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Abstract

This dissertation focusses on the investigation of both the fundamental and the phe-

nomenological features of non-supersymmetric string theories based on supersymmetry

breaking by anti-D-branes. The study of non-supersymmetric string theories is shedding

light on an important corner of the string landscape that might ultimately explain the

reason why, so far, supersymmetry has not been detected in the observed universe.

The first line of research aims at enriching the understanding of misaligned supersymme-

try in String Theory. Misaligned supersymmetry consists in cancellations between bosonic

and fermionic contributions at different energy levels in the whole string spectrum. This

is interpreted as a physical mechanism that helps visualising the origin of the finiteness of

string constructions, otherwise motivated based on the behaviour of the theory under modu-

lar transformations. A review is presented of how misaligned supersymmetry in closed-string

theories leads to a cancellation between bosons and fermions even in non-supersymmetric

scenarios. Then, it is shown that an entirely analogous cancellation can take place in

non-supersymmetric open-string theories, too, by studying anti-D-branes placed on top of

O-planes. These ideas are then developed via a systematic analysis of the net physical degen-

eracies at each energy level, studying their non-trivial cancellations and relating them to the

modular properties of the partition function. Eventually, the whole concept of misaligned

supersymmetry in String Theory is analysed in a mathematically rigorous way, showing the

details of how the boson-fermion cancellations can take place in physical quantities, and the

role of misalignment in all known 10-dimensional tachyon-free non-supersymmetric string

constructions is finally discussed.

The second line of research, instead, is devoted to a phenomenological investigation and

description of a class of quasi-realistic non-supersymmetric vacua including anti-D-branes.

In particular, it discusses model-building scenarios featuring intersecting anti-D3- and D7-

branes. Effectively, supersymmetry is broken spontaneously, despite having no scale at

which sparticles appear and standard supersymmetry is restored. If the branes are placed

on singularities at the tip of warped throats in Calabi-Yau orientifold flux compactifications,

they may give rise to quasi-realistic particle spectra, closed- and open-string moduli stabil-

isation with a Minkowski/de Sitter uplift, together with a geometrical origin for the scale

hierarchies. A derivation is given of the low-energy effective field theory description for such

scenarios, i.e. a non-linear supergravity theory for standard and constrained supermulti-

plets, including soft supersymmetry-breaking matter couplings. The effect of closed-string

moduli stabilisation on the open-string matter sector is worked out, incorporating non-

perturbative and perturbative effects, and the mass and coupling hierarchies are computed

with a view towards phenomenology.
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1 INTRODUCTION

A search for a fundamental theory that is capable of describing nature is intrinsic to the

defining features of Physics. The observation that several phenomena can be described and

explained by relying on the understanding of only a few essential principles leads one to

always wonder what the fundamental structure of the physical world is and to try to lead

as many physical laws as possible back to a more fundamental level.

On the one hand, based on the basic principles of Quantum Mechanics and Special

Relativity, Quantum Field Theory unifies the description of three of the four known funda-

mental forces of nature. These take place among the elementary particles that constitute

the world and include atomic and subatomic interactions. In fact, the Standard Model

of Particle Physics has undergone an extraordinary series of experimental confirmations,

culminating in the observation of the Higgs boson. On the other hand, General Relativity

is the theory of gravitation, the other fundamental observed force. Along with providing

a description of the spacetime itself and how things move through it, compatibly with as-

tronomical observations too, this theory also describes phenomena such as black holes and

gravitational waves, and it lays the basis for the study of the cosmological evolution of

the Universe. However, despite an overwhelming experimental evidence of success in the

description of the fundamental interactions of the observed world, it is still unknown how

to reconcile these two essential cornerstones. In technical terms, the core issue is that a

quantum theory of gravity is not renormalisable. Further open issues include the explana-

tion of the various scale hierarchies appearing in nature, coherent descriptions of inflation

in the early Universe as well as of the current-time accelerated expansion of the latter, and

a satisfactory modelling of dark matter. A proposed way-out that in principle is believed

to be able to explain all these open questions is String Theory.

String Theory assumes the fundamental constituents of the world to be 1-dimensional

strings, rather than point-like particles. Astonishingly, this is sufficient to define a theory

whose intrinsic excitations represent a graviton as well as a huge set of particles that may

well include the observed ones. Moreover, for its own consistency, it determines the number

of spacetime dimensions, ten, and, in principle, it fixes dynamically in the vacuum of the

theory all the numerical values of the particle coupling constants, which instead are in-

put parameters in the Standard Model and in General Relativity. Despite being extremely

promising and appealing, though, String Theory works based on a very complex set of

physical and mathematical tools that make it hard to understand its reach and its limita-

tions. In particular, the choice of which string construction to consider and of the details

of the compactification to four dimensions, in the lack of reasons to select them based on

1



Chapter 1. Introduction

reasons of internal coherence, gives a virtually unlimited array of possibilities that should

be considered to reconcile the theory with the observed world. This means that there is

room for all sorts of analyses, but also that it is not extremely clear which is the direction

to be pursued.

The aim of String Phenomenology is to investigate over the connection between the

core string-based theory presumed to be underlying the universe and the observations of

the world. This requires both control over the internal consistency of the theory and the

capability of the theory to generate realistic interactions in the effective four-dimensional

description. The problem of internal consistency of such constructions involves keeping

all the necessary approximations under control. On the other hand, adherence to the

observed world includes more specifically the need for a particle spectrum that resembles

the standard-model one, possibly accommodating for exotic particles, such as those that

could constitute the inflaton and dark matter, and for instance the attainability of a vacuum

energy that is compatible with the tiny observed cosmological constant, requiring a theory

in which all the fields are stabilised in a stable or metastable vacuum. The feasibility of a

vacuum in which tree-level and quantum corrections from all particles result in tiny scales

compared to the scale governing Quantum Gravity is a particularly tough issue to solve

in ordinary Quantum Field Theory, since an intermediate cutoff scale is expected to be

involved, which tends to drive all the standard-model scales up to its value, but String

Theory is presumed to contain the solution of this hierarchy problem, too. Traditional

approaches to solve the hierarchy problem involve the concept of supersymmetry, i.e. an

extension of the Poincaré algebra that also includes a symmetry between the bosons and the

fermions of the theory. In fact, however, mere supersymmetric extensions of the Standard

Model are still hardly compatible with for instance a tiny cosmological constant, since

the physical cancellations between bosonic and fermionic terms that could make sense of

the hierarchies stop working exactly once supersymmetry is broken, which nevertheless

is necessary to reconcile with real-world observations. Supersymmetry can be postulated

within String Theory, too, and it is believable that this may be a key towards understanding

this puzzle. More generally, as the observed world contains both bosons and fermions, a way

to generate them in the string-derived particle spectrum is by postulating supersymmetry.

Of course, supersymmetry is not observed in present-day experiments. This means that,

if it exists at all, it is a symmetry that is broken in the vacuum, and ultimately a realistic

theory must reproduce a non-supersymmetric vacuum. As follows from this introduction,

the fundamental motivation that has driven the development of the research presented in

this work is the exploration of non-supersymmetric string theories. In these theories, loosely

speaking, supersymmetry is present at the worldsheet level, i.e. at the level where the 1-

dimensional string is defined, but, in the effective theory that comes out of them, they lack

the traditional features of supersymmetric constructions, i.e. in particular a one-to-one cor-

respondence between all the bosonic and all the fermionic particles of the theory. An aspect

that renders such theories particularly interesting consists in the fact that the lack of space-

time supersymmetry bypasses the problem of understanding supersymmetry breaking at the

field-theory level, which is a typical source of tension between hierarchies and supersym-

metry breaking, and yet their defining features are understandable via the rich underlying

2



superstring-derived structure that characterises them, which leaves room for consistently

explaining the presence different characteristic energy scales. Another noteworthy common

aspect of non-supersymmetric string theories lies in the fact that they typically tend to

result in positive-energy vacua. Although this is a desirable characteristic of a string-based

theory aimed at describing the observed universe – since a de Sitter vacuum is an expla-

nation to cosmological observations of a universe undergoing an accelerated expansion –,

it is a difficult feature to achieve in string-based constructions. Understanding the extent

to which such a vacuum can be reached consistently within a purely stringy framework is

therefore advisable, and non-supersymmetric string theories are good candidates for this.

There is only a small number of known 10-dimensional superstring models with no

tachyons and they can be distinguished according to the number of supersymmetries they

possess [5]. The supersymmetric string theories are type IIA and type IIB theories [6,7], i.e.

closed-string theories with no gauge groups, the type I theory [8], i.e. a theory with closed

and open strings and the gauge group SO(32), and the heterotic E8 × E8- and SO(32)-

theories [9–11], i.e. closed-string theories with the eponimous gauge groups. In type II

theories, gauge groups can still arise in the presence of branes and the associated open

strings. In all these theories, some mechanism to break all the supersymmetries must be

accounted for, in such a way that the corresponding low-energy four-dimensional theory is

not effectively supersymmetric. The inherently non-supersymmetric string theories are the

heterotic SO(16)×SO(16)-theory [12, 13], with the eponymous gauge group, the Sugimoto

model [14], with a gauge group USp(32), and the type 0’B theory [15–17], with a gauge

group SU(32). In these cases, too, some scenario for a compactification to a realistic four-

dimensional theory should eventually be constructed. A key difference of the Sugimoto

model with the other non-supersymmetric models is the presence of a massless gravitino in

its spectrum. This is related to the fact that supersymmetry is only non-linearly realised,

and it can be interpreted as a symmetry broken at the string scale. This is the simplest

instance of a scenario that goes by the name of ‘brane supersymmetry breaking’ [14, 18–

26]. The breaking of supersymmetry in these models originates in the fact that, although

individually their constituents are supersymmetric, they preserve different supersymmetries

with respect to each other. The other non-supersymmetric theories, instead, are more deeply

not supersymmetric, not possessing a massless gravitino.

In loose terms, this work focusses on an enrichment of the understanding of superstring

theories where the reason for the lack of supersymmetry lies in the presence of specific

brane configurations, similarly to the case of brane supersymmetry breaking hinted above.

In particular, Dp-branes and anti-Dp-branes are intrinsic objects of type I and type II

theories, and they can be imagined as (p+1)-dimensional spacetime hypersurfaces to which

the endpoints of open strings are attached. These degrees of freedom happen to partially

break the supersymmetries generated by the closed strings due to their boundary conditions,

i.e. in other words they preserve only certain supersymmetries. At the same time, note that

closed strings, among other fields, generate the graviton, and they are always presents. Even

for the latter, symmetries of the worldsheet or of the internal space can reduce the number

of supersymmetries that are being preserved. Inherently with these facts, constructions

exist where the supersymmetry preserved by the closed-string sector is not realised by the

3



Chapter 1. Introduction

D-brane setup. This results in a theory which is effectively non-supersymmetric. Another

aspect that renders anti-D-branes remarkable for model-building consists in the fact that

they provide a positive contribution to the vacuum energy.

An outlook on the organisation of this thesis is below.

• In an attempt to provide a relatively self-contained contextualisation of the work

presented later on, chapter 2 reviews a few of the basic ideas of String Theory and

String Phenomenology. In particular, the core aspects that are reviewed are the

properties of string partition functions, typical compactification scenarios and the

algebraic structure of anti-D-brane supersymmetry breaking.

• Based on refs. [2, 3], chapter 3 interprets the breaking of supersymmetry by anti-D-

branes on O-planes in terms of an asymptotic supersymmetry characterising the whole

spectrum of string states. This idea of a ‘misaligned supersymmetry’ characterising

non-supersymmetric string theories [27, 28], present in the literature with reference

to closed-string models, is reviewed and extended to open-string models. Taking

the heterotic SO(16)×SO(16)- and the anti-Dp-brane/Op-plane theory as notable

examples, by a detailed analysis of the Hardy-Ramanujan-Rademacher expansion for

the partition-function coefficients, it is shown that systematic cancellations – similar

to the standard supersymmetry-like boson-fermion cancellations – take place involving

the whole towers of bosonic and fermionic states, allowing for a physically intuitive

understanding of the finiteness of for instance the one-loop cosmological constant.

• Based on ref. [1], chapter 4 analyses theories where supersymmetry is broken by anti-

D-branes in a purely low-energy-based point of view. This has been motivated by

the interest in formulating a description of non-supersymmetric anti-D3-/D7-brane

constructions at orbifold singularities [29, 30] using the standard supergravity tools

by embedding the degrees of freedom of the supersymmetry-breaking sectors in con-

strained superfields [31,32]. The result is an instance of a phenomenological construc-

tion where the standard-like model fields belong to constrained supermultiplets and

in a characterisation of the orders of magnitude that emerge in this construction for

a KKLT-like moduli stabilisation.

• To conclude, chapter 5 presents a recap of the main results that have been found and

overviews future related prospects.

Both lines of research address the problem of enriching the understanding of anti-D-brane

supersymmetry breaking. The first one does so in quite a formal way, inspecting the funda-

mental and mathematical nature of anti-D-brane supersymmetry breaking and, actually, of

non-supersymmetric string theories more in general. The second one, instead, takes on quite

the opposite direction, exploring in a practical way, as required by the number of approxima-

tions needed to carry on calculations mimicking a presumedly quasi-realistic construction,

how such theories can be formulated in purely phenomenological terms. Their common

feature, i.e. anti-D-brane supersymmetry breaking, is at the core of several present-day

studies and this thesis is aimed at adding new insights on both its fundamental nature and

on its impact on real-world modelling proposals.
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2 BASICS IN STRINGS AND D-BRANES

This chapter overviews a few core aspects of string theory, with the aim of introducing in

a relatively self-contained way most of the topics that are going to be discussed in the core

part of the thesis. This will help the fundamental ideas to lie on coherently well-defined

grounds and the notation to be always clear.

Starting from the superstring worldsheet action, the chapter introduces the general

mode expansions and partition functions for both closed and open type IIB strings in

section 2.1. Further, the basic features of string compactifications are overviewed, with

particular reference Calabi-Yau orientifolds in the presence of warping, in section 2.2. After

this, focussing on the open-string sector, it reviews further basic facts about D-branes in

section 2.3 and, finally, it motivates the use of constrained multiplets for brane-induced

supersymmetry breaking in section 2.4.

2.1 RNS-superstrings and Partition Functions

This section provides a short introduction to supersymmetric strings, needed to introduce

the notation and set the stage for later discussions, and it is mostly based on refs. [33, 34];

excellent introductions are also refs. [35–37]. Being a core subject of string theory, only a

brief (but essentially self-contained) overview is presented here.

2.1.1 Classical Superstrings

String theory can be introduced as a self-consistent theory unifying gravity and quantum

mechanics in a simple framework, starting from the only assumption that the fundamental

constituents of the universe are relativistic 1-dimensional strings to be quantised and not

point-like particles. As such, though, bosonic string theory has two crucial issues: it is

tachyonic and it does not posses fermions. Therefore, it is not suitable for phenomenological

applications. A way to reach a more realistic scenario consists in formulating a theory which

is supersymmetric at the worldsheet level. Notice that supersymmetry in target spacetime

is not guaranteed to be there. This is the Ramond-Neveu-Schwarz superstring.

The Polyakov action describes a 2-dimensional string worldsheet Σ embedded in the

D-dimensional flat spacetime R1,D−1, with the (−,+D−1)-signature metric ηMN . Such an

embedding is defined by the coordinates XM = XM (ξα), where ξα = τ, σ. The action is

a generalisation of the Nambu-Goto action, which, generalising the wordline action of a

particle, represents the volume swept by the worldsheet, and is obtained by defining an

5



Chapter 2. Basics in Strings and D-Branes

auxiliary worldsheet metric hαβ = hαβ(ξ) with (−,+)-signature, in order to make calcula-

tions manageable. In order to have supersymmetry on the worldsheet, one has to introduce

a 2-dimensional Majorana spinor ψM (in components, this is ψMα̇ = (ψM+ , ψ
M
− )T ), which is

the superpartner of the coordinate XM , and a gravitino χα, which is the superpartner of

the graviton hαβ. The supersymmetric generalisation of the bosonic Polyakov action is the

Ramond-Neveu-Schwarz action

SRNS = −T
2

∫
Σ
d2ξ

√
−h

[
hαβ∂αX

M∂βX
NηMN + iψMρα∂αψ

NηMN

+iχαρ
βραψM

(
∂βX

N − i

4
χβψ

N
)
ηMN

]
,

(2.1.1)

where T is the string tension, defined in terms of the so-called Regge slope α′ as

T =
1

2πα′ . (2.1.2)

The worldsheet coordinates have a domain (τ/l, σ/l) ∈ R × [0, π[, where l is some charac-

teristic length of the spacelike extension of the string. The first line contains the kinetic

terms and the second line contains couplings which are necessary to ensure supersymmetry,

with the 2-dimensional γ-matrices representing the Clifford algebra {ρα, ρβ} = 2hαβ. The

RNS-action possesses the following symmetries: local supersymmetry, Weyl and super-Weyl

invariance, 2-dimensional local Lorentz transformations, worldsheet reparametrisations and

D-dimensional spacetime Poincaré transformations.

One can find the field equations via the principle of least action. Crucially, it is possible

to make use of the action symmetries to reduce the number of fields involved. In particular,

local supersymmetry, local Lorentz transformations and 2-dimensional reparametrisations

allow one to choose a gauge where the metric and the gravitino read

hαβ(ξ) = e2ω(ξ)ηαβ, (2.1.3a)

χα(ξ) = ραχ(ξ). (2.1.3b)

In this superconformal gauge, a Weyl and a super-Weyl transformations always allow one

to gauge away all the metric and gravitino degrees of freedom. Therefore, the RNS-action

in the superconformal gauge reads

SRNS = −T
2

∫
Σ
d2ξ

[
ηαβ∂αX

M∂βX
NηMN + iψMρα∂αψ

NηMN

]
. (2.1.4)

In the superconformal gauge, the dynamical field equations take the form

ηαβ∂α∂βX
M = 0, (2.1.5a)

ρα∂αψ
M = 0. (2.1.5b)

Before gauge-fixing, given the energy-momentum tensor Tαβ = −(2/
√
−h) δSRNS/δh

αβ and

its fermionic counterpart tα = −(2/
√
−h) δSRNS/iδχ

α, setting them to zero corresponds to

the field equations for the auxiliary fields. In the superconformal gauge, these read

Tαβ = T

[
∂αX

M∂βXM− 1

2
ηαβ
(
∂γXM∂γXM

)
+

i

4
ψMρβ∂αψM+

i

4
ψMρα∂βψM

]
= 0, (2.1.6a)

6



2.1. RNS-superstrings and Partition Functions

tα = T
[
ρβραψ

M∂βXM

]
= 0. (2.1.6b)

Notice that, imposing the spinor field equation (but not the scalar field equation), both

energy-momentum and its fermionic counterpart (in γ-matrix terms) are traceless, being

ηαβTαβ = 0, (2.1.7a)

ραtα = 0. (2.1.7b)

These are consequences of Weyl and super-Weyl invariance. One can also verify that these

fields also satisfy an on-shell continuity equation, i.e.

∂αTαβ = 0, (2.1.8a)

∂αtα = 0. (2.1.8b)

In the superconformal gauge, a general solution to the field equations (2.1.5a, 2.1.5b)

can be found in terms of the lightcone coordinates

σ± = τ ± σ. (2.1.9)

In fact, they read

∂+∂−X
M = 0, (2.1.10a)

∂±ψ
M
∓ = 0. (2.1.10b)

Before setting them to zero as a way to impose the constraints of eqs. (2.1.6a, 2.1.6b), it is

convenient to express the conserved currents in the new coordinates, i.e.

T±± = T

[
∂±X

M∂±XM +
i

2
ψM± ∂±ψ±M

]
, (2.1.11a)

t± = 2T
[
ψM± ∂±XM

]
. (2.1.11b)

For the fermionic term only the non-zero components are shown (i.e. (t±)± = t±, with

(t±)∓ = 0); on the other hand, the component T+− = iT [ψM+ ∂−ψ+M + ψM− ∂+ψ−M ]/4

vanishes on-shell. In these coordinates, it is also elementary to find the continutity equations

(which can be inferred from eqs. (2.1.8a, 2.1.8b) as well)

∂∓T±± = 0, (2.1.12a)

∂∓t± = 0. (2.1.12b)

These indicate that the currents are functions of only one lightcone coordinate, i.e. T±± =

T±±(σ
±) and t± = t±(σ

±).

In order to proceed to the quantisation of the problem, one needs to find the classical

brackets of the theory. For the superconformal-gauge action in eq. (2.1.4), one can define

the canonical momenta PM = δL/δẊM = TẊM and Πα̇M = δL/δψ̇Mα̇ = (i/2)TψMβ̇(Cρ
0
)β̇α̇

.

A little inspection shows that this system has the second-class constraint

Σα̇M = Πα̇M − i

2
TψMβ̇(Cρ

0
)β̇α̇

,
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Chapter 2. Basics in Strings and D-Branes

being its Poisson bracket with itself nonzero, but rather

MM α̇β̇
N (σ′σ′′) = {ΣMα̇(τ, σ′),Σβ̇N (τ, σ

′′)}P = iTδMN (Cρ0
)α̇β̇

δ(σ′ − σ′′).

One thus needs to substitute the Poisson brackets with the Dirac brackets.2.1 For the

lightcone coordinates in the lightcone gauge, these read

{XM (τ, σ′), PN (τ, σ
′′)}D = δMN δ(σ

′ − σ′′), (2.1.13a)

{ψM± (τ, σ′), ψN±(τ, σ
′′)}D = −iT−1δMN δ(σ

′ − σ′′). (2.1.13b)

A crucial point that should be discussed in detail concerns boundary conditions. In

order to derive the field equations written above, boundary terms from the action have to

be zero. In particular, assuming the variations to be zero at infinite distance in time, i.e.

δXM (τ, σ)|τ=τ ′,τ ′′ = 0 and δψM (τ, σ)|τ=τ ′,τ ′′ = 0, the variation of thr superconformal-gauge

action of eq. (2.1.4) gives a boundary term

δSB
RNS = −T

∫ τ ′′

τ ′
dτ
[
(δXM )∂σXM +

i

2

(
ψM+ (δψM+)− ψM− (δψM−)

)]∣∣∣σ=l
σ=0

.

To impose the condition δSB
RNS = 0, one encounters two different possibilities.

• The string is closed, and therefore the coordinates have some periodicity conditions.

In the bosonic sector, the boundary conditions must be periodic, i.e.

XM (τ, σ + l) = XM (τ, σ). (2.1.14)

In the fermionic sector, one can either have periodic or anti-periodic boundary condi-

tions, i.e.

ψM± (τ, σ + l) = e2πiϕ±ψM± (τ, σ), (2.1.15)

where periodic conditions, for ϕ± = 0, are called Ramond boundary conditions, while

anti-periodic conditions, for ϕ± = 1/2, are called Neveu-Schwarz boundary condi-

tions.

Poincaré invariance requires all the M -directions to have the same boundary con-

ditions. Nevertheless, the boundary conditions for the two spinors can be chosen

independently, therefore RR-, RNS-, NSR- and NSNS-boundaries are all possible.

• The string is open, and therefore the boundary terms cancel off independently at

each string end. In the bosonic sector, one has two possibilities, called Neumann and

Dirichlet boundary conditions, respectively, i.e.

∂σX
M (τ, σ)|σ=0,l = 0, (2.1.16a)

δXM (τ, σ)|σ=0,l = 0. (2.1.16b)

2.1For a theory with a complete set of second-class constraints σi with Poisson brackets {ϕi, ϕj}P = Mij ,

Dirac brackets are defined as {A,B}D = {A,B}P − {A, ϕi}P(M−1)ij{ϕj , B}P.
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2.1. RNS-superstrings and Partition Functions

Dirichlet boundaries require the string endpoints to be fixed and the locus of the points

where, instead, the endpoints can freely move – those with Neumann conditions – is a

Dirichlet-brane, or D-brane for short. If Dirichlet boundaries are imposed on a (p+1)-

dimensional spacetime, that defines a Dp-brane. This breaks Poincaré invariance down

to this hypersurface.

In the fermionic sector, one can choose among the boundary conditions ψM+ (τ, 0) =

±ψM− (τ, 0) and ψM+ (τ, l) = ±ψM− (τ, l), where only the relative sign is relevant. One

calls Neumann-Neumann directions those where2.2

ψα+(τ, 0) = ψα−(τ, 0), (2.1.17a)

ψα+(τ, l) = ηψα−(τ, l). (2.1.17b)

On the other hand, Dirichlet-Dirichlet directions are such that

ψṁ+ (τ, 0) = −ψṁ− (τ, 0), (2.1.18a)

ψṁ+ (τ, l) = −ηψṁ− (τ, l). (2.1.18b)

Finally, Neumann-Dirichlet and Dirichlet-Neumann directions, respectively, are de-

fined in such a way that

ψι+(τ, 0) = ψι−(τ, 0), (2.1.19a)

ψι+(τ, l) = −ηψι−(τ, l); (2.1.19b)

ψι+(τ, 0) = −ψι−(τ, 0), (2.1.20a)

ψι+(τ, l) = ηψι−(τ, l). (2.1.20b)

In all cases, the values η = +1,−1 originate the Ramond and Neveu-Schwarz sectors,

respectively.

The final step to perform consists in writing the general solutions to the field equations

(2.1.5a, 2.1.5b), i.e. eqs. (2.1.10a, 2.1.10b). Closed and open strings must be discussed

separately.

• For closed strings, in view of eq. (2.1.10a), the bosonic coordinate must be expressed as

XM (σ+, σ−) = XM
− (σ−)+XM

+ (σ+), and, to satisfy the periodic boundary conditions

of eq. (2.1.14), the right- and left-moving parts can be expanded, respectively, as

XM
− (σ−) = xM− +

pM

2T

σ−

l
+

i

2

1√
πT

∑
n∈Z∗

1

n
αMn e−2πinσ−/l, (2.1.21a)

XM
+ (σ+) = xM+ +

pM

2T

σ+

l
+

i

2

1√
πT

∑
n∈Z∗

1

n
αMn e−2πinσ+/l, (2.1.21b)

2.2These α-indices should not be confused with the generic worldsheet coordinates ξα, which will never be

used again in the following.
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where xM = xM− + xM+ is the center of mass position at time τ = 0, pM represents

the centre-of-mass momentum, and αMn and αMn are arbitrary Fourier coefficients;

moreover, Z∗ = Z \ {0}. Because the coordinates are real, xM and pM are also real

and the Fourier modes are such that

(αMn )∗ = αM−n, (2.1.22a)

(αMn )∗ = αM−n. (2.1.22b)

For future use, it is convenient to define the 0-modes as αM0 = αM0 = pM/
√
4πT .2.3

To satisfy eq. (2.1.10b), the fermionic coordinates must be such that ψM− = ψM− (σ−)

and ψM+ = ψM+ (σ+). In both cases, to satisfy the boundary conditions of eq. (2.1.15),

the functions can be expanded as

ψM− (σ−) =
1√
lT

∑
r∈Z+ϕ

bMr e−2πirσ−/l, (2.1.23a)

ψM+ (σ+) =
1√
lT

∑
r∈Z+ϕ

bMr e−2πirσ+/l, (2.1.23b)

where bMr and bMr are Fourier modes. Due the Majorana condition on the spinor,

these modes must be such that

(bMr )∗ = bM−r, (2.1.24a)

(bMr )∗ = bM−r. (2.1.24b)

Because the energy-momentum tensor and the fermionic current satisfy the continuity

equations (2.1.12a, 2.1.12b), one can define conserved charges. Given an arbitrary

smooth periodic function f = f(σ−) such that f(σ−) = f(σ− + l), the integral

L[f ] =
∫ l
0 dσ f(τ−σ)T−−(τ−σ) is a conserved charge, i.e. dL[f ]/dτ = 0, and similarly

for the fermionic current. Therefore, one can define the sets of conserved charges

Lm = (l/2π)
∫ l
0 dσ e−2πimσ/l T−−(0, σ) and Gr =

√
l/4π

∫ l
0 dσ e−2πirσ/l t−(0, σ), where

the time τ = 0 has been considered for simplicity, being them constant. Plugging in

the mode expansions in the expressions of eq. (2.1.11a, 2.1.11b), one finds

Lm =
1

2

∑
n∈Z

αMm−nαnM +
1

2

∑
r∈Z+ϕ

r bMm−rbrM , (2.1.25a)

Gr =
∑
n∈Z

αMn br−nM , (2.1.25b)

As a matter of fact, the physical constraints of eqs. (2.1.6a, 2.1.6b) translate into the

requirements

Lm = 0, (2.1.26a)

Gr = 0. (2.1.26b)

An analogous analysis applies for the left-moving terms too.

2.3This identification works if all directions are non-compact. For compact directions with periodicity

conditions, one has to consider different definitions which eventually lead to T-duality (see e.g. ref. [38]).
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2.1. RNS-superstrings and Partition Functions

• For open strings, there are different solutions depending on the combination of the

boundary conditions at the two endpoints. As far as worldsheet bosons are concerned,

one can have the mode expansions

NN: Xα = xα +
pα

T

τ

l
+

i√
πT

∑
n∈Z∗

1

n
ααn e

−iπnτ/l cos
(πnσ

l

)
, (2.1.27a)

DD: Xṁ = xṁ0 + (xṁ1 − xṁ0 )
σ

l
+

1√
πT

∑
n∈Z∗

1

n
αṁn e−iπnτ/l sin

(πnσ
l

)
, (2.1.27b)

ND: Xι = xι +
i√
πT

∑
s∈Z+1/2

1

s
αιs e

−iπsτ/l cos
(πsσ

l

)
, (2.1.27c)

DN: Xι = xι +
1√
πT

∑
s∈Z+1/2

1

s
αιs e

−iπsτ/l sin
(πsσ

l

)
. (2.1.27d)

In this case, it is convenient to define αα0 = pα/
√
πT and αṁ0 =

√
πT (xṁ1 − xṁ0 )/π. On

the other hand, as regards worldsheet fermions, the mode expansions read

NN: ψα± =
1√
2lT

∑
r∈Z+ϕ

bαr e
−iπrσ±/l, (2.1.28a)

DD: ψṁ± = ± 1√
2lT

∑
r∈Z+ϕ

bṁr e−iπrσ±/l, (2.1.28b)

ND: ψι± =
1√
2lT

∑
r∈Z+ϕ′

bιr e
−iπrσ±/l, (2.1.28c)

DN: ψι± = ± 1√
2lT

∑
r∈Z+ϕ′

bιr e
−iπrσ±/l, (2.1.28d)

where ϕ = 0 and ϕ′ = 1/2 for the Ramond sector, while ϕ = 1/2 and ϕ′ = 0

for the Neveu-Schwarz sector. Again, as a consequence of the continuity equations

(2.1.12a, 2.1.12b) there exist conserved charges. Given two smooth functions f =

f(σ−) and g = g(σ−) such that f = g at the endpoints σ = 0, l, the integral

L[f ] =
∫ l
0 dσ

[
f(τ − σ)T−−(τ − σ) + g(τ + σ)T++(τ + σ)

]
is a conserved charge, and

similarly for the fermionic current. Therefore, setting again τ = 0, one can define

the conserved charges Lm = (l/π)
∫ l
0 dσ

[
e−πimσ/l T−−(0, σ) + eπimσ/l T++(0, σ)

]
and

Gr =
√
l/2π

∫ l
0 dσ

[
e−πirσ/l t−(0, σ) + eπirσ/l t+(0, σ)

]
. Plugging in the mode expan-

sions in the expressions of eq. (2.1.11a, 2.1.11b), one finds2.4

Lm =
1

2

∑
n∈Z

αMm−nαnM +
1

2

∑
r∈Z+ϕ

r bMm−rbrM , (2.1.29a)

Gr =
∑
n∈Z

αMn br−nM , (2.1.29b)

2.4The expressions below are written in a sloppy notation in order not to overcomplicate them: they are

correct if there are only NN- and DD-directions, while in the presence of ND- and/or DN-directions too one

has to consider, for each M -direction, the values that the modes can take. This will be taken into account

explicitly when discussing masses, as it will be relevant.
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Again, the physical constraints of eqs. (2.1.6a, 2.1.6b) imply the requirements

Lm = 0, (2.1.30a)

Gr = 0. (2.1.30b)

2.1.2 RNS-Superstring Quantisation

In order to quantise the RNS-superstring, one needs to promote all the fields to operators

and to promote the classical brackets to commutators and anticommutators according to

the rule

AB + (−1)fAfB+1BA = i{A,B}D,

where anticommutators appear if both A and B are fermionic operators and commutators

are instead defined in all the other cases.

So, one has to consider the Dirac brackets of eqs. (2.1.13a, 2.1.13b) and to express the

fields as in the mode expansions of eqs. (2.1.21a, 2.1.21b) and (2.1.23a, 2.1.23b). To repro-

duce the standard equal-time commutators and anticommutators [XM (τ, σ′), PN (τ, σ′′)] =

iηMNδ(σ′ − σ′′) and {ψM± (τ, σ′), ψN± (τ, σ′′)} = T−1ηMNδ(σ′ − σ′′), the algebra has to be

[αMm , α
N
n ] = mδm,−n η

MN , (2.1.31a)

{bMr , bNr } = δr,−s η
MN , (2.1.31b)

with [xM , pN ] = i ηMN , if spacetime momentum is defined, and similarly in the left-moving

sector for closed-strings, with all other mutual commutators and anticommutators being

zero. The reality conditions are turned into the hermiticity conditions

(αMn )† = αM−n, (2.1.32a)

(bMr )† = bM−r. (2.1.32b)

One can see that eqs. (2.1.31a, 2.1.31b) define the algebra of creation and annihilation

operators. It is possible to define the vacuum of the theory in the NS-sector as the state

|NS⟩ such that

αMn |NS⟩ = 0, ∀m ∈ N; (2.1.33a)

bMr |NS⟩ = 0, ∀ r ∈ N0 +
1

2
. (2.1.33b)

In the R-sector one defines an R-vacuum as a state |R⟩ such that

αMn |R⟩ = 0, ∀m ∈ N; (2.1.34a)

bMr |R⟩ = 0, ∀ r ∈ N. (2.1.34b)

Actually, the R-vacuum is degenerate due to the freedom to act with the operators bM0 :

because [M2, bN0 ] = 0, the state |R⟩ has the same mass independently of how many 0-

operators act on it. The 0-operators satisfy the Clifford algebra {bM0 , bN0 } = ηMN . If D

is even, one can define the operators b±(0) = i(b00 ± b10)/
√
2 and b±(i) = (b2i0 ± ib2i+1

0 )/
√
2

for i = 1, . . . , D/2 − 1. One can thus verify the Clifford algebra {b+(α), b−(β)} = δαβ for

12



2.1. RNS-superstrings and Partition Functions

α, β = 0, . . . , D/2 − 1. So, if one defines the highest-weight state |R⟩ as the state such

that b+(α)|R⟩ = 0, then any state b−(α)|R⟩ is such that b+(α)b−(β)|R⟩ = δαβ|R⟩, and

similarly for states with multiple b−(α)-operators acting. This means that there is a total

of n(D) = 2D/2 different fermionic states.

In the Hilbert space associated to the oscillator algebra, the quantum theory can be de-

scribed in terms of the operator-valued observables found in the classical formulation. The

operators need to be defined to be normal-ordered to avoid ambiguities in their definition.

This framework leads to covariant quantisation, but it brings non-trivial technical chal-

lenges. In particular, for the Hilbert subspace of physical (i.e. satisfying the constraints)

and gauge-inequivalent (all states differing by a null state are identified) states, the ab-

sence of negative-norm states and the unitarity of the S-matrix are not trivial to attain.

One needs the tools of conformal field theory to address these challenges in an efficient

way. This eventually fixes the number of spacetime dimensions and the normal-ordering

constants. An alternative but not manifestly-covariant method to quantise the theory is

lightcone quantisation. Because it is less mathematically demanding, this is the approach

discussed below.

Lightcone quantisation is based on taking advantage of classical symmetries to fix a

gauge and to work only with physical states, solving the classical constraints explicitly.

In the superconformal gauge, one can take advantage of the conformal and residual local

supersymmetry transformations to define the lightcone gauge. Given the definitions

X(±) =
1√
2
(X0 ±X1),

ψ(±) =
1√
2
(ψ0 ± ψ1).

the lightcone gauge is the gauge where, defining p± = (p0 ± p1)/
√
2, one fixes

X(+) =
p+τ

lT
,

ψ(+) = 0.

In fact, in this way, it is possible to to express the on-shell constraints for the metric and

gravitino constraints of eqs. (2.1.11a, 2.1.11b), namely T±± = 0 and t± = 0, as

p+

lT
∂±X(−) = ∂±X

I∂±XI +
i

2
ψI±∂±ψ±I , (2.1.35a)

p+

2lT
ψ±(−) = ψI±∂±XI , (2.1.35b)

where I = 2, . . . , D− 1 denotes all the directions except the two gauge-fixed ones. The key

point of lightcone quantisation resides in the fact that it allows one to solve explicitly the

classical constraints.

• For closed strings, in the right-moving sector related to σ−, one can express the

constraints reported in eqs. (2.1.35a, 2.1.35b) as

p+√
πT

αn(−) =
∑
m∈Z

αIn−mαmI +
∑

r∈Z+ϕ

rbIn−rbrI , (2.1.36a)

13



Chapter 2. Basics in Strings and D-Branes

p+√
4πT

br(−) =
∑
m∈Z

bIr−mαmI , (2.1.36b)

respectively, where αn(−) = (α0
n − α1

n)/
√
2 and br(−) = (b0r − b1r)/

√
2. One can

perform a similar analysis for the left-moving sector related to σ+, thus constraining

the coefficients αn(−) and br(−). According to the definition of the 0-mode operators,

one finds the identity α0(−) = α0(−). This means that the metric constraint relates

the right- and left-moving oscillators, which is the so-called level-matching condition.

