus of prior research, little attention has been given to the comparison of between stati-
cally and dynamically measured stiffness at different strain levels. Threemethods which include the time-domainmeth-
ods, the cross-correlation method and the frequency domain method (O’Donovan, 2013; Nguyen, 2020) are adopted
to estimate the shear wave velocities.

4.5. Evolutions of energy dissipation during triaxial shearing

The main purpose here is to observed energy dissipation during shearing for both RMD and RML samples. The
question raised is to how energy dissipation evolves within each zone (Jardine, 1992). If, at the contact i, (f �+Δtt )

is equal to or exceeds �pf �n , the sliding happens. This results in the dissipation of energy which is calculated as a
function of the average tangential force within in a time increment Δt, (f �+Δtt +f �t )∕2 where the increment of tangent
displacement is ��t as follows:

�E�f =
f �+Δtt + f �t

2
��t (8)

In DEM simulations, the particle’s position and all the force components at each contact are identified in a simple
manner, fromwhich the relative increment of tangent displacement, ��t within a chosen timestep,Δt can be determined
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Figure 17: Discrepancies between statically measured sti�ness and dynamically measured sti�nesses for RMD samples
being sheared at di�erent con�ning pressures: (a) p′0 = 50kPa; (b) p

′
0 = 300kPa; and (c) p′0 = 1000kPa.

as ��t = (f �+Δtt − f �t )∕kt. Energy for each time-step must be calculated as the tangent stiffness as the normal force
evolves. As stated by Hanley et al. (2018), the frictional dissipation energy is accumulated as

�E�f = �E
�−1
f + �E�f (9)
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Figure 18: Discrepancies between statically measured sti�ness and dynamically measured sti�nesses for RML samples
being sheared at di�erent con�ning pressures: (a) p′0 = 50kPa; (b) p

′
0 = 300kPa; and (c) p′0 = 1000kPa.

A process to calculate this energy is implemented in the LAMMPS code used here. Hanley et al. (2018) stated
that the boundary work input and the friction energy dissipated are almost equal during triaxial shearing. This means
that much of the work input transfers into dissipated energy through sliding at the contacts. This finding agrees well
with the assumption of Schofield and Wroth (1968) that plastic work is dissipated by sliding. The energy associated
with the normal force is the normal component of strain energy; the energy related to a relative increment of tangent
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displacement is called the tangential component of strain energy.
The normal force, Fn and the normal overlap, �n give the normal strain energy that can be calculated as follows:

Esn = ∫

�n

0
Fnd�n = ∫

�n

0

4Gpre
3(1 − �p)

�
3
2
n nd�n =

2
5
|Fn|�n (10)

A strain energy component arises from the tangential force that does not cause sliding occurred at the contact (i.e.
Ft < Fn∕�pp) and if the relative increment of tangent displacement at the contact for one time-step is �t, the tangential
strain energy can be calculated as follows:

Est = Ft�t =
f �+Δtt + f �t

2
�t =

|

|

|

|

|

|

f �+Δtt + f �t
2

|

|

|

|

|

|

|

|

|

|

|

|

f �+Δtt − f �t
kt

|

|

|

|
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|

(11)

Hanley et al. (2018) showed that the shear strain energy is two orders of magnitude lower than the normal strain
energy. An assessment of the error in the energy balance was first made to provide a check on the numerical stability
as noted as O’Sullivan (2011b) and Hanley et al. (2018). Analysis of the error for the RMD sample that was sheared
at p′0 = 1000kPa is shown in Figure 19 where the magnitude of such error in energy balance which was divided by
boundary work is relatively small (almost zero) at large-scale levels, confirming that the stability of all simulations is
satisfied.

Figure 19: Error in the energy balance expressed as a percentage of the boundary work against axial strain (%) for the
samples that were sheared at p′0 = 1000kPa: (a) the RMD sample: linear scale; (b) the RMD sample: logarithm scale; (c)
the RML sample: linear scale; and (d) the RML sample: logarithm scale.

Hanley et al. (2018) analysed the evolution of energy during shearing, with a focus on the comparison of energy
dissipation due to sliding with the boundary work. Their DEM data confirmed that both energies are almost equal. To
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further understanding how the boundary work is dissipated through particle movement and rearrangement and due to
sliding at the contacts, these individual energy components are analyzed within each of the zones proposed by Jardine
(1992). Noting that the terms Z1, Z2 and Z3 are denoted as zone 1, zone 2 and zone 3, respectively. Figure 20a
confirms that friction and boundary work, Bw are almost the same for the RMD samples; however, a gap appears when
stress states are within zone 3. The normal component of the strain energy stored at the contacts shown in Figure 20c
can explain this gap between the frictional dissipation and boundary work. The boundary work can be decomposed
into the volumetric work (i.e. Vw) and the distortional work (i.e. Wd), and the evolution of these energies are plotted in
Figure 20b where different trends for such energies are observed, most probably due to shrinkage of the sample volume
while there is an increasing in the shear strain. Figure 20d shows that kinematic energies are almost zeros within zone
1 and zone 2, with a slight evolution in the material structure.