In a relativistic theory, the squared mass operator is defined as M2 = −pMpM . In

view of the level-matching condition, in lightcone coordinates and taking into account

the definition of the 0-mode operators, one can write

M2 = 2p+p− − pIpI =
√
4πT

(
p+α0(−) + p+α0(−)

)
− pIpI = m2 +m2,

where m2 and m2 are the right- and left-moving sector masses, respectively, with

the level-matching condition reading m2 = m2. More explicitly, for the right-moving

sector, in view of the metric constraints, one can write

m2 =
√
4πT p+α0(−)− 1

2
pIpI = 2πT

[ ∑
m∈Z∗

αI−mαmI +
∑

r∈Z+ϕ

rbI−rbrI

]
and similarly for the left-moving sector term. In the quantum theory, the ordering

of the oscillator operators in such a way that all creators are on the left of all the

destructors results in constant terms proportional to the regularised sums
∑

n∈N n =

−1/12 and
∑

r∈N+ 1
2
r = 1/24. Defining the right-moving transverse number operators

Ñb =
∑
n∈N

αI−nαnI , (2.1.37a)

Ñϕ =
∑

r∈N−ϕ
rbI−rbrI , (2.1.37b)

and analogously in the left-moving sector, the closed-string mass operator reads

M2 = 4πT

[
Ñb + Ñϕ + Ñb + Ñϕ −

d

12
− d

12
aϕ

]
, (2.1.38)

where the constant is defined as

1

12
aϕ =

∑
r∈N−ϕ

r =


1

24
, ϕ =

1

2
;

− 1

12
, ϕ = 0.

• For open strings, assuming the gauge-fixed directions to have NN-boundaries, one can

express the constraints reported in eqs. (2.1.35a, 2.1.35b) respectively as2.5

p+√
πT

αn(−) =
1

2

∑
m∈Z+φ(I)

αIn−mαmI +
1

2

∑
r∈Z+ϕ(I)

rbIn−rbrI , (2.1.39a)

2.5The constant φ(I) is needed to write the bosonic open-string expansion in a consistent way. It takes the

values φ = 0 for NN- and DD-directions and φ = 1/2 for ND- and DN-directions.

14



2.1. RNS-superstrings and Partition Functions

p+√
πT

br(−) =
∑

s∈Z+ϕ(I)

αIr−sbsI , (2.1.39b)

where αn(−) = (α0
n − α1

n)/
√
2 and br(−) = (b0r − b1r)/

√
2. In each I-direction, the

function ϕ must be fixed according to the associated boundary conditions.2.6

In lightcone coordinates, and in view of the definition of the 0-mode operators, one

can write the squared mass operator as M2 = −pαpα, where only the NN-directions

contribute to the physical mass (and indeed have nonzero spacetime momentum).

Therefore, labelling as i the remaining NN-directions aside from the gauge-fixed ones,

one finds a mass

M2 = 2p+p− − pipi =
√
4πT p+α0(−)− pipi.

This, thanks to the metric constraint, can be expressed as

M2 = πT

[ ∑
m∈Z∗+φ(I)

αI−mαmI +
∑

r∈Z+ϕ(I)

rbI−rbrI

]
+ T 2δṁṅ∆x

ṁ∆xṅ,

where the spacetime momentum terms cancel off for the NN-directions and the re-

maining non-zero 0-modes, coming only from the DD-directions, have been written

explicitly in terms of the separation ∆xṁ = xṁ1 − xṁ0 ; the latter will be ignored below

for brevity, considering ∆xṁ = 0. After quantisation, by ordering of the oscillator

operators with all creators on the left of the destructors, one finds different contri-

butions for each direction, depending on its boundary conditions. For a Dp-brane,

one has p− 1 non-gauge-fixed NN-directions, and then there can be q directions with

DD-boundaries, with s = p+ q + 1 directions with NN- and DD-boundaries in total,

and l = D − s directions with either ND- or DN-boundaries. Taking all possible

boundaries into account, for open strings the total mass takes the form

M2
ϕ = 2πT

[
Ñb + Ñϕ −

cϕ(s)

16

]
, (2.1.40)

where the bosonic and fermionic number operators are defined as in eqs. (2.1.37a,

2.1.37b), respectively, with the modes taking their values as in the open-string mode

expansions in each direction, depending on the boundary conditions, and the normal-

ordering constant is defined as

1

16
cϕ(s) =


2(s− 1)−D

16
, ϕ =

1

2
;

0, ϕ = 0.

Because the masses in the tower of string states are multiples of M2
s = 1/α′, this is set

as the reference string mass scale. In the quantum theory, it can be shown that spacetime

Lorentz invariance is preserved if and only if the number of spacetime dimensions is D = 10.

2.6All these expressions are valid independently of the kind of boundary conditions in each of the I-

directions. In fact, although the individual mode expansions can have overall ±-signs and/or different

domains for the labels n and r, depending on the specific boundary conditions, these can be seen to always

cancel out in the product direction by direction.
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2.1.2.1 Superstring Perturbative Series

In order to perform a covariant analysis, one should eventually pursue a path-integral quan-

tisation of the RNS-superstring worldsheet action of eq. (2.1.1) in the Euclidean formulation

of the theory. To do this, one has to consider the fact the RNS-action depends on the em-

bedding coordinates XM , their superpartners ψM , the auxiliary metric h and the gravitino

χM . Along with all the possible configurations of these fields, one should also sum over

all the possible worldsheet topologies τΣ. In order to quantify the weight of each topol-

ogy, one can introduce in the worldsheet action a 2-dimensional spacetime Einstein-Hilbert

term. Moreover, one can also add a boundary term, which arises for open strings, whose

worldsheet has a boundary ∂Σ. This total term happens to be a topological invariant, i.e.

1

4π

∫
Σ
d2ξ

√
−h R[h] + 1

2π

∫
∂Σ

ds k = χ(Σ), (2.1.41)

where χ(Σ) is the worldsheet Euler character. In this action, R[h] is the Riemann tensor

corresponding to the metric hαβ and k is the trace of the extrinsic curvature on the boundary.

It turns out that these are the only two terms that one can add to the RNS-action without

changing the field equations. By the Gauss-Bonnet theorem, the Euler character of a surface

Σ with h handles, b boundaries and c crosscaps is2.7

χ = 2− 2h− b− c. (2.1.42)

Schematically, the path integral for a superstring theory may then be formulated as

Z =
1

vol γ

∑
τΣ

∫
DX

∫
Dψ

∫
Dh

∫
Dχ e−SRNS[X,ψ,h,χ]−λχ, (2.1.43)

where λ is some coupling parameters and vol γ represents the redundant gauge-equivalent

configurations that are being overcounted. In fact, it turns out that the topological term

arises naturally in the presence of a non-zero constant background dilaton Φ, with λ = Φ.

Therefore, one finds a perturbative series in the string coupling

gs = eΦ, (2.1.44)

where the order in the perturbation is dictated by the Euler character corresponding to

the worldsheet topology being considered. Now, tree-level scattering amplitudes, after a

conformal map, correspond to the topology of a sphere and of a disk for closed and open

strings, respectively, so they are weighted by powers g−2
s and g−1

s , respectively. The one-loop

corrections correspond to the torus and the annulus for closed and open strings, respectively,

both with powers g0 = 1, and therefore a relative suppression with respect to the tree-level

results of g2s and gs, respectively.

2.7This includes both orientable and non-orientable surfaces for generality, but in this introductory section

only orientable surfaces are being considered.
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2.1.3 Superstring Partition Functions

This section contains a brief (yet self-contained) overview on the determination of partition

functions in string theory. First, bosonic strings are reviewed for pedagogical reasons, then

superstrings are analysed. The guidance for this section is the material in refs. [33, 34,39].

2.1.3.1 Bosonic Strings

For bosonic strings, given the toroidal parameter τ and the squared nome q = e2πiτ , the

one-loop partition function is defined as the trace

Zb(τ, τ) = trHb
qL̃

b
0qL̃

b

0 , (2.1.45)

where L̃b
0 and L̃

b

0 are the right- and left-moving transverse Virasoro 0-operators, respectively.

The total Hilbert space Hb contains spacetime momenta and oscillators, and the latter part

is factorised in right- and left-moving parts, Hbo and Hbo. To start, spacetime momenta

can be ignored for brevity.

As concerns oscillatory excitations, without loss of generality, one can focus on the right-

moving sector. In the framework of lightcone quantisation, the Virasoro operator reads

L̃b
0 =

1

2

∑
n∈Z

αI−nαnI =
1

8πT
p̃2 + Ñb −

d

24
. (2.1.46)

where the transverse squared momentum is p̃2 = pIpI and the transverse number operator

is defined as in eq. (2.1.37a). It is convenient to focus on one direction at a time, knowing

that each of the directions I = 2, . . . , D − 1 contributes identically. Dealing with only one

direction, one can observe the commutation relation

[Ñb, αm] = −mαm. (2.1.47)

Ignoring any overall normalisation factors f = f({nk}) for brevity, all the elements of an

orthonormal basis of the Fock space can be written as

|n1, n2, . . . , nM ⟩ ≡ (α−1)
n1(α−2)

n2 . . . (α−M )nM |0⟩, {nj ∈ N0}Mj=1.

By direct inspection, one finds the eigenvalue equation

Ñb|n1, n2, . . . , nM ⟩ =

[
M∑
j=1

jnj

]
|n1, n2, . . . , nM ⟩. (2.1.48)

Therefore, following the definition, one finds the partition function

trHbo

(
qL̃

b
0
)
= q

1
8πT

p̃2− 1
24

∞∑
n1=0

∞∑
n2=0

. . . ⟨n1, n2, . . . | qÑb |n1, n2, . . .⟩.

Using the eigenvalue equation for the number operator, a few elementary manipulations

with sums and products and the geometric series allow one to conclude with the relation,

∞∑
n1=0

∞∑
n2=0

. . . ⟨n1, n2, . . . | qÑb |n1, n2, . . .⟩ =
∞∏
k=1

∞∑
nk=0

qknk =

∞∏
k=1

1

1− qk
= q

1
24 η(τ)−1,
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where η = η(τ) is the Dedekind η-function. Therefore one can write

trHbo

(
qL̃

b
0
)
= q

1
8πT

p̃2η(τ)−1.

To take into account spacetime momentum in the proper way, one needs to include the

left-moving sector too. Doing this, one finds the extra trace√
2π

T

∫ ∞

−∞

dk

2π
⟨k|q

1
8πT

p̃2q
1

8πT
p̃2 |k⟩ =

√
2π

T

∫ ∞

−∞

dk

2π
q

1
8πT

k2q
1

8πT
k2 =

√
1

τ2
.

In bosonic string theory, the number of spacetime dimensions is D = 26 and therefore,

being d = 24, the full partition function reads

Zb(τ, τ) =
1

τ122

1

η24(τ)η24(τ)
. (2.1.49)

One can make use of the results above to determine the partition function of open

bosonic strings. For the open strings associated to a Dp-brane, the partition function is

defined as

Ab(τ2; p) = trHp
b
q[iτ2]

1
2
L̃b
0 . (2.1.50)

where the 1/2-factor is motivated by the different Regge trajectory in the spectrum as

compared to the closed-string case and the argument in q[iτ2] = e−2πτ2 is restricted to

τ = iτ2 as a consequence of the fact that the open string is not periodic along the worldsheet

spacelike direction. Therefore, the bosonic open-string partition function is

Ab(τ2; p) =
1

τ
1
2
(p+1)

2

1

η24(iτ2/2)
. (2.1.51)

The dependence on p comes from the fact that the string propagates through spacetime

only in the (p+ 1)-dimensional region with NN-boundaries.2.8

2.1.3.2 Superstrings

For superstrings, the L0-operator involves both the bosonic and the fermionic oscillation

operators, being

L̃0 = L̃b
0 + L̃ϕ0 ,

in which L̃b
0 is the bosonic operator and L̃ϕ0 represents the fermionic counterparts in the

NS- and in the R-sectors, where ϕ = 1/2, 0, respectively. The latter reads

L̃ϕ0 =
∑

r∈N−ϕ
rbI−rbrI −

d

24
aϕ,

2.8It is conventional to write this amplitude counting all the p+1 directions. This facilitates the discussion

of the one-loop cosmological constant. Up to overall factors, in a D-dimensional quantum field theory, this

is the integral over a Schwinger time t of the power t−1−D/2 multiplied by an e−2πtM2
n/µ2

, where an are

the physical degeneracies at the mass levels M2
n, for some scale µ2. In string-theory constructions, the

exponentials come from the variable q. For a closed-string theory, it happens that 1 +D/2 = 2 + (D − 2)/2,

with τ−2
2 being needed to define the modular-invariant measure and τ

−(D−2)/2
2 corresponding to the power

found in the partition function. For open strings, with D = p+ 1, instead, it is customary to split the power

as τ−1
2 and τ

−(p+1)/2
2 , considering the latter as part of the partition function.
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Therefore, given the fermion-number operator in eq. (2.1.37b), one can write

L̃0 =
1

8πT
p̃2 + Ñb + Ñϕ −

d

24
− d

24
aϕ. (2.1.52)

Again, one can focus on a single direction. One can observe the commutation relation

[Ñϕ, br] = −rbr. (2.1.53)

For a state in the Fock space, i.e.2.9

|n1, n2, . . . , nM ⟩ϕ ≡ (b−1+ϕ)
n1(b−2+ϕ)

n2 . . . (b−M+ϕ)
nM |ϕ⟩, {nj = 0, 1}Mj=1,

a similar algebra applies as in the bosonic case and therefore one can write

Ñϕ|n1, n2, . . . , nM ⟩ϕ =

[
M∑
j=1

nj(j − ϕ)

]
|n1, n2, . . . , nM ⟩ϕ. (2.1.54)

It is now possible to compute the trace over the fermionic Hilbert space. In this case, the

calculation is simplified by the fact that the occupation numbers at each level can only take

the values nj = 0, 1. One finds

trHϕ

(
qL̃

ϕ
0
)
=
∑
n1=0,1

∑
n2=0,1

. . . ϕ⟨n1, n2, . . . |qL̃
ϕ
0 |n1, n2, . . .⟩ϕ = q−

1
24
aϕ

∏
r∈N−ϕ

(1 + qr).

Now one can consider the full right-moving Hilbert space in order to find all the right terms.

The results turn out to be combinations of the Dedekind η- and of the Jacobi ϑ-functions.

In the NS-sector, one finds

trHbo⊗HNS

(
qÑb+ÑNS− 1

24
− 1

48
)
= q−

1
16

∏∞
n=1

(
1 + qn−

1
2

)∏∞
m=1(1− qm)

=
ϑ3(τ)

1
2

η(τ)
3
2

. (2.1.55)

In the R-sector, one finds

trHbo⊗HR

(
qÑb+ÑR− 1

24
+ 1

24
)
= 2

∏∞
n=1

(
1 + qn

)∏∞
m=1(1− qm)

=
ϑ2(τ)

1
2

η(τ)
3
2

. (2.1.56)

where the overall factor is due to the action of the b0-operator on the vacuum, which has

not been written explicitly above.

For a physical spectrum to be built, one needs to impose the GSO-projection on the

spectrum. This can be achieved by defining the worldsheet fermion-number operator (−1)F

and defining a projector P± = (1± (−1)F )/2, which can remove tachyons while making the

spacetime spectrum supersymmetric. An analysis of this operator can be performed quite

straightforwardly.

2.9In the R-sector, one has the further freedom to act on the vacuum with the operator b0, thus actually

identifying different vacua.

19



Chapter 2. Basics in Strings and D-Branes

• In the NS-sector, the worldsheet fermion-number is F =
∑

r∈N−1/2 b−rbr − 1, and it

is thus defined in such a way that its action is

(−1)F bI1−r1 . . . b
IM
−rM |NS⟩ = (−1)M+1bI1−r1 . . . b

IM
−rM |NS⟩,

which means that all states with even occupation numbers are removed out by the

projector P+ = (1 + (−1)F )/2. Dealing with just one direction, one can write

trHNS

(
(−1)F qL̃

NS
0
)
= q−

1
48

∑
n1=0,1

∑
n2=0,1

. . .NS⟨n1, n2, . . . |(−1)F qÑNS |n1, n2, . . .⟩NS.

Now, since it is possible to write

NS⟨n1, n2, . . . |(−1)F qÑNS |n1, n2, . . .⟩NS = −(−1)n1+n2+...q
1
2
n1+

3
2
n2+...,

one finds

trHNS

(
(−1)F qL̃

NS
0
)
= −q−

1
48

∏
r∈N−ϕ

∑
nr=0,1

(−1)nrqrnr = −q−
1
48

∏
r∈N−ϕ

(1− qr).

• In the R-sector, the operator to be considered is the generalised chirality operator

(−1)F = 2D/2−1
(∏D−1

I=2 b
I
0

)
(−1)

∑
r∈N b

I
−rbrI , whose action is

(−1)F bI1−r1 . . . b
IM
−rM |R+⟩ = (−1)M (−1)

∑
i δri,0bI1−r1 . . . b

IM
−rM |R+⟩,

(−1)F bI1−r1 . . . b
IM
−rM |R−⟩ = −(−1)M (−1)

∑
i δri,0bI1−r1 . . . b

IM
−rM |R−⟩,

where |R±⟩ are two R-vacua, with chiralities ±1. In fact, in lightcone quantisation

vacua in the R-sector can be labelled as |0⟩R = |s1, s2, s3, s4⟩, with si = 1/2 or

si = −1/2: defining the highest-weight state as the state such that b+(i)|R⟩ = 0

for all i = 1, 2, 3, 4, this can be denoted as | + 1/2,+1/2,+1/2,+1/2⟩, with each

operator b−(i) lowering si by one unit. The definitions are such that
∑4

i=1 si ∈ 2Z
and

∑4
i=1 si ∈ 2Z + 1 for the states |R+⟩ and |R−⟩, respectively. One can write

trHR

(
(−1)F qL̃

R
0
)
= q

1
24

∑
n1=0,1

∑
n2=0,1

. . .R⟨n1, n2, . . . |(−1)F qÑR |n1, n2, . . .⟩R.

Because the action of worldsheet parity is exactly specular in the two sectors, the

result of the trace is clearly zero, i.e.

R⟨n1, n2, . . . |(−1)F qÑR |n1, n2, . . .⟩R = R⟨n1, n2, . . . |(−1)F qn1+n2+...|n1, n2, . . .⟩R = 0.

Therefore, one can write

trHR

(
(−1)F qL̃

R
0
)
= 0.

To sum up, including worldsheet parity, the NS-sector is the only one having a non-zero

trace and this reads

trHbo⊗HNS

(
(−1)F qÑb+ÑNS− 1

24
− 1

48
)
= −q−

1
16

∏∞
n=1

(
1− qn−

1
2

)∏∞
m=1(1− qm)

= −ϑ4(τ)
1
2

η(τ)
3
2

.
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To find the actual partition function, one needs to insert the spacetime momentum term,

obtaining an extra factor f(τ2) = τ
−1/2
2 which comes from spacetime momentum integration

when both the right- and left-moving sectors are properly taken into account.

The partition function of type IIB string theory can be written by requiring that, in

the GSO-projection, all states are +1-eigenvalues of the chirality operator (−1)F both in

the right- and left-moving sectors, in a 10-dimensional spacetime with d = 8. Splitting

the calculation into the NS- and R-sectors, with a relative phase ω to be determined by

requiring modular invariance, one can write

ZIIB(τ, τ) = trH

[
1

2
(1 + (−1)F ) qL̃0

][
1

2
(1 + (−1)F ) qL̃0

]
=

1

4τ42

[
ϑ43(τ)

η12(τ)
− ϑ44(τ)

η12(τ)
+ ω

ϑ42(τ)

η12(τ)

][
ϑ43(τ)

η12(τ)
− ϑ44(τ)

η12(τ)
+ ω

ϑ42(τ)

η12(τ)

]
.

An S-generating modular transformation maps the function to itself if and only if it is

ω = −1. In terms of the so(8)-characters, the partition function for type IIB string theory

reads

ZIIB(τ, τ) =
1

τ42

[
V8(τ)− S8(τ)

][
V 8(τ)− S8(τ)

]
η8(τ)η8(τ)

. (2.1.57)

Obviously, the spectrum is supersymmetric and in fact the partition function vanishes, as

one can verify as a consequence of the Jacobi equation ϑ43(τ)−ϑ44(τ)−ϑ42(τ) = 0, or V8 = S8,

which implies that actually it is

ZIIB(τ, τ) = 0.

One can nonetheless recognise immediately how the sectors in the type IIB spectrum are

represented in the terms of the partition function. In fact, the numerical coefficients of

the terms qnqn in the Laurent expansion of the partition function represent the number of

states with a mass M2 = 8πnT . As also discussed in subsection 2.2.1, at the massless level:

• the NSNS-states come from the product V8V 8 and represent the graviton, the dilaton,

and the Kalb-Ramond field;

• the RR-states come from the product S8S8 and represent the 0-, 2- and self-dual

4-form fields;

• the NSR- and RNS-states come from the products V8S8 and S8V 8 and represent two

gravitini and two dilatini.

The number of states can be counted easily by extracting the diagonal elements in the

series expansion of ZIIB. This confirms the absence of tachyons and at the massless level

it confirms the numbers of degrees of freedom nNSNS = nRR = nNSR = nRNS = 64. The

interpretation of the states stems from the Fock-space construction, as in subsection 2.2.1.

From the modular-invariant partition function, one defines the one-loop torus scattering

amplitude as

T =

∫
F

d2τ

(Im τ)6

[
V8(τ)− S8(τ)

][
V 8(τ)− S8(τ)

]
η8(τ)η8(τ)

, (2.1.58)
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where F =
{
τ ∈ C : Re τ ∈ [−1/2, 1/2]∧ Im τ ∈ [0,+∞[∧ |τ | ∈ [1,+∞[

}
is the fundamental

domain and d2τ/(Im τ)2 is the invariant measure of the modular group (for more details,

see appendix A.1.1).

One can make use of the results above to determine the partition function of open

fermionic strings. For the open strings associated to a Dp-brane, the partition function is

defined as

A(τ2; p) = trHp

[
1

2
(1 + (−1)F ) q[iτ2]

1
2
L̃0

]
. (2.1.59)

In a straightforward analogy with the previous calculations, it thus follows that the super-

symmetric open-string partition function reads

A(τ2; p) =
1

τ
1
2
(p+1)

2

V8(iτ2/2)− S8(iτ2/2)

η8(iτ2/2)
. (2.1.60)

Again, one can see that the spectrum is supersymmetric due to the Jacobi identity V8 = S8.

In this case, the numerical coefficients of the terms qn in the Laurent expansion of the

partition function represent the number of states with a mass M2 = 2πnT , and, as also

discussed in subsection 2.3.1, the spectrum can be described as follows:

• the NS-states come from the term V8 and the represent the scalar and/or vector fields

on the Dp-brane worldvolume;

• the R-states come from the term S8 and represent the spinor fields on the Dp-brane

worldvolume.

The number of degrees of freedom at each mass level corresponds to the coefficients in the

series expansion of the partition function and, at the massless level, it can be checked to

be nNS = nR = 8. The interpretation of the states stems from the Fock-space construction,

as in subsection 2.3.1. This partition function is not modular invariant and the so-called

one-loop annulus amplitude is defined, selecting p = 9, as (the factor 1/2 is conventional,

for future use)

A =
n2

2

∫ ∞

0

dτ2
τ62

V8 − S8
η8

[
iτ2
2

]
. (2.1.61)

In this expression, an extra factor n2 has been inserted to account for the situation where

n branes are present. One has to add Chan-Paton labels to each state, as explained in

subsection 2.3.1, so the trace receives a contribution
∑n

a=1

∑n
b=1⟨a, b|a, b⟩ = n2. In fact, the

number of degrees of freedom corresponds precisely to an U(n)-gauge theory with scalars

and spinors in the adjoint representation.

The choice of the GSO-projection is not unique. In fact, one can define another tachyon-

free theory by choosing the same GSO-projection as above in the NS-sectors but requiring

an opposite parity in the right- and left-moving R-sectors. This defines the type IIA closed-

string theory. Because the trace involving the (−1)F -operator in the R-sector is zero, the

partition function is the same as above, so

ZIIA(τ, τ) =
1

τ42

[
V8(τ)− S8(τ)

][
V 8(τ)− C8(τ)

]
η8(τ)η8(τ)

. (2.1.62)
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In the left-moving sector the function C8 appears, instead of S8. Of course numerically the

functions are the same, i.e. C8 = S8, but the notation stems from the fact that the trace in

the R-sector is proportional to ϑ1 = 0, so changing its signs formally changes the function

S8 into the function C8. This reflects a physical fact: the type IIA spectrum is analogous

to the type IIB one, but it is non-chiral. In the perturbative spectrum, this is precisely the

consequence of the different GSO-projection.

Combining the functions O8/(τ
4
2 η

8), V8/(τ
4
2 η

8), S8/(τ
4
2 η

8) and C8/(τ
4
2 η

8), i.e. the ele-

ments that have appeared above from the traces and the (−1)F -projectors, it is possible

to identify further modular-invariant theories. Requiring to have a single graviton and to

always have bosons and fermions to contribute with opposite signs, one finds that, along

with the type IIA and type IIB theories, two more exist. These are the so-called type 0A

and type 0B theories [13,17] and their partition functions read

Z0A(τ, τ) =
1

τ42

O8O8 + V8V 8 + S8C8 + C8S8

η8η8
[τ, τ ], (2.1.63)

Z0B(τ, τ) =
1

τ42

O8O8 + V8V 8 + S8S8 + C8C8

η8η8
[τ, τ ]. (2.1.64)

These theories do not have any spacetime fermions and therefore they are not supersym-

metric. Furthermore, they also both contain a tachyon, as apparent due to the presence of

the term O8O8.

The Hilbert space of closed superstrings involves two separate spaces, corresponding to

the right- and the left-moving sectors. One can define a theory that is invariant under the

exchange of right- and left-moving oscillators. This can be done by defining the worldsheet

parity operator ΩP . This is an operator acting on any state |r⟩|l⟩, where |r⟩ and |l⟩ are

states constructed in the right- and left-moving sectors, respectively, by exchanging the

right- and left-moving terms with each other, i.e. acting as ΩP |r⟩|l⟩ = |l⟩|r⟩. Schematically,

one can understand the presence of this operator in the Hilbert-space traces as

trH q
L̃0qL̃0Ω =

∑
r

∑
l

⟨r|⟨l|qL̃0qL̃0ΩP |r⟩|l⟩

=
∑
r

∑
l

⟨r|⟨l|qL̃0qL̃0 |l⟩|r⟩

=
∑
r

⟨r|⟨r|(qq)L̃0 |r⟩|r⟩,

as a consequence of the fact that considering the same states |r⟩ effectively identifies the L0-

operators. Adapting the previous calculations, and adding a factor 1/2 as this contribution

enters the partition function via a projector P = (1 +ΩP )/2, one finds the so-called Klein-

bottle partition function

ZK =
1

2

1

τ42

V8(2iτ2)− S8(2iτ2)

η8(2iτ2)
.

To obtain this, the NSNS-states provide the V8-term, whereas the RR-term give the S8-

term, with the opposite sign due to exchaning fermion states. This function is not modular-

invariant, and it does not even involve a real part for the complex variable τ . This impacts
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the choice for the domain of integration in the determination of the scattering amplitudes.

The Klein-bottle amplitude therefore reads

K =
1

2

∫ ∞

0

dτ2
τ62

V8 − S8
η8

[2iτ2]. (2.1.65)

To conclude, the type IIB closed-string sector modded out by the projector P = (1+ΩP )/2

has a partition function that corresponds to half the contribution of the torus amplitude in

eq. (2.1.58) plus the Klein-bottle term in eq. (2.1.65). The counting of states reveals an

equal number of bosons and fermions: in the fermionic NSR- and RNS-sectors, worldsheet

parity only leaves half of states from the halved-torus, with nNSR+nRNS = (64+64)/2 = 64,

whereas in the NSNS- and RR-sectors, respectively, it leaves only symmetric and antisym-

metric combinations, with nNSNS = (64 + 8)/2 = 36 and nRR = (64− 8)/2 = 28.

For the open-string sector, the situation is similar. In this case worldsheet parity acts

by mapping the worldsheet spacetime coordinate as σ
ΩP→ π − σ and exchanging the spinor

components, rendering this an unoriented theory as well. In this case the calculations are

slightly more involved,2.10 but eventually one finds the so-called Möbius-strip amplitude2.11

ZM = −ϵn
2

1

τ
1
2
(p+1)

2

V8(iτ2/2 + 1/2)− S8(iτ2/2 + 1/2)

η8(iτ2/2 + 1/2)
,

where the factor ϵn accounts for the trace over the gauge group. In fact, the group U(n) has

to be restricted in such a way that worldsheet parity is still a projector. One needs to have

Ω2
P |a, b⟩ = γbdΩP |d, c⟩γ−1

ca = γbdγce|e, f⟩γ−1
fd γ

−1
ca = |a, b⟩, where γ is the matrix representing

the orientifold action on the gauge indices, which requires γT = ϵγ, with ϵ = ±1. So the

trace gives a factor
∑n

a=1

∑n
b=1⟨a, b|Ω|a, b⟩ = tr γTγ−1 = ϵn. The scattering amplitude is

M = −ϵn
2

∫ ∞

0

dτ2
τ62

V8 − S8
η8

[
iτ2
2

+
1

2

]
. (2.1.66)

Adding up the partition functions in eqs. (2.1.61, 2.1.66), which represents the theory

modded out by the operator P = (1+ΩP )/2, the total number of degrees of freedom for the

open string is then to be multiplied by a factor mg = n(n− ϵ)/2. So the case ϵ = 1 defines

a theory with gauge group SO(n), and it defines O9−-planes, whereas the case ϵ = −1 is

associated to the group USp(n) and to O9+-planes.

The annulus and Möbius-strip amplitudes of eqs. (2.1.61, 2.1.66) can be generalised

to account for the presence of n+ D9-branes and n− anti-D9-branes. Anti-D-branes are

analogous objects to D-branes, with the only difference being their opposite RR-charge (see

sections 2.3 and 2.4 for more details). In this case, including NS- and R-factors ϵNS, ϵR = ±1,

2.10In fact, all the essential mathematics is exactly the one discussed in subsubsections 3.4.1.3 and 3.4.1.3,

leading to the partition function in eq. (3.4.7). Although it would have been possible to report such results

in this introductory chapter, the actual calculation is left in a later chapter for pedagogical reasons.
2.11Notice that, with respect to the notation in ref. [39], here the hat on the characters with shifted argument

is understood for simplicity, since for the simple cases in consideration it does not imply any actual change

(see also comments in subsection 3.4.2).
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the amplitudes are

A =
1

2

∫ ∞

0

dτ2
τ62

(n2+ + n2−)(V8 − S8) + 2n+n−(O8 − C8)

η8

[
iτ2
2

]
, (2.1.67)

M = −1

2

∫ ∞

0

dτ2
τ62

ϵNS(n+ + n−)V8 − ϵR(n+ − n−)S8
η8

[
iτ2
2

+
1

2

]
. (2.1.68)

Along with the characters V8 and S8, the characters O8 and C8 appear too, following

the presence of possible tachyons and an opposite GSO-projection for brane/antibrane

states [40–43]. The Klein-bottle, annulus and Möbius-strip amplitudes in eqs. (2.1.65,

2.1.67, 2.1.68) are ‘direct-channel amplitudes’, and they are computed straightforwardly

from the string spectrum. Taking advantage of the closed/open string duality, one can ex-

ploit them to define the ‘transverse-channel amplitudes’ and gain information about the tad-

pole cancellation conditions. Via the transformation ℓ = 1/(2τ2), ℓ = 2/τ2 and ℓ = 1/(2τ2),

respectively, the three transverse-channel amplitudes read

K̃ =
1

2
25
∫ ∞

0
dℓ
V8 − S8
η8

[iℓ], (2.1.69)

Ã =
1

2
2−5

∫ ∞

0
dℓ

(n+ + n−)
2V8 − (n+ − n−)

2S8
η8

[iℓ], (2.1.70)

M̃ = −1

2
2

∫ ∞

0
dℓ
ϵNS(n+ + n−)V8 − ϵR(n+ − n−)S8

η8

[
iℓ+

1

2

]
. (2.1.71)

The lack of a cancellation among the constant terms proportional to V8 and S8 signals the

presence of NSNS- and RR-tadpoles, respectively. An NSNS-tadpole signals the presence

of a dilaton potential in the effective action, with a term proportional to f(ϕ) = eγ0ϕ,

for some constant γ0. This, in itself, is believed not to be a fundamental inconsistency of

the theory.2.12 On the other hand, an RR-tadpole would indicate the violation of a field

equation for an RR-form field, and therefore is unacceptable. The absence of tadpoles is

guaranteed by the conditions

25 − ϵNS(n+ + n−) = 0, (2.1.72a)

25 − ϵR(n+ − n−) = 0. (2.1.72b)

A simple solution to both constraints is given by n− = 0 and n+ = 32, with ϵNS = ϵR =

1. This is type I string theory, whose closed-string sector corresponds to the orientifold-

invariant type IIB one and whose open-string sector contains a stack of D9-branes generating

the gauge group SO(32). Such a theory has N10 = 1 supersymmetry. Solutions with both

n+, n− ̸= 0 suffer tachyonic instabilities. A consistent solution with no D9-branes, i.e.

n+ = 0, is represented by the Sugimoto model, which has ϵNS = ϵR = −1 and n− = 32.

This theory contains anti-D9-branes generating the gauge group USp(32) and it has an

NSNS-tadpole, but no RR-tadpole. Due to the presence of anti-D9-branes, this theory is

non-supersymmetric.

2.12See refs. [44, 45] for seminal work in this direction.
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It should be mentioned that it is also possible to define an orientifold of the type 0B

theory that generates a chiral spectrum, with fermions in the open-string spectrum and an

SU(32)-gauge group, and also without tachyons. This is the type 0’B theory. Such a theory

is also non-supersymmetric.

To conclude, it is necessary to specify that two more fundamental supersymmetric the-

ories exist, i.e. the heterotic E8 × E8- and SO(32)-theories. These correspond to theories

with N10 = 1 supersymmetry. Their construction is not going to be discussed here for

brevity. An orbifold projection of the former generates the SO(16)×SO(16)-theory, which

is a consistent non-tachyonic and non-supersymmetric construction.

2.2 Elements of String Compactifications

This section introduces some essential elements of string compactifications, focussing on the

closed-string sector of type IIB theories. Because an analysis of the geometrical details of

the dimensional reduction of a theory are not at the core of the topics discussed in later

chapters, this section is less complete and formal than the others. It is only meant to outline

the essential basic ideas that underlie the subject of string compactifications.

2.2.1 Type IIB Low-Energy Effective Action

According to the closed-string mass formula of eq. (2.1.38), the lightest states in the type

IIB GSO-invariant closed-string theory are massless states from the NSNS-, RR-, NSR- and

RNS-sectors.

• In the NSNS-sector, the massless states are the graviton GMN , the dilaton Φ and the

Kalb-Ramond 2-form B2 corresponding to the symmetric, trace and anti-symmetric

part, respectively, of the state bM−1/2|NS⟩ ⊗ bN−1/2|NS⟩. In the RR-sector, the GSO-

invariant massless states are the scalar C0, the 2-form C2 and the self-dual 4-form C4

corresponding to the decomposition of the state |R+⟩ ⊗ |R+⟩.

• In the NSR- and RNS-sectors, the massless states are two dilatini λi and two gravitini

ψiM , where each dilatino-gravitino pair corresponds to the decomposition of the states

|R+⟩⊗bM |NS⟩ and bM |NS⟩⊗|R+⟩, respectively. Both gravitini and both dilatini have

the same chirality, with the gravitino chirality being opposite to that of the dilatini.

The particle content is supersymmetric since it contains equal numbers of bosons and

fermions. Because there are two gravitini with the same chirality, this corresponds to a

chiral N10 = 2 supergravity theory.

In string theory, one way to determine the low-energy action corresponding to a string

model is to reconstruct the action that generates the same scattering amplitudes for the

fields as the corresponding amplitudes computed in the complete string-theoretic framework.

This low-energy effective theory is formulated in terms of the string-frame metric ds210 =

GMN dxMdxN . Given the gravitational coupling 2κ210 = l8s/2π, where the string length is
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ls = 2π
√
α′, the type IIB 10-dimensional massless bosonic action reads [35]

Sboson
IIB =

1

2κ210

∫
X1,9

[
e−2Φ

(
R10 ⋆ 1 + 4dΦ ∧ ⋆ dΦ− 1

2
H3 ∧ ⋆H3

)]
+

1

2κ210

∫
X1,9

[
−1

2
F s1 ∧ ⋆F s1 − 1

2
F̃ s3 ∧ ⋆ F̃ s3 − 1

4
F̃ s5 ∧ ⋆ F̃ s5

]
− 1

4κ210

∫
X1,9

Cs4 ∧H3 ∧ F̃ s3 ,

where R10 is the Ricci scalar for string-frame metric, with Hodge dual ‘⋆’, and the NSNS-

and RR-sector field-strength tensors are respectively defined as H3 = dB2 and F̃ s = dCs−
H3 ∧ Cs. The string coupling is defined as gs = e⟨Φ⟩, where Φ is the dilaton. It is not

necessary to write the fermionic action since it can be reconstructed via supersymmetry.

In order for the Einstein-Hilbert term to be expressed in the canonical normalisation, a

metric redefinition is necessary, moving to the so-called Einstein frame. The 10-dimensional

Einstein-frame metric is defined as

ĝMN = e−(Φ−⟨Φ⟩)/2GMN , (2.2.1)

and it can be expressed even more easily in terms of the shifted dilaton ϕ = Φ−⟨Φ⟩. In this

way, in a more compact notation, the Einstein-frame type IIB low-energy effective action

can eventually be written as [46]

Sboson
IIB =

1

2κ̂210

∫
X1,9

[
R̂10∗̂1−

dτ ∧ ∗̂ dτ
2 (Im τ)2

− G3 ∧ ∗̂G3

2 Im τ
− 1

4
F̃5 ∧ ∗̂ F̃5

]
− i

8κ̂210

∫
X1,9

1

Im τ
C4 ∧G3 ∧G3,

(2.2.2)

where the physical 10-dimensional gravitational coupling is 2κ̂210 = g2s l
8
s/2π and the RR-

fields have been rescaled as C = gsC
s. Further, the axio-dilaton and the complexified

3-form flux have been defined as τ = C0 + i e−ϕ and G3 = F̃3 − i e−ϕH3 = F3 − τH3,

respectively. This action is a fundamental tool in the dimensional reduction of type IIB

string theory. Understanding how it is dimensionally reduced provides knowledge on many

of the fundamental properties of the closed-string sector.

2.2.2 Dimensional Reductions and Kaluza-Klein States

A string-derived field theory is typically formulated in higher dimensions compared to the

observed 4-dimensional world. A typical interpretation of this fact is that the phenomeno-

logical 4-dimensional theory emerges from a compactification of the original theory. The

basic idea is that the complete 10-dimensional space X1,9 is factorised as X1,9 = X1,3 × Y6,

where X1,3 is the observed 4-dimensional geometry and Y6 is an internal space that below

a certain energy scale is compactified.

Given the field content of a 10-dimensional theory, a key part in the compactification

is the dimensional reduction of all the fields. This typically generates an infinite number

of so-called Kaluza-Klein 4-dimensional fields for each 10-dimensional field, with an infinite
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tower of different masses. This section reports an overview of the dimensional reduction

for the different kinds of fields that are typically encountered in string compactifications,

i.e. scalars, spinors, vectors, gravitinos, gravitons and p-forms. This is a vast topic and this

section only outlines the basic features. For complete reviews, see refs. [47, 48].

In what follows, the discussion is referred to compactifications on spacetimes of the

kind X1,9 = M1,3 × Y6, with no assumptions on specific features of the internal manifold

unless explicitly stated. The notation is as follows: 10-dimensional directions are denoted

as xM , with M = 0, 1, . . . , 9, 4-dimensional non-compact directions are denoted as xµ, with

µ = 0, 1, 2, 3 ,and internal 6-dimensional directions are denoted as ym, with m = 4, . . . , 9.

2.2.2.1 Lorentz Group Representations

In a D-dimensional quantum field theory, the spin of a field u = u(x) is specified according

to the representation of the Lorentz group SO(1, D − 1) under which it transforms. If the

spacetime is factorised in the formX1,9 = M1,3×Y6, then one must restrict to representations

of the tangent space group SO(1, 3)×SO(6), which is a subgroup SO(1, 3)×SO(6) ⊂ SO(1, 9)

of the original group. The basic properties of the dimensional reductions of interest are

outlined below.

• Scalar fields ϕ = ϕ(x) are in the trivial representation of both the groups SO(1, 9) and

SO(1, 3)× SO(6), therefore their reduction does not present any particular issue.

• For spinor fields ψA = ψA(x), the reduction is based on Dirac matrices. In 10-

dimensional spacetime Dirac matrices are ten matrices of dimension 25 = 32. They

can be labelled as ΓABM , with A,B = 1, 2, . . . , 32, and they satisfy the Clifford algebra

{ΓM ,ΓN} = 2gMN . The generators of the group SO(1, 9) can then be seen to be

ΣMN = [ΓM ,ΓN ]/4.

In a spacetime of the form X1,9 = M1,3 × Y6, one can take the first four matrices

Γµ = γµ as the Dirac matrices for the space M1,3 and the final six matrices γm = Γm

as the Dirac matrices for the space Y6. In fact, they satisfy the correct Clifford

algebra and they allow one to construct the generators of the groups SO(1, 3) and

SO(6) as σµν = [γµ, γν ]/4 and smn = [γm, γn]/4, respectively. Therefore, a spinor field

of SO(1, 9) transforms as a spinor field of SO(1, 3) as well as a spinor of SO(6) too.

Ultimately this means that one can write the spinor as ψαa, with α = 1, . . . , 4 and

a = 1, . . . , 8, in such a way that the indices α and a account for SO(1, 3)- and SO(6)

transformations, respectively.

• Gauge fields AM = AM (xM ) transform under the vector representation 10 of the

group SO(1, 9), which decomposes in terms of SO(1, 3)× SO(6) as the representation

(4,1)⊕(1,6), namely a vector of SO(1, 3) plus a vector of SO(6). Such a decomposition

of AM into subrepresentation simply means that the components Aµ transform as a

4-dimensional gauge field while the components Am as a 6-dimensional vector.

For higher-spin fields, the concepts are generalisations of the results for spin-1/2 and spin-1

fields which result from product representations. Only a few basic ideas are reported below.
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• Gravitinos are spin-3/2 particles which we can describe by a field ψAM = ψAM (x), where

M is a vector index and A is a spinor index. Evidently, one can implement the same

decompositions as before to the SO(1, 3)- and SO(6)-vectors that are obtained by

splitting the Lorentz-index. One thus gets the SO(1, 3) vector-spinor χµαa and the

SO(6) vector-spinor χmαa.

• The graviton is described by the metric tensor gMN = gMN (x). Intuitively, the

components gµν would form the 4-dimensional metric tensor, the components gµm
would form a 4-dimensional vector and the components gmn would form several 4-

dimensional scalars.

• As far as p-form fields Ap = Ap(x) are concerned, the field AM1...Mp decomposes in

terms of SO(1, 3) × SO(6) quite easily: components with r indices in M1,3 and p − r

indices in Y6 just correspond to an r-form in M1,3 and a (p− r)-form in Y6.

Given these basic decompositions, the actual study of the field dimensional reduction is

quite complicated due to the requirement of masslessness, as is going to be shown below.

In fact, requiring the 4-dimensional fields to be massless implies precise characteristics on

their 6-dimensional counterparts.

2.2.2.2 Massles Modes

This subsection outlines the effects of dimensional reduction in spacetimes structured as

X1,9 = M1,3 × Y6 on the different fields that a theory does contain.

In principle, the core ideas are the same for each spin, and can thus be understood thanks

to the case of scalars. Nevertheless, the analysis of fields with more advanced Lorentz index

structure turns out to be more involved due to further non-trivial technical issues.

Scalar Fields

A 10-dimensional massless scalar field ϕ = ϕ(xM ) satisfies the wave equation ∇M∇M ϕ = 0,

where ∇M is the 10-dimensional covariant derivative. If the spacetime is of the form X1,9 =

M1,3 × Y6, then the wave operator splits naturally in the form ∇M∇M = ∂µ∂µ + ∇m∇m.

The field can be expanded in the Fourier expansion

ϕ(xM ) =
∑
ω

ϕω(xµ) ϕ̃ω(xm)

where ω is some label that parametrises the expansion in such a way that the 6-dimensional

fields ϕ̃ω are the eigenfunctions of the 6-dimensional Laplacian, i.e.

∇m∇mϕ̃
ω = −m2

ω ϕ̃
ω.

Such a decomposition is always admissible because the eigenfunctions of the Laplacian form

a basis of functions over the space Y6. Furthermore, for a compact space Y6 such eigenvalues

are non-positive, i.e. the values m2
ω are non-negative. Following this decomposition, the

4-dimensional fields ϕi do satisfy the field equations

(∂µ∂µ −m2
ω)ϕ

ω = 0,
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which means that each field ϕω is a scalar field of mass m2
ω. Roughly, one expects the

order of magnitude of the compact space Laplacian eigenvalues to be of the same order of

magnitude as 1/R2, R being the size of the manifold Y6 that scales the internal derivatives.

Therefore this the reference Kaluza-Klein mass scale M2
KK can be defined as

M2
KK = 1/R2.

Because the masses are then approximately of the same order of magnitude as the Kaluza-

Klein mass scale, i.e. m2
ω ∼M2

KK , generally speaking, the phenomenological interest is only

in the massless modes, since the massive Kaluza-Klein tower is above the 4-dimensional

cutoff energy. So, the number of fields present below the cutoff is the number of zero-modes

solving the equation ∇m∇mϕ̃ = 0: in a compact space, this has only one solution.

Spinor Fields

A massless 10-dimensional spinor ψ = ψ(xM ) satisfies the field equation iΓM∇M ψ = 0.

Such an equation can be immediately rewritten as i(γµ∇µ + γm∇m)ψ = 0. The operators

/∇4 = γµ∇µ and /∇6 = γm∇m do not commute, so a further operation is required before a

Fourier expansion. One can introduce the 4-dimensional chirality matrix γ(4) = iγ0γ1γ2γ3

and define the operators /̃∇4 = γ(4)γ
µ∇µ and /̃∇6 = γ(4)γ

m∇m. The wave equation can be

expressed as i ( /̃∇4 + /̃∇6)ψ = 0 and, because /̃∇4 and /̃∇6 commute, they can be diagonalised

simultaneously. If one determines the complete set of normalised solutions of the differential

equation

i /̃∇6ψ̃ω(x
m) = mω ψ̃ω(x

m),

then the complete wave equation can be solved by expanding the solution ψ in terms of

such solutions, i.e.

ψ(xM ) =
∑
ω

ψω(x
µ)ψ̃ω(x

m).

In fact, the the wave equation for the 4-dimensional field is now

(i /̃∇4 +mω)ψω(x
µ) = 0,

and describes a different 4-dimensional spinor ψω of mass mω for each value of ω. The

equations in terms of /̃∇6 and /̃∇4 are equivalent to the equations with the usual slashed

operators /∇6 and /∇4 because both the matrices γm and γµ and the matrices γ(4)γ
m and

γ(4)γ
µ satisfy the same Clifford algebra over Y6 and M1,3.

The covariant derivative incorporates the effects of both the spacetime curvature and

the coupling to gauge fields. If no gauge fields are present, the equation /∇6ψ̃ = 0 can

be studied easily in the context of Calabi-Yau compactifications. In fact, a Calabi-Yau

threefold (see subsection 2.2.3) has a single solution to the Killing equation ∇mξ(x
m) = 0.

More generally, in the presence of additional interactions such as the gauge ones, the analysis

is more complicated and one needs the so-called index-theorems counting the solutions to

the the Killing equation for each chirality. This is not going to be explored further here.
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Gravitinos

The study of gravitinos is quite similar to that of spinors. For a spin-3/2 field ψAM , with M

and A a vector and a spinor index, respectively, one encounters the following scenario.

• Massless terms from the SO(1, 3)-group vector-spinor ψαaµ provide 4-dimensional grav-

itinos, therefore their number is equal to the number of supersymmetries preserved

by the compactification. For a Calabi-Yau threefold compactification, there exists a

single Killing spinor which satisfies the equation ∇mξ(x
m) = 0, which means for each

10-dimensional gravitino there is one only 4-dimensional gravitino.

• In general, the components ψαam originate 4-dimensional spinors which are also in the

representation 6 of the group SO(6). Therefore, the zero-mode equation is generalised

non-trivially to an equation of the form /∇ξm = 0. For Calabi-Yau compactifications,

it is possible to show that such massless fields modes provide the superpartners of

Kähler and complex-structure moduli (to be introduced later).

Differential Forms

The dimensional reduction of p-forms can be performed by studying their field equation. In

general, p-form fields Ap are invariant under the gauge transformations Ap → Ap + dfp−1,

for an arbitrary (p− 1)-form fp−1 and their action in an n-dimensional spacetime is in the

form

S = −1

2

∫
X
dAp ∧ ∗ dAp = −1

2

∫
X
Ap ∧ ∗ d†ndnAp,

where Fp+1 = dAp is the (p + 1)-form field-strength tensor. It is then immediate to infer

the field equations d†ndnAp = 0. However, it is convenient to write them in terms of the

Hodge-de Rham operator ∆ = d†d + dd† as{
∆Ap = 0,

d†Ap = 0,

where the gauge condition d†Ap = 0 has been imposed.

Before moving on, it is worthwhile to consider in more detail what happens to p-forms in

a space of the kind X1,9 = M1,3×Y6. In the following, (r, p−r)-forms denote the components

of a p-form Cp with r and s = p−r indices in the tangent spaces of M1,3 and Y6, respectively.

It turns out that the Hodge-de Rham operator ∆10 splits in terms of the Hodge-De Rham

operators ∆4 and ∆6 on the manifolds M1,3 and Y6, respectively, as

∆10 = ∆4 +∆6,

In view of the decomposition of the Hodge-de Rham operator, if it acts on wedge prod-

ucts of 4- and 6-dimensional differential forms, it is convenient to split the 10-dimensional

p-forms Ap into (r, p− r)-form fields Ar,p−r that are expanded as

Ar,p−r(x
M ) =

∑
ω

Aωr (x
µ) ∧ Ãωp−r(ym),
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where Aωr and Ãωp−r are (r, 0)- and (0, p − r)-forms defined on M1,3 and Y6, respectively.

Therefore, the field equations can easily be seen to read

∆10Ar,p−r =
∑
ω

[
∆4A

ω
r ∧ Ãωp−r +Aωr ∧∆6Ã

ω
p−r
]
= 0.

In particular, one can immediately observe the field equation of massless r-forms on the

space M1,3, i.e.

∆4A
ω
r = 0,

for each of the solutions Ãωp−r of the equation

∆6Ã
ω
p−r = 0.

Equivalently, Ãip−r must be a harmonic form in the internal space Y6. The number of

(0, p− r)-forms which are zero eigenvalues of ∆6 is the Betti number bp−r = dimHp−r(Y6),

i.e. the dimension of the cohomology class Hp−r(Y6) over the compact space Y6.

The gauge condition undergoes an analogous decomposition. Indeed, because it reads

d†10Ar,p−r =
∑

ω

[
d†4A

ω
r ∧ Ãωp−r + (−1)rAωr ∧ d†6Ã

ω
p−r
]
= 0, since Ãωp−r is harmonic by assump-

tion for massless 4-dimensional r-forms Aωr , it also implies the condition

d†4A
ω
r = 0.

Graviton

The analysis of the metric gMN can be performed qualitatively by studying the index-

structure of the field.

• The purely non-compact term gµν corresponds to a scalar field in the compact space

Y6, therefore the zero-mode equation is the same as for scalar fields and we thus have

a single 4-dimensional graviton field gµν = gµν(x
µ).

• The mixed terms gµm are 4-dimensional vectors and also vectors of SO(6), thus the

massless 4-dimensional vectors would correspond to covariantly-constant vectors under

the group SO(6). However, Calabi-Yau threefolds do not admit such vectors.

• The compact terms gmn are 4-dimensional scalars and in fact, for a Calabi-Yau three-

fold, they correspond exactly to the scalar degrees of freedom that determine the

metric, namely Kähler moduli and complex-structure moduli (introduced later).

2.2.3 Calabi-Yau Orientifold Compactifications

This subsection outlines the essential elements of Calabi-Yau orientifold compactifications,

which constitute a common framework to generate 4-dimensional chiral theories from type

IIB string theory.
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2.2.3.1 Supersymmetry and Holonomy

Type IIB string theory is a 10-dimensional theory with N10 = 2 supersymmetries. A

compactification on a trivial space Y6 comes with too many 4-dimensional supersymmetries.

In fact, a 4-dimensional compactified type IIB theory hasN4 = 8 supersymmetries unless the

compactification plays a non-trivial role in the dimensional reduction of the supersymmetry

charges. Evidently, such a spectrum is not compatible with real-world observations of chiral

interactions. At the same time, a certain amount of supersymmetry is often assumed to be

important in order to simplify the solution of the hierarchy problem.

A compactification on a manifold Y6 impacts the 4-dimensional supersymmetry content

due to the reduction undergone by the supersymmetry charges. Ultimately, this is related

to the holonomy group of such a manifold Y6. In short, the holonomy group HM of a

manifold M is the group of the rotations a vector vm undergoes under parallel transport

on a closed path γ. Following refs. [48, 49], this can be explained naively by just thinking

of Kaluza-Klein compactifications. The 4-dimensional fields that are visible at low energies

are the zero-modes that are constant in the extra-dimensional internal space. Similarly,

supersymmetries that are unbroken in the 4-dimensional spacetime of a higher-dimensional

theory are those corresponding to supersymmetry parameters that are covariantly constant

over the internal space. Such supersymmetry parameters are spinors η that in general can be

decomposed in terms of 4- and 6-dimensional spinors as η = ϵ(xµ)ξ(ym). The requirement

of covariantly-constant spinors over the compact manifold Y6 amounts then to selecting

Killing spinors, i.e. spinors such that ∇mξ = 0. Equivalently, covariantly-constant spinors

correspond to singlets under the compact-space holonomy group. Indeed, such spinors do

not change under parallel transport over closed loops. In other words, a supercharge that

gets rotated by parallel transport over a closed path in the internal space cannot determine

a well-defined 4-dimensional supersymmetry.

Therefore, on the one hand, if the manifold Y6 admits some covariantly-constant spinors,

then some supersymmetries may survive in the compactified 4-dimensional theory. On

the other hand, if it admits none, no supersymmetries are present, while if all spinors are

covariantly constant all the supersymmetries are preserved. From a phenomenological point

of view, a great deal of interest is in the situation where only certain classes of covariantly-

constant spinors are allowed. Indeed, a desirable aim is to rule out the situations with either

no or too many supersymmetries. The holonomy group of a generic manifold of dimension

d = 2n is SO(2n) and thus does not admit singlets, i.e. covariantly-constant spinors. So,

a generic internal space Y6 with holonomy group SO(6) is not acceptable. In more detail,

because the spin group of the group SO(6) is Spin(6) ≃ SU(4), chiral spinors over the

compact space Y6 in principle transform under its representation 4 or 4. In order to have

some covariantly-constant spinors, it is necessary to consider an internal space Y6 whose

holonomy group is at most SU(3), in which case spinors decompose into the representations

3+1 or 3+1 of the holonomy group SU(3). In fact, the decomposition of a 10-dimensional

Weyl spinor in the representation 16 of the group SO(1, 9), is as summarised in the table
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Spin(1, 9) Spin(1, 3)× Spin(6) Spin(1, 3)× SU(3)

16 → (2,4) + (2′,4) → (2,3) + (2′,3) + (2,1) + (2′,1)

and the representations 2 and 2′ denote the two possible chiralities under the 4-dimensional

Lorentz group. The components that lead to 4-dimensional supersymmetries are those in

SU(3)-singlets, namely (2,1) and (2′,1), that eventually consist in the 4-dimensional su-

percharges Qα and Qα̇ once the Majorana condition is imposed. This discussion shows that

the easiest supersymmetric 4-dimensional theory obtainable from a type IIB compactifica-

tion is a theory with N4 = 2 supersymmetries generated by compactifying on 6-dimensional

spaces with holonomy group SU(3). Supersymmetries can further be reduced by postulat-

ing other symmetries in the theory, such as orientifold invariance. Choosing to focus on

manifolds of complex dimension 3, it turns out that Calabi-Yau 3-folds CY3 are in fact

the complex 3-dimensional spaces with holonomy group SU(3). This motivates their use in

string compactifications.

Calabi-Yau manifolds are a specific class of complex manifolds. A generic geometrical

description of these manifolds is an advanced topic that involves several tools from differ-

ential complex geometry, including an analysis of almost-complex, complex, Hermitean and

Kähler manifolds. Since giving an account of these topics is somewhat beyond the scope

of this thesis, only a few results are outlined below. An excellent review is in refs. [50, 51]

and a short list of essential results is summarised in appendix A.3. For the purposes of this

thesis, a Calabi-Yau n-fold CYn can be defined as a complex n-dimensional manifold with

holonomy group H = SU(n). A great number of relationships between Hodge numbers exist

for complex, Kähler and Calabi-Yau manifolds and these eventually allow one to charac-

terise n-dimensional Calabi-Yau manifolds in terms of such Hodge numbers. For instance

3-dimensional Calabi-Yau manifolds and can be classified in terms of two Hodge numbers

as shown by the so-called Hodge diamond depicted in fig. 2.1.

h2,1h1,2 h0,3h3,0
h1,1

h2,2

h0,2h2,0

h1,3h3,1

h0,1h1,0

h2,3h3,2

h0,0

h3,3

= h2,1h2,1 11
h1,1

h1,1

00

00

00

00

1

1

Figure 2.1: Hodge diamond for 3-dimensional Calabi-Yau manifolds.

2.2.3.2 Calabi-Yau Orientifold Compactifications

As type IIB compactifications on Calabi-Yau threefolds lead to N4 = 2 theories, they cannot

provide reliable extensions of the Standard Model. However, postulating the presence of

another symmetry such as worldsheet parity is among the easiest ways to achieve a chiral

spectrum. This subsection describes the compactification of type IIB theories on Calabi-

Yau orientifolds and the 4-dimensional supersymmetric N4 = 1 effective field theory it leads
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to. Again, the analysis is going to be essential. It is based on refs. [52,53]; helpful material

is also in refs. [33, 49].

2.2.3.2.1 Particle Spectrum

Let type IIB string theory be defined on a 10-dimensional spacetime of the form X1,9 =

M1,3×CY3, where CY3 is a Calabi-Yau threefold. In addition, invariance under worldsheet

parity and a geometric action on the internal space are also postulated. In more detail,

generalising the notion of orientifold for non-compactified theories, the so-called orientifold

operator O is of the form

O = (−1)FLΩPσ
∗, (2.2.3)

where ΩP is the worldsheet parity operator, σ∗ is the pull-back of σ, i.e. a holomorphic

isometric involution on the internal manifold, and FL is the 4-dimensional fermion-number

operator in the left-moving sector. A (p + 1)-dimensional fixed point of the involution is

called an Op-plane, in analogy with O9-planes in type I theories (see subsubsection 2.1.3.2),

and, unless stated explicitly, this means Op−-planes. The involution acts trivially on the

Kähler form, i.e. σ∗ω1,1 = ω, and it is assumed to act on the holomorphic 3-form as

σ∗Ω = −Ω. This leads to the possibility to have O3- and O7-planes as the fixed points

of the involution. Moreover, it requires the presence of FL in order to have O2 = 1 on all

states. The opposite choice σ∗Ω = Ω is possible and it leads to O5- and O9-planes.

In detail, for arbitrary states |α⟩NS and |β⟩R in the left-moving NS- and R-sectors, the

left-moving fermion-number operator FL is such that

(−1)FL |α⟩NS = +|α⟩NS,

(−1)FL |β⟩R = −|β⟩R,

whereas the worldsheet parity operator ΩP is defined to act as

ΩP
[
|NS⟩ × |NS⟩

]
= +|NS⟩ × |NS⟩,

ΩP
[
|NS⟩ × |R+⟩

]
= +|R+⟩ × |NS⟩,

ΩP
[
|R+⟩ × |NS⟩

]
= +|NS⟩ × |R+⟩

ΩP
[
|R+⟩ × |R+⟩

]
= −|R+⟩ × |R+⟩.

As can be inferred by expanding on the defining condition ΩP ψ
M
± (τ, σ) Ω−1

P = ψM∓ (τ, π−σ),
the action of worldsheet parity on closed-string fermionic creation operators is

ΩP b
M
r Ω−1

P = e−2πir bMr ,

ΩP b
M
r Ω−1

P = e−2πir bMr ,

The type IIB massless spectrum on Calabi-Yau orientifolds is the result of the dimen-

sional reduction of the type IIB massless spectrum of the states which are invariant under

the action of the orientifold projection operator O. Thanks to supersymmetry, it is enough

to consider the bosonic sector.
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- In the NSNS-sector, the left-moving spacetime fermion-number operator acts as the

identity and worldsheet parity symmetrises spacetime indices, so schematically one

finds Oϕ = σ∗ϕ, OĝMN = σ∗ĝMN and OB2 = −σ∗B2.

- In the RR sector, the left-moving spacetime fermion-number flips the sign of the state,

while worldsheet parity antisymmetrises indices, so one has OC0 = σ∗C0, OC2 =

−σ∗C2 and OC4 = σ∗C4.

Because the operator σ is a holomorphic involution, each of the cohomology groups Hp,q

splits into a direct sum of cohomology groups Hp,q
+ and Hp,q

− as

Hp,q = Hp,q
+ ⊕Hp,q

− ,

with Hp,q
+ and Hp,q

− being the (+1)- and (−1)-eigenspaces of σ with dimensions hp,q+ and hp,q− ,

respectively. Furthermore, starting from the Hodge diamond, one can deduce the following

properties:

• since the Hodge operator ∗ commutes with σ∗, as σ preserves the Calabi-Yau orien-

tation and metric, one has h1,1+ = h2,2+ and h1,1− = h2,2− ;

• since σ is holomorphic, one has h1,2+ = h2,1+ and h1,2− = h2,1− ;

• since σ∗Ω = −Ω, one has h3,0+ = h0,3+ = 0 and h3,0− = h0,3− = 1;

• since the volume-form must be proportional to Ω ∧ Ω, which is invariant under σ∗,

one has h0,0+ = h3,3+ = 1 and h0,0− = h3,3− = 0.

All the non-trivial cohomology group and their basis are summarised in table 2.1.

cohomology group dimension basis elements

H1,1
+ , H1,1

− h1,1+ , h1,1− ωi, ωι

H2,1
+ , H2,1

− h2,1+ , h2,1− χa, χα

H2,2
+ , H2,2

− h1,1+ , h1,1− Ωi,Ωι

H3
+, H

3
− 2h1,2+ , 2 + 2h1,2− (αk, β

l), (ακ, β
λ)

Table 2.1: Cohomology groups and cohomology group basis for a Calabi-Yau orientifold.

Under these premises, it is now possible to expand the 10-dimensional massless spectrum

in terms of harmonic forms over the Calabi-Yau orientifold.

• For the metric ĝMN , because the fundamental form ω1,1 is such that σ∗ω1,1 = ω1,1,

the deformations of ω1,1 = igab dz
a ∧ dzb, with ĝmn = gmn, can be expanded as

[ω1,1(x)] = ti(x)ωi, i = 1, . . . , h1,1+ ,
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which defines h1,1+ real scalars ti, called Kähler moduli. Further deformations of the

complex structure can be parametrised via the contraction with harmonic (3, 0)- and

(2, 1)-forms, defining h1,2− complex scalars uα, called complex-structure moduli, as

ΩabdJ
d
c (x) = −i

h1,2−∑
α=1

uα(x)χαabc.

• Scalars, i.e. the dilaton ϕ and the 0-form C0, are automatically two scalars in the

4-dimensional as well as in the 10-dimensional spacetime.

• As concerns the differential p-form fields, on the one hand the 2-forms B2 and C2 can

only be expanded on (−1)-eigenspaces, i.e.

[B2(x)] = bι(x)ωι, ι = 1, . . . , h1,1− ,

[C2(x)] = cι(x)ωι, ι = 1, . . . , h1,1− ,

where the basis coefficients bι and cι correspond to 4-dimensional real scalars. On the

other hand, the 4-form C4 can be expanded only on (+1)-eigenspaces, i.e.

[C4(x)] = θi2(x) ∧ ωi + V k
1 (x) ∧ αk − Uk1(x) ∧ βk + θi(x)Ω

i,

{
i = 1, . . . , h1,1+ ,

k = 1, . . . , h1,2+ .

Because of the self-duality condition, only half of these degrees of freedom are inde-

pendent, namely h1,1+ real scalars θi and h
1,2
+ real vectors V k

µ .

In the fermionic sector, only a linear combination of the dilatinos and a linear combination

of the gravitinos is invariant under the projection, which in fact hints at a particle content

with one supersymmetry.

To conclude, given the particle content above, one can eventually individuate a unique

general way to make up 4-dimensional N4 = 1 multiplets. This is summarised in table 2.2.

multiplet number bos. field

gravity 1 gµν

chiral 1 (C0, ϕ)

chiral h1,2− uα

multiplet number bos. field

chiral h1,1+ (ti, θi)

chiral h1,1− (bι, cι)

vector h1,2+ V k
µ

Table 2.2: N4 = 1 massless spectrum from type IIB Calabi-Yau orientifold compactifications.

The volume of the extra-dimensions can be written as

vol CY3 =
il6s
6

∫
CY3

ω1,1 ∧ ω1,1 ∧ ω1,1 =
l6s
6
titjtl kijk = l6sℓ(0)V, (2.2.4)

where V captures the field-dependence given by the Kähler moduli ti, the string scale ls is

the internal-space scale and ℓ(0) is a constant depending on the extremes of integration.
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2.2.3.2.2 Effective Supergravity Formulation

In view of the dimensional reductions of the fields in paragraph 2.2.3.2.1, it is possible to

dimensionally reduce the Einstein-frame type IIB action of eq. (2.2.2). This can be done

by allowing for the presence of non-trivial background 3-form fluxes H3 and F3. This is

compatible with the generation of a warp factor, but the latter is not going to be considered

here for simplicity. For a discussion of warping, see subsection 2.2.4. The 4-dimensional

Einstein-frame metric is parametrised, with respect to the 10-dimensional Einstein-frame

metric ds210 = ĝMNdx
MdxN , as

ds210 = e−6(u−⟨u⟩)gµνdx
µdxν + e2ugmndy

mdyn,

where u is a field parametrising the internal volume as volCY3 = e6ul6sℓ(0), where ℓ(0) is

some numerical constant. With these choices, one finds a Einstein-Hilbert term defining a

4-dimensional Planck mass m2
P = 4π e⟨6u⟩ℓ(0)/g

2
s l

2
s .

The calculations for the dimensional reduction are quite lengthy,2.13 and they can be

found in ref. [52]. Remarkably, it turns out that the dimensionally-reduced action can be

reproduced exactly and elegantly in the formalism of N4 = 1 supergravity, as expected. A

review of the latter can be found in appendix C. Although a general analysis is possible, it

is easier to restrict the discussion to the case where h1,1− = 0, which is enough to capture

all the essential elements of the theory. Along with the axio-dilaton τ = C0 + ie−ϕ and the

complex-structure moduli uα, the Kähler coordinates must be defined as

Ti =
3i

2
θi +

3

4
kijkt

jtk.

In this context, the superfields Ti are also called Kähler moduli. Then, apart from the gauge

sector, the complete supergravity action is reproduced by the Kähler and super-potentials

κ24K̂ = −ln [−i(τ − τ)]− ln

[
−i

∫
Y6

Ω(u) ∧ Ω(u)

]
− 2 lnV − ln(4π[ℓ(0)]

2) (2.2.5a)

κ34Ŵ =
gs
l2s

∫
CY3

G3(τ) ∧ Ω(u), (2.2.5b)

where G3 = F3 − τH3 is the complexified 3-form flux. The volume-term V provides an

implicit dependence on the moduli Ti by inverting its definition in terms of the moduli

ti. Unfortunately this is an impossible task in general; for compactifications with h1,1 = 1,

however, one can define T = 3iθ/2+3k111t
2/4 = (243ℓ 2(0)/16k111)

1/3(−iρ), with ρ = χ+ie4u

being the single Kähler modulus controlling the internal volume.2.14 The gauge sector

is described entirely by means of the gauge kinetic functions fkl = (i/2) ∂Yk/∂X
l, with

Xk =
∫
CY3

Ω ∧ βk and Yk =
∫
CY3

Ω ∧ αk.

2.13The dimensional reduction of the axio-dilaton and of the volume modulus, in a compactification with

h1,1
+ = 1, are discussed in detail, in a more general context, in appendix B.
2.14The factors can be worked out by knowing that the superfield ρ must be proportional to the superfield

T and by taking advantage of the identities k111t
3/6 = ℓ(0)V = ℓ(0)e

6u.
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2.2.3.2.3 Vacuum Solutions and Imaginary Self-Dual Flux Background

The N4 = 1 supergravity formulation in terms of a Kähler potential and a superpotential al-

lows one way address the study of two crucial issues: the characteristics of the vacuum state

of the system, i.e. the moduli space of the theory, and, more in detail, the corresponding

supersymmetry properties.

A general analysis is possible, but for pedagogical reasons it is sufficient to consider the

case where h1,1 = 1, working in terms of the field ρ, for which−2 lnV = −3 ln[−i(ρ−ρ)]+ln 8,

and knowing that ∇uαΩ = ∇αΩ = iχα, the Kähler-covariant derivatives read

∇̂αŴ = − igs
κ34l

2
s

∫
CY3

G3 ∧ χα, (2.2.6a)

∇̂τŴ =
igs
κ34l

2
s

1

[−i(τ − τ)]

∫
CY3

Ĝ3 ∧ Ω, (2.2.6b)

∇̂ρŴ =
−3iŴ

[−i(ρ− ρ)]
. (2.2.6c)

In fact, because the Kähler metric for the Kähler modulus reads κ24K̂ρρ = 3/[−i(ρ− ρ)]2, it

is easy to see that the F-term scalar potential undergoes a net cancellation of the negative-

definite term proportional to the gravitino mass. This is the well-known no-scale structure.

In fact, one finds

V̂F = eκ
2
4K̂
(
K̂αβ∇̂αŴ ∇̂βŴ + K̂ττ ∇̂τŴ ∇̂τŴ + K̂ρρ∇̂ρŴ ∇̂ρŴ − 3κ24ŴŴ

)
= eκ

2
4K̂
(
K̂αβ∇̂αŴ ∇̂βŴ + K̂ττ ∇̂τŴ ∇̂τŴ

)
,

(2.2.7)

which eventually means the Kähler modulus ρ is not trivially stabilised. This is a crucial

issue of type IIB compactifications, since this no-scale structure is an intrinsic obstacle and

there are only a few (and still currently debated) scenarios, involving non-perturbative and

perturbative effects [54,55], which are argued to break it in such a way that ρ is consistently

stabilised.2.15 The compactification volume should always be large, in string units, in or-

der to consistently rely on the effective-theory approximation neglecting higher-derivative

interactions. On the other hand, the leftover potential can be minimised straightforwardly

at the value ⟨V̂F ⟩ = 0, which corresponds to the conditions∫
CY3

⟨G3⟩ ∧ ⟨χα⟩ = 0, (2.2.8a)∫
CY3

⟨Ĝ3⟩ ∧ ⟨Ω⟩ = 0. (2.2.8b)

In fact, the Kähler metric are symmetric and positive-definite, therefore the minimum of the

potential is fixed at zero when the Kähler-covariant derivatives for the complex-structure

and axio-dilaton fields are zero. Therefore, the vacuum expectation values for the complex-

structure moduli ⟨uα⟩ and for the axio-dilaton ⟨τ⟩ are fixed as the solutions of eqs. (2.2.8a,

2.15An instance capturing all the essential elements of a KKLT-like [54] compactification is going to be

discussed in subsection 4.4.3.
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2.2.8b). For the same reason, it is immediate to conclude that the F-terms for these fields

are also zero, i.e. ⟨Fα⟩ = ⟨eκ24K̂/2K̂αβ∇̂βŴ ⟩ = 0 and ⟨F τ ⟩ = ⟨eκ24K̂/2K̂ττ ∇̂τŴ ⟩ = 0, which

means that these fields do not break supersymmetry. Whether or not supersymmetry is

actually broken spontaneously or not in the vacuum depends on the details of how the

Kähler modulus is stabilised and on the features of the other quantities that are present in

the full theory, such as branes and anti-branes.

The 3-form flux G3 on a Calabi-Yau threefold modded by an orientifold belongs to

the cohomology class H3
−, according to the definition G3 = F3 − τH3. The fact they are

harmonic stems from Bianchi identities and their field equations, and their σ-parity is

dictated by the one of its components. For a given 3-form flux G3, it is convenient to define

its imaginary self-dual and imaginary anti-self-dual components G−
3 and G+

3 as

G±
3 ≡ 1

2
(G3 ± i ∗6 G3), (2.2.9)

which satisfy the property ∗6G±
3 = ∓iG±

3 , and so to decompose the 3-form flux G3 as

G3 = G−
3 +G+

3 . In a Calabi-Yau threefold CY3 it is possible to show that the holomorphic

harmonic 3-form Ω and the harmonic (2, 1)-forms χa are such that

∗6Ω = −iΩ, (2.2.10a)

∗6χα = +iχα. (2.2.10b)

This means that the imaginary self-dual component G−
3 of the 3-form flux must belong to

the cohomology group H0,3
− ⊕H2,1

− , whereas the imaginary anti-self-dual component G+
3 of

the 3-form flux must belong to the cohomology group H3,0
− ⊕H1,2

− . More general compact-

ifications require this point to be deal with less ease.2.16 The vacuum conditions of eqs.

(2.2.8a, 2.2.8b) require the 3-form flux to have only (2, 1)- and (0, 3)-components. This

means that the 3-form flux must be imaginary self-dual.

2.2.4 Giddings-Kachru-Polchinski Compactifications

Based on ref. [56], this subsection describes the scenario arising within flux compactifications

with a warped-metric Ansatz that is compatible with a 4-dimensional flat spacetime. In

particular, it discusses how the warp factor is related to background fluxes in type IIB

string theory. The 10-dimensional Einstein-frame line element ds210 = ĝMNdx
MdxN is

parametrised to be

ds210 = e2A(y) ğµν(x) dx
µdxν + e−2A(y) ğmn(y) dy

mdyn, (2.2.11)

where the term e2A is the so-called warp factor. This can generate a hierarchy between the

4-dimensional spacetime at a certain position ym in the internal space and the generic bulk

reference Planck scale, in a string-theory realisation of the Randall-Sundrum mechanism

2.16In a Calabi-Yau threefold, there cannot be a non-primitive harmonic (2, 1)-form, so all harmonic (2, 1)-

forms are primitive and hence imaginary self-dual (and viceversa), whereas all (3, 0)-forms are instead always

primitive [56].
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[57]. Basically, the idea is to study the field equations for type IIB string theory assuming

such a warped-metric Ansatz in order to discuss its reliability.

The field content and the corresponding interactions are determined by the action of eq.

(2.2.2). The dynamics of the volume-controlling modulus u = u(x) is going to be ignored

here, imagining to work with its expectation value; for details, see e.g. ref. [58]. In detail,

the setup under consideration can be described as follows.

• The metric is assumed to be of the standard warped product kind with a conformally

flat 4-dimensional spacetime, as introduced in eq. (2.2.11).

• As scalars cannot develop a field-strength in the non-compact directions due to Lorentz

invariance, the axio-dilaton τ is allowed to vary only over the internal manifold, i.e.