Figure 20: Macro-scale and micro-scale energy during shearing for the RMD sample that was sheared at p′0 = 1000kPa
(a) friction and boundary work; (b) volumetric and distortional work; (c) strain energy; and (d) kinetic energy.

The evolution of each energy component for the RML sample was shown in Figure 21 where a smaller gap between
the boundary work and friction is observed, most probably due to the smaller strain energy stored at the contacts in
comparison with the RMD case. Although all the energy components follow the same trend as for the RMD sample,
the magnitude of each energy component is slightly smaller for the RML sample. As expected, the translational energy
is slightly higher than that of the RMD sample; however, less energy is required for volumetric deformation because
of the dilatancy.

The variation in the patterns of energy dissipation in the RMD samples in energy components with confining
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Figure 21: Macro-scale and micro-scale energy of the compression triaxial test for the RML sample that was sheared at
p′0 = 1000kPa (a) friction and boundary work; (b) volumetric and distortional work; (c) strain energy; and (d) kinetic
energy.

pressure is shown in Figure 22, indicating the density-dependent and stress-dependent volumetric and distortional
work. Moreover, the strain energy depends on the confining pressure but its variation is relatively small, confirming
that almost the boundary work is transferred into the friction. Allied to tracing energy component for the RMD sample,
analyses of the evolution of the energy components were made for the RML sample. Figure 23 exhibits that the energy
component of the RML sample has the same pattern as those of the RMD sample.

4.6. Effect of particle size distribution on the degradation of stiffness with increasing strain

Figure 24a shows reductions inEsec andGsec for the samples with Cu = 2 and Cu = 3. Numerical results show that
the sample with the higher value of Cu has a smaller magnitude of Esec . Values of both Esec and Gsec at small-strain
levels show the relationship of Esec = 2(1 + �)Gsec , with � < 0.5. Figure 25a shows degradations of Esec and Gsec
with the shear strain for the sample with Cu = 2. Two values of interparticle friction, i.e. �p = 0.2 and �p = 0.3 were
used in the isotropic compression phase, in which the samples were loaded to a mean effective confining pressure of
p′0 = 1000kPa. Numerical results reveal that the sample with a higher value of the interparticle friction has a lower
value of shear stiffness. In addition, it is observed from Figure 25b that as Cu increases, both Esec and Gsec reduce.

In addition, an appraisal of the influence of interparticle friction on the shear stiffness was made by adopting three
different values of �p in order to generate samples with different densities. Three values were adopted in the isotropic
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Figure 22: Evolution of energy components for the RMD sample: (a) p′0 = 50kPa: friction, boundary work, volumetric and
distortional work; (c) p′0 = 50kPa: strain energy; (c) p′0 = 300kPa: friction, boundary work, volumetric and distortional
work; and (d) p′0 = 300kPa: strain energy.

compression to an isotropic mean effective of pressure p0 = 1000kPa. It is shown in Figure 26 that samples with the
use of higher values of �p have lower the shear modulus.

Figure 27 shows the stiffness degradation curve for the samples with Cu = 5 and Cu = 6. Interestingly, the shape
of the two samples is almost identical, indicating that increases in the Cu for this linear-graded samples PSD might
does not affect the non-linear stiffness-strain relationship when Cu increases beyond a certain value.

Although the overall response and energy dissipations during shearing depend upon the values of Cu, these issues
have received little attention. Figure 28 shows how the energy dissipation evolves with the shear strain and the depen-
dency of energy dissipations of the sample on Cu. DEM results show that the sample with a lower value of Cu has
a higher energy dissipation. As expected, when the value of Cu increases, the amount of the energy dissipation and
the strain energy stored at the contacts reduce, most probably likely that there is little sliding associated with the finer
particles. The gap between the work input and the frictional energy tends to reduce as Cu increases due to the smaller
amount of energy stored at the contact. Moreover, for the cases ofCu = 2 andCu = 3 energy dissipated through sliding
at contacts is almost identical; however, slight drops in both components of strain energy are exhibited. For samples
with Cu = 5 and Cu = 6, the friction and the input work are almost equal, along with the same amount of strain energy
as shown in Figure 28c and 28d.
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Figure 23: Evolution of energy components for the RML sample: (a) p′0 = 50kPa: friction, boundary work, volumetric and
distortional work; (c) p′0 = 50kPa: strain energy; (c) p′0 = 300kPa: friction, boundary work, volumetric and distortional
work; and (d) p′0 = 300kPa: strain energy.