τ = τ(y). (2.2.12)

• Due to Lorentz invariance, the complex 3-form fluxG3 is assumed to have only internal

indices, which means that

G3 =
1

3!
Gmnl dy

m ∧ dyn ∧ dyl. (2.2.13)

• Due to Lorentz invariance, the self-dual 5-form flux F̃5 is postulated to be of the form

F̃5 = (1 + ∗̂10) dα ∧ v̆ol4, (2.2.14)

for some real scalar α = α(y).

Further, the theory is assumed to include a set of localised sources described by an action

Sσ. Such sources are a combination of D- and anti-D-branes as well as O- and anti-O-planes,

compatibly with the Ansatz metric, as will be shown. In fact, branes are natural sources

for closed-string sector background fields and, moreover, they happen to be crucial tools in

type IIB model building, and similarly for orientifold planes. So, the total action is of the

form

S = SIIB + Sσ. (2.2.15)

2.2.4.1 4-dimensional Einstein-Equation Constraint

One can analyse the trace-reversed Einstein’s equations to determine whether the warped-

metric Ansatz is admissible. The trace-reversed 10-dimensional Einstein equations read

R̂MN = κ̂210

(
T̂MN − 1

8
ĝMN T̂

)
, (2.2.16)

In general, given an action S = S[g, ϕa], not including the Einstein-Hilbert term and de-

pending on some fields ϕa, along with the 10-dimensional metric tensor gMN , the energy-

momentum tensor TMN of the theory is defined as

T̂MN [ϕ
a] ≡ − 2√

−ĝ10
δS[ĝ, ϕa]

δĝMN
,
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It is possible to relate the warp factor A = A(y) to the total energy-momentum tensor of

the theory. In particular, focussing on the purely 4-dimensional term, one can equate the

Ricci-tensor components R̂µν computed dynamically with those determined geometrically

from the warped metric employing the standard definition.

• One can start with the Ricci tensor evaluated via Einstein equations. For the axio-

dilaton τ , one can write in general

T̂MN [τ ] =
1

2κ̂210 (Im τ)2

[
∂Mτ ∂Nτ −

1

2
ĝMN ∂P τ ∂

P̂ τ

]
,

and the contribution to the Ricci tensor turns out to be null, being ∆R̂µν [τ ] = 0, as

can be checked with the assumption that τ = τ(y). For the 3-form flux G3, one finds

T̂MN [G3] =
1

4κ̂210 Im τ

[
GMM2M3G

M̂2M̂3

N − 1

6
ĝMN GM1M2M3G

M̂1M̂2M̂3

]
,

and, considering the fact that this form has only internal components, the contribution

of the flux to the 4-dimensional Ricci tensor is readily seen to be

∆R̂µν [G3] = − 1

48 Im τ
ĝµν GmnpG

m̂n̂p̂
.

For the self-dual 5-form the generic energy-momentum tensor components are

T̂MN [F̃5] =
1

96κ̂210

[
F̃MPQRSF̃

P̂ Q̂R̂Ŝ
N − 1

10
ĝMN F̃NPQRSF̃

N̂P̂ Q̂R̂Ŝ

]
.

One can express the flux as F̃5 = v̂ol4 ∧ dφ − ∗̂6dφ, defining dφ = e−4Adα for sim-

plicity, and its only-nonzero components can be written as F̃µνρσm = ϵ̂µνρσ ∂mφ and

F̃klpqr = −ĝmn ϵ̂mklpqr ∂nφ. The combinations F̃µPQRSF̃
P̂ Q̂R̂Ŝ

ν = −4! ĝµν ĝ
mn ∂mφ∂nφ

and F̃NPQRSF̃
N̂P̂ Q̂R̂Ŝ = 0 indicate that the 4-dimensional components of the energy-

momentum tensor are T̂µν = 1/(96κ̂210) [−24 ĝµν ĝ
mn ∂mφ∂nφ]. Also, one can easily

observe that the trace of the full 10-dimensional energy-momentum tensor vanishes,

i.e. T̂ [F̃5] = 0. To conclude, the 4-dimensional Ricci tensor contribution is

∆Rµν [F̃5] = −1

4
ĝµν ĝ

mn ∂mφ∂nφ = −1

4
e−8A ĝµν ĝ

mn ∂mα∂nα.

One must also consider the localised source. In the end, summing up, the total 4-

dimensional Ricci tensor as evaluated through Einstein equations can be written as

R̂µν =− 1

4
ĝµν

[
1

12 Im τ
GmnpG

m̂n̂p̂
+ e−8A ĝmn ∂mα∂nα

]
+ κ̂210

(
T̂µν −

1

8
ĝµν T̂

)
σ
.

(2.2.17)

• On the other hand, one has to determine the Ricci tensor for 10-dimensional metrics

of the warped form in eq. (2.2.11). For a metric of the form ds210 = ĝMNdx
MdxN =
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e2A(y) ğµν(x) dx
µdxν + e−2A(y) ğmn(y) dy

mdyn, the 4-dimensional components of the

10-dimensional Ricci tensor, computed with the metric ĝMN , can be written as

R̂µν = R̆µν − e4A ğµν∇̆m̆∇̆mA

= R̆µν −
1

4
ğµν
(
∇̆m̆∇̆me

4A − e−4A ∇̆m̆e4A ∇̆me
4A
)
,

(2.2.18)

where R̆µν is the Ricci tensor of the unwarped 4-dimensional metric ğµν and the

covariant derivatives ∇̆m are with respect to the unwarped 6-dimensional internal

metric ğmn. Depending on the context, both expressions may be more or less useful.

Finally, the different definitions of the Ricci tensor can be compared in order to get a

defining equation for the warp factor. By equating the dynamical calculation of eq. (2.2.17)

and the geometric expression of eq. (2.2.18), one gets

−1

4
ğµν ∇̆m̆∇̆me

4A = −R̆µν −
1

4
ğµν e

−6A ∇̂m̂e4A ∇̂me
4A

− 1

4
e2Ağµν

[
1

12 Im τ
GmnpG

m̂n̂p̂
+ e−8A ĝmn ∂mα∂nα

]
+ κ̂210

(
T̂µν −

1

8
e2A ğµν T̂

)
σ
,

where quantities are written in terms of the warped or unwarped internal metric for future

convenience. In the end, the trace of this expression allows one to write

∇̆m̆∇̆me
4A = R̆4 +

1

12 Im τ
e2AGmnpG

m̂n̂p̂
+ e−6A

(
∇̂m̂e4A ∇̂me

4A + ∇̂m̂α∇̂mα
)

− κ̂210
2

e2A
(
ĝµν T̂µν − ĝmnT̂mn

)
σ
.

(2.2.19)

This equation is a necessary condition which the warp factor e4A has to satisfy and it

constrains the kind of flux and brane configurations which are compatible with a warped

metric in a compact manifold. In particular, for flat 4-dimensional solutions, i.e. for ğµν =

k ηµν for some constant k, with R̃ = 0, one can observe that on a compact internal manifold

the left-handside integral is null whereas, in the absence of localised sources, the right-

handside is positive semidefinite. This implies that the 3-form fluxes must vanish and that

the potential α and the warp factor e4A must be constant. This is an alternative version

of the Maldacena-Nuñez no-go theorem [59]. Interestingly, for simple warped flat solutions

the source trace term must be negative so that the other terms can be positive and not

vanishing. In particular, without such localised sources there can be no non-trivial warping.

2.2.4.1.1 Example: p-Brane Source Terms

As an example, one can consider a p-brane wrapping the 4-dimensional spacetime X1,3 and

a (p− 3)-cycle Σp−3 of the internal space Y6. It can be shown (see also eqs. (2.3.2, 2.3.3))

that the worldvolume action of a p-brane at leading α′-order is of the form

Sp-brane = −τp
∫
X1,3×Σp−3

dp+1ξ e(p−3)ϕ/4
√
−det ĝαβ + µp

∫
X1,3×Σp−3

Cp+1,
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with gαβ and ϕ the pull-backs of the metric and of the dilaton on the worldvolume, for α =

0, 1, . . . , p. Here, τp and µp are the tension and the RR-charge of the p-brane, respectively.

For Dp- and anti-Dp-branes one has τp = τDp, whereas for Op-planes one effectively finds

τp = −2p−4τDp, with τDp = 2π/gsl
p+1
s . For Dp- and anti-Dp-branes, the charge is µp = qτDp,

with q = ±1, whereas for Op-planes it is µp = −2p−4τDp. Here the notation is such that

Op- indicates Op−-planes; Op+-planes have opposite tension and charge and one may also

define anti-Op±-planes, with opposite charges.

Only the DBI-term depends on the metric and therefore it is the only relevant term for

the energy-momentum tensor. In the static gauge X µ̇ = ξαδµ̇α and Y ṁ = 0, for µ̇ = µ,m′,

with µ = 0, 1, 2, 3 and m′ = 4, . . . , p, and ṁ = p+ 1, . . . , 9, it can be written as

Sp-braneDBI = −τp
∫
X1,3×Y6

d10x e(p−3)ϕ/4
√

−det ĝαβ
√
det ĝm′n′

δ(Σp−3)

l9−ps

,

with ĝṁṅ representing the metric over the transverse space. This gives

T̂MN = − 2√
−ĝ10

δS

δĝMN
= − 2√

−ĝ10
δS

δĝαβ
δĝαβ

δĝMN
.

In the static gauge, the metric pullback is ĝαβ = ∂αX
M∂βX

N ĝMN = ĝµν δ
µ
αδνβ+ ĝm′n′ δm

′
α δn

′
β

and one immediately finds

T̂µν = −τp e(p−3)ϕ/4 ĝµν δ(Σp−3)/l
9−p
s ,

T̂mn = −τp e(p−3)ϕ/4 ĝm′n′δm
′

m δn
′

n δ(Σp−3)/l
9−p
s .

In particular, one finds the combination

− 1

2

(
ĝµν T̂µν − ĝmnT̂mn

)
=

7− p

2
τp e

(p−3)ϕ/4 δ(Σp−3)/l
9−p
s . (2.2.20)

So, for positive-tension objects like Dp- and anti-Dp-branes of spatial dimension p ≤ 7,

warped-metric solutions are not compatible with non-anti-de Sitter spacetimes. However,

negative-tension objects like Op- and anti-Op-planes also exist and thus turn out to be

natural sources for warped metrics even in scenarios with Minkowski or de Sitter vacuum.

2.2.4.2 5-form Field-Equation Constraint

One can now consider another constraint which arises from the low-energy effective action,

i.e. the 5-form flux field equations. The action involving the 4-form C4 is

S [C4] = − 1

8κ̂210

∫
X1,9

F̃5 ∧ ∗̂10F̃5 −
i

8κ̂210

∫
X1,9

1

Im τ
C+
4 ∧G3 ∧G3 + Sσ[C4]

where the presence of a generic localised source, which generally couples to the 4-form field

C4 through its pull-back in the Chern-Simons action, has been taken into account. In what

follows, this will be considered as a p-brane, without specifying its details. The action

variation with respect to the field C4 is (the source electric coupling is halved because of

the self-duality of the 4-form field-strength tensor [56])

δS [C4]

δC4
= − 1

4κ̂210
∗̂10d†F̃5 −

i

8κ̂210

1

Im τ
G3 ∧G3 +

1

2
τD3 ∗̂10jσ4 = 0,
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with ∗̂10jσ4 accounting for the 6-form outcome of the functional derivation by the 4-form

of the localised source action in terms of the D3-brane tension τD3, being j
σ
4 the current

density. The generic RR-coupling to the local source term reads (see eqs. (2.3.2, 2.3.3))

Sσ[C4] = τD3

∫
X1,9

φ∗C4 ∧ ∗̂10jσ4 ,

with the tension τD3 written explicitly for future convenience and the generic electric cou-

pling µp being absorbed in the definition of the current density. In the case of 3-branes, this

coupling is especially simple to express as a worldvolume integral. Because ∗̂10d†F̃5 = −dF̃5,

one can write

dF̃5 =
i

2 Im τ
G3 ∧G3 − 2κ̂210τD3 ∗̂10jσ4 . (2.2.21)

In view of the identity G3 ∧ G3 = −2i Im τ H3 ∧ F̃3, which can be seen to correspond

to the 5-form flux Bianchi identity. A few manipulations show the left handside to be

dF̃5 = e−8Ade4A ∧ ∗̂6dα+ e−4A∆̂α v̂ol6, i.e. dF̃5 =
(
e−8A∇̂m̂e4A∇̂mα− e−4A∇̂m̂∇̂mα

)
v̂ol6.

It will be useful to make use of the identity ∇̂m̂∇̂mα = e2A ∇̆m̆∇̆mα− e−4A ∇̂m̂e4A∇̂mα.

In the right handside, the 3-form flux product can be recast into the form G3 ∧ G3 =

−Gmnp(∗̂6G)m̂n̂p̂ v̂ol6/3!. For the source term, instead, it is assumed that the localised

p-brane sources are wrapping the 4-dimensional spacetime, along with an internal (p− 3)-

dimensional cycles, and therefore they are such that their contribution can be generally

arranged in the suitable form ∗̂10jσ4 = ρσ(3) v̂ol6. Summing up, eq. (2.2.21) gives

∇̆m̆∇̆mα =
i

12 Im τ
e2AGmnp(∗̂6G)m̂n̂p̂ + 2 e−6A ∇̂m̂e4A ∇̂mα+ 2κ̂210τD3 e

2A ρσ(3). (2.2.22)

2.2.4.2.1 Example: 3-Brane Source Terms

It is instructive to analyse the term ∗̂10jσ4 for the easiest case, i.e. that of 3-branes, such as

D3- and anti-D3-branes as well as O3- and anti-O3-planes. The Chern-Simons coupling of

the 4-form to the 3-brane reads

S3-brane [C4] = rqτD3

∫
W1,3

(φ∗C4) = rqτD3

∫
X1,9

(φ∗C4) ∧ a
W1,3

6 ,

whereW1,3 represents the 3-brane worldvolume, with a
W1,3

6 = δ(y)v̂ol6/l
6
s being its Poincaré.

Here, q = ±1 is the brane RR-charge and r accounts for the possible nature of the 3-brane,

i.e. r = 1 for D3-/anti-D3-branes and r = −1/4 for O3-/anti-O3-planes [33]. In the static

gauge, with Xµ = ξαδµα and Y m = 0, the 4-form pull-back is (φ∗C)αβγδ = δµαδνβδ
ρ
γδδσ Cµνρσ,

so the functional derivative for the source term is

δ

δC4
S3-brane [C4] = rqτD3 δ(y)

v̂ol6
l6s

= τD3 j
(3)
6 = τD3 ρ

3-brane
(3)

v̂ol6
l6s

.

This means that D3- and anti-D3-branes give the source terms ρ(3) = q δ(y)/l6s , while O3-

and anti-O3-planes give ρ(3) = −(q/4) δ(y)/l6s .

45



Chapter 2. Basics in Strings and D-Branes

2.2.4.2.2 Tadpole Conditions

To conclude the discussion, it is worthwhile to briefly introduce some terminology and to

discuss the emergence of tadpole conditions.

• The D3-brane charge from localised sources is the integral of the localised source term

ρ(3) over the internal space, which is not wrapped, with a normalisation with respect

to the D3-brane tension τD3. As the electric charge of a p-brane is the integral over a

(9− p)-dimensional ball B9−p that surrounds it, this is

Qσ3 =

∫
Y6

∗̂10jσ4 =

∫
Y6

ρσ(3) v̂ol6.

For instance, D3- and anti-D3-branes have charges Q3 = q, and similarly for O3-

anti-O3-planes, with Q3 = −q/4.

• The total D3-brane charge follows from the general definition of the electric charge

of a p-brane as the integral over the border of the (9− p)-dimensional ball B9−p, i.e.

the (8− p)-dimensional sphere S8−p = ∂B9−p, of the Hodge-dual of the field-strength

tensor Fp+2. As follows from the Bianchi identity of eq. (2.2.21), this is

Q3 = − 1

2κ̂210τD3

∮
S5

∗̂10F̃5 = − 1

2κ̂210τD3

∫
Y6

d∗̂10F̃5 = Qσ3 − 1

2κ̂210τD3

∫
Y6

H3 ∧ F̃3.

The integrated Bianchi identity indicates that the total D3-brane charge vanishes, i.e.

Q3 = − 1

2κ̂210τD3

∫
Y6

H3 ∧ F̃3 +Qσ3 = 0.

Because the string-frame integrals of background fluxes over cycles are quantised, one can

expand the harmonic 3-form fluxes in the cohomology class H3 in terms of integer numbers,

and the vanishing of the total D3-brane charge results in a restrictive condition on such

integers [60]. This is an instance of an RR-tadpole condition. If the unwarped internal

space is a Calabi-Yau orientifold, for some integers mκ, eκ, m
κ
RR and eRRκ, one can write

H3 = 4π2α′(mκακ − eκβ
κ),

F3 = 4π2α′gs(m
κ
RRακ − eRRκβ

κ).

In a model with a total number of ND3, ND3, NO3 and NO3 of D3-branes, anti-D3-branes,

O3-planes and anti-O3-planes, respectively, the requirement of total vanishing D3-brane

charge reads

ND3 −ND3 −
1

4
NO3 +

1

4
NO3 = mκ

RR eκ − eRRκm
κ.

2.2.4.3 Giddings-Kachru-Polchinski Solutions

Given the conditions of eqs. (2.2.19) and (2.2.22) from the purely 4-dimensional Einstein’s

equations and the 5-form flux field equation can be combined in an enlightening way, after

46



2.2. Elements of String Compactifications

a simple subtraction one finds [61]

∇̆m̆∇̆m(e
4A − α) = R̆4 +

e2A

24 Im τ

[
iGmnp − (∗̂6G)mnp

] [
− iG

m̂n̂p̂ − (∗̂6G)m̂n̂p̂
]

+ e−6A
[
∇̂m(e

4A − α)
] [
∇̂m̂(e4A − α)

]
− 2κ̂210 e

2A
[1
4

(
ĝµν T̂µν − ĝmnT̂mn

)
σ
+ τD3 ρ

σ
(3)

]
.

(2.2.23)

This is a crucial equation for the study of warped compactifications. In fact, the left

handside integrates to zero over a compact internal manifold, so the same must happen

with the right-handside too. In a 4-dimensional Minkowski spacetime, with R̆4 = 0, in the

right handside the flux terms are positive semidefinite, so in order to allow for warped

metric solutions it is necessary that, globally, the localised terms must be such that the

total source term is vanishing too. Such a condition, i.e. the identity

1

4

(
ĝµν T̂µν − ĝmnT̂mn

)
σ
+ τD3 ρ

σ
(3) = 0 (2.2.24)

is in principle always achievable if the theory includes the correct number of localised

sources. If this is the case, then eq. (2.2.23) has two fundamental implications: the 3-

form flux must be imaginary self-dual and the warp factor e4A must be identified with the

5-form potential α, i.e.

∗̂6G3 = iG3, (2.2.25)

e4A = α. (2.2.26)

Note that for 3-forms on 6-dimensional spaces, the Hogde operator acts exactly in the

same way for conformally equivalent metrics, so ∗̆6G3 = ∗̂6G3. Importantly, as seen in

subsubsection 2.2.3.2 an imaginary self-dual 3-form flux G3 is the standard solution which

guarantees the minimum of the potential energy in type IIB supergravity.

A couple of possible scenarios is discussed below.

• Let the sources be D3-branes and O3-planes. For D3-brane sources, following the

discussions in paragraphs (2.2.4.1.1, 2.2.4.2.1), one finds

1

4

(
ĝµν T̂µν − ĝmnT̂mn

)
D3

+ τD3 ρ
D3
(3) = −7− 3

4
τD3 δ(Σ) + τD3 δ(Σ) = 0.

The same calculation holds for O3-planes, with just an irrelevant overall −1/4-factor.

• Let there be anti-D3-branes as localised sources. Then, the source term reads

1

4

(
ĝµν T̂µν − ĝmnT̂mn

)
D3

+ τD3 ρ
D3
(3) = −7− 3

4
τD3 δ(Σ)− τD3 δ(Σ) = −2τD3 δ(Σ),

which contributes positively to the right-handside integral. So anti-D3-branes alone

would not be adequate sources for allowing warped metrics in imaginary self-dual

backgrounds. However, for instance, the source term for anti-O3-planes reads

1

4

(
ĝµν T̂µν − ĝmnT̂mn

)
O3

+ τD3 ρ
O3
(3) =

1

2
τD3 δ(Σ).
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2.2.4.4 Other Field Equation Constraints

For completeness, this section reports the remaining field equations of the type IIB theory,

showing they are compatible with the Giddings-Kachru-Polchinski solution. For simplicity,

a flat 4-dimensional spacetime is assumed and localised sources are ignored.

One can show the general 10-dimensional type IIB field equations to be [46]

∗̂10d†dϕ+ e2ϕ F1 ∧ ∗̂10F1 +
1

2
eϕ(F̃3 ∧ ∗̂10F̃3 − e−2ϕH3 ∧ ∗̂10H3) = 0, (2.2.27)

∗̂10d†(e2ϕF1)− eϕH3 ∧ ∗̂10F̃3 = 0, (2.2.28)

d∗̂10(e−ϕH3 − eϕC0 F̃3)− F̃3 ∧ F̃5 − C0H3 ∧ F̃5 = 0, (2.2.29)

d∗̂10(eϕF̃3) +H3 ∧ F̃5 = 0 (2.2.30)

d∗̂10F̃5 = H3 ∧ F̃3, (2.2.31)

together with the Einstein equations

R̂MN =
1

2
∂Mϕ∂Nϕ+

1

2
e2ϕ∂MC0∂NC0 +

1

4
e−ϕHMPQH

P̂ Q̂
N +

1

4
eϕF̃MPQF̃

P̂ Q̂
N

− 1

48
gMN

(
e−ϕHPQRH

P̂ Q̂R̂ + eϕF̃PQRF̃
P̂ Q̂R̂

)
+

1

96
F̃PQRSF̃

P̂ Q̂R̂Ŝ
N .

(2.2.32)

Also, Bianchi identities (following directly from the definitions of the fields) are to be

imposed too. All these equations undergo simplifications under the fundamental GKP-

assumptions of eqs. (2.2.11-2.2.14).

• According to subsubsection 2.2.4.3, the 4-dimensional components of the Einstein

equations and the 5-form flux field equation, in eqs. (2.2.32) and (2.2.31), respectively,

can be combined together into the defining GKP-condition of eq. (2.2.23).

• The dynamical conditions for the scalars and ϕ and C0 are in eqs. (2.2.27) and

(2.2.28), respectively. These can be combined to give an equation for the axio-dilaton

τ , of course. A few maniupluations, under the GKP-assumptions of eqs. (2.2.11-

2.2.14), show the axio-dilaton field equation to be

∇̂m̂∇̂mτ +
i

Imτ
(∇̂m̂τ)(∇̂mτ) +

i

6
(G−

3 )mnp(G
+
3 )

m̂n̂p̂ = 0. (2.2.33)

This fixes the axio-dilaton profile τ = τ(y). In this case, however, it would be impor-

tant to insert the terms from the D7-brane sources.

• To discuss the field equations for the 2-forms B2 and C2, i.e. eqs. (2.2.29) and (2.2.30),

respectively, it is customary to define a 3-form Λ3 ≡ e4A∗̂6G3 − iαG3. In this way, the

field equations read

dΛ3 +
i

2 Im τ
dτ ∧ (Λ3 + Λ3) = 0. (2.2.34)

This equation is trivially satisfied in a GKP-background.

48



2.2. Elements of String Compactifications

• As far as the Einstein equations are concerned, it is necessary to analyse those with

mixed 4-dimensional/internal and purely internal indices. The former can be easily

seen to give Rµm = 0, both in terms of the energy-momentum tensor, as given by

eq. (2.2.32), and in purely geometrical terms with a warped metric of the form in

eq. (2.2.11). On the other hand, Einstein equations for purely internal directions

are not trivial. A few lengthy manipulations eventually give the condition on the

unwarped-metric Ricci tensor [62]

R̆mn =
1

2(Im τ)2
∂mτ∂nτ +

1

2
e−8A ∂me

4A∂ne
4A − 1

2
e−8A∂mα∂nα

+
1

4Im τ

(
GmpqG

p̆q̆
n − 1

6
ğmn e

−2AGpqrG
p̆q̆r̆
)
.

(2.2.35)

Again, one should also insert terms from the D7-brane sources.

2.2.4.5 Warped Solutions at Deformed Conifolds

There exist flux configurations that can be shown to generate warped throats, i.e. local

deformations of the bulk space where the warping is significative. Therefore, the tip of such

warped throats is an ideal location for some D-branes on which to construct standard-like

models.

A useful starting point to understand such a construction is the analysis of D3-brane

configuations of ref. [63]. In the absence of fluxes, in the vicinity of N coincident D3-branes,

the warp factor is approximately e−4A(r̆) ≃ 4πgsN/r̆
4, where r̆ is the distance from the stack

of D3-branes measured by the unwarped metric ğmn. In the vicinity of the D3-branes the

geometry is of the form AdS5×S5. To achieve a setup with a large but finite hierarchy in the

supposedly observable sector, the D3-branes should be slightly separated from the others,

giving a tiny but still finite hierarchy, however in the present model there is no mechanism

to generate and keep stable this kind of separation.

For a more realistic construction, one can introduce the presence of background fluxes.

In particular, following the original construction of the Klebanov-Strassler throat in ref. [64],

which is then specialised to compact setups in ref. [56], one can consider the internal Calabi-

Yau threefold to locally host a deformed 3-dimensional conifold. As discussed in ref. [65], a

conifold is a singular space which is smooth everywhere but for a number of isolated conical

singularities and with vanishing first Chern class (after deleting the singular points). In a

neighbourhood of the singular point, the conifold can be expressed as the subspace of C4

such that w2
1+w

2
2+w

2
3+w

2
4 = 0. Such a 3-dimensional conifold singularity is a cone with a

5-dimensional basis given by the product of a 3- and a 2-sphere, i.e. T1,1 = S3×S2. The so-

called deformed conifold is one of the two possible Calabi-Yau manifolds which result from

smoothing the conifold singularity. The deformed conifold is described in a neighbourhood

of the used-to-be singularity as the submanifold of C4 such that

w2
1 + w2

2 + w2
3 + w2

4 = z

for some complex parameter z. In the deformed conifold the 3-sphere S3 is shrunk to a

finite size whose volume is controlled by the parameter z. It can be shown that z is a
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complex-structure modulus. In a compact Calabi-Yau orientifold with the Hodge numbers

h1,1 = h1,1+ = 1 and h1,2 = h1,2− = 1, i.e. with a single Kähler modulus and a single complex-

structure modulus, where the geometry is that of the deformed conifold with the complex-

structure modulus being z, there exists a number 2 + 2h1,2 = 4 of 3-cycles: the 3-sphere

A = S3 and its B-dual, with one single intersection, plus two more cycles A′ and B′, with

one single intersection too. Formally, the cycle B would be non-compact in the local conifold

model, but is actually compact when the throat is embedded in the full Calabi-Yau threefold

model, with a cutoff radial distance from the tip of the cone would-be singularity. Let there

be M units of flux F3 on the 3-sphere A and K units of flux H3 on the cycle B, in such a

way that ∫
A
F3 =

∫
CY3

F3 ∧ β = 4π2α′gsM,∫
B
H3 =

∫
CY3

H3 ∧ α = 4π2α′K.

In other words, these fluxes may be expanded as F3 = 4π2α′gsMα and H3 = −4π2α′Kβ.

It can be proven that the complex structure of the conifold z is the period on the collapsing

3-sphere A, i.e.

z =

∫
A
Ω =

∫
CY3

Ω ∧ β,

and that the dual period is∫
B
Ω =

∫
CY3

Ω ∧ α = G(z) = − iz

2π
ln z + h(z),

where h(z) is a holomorphic function. Therefore, the supergravity formulation of this theory

is determined by the Kähler and super-potentials [66]

κ24K̂ = −ln

[
−i

∫
Ω ∧ Ω

]
− ln

[
−i(τ − τ)

]
− 3 ln [−i(ρ− ρ)] + C,

κ34Ŵ =
gs
l2s

∫
Ω ∧G3 = −gs[Kτz − gsMG(z)],

for some constant C. The vacuum of this system is fixed by the requirements that the

covariant derivatives ∇̂zŴ and ∇̂τŴ be zero.

• On the one hand, from the complex-structure modulus z we find in the first place the

minimisation condition

∇̂zŴ = −g
2
s

κ34

[
Kτ

gs
−M

(
− i ln z

2π
− i

2π
+∂zh

)
+κ24∂zK̂

[
Kτz

gs
−M

(
− iz

2π
ln z+h

)]]
= 0.

Taking z to be real, positive and small, and assuming the ratio K/gs to be large, the

vacuum condition can be written as

− iM

2π
ln ⟨z⟩ − iK

gs
= 0.

This means that the vacuum expectation value of the complex-structure modulus is

exponentially small, being given by

⟨z⟩ = e−2πK/Mgs .
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• On the other hand, the axio-dilaton minimisation condition

∇̂τŴ =
g2s
κ34

i

[−i(τ − τ)]

[
Kz

gs
τ −M

(
− iz

2π
ln z + h

)]
= 0

cannot be solved consistently as for an exponentially small value ⟨z⟩. A natural

generalisation of the theory consists in a setup with fluxes on both the cycles A, B

and A′, B′. This can be shown to render the minimisation of τ possible.

As an important remark, it should be noticed that one can argue that this mechanism

can be destabilised by the presence of anti-D3-branes, which are usually implemented in

semi-realistic models in order to uplift the otherwise anti-de Sitter solutions that are typical

of many string vacua. This can lead to the re-emergence of the conifold singularity. Specific

hierarchies among the flux integers may help against the destabilisation, but, due to a ten-

sion with the tadpole cancellation conditions, such a solution tends to reduce considerably

the hierarchy that would be created by a tiny complex-structure modulus [67,68].

In principle, the analytic behaviour of the warp factor can be found by solving eq.

(2.2.19). However, some arguments can be made in order to assess the warp factor in

the vicinity of a stack of D3-branes at the tip of the throat, as explained by ref. [56].

Useful are also the reviews in refs. [36, 48]. On general grounds any Dp-brane interacts

with closed strings via the interplay between its open and closed strings. This creates an

effective supergravity background. It is possible to prove that, in type IIB string theory,

the supergravity solution for N coincident Dp-branes in flat spacetime, with p = 1, 3, 5, is

ds210 = Z(r̆)−
1
2 ηµ̇ν̇ dx

µ̇dxν̇ + Z(r̆)
1
2 (dr̆2 + r̆2dΩ2

8−p),

where the index µ̇ spans the worldvolume directions, whereas dl2R6 = dr̆2 + r̆2dΩ2
8−p is just

the Euclidean metric in the transverse directions. The warp factor is Z(r̆) = 1 + (ρ/r̆)7−p,

with the characteristic size ρ7−p = (4π)(5−p)/2Ngs α
′(7−p)/2 Γ[(7− p)/2], and r̆ is the radial

coordinate in the transverse space to the worldvolume of the Dp-brane. In the case of a

stack of D3-branes, the metric takes the form

ds210 = Z(r̆)−
1
2 ηµν dx

µdxν + Z(r̆)
1
2 (dr̆2 + r̆2dl2S5),

where the warp factor is

Z(r̆) = 1 +
ρ4

r̆4
,

with the characteristic size ρ = (4πgsNα
′2)1/4. On the one hand, the metric tends asym-

potically to flat 10-dimensional spacetime R1,9 as the radial coordinate increases, i.e. as

r̆ ∼ ∞. On the other hand, close to the D3-brane, i.e. in the so-called near-horizon limit

r̆ ∼ 0, one gets the special structure AdS5 × S5, being

ds210
r∼0≃ r̆2

ρ2
ηµνdx

µdxν +
ρ2

r̆2
dr̆2 + ρ2ds2S5 .

In fact, the 4-dimensional directions and the radial coordinate combine to form a 5-dimensional

anti-de Sitter spacetime AdS5, whereas the remaining coordinates correspond to a 5-sphere
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S5. A sketch is reported in fig. 2.2 (see e.g. refs. [48, 69]).

S5

R6

D3-branes

Figure 2.2: A scheme of the throat geometry in the internal dimensions.

In the case of the deformed conifold, in the minimal case one considers the presence of M

units of F3-flux on the 3-sphere A = S3 andK units of H3-flux on the dual cycle B, and then

the 5-form integrated Bianchi identity gives the identification ND3 = MK. The unwarped

metric is the deformed conifold metric dl26 = dr̆2 + r̆2ds2T1,1
and the actual supergravity

solution can be argued to be

ds210 = Z(r̆)−
1
2 ηµν dx

µdxν + Z(r̆)
1
2 (dr̆2 + r̆2dl2T1,1

),

with ρ = (4πgsMKα′2)1/4. This approximation holds as long as the radial distance r̆ from

the singularity is bigger than the 3-sphere characteristic size ⟨z⟩1/3: closer to the would-be

singularity, the throat is cut off. In other words, moving towards the position r̆ = 0, the

minimal would-be distance from the D3-branes must be of the same order of magnitude

as the only physical size into play, i.e. the size ⟨z⟩1/3 of the 3-sphere S3. A sketch of the

situation is reported in fig. 2.3 (see e.g. ref. [70]).

base: S3 × S2

conifold singularity: S3 = S2 = 0

deformed conifold

Figure 2.3: A scheme of the deformed conifold geometry.
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So, in such a scenario the minimum value that the warp factor reaches is approximately

eA0 ∼ ⟨z⟩
1
3 ∼ e−2πK/3Mgs . (2.2.36)

In other words, around the tip of the throat, all mass hierarchies turn out to be exponentially

redshifted down to small values via a Randall-Sundrum-like mechanism.

2.3 D-Branes

Ever since the fundamental discovery that D-branes are intrinsic elements of type II string

theories [71], they have been essential in a huge variety of studies. This section overviews

the basic properties of D-branes as seen from the perturbative spectrum of open strings.

For definiteness, the discussion is referred to type IIB theories.

2.3.1 D-Brane Massless Spectra

The Fock-space description of open strings in section 2.1 allows for an easy interpretation

of the massless spectrum of a Dp-brane. An open string with NN-boundaries along the

directions α = 0, . . . , p and DD-boundaries along the transverse ṁ = p+ 1, . . . , 9 defines a

Dp-brane. Assuming the lightcone gauge-fixed directions to be NN-ones, the mass formula

of eq. (2.1.40) identifies the following massless states.

• In the NS-sector, the massless states are bα−1/2|NS⟩ and b
ṁ
−1/2|NS⟩, which correspond

to a vector field Aα, with p−1 dynamical degrees of freedom, and to 9−p real scalars

φṁ, respectively. All massless bosons are preserved by the GSO-projection, unlike the

tachyon |NS⟩.

• In the R-sector, the GSO-invariant massless state is |R+⟩, which corresponds to 8

physical fermionic degrees of freedom. In view of a 4-dimensional formulation in

terms of Weyl spinors, these can be arranged as four fields ψω, with ω = 0, 1, 2, 3.

This spectrum is manifestly supersymmetric, since it contains an equal number of bosonic

and fermionic degrees of freedom of the same mass.

In the presence of stack of n coincident Dp-branes, the massless spectrum is enhanced

to a U(n)-group gauge theory. This can be explained intuitively as follows. For an oriented

open string, each state carries a couple of indices (a, b) that label the specific Dp-brane where

the string starts and ends, with a, b = 1, . . . , n. These are the Chan-Paton indices. In partic-

ular, the ground states can be expressed as |a, b; NS⟩ = tIab|I; NS⟩ and |a, b; R+⟩ = tIab|I; R+⟩,
where tIab are n-dimensional matrices labelled by an index I = 0, 1, . . . , n2−1. Defining Her-

mitian conjugation as (|a, b⟩)† = ⟨a, b| = ⟨I|tIba, for Hermitian matrices (tI)† = tI normalised

as tr tItJ = δIJ , one can choose the condition tIbat
I
cd = δacδbd to find the orthonormality

condition ⟨a, b|c, f⟩ = δacδbd. The massless spectrum now consists of the gauge vectors

Aαab = tIabA
α
I corresponding to the states bα−1/2|a, b; NS⟩, of the scalars φṁab = tIabφ

ṁ
I associ-

ated to the states bṁ−1/2|a, b; NS⟩ and, similarly, of the spinors ψωab = tIabψ
ω
I corresponding

to the states |a, b; R+⟩. This particle content corresponds to a supersymmetric non-Abelian
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U(n)-gauge theory with scalars and spinors transforming in the adjoint representation. This

is equivalent to saying that the matrices tI are the elements of the u(n)-algebra defining the

U(n)-group in the adjoint representation.

2.3.1.1 Example: D3-, Anti-D3- and D7-Branes

An instructive example is represented by theories with D3-, anti-D3- and D7-branes. One

can see easily the connection between the straightforward Fock-space construction of sub-

section 2.1.2 and the formalism of partion functions in subsection 2.1.3. The setup discussed

below corresponds to a model with a stack of n D3- or anti-D3-branes, labelled by an index

a = 1, . . . , n, and an intersecting stack of w D7-branes, labelled by an index a′ = 1, . . . , w.

• The 33-states correspond to strings stretching between two D3-branes a and b. At

the massless bosonic level, there is a U(n)-gauge vector Aµab = tIabA
µ
I for the states

bµ−1/2|a, b; NS⟩, and six real scalars φmab = tIabφ
m
I for the states bm−1/2|a, b; NS⟩, preserved

by the GSO-projection. At the massless fermionic level, there are four spinors ψωab =

tIabψ
ω
I , with ω = 0, ω̇, and ω̇ = 1, 2, 3, corresponding to the states |a, b; R+⟩, preserved

by the GSO-projection. It is convenient to label the R-vacua as |R+⟩ = |s0, s1, s2, s3⟩,
with

∑3
r=0 sr ∈ 2Z, after redefining s0 = s4.

In 4-dimensional terms, this particle content corresponds to the vector multiplet V4 =

(Aµ, φ
m, ψω) of a N4 = 4 non-Abelian U(n)-gauge theory. This reflects the fact that

branes break half of the closed-string sector supersymmetries. Such a spectrum can

be decomposed into one vector V1 = (Aµ, ψ
0) and three adjoint chiral multiplets

φṁ1 = (φω̇, ψω̇) of a N4 = 1 non-Abelian U(n)-gauge theory, with the scalars suitably

complexified.

In an analogous description, 33-states correspond to the same particle content.

• The 77-states correspond to strings stretching between two D7-branes a′ and b′. At the

massless bosonic level, they give the U(w)-gauge vector Bα
a′b′ = τKa′b′B

α
K for the states

bα−1/2|a
′, b′; NS⟩, for α = 0, . . . , 7, and two real scalars σṁa′b′ = τKa′b′σ

ṁ
K for the states

bṁ−1/2|a
′, b′; NS⟩, preserved by the GSO-projection, with ṁ = 8, 9. At the massless

fermionic level, there are the degrees of freedom associated with the states |a′, b′; R+⟩
preserved by the GSO-projection.

This is an 8-dimensional theory, and the details of a reduction to four dimensions

depends on the details of the compactification. Naively, in the language of N4 = 1 su-

persymmetry, the 4-dimensional components of the gauge vector and one spinor make

up a vector multiplet U1 = (Bµ, η
0), whereas the complexified internal components of

the gauge vector and the complexified scalar plus the three remaining spinors make

up three adjoint chiral multiplets σω̇1 = (σω̇, ηω̇).

• The 37-states correspond to strings starting from the D3-brane a and ending on the

D7-brane b′. In this case, at the massless level bosons are provided by the R-sector

and fermions are provided by the NS-sector, as follows from the mode expansions

in eqs. (2.1.27, 2.1.28) and the mass formula of eq. (2.1.40). In the NS-sector, the
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vacuum is massless and it corresponds to the states |a, b′; s1, s2⟩: not having fermionic

degeneracies in the non-compact directions, since the b-operators with half integer

indices are in the internal ND- and DN-directions, these are four real scalar degrees

of freedom, reduced to two by the GSO-projection, i.e. to one complex scalar φ. In

the R-sector, the vacuum is massless and it corresponds to the states |a, b′; s0, s3⟩,
with s0 = s4, which are spinorial degrees of freedom, halved by a subsequent GSO-

projection. This corresponds to one 4-dimensional Weyl spinor ψ. Generalising the

Chan-Paton index-structure, all these fields are in the fundamental representation of

the group U(n) and in the antifundamental representation of the group U(w). The

73-states correspond to strings starting from the D7-brane a′ and ending on the D3-

brane b and are entirely analogous, so they are a complex scalar φ∗ and a Weyl spinor

ψ∗, with the only difference that they are in the conjugate representation.

In the language of 4-dimensional supersymmetry, this field content makes up one

N4 = 2 hypermultiplet H2 = (φ,φ∗;ψ,ψ∗) in a bifundamental representation of the

group U(n) × U(w). This evidences the fact that the intersecting states break half

of the supersymmetries of the same-brane states. Equivalently, this spectrum can be

arranged into two N4 = 1 chiral multiplets φ1 = (φ,ψ) and φ∗1 = (φ∗, ψ∗).

For 37- and 73-states, the construction is completely analogous with the only but

crucial difference that the GSO-projection is opposite.2.17

2.3.2 General D-Brane Action

Let the 10-dimensional spacetime X1,9 = X1,3×X6 be spanned by the index M , with M =

0, . . . , 9, with the 4-dimensional subspace spanned by the index µ, with µ = 0, 1, 2, 3, and

the internal coordinates varying as m = 4, . . . , 9. The Dp- or anti-Dp-brane worldvolume

W1,p is defined via the embedding

φ : W1,p ↪→ M1,9

in a notation such that:

• indices µ̇ span both the 4-dimensional spacetime and the p − 3 internal directions

wrapped by the Dp-brane, i.e. µ̇ = µ,m′, with m′ = 4, . . . , p;

• indices ṁ span the internal directions which are not wrapped, i.e. ṁ = p+ 1, . . . , 9.

The (p+1)-dimensional worldvolume theory of a stack of n coincident Dp- or anti-Dp-branes

consists of the following massless degrees of freedom:

• from the NS-sector, a vector Aα which gauges the non-Abelian gauge group U(n) and

9−p scalars ϕṁ in the adjoint representation of the group U(n), with the indices α and

ṁ respectively running over the worldvolume longitudinal and transverse directions,

meaning α = 0, . . . , p and ṁ = p+ 1, . . . , 9;

2.17This impacts more elaborated constructions, such as setups with branes at orbifold singularities, where

the details of the orbifold projection depend on the specific values of the terms sr in the states |{sr}⟩. For

more details, see subsection 4.5.3.
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• from the R-sector, some spinors ψA in the adjoint representation of the group U(n),

where the family index A counts the number of (p+1)-dimensional spinors descending

from a single 10-dimensional Majorana-Weyl spinor.

The defining difference between D-branes and anti-D-branes is their charge under the RR-

fields, which is q = 1,−1, respectively. The effective action describing the massless degrees

of freedom of coincident D-branes is a non-Abelian generalisation of the effective action

describing a single D-brane [72]. In detail, it is the summation of a Dirac-Born-Infeld and

a Chern-Simons action, i.e.

SDp = SDp
DBI + SDp

CS . (2.3.1)

For brevity, only the bosonic action is discussed below. An analysis of the general Dp-brane

fermionic action can be found in refs. [73–75] (see also ref. [76]).

2.3.2.1 Dirac-Born-Infeld Action

In the string frame, the Dirac-Born-Infeld term for a stack of Dp-branes at a generic smooth

point in the internal manifold takes the form2.18

SDp
DBI = −Tp

∫
W1,p

dp+1ξ str

[
e−Φ

√
−det

[
Γαβ

]
· det

[
Qṅṁ

]]
,

where Tp = 2π/lp+1
s is the Dp-brane tension. Also, one has the rank-2 tensor

Γαβ ≡ Eαβ + Eαṁ
(
Q−1 − 1

)ṁ
l̇
E l̇ṅEṅβ + 2πα′Fαβ,

along with the combination of the string-frame metric tensor and the 2-form NSNS-field,

EMN = GMN + BMN , with Eαβ being its pull-back on the worldvolume, as well as the

purely non-Abelian rank-(1, 1) tensor

Qṅṁ = δṅṁ + 2πiα′ [ϕṅ, ϕk̇]Ek̇ṁ.
The determinant ‘det’ is with respect to spacetime indices, while the trace ‘str’ is the

symmetrised trace over the gauge group indices such that the Lie matrix-valued terms Fαβ,

Dαϕ
ṁ and [ϕṁ, ϕṅ] are treated as commuting (no other terms are treated as commuting).

One can write the action in the Einstein frame by redefining the metric and NSNS-field

combination as êMN = e−ϕ/2EMN = ĝMN+e−ϕ/2BMN . Elementary operations then reveal

the action to take the form

SDp
DBI = −τDp

∫
W1,p

dp+1ξ str

[
e (p−3)ϕ/4

√
−det

[
γ̂αβ
]
· det

[
Qṅṁ

]]
, (2.3.2)

where the physical Dp-brane tension turns out to be τDp = 2π/gsl
p+1
s . Also, one redefines

the rank-2 tensor as

γ̂αβ ≡ êαβ + êαṁ
(
Q−1 − 1

)ṁ
l̇
êl̇ṅ êṅβ + 2πα′ e−ϕ/2 Fαβ,

whilst the rank-(1, 1) tensor is still

Qṅṁ = δṅṁ + 2πiα′ eϕ/2
[
ϕṅ, ϕk̇

]
êk̇ṁ.

2.18Notice that one can define the brane tension as τDp = Tp/gs as a direct consequence of writing the

dilaton factor in the action in terms of the shifted dilaton field ϕ = Φ− ⟨Φ⟩.

56



2.4. D-Branes and Non-Linear Supersymmetry

2.3.2.2 Chern-Simons Action

The Chern-Simons action is the same both in the string and the 10-dimensional Einstein

frame up to the rescaling of the RR-fields and it takes the form

SDp
CS = q τDp

∫
W1,p

str

{[
φ∗

(
e2πiα

′iϕ̇iϕ̇

( 4∑
l=0

C2l ∧ eB2

))]
∧ e2πα

′F2

}
, (2.3.3)

where iϕ̇ denotes the interior product with the vector field ϕṁ, i.e. for a general n-form

iϕ̇An =
1

(p− 1)!
ϕṁAṁM1...Mn−1 dx

M1 ∧ . . . dxMn−1 .

2.3.2.3 Further Remarks

One typically chooses to work in the so-called static gauge, in which, given the expansion

parameter σs = l2s/2π for ease of notation, the brane position is parametrised as

X µ̇(ξ) = δµ̇α ξ
α, (2.3.4a)

Y ṁ(ξ) = yṁ0 + σsϕ
ṁ(ξ), (2.3.4b)

where yṁ0 are the background brane positions in the Dirichlet directions while the terms

δY ṁ = σsϕ
ṁ represent fluctuations thereof. The following remarks are useful.

• The DBI- and CS-actions involve pull-backs of 10-dimensional fields onto the brane

worldvolume: these are a generalised version of the standard pull-back as they involve

non-Abelian fields. For instance the non-Abelian pull-back on the worldvolume of a

1-form v = vM dxM is

φ∗v = vµ̇ δ
µ̇
α dξ

α + σs∇αϕ
ṁ vṁ dξα,

where ∇α is the standard gauge covariant derivative, as a generalisation of the stan-

dard pull-back expression involving ∂αy
m. Generalisations to n-forms are immediate.

• Fields on the brane worldvolume must be expressed as functions of the coordinates

ξα. A generic 10-dimensional function f = f(xM ) can be written as a non-Abelian

Taylor expansion on the worldvolume, i.e.

f(xµ̇, yṁ) =

∞∑
k=0

σks
k!
ϕṁ1ϕṁ2 . . . ϕṁk ∂ṁ1∂ṁ2 . . . ∂ṁk

f(xµ̇, yṁ0 ),

which accounts for the fluctuations of the Dp-brane in terms of the non-Abelian dis-

placements from the original position yṁ0 .

2.4 D-Branes and Non-Linear Supersymmetry

This section discusses and summarises the main results of ref. [77] about the general form

of the constrained N4 = 1 supermultiplets that can be used to package the field content
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of an anti-D3-brane in a flat 10-dimensional background in view of a compactification to

a 4-dimensional spacetime. Particularly useful is also the discussion of ref. [78] on the

general form of the D-brane action in superspace. The final part on the form of constrained

supermultiplets is thoroughly based on ref. [31].

2.4.1 D-Branes in Flat Superspace

This subsection reports the general form of the Dp-brane low-energy effective action in

superspace. In particular, it considers a single Dp- or anti-Dp-brane of a type IIB theory in

a flat 10-dimensional spacetime. The guideline is the summary in ref. [78].

2.4.1.1 General D-Brane Action in Flat Spacetime

Let the background geometry be the 10-dimensional flat spacetime M1,9 = M1,3 ×R6, in the

same notation as in subsection 2.3. The action for the massless states of a Dp- or anti-Dp-

brane can be described in a manifestly supersymmetric notation at the cost of dealing with

10-dimensional quantities. For the purpose of studying supersymmetry transformations,

this is the most convenient formulation. Given the worldvolume coordinate ξα, in general

the degrees of freedom are encoded in:

• a gauge vector Aα = Aα(ξ) and the Dp-brane embedding coordinates XM = XM (ξ),

before fixing the static gauge;

• the doublet of 10-dimensional positive-chirality Majorana-Weyl spinors

θ =

(
θ

θ′

)
.

Some gauge symmetries reduce the number of the proper physical degrees of freedom, ob-

taining a boson-fermion match. According to ref. [79], the effective Dp-superbrane effective

action in a flat background geometry consists of the summation of the Dirac-Born-Infeld

and Wess-Zumino actions

SDp
DBI = −TDp

∫
W1,p

dp+1ξ
√

−det
(
Gαβ + σsFαβ

)
(2.4.1)

and

SDp
WZ = qTDp

∫
W1,p

Ωp+1, (2.4.2)

where the area σs = 2πα′ has been defined for brevity. Each term requires to be explained

carefully. First of all, the generalised metric pull-back on the Dp-brane, Gαβ, is defined as

Gαβ ≡ ηMN Π M
α Π N

β ,
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with the generalised pull-back derivative2.19 Π M
α ≡ ∂αX

M −σ2s θΓM∂αθ, where θ = (θ, θ′).

Second, the field-strength tensor Fαβ = ∂αAβ − ∂βAβ is generalised to

Fαβ = Fαβ − bαβ = Fαβ − 2σs θσ3ΓM∂[αθ

[
∂β]X

M − σ2s
2

θΓM∂β]θ

]
.

Third, Ωp+1 is a (p+ 1)-form which can be defined through its differential, i.e. the (p+ 2)-

form [79,81,82]

Ip+2 = −σ2s dθ tp dθ,

where the p-form tp can be read off the formal summation

T =
∑

p=2n+1

tp = eF S(Υ)σ1,

with the 1-form Υα = Π M
α ΓM and the formal sum S(Υ) ≡

∑∞
n=0(σ

3)nΥ2n+1/(2n+ 1)!.

Of course, ΓM are flat spacetime 10-dimensional γ-matrices.

Action Symmetries

The super-Dp-brane effective action is invariant under several symmetries: global supersym-

metry, local κ-symmetry, local coordinate transformations and U(1)-gauge transformations.

In type IIB theories, the space-like directions spanned by the brane are always an odd num-

ber p = 2n+ 1.

• For any given 10-dimensional Majorana-Weyl constant spinor ϵ, the supersymmetry

field transformations read

σs δϵθ = ϵ, (2.4.3a)

δϵX
M = −σs (θΓM ϵ), (2.4.3b)

δϵAα = − (θΓMσ
3ϵ)∂αX

M

+
σ2s
6

[
(θΓMσ

3ϵ)(θΓM∂αθ) + (θΓM ϵ)(θΓ
Mσ3∂αθ)

]
.

(2.4.3c)

Notice that terms like ∂αθ, Π M
α , Gαβ and Fαβ are identically supersymmetric.

• Given an arbitrary double 10-dimensional Majorana-Weyl spinor κ = κ(ξ) of definite

chirality, the κ-symmetry variations are

σs δκθ = (1 + qΓ(p))κ, (2.4.4a)

δκX
M = σs

[
θΓM (1 + qΓ(p))κ

]
, (2.4.4b)

δκAα = − σs(θΓMσ
3δκθ) ∂αX

M

− σ3s
2

[
(θΓMσ

3δκθ)(θΓ
M∂αθ) + (θΓMδκθ)(θΓ

Mσ3∂αθ)
]
,

(2.4.4c)

2.19With respect to ref. [78], the double Majorana-Weyl spinor θ has been shifted to θ → σs θ in such a way

as to be fully consistent with the notation of ref. [80].
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where the matrix Γ(p) reads

Γ(p) =

(
0 β−

(−1)nβ+ 0

)
,

with β±β∓ = (−1)n, the matrices β+ and β− being

β± =

√
−detG√

−det (G + σsF)

n+1∑
k=0

(±σs)k

2kk!
Γ̂α1...α2k Fα1α2 . . .Fα2k−1α2k

ΓDp
(0).

In particular, the matrices Γ̂α are defined as the generalised γ-matrix pull-back

Γ̂α = Π M
α ΓM ,

with indices being raised by the inverse Gαβ of the generalised metric pull-back,

whereas the matrix ΓDp
(0) is defined as

ΓDp
(0) =

1

(p+ 1)!

1√
−detG

εα1...αp+1 Γ̂α1...αp+1 .

• The action is also invariant under local general coordinate transformations on the

worldvolume, i.e. ξα → ξα − η(ξ), with variations

δηθ = ηα∂αθ, (2.4.5a)

δηX
M = ηα∂αX

M , (2.4.5b)

δηAα = ηβ∂βAα, (2.4.5c)

and under U(1)-gauge transformations, with a variation δU(1)Aα = ∂αϕ, for an arbi-

trary function ϕ.

2.4.1.2 Gauge-Fixed Super-D-Brane Action

If κ-symmetry is gauge-fixed, then only the degrees of freedom of one 10-dimensional

Majorana-Weyl spinor remain and the redundant fermionic directions are removed. Also,

worldvolume general coordinate transformations can be fixed too in order to remove non-

physical scalar degrees of freedom. The κ-symmetry gauge fixing may vary depending on

the most convenient choice for the case at hand. For future use, a convenient κ-symmetry

gauge is
1

2
(12 + σ3)θ = 0, (2.4.6)

which implies that θ = 0. In particular, the κ-symmetry fixing allows to see that the

Wess-Zumino term is constant since Ip+2 is zero as results from multiplications of the form

θ (σ3)kσ1θ, i.e.
Ip+2 = dΩp+1 = 0.

Further, the static gauge condition reads

X µ̇(ξ) = δµ̇α ξ
α, Xṁ(ξ) = yṁ0 + σs ϕ

ṁ(ξ). (2.4.7)
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In this way, the physical degrees of freedom are encoded in one vector Aα, 9− p scalars ϕṁ

and one 10-dimensional Majorana-Weyl spinor θ′.

In the selected gauge, the dynamical part of the action is the DBI-term, so the total

action reads

SDp = −TDp
∫
W1,p

dp+1ξ

[√
−det

(
Gαβ + σsFαβ

)
− qVWZ

0

]
. (2.4.8)

Now, the generalised metric pull-back on the Dp-brane Gαβ reads

Gαβ = ηµ̇ν̇ Π
µ̇
α Π ν̇

β + δṁṅΠ
ṁ
α Π ṅ

β .

with Π µ̇
α = δµ̇α − σ2s θ

′Γµ̇∂αθ
′ and Π ṁ

α = σs ∂αϕ
ṁ − σ2s θ

′Γṁ∂αθ
′, and the generalised Born-

Infeld field-strength tensor Fαβ is

Fαβ = Fαβ − bαβ = Fαβ + 2σs θ
′ σ3Γµ̇∂[αθ

′
[
δµ̇β] −

σ2s
2
θ′ Γµ̇∂β]θ

′
]

+ 2σs θ
′ σ3Γṁ∂[αθ

′
[
σs∂β]ϕ

ṁ − σ2s
2
θ′ Γṁ∂β]θ

′
]
.

In order to preserve the gauge-fixing conditions, each supersymmetry transformation

(i.e. the non-gauge-fixed transformation) must be accompanied by a κ-symmetry and a

local coordinate transformation such that the total transformation does not change the

gauge choice, i.e. such that {
δ θ = 0,

δX µ̇ = 0.

It is possible to observe that, to preserve this gauge, each supersymmetry transformation

with infinitesimal parameter ϵmust be accompanied by a κ-symmetry and a local coordinate

transformation with parameters κ and ηα such as to satisfy the constraints

ϵ1 + κ1 + qβ−κ2 = 0, (2.4.9a)

ηα = σs θ
′δαµ̇Γ

µ̇ϵ2 + (−1)n qσs θ
′δαµ̇Γ

µ̇β+ϵ1. (2.4.9b)

Given these constraints, one can work out the total variations generated by an arbitrary

supersymmetry parameter ϵ. With some work, the general gauge-fixed supersymmetry

transformations generated by the spinor doublet ϵ on a Dp-brane can be seen to take the

form

σs δθ
′ = ϵ2 + (−1)n+1qβ+ϵ1 + σs η

α∂αθ
′, (2.4.10a)

δϕṁ = − θ′Γṁϵ2 + (−1)n+1 θ′Γṁqβ+ϵ1 + ηα∂αϕ
ṁ, (2.4.10b)

δAα = − ηβ Fαβ + [θ′(δµ̇αΓµ̇ + σs Γṁ∂αϕ
ṁ)(ϵ2 + (−1)n qβ+ϵ1)]

− σ2s

[
θ′Γµ̇

(ϵ2
3

+ (−1)n qβ+ϵ1

)]
(θ′Γµ̇∂αθ

′)

− σ2s

[
θ′Γṁ

(ϵ2
3

+ (−1)n qβ+ϵ1

)]
(θ′Γṁ∂αθ

′).

(2.4.10c)
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Such supersymmetry transformations are generated by two independent 10-dimensional

Majorana-Weyl spinors ϵ1 and ϵ2, which means that each of them generates an independent

set of supersymmetry transformations.

To single out the two distinct groups of transformations, a parameter redefinition is

necessary. One can change the basis of spinors from ϵ1 and ϵ2 to χ and ζ by defining

ϵ1 ≡ − in

2
Γ∗ χ, (2.4.11a)

ϵ2 ≡ −1

2
χ+ ζ, (2.4.11b)

where the definition has been made Γ∗ = (−i)nΓ0 . . .Γ2n+1. In this way, the total variations

induced by supersymmetry in the basis (χ, ζ) acquire quite an easy form. Defining β ≡
(−i)n β+ Γ∗, the supersymmetry transformations generated by χ are

σs δχθ
′ = −1

2
(1− qβ)χ− σ2s

2
[θ′δαµ̇Γ

µ̇
(
1 + qβ

)
χ] ∂αθ

′ (2.4.12a)

δχϕ
ṁ =

1

2
[θ′Γṁ(1 + qβ)χ

]
− σs

2
[θ′δαµ̇Γ

µ̇(1 + qβ)χ] ∂αϕ
ṁ, (2.4.12b)

δχAα = − 1

2
[θ′(δµ̇αΓµ̇ + σs Γṁ∂αϕ

ṁ)(1 + qβ)χ] +
σs
2
[θ′δβµ̇Γ

µ̇(1 + qβ)χ]Fαβ

+
σ2s
2

[
θ′Γµ̇

(1
3
+ qβ

)
χ
]
(θ′Γµ̇∂αθ

′) +
σ2s
2

[
θ′Γṁ

(1
3
+ qβ

)
χ
]
(θ′Γṁ∂αθ

′),

(2.4.12c)

whereas the supersymmetry transformations generated by ζ are

σs δζθ
′ = ζ + σ2s [θ

′δαµ̇Γ
µ̇ζ] ∂αθ

′ (2.4.13a)

δζϕ
ṁ = −(θ′Γṁζ) + σs [θ

′δαµ̇Γ
µ̇ζ] ∂αϕ

ṁ, (2.4.13b)

δζAα = [θ′(δµ̇αΓµ̇ + σs Γṁ∂αϕ
ṁ)ζ]− σs [θ

′δβµ̇Γ
µ̇ζ]Fαβ

− σ2s
3

(θ′Γµ̇ζ)(θ
′Γµ̇∂αθ

′)− σ2s
3

(θ′Γṁζ)(θ
′Γṁ∂αθ

′).

(2.4.13c)

Out of the two supersymmetry transformations, it is apparent that there is a distinction: for

Dp-branes with odd n, the supersymmetry variation generated by χ is linearly realised since,

as β = 1 in the asbence of worldvolume flux, one has δχ⟨θ′⟩ = 0, whereas the supersymme-

try variation generated by ζ is non-linearly realised as one necessarily has δζ⟨θ′⟩ = σ−1
s ζ.

For anti-Dp-branes, or Dp-branes with even n, in an appropriate basis, one would obtain

analogous results.

2.4.2 D3-Branes and Orientifolds

Thanks to the results of subsection 2.4.1, it is possible to identify the half of supersymmetries

that are preserved by a D3-brane in the presence of an orientifold projection. The orientifold

symmetry is assumed to preserve O3- and O7-planes.

In the pre-orientifold theory, one starts with two supersymmetry parameters ϵ1 and

ϵ2. An O3-/O7-plane orientifold symmetry projects out of the spectrum half of the bulk
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supersymmetries and the preserved supersymmetry is generated by a combination of the

two original supersymmetries such that

ϵ1 = −iΓ(4)ϵ2 = iΓ(6)ϵ2, (2.4.14)

where Γ(4) = iΓ0123 is the 4-dimensional chirality matrix in the directions parallel to the

observed universe and Γ(6) = −iΓ456789 is the chirality matrix in the internal space.

In the basis of the spinor parameters χ and ζ, which for a D3-brane can be defined as

via the indentifications

ϵ1 ≡
i

2
Γ(4) χ, (2.4.15a)

ϵ2 ≡ −1

2
χ+ ζ, (2.4.15b)

the supersymmetry preserved by the orientifold is especially simple to identify. In fact, the

condition of eq. (2.4.14) in the basis of spinors defined in eqs. (2.4.15a, 2.4.15b) requires the

condition Γ(4)ζ = 0, i.e. ζ = 0. In other words, in the (χ, ζ)-basis, the spinor χ generates

the bulk supersymmetry transformations that are also preserved by the D3-brane. These

can be immediately read in eqs. (2.4.12a, 2.4.12b, 2.4.12c).

The half of the supersymmetries that is not preserved by the orientifold projection

satisfies the condition ϵ1 = iΓ(4)ϵ2. In the (χ, ζ)-basis, this means Γ(4)χ = Γ(4)ζ, so one can

set χ = ζ. With this condition, combining eqs. (2.4.12a, 2.4.12b, 2.4.12c) and eqs. (2.4.13a,

2.4.13b, 2.4.13c), one finds the variations

σs δηθ
′ =

1

2
(1 + β) η +

σ2s
2

[θ′δαµΓ
µ(1− β)η] ∂αθ

′, (2.4.16a)

δηϕ
m = −1

2
[θ′Γm(1− β) η] +

σs
2

[θ′δαµΓ
µ(1− β)η] ∂αϕ

m, (2.4.16b)

δηAα =
1

2
[θ′(δµαΓµ + σs Γm∂αϕ

m)(1− β)η]− σs
2
[θ′δβµΓ

µ(1− β) η]Fαβ

− σ2s
2

[
θ′Γµ

(1
3
− β

)
η
]
(θ′Γµ∂αθ

′)− σ2s
2

[
θ′Γm

(1
3
− β

)
η
]
(θ′Γm∂αθ

′).

(2.4.16c)

These are the supersymmetry transformations δη = δχ+δζ generated by a spinor η = χ = ζ

in the (χ, ζ)-basis. All the preliminary steps are now completed and it is possible to write

the non-linear supersymmetry transformations in a manageable way to then relate them

to the 4-dimensional supersymmetry formalism. In what follows, only a finite number of

terms is going to be kept, and this will be set by the power of the area σs appearing, which

counts the number of fields involved. Higher orders are subleading corrections and they can

be neglected for the purposes of this work.

In order to deal efficiently with supersymmetry transformations, it is necessary to ex-

pand the β-matrix in terms of the physical degrees of freedom Aα, ϕ
m and θ′. A lengthy

calculations shows that it reads

β = 1 +
σs
2

ΓαβFαβ + σs ∂
αϕm Γmα +

σ2s
2
Fαβ∂γϕmΓmαβγ −

σ2s
4
FαβFαβ

+
σ2s
8

ΓαβγδFαβFγδ − σ2s(θ
′Γα∂βθ′) Γαβ − σ2s (θ

′Γm∂αθ′) Γmα

− σ2s
2
δmn ∂

αϕm∂αϕ
n − σ2s

2
∂αϕm ∂βϕnΓmnαβ +O(σs)

3,
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where all indices lowered and raised by the flat Minkowski metric ηα and its inverse.

Now the method to follow is quite clear, and one can simply make use of the expansion of

the β-matrix in the non-linear supersymmetry variations in eqs. (2.4.16a, 2.4.16b, 2.4.16c).

At this stage the calculations are quite involved, but by means of γ-matrix properties and

Fierz identitites the results can be substantially simplified. Eventually, it is possible to

redefine the spinor, scalar and vector fields in such a way as to get the standard form of

non-linearly realised supersymmetry transformations, which is also easier to deal with and

shorter to dimensionally reduce. Defining the new fields ϑ′, φm and Vα as

ϑ′ ≡ θ′ − σs
4
FαβΓ

αβθ′ − σs
2
δmn∂αϕ

nΓmαθ′ +
σ2s
4
[θ′Γα∂βθ

′]Γαβθ′ +
σ2s
8
FαβFαβθ

′

+
σ2s
4
[θ′Γm∂αθ

′]Γmαθ′ − σ2s
16
FαβFγδΓ

αβγδθ′ +
σ2s
4
δmn∂αϕ

m∂αϕnθ′

+
σ2s
4
δmlδnk∂αϕ

l∂βϕ
kΓmnαβθ′ − σ2s

4
δmnFαβ∂γϕ

nΓmαβγθ′ +O(σs)
3,

(2.4.17a)

φm ≡ ϕm − σ2s
8
Fαβ

[
θ′Γmαβθ′

]
− σ2s

4
δnl∂αϕ

l
[
θ′Γmnαθ′

]
+O(σs)

3, (2.4.17b)

Vα ≡ Aα − σ2s
4

[
θ′Γmαβθ

′] ∂βϕm +
σ2s
8
F βγ

[
θ′Γαβγθ

′]+O(σs)
3, (2.4.17c)

and further shifting the spinor exploiting the zilch symmetry [78] variation δθ′ = −σs[η Γαθ′−
θ′ Γαη + (η ΓMθ′)ΓMΓα] ∂αθ

′/4, one obtains the supersymmetry variations

σsδ
′
ηϑ

′ = η +
σ2s
2
δαµ ∂αϑ

′ [ϑ′Γµη] +O(σs)
3, (2.4.18a)

σsδ
′
ηφ

m =
σ2s
2
δαµ ∂αφ

m [ϑ′Γµη] +O(σs)
3, (2.4.18b)

σsδ
′
ηVα =

σ2s
2
δmn ∂αφ

m[ϑ′Γnη]− σ2s
2
Uαβ δ

β
µ [ϑ

′Γµη] +O(σs)
3, (2.4.18c)

being Uαβ the field-strength of Vα, where for simplicity the supersymmetry variations gen-

erated by including the effect of the zilch symmetry transformation have been denoted as

‘δ′η’. Notice that no transformations may be further simplified by field redefinitions because

of the identity ϑ
′
ΓMϑ′ = 0.

Now that the general non-linear supersymmetry transformations are known in the

10-dimensional formulation, it is possible to dimensionally-reduce them in view of a 4-

dimensional theory. In particular, spinors and γ-matrices can be reduced in such a way

as to get the general non-linear supersymmetry transformations in terms of 4-dimensional

Weyl spinors. As locally the full space has the form M1,9 = M1,3 × R6, one can focus on

the internal tangent-space subgroup SU(3), which is sufficient to visualise the one super-

symmetry preserved in an N4 = 1 Calabi-Yau orientifold compactification, as done e.g. in

ref. [80]. A 10-dimensional Majorana-Weyl spinor can be decomposed as the summation

of one 4-dimensional Weyl spinor ρα tensored with a 6-dimensional Weyl spinor belonging

to an SU(3)-singlet plus three 4-dimensional Weyl spinors χa, with a = 1, 2, 3, combined

with an SU(3)-triplet in the internal space. For the supersymmetry parameter η, only the

term containing just the SU(3)-singlet is considered as it is the associated supersymmetry

parameter ϵ that generates the 4-dimensional N4 = 1 supersymmetry transformations. As
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far as bosons are concerned, the vector field can be shifted into a field aµ to get rid of the

scalar derivative in the supersymmetry transformation, while the scalars can be complexi-

fied into three complex scalars φa, for a = 1, 2, 3. So, decomposing eqs. (2.4.18a, 2.4.18b,

2.4.18c), one eventually finds

δερ = σ−1
s ε+ iσs δ

α
µ ∂αρ

[
ρ σµ ε+ ρ σµ ε

]
+O(σs)

2, (2.4.19a)

δεχ
m = iσs δ

α
µ ∂αχ

m
[
ρ σµ ε+ ρ σµ ε

]
+O(σs)

2, (2.4.19b)

δεφ
m = iσs δ

α
µ ∂αφ

m
[
ρ σµ ε+ ρ σµ ε

]
+O(σs)

2, (2.4.19c)

δεaα = −iσs fαβ δ
β
µ

[
ρ σµ ε+ ρ σµ ε

]
+O(σs)

2. (2.4.19d)

Because the supersymmetry variation of the Weyl spinor ρ is never vanishing in the vac-

uum, such a field is the general goldstino living on the D3-brane worldvolume. In the end,

the conclusion is that, along with the standard linearly realised supersymmetry, a D3- or

anti-D3-brane at a generic smooth point in the internal manifold of a superstring compactifi-

cation is expected to be invariant under 4-dimensional non-linearly realised supersymmetry

as well. Notice that the supersymmetry variation of the goldstino sets an F-breaking term

at the string scale F ∼ σ−1
s ∼M2

s .

2.4.3 Anti-D3-Branes and Orientifolds

The discussion of anti-D3-branes in the presence of an O3-/O7-plane orientifold is analogous

to the D3-brane one. In fact, one can simply observe that, on an anti-D3-brane, the super-

symmetry variations preserved by the bulk, generated by (χ, ζ) = (χ, 0), in eqs. (2.4.12a,

2.4.12b, 2.4.12c), are exactly the same as the supersymmetry variations that are projected

out for a D3-brane, in eqs. (2.4.16a, 2.4.16b, 2.4.16c), up to an overall sign. Therefore, one

can follow exactly the same steps as above. This simply means that the supersymmetry

transformations preserved in the bulk theory by O3-/O7-plane orientifold are non-linearly

realised by the anti-D3-brane. This is a fundamental conclusion of ref. [83].

2.4.4 Constrained Supermultiplets

A theory with the non-linear supersymmetry transformations of eqs. (2.4.19a, 2.4.19b,

2.4.19c, 2.4.19d) breaks supersymmetry. To describe such a theory in an effective 4-

dimensional approach, one can use constrained superfields [31]. This subsection is devoted

to explaining this and to associating the degrees of freedom of an anti-D3-brane to a spe-

cific constrained supermultiplet [77]. Here, all expressions are written ignoring higher-order

terms, i.e. involving more spinor contractions – which is controlled by the σs-order – as this

is enough to understand the logic behind the identifications. A fully-fledged analysis is in

refs. [77, 84].

Notation and conventions for the N4 = 1 supersymmetry transformations are as in

ref. [85] and they are reviewed in appendix A.4. It should also be noted that there are

instances of fields denoted differently here and elsewhere, but the context is always such

that the field being meant is unambiguous.
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2.4.4.1 Nilpotent Chiral Superfield

The fundamental constrained superfield which is ubiquitous in non-linear supersymmetry

descriptions is a nilpotent chiral superfieldX, i.e. a chiral superfield satisfying the constraint

X2 = 0. (2.4.20)

Such a constraint removes the scalar degree of freedom and, via a field redefinition, contains

a fermion degree of freedom which transforms non-linearly.

Nilpotency Condition on Chiral Superfields

Given a chiral superfield X = (φ,ψ, F ), let the auxiliary field be non-zero, i.e. F ̸= 0, and

let the nilpotency condition X2 = 0 in eq. (2.4.20) be imposed. Expanding the superfield

in superspace coordinates, this constraint is solved by the condition

φ =
1

2F
(ψψ). (2.4.21)

This means that the scalar degrees of freedom are dependent on those of the spinor ψ.

Although all the dynamical scalar degrees of freedom are encoded in those of the spinor,

the supersymmetry transformation of the spinor ψ is still of the standard linear form.

Anti-D3-Brane Goldstino

Following ref. [84], one may perform a field redefinition which determines a non-linearly

transforming spinor. A closed-form expression can be written but in the following a per-

turbative analysis will be performed for brevity. Although not suitable for a rigorous proof,

this will give quite a clear feel of the logic behind the discussion. The expansion will be in

orders of a supersymmetry breaking scale which is set to be M2
SUSY = σ−1

s .

As a matter of fact, given the X-multiplet spinor ψ, one can define a new spinor ρ as

ρα = ρ(0)α − iσ2s [ρ
(0) σµ ρ(0)] ∂µρ

(0)
α +O(σs)

3, (2.4.22)

where the ’zeroth-order’ spinor is ρ
(0)
α = ψα/[

√
2σsF ]. This can be inferred from the closed

recursive definition of the non-linearly transforming field in ref. [84] by simply expanding it

out. By employing the equality ξ σµχ = −χσµξ and the Fierz identity χα(ξη) = −ξα(ηχ)−
ηα(χξ), the usual chiral supersymmetry transformations imply the variation

δϵρ
(0)
α = σ−1

s ϵα + 2iσs∂µρ
(0)
α (ρ(0)σµϵ),

which in turn gives

δϵρα = σ−1
s ϵα + iσs

[
(ρ σµϵ) + (ρ σµϵ)

]
∂µρα +O(σs)

2. (2.4.23)

This should be compared with the supersymmetry variation in eq. (2.4.19a), and it is ap-

parent that they are the same transformation. This means that the anti-D3-brane goldstino

can be identified with the spinor field of a nilpotent chiral superfield. To conclude, notice

that the scalar field φ can be written as φ = σ2s (ρρ)F +O(σs)
3.
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2.4.4.2 Orthogonal Chiral Superfield

In order to describe spinors which transform non-linearly in the presence of a different

goldstino, one can introduce an orthogonal chiral superfield Y such that

XY = 0, (2.4.24)

where X is the nilpotent chiral superfield. Such a constraint removes the scalar degree of

freedom from the multiplet Y .

Orthogonality Condition on Chiral Superfields

Given two chiral superfields X = (φ,ψ, F ) and Y = (ϕ, ζ,G), where X is a nilpotent

supermultiplet satisfying X2 = 0, the solution to the constraint XY = 0 can be written as

ϕ =
(ψζ)

F
− (ψψ)

2F 2
G. (2.4.25)

This means that the degrees of freedom of the scalar ϕ are dependent on those of its spinor

superpartner ζα and of the goldstino ψα.

Anti-D3-Brane Modulini

In terms of the goldstino, the constrained scalar reads ϕ =
√
2σs (ζρ)− σ2s(ρρ)G+O(σs)

3.