Figure 24: E�ect of Cu on the sti�ness degradation curve, i.e. the variation in sti�ness with shear strain, for loose samples
with Cu = 2 and Cu = 3: (a) Esec ; and (b) Gsec .

The curvature number was calculated for samples with various values of Cu and then checked against the formula-
tion introduced by Oztoprak and Bolton (2013). Numerical results were reported in Table 4 where m decreases as Cu
increases, agreeing very well with the Equation proposed by Oztoprak and Bolton (2013). However, the DEM dataset
gives a slightly higher value of m. Interestingly, when Cu increases to a limiting value, the value of m is likely to be
unchanged. This provides support for the almost identical stiffness degradation curves for the samples with Cu = 5

and Cu = 6 as shown in Figure 27.
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Figure 25: E�ect of Cu on the sti�ness degradation curve for samples that was sheared at p′0 = 1000kPa: (a) Esec and
Gsec for the samples with Cu = 2; and (b) Esec and Gsec for the samples with Cu = 3.

Figure 26: E�ect of �p on the sti�ness degradation curve for the loose, medium and dense samples with Cu = 3 that were
sheared at p′0 = 1000kPa.

5. Conclusion

The DEM simulations can model the highly complex behaviour of granular materials, allowing strain-dependent
stiffness and stress-dependent stiffness to be studied. The use of hyperbolic expressions allows an S: shape of the
stiffness degradation curve to be captured well. With a few parameters in the expressions, the nonlinearity of stiffness
in granular materials can be modelled. Numerical results reveal that the inclusions of micro-scale data (i.e. the coor-
dination number) is likely to give a more accurate void ratio correction function when compared with the traditional
function used in the interpretation of laboratory test data where particle level information is unavailable. Values of
Cp() and n() in Gsec = Cp()F (e)p′n() are calculated for various ranges of strain level, producing the fundamental
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Figure 27: The sti�ness degradation curve for the loose samples with Cu = 5 and Cu = 6 sheared at p′0 = 1000kPa.

Table 4

Dependency of the curvature parameter, m on the samples with various values of Cu.

Cu m = C−0.075
u m approximated from DEM data

Cu = 2 0.9493 1.35
Cu = 3 0.9209 1.30
Cu = 5 0.8863 1.05
Cu = 6 0.8743 1.05

knowledge of the non-linear stiffness of granular media. In addition, the inclusions of micro-scale data (i.e. the coor-
dination number) will likely give a more accurate void ratio correction function when compared with the traditional
function used in the interpretation of laboratory test data where particle level information is unavailable.”

Using the peak-peak method, both methods render almost the same values of stiffness when granular behaviour is
elastic (within zone 2); however, the dynamically measured stiffness is far larger than the statically measured stiffness
for the loose sample. The magnitude of the dynamic stiffness remains almost unchanged in zone 1, followed by a
steady increase to its peaks that occurs in zone 3 before experience of a drop in its magnitude. This is in contrast
to the trend that the statically measured stiffness is almost constant in zone 1 and then drops steadily when strain
levels increase. Evolution of the coordination number with increasing strain levels is attributable for the trend that
the dynamic stiffness varies as the shear strain increases. Another striking feature is that the constrained modulus
measured from the compression wave velocity continues to increase with increasing strain levels for the loose sample;
however, the variation in the constrained modulus with strain level has the same trend as that of the shear modulus for
the dense sample. In addition, the discrepancy between the shear stiffness determined using both methods is likely to
be less dependent on the stress level. However, these gaps become slightly smaller at lower confining stress. Changes
in the input frequency make very small alterations in the magnitude of dynamic stiffness. Discrepancies between
statically and dynamically measured stiffness depend largely on the sample’s density. Moreover, It was observed that
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Figure 28: Dependency of friction and strain energy on the PSDs using �p = 0.30 during shearing: (a) Cu = 2; (b) Cu = 3;
(c) Cu = 5; and (d) Cu = 6.

variations in dynamically measured stiffness follow the same trend as changes in the coordination number as the shear
strain increases. It is reasonable to conclude that shear wave velocities depend on the average contact per particle.
The variation in the ratio Φxx∕Φzz also follows a similar trend to the variation in dynamically measured stiffness with
shear strain.

Several DEM simulations that consider effects of the coefficient of uniformity (Cu) on the non-linear behaviour of
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granular materials are performed, arriving at some key observations that: (i) samples with lower values of Cu have
higher stiffness at small-strain levels; (ii) a higher amount of work should be input for samples with coarse particles to
attain a particular strain level; (iii) more energy dissipation is observed for samples with a lower Cu value.
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