Following ref. [84], the proper non-linear spinor degree of freedom can be defined as

χα = ζα −
√
2σsGρα + 2iσ2s (ζ ∂µρ)(σ

µρ)α − iσ2s (ρ σ
µρ) ∂µζα +O(σs)

3. (2.4.26)

Focussing on the leading orders in σs, which can be done by studying σs δϵχα, one finds

δϵχα = iσs
[
(ρ σµϵ) + (ρ σµϵ)

]
∂µχα +O(σs)

2. (2.4.27)

Again, this corresponds to one of the anti-D3-brane supersymmetry variations, i.e. eq.

(2.4.19b). This means thar anti-D3-brane modulini can be packaged into chiral superfields

orthogonal to the nilpotent superfield.

2.4.4.3 Chiral-Product Superfield

Another class of constrained chiral superfields which keeps only the scalar component is

that of chiral superfields H such that, given a nilpotent superfield X fulfilling the relation

X2 = 0, the condition holds

XDα̇H = 0, (2.4.28)

where Dα represents the supersymmetric covariant derivative. In other words, the product

superfield XH is chiral. Such a constraint removes the spinor and auxiliary degrees of

freedom from the multiplet H.
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Chiral-Product Superfield Condition

Given two chiral superfields X = (φ,ψ, F ) and H = (ϕH , ψH , FH), where X is a nilpotent

supermultiplet satisfying X2 = 0, let the product superfield K(X,H) = XH be chiral.

In this case, solving the constraint is less easy. It is convenient to expand the superfield

H around the shifted coordinate yµ = xµ − i (θσµθ) and to require the product K = XH

to be antichiral, i.e. requiring involving at least one direction θ to be zero. Notably, doing

this requires two inequivalent conditions, namely

ψHα = − i

F
(σµψ)α ∂µϕH , (2.4.29a)

FH =
1

F
2 (ψ σ

µσνψ) ∂µ∂νϕH − 1

F

[
ψ σµσν∂µ

(
ψ

F

)]
∂νϕH . (2.4.29b)

Unlike the solutions to previous constraints, in this case both a physical field and the

auxiliary field are forced to depend directly on other physical fields. This means that super-

potential terms W = µH2/2 do not generate mass terms but more fermionic interactions.

Anti-D3-Brane Scalars

In this case, the analysis of a full field redefinition which generates the expected non-

linear transformations is even more involved than above. However, up to the lowest order

in σs the analysis is elementary. In physical units, the constrained spinor and auxiliary

scalar fields read ψHα = −iσs
√
2 (σµρ)α ∂µϕH + O(σs)

3 and FH = −2σ2s η
µν(ρρ) ∂µ∂νϕH +

4σ2s η
µν(ρ∂µρ) ∂νϕH + O(σs)

4. Again inspired by ref. [84], the appropriate non-linearly

transforming scalar φH can be simply defined as

φH ≡ ϕH + iσ2s (ρ σ
µρ) ∂µϕH +O(σs)

3. (2.4.30)

Indeed, as a matter of fact, studying σs δϵφH , one finds the supersymmetry transformation

σs δϵφH = iσ2s
[
(ρ σµϵ) + (ρ σµϵ)

]
∂µφH +O(σs)

3. (2.4.31)

Because this corresponds to the supersymmetry variation in eq. (2.4.19c), the anti-D3-brane

scalars can be described by a constrained superfield of the form discussed here.

2.4.4.4 Orthogonal Field-Strength Vector Superfields

As far as vector superfields are concerned, it is possible to impose a constraint that removes

the gaugino. Such a constraint can be expressed as

XWα = 0, (2.4.32)

where X is a nilpotent chiral superfield and Wα is the chiral superfield describing the

supersymmetric field-strength tensor of a vector multiplet V = (λ,Aµ, D).
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Orthogonality Condition on Supersymmetric Field-Strengths

A way to remove the spinor degree of freedom from a vector multiplet in the presence of a

nilpotent superfield consists in imposing an orthogonality condition on its supersymmetric

field-strength tensor. However, for gauge fields things are generally slightly more compli-

cated due to gauge transformations. On the other hand, the analysis of the constraint itself

is not really involved.

The issue of supergauge transformations and the constraints on superfields can be ad-

dressed by analysing an explicit example. In a general theory with a Goldstone boson a

and a gauge field Aµ, gauge transformations read

a→ a+ f,

Aµ → Aµ + ∂µf,

for an arbitrary real function f . As discussed in ref. [31], the Goldstone boson a can be

described by a chiral superfield A = (a+ ib, ψA, FA) satisfying the constraint

X(A−A) = 0,

where X is the nilpotent chiral superfield. On the other hand, the vector field Aµ is encoded

in a vector superfield V . So one can define the supergauge transformations

A→ A+Ω/2,

V → V − i(Ω− Ω),

which means that the theory can be supergauge invariant only if the chiral superfield Ω is

such as to satisfy the condition

X(Ω− Ω) = 0.

This fact has the important consequence that the WZ-gauge cannot be selected for the

vector superfield V as the field Ω is subject to some constraints and is thus not completely

arbitrary. A good gauge choice is then the one in which

XV = 0,

since it is gauge-invariant with the above constraint on Ω. In this gauge, the vector superfield

V no longer has the especially simple form with only the goldstino, the vector and the

auxiliary scalar fields, but rather has three more scalars and one more spinor which depend

on the non-redundant degrees of freedom. This gauge choice, although technically different

from the WZ-gauge, sets the components that are normally zero to be proportional to

powers of the goldstino.

The easiest way to remove the spinor degree of freedom from a vector multiplet consists

in imposing an orthogonality condition between the nilpotent chiral superfield X and the

supersymmetric field-strength tensor Wα associated to the vector supermultiplet V . It is

convenient to express the supersymmetric field-strength superfield as

Wα = λα + (L β
α θβ) + i(θθ)(σµ∂µλ)α.
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where the spinor-valued term L β
α is defined as

L β
α = δβαD +

i

2
(σµσν) β

α Fµν .

By a direct comparison with the expression of the chiral superfield Y and of the orthogo-

nality condition XY = 0, the solution to this constraint can be derived straightforwardly

and it reads

λα(x) =
1√

2F (x)
L β
α ψβ −

ψβψβ
2F 2(x)

i(σµ ∂µλ)α. (2.4.33)

Such an equation could be solved explicitly by substituting recursively the definition of the

gaugino inside it, ending with a finite number of terms due to the Grassmannian nature of

the former. However, this is not particularly useful for the following description.

Anti-D3-Brane Gauge Field

The constraint on the spinor component can be expressed in physical units in terms of

the goldstino as λα = σsL
β
α ρβ − iσ2s(ρρ) (σ

µ∂µλ)α + O(σs)
3. Note that in the alternative

gauge, the supersymmetry variation of the gauge vector would also involve the derivative

of the spinor field that is usually set to zero in the WZ-gauge but that in this case is

ξα = σs(ρ σ
µ)αAµ + O(σs)

2, as shown by ref. [31]. If the WZ-gauge can be imposed,

however, following ref. [86], the vector field which transforms non-linearly can be expressed

simply as

aµ = Aµ − σ2s (ρ σ
νρ)

(
ηµνD − 1

2
F λκεµνλκ

)
+O(σs)

3. (2.4.34)

Indeed, in this case, a few manipulations, together with the Pauli-matrix relationship

σµσνσλ = −ηµνσλ − ηνλσµ + ηµλσν + i εµνλκσκ, indicate that the supersymmetry variation

turns out to be

σs δϵaµ = −iσ2s
[
(ρ σνϵ) + (ρ σνϵ)

]
fµν +O(σs)

3, (2.4.35)

which matches the variation of eq. (2.4.19d). This means that the gauge field of an anti-

D3-brane can be described in terms of a constrained multiplet of the form discussed here.
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3 MISALIGNED SUPERSYMMETRY

IN STRING THEORY

This chapter discusses misaligned supersymmetry in string-theoretic realisations, going over

the material presented in the articles [2, 3].

The contents are organised as follows. To start, section 3.1 contextualises the research

about misaligned supersymmetry in string theory. More ideas to motivate how misaligned

supersymmetry is a potential way-out to address the hierarchy problem are then outlined in

section 3.2. After this, a review of the core ideas underlying misaligned supersymmetry in

closed-string theories is presented in section 3.3. As an example, the non-supersymmetric

heterotic SO(16)×SO(16)-theory is discussed in detail, showing that misaligned supersym-

metry is present at leading order. Then, section 3.4 shows that the structural features of

misaligned supersymmetry can also be present for open strings. In particular, it is argued

that the spectrum of an anti-Dp-brane on top of an Op-plane shows that supersymmetry

is not just broken but also misaligned. This serves as a prototypical example. Moving

on, in sections 3.5 and 3.6, a proof that the cancellations characterising misaligned su-

persymmetry take place at any order in the Hardy-Ramanujan-Rademacher expansion of

the state degeneracies is provided for a vast and generic class of models whose partition

functions are Dedekind η-quotients. The heterotic SO(16)×SO(16)-theory and the anti-

Dp-brane/Op-plane system are studied in full detail. After this, in section 3.7, misaligned

supersymmetry is analysed in a more formal perspective, showing the precise connection

between a misaligned particle spectrum and a finite one-loop cosmological constant. Then,

section 3.8 comments on string-based supertraces. To conclude, in section 3.9, the known 10-

dimensional tachyon-free non-supersymmetric theories are discussed in terms of misaligned

supersymmetry. Finally, section 3.10 offers a recap with the main conclusions.

3.1 Context

Understanding the presence of supersymmetry in string-theory constructions is of the ut-

most importance, if one aims to describe the real world from a microscopic point of view in

this framework. In this respect, it is essential to distinguish models in which the spectrum

is not supersymmetric only below a certain energy scale from those in which supersym-

metry cannot be restored in an effective field theory since either it is not present at all

or it is broken at the string scale. Such models, i.e. those that can experience only the

non-supersymmetric phase, are going to be the subject of the present analysis.

71



Chapter 3. Misaligned Supersymmetry in String Theory

Among many non-supersymmetric string constructions, two notable examples, which

are going to be investigated in detail as prototypical instances in what follows, are the

non-supersymmetric heterotic SO(16)×SO(16)-theory [12, 13] and the open-string system

constituted by an anti-Dp-brane on top of an Op-plane in type II string theories. This

second class of models also provides a realisation of the general phenomenon of brane

supersymmetry breaking, discussed in refs. [5,14,18–24,87], and studied also in refs. [25,26].

Further notable examples that are going to be studied are the Sugimoto USp(32)-model [14],

indeed a prototypical instance for brane supersymmetry breaking, and the type 0’B SU(32)-

theory [15–17].

A crucial point to discuss is the structure that explains how string-theory constructions

can be capable of maintaining finiteness and stability, even in the absence of supersymmetry

in the target spacetime. Ultimately, this has to be related to modular invariance: for closed

strings, this is apparent in the expression of the one-loop cosmological constant; for open

strings, only a subgroup is preserved, but nonetheless this is sufficient for a constraint. A

proposal to explain such a finiteness in physically-intuitive terms, introduced in refs. [27,28]

and further developed in refs. [28, 88–92], is the idea of misaligned supersymmetry. In

this perspective, the string-theory finiteness is explained as a consequence of exponentially-

growing oscillations between the net number of bosons and fermions, at each mass level,

that lead to cancellations when considering the entire infinite tower of string states as

a whole, thanks to the underlying string-based structure of the theory. Instead, standard

supersymmetric spectra would only lead to finite quantities as a consequence of cancellations

taking place at each individual mass level, due to an exact matching in the number of

fermionic and bosonic degrees of freedom. The identification of an almost exact cancellation

between closed-string spacetime bosons and fermions in the asymptotic density of states in

the worldsheet theory dates back to the work of ref. [93]. The fundamental intuition of

refs. [27, 28] is that such a cancellation does not need to be necessarily level-by-level, as

for standard supersymmetry, hence the name ‘misaligned supersymmetry’, or, sometimes,

‘asymptotic supersymmetry’. A first extension to open-string models is in ref. [94], where

it is argued that misaligned supersymmetry is needed to decouple the open-string sector

from a closed-string tachyon.

A variety of aspects renders non-supersymmetric constructions and misaligned super-

symmetry remarkable. To start, a peculiar trait of the brane supersymmetry-breaking

scenario, compared to the other non-supersymmetric models, is the presence of a grav-

itino in the spectra of the former. In this case, the absence of a mass term for the grav-

itino is still compatible with supersymmetry breaking at the string scale, which leads to

a non-linear realisation of supersymmetry in the spacetime effective theory [23] – see also

refs. [24, 83, 95, 96]. This in itself represents a notable fact since in more standard sce-

narios supersymmetry is broken at lower energies by some F- or D-term dynamically-fixed

non-zero value. Yet, it is going to be argued that misaligned supersymmetry manifests

more generally in non-supersymmetric theories. It is also worth mentioning that, while the

heterotic SO(16)×SO(16)-theory and the Sugimoto model have their entire spectrum in

a standardly or misalignedly supersymmetric phase, and therefore do exhibit misaligned

supersymmetry, this is not the case for the type 0’B theory. The latter is somewhat special
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since it presents misaligned supersymmetry only in the open-string sector (annulus and

Möbius strip), whereas its closed-string sector does not present any sort of supersymmetry

whatsoever, containing only bosons. It turns nonetheless out that the structure ensuring

the absence of UV-divergences in the latter can also be described in terms of a misaligned

action of the orientifold symmetry (in the Klein bottle).

From a different perspective, the interplay between anti-Dp-branes and Op-planes plays

an important role in phenomenologically important type II string-theory constructions with

broken supersymmetry. In particular, an anti-D3-brane in a Calabi-Yau orientifold back-

ground with an O3-plane is at the core of the KKLT- and LVS-proposals for the string-

theory realisation of de Sitter vacua [54, 55]. The anti-D3-brane can be placed on top of

an O3-plane that is located at the bottom of a warped throat [95, 97]. As a simplified

version of this scenario, the analysis presented here studies an analogous flat-space model

and discovers an enlightening connection to misaligned supersymmetry. More generically,

non-supersymmetric branes lead to 4-dimensional low-energy effective theories with bro-

ken supersymmetry, which constitute a much wider class of models than supersymmetric

ones [96] and could lead to phenomenologically interesting non-supersymmetric realisations

of the Standard Model [1, 30, 98]. These are phenomenological motivations for which it is

desirable to revisit and investigate further anti-Dp-branes and Op-planes in string theory,

uncovering their connection to misaligned supersymmetry. In string-theory model building,

heterotic string models exhibiting misaligned supersymmetry have been previously anal-

ysed in refs. [90,91,99–103], while for open strings relevant developments are for instance in

refs. [26, 87, 104–107]. More on the mathematical side, in ref. [89] an intriguing connection

to the Riemann hypothesis has been proposed, relating the zeros of the ζ-function to the

oscillation of the physical degeneracies, thus pointing towards the presence of a rich and

interesting structure behind non-supersymmetric models.

Sufficient conditions for misaligned supersymmetry in closed-string theories have been

found to be modular invariance and the absence of physical tachyons [27]. Indeed, it is

well known that modular invariance is inherent for closed strings and, in particular, it

dictates how left- and right- moving sectors are coupled. In closed-string theories, the

cancellations implied by misaligned supersymmetry occur precisely in accordance with the

way modular invariance fixes the couplings among sectors: changing these couplings would

in general spoil modular invariance and prevent such cancellations from occurring. In this

work, the original literature is reviewed, discussing then in detail the non-supersymmetric

heterotic SO(16)×SO(16)-theory and showing how the predicted cancellations occur. Then,

the attention is turned towards open-string models and, in particular, the paradigmatic

example under consideration is the system in which an anti-Dp-brane is placed on top of

an Op-plane in type II string theories. Here, the orientifold involution generically breaks

modular invariance down to a subgroup. Nevertheless, misaligned supersymmetry can still

be argued to be at work. It is such a result that points out that brane supersymmetry

breaking and misaligned supersymmetry are related. This hints at a deeper connection

that would substantially improve the understanding of non-supersymmetric type II string

theory compactifications.

To identify misaligned supersymmetry, it is necessary to study the net boson-fermion
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degeneracies of the physical states, which are encapsulated in the partition function of the

theory. Because of the underlying modular properties of such partition functions, these net

physical degeneracies can be obtained from a Hardy-Ramanujan-Rademacher sum. Prior

to this work, misaligned supersymmetry has been demonstrated only by looking at the

leading exponentials in such an expansion, but here a method is introduced that allows one

to study all terms. In order to do that, the discussion is specialised to the case in which

the partition function can be written entirely in terms of quotients of Dedekind η-functions

and, for such a subclass of theories, it is shown analytically how misaligned supersymmetry

is at work at any order of the Hardy-Ramanujan-Rademacher expansion. In particular,

a systematic procedure is developed to show the occurrence of the required cancellations

at all orders in the expansions defining the number of states. This very same procedure

can be applied for both open- and closed-string theories. Such a formalism allows one to

prove that the state degeneracies vanish in an averaged sense, where to take the average one

needs to introduce the envelope functions interpolating the net degeneracies. Once more,

the heterotic SO(16)×SO(16)-theory and the type II models with an anti-Dp-brane on top

of an Op-plane are going to serve as two explicit examples. This can be an important step

in understanding misaligned supersymmetry as a general property of String Theory and of

String Phenomenology in particular.

As a further expansion of the discussion, this work contains a detailed analysis of the

mathematical structure of misaligned supersymmetry. In particular, it relates in a definite

way the machinery for the cancellation of the envelope functions for the net state degenera-

cies to the fermion-boson cancellations that are interpreted as the origin of finite physical

observables in theories exhibiting misaligned supersymmetry. In fact, although intuitively

immediate, the actual mathematical meaning of such envelope functions is not apparent

in their original formulation [27, 88], as they only serve as a conceptual tool to visualise

the cancellations that are reflected in the amplitude finiteness. So, whilst the original lit-

erature has interpreted the finiteness of non-supersymmetric theories exhibiting misaligned

supersymmetry as a consequence of this misalignment, here it is shown how to observe

such cancellations at work, in an exact way, in the fully-fledged mathematical expression of

the one-loop cosmological constant. This represents a physically intuitive explanation that

should parallel the usual arguments based on modular invariance, and in fact the discussion

is going to emphasise the close relationship in the two descriptions.

In detail, it is possible to show that the cancellations that take place in the heuristic

sector-average net degeneracy also appear manifestly in the one-loop cosmological constant.

Indeed it is going to be shown that misalignment leads to a cancellation of all exponential

divergences in the latter, and a similar structure is expected to emerge in the other quantum-

corrected observables too. The modular properties of the partition functions further lead

leftover power-law divergences to cancel out, leading to an overall UV-finite result. This

is going to be discussed for both open and closed strings. Although the role of modular

invariance in ensuring finiteness is well-known for closed-string theories, and therefore these

results are simply a parallel explanation, it is going to be proven that a similar modularly-

constrained structure also exists for open strings, as anticipated. In principle, this might

be considered surprising, since modular invariance is explicitly broken by the worldsheet
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boundary: in this respect, it is nonetheless going to be argued that a remnant of the original

modular group is enough to explain finiteness in the open-string models under scrutiny. All

in all, the crucial aspect is simply the well-behaved behaviour under S-transformations,

although not necessarily covariant.

3.2 Hierarchy Problem and Supersymmetry

One of the core issues of the Standard Model of Particle Physics is the hierarchy problem.

Because of quantum loop corrections, this model has to be considered as an effective field

theory valid below a cutoff scale mc. The cutoff scale must be much larger than the typical

scales characterising the physics of the Standard Model, a reference for which can be taken to

be the electroweak scalemEW, and actually larger than the current experimentally accessible

scales mexp at particle colliders, since no new particles have been observed up to that scale

yet. At the same time, this cutoff scale should not exceed the Planck scale mP , at which

quantum-gravity effects enter into play. This represents a problem since the standard-model

physics takes place at scales near the scalemEW but the quantum corrections, in the absence

of fine tuning, tend to bring this up to scales of order mc. This is not just a naturalness

problem about the explanation of the hierarchy mEW/mP ∼ 10−16 ≪ 1, but an issue itself

about the mechanisms that keep the electroweak scale much smaller than the Planck scale

even after quantum corrections [85,108].

3.2.1 Supersymmetry

To show more concretely how the hierarchy problem presents itself and how one can attempt

to solve it, as an example, following ref. [85], one can consider the complex Higgs field H,

with the usual scalar potential V = −µ2H HH+λH(HH)2. The mass-like parameter roughly

sets the electroweak scale mEW, so its input value should be of order µ2H ∼ m2
EW, while the

self-interaction quartic coupling is some perturbative parameter λH < 1. If this Higgs field

is coupled to a Dirac spinor ψ of mass mψ via a Yukawa coupling Ly = −yHψψ, then the

one-loop correction to the Higgs mass parameter is

∆µ2H =
|y|2

8π2
m2

c − f |y|2m2
ψ ln

mc

mψ
+ δyµ

2
H ,

where f is a factor that is actually different for the real and imaginary components of H

and δyµ
2
H is a cutoff-independent term. This correction makes it apparent that the Higgs

mass parameter tends to be driven up to scales of order mc. At the same time, if the Higgs

is also coupled to a complex scalar ϕ of mass mϕ with the quartic coupling Lλ = −λHHϕϕ,
then the one-loop correction to the Higgs mass parameter is

∆µ2H = − λ

16π2

[
m2

c − 2m2
ϕ ln

mc

mϕ

]
+ δλµ

2
H ,

with δλµ
2
H being a cutoff-independent term. This correction has a similar impact as above.

However, a crucial observation to make is the following: if the presence of each Dirac
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spinor is accompanied by a pair of complex scalars with coupings such that |y|2 = λ, then

the quadratic cutoff corrections are exactly such as to cancel out. Imposing the condition

that all loop corrections actually cancel out is equivalent to requiring the spectrum to

be supersymmetric. Supersymmetry is the most general symmetry relating bosons and

fermions consistently with relativistic quantum field theory and it emerges as the element

that extends the standard Poincaré group to its graded boson-fermion generalisation, i.e.

the super-Poincaré group [109, 110]. Supersymmetry constrains all bosons of integer spin

sb ∈ N0 to come in pair with fermions of semi-integer spin sf ∈ N0 + 1/2, and viceversa.

In particular, supersymmetry requires the masses and the charges of these pairs of spinors

and bosons to be the same, which is the reason for the cancellations.

After formulating a supersymmetric quantum field theory with particles pi of mass M2
i

and spin si, for some particle label i ∈ P, one can generically write the one-loop corrections

to the Higgs mass and to the cosmological constant as [88]

∆µ2H = ϵ0
(
str 1

)
m2

c + ϵ2
(
strM2

)
ln

(
mc

m0

)
+ δµ2H ,

Λ = ξ0
(
str 1

)
m4

c + ξ2
(
strM2

)
m2

c + ξ4
(
strM4

)
ln

(
mc

m0

)
+ δΛ,

where m0 is some reference mass scale of the order of the mass of the particles in the model,

ϵ2β and ξ2β are some parameters depending on the interaction couplings, and δµ2H and

δΛ are further cutoff-independent terms. These expressions depend on the values of the

supertraces, which are defined as

strM2β =
∑
i∈P

(−1)2siM2β
i .

In a supersymmetric theory, the supertraces are all vanishing, with a net cancellation of all

the particle contributions against the contribution of their superpartner. Whilst in principle

this is an elegant solution to the hierarchy problem, it is hard to reconcile with observations

since the observed universe does not show supersymmetry at the experimentally accessible

scales. In fact, even if supersymmetry is just spontaneously broken, to account for the

current experimental lack of superpartners, the scale mSUSY of this breaking must be above

the highest experimental scale mexp. As soon as the boson-fermion matching is perturbed,

though, the supertraces are no longer zero, but rather they generically are of the same

order of magnitude as the mass splittings. Although in principle this may still leave some

room for explaining the scale of the Higgs mass, it is very hardly compatible with the

tiny observed cosmological constant Λ
1/4
0 ∼ 10−15mEW ≪ mc. The difference in the Higgs-

mass and cosmological-constant scales is an inherent problem for the broken-supersymmetry

solution. Among many possibilities to explain this conundrum, it is compelling to wonder

whether misaligned supersymmetry and non-supersymmetric string theories may offer a

satisfactory and elegant solution [88].

3.2.2 Misaligned Supersymmetry

The fundamental feature defining a theory that exhibits misaligned supersymmetry consists

in a particle spectrum such that all the quantum-corrected physical observables are finite
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as an effect of an overall net boson-fermion cancellation. This represents a generalisation

of the supersymmetric pairwise boson-fermion cancellations.

In more detail, the finiteness of a theory with misaligned supersymmetry is a consequence

of the overall summation of the quantum effects of all the bosons and the fermions in the

theory, even in the lack of a supersymmetric boson-fermion pairing. In view of the quantum

field theory results overviewed so far, in order for such a scenario to be possible, one is

led to consider the presence of an infinite number of particles and to admit the absence of

symmetry-breaking scales. In fact, in order to have a systematic cancellation of the quantum

divergences, an infinite number of finely distributed states is expected to be needed, without

considering a cutoff scale. This is the reason why ‘misaligned supersymmetry’ may as well

be referred to as ‘asymptotic supersymmetry’. Furthermore, misaligned supersymmetry

does not necessarily need to be broken in the vacuum, so the electroweak and cosmological-

constant scales do not need to be related by any symmetry-breaking scale. In the presence

of an infinite number of states and without supersymmetry, the standard definition of

supertrace obviously diverges. One can introduce a regularised version of the supertraces

by defining them as

StrM2β = lim
y→0+

[∑
i∈P

(−1)2siM2β
i e−yM

2
i /µ

2

]
,

where µ2 is some mass scale. Obviously this definition at this point is arbitrary, and not re-

lated to any physical observable, but for a moment it can be assumed to be a generalisation

of the standard supertrace definition for a theory with an infinite number of states. It con-

tains an exponential regulator and it reduces to the standard definition for a finite number

of states. If, for instance, one considers a toy model with net boson-fermion degeneracies

Nb(n)−Nf (n) = (−1)nn2 and mass levels M2
n = µ2n, then the regularised supertraces read

Str 1 = 0, StrM2 = µ2/8 and StrM4 = 0. Of course, just this by itself is not enough to

explain the validity or the meaning of the new supertraces, but it should give a feeling that

infinitely many states may combine together in such a way as to give finite results. It is

conceivable that this may then help in addressing the hierarchy problem, if for instance can-

cellations within supertraces could ensure not simply finite but actually highly-suppressed

loop corrections.

This whole situation shares analogies with non-supersymmetric string theories. These

are string-theory constructions that lack spacetime supersymmetry but that nonetheless

still give finite one-loop quantum corrections to the tree-level results. This, in fact, can

be interpreted as a manifestation of misaligned supersymmetry. The key aspect to bear

in mind is that string theory is not just a theory that in a low-energy limit produces

an effective quantum field theory, but rather it is a more complex theory that possesses

additional features. In particular, its one-loop corrections are invariant under the modular

group PSL2(Z), in the case of closed strings, or, at least, are constrained by some dualities

related to their behaviour under the modular group, in the case of open strings. This

requires these models to have an infinite number of degrees of freedom and, in particular, it

relates the low-energy states to the infinitely many extremely heavy ones in specific ways. In

the easiest realisations, such properties ensure for instance one-loop cosmological constants
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that, besides the string-coupling powers parametrising the perturbative loop orders, are

set at orders of magnitude around the string scale. More elaborated constructions may be

studied to understand whether configurations exist in which such finite corrections are also

small.

The following sections in this chapter review these ideas and illustrate developments that

make them more precise in a vast class of non-supersymmetric string theories, including both

closed and open strings.

3.3 Misaligned Supersymmetry

in Closed Strings

This section is devoted to a review of the concept of misaligned supersymmetry in closed-

string theories, following mainly the discussion in refs. [27, 28, 88]. Then, the heterotic

SO(16)×SO(16)-theory is analysed in detail as an instructive example in which misaligned

supersymmetry is at work. Unless differently specified, in this chapter the term ‘closed

strings’ refers to torus amplitudes: while, generally speaking, this is unambiguous in het-

erotic theories, in type II theories the presence of orientifolds requires the introduction of

Klein-bottle, annulus and Möbius-strip amplitudes. The analysis of ‘open strings’ in this

chapter covers also the Klein-bottle amplitudes, since technically their structure is analo-

gous to that of annuli and Möbius strips, i.e. the actual open-string terms. In all cases

where these distinctions are relevant, they will be pointed out explicitly.

3.3.1 Misaligned Supersymmetry Review

The presence of misaligned supersymmetry in String Theory can be understood from several

perspectives. It can be formulated as the occurrence of exponentially-growing oscillations in

the net number of bosonic minus fermionic physical states at each energy level. Equivalently,

it can be related to the presence of unphysical tachyons in the partition function, namely

virtual excitations with negative squared mass, which are not dangerous as long as they

remain off-shell. Alternatively, it can be deduced by looking at the asymptotic behaviour

of an appropriately defined sector-averaged number of states that is argued to grow more

slowly than the various state degeneracies as the energy increases. In all descriptions, these

features should be manifested in finite quantum corrections in the physical observables.

Below, a discussion of how all of these concepts are intertwined is outlined.

The natural starting point for the discussion of misaligned supersymmetry is the string

one-loop torus partition function.3.1 Given the squared nome q = e2πiτ , in a conformal field

theory with sectors labelled by an index i = 0, . . . , N − 1, let χi(q) be the characters of an

irreducible representation |hi⟩ of highest weight hi, with hi ≥ 0 in unitary theories, i.e.

χi(τ) = trHi q
L0−c/24, (3.3.1)

3.1Despite the approach based on lightcone quantisation presented in subsection 2.1.3, in this subsection

the more general approach based on conformal field theory is considered; for reviews, see refs. [33, 34].
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where L0 is the zeroth Virasoro generator, c is the central charge of the worldsheet conformal

field theory, and Hi is the Hilbert space built via the application of the raising Virasoro

operators L−n on the highest-weight state |hi⟩, with n > 0. The characters constitute an

N -dimensional representation of the modular group with weight k ∈ Z/2, meaning that,

for a modular PSL2(Z)-transformation Mτ = (aτ + b)/(cτ + d), with τ being defined in the

fundamental PSL2(Z)-domain F =
{
τ ∈ C : Re τ ∈ [−1/2, 1/2] ∧ Im τ ∈ [0,+∞[∧ |τ | ∈

[1,+∞[
}
, they transform as

χi(Mτ) = (cτ + d)k
N∑
j=1

M j
i χj(τ),

where M j
i is the matrix representing the action of the modular-group element in the basis

of the characters χi. It is assumed that the characters can be expanded in terms of non-

negative coefficients ai, n in a Laurent series of the form

χi(τ) = qHi

∞∑
n=0

ai, nq
n, (3.3.2)

where Hi = hi − c/24 is the vacuum energy of the sector i. The coefficients ai, n count the

degeneracy of states of the sector i at the excited level n.

In a closed-string theory formulated in a D-dimensional non-compact spacetime, one has

to consider the mixing of the characters of both the right- and left-moving highest-weight

sectors χi and χj , respectively. In fact, the one-loop torus partition function can be written

in general as

Z(τ, τ) = (Im τ)1−
D
2

N−1∑
i=0

N−1∑
j=0

Aijχi(q)χj(q), (3.3.3)

where Aij is a character-mixing matrix. In consistent physical models, the partition func-

tion must be modular-invariant, i.e. it must be unchanged under the action of the modular

group, transforming as Z(τ, τ) = Z(Mτ,Mτ). This requires the modular weights to be

k = 1 − D/2 and it constrains the shape of the character-mixing matrix to be such that

Aij =
∑

p

∑
qM

i
p A

pqM
j
q . Also, a T-transformation can be seen to require the condition

Hi −Hj ∈ Z for all (i, j)-pairs such that Aij ̸= 0. Moreover, all the entries of the mixing

matrix must be non-negative as they correspond to the coefficients defining the total Hilbert

space, with H =
⊕

i,j A
ijHi ⊗Hj . In practice, however, one often deals with pseudocharac-

ters, i.e. linear combinations of characters. In the following, physical tachyons are assumed

to be absent from the spectrum.

3.3.1.1 HRR-Expansions and Net Boson-Fermion Cancellations

For simplicty, it is assumed that all the characters are normalised in such a way that ai,0 = 1.

As long as one can define a set of characters that is closed under the modular PSL2(Z)-
group, one can write the general expression of the Laurent coefficients ai, n of the characters
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χi(q) by means of a Hardy-Ramanujan-Rademacher series as [27,111,112]

ai, n =

αmax∑
α=1

2π

α

N−1∑
j=0

Q(α;n) ji fj(α;n+Hi) + δai, n(αmax), (3.3.4)

where the definitions have been made

Q(α;n) ji = e−
iπk
2

∑
0≤β<α:

gcd(α,β)=1

(M−1
αβ, β′)

j
i e2πi

[
Hj

β′
α
−Hi

β
α

]
e−2πin β

α , (3.3.5a)

fj(α;n+Hi) =

[
Hj

n+Hi

] 1
2
− k

2

Jk−1

[
4π

α

[
Hj(n+Hi)

] 1
2

]
, (3.3.5b)

with fj(α;n+Hi) = [2π(n+Hi)/α]
k−1 for Hj = 0. In these expressions, Jν = Jν(x)

represents the Bessel functions of the first kind (see appendix A.2.1 for details) and the

matrix (Mαβ, β′) ji is the representation of the modular group acting on the characters χi(q)

corresponding to the PSL2(Z)-group element

Mαβ, β′ =

(
−β′ (1 + ββ′)/α

−α β

)
, (3.3.6)

where β′ is an arbitrary integer parametrising the freedom of acting on Mαβ, β′ on the left

with a phase-chaning T-transfomation. The matrix Q(α;n) ji is real and independent of

the choice of β′. In the generic expression, the term δai, n is an error that depends on the

value chosen for αmax: the minimum error is obtained for αmax ∼ n1/2 and it is of order

δai, n = O(nk/2; +∞), if k ≤ 0.

At large values of n, the asymptotic behaviour of the function fj(α;n + Hi) depends

critically on the sign of Hj , since the growth of Bessel function changes in a drastic way.

Expanding the Bessel function asymptotically, depending on the sign of Hj , one finds the

asymptotic behaviours

fj(α;n+Hi)
n∼∞≃ 1

2π

(α
2

)1
2 |Hj |

1
4
− k

2 (n+Hi)
k
2
− 3

4 e
4π
α
[|Hj |(n+Hi)]

1
2 , Hj < 0;

fj(α;n+Hi)
n∼∞≃

[
2π(n+Hi)

α

]k−1

, Hj = 0;

fj(α;n+Hi)
n∼∞≃ (2α)

1
2

2π
H

1
4
− k

2
j (n+Hi)

k
2
− 3

4 cos θj(α;n+Hi), Hj > 0.

(3.3.7a)

(3.3.7b)

(3.3.7c)

Here, the angle has been defined θj(α;n+Hi) = 4π
[
Hj(n+Hi)

] 1
2 /α− kπ/2 + π/4. It is

apparent that, in the summation over α that defines the terms ai, n, the leading-order results

are given by the term α = 1 in sectors with negative energy Hj < 0. For the leading-order

term α = 1, the choice β′ = 0 givesM10 = S−1, so that Q(1;n) ji = e−iπk/2S j
i . In particular,

the dominant contribution comes from the identity sector, i.e. the sector with vanishing

weight h = 0 and therefore the minimum energy H = −c/24; without loss of generality,

this is taken to correspond to the sector i = 0. To conclude, the asymptotic behaviour for

the coefficients ai, n dictated by eq. (3.3.4) is

ai, n
n∼∞≃ Ai (n+Hi)

−BeC (n+Hi)
1
2 , (3.3.8)
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where the coefficients have been defined

Ai =
1√
2
e−

iπk
2 S 0

i

[ c
24

] 1
4
− k

2
, (3.3.9a)

B =
3

4
− k

2
, (3.3.9b)

C = 4π
[ c
24

] 1
2
. (3.3.9c)

In particular, the exponential coefficient C = 1/TH is the inverse Hagedorn temperature

of the theory. An important and well-known result is that the entries S 0
i are always non-

vanishing [113]. As a consequence, the coefficients Ai are non-vanishing as well and, within

each sector, the degeneracy of states grows exponentially with the energy. All sectors

experience the same kind of exponentially-growing behaviour, since they are all coupled to

the identity sector by the non-zero coefficients S 0
i .

To understand how misaligned supersymmetry can work, one needs to look more closely

at the partition function, in order to make use of the knowledge on the characters. To this

purpose, one can insert the character expansion of eq. (3.3.2) into the generic partition

function in eq. (3.3.3) and, after the index shifts mi = m+Hi and nj = n+Hj , express

the latter as

Z(τ, τ) = (Im τ)1−
D
2

N−1∑
i=0

N−1∑
j=0

Aij
∑

mi∈N0+Hi

∑
nj∈N0+Hj

ai,mi−Hi aj, nj−Hj
qmiqnj . (3.3.10)

The physical states correspond to the level-matched products with mi = nj , while all the

other terms represent unphysical states. In general, because of the condition mi − nj ∈ Z,
which is inherent due to modular invariance, the partition function restricted to physical

states can be defined via a τ1-integration as

g(τ2) =

∫ 1
2

− 1
2

dτ1 Z(τ1, τ2)

= τ
1−D

2
2

N−1∑
i=0

N−1∑
j=0

∑
nij∈N0+Hij

Aij ai, nij−Hiaj, nij−Hj
e−4πτ2nij ,

(3.3.11)

with the definition Hij = max (Hi, Hj). In particular, it is therefore possible to indicate the

net physical degeneracies of the theory as

ann =
N−1∑
i=0

N−1∑
j=0

Aij ai, nij−Hiaj, nij−Hj
=

N−1∑
i=0

N−1∑
j=0

Aij aij, nn. (3.3.12)

Here, it should be stressed that the right- and left-moving state degeneracies that are being

considered, i.e. the terms ai, nij−Hi and aj, nij−Hj
, are generally defined only for certain

values of n = nij , for each (i, j)-pair. In fact, to write the partition function in terms of

these coefficients ann just as a sum over n, the sums over the sectors of the theory should

be swapped with the sum over n, but the latter actually depends on the (i, j)-pair.
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From the HRR-formula in eq. (3.3.4), thanks to the asymptotic expansions (3.3.7a,

3.3.7b, 3.3.7c), one can see that tachyonic states with Hj < 0 have an exponentially-growing

behaviour, while states with Hj ≥ 0 are power-law suppressed, since k = 1−D/2 < 0, for

the common case D > 2. Therefore, the fastest-growing contribution in the net physical

degeneracies of eq. (3.3.12) is provided by the terms i = j = 0 for all the sectors, which

have H0 = −c/24 and H0 = −c/24. It is in this sense that the unphysical tachyons (i.e.

not level-matched tachyonic states) play a fundamental role in determining the asymptotic

behaviours of the physical state degeneracies. Thanks to the expansion of eq. (3.3.8), each

pair of sectors then contributes with a term

aij, nn
n∼∞≃ AiAj n

−2B e(C+C)n
1
2 =

1

2
S 0
i S

0
j |H0H0|

1
4
− k

2 nk−
3
2 eCtot n

1
2 . (3.3.13)

In this expression, the total inverse Hagedorn temperature has been defined as Ctot = C+C

and it can be expressed as

Ctot = 4π
[
|H0|

1
2 + |H0|

1
2
]
= lim

n→∞

ln
∣∣aij, nn∣∣
n

1
2

. (3.3.14)

As anticipated before, the definition of Ctot does not make a distinction in the (i, j)-indices,

since all sectors grow with the same exponential behaviour. Notice that, generally, the

degeneracies ann in eq. (3.3.12) have a similar asymptotic behaviour to the terms aij, nn
in eq. (3.3.13), since they are made out of their products. Misaligned supersymmetry

predicts then that these asymptotic exponential behaviours cancel out when summing over

all sectors in a specific way, leading to an effective exponential growth governed by some

effective inverse Hagedorn temperature Ceff < Ctot, as is going to be explained now.

In general, the presence of exponentially-growing numbers of states can lead to di-

vergences in physical quantities. Misaligned supersymmetry avoids this by modelling the

occurrence of specific cancellations taking place in a generalisation of the degeneracies ann
in eq. (3.3.12), namely a sector-averaged number of states that grows more slowly than

the degeneracy contributions aij, nn in eq. (3.3.13) themselves. One should notice that,

although for each index n the net physical degeneracies ann are written as a sum of the

contributions aij, nn over all the sectors (i, j), in general not all sectors contribute to the

total degeneracy for all indices. In fact, for any specific sector (i, j), the coefficients aij, nn
are defined for indices in a specific discrete set of values, so at a given level n not all sectors

necessarily appear in the actual sum that defines the degeneracy ann (e.g. only certain

subsectors may be defined for semi-integer n, with other sectors being defined instead for

integer n). To define an appropriate sector average, one formally replaces the asymptotic

state degeneracies aij, nn with their interpolating functions Φij(n), i.e.

aij, nn 7→ Φij(n),

where n is no longer assumed to take discrete values only, but is a real positive variable

n ∈ R+. The interpolating functions Φij(n) are usually called ‘envelope functions’. The

crucial point here is that, while the index n in aij, nn also depends on the sectors (i, j), as

is clear from eq. (3.3.12), the functional forms Φij(n) are defined for all positive real values
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of n. In other words, the argument n in Φij(n) is independent from the sectors (i, j), so

the envelope functions can be used to define a generalisation of the degeneracies ann that

actually includes an average from all the sectors in the theory. In fact, once the envelope

functions are introduced, it is possible define the sector-averaged number of states ⟨ann⟩ as
the sum of these functions over all sectors in the theory, i.e.

⟨ann⟩ =
N−1∑
i=0

N−1∑
j=0

AijΦij(n). (3.3.15)

Then, in analogy with the definition in eq. (3.3.14), the effective inverse Hagedorn temper-

ature Ceff is defined as

Ceff = lim
n→∞

ln |⟨ann⟩|
n

1
2

. (3.3.16)

The fundamental result of ref. [27] can now be explained as follows. Let Z = Z(τ, τ) be

a modular-invariant partition function in the form of eq. (3.3.3), with an oscillatory term

f(τ, τ) = (Im τ)−kZ(τ, τ). Then, let the mixing matrix be such that for all non-zero entries

Aij ̸= 0 at least one of the two characters χi and χj has a non-negative vacuum energy,

i.e. at least one condition between Hi ≥ 0 and Hj ≥ 0 is satisfied. This means that the

physical theory has no physical tachyons, since level-matched states require the equality

Hi + m = Hj + n, so if e.g. Hj < 0 but Hi ≥ 0, then Hj + n ≥ 0, and therefore the

total mass units are Hi + m + Hj + n ≥ 0. However, unphysical tachyons are allowed.

If these conditions hold, then it can be shown that the sector-averaged degeneracies ⟨ann⟩
grow asymptotically with an effective inverse Hagedorn temperature such that

Ceff < Ctot. (3.3.17)

This can be thought of as a generalisation of a result in the theory of modular forms, i.e. the

fact that a one-variable modular form f(τ) = qH
∑∞

n=0 anq
n of modular weight k < 12H

must be identically zero, i.e. its coefficients are an = 0 for all n ∈ N0. The two-variable case

f = f(τ, τ) is fundamentally different, since modular invariance only restricts the product

of two different modular forms. In the absence of physical tachyons, ignoring the case in

which for any non-zero entries Aij one has both Hi ≥ 0 and Hj ≥ 0, which can be shown

to correspond to spacetime supersymmetry with ann = 0, it is not possible to constrain the

degeneracies ann but only the sector-averaged degeneracies ⟨ann⟩ as in eq. (3.3.17). This

works by considering cancellations in the average ⟨ann⟩ that occur among sectors that are

misaligned, since for any given n, the functions Φij(n) participating in the average come

from terms aij, nn that are not necessarily defined for that n.

For completeness, a brief overview of the proof is outlined below. Thanks to eq. (3.3.4),

in view of eqs. (3.3.12, 3.3.15), and neglecting the power-law remainders, the sector-averaged

net degeneracies ⟨ann⟩ can be written as

⟨ann⟩ =
∑
i

∑
j

Aij
[∑
α

2π

α

∑
k

Q(α;n−Hi)
k
i fk(α;n)

]

·
[∑
β

2π

β

∑
l

Q(β;n−Hj)
l
j
f l(β;n)

]
,
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where the shifts imply that in the summations the dependence on the (i, j)-sectors is only

in the mixing matrix and in the Q and Q-functions. This means that one can single out

the two (i, j)-summations, writing

P (α, β;n)kl =
∑
i

∑
j

AijQ(α;n−Hi)
k
i Q(β;n−Hj)

l
j

=
∑
β

∑
γ

e2πi
[
Hk

γ′
α
−n γ

α

]
e
−2πi

[
Hl

δ′
β
−n δ

β

]∑
i

∑
j

Aij(M−1
αγ, γ′)

k
i (M

−1
βδ, δ′)

l
j

=
∑
β

∑
β

e2πi
[
Hk

γ′
α
−n γ

α

]
e
−2πi

[
Hl

δ′
β
−n δ

β

][
(M−1

αγ, γ′)
T (Mβδ, δ′)

TA
]kl
,

where, in matrix notation, advantage has been taken of the modular-invariance requirement

on the mixing matrix A =MTAM . At leading order α = β = 1, it is possible to determine

that P (α, β;n)kl = Akl, which implies the equation

⟨ann⟩
n∼∞≃

∑
k

∑
l

Aklfk(1;n)f l(1;n).

Under the assumption that either Hi ≥ 0 or Hj ≥ 0 for each non-zero entry Aij , none of the

terms contributing to ⟨ann⟩ experience the maximal growth given by the identity sectors

for both right- and left-movers. This is enough to prove eq. (3.3.17).

The most immediate physical consequence of eq. (3.3.17) consists in the fact that

the spectrum of physical degeneracies ann must oscillate. In fact, an oscillation in the

net number of states among different levels is necessary to motivate the existence of a net

cancellation. This means that the modular-invariant theory, with no physical tachyons, does

not need to be supersymmetric, but it is enough for it to show a ‘misaligned supersymmetry’.

The heterotic SO(16)×SO(16)-theory analysed in detail in subsection 3.3.2 will serve as an

instance to show the main features of misaligned supersymmetry in concrete.

In addition to all this, ref. [27] further conjectures that the effective exponential coeffi-

cient is actually zero, i.e.

Ceff = 0, (3.3.18)

which implies that the sector-averaged number of states does not grow exponentially, but at

most polynomially. The conditions in eqs. (3.3.17, 3.3.18) will be referred to as the ‘weak’

and the ‘strong’ forms of misaligned supersymmetry, respectively. The strong condition in

eq. (3.3.18) implies the occurrence of cancellations also at all subleading orders, since the

weak condition is a result of leading-order cancellations only.

To conclude, it must be emphasised that the study of subleading corrections in the gen-

eral HRR-sum is extremely intricate to perform, as should be apparent from the expansion

in eq. (3.3.4). In fact, this requires a general method to select the integers β′ to define a

consistent PSL2(Z)-matrix Mαβ,β′ and a general way to express the corresponding matrix

representation in the space of the characters, possibly in terms of the modular T- and S-

transformations, which is quite arduous. Furthermore, the functions Q(α;n) ji depend on n

for α > 1, complicating both the calculations and the meaning of the operation of sector-

averaging itself. Besides this, the asymptotic expansions in eqs. (3.3.7a, 3.3.7b, 3.3.7c)
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evidence the presence of power-law corrections in all the exponentially-growing sectors and

of further power-law terms in all the other sectors, coming from the asymptotic expansions

of the Bessel functions, as well as the presence of infinite series of similar form coming from

all terms with α > 1. All these terms should eventually be combined together. Among the

issues above, perhaps the most critical of all lies in the fact that all subleading orders with

α > 1 go beyond the reach of the methods leading to the result of eq. (3.3.17), since this

is based on the leading-order identity
∑N−1

i=0

∑N−1
j=0

AijQ(1;n−Hi)
k
i Q(1;n−Hj)

l
j
= Akl,

which is only valid for α = β = 1. Indeed the fact that the functions Q(α;n) ji depend on n

for all subleading orders α > 1 and the M -matrix shortcomings render the generalisation of

this identity untreatable. The validity of eq. (3.3.17) is still guaranteed, but these technical

complications prevent any easy refinement of this result. To conclude, it is also worthwhile

to emphasise that, for practical purposes, when introducing the functions Φij(n), the vari-

able n is taken to be continuous, since this helps in visualising the cancellations at leading

order, but the cancellations could be seen by just extending the indices n in aij, nn to take

all of the possible discrete levels that can appear in any sector, even if they are not defined

for the specific (i, j)-sector. However, the extension of the index n beyond its original do-

main is hard to generalise beyond leading order: whilst taking n ∈ R+ works perfectly for

α = 1, the functions Φij(n) are in general not real when subleading orders are considered,

and in fact the functions Q(α;n) ji in eq. (3.3.5a) can be seen to be real for α > 1 only for

n ∈ Z [27]. This fact is ambiguous since the envelope functions are directly associated to

counting physical degrees of freedom.

Unnormalised Characters

It is often convenient to work with characters that are not normalised, i.e. which are such

that aι,0 ̸= 1, for ι > 0, and similarly for the anti-holomorphic sector. In the identity sector,

instead, the normalisation a0,0 = 1 is always going to be preserved.

An asymptotic description can can be easily worked out for the unnormalised charac-

ters in terms of the analysis of normalised characters. Let χi be a basis of unnormalised

characters and let χ̆ι = χi/ai,0 be the corresponding basis of normalised characters, whose

discussion has been performed up to this point. Working with the unnormalised characters

simply requires the mixing and the S-matrix terms to be rescaled as Ăij = ai,0aj,0A
ij and

S̆ j
i = (aj,0/ai,0)S

j
i , where unaccented and accented terms represent terms referred to un-

normalised and normalised basis, respectively. So, for instance, adapting eq. (3.3.13), the

coefficients for the unnormalised theory, i.e. aij, nn = (ai,0aj,0) ăij, nn, can be written as

aij, nn
n∼∞≃ (ai,0aj,0)

1

2
S̆ 0
i S̆

0

j

|H0H0|
1
4
− k

2

n
3
2
−k

eCtot n
1
2 =

1

2
S 0
i S

0
j

|H0H0|
1
4
− k

2

n
3
2
−k

eCtot n
1
2 ,

and, adapting eq. (3.3.15), the unnormalised sector-averaged degeneracies are

⟨ann⟩ =
N−1∑
i=0

N−1∑
j=0

ĂijΦ̆ij(n) =
N−1∑
i=0

N−1∑
j=0

ai,0aj,0A
ij 1

ai,0aj,0
Φij(n) =

N−1∑
i=0

N−1∑
j=0

AijΦij(n).

All results up to this point had been presented for normalised characters in order to avoid
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unnecessary notational complications. From now on, there should be no ambiguities in

working with unnormalised characters.

3.3.1.2 Cosmological Constant in Closed-String Theories

A simple one-loop amplitude is the one-loop cosmological constant. In this subsubsection,

arguments are provided to disentangle the relationship between misaligned supersymmetry

and finite quantum-corrected physical observables.3.2 In a string-theory model with a D-

dimensional target spacetime and a modular-invariant partition function Z = Z(τ, τ), it

can be shown that the one-loop cosmological constant can be defined as

Λ̃D = − 1

2κ2D

1

4πl2s

∫
F

d2τ

(Im τ)2
Z(τ, τ), (3.3.19)

where the D-dimensional gravitational coupling constant is 2κ2D = lD−2
s /2π. The region

of integration F is the PSL2(Z)-group fundamental domain. In the absence of physical

tachyons, this one-loop cosmological constant is finite, even in the absence of supersymme-

try. Both physical and unphysical states take part in determining the final result. In fact,

although in the region (τ1, τ2) ∈ [−1/2, 1/2]× [1,∞[ only the level-matched states appear,

the unphysical ones being projected out by the integration over τ1, in the area enclosed

between the fundamental domain and the square (τ1, τ2) ∈ [−1/2, 1/2] × [0, 1] unphysical

states appear too. In particular, the partition function typically has unphysical tachyons,

which therefore play a role in fixing the cosmological constant.

Taking advantage of the modular invariance of the partition function, given the partition

function restricted to the sum over physical states g(τ2) =
∫ 1/2
−1/2 dτ1 Z(τ, τ), it is possible to

express the one-loop cosmological constant purely in terms of physical states. In fact, for a

modular-invariant partition function Z = Z(τ, τ) that is also free of physical tachyons, the

Kutasov-Seiberg identity [93] states that

Λ̃D = − 1

2κ2D

1

12l2s
lim
σ→∞

g(σ−1). (3.3.20)

A key difference among the two expressions of the one-loop cosmological constant is that in

the Kutasov-Seiberg formula only physical states appear. Modular invariance constrains the

physical number of states in such a way that their effect in the region τ2 ∼ 0+ also accounts

for what would be the effect of unphysical states, too, in the integral expression over the

fundamental domain F. This stems from the fact that a generic modular transformation of

the partition function relates physical and unphysical states to each other.

Compared to the F-domain integration, the Kutasov-Seiberg identity allows one to draw

general conclusions more easily as it only involves level-matched states, making it more di-

rect to interpret the cosmological-constant finiteness in view of effective cancellations inter-

pretable in terms of misaligned supersymmetry. Moreover, matching an integral definition

3.2The details of the relationship between the string-theory one-loop cosmological constant and misaligned

supersymmetry constitute the main topic of section 3.7. Nevertheless, to conclude the overview on closed-

string misaligned supersymmetry, it is useful to also review the essential closed-string features here.
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with the result of a limit, it makes it easier to see how oscillations can actually take place in

a physical observable. In fact, expanding the function g(τ2) in terms of the net degeneracies

ann, it is possible to infer the small-τ2 behaviour∑
n∈ 1

2
N0

ann e
−4πτ2n τ2∼0+∼ −24κ2Dl

2
s Λ̃D τ

D/2−1
2 . (3.3.21)

Now, the relationship between a finite one-loop cosmological constant and misaligned su-

persymmetry should be intuitively clear. The fundamental aspect of String Theory that

guarantees the possibility to have a finite one-loop cosmological constant is the absence of

physical tachyons, with high-energy divergences being cut off via the modular invariance

of the partition function. Moreover, the Kutasov-Seiberg identity, building on these fea-

tures, shows how the finiteness may be seen from the point of view of a specific behaviour

of the series of all the physical degeneracies, in which bosonic and fermionic contributions

must eventually cancel out. At the same time, misaligned supersymmetry emerges in non-

supersymmetric tachyon-free modular-invariant closed-string models, exhibiting systematic

cancellations in appropriately-defined sector-averaged net physical degeneracies. Therefore,

it is natural to interpret the finiteness of the one-loop cosmological constant in terms of

physical cancellations, all over the string perturbative spectrum, that can be visualised as

an effect of misaligned supersymmetry.

To conclude, it is worthwhile to mention supertraces. Because the coefficients ann
correspond to the physical degeneracies at some mass level M2

n = µ2n, where µ = ℓ/
√
α′,

for some model-dependent constant ℓ, one can define the generalised supertraces as

StrM2β = lim
t→0+

[ ∑
n∈ 1

2
N0

annM
2β
n e−4πtM2

n/µ
2

]
= µ2β lim

t→0+

[(
− 1

4π

d

dt

)β ∑
n∈ 1

2
N0

ann e
−4πτ2n

]
.

In particular, fixing µ = 2/
√
α′ for typical closed-string theories, as a consequence of the

Kutasov-Seiberg identity one immediately verifies that the first non-zero supertrace corre-

sponds to the power 2β = D − 2, with

StrM0 = StrM2 = · · · = StrMD−4 = 0,

StrMD−2 =
96π(D/2− 1)!

(−4π)D/2

(
4

α′

)D
2
−1

κ2Dl
2
sΛ̃D.

Ultimately, the regularised supertraces emerge as another conceptual tool to visualise the

cancellations coming from a misaligned spectrum. In fact, for them to be vanishing or

finite, and more generally for the series g(τ2) = τ
1−D/2
2

∑
n∈N0/2

ann e
−4πτ2n to be finite as

τ2 ∼ 0+, it is apparent that specific cancellations need to take place, entailing the whole

towers of both bosonic and fermionic states.

3.3.1.3 New Perspectives

A general comment is in order. In the discussion overviewed up to this point, it is explained

in quite some detail how, once the envelope functions are defined, it is in fact possible to
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show that they undergo cancellations. This is generally the case for the discussion of closed-

and open-string misaligned supersymmetry in the whole of sections 3.3 and 3.4, and also 3.6.

However, the details of how the machinery of misaligned supersymmetry works at subleading

order and of how it mathematically connects to the finiteness of physical observables in

concrete is not spelled out in definite terms yet. In particular, it is not fully clear how

to physically interpret the extension of the net state degeneracies to levels exceeding their

original domains of definition, especially when subleading orders are concerned, and how to

explain the one-loop cosmological constant finiteness in view of misaligned supersymmetry

in precise mathematical terms, with an explicit observation of the cancellations. These are

essentially unexplored corners of the literature about misaligned supersymmetry and the

main purpose of this chapter is precisely to shed light on both these topics. More precisely,

sections 3.5 and 3.6 are aimed at showing the manifestation of misaligned supersymmetry

at all subleading orders in terms of the envelope functions, while section 3.7 eventually

motivates and explains the physical meaning of the envelope-function cancellations at all

orders in precise and definite terms, showing the way in which such cancellations explain a

finite one-loop cosmological constant.

3.3.2 Example: Heterotic SO(16)×SO(16)-Theory

The non-supersymmetric heterotic SO(16)×SO(16)-theory, originally constructed in refs.

[12, 13], is a prototypical example of a non-supersymmetric and yet tachyonic-free closed-

string theory. This subsection shows the way in which this model presents the main features

of misaligned supersymmetry reviewed in subsection 3.3.1.

It is instructive to start by recalling how the heterotic SO(16)×SO(16)-theory can be

obtained from an orbifold of the heterotic-E8×E8 superstring theory [9]. The one-loop torus

partition function of the heterotic E8×E8-theory is given by

ZE8×E8 =
(Im τ)−4

η8η8
[
V8 − S8

][
O16 + S16

]2
. (3.3.22)

Here and in the following, the so(2n)-characters O2n, V2n, S2n and C2n are defined as in

ref. [39] (see appendix A.1.1 for a review). The partition function in eq. (3.3.22) is vanishing

due to the well known Jacobi’s aequatio identica satis abstrusa, i.e. V8 = S8. Physically,

this is a consequence of spacetime supersymmetry, namely the fact that the number of

bosons and fermions is the same at each energy level. The heterotic SO(16)×SO(16)-theory

is obtained via an orbifold of the heterotic E8×E8-theory. The orbifold projector acting

on the partition function in eq. (3.3.22) is Pg = (1 + g)/2. In this projector, the orbifold

generator is g = (−1)F+F1+F2 , where F is the spacetime fermion number, while F1 and F2

are the fermion numbers of the first and second E8-factors, respectively. The insertion of

the projector gives

Pg(ZE8×E8) =
1

2

[
ZE8×E8 + g(ZE8×E8)

]
,

where the action of the orbifold reads

g(ZE8×E8) =
(Im τ)−4

η8η8
(V8 + S8)(O16 − S16)

2,
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and it is obtained by flipping the signs of the S8- and S16-sectors in eq. (3.3.22). However,

as it stands, the projected partition function is not modular-invariant. To obtain a modular-

invariant expression, one acts repeatedly with modular T- and S-transformations, adding

at each step the new terms thus generated, until the final result is modular-invariant.

Eventually, one finds

ZSO(16)×SO(16) =
(Im τ)−4

η8η8

[
V8(O16O16 + S16S16)− S8(O16S16 + S16O16)

+O8(V 16C16 + C16V 16)− C8(V 16V 16 + C16C16)
]
,

(3.3.23)

which is the partition function of the heterotic SO(16)×SO(16)-theory. This is related to

the supersymmetric partition function ZE8×E8 of eq. (3.3.22) as

ZSO(16)×SO(16) =
1

2

[
ZE8×E8 + Zg(E8×E8)

]
, (3.3.24)

where Zg(E8×E8) is the modular-invariant expression

Zg(E8×E8) =
(Im τ)−4

η8η8
[
(V8 + S8)(O16 − S16)

2 + (O8 − C8)(V 16 + C16)
2

−(O8 + C8)(V 16 − C16)
2
]
.

(3.3.25)

As will be shown in the rest of this subsection, the partition function in eq. (3.3.23) exhibits

the characteristic features of misaligned supersymmetry. For many practical purposes,

since ZE8×E8 = 0, one may as well just focus on the partition function in eq. (3.3.25). The

heterotic SO(16)×SO(16)-theory is an instance of a non-supersymmetric string construction.

In fact, the partition function in eq. (3.3.23) is non-zero. The lack of supersymmetry can be

observed even at the massless level, whose particle content is summarised in table 3.1 (for a

description of the degrees of freedom of this theory, see e.g. refs. [114, 115]). In particular,

it is worth to emphasise that there is no gravitino in the theory.

bosons fermions

graviton gMN , dilaton Φ,

Kalb-Ramond 2-form BMN

gauge fields AM :

rA = (120, 1)⊕ (1, 120)

spinors ψ:

rψ = (128, 1)⊕ (1, 128)

co-spinors ξ:

rξ = (16, 16)

Table 3.1: Massless particle content in the heterotic SO(16)×SO(16)-theory. Each entry lists the

name of the particle and the SO(16)×SO(16)-group representation it transforms in. No superpartners

appear; in particular, the net state degeneracy is Nb(0) − Nf (0) = [(28 + 1 + 35) + (8 · 120 · 2)] −
[(8 · 128 · 2) + (8 · 16 · 16)] = −2112.
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Expanding the partition function in eq. (3.3.23) in powers of q and q, one can observe

the defining properties of misaligned supersymmetry. To start, one can single out the

partition function restricted to physical states, i.e. those with equal powers of q and q.

This can be defined as gSO(16)×SO(16)(τ2) =
∫ 1/2
−1/2 dτ1 ZSO(16)×SO(16)(τ1, τ2) and, noticing

that qq = e−4πτ2 , it has an expansion that reads

gSO(16)×SO(16)(τ2) = τ−4
2

[
−2112 + 147456 (e−4πτ2)

1
2 − 4713984 (e−4πτ2) +O((e−4πτ2)

3
2 ; 0)

]
.

So, one can easily recognise one of the features of misaligned supersymmetry, i.e. an

exponentially-growing oscillation in the net number of bosons minus fermions at each phys-

ical energy level. This is shown clearly in fig. 3.1. Moreover, looking at terms with different

powers of q and q in the complete partition function, one would see that some of them have

in fact negative powers of q and/or q. These correspond to unphysical tachyons and, in the

absence of a physical tachyon, they are yet another signal of misaligned supersymmetry.

0 10 20 n

−80

−40

40

80

(−1)Fn ln (gn) bosons
fermions

Figure 3.1: The net number of physical degrees of freedom for the lightest energy levels of the

heterotic SO(16)×SO(16)-theory, defined as (−1)Fngn = Nb(n)−Nf (n). Each point corresponds to

string states with mass M2
n = 4n/α′, for n = 0, 1/2, 1, . . . , 20. A positive value indicates a surplus of

bosonic states compared to the fermionic ones, and vice versa for negative values. The presence of

two misaligned sectors is clearly visible: fermions are associated to integer values of n, while bosons

are associated to half-integer values. As predicted by misaligned supersymmetry, one can observe

an exponentially-growing oscillation between the net number of bosons and fermions.

A more quantitative way to discuss the presence of misaligned supersymmetry is by

employing the formalism presented in subsection 3.3.1. Looking at the partition function

of the heterotic SO(16)×SO(16)-theory in eq. (3.3.23) and comparing it with the general

partition function in eq. (3.3.3), a convenient basis for the right- and left-moving characters

χi and χj is

χi =
1

η8


O8

V8
S8
C8

 =


q−

1
2 [1 + 36q +O(q2; 0)]

8 + 128q +O(q2; 0)

8 + 128q +O(q2; 0)

8 + 128q +O(q2; 0)

 , (3.3.26)
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χj =
1

η8


O16O16 + S16S16

V 16C16 + C16V 16

V 16V 16 + C16C16

O16S16 + S16O16

 =


q−1[1 + 248q +O(q2; 0)]

q
1
2 [4096 + 245760q +O(q2; 0)]

256 + 36864q +O(q2; 0)

256 + 36864q +O(q2; 0)

 . (3.3.27)

This basis is chosen in such a way that the characters are eigenfunctions of T, they are

covariant under S, and they have a series expansion with positive coefficients. In this basis,

the matrix Aij is given by

Aij =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (3.3.28)

The modular transformations T and S act on the right-moving sector χi as

T j
i = diag(−1, 1, 1, 1), S j

i =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , (3.3.29)

and on the left-moving sector χj as

T
j

i = diag(1,−1, 1, 1), S
j

i =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 . (3.3.30)

Notice that the elements in the basis are ordered in such a way that the identity sector in

both the right- and the left-moving sectors resides in the first component of the characters

χi and χj .

Since S 0
i ≡ 1/2 and S

0
j ≡ 1/2, i.e. they are both non-zero, each sector aij, nn grows

with an exponential behaviour dictated by eq. (3.3.13). In particular, the heterotic string

theory has central charges c = 12 and c = 24, which means vacuum energies H0 = −1/2

and H0 = −1, and it is formulated in a 10-dimensional spacetime, with k = −4. Therefore,

the coefficients asymptotically grow as

aij, nn
n∼∞≃ 1

32 · 2
1
4

1

n
11
2

e4π[1+( 1
2
)
1
2 ]n

1
2 . (3.3.31)

In particular, the inverse Hagedorn temperature of the theory is

Ctot = 4π
[
1 +

(1
2

) 1
2
]
. (3.3.32)

One can also verify the counting of the number of states in eq. (3.3.12), as follows. The

massless level has a net degeneracy a00 = a1,0a0,1 − a2,0a3,0 − a3,0a2,0 = −2112, with the

(0, 1)-sector not being defined for n = 0, and the first excited level has a degeneracy

a1/2 1/2 = a0,1a1,0 = 147456, with the (1, 0)-, (2, 3)- and (3, 2)-sectors not being defined.

This procedure can be followed iteratively at any mass level, in principle.
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When considering the sum over all sectors entering the partition function, if misaligned

supersymmetry is present, as the oscillations in fig. 3.1 hint, then cancellations are expected

in the sector-averaged number of states. To verify that this is indeed the case for the

system under investigation, one introduces the functional forms Φij(n) associated to the

degeneracies aij, nn. These can be written as

Φij(n) =
1

8 · 2
1
4

1

n
11
2

S 0
i S

0
j e4π[1+( 1

2
)
1
2 ]n

1
2 + ϕij(n), (3.3.33)

where the functions ϕij(n) stand for all the subleading terms. Then, using the explicit form

of S-transformation matrices in eqs. (3.3.29, 3.3.30), one can check that all the leading

exponentials cancel when summing over all sectors, being

3∑
i=0

3∑
j=0

AijS 0
i S

0
j = S 0

1 S
0

0 + S 0
0 S

0
1 − S 0

3 S
0

2 − S 0
2 S

0
3 = 0. (3.3.34)

This means that the sector-averaged number of states defined in eq. (3.3.15) is determined

by the subleading terms ϕij(n) as the leading-order terms cancel out, i.e.

⟨ann⟩ =
3∑
i=0

3∑
j=0

AijΦij(n) =
3∑
i=0

3∑
j=0

Aijϕij(n). (3.3.35)

Such subleading terms can have different asymptotic behaviours in different sectors, but

their exponential growth is fixed by a coefficient Ceff which is intrinsically smaller than Ctot.

This result shows that, in the heterotic SO(16)×SO(16)-theory, misaligned supersymmetry

is present at least in its weak form, leading to a sector-averaged number of physical states

growing at a rate Ceff < Ctot.

The next step would be to check whether in fact misaligned supersymmetry is present

in its strong from, namely whether it is Ceff = 0. Proving this conjecture requires a care-

ful analysis of the subleading contributions to each sector. As explained previously, this

task cannot be performed immediately with the functional forms Φij(n), as the latter are

substantially more difficult to deal with for α > 1.

It is possible to evaluate numerically the one-loop cosmological constant and verify that

it is indeed finite, as expected. In particular, it is amounts to

Λ̃ =
1

2κ210

1

l2s
I,

with I = −(1/4π)
∫

F d2τZSO(16)×SO(16)(τ, τ)/(Im τ)2 ≃ 57.8 > 0. The fact that it is positive

can be understood in terms of the abundance of fermions at the massless level, which is

the least suppressed one in the fundamental-domain integration. This corresponds to the

one-loop correction to vanishing tree-level potential. So, the string-frame constant scalar

potential generates a term

SΛ = − 1

2κ210

∫
d10x

√
−G 1

l2s
I = − 1

2κ̂210

∫
d10x

√
−ĝ 1

l2s
g2sI e5ϕ/2.

It is also possible to notice the g2s -suppression in the one-loop term, as expected due to the

toroidal origin of the quantum correction. For recent reviews and discussions about the role

of dilaton potential terms of this kind, see e.g. refs. [5, 116–120].
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3.4 Misaligned Supersymmetry in Open Strings

This section discusses the presence of misaligned supersymmetry in open-string theories.

The usual discussion of misaligned supersymmetry focuses on closed strings and a major

role is played by the modular invariance of the torus partition function. In the following, as

a prototypical example of the emergence of the features of misaligned supersymmetry for

open strings, a particular class of models is going to be examined: these are the theories

obtained by placing an anti-Dp-brane on top of an Op-plane, in type II string theories,

which also provide examples of brane supersymmetry breaking. A key difference compared

to the closed-string analysis is the lack of modular invariance in the partition function.

3.4.1 D-Branes and Orientifolds

As a motivation for its choice as a case-study example for open-string misaligned super-

symmetry, this subsection shows that the mass levels of the perturbative spectrum of an

anti-Dp-brane sitting on top of an Op-plane in fact present an increasing oscillation in

the net number of bosons and fermions. This strongly supports the idea that misaligned

supersymmetry is underlying it, as is going to be shown later in subsection 3.4.2.

In particular, this subsection describes the effects of an orientifold projection on the

theory of Dp- and anti-Dp-branes. To start, it analyses the perturbative mass spectrum

associated to the theory with one of these branes sitting on top of an orientifold Op-plane.

A heuristic method to compute the number of the degrees of freedom at each mass level

is presented as well. Eventually, the form of the partition functions that the theories are

described by is also motivated and commented.

3.4.1.1 Orientifold-Invariant D-Brane Spectra

The starting point of the analysis is the perturbative spectrum of a Dp-brane sitting on top

of an Op-plane. As overviewed in chapter 2, in lightcone quantization, one has the NS- and

R-vacua |NS⟩ and |R±⟩, as well as the bosonic and fermionic creation operators αI−n and bI−r,

for n ∈ N and r ∈ N0 + ϕ, with ϕ = 1/2, 0 in the NS- and R-sectors, respectively; as usual,

the index I denotes all directions but the gauge-fixed ones. Along with the GSO-projection,

a requirement for states to be physical in the presence of an orientifold symmetry is that

the states be invariant under the action of an orientifold operator O, i.e. an eigenstate of

the operator PO = (1 +O)/2 with unit eigenvalue.

This analysis can be performed by studying the action of the orientifold symmetry on

the GSO-invariant states, based on an analogous discussion in ref. [33]. If the orientifold

symmetry acts on a compact space, it is not only composed of the action of worldsheet

parity ΩP , but also of a geometric Z2-action. Moreover, the orientifold breaks half of the

closed-string supersymmetry, distinguishing the RR-charge of the branes. In fact, it can be

argued that the orientifold operator acts on the NS- and R-vacua of a Dp-brane as

O|NS⟩ = e−
iπ
2 |NS⟩, (3.4.1a)

O|R⟩ = −|R⟩, (3.4.1b)

93



Chapter 3. Misaligned Supersymmetry in String Theory

and on the creation operators as

OαImO
−1 = (−1)mαIm, (3.4.2a)

ObIrO
−1 = eiπrbIr . (3.4.2b)

These relations are formally the same as those for worldsheet parity alone, when acting

on a D9-brane/O9-plane system: this can be seen as a consequence of the fact that, for

NN-directions, the calculations are effectively unchanged, whereas for DD-directions, that

are in the internal space, the opposite sign that worldsheet parity requires on the creation

operators is cancelled by the geometric Z2-action. Under these premises, it is then possible

to determine the partition function of Dp- and anti-Dp-branes sitting on an orientifold

Op-plane. This requires two further observations.

• The generic NS-state of mass α′M2 = n, with n ∈ N0, requires a total number n+ 1/2

of oscillatory excitations and, suppressing spacetime indices for brevity, it can be

written as

|NSn⟩ = αI1−n1
. . . αIk−nk

bJ1−r1 . . . b
Jl
−rl |NS⟩,

with
∑k

i=1 ni +
∑l

j=1 rj = n+ 1/2. In this way, the orientifold action reads

O|NSn⟩ = (−1)n+1|NSn⟩. (3.4.3)

• The generic R-state of mass α′M2 = n, with n ∈ N0, requires a total number of

excitations n and, again suppressing spacetime indices, it can be written as

|Rn⟩ = αI1−n1
. . . αIk−nk

bJ1−r1 . . . b
Jl
−rl |R⟩,

with
∑k

i=1 ni +
∑l

j=1 rj = n, where |R⟩ is either of the R-vacua. Therefore, for a

Dp-brane one can observe the action

O|Rn⟩ = (−1)n+1|Rn⟩. (3.4.4)

This discussion shows that the spectrum of a Dp-brane sitting on top of an orientifold

Op-plane is supersymmetric. In particular, compared to the spectrum of a Dp-brane away

from the orientifold singularity, all even-mass levels α′M2 = 2n are projected out and all

odd-mass levels α′M2 = 2n+ 1 are preserved by the symmetry.

The analysis of the spectrum of an anti-Dp-brane on top of an Op-plane is identical

except for the fact that the orientifold operator acts with the opposite sign on the R-vacuum,

which implies that the projection on the fermions is opposite. This means that the spectrum

has a pure fermion/boson alternance: in contrast with the locally-supersymmetric spectrum

of a Dp- or anti-Dp-brane at a smooth internal point, levels with mass α′M2 = 2n contain all

the fermions of the spectrum but no bosons, whereas levels with mass α′M2 = 2n+1 contain

all the bosons of the spectrum but no fermions. As shown by ref. [121], the configuration

of a single anti-Dp-brane on top of an Op-plane is stable. For multiple coincident anti-Dp-

branes, only Op+-planes give a stable theory.

Below, figs. 3.2 and 3.3 show the number of physical states for a Dp- and an anti-

Dp-brane on top of an Op-plane, respectively, which one can calculate directly from the
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Hilbert-space construction. Notice that, whilst the pattern is clear from the discussion

above, it is in the following subsections that it will be explained how to compute the exact

degeneracies at each level in an efficient way.

0 10 20 n
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(−1)Fn ln (gn)
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fermions

Figure 3.2: The number of bosonic and fermionic physical degrees of freedom for the lightest

energy levels of a Dp-brane on top of an Op-plane, defined as (−1)Fngn = Nb(n) − Nf (n). Each

point corresponds to states with mass M2
n = n/α′, with n = 0, 1, . . . , 20. Filled points correspond to

states that are invariant under the orientifold projection, whereas empty dots represent states that

would be there if the Dp-brane was at a smooth point but that are projected out by the orientifold.

The number of bosonic and fermionic states is the same at each mass level and the partition function

vanishes as required by supersymmetry.
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Figure 3.3: The number of bosonic and fermionic physical degrees of freedom for the lightest energy

levels of an anti-Dp-brane on top of an Op-plane, defined as (−1)Fngn = Nb(n)−Nf (n). Each point

corresponds to states with massM2
n = n/α′, with n = 0, 1, . . . , 20. Filled points correspond to states

that are invariant under the orientifold projection, whereas empty dots represent states that would

be there if the anti-Dp-brane was at a smooth point but that are projected out by the orientifold.

One clearly sees the presence of a misalignment.
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3.4.1.2 Number of Degrees of Freedom by Level

Given the general form of the states in the NS- and R-sectors, a combinatoric analysis allows

one to determine the number of the fermionic and bosonic degrees of freedom, Nf (m) and

Nb(m) respectively, at each level in a relatively straightforward way.

For each level α′M2 = m, one needs to account for all the possible ways in which

it is possible to excite the vacuum giving that mass and to keep in consideration all the

symmetrisation and antisymmetrisation factors that are implied by the creation operators.

A careful analysis indicates that the number of fermionic degrees of freedom in the R-sector

at the level m is expressible as

1

8
N(m) =

m∑
r=0

 ∑
λ∈P (m−r)

∑
µ∈P (r)

[
m−r∏
j=1

r∏
l=1

(
8 + n

(m−r)
j − 1

n
(m−r)
j

)(
8

n
(r)
l

)] , (3.4.5)

where P (k) denotes the set of all the partitions of the integer number k, with n
(k)
j repre-

senting the coefficients in the partition λ written as k(λ) =
∑k

j=1 jn
(k)
j . This is a formal

way to summarise the results of a counting which, if needed, can be performed explicitly at

the desired level. Due to the boson-fermion alternance, the net degeneracy at level m is

(−1)Fmgm = Nb(m)−Nf (m) = (−1)m+1N(m). (3.4.6)

From an explicit analysis of the formulae above up to the fourth mass level, one can observe

that the spectrum gives the degeneracies g0 = 8, g1 = 128, g2 = 1152 and g3 = 7680. So, as

expected, one finds oscillations in the net numbers of bosons and fermions that increase as

the mass level of interest grows. This is a necessary condition for misaligned supersymmetry.

A final comment is in order. This analysis of the Hilbert space generated by the fermionic

and bosonic creation and annihilation operators acting on the NS- and R-vacua shows that

the net number of degrees of freedom at a given mass level is actually the number of the

degrees of freedom that are present. In other words, each level has just either bosons or

fermions. The particle content at the massless level is shown in table 3.2.

bosons fermions

spinors ψω

Table 3.2: Massless particle content for an anti-Dp-brane on top of an Op-plane. No superpartners

appear, and the net state degeneracy is Nb(0) − Nf (0) = 0 − 8 = −8. The Nf (0) = 8 degrees of

freedom represent four 4-dimensional Weyl spinors: comparing with the flat-spacetime U(1)-theory

with N4 = 4 supersymmetries, these are the would-be gaugino and the three would-be modulini.

3.4.1.3 Partition Functions

One can make use of the results in subsubsection 3.4.1.1 to determine the partition function

associated to Dp- and anti-Dp-branes sitting on top of an orientifold Op-plane. For the

open strings associated to a Dp-brane, the partition function is defined as

M(τ2; p) = trHp

[
1

4
(1 +O)(1 + (−1)F ) q[iτ2]

1
2
L̃0

]
.
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In all the basic calculations of partition functions, the traces over the Fock space eventually

involve the product ⟨n1, n2, . . . |n1, n2, . . .⟩, multiplied by terms of the form q
∑

j jnj+h, with∑
j jnj = n− h schematically counting the appropriate number of excitations provided for

each level-n mass, with vacuum energies h = −1/2 and h = 0 in the NS- and R-sectors,

respectively. If this product contains the orientifold operator too, following the eigenvalue

eqs. (3.4.3, 3.4.4), it gives ⟨n1, n2, . . . |O|n1, n2, . . .⟩ = −(−1)
∑

j jnj−h, which effectively

corresponds to shifting the modular parameter τ = iτ2/2 to τ = iτ2/2 + 1/2 and an overall

sign change. Therefore, the full partition function reads [121,122]

M(τ2; p) =
1

2

1

τ
1
2
(p+1)

2

[
V8(iτ2/2)− S8(iτ2/2)

η8(iτ2/2)
− V8(iτ2/2 + 1/2)− S8(iτ2/2 + 1/2)

η8(iτ2/2 + 1/2)

]
. (3.4.7)

Again, one can see that the spectrum is supersymmetric due to the Jacobi identity V8 = S8.

The analysis of the spectrum of an anti-Dp-brane on top of an Op-plane is identical

except for the fact that the orientifold operator acts with an opposite sign on the R-vacuum.

Therefore, leaving intact the NS-sector but changing sign in the R-sector, one finds the

partition function

M(τ2; p) =
1

2

1

τ
1
2
(p+1)

2

[
V8(iτ2/2)− S8(iτ2/2)

η8(iτ2/2)
− V8(iτ2/2 + 1/2) + S8(iτ2/2 + 1/2)

η8(iτ2/2 + 1/2)

]
. (3.4.8)

In this case, supersymmetry is broken by the anti-Dp-brane on the orientifold plane and

indeed there is always a non-zero contribution to the partition function. These calculations

represent an explicit derivation of well-known results that however one can infer quite

directly from the analysis of the perturbative string state spectrum. In fact, this will be

helpful in both making contact and interpreting such results in subsection 3.4.2 and in

discussing more formally the emergence of misaligned supersymmetry in subsection 3.4.3.

3.4.2 Anti-D-Branes on Top of O-Planes

The one-loop amplitude of oriented closed strings is associated to a torus, i.e. the sole closed

orientable Riemann surface of vanishing Euler character, having h = 1 handles. For open

strings, one finds the amplitude associated to the annulus, i.e. another orientable surface,

with b = 2 boundaries, of vanishing Euler character. With unoriented strings, the situation

is more involved. There are indeed two additional Riemann surfaces, with the corresponding

amplitude, of vanishing Euler character: the Klein bottle, with c = 2 crosscaps, and the

Möbius strip, with b = 1 boundary and c = 1 crosscap. For instance, the partition function

of a Dp-brane or anti-Dp-brane in flat space is encoded in the annulus amplitude, while

that of a Dp-brane or anti-Dp-brane on top of an Op-plane also involves the Möbius-strip

amplitude. In this subsection, the first of these setups is briefly reviewed and then the

second one is discussed in detail, making contact with subsections 2.1.3 and 3.4.1.

In type IIB theories, the one-loop partition function of a Dp-brane in flat space is encoded

in the annulus amplitude 2Ap(t), where the overall factor is instrumental for a definition of

Ap(t) that is useful to discuss orientifolds later on. This annulus amplitude reads [121–123]

Ap(t) =
1

2

1

(2t)
p+1
2

1

η8
(
Vp−1O9−p +Op−1V9−p − Sp−1S9−p − Cp−1C9−p

)
[it],

97



Chapter 3. Misaligned Supersymmetry in String Theory

Here and in the following, in squared brackets is indicated the argument of the Dedekind

η- and Jacobi ϑ-functions and of the so(2n)-characters. It should be stressed that, for

both the annulus and the Möbius strip, here the amplitude parameter t is normalised as in

ref. [33], which is half the parameter τ2 used in ref. [39] and in subsections 2.1.3 and 3.4.1,

i.e. t = τ2/2. A decomposition of the characters simplifies the function Ap(t) to

Ap(t) =
1

2

1

(2t)
p+1
2

(V8 − S8)

η8
[it]. (3.4.9)

The one-loop amplitude is obtained by integrating over the whole spectrum

Ap =

∫ ∞

0

dt

2t
(2t)−

p+1
2

(V8 − S8)

η8
[it],

This partition function and the associated amplitude are vanishing since V8 = S8. This is

a manifestation of the well-known fact that a Dp-brane preserves supersymmetry and thus

the net number of bosons minus fermions is vanishing at each energy level. In flat space,

there is no real distinction between a Dp-brane and an anti-Dp-brane, indeed the partition

function is the same. Things are different after the inclusion of Op-planes.

When an Op±-plane is introduced, the 2-dimensional surface of interest is not just the

annulus anymore, but also the Möbius strip. Notice that for an odd number of branes, only

Op−-planes are allowed, but the discussion here is being kept as generic as possible. The

partition function of a Dp-brane on a Op±-plane is [121,122]

Mp±(t) = ±1

2

1

(2t)
p+1
2

(V̂8 − Ŝ8)

η̂8
[it]. (3.4.10)

As is customary, the Möbius-strip theory is formulated in terms of hatted characters. Given

the term q[it] = e−2πt, these are defined to be manifestly real as

χ̂i(it) = e−iπHiχi

(
it+

1

2

)
= q[it]Hi

∞∑
n=0

(−1)nai, nq[it]
n.

Indeed, the Möbius strip has τ = it+ 1/2, with a non-vanishing constant real part. On the

one hand, this real part is crucial for misaligned supersymmetry, since it introduces relative

signs for the number of states at each mass level. On the other hand, as a consequence of the

fixed real part of the argument, χ(it+1/2) acquires a phase, eiπH , which can be conveniently

eliminated by defining the manifestly real quantity χ̂(it). Anyway, one can see that for the

combinations V8/η
8 and S8/η

8, the phase is trivial, i.e. eiπH = 1, therefore in the following

the hatted notation is not going to be used, not playing a role in the mathematical analysis

of the function. Similarly to the annulus partition function in eq. (3.4.9), the Möbius-strip

partition function in eq. (3.4.10) vanishes due to supersymmetry, since V̂8 = Ŝ8.

When considering an anti-Dp-brane, the orientifold-projection operator in the partition

function does not alter the Neveu-Schwarz sector but it gives the opposite sign in the

Ramond sector, with respect to the Dp-brane. This is similar to what happens in the

heterotic SO(16)×SO(16)-theory, discussed in subsection 3.3.2, where the orbifold projection
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introduces additional minus signs into a supersymmetric (and hence vanishing) partition

function. So, the partition function of an anti-Dp-brane on an Op±-plane is

Mp±(t) = ±1

2

1

(2t)
p+1
2

(V8 + S8)

η8

[
it+

1

2

]
. (3.4.11)

Crucially, due to the fermionic sign flip, this is not vanishing anymore, evidencing the

breaking of supersymmetry. The associated amplitude is

Mp± = ±
∫ ∞

0

dt

2t
(2t)−

p+1
2

(V8 + S8)

η8

[
it+

1

2

]
.

It is worth to observe that the interpretation of these results follows straightforwardly

from the premises of subsection 3.4.1.3. In fact, the amplitudes associated to the annulus

and the Möbius strip are exactly the terms that, when combined, appear in the explicit

calculation of the partition functions for Dp- and anti-Dp-branes in the presence of an

orientifold symmetry. One can easily verify that for a Dp- and an anti-Dp-brane on top of

an Op−-plane, the partition functions in eqs. (3.4.7, 3.4.8), respectively, can be written as

M(τ2; p) = Ap(τ2/2) +Mp−(τ2/2), (3.4.12)

M(τ2; p) = Ap(τ2/2) +Mp−(τ2/2). (3.4.13)

These simple observations will prove helpful in the following in order to interpret and

manipulate the Laurent expansions of the partition functions. In particular, the Möbius-

strip amplitude can be used to count the net physical degeneracies of the theory, since the

annulus amplitude is identically zero. It is in this sense that the so(8)-characters V8 and

S8 count both bosons and fermions, depending on the situation. As eqs. (3.4.12, 3.4.13)

show, this is because the actual boson-fermion counting should include the interplay of the

annulus and Möbius-strip contributions when discussing bosons and fermions separately.

Now, a first indication of the presence of misaligned supersymmetry in the anti-Dp-

brane/Op-plane system can be obtained pretty easily by expanding the integrand in powers

of q. One just needs the p-independent factor

M(it) = −1

2

V8 + S8
η8

[
it+

1

2

]
. (3.4.14)

In fact, in terms of the variable q[it] = e−2πt, a simple Laurent expansion reveals the

lightest-level degeneracies as the q-coefficients appearing in the series

−1

2

(V8 + S8)

η8

[
it+

1

2

]
= −8 + 128 (e−2πt)− 1152 (e−2πt)2 + 7680 (e−2πt)3 +O((e−2πt)4; 0).

One notices an increasing oscillation in the number of bosons and fermions at each energy

levels, as shown in fig. 3.3, and the degeneracies correspond to the ones found in eq. (3.4.6).

As anticipated, the alternating signs giving rise to the oscillation are precisely due to the

fixed real part in the argument of the characters. Indeed one can check that setting it to

zero would result in the same expansion in powers of q[it], but without any sign flip, i.e.

1

2

(V8 + S8)

η8
[it] = 8 + 128 (e−2πt) + 1152 (e−2πt)2 + 7680 (e−2πt)3 +O((e−2πt)4; 0).
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These expansions are meaningful for the Op−-plane case. The Op+-plane case has just an

overall sign difference, but one would also need to include the Chan-Paton degeneracies

(which would also modify the Op−-plane case, of course).

As done for closed strings and the example of the heterotic SO×SO(16)-theory, one can

make use of the formalism of subsection 3.3.1 to perform a quantitative study of the asymp-

totic growths of the state degeneracies and show the presence of misaligned supersymmetry.

3.4.3 Asymptotic Number of States

In the general discussion about the counting of states and misaligned supersymmetry for

closed strings in subsection 3.3.1, and in the example in subsection 3.3.2, a major role is

played by modular properties. Indeed, the determination of the asymptotic degeneracies of

the characters χi and χj in eq. (3.3.8) is based on the fact that they are a representation

of the modular group. This is then used to obtain the physical degeneracies in eq. (3.3.13)

to be combined by means of the matrix Aij . In addition, the very proof that misaligned

supersymmetry is present in its weak form, i.e. eq. (3.3.17), relies on the particular structure

of the matrix Aij , which is constrained by the partition-function modular invariance. In

the heterotic SO(16)×SO(16)-theory, this can be seen in eqs. (3.3.28, 3.3.34).

Open strings are not necessarily PSL2(Z)-covariant, but this is not necessarily a prob-

lem for computing their asymptotic net degeneracies and for discussing the presence of

misaligned supersymmetry, as long as the theory can be formulated in terms of a basis of

characters that is closed under the modular group and that has non-negative expansion co-

efficients ai, n. In fact, this is enough to determine the asymptotic net degeneracies as in eq.

(3.3.8). In a given theory, it is then possible to check explicitly whether the sector-averaged

degeneracies cancel out. This is discussed below for the anti-Dp-brane/Op-plane theory.

For the anti-Dp-brane/Op-plane system, it is possible to check that the partition function

M(τ) = −(1/2)(V8 + S8)/η
8[τ + 1/2] does not transform covariantly under modular S-

transformations. On the other hand, the function A(τ) = (1/2)(V8−S8)/η8[τ ] is closed and

in fact it is a modular form of weight k = −4. This has implications on the basis of the

characters that one can choose in order to study the presence of misaligned supersymmetry,

since a direct generalisation of the closed-string-like analysis of the theory of an anti-Dp-

brane sitting on an Op-plane is not feasible. In fact, a simple observation allows one to

describe the degeneracies of the function M(τ) in terms of modular forms. Indeed, the

only difference generated by the shift τ → τ + 1/2 is in the transformation q[τ ] = e2πiτ →
q[τ + 1/2] = −q[τ ], which in a Laurent series of the form

M(τ) =
∞∑
n=0

anq
n[τ ]

just reflects in the change

M̃(τ) =M(τ + 1/2) =

∞∑
n=0

(−1)nanq
n[τ ] =

∞∑
n=0

ãnq
n[τ ].

For the function M̃(τ) = −(1/2)(V8 + S8)/η
8[τ + 1] = −(1/2)(V8 + S8)/η

8[τ ], one can

simply notice that a closed basis of characters involving V8/η
8[τ ] and S8/η

8[τ ] is in fact
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known. Indeed one can take the basis in eq. (3.3.26), also used for the right-moving sector

of the SO(16)×SO(16)-theory, with the modular T- and S-transformations acting as in eqs.

(3.3.29). The basis elements χ1 = V8/η
8 =

∑∞
n=0 a1,nq

n and χ2 = S8/η
8 =

∑∞
n=0 a2,nq

n are

coupled to the identity sector i = 0 via the element S 0
i = 1/2 and their leading exponential

contribution to the asymptotic number of states is

a1,n
n∼∞≃ 1

2 · 2
11
4

1

n
11
4

e4π(
1
2
)
1
2 n

1
2 ,

a2,n
n∼∞≃ 1

2 · 2
11
4

1

n
11
4

e4π(
1
2
)
1
2 n

1
2 ,

where use has been made of the general result of eq. (3.3.8), with H0 = −1/2 and k = −4.

In particular, the inverse Hagedorn temperature can be read off to be

Ctot = 4π
(1
2

) 1
2
. (3.4.15)

Although M(τ) itself is not a modular form, its close relationship with the modular form

A(τ) allows one to find its asymptotic coefficients. As a matter of fact, the coefficients of

M̃(τ) are the opposite of those of χ1(τ) = χ2(τ), i.e. ãn = −a1,n = −a2,n, and related to

those of M(τ) as ãn = (−1)nan, so the coefficients an have an asymptotic expansion

an
n∼∞≃ (−1)n+1

2 · 2
11
4

1

n
11
4

e4π(
1
2
)
1
2 n

1
2 . (3.4.16)

Trying to mimic the formalism adopted for closed strings, one can write

M(it) = χb[it]− χf [it],

where, for q[it] = e−2πt, the bosonic and fermionic contributions have been arranged into

the two contributions

χb[it] =
1

2

(
V8
η8

[it]− V8
η8

[
it+

1

2

])
= 128 (e−2πt) + 7680 (e−2πt)3 +O((e−2πt)5; 0),

χf [it] =
1

2

(
S8
η8

[it] +
S8
η8

[
it+

1

2

])
= 8 + 1152 (e−2πt)2 +O((e−2πt)4; 0).

It is then possible to define two envelope functions, for the bosonic and fermionic sectors

separately, i.e.

Φb,f (n) =
(−1)2sb,f

2 · 2
11
4

1

n
11
4

e4π(
1
2
)
1
2 n

1
2 + ϕb,f (n),

where the sign is obviously given by (−1)2sb = 1 and (−1)2sf = −1 and ϕb,f (n) represents

all subleading contributions. This is simply a formal way to be able to express the idea that

the leading exponentials in Φb,f (n) cancel out when summing over all sectors. Indeed it is

possible to write the sector-averaged net degeneracies as

⟨an⟩ = Φb(n)− Φf (n) = ϕb(n)− ϕf (n). (3.4.17)

This suggests that misaligned supersymmetry is present for the anti-Dp-brane on top of an

Op-plane in type II string theory and that the effective inverse Hagedorn temperature Ceff

of this theory is such that

Ceff < Ctot. (3.4.18)
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It should be noted that this whole discussion essentially provides a heuristic argument

for a deeper idea, i.e. the fact that the anti-Dp-brane/Op-brane theory has a vanishing

effective inverse Hagedorn temperature Ceff = 0, once all subleading corrections are taken

into account. Of course, the point is that the coefficients of the theory of an anti-Dp-

brane on top of an Op-plane match precisely with those of a Dp-brane, except for the fact

that half of them are zero. In an interpolation of the Dp-brane bosonic and fermionic

degeneracies, as figs. 3.2 and 3.3 suggest, one expects to find an all-order cancellations

due to supersymmetry, therefore the same conclusion is to be expected for the envelope

functions of the anti-Dp-brane/Op-brane theory.

It is worth reminding that up to this point, similarly to the case of closed strings, the

cancellation of the envelope functions for open strings is not immediately related to actual

physical cancellations, but rather it should serve as a tool to visualise how the theory may be

capable of maintaining finiteness. In section 3.6, it is going to be shown that cancellations

do indeed occur also at subleading orders, in a variety of models including an anti-Dp-brane

on top of an Op-plane and the heterotic SO(16)×SO(16)-theory as well. In particular, it

will be shown fairly generically that the condition Ceff = 0 holds true in the presence of

misaligned supersymmetry. The role of such cancellations in physical observables is then

going to be discussed in section 3.7.

3.5 HRR-Expansions Beyond Leading Order

In sections 3.3 and 3.4, misaligned supersymmetry has been discussed just by looking at

the leading exponentials in the asymptotic expansion of the net string-state degeneracies of

a given model. This is enough to conclude that there exists a notion of an effective inverse

Hagedorn temperature that is smaller than the one characterising the individual sectors of

the theory, i.e. Ceff < Ctot. A natural further step is the discussion of subleading orders

and the verification of whether the conjecture Ceff = 0 is realised.

As explained in subsection 3.3.1, the formalism of the functional forms Φij(n) is not

well-suited when going beyond leading order in the HRR-expansion for the sector-averaging

procedure of the state degeneracies aij,nn. The core of the problem is that, for subleading

orders α > 1, it is hard to deal with the terms Q(α;n) ji appearing in the general term of eq.

(3.3.4). A general prescription for analysing an arbitrary order in α is indeed complicated to

implement practically due to the intricacies in the definition of the function Q(α;n) ji . Also,

to extend the variable n beyond its original domain, i.e. the key part of sector-averaging,

such functions become typically complex, while any function Φij(n) should be real. This is

of course a problem of definition and not any intrinsic issue of the theory. State degeneracies

are real and the envelope functions are just visualising tools to interpret the spectrum of

the theory. Quite simply, one just needs to find a general way to define these envelope

functions at all orders and such that it makes the calculations manageable.

It turns out that, for a specific class of Dedekind η-quotients, a simple HRR-formula can

be derived for the Laurent coefficients at all orders, as shown by ref. [124]. One can then

use this knowledge to determine the state degeneracies of a given string model and to also

define envelope functions at all orders. Such a class of functions is going to be the focus of
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the attention just because it happens to be associated with a simple HRR-series, and it is

sufficiently general that all the prototypical models of interest happen to be amenable to

an analysis via this simplified expansion. There is no deeper meaning in this choice.

The mathematical results are reviewed in subsection 3.5.1 and then, in subsections 3.5.2

and 3.5.3, the partition functions of the heterotic SO(16)×SO(16)-theory and of the anti-

Dp-brane/Op-plane theory, respectively, are recast in terms that are amenable for such

an analysis and further discussed. This framework is going to be sufficient to formulate

a general procedure to study cancellations at all HRR-orders in the envelope functions in

section 3.6 and also in the one-loop cosmological constant in section 3.7.

3.5.1 Rademacher Series for η-quotients

Let τ ∈ H be a variable defined in the complex upper-half plane, with the squared nome

being q = e2πiτ . Let δ = {δm ∈ Z}∞m=1 be a sequence of integers such that only a finite

number of them is non-zero and let Z : H → C be a function of the variable τ that can be

written as

Z(τ) =

∞∏
m=1

[
η(mτ)

]δm . (3.5.1)

This is a Dedekind η-quotient and its properties are entirely encoded in the sequence δ.

This function can be expressed in a Laurent series in terms of the squared nome as

Z(τ) = q−n0

∞∑
n=0

anq
n, (3.5.2)

where an are the coefficients to be determined and the constant n0 can be written as

n0 = − 1

24

∞∑
m=1

mδm. (3.5.3)

In order to express the coefficients an in a general form just based on the information

contained in the sequence δ, a few more definitions are in order.

• Let the constant c1 and the functions c2 = c2(α), c3 = c3(α) be defined as

c1 = −1

2

∞∑
m=1

δm, (3.5.4)

c2(α) =

∞∏
m=1

[
gcd(m,α)

m

] δm
2

, (3.5.5)

c3(α) = −
∞∑
m=1

δm
[gcd(m,α)]2

m
. (3.5.6)

Under the full modular group, the function Z = Z(τ) does not necessarily transform

covariantly. Indeed, it is a covariant form of weight k = −c1 just under the congruence
PSL2(Z)-subgroup

Γ0(n) =

{(
a b

c d

)
∈ PSL2(Z) : c = 0modn

}
,
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where n = lcm {m ∈ N : δm ̸= 0}. Although the S-transformation is not necessarily

part of Γ0(n), however, the Dedekind quotient Z(τ) =
∏
m[η(mτ)]

δm still transforms

in such a way that −c1 may be loosely interpreted as a weight, as can be verified by

noticing the transformation rule Z(−1/τ) = (−iτ)−c1(
∏
mm

−δm/2)
∏
m[η(τ/m)]δm .

• Then, given the function

φ(β, α) = e
−iπ

∑∞
m=1 δm s

(
mβ

gcd (m,α)
, α
gcd (m,α)

)
,

where s(β, α) represents the Dedekind sum

s(β, α) =
α−1∑
n=1

n

α

(
βn

α
−
⌊
βn

α

⌋
− 1

2

)
,

let the function Pα = Pα(n) be

Pα(n) =
∑

0≤β<α,
gcd (β,α)=1

e−2πin β
αφ(β, α). (3.5.7)

In the following, these functions Pα = Pα(n) are indicated as Kloosterman-like sums.

These can be verified to be real for all values of α ∈ Γ and n ∈ N0.

• To conclude, let the function G = G(α) be

G(α) = min
m∈N: δm ̸=0

{
[gcd (m,α)]2

m

}
− c3(α)

24
. (3.5.8)

This function essentially controls the number of Bessel functions appearing in the final

HRR-expansion: if it is non-negative, there is just one Bessel function appearing in

the HRR-expansion.

In this setup, the main result of ref. [124] is the following theorem.

Theorem (Sussman). If the constant c1 is positive the function G = G(α) is non-

negative, i.e. if c1 > 0 and G(α) ≥ 0, then, for an arbitrary integer n > n0, the coefficients

an in the series expansion of the function Z = Z(τ) in eq. (3.5.2) can be written as

an =
2π

[24(n− n0)]
c1+1

2

∑
α∈Γ

c2(α) [c3(α)]
c1+1

2
Pα(n)

α
Ic1+1

[(
2π2

3α2
c3(α)(n− n0)

)1
2
]
, (3.5.9)

where Γ is the set Γ = {α ∈ N : c3(α) > 0} and Iν = Iν(z) represents the modified Bessel

function of the first kind.

Although the result in eq. (3.5.9) is a consequence of the HRR-expansion, for practical

reasons, in what follows it will also be indicated as a ‘Sussman HRR-expansion’. Compared

to the general HRR-formula in eq. (3.3.4), one can see that in the case of eq. (3.5.9)

there is no mixing between different sectors and that all contributions are in the form of
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the modified Bessel functions of the first kind. Moreover, the Kloosterman-like sums are

expressed in an essentially simpler form.

This formula allows one to have control over each of the various contributions, i.e. the

leading and all of the subleading terms, to a given state degeneracy an. Because of the

asymptotic expansion Iν(x)
x∼∞≃ ex/(2πx)

1
2 , each descreasing value c3(α)/α

2, for α ∈ Γ,

represents a successively subleading exponential correction to the coefficient an. If α0 is the

integer maximising c3(α)/α
2, defining c0 = c3(α0)/α

2
0, the asymptotic expression of an is

an
n∼∞≃ 1

8
1
2

1

(n− n0)
2c1+3

4

[
2c0
3

] 2c1+1
4

c2(α0)Pα0(n)

[
α0

4

]c1
e

[
2π2c0

3
(n−n0)

] 1
2

. (3.5.10)

3.5.1.1 Properties of the Function Pα(n)

The series coefficients an in eq. (3.5.9) involve the n- and α-dependent functions Pα(n), de-

fined in eq. (3.5.7), that are sums over phases. Being invariant under the shift n→ n+mα

for any m ∈ Z, namely Pα(n) = Pα(n+mα), these terms Pα(n) can take only up to α dif-

ferent values, at a fixed order α. These values can be denoted as Pα(β), with β = 1, . . . , α.

An important property for the forthcoming discussion is that specific sums of such terms

Pα(β) are vanishing. This is a consequence of the following lemma.

Lemma. Given the natural numbers m,α, n ∈ N, and defining qα(m) = gcd(α,m), if

α > 1 and if ∄ p ∈ N : m = pα, i.e. if m is not a multiple of α, then the identity holds

α/qα(m)−1∑
β=0

Pα(n+mβ) = 0. (3.5.11)

The proof of this result is straightforward. Indeed one can easily observe the validity of

the series of identities

α/qα(m)−1∑
β=0

Pα(n+mβ) =

α/qα(m)−1∑
β=0

∑
0≤γ<α,

gcd (γ,α)=1

e−2πi(n+mβ) γ
αφ(γ, α)

=
∑

0≤γ<α,
gcd (γ,α)=1

e−2πin γ
αφ(γ, α)

α/qα(m)−1∑
β=0

e−2πimβ γ
α

=
∑

0≤γ<α,
gcd (γ,α)=1

e−2πin γ
αφ(γ, α)

[
1− e−2πimγ/qα(m)

1− e−2πim γ
α

]
= 0,

where use has been made of the geometric sum
∑s−1

n=0 r
n = (1−rs)/(1−r), with r = e−2πim γ

α

and s = α/qα(m), and of the fact that α/qα(m),mγ/qα(m) ∈ N. An important subcase of

this result is for n = 0 and m = 1, which gives

α−1∑
β=0

Pα(β) = 0. (3.5.12)
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This is a key result to prove the cancellations among the various sectors beyond leading

order. A similar result also applies for the functions Q(α;n) ji in eq. (3.3.5a), but working

with Dedekind η-quotients amenable to the Sussman HRR-expansion of eq. (3.5.9) proves

to be an easier and yet sufficiently general task. Hence, the interest in this formulation.

3.5.2 Heterotic SO(16)×SO(16)-Theory

in Terms of Dedekind η-quotients

This subsection shows in detail how to recast the partition function of the heterotic SO(16)×
SO(16)-theory in a form that is suitable for determining the net state degeneracies in terms

of the results in eqs. (3.5.9, 3.5.10). To this purpose, one has to employ standard identities

for modular functions in order to tackle some subtleties concerning the applicability of the

Sussman HRR-expansion, as is going to be explained.

To analyse the partition function of the heterotic SO(16)×SO(16)-theory, it is convenient

to ignore the factor coming from spacetime momentum integration. So, defining the function

Z(τ, τ) = (Im τ)4 ZSO(16)×SO(16)(τ, τ), starting from the partition function in eq. (3.3.23)

and with the help of eqs. (3.3.24, 3.3.25), in terms of Dedekind η- and Jacobi ϑ-functions

one can write

Z(τ, τ) =
1

2

1

η12η24
[
ϑ42ϑ

8
3ϑ

8
4 − ϑ43ϑ

8
2ϑ

8
4 + ϑ44ϑ

8
2ϑ

8
3

]
[τ, τ ]. (3.5.13)

It is convenient to separate the three terms in the sum and to factorise the contributions

from right- and left-movers, which will be denoted as Rσ(τ) and Lσ(τ), respectively, with

σ = 1, 2, 3, by writing the partition function as

Z(τ, τ) =

3∑
σ=1

Zσ(τ, τ) =
1

2

3∑
σ=1

Rσ(τ)Lσ(τ). (3.5.14)

Each Jacobi ϑ-function can be expressed in terms of a combination of Dedekind η-functions

with different powers and arguments, as reviewed in appendix A.1.1. Below, taking advan-

tage of this, the three terms in eq. (3.5.14) are recast in terms of Dedekind η-quotients

amenable to the expansion of eq. (3.5.9) and analysed separately. It should be highlighted

that the individual terms Zσ(τ, τ) are not modular-invariant, but their combination is.

In each term, with q[τ ] = e2πiτ , the partition function takes the form

Zσ(τ, τ) =
1

2
Rσ(τ)Lσ(τ) =

1

2

∞∑
k=0

∞∑
l=0

aRσ
dσk

aLσ
dσl

q[τ ]dσ(k−n
Rσ
0 )q[τ ]dσ(l−n

Lσ
0 ),

in a self-explaining notation, where the possibility of fractional arguments has been taken

into account (see eqs. (3.5.27)), with either dσ = 1 or dσ = 1/2. Level-matched physical

states can be seen to correspond to levels such that k − nRσ
0 = l − nLσ

0 . To deal with an

expansion with only integer indices, one can perform a rescaling τ ′ = τ/dσ, which gives

Z ′
σ(τ, τ) = Zσ

( τ
dσ
,
τ

dσ

)
=

1

2

∞∑
k=0

∞∑
l=0

aRσ
dσk

aLσ
dσl

q[τ ]k−n
Rσ
0 q[τ ]l−n

Lσ
0

=
1

2

∞∑
k=0

∞∑
l=0

a
R′

σ
k a

L′
σ

l q[τ ]k−n
Rσ
0 q[τ ]l−n

Lσ
0 .
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This means that, for n ∈ dσN0, the level-matched degeneracies read

aσnn =
1

2
aRσ

n+dσn
Rσ
0

aLσ

n+dσn
Lσ
0

=
1

2
a
R′

σ

n/dσ+n
Rσ
0

a
L′
σ

n/dσ+n
Lσ
0

.

This sets the notation for situations where, in order to make use of eq. (3.5.9) for functions

with fractional expansion indices, one performs a variable rescaling, making Z ′ a suitable

function for the Sussman HRR-expansion.

• In the first product, the factors are

R1(τ) =
ϑ42(τ)

η12(τ)
=

16 η8(2τ)

η16(τ)
, (3.5.15a)

L1(τ) =
ϑ83(τ)ϑ

8
4(τ)

η24(τ)
=

η8(τ)

η16(2τ)
. (3.5.15b)

In both cases, one finds c1 = 4 and G(α) ≥ 0, therefore the expansion in eq. (3.5.9)

applies and provides complete knowledge over all of the subleading contributions. In

particular, for R1 one finds n0 = 0, c2(2ω + 1) = 1/16 and c3(2ω + 1) = 12, with

c3(2ω + 2) = 0, while for L1 one finds n0 = 1, c2(2ω + 2) = 1 and c3(2ω + 2) = 24,

with c3(2ω + 1) = 0. The variable ω is a number ω ∈ N0 used to emphasise whether

α is even or odd, with α = 2ω + 2 or α = 2ω + 1.

Further, one can easily evaluate the asymptotic forms, thanks to eq. (3.5.10). For R1,

one has c0 = 12 for α0 = 1, with c2(1) = 1/16 and P1(n) = 1 (with an overall factor

16), while for L1 one finds c0 = 6 for α0 = 2, with c2(2) = 1 and P2(n) = (−1)n, so

aR1
n

n∼∞≃ 1

4 · 8
1
4

1

n
11
4

e(8π
2n)

1
2 , (3.5.16a)

aL1
n

n∼∞≃ 1

2

(−1)n

(n− 1)
11
4

e(4π
2(n−1))

1
2 . (3.5.16b)

Therefore, the asymptotic behaviour of the coefficients of the first term in the partition

function follows the pattern

a1nn =
1

2
aR1
n aL1

n+1

n∼∞≃ 1

16 · 8
1
4

(−1)n+1

n
11
2

e[(8π
2)

1
2+(4π2)

1
2 ]n

1
2 . (3.5.17)

• In the second product, the two factors are

R2(τ) = − ϑ43(τ)

η12(τ)
= − η8(τ)

η8(τ/2)η8(2τ)
, (3.5.18a)

L2(τ) =
ϑ82(τ)ϑ

8
4(τ)

η24(τ)
=

256 η16(τ/2)η16(2τ)

η40(τ)
. (3.5.18b)

Clearly, one cannot employ directly eq. (3.5.9) for these expressions because a frac-

tional argument appears. Since it just amounts to an index relabelling, however, one

can simply just consider the argument τ ′ = 2τ , focussing on the functions

R′
2(τ) = R2(2τ) = − η8(2τ)

η8(τ)η8(4τ)
, (3.5.19a)
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L′
2(τ) = L2(2τ) =

256 η16(τ)η16(4τ)

η40(2τ)
. (3.5.19b)

While c1 = 4 and G(α) ≥ 0 for the factor −R′
2(τ), the factor L′

2(τ) does not have a

non-negative function G(α). Nevertheless, it turns out that a further shift τ̃ = τ+1/2,

which amounts to flipping half of the signs in the series expansion (something one can

keep track of), even this term happens to have a positive semidefinite function G(α),

along with c1 = 4. Appendix A.1.1 reviews the shift τ → τ + 1/2 in the Dedekind

η-function. So one has to consider the function

L̃′
2(τ) = L′

2(τ + 1/2) =
256 η8(2τ)

η16(τ)
. (3.5.20)

Now these functions are suitable for the expansion in eq. (3.5.9) and it is possible to

obtain again a complete understanding of all of the subleading contributions. For −R′
2

one finds n0 = 1, c2(2ω+1) = 16, c2(4ω+4) = 1, c3(2ω+1) = 6 and c3(4ω+4) = 24,

with c3(4ω+2) = 0, while for L̃′
2 one finds n0 = 0, c2(2ω+1) = 1/16 and c3(2ω+1) =

12, with c3(2ω + 2) = 0.

One can easily evaluate the asymptotic forms. For −R′
2, one has c0 = 6 for α0 = 1,

with c2(1) = 16 and P1(n) = 1, while for L′
2 (the result for L′

2(τ) can be obtained by

studying L′
2(τ+1/2) and inserting a factor (−1)n in the coefficients) one finds c0 = 12

for α0 = 1, c2(1) = 1/16 and P1(n) = (−1)n (with an overall factor 256), therefore

a
R′

2
n

n∼∞≃ −1

2

1

(n− 1)
11
4

e(4π
2(n−1))

1
2 , (3.5.21a)

a
L′
2

n
n∼∞≃ 2 · 2

1
2

2
1
4

(−1)n

n
11
4

e(8π
2n)

1
2 . (3.5.21b)

The coefficients appearing in the second term of the partition function are actually

aR2

n+1/2 = a
R′

2
2n+1 and aL2

n = a
L′
2

2n , and they provide the asymptotic behaviour

a2nn =
1

2
aR2

n+ 1
2

aL2
n

n∼∞≃ 1

64 · 2
1
4

(−1)2n+1

n
11
2

e[(16π
2)

1
2+(8π2)

1
2 ]n

1
2 . (3.5.22)

• In the third product, the factors are

R3(τ) =
ϑ44(τ)

η12(τ)
=
η8(τ/2)

η16(τ)
, (3.5.23a)

L3(τ) =
ϑ82(τ)ϑ

8
3(τ)

η24(τ)
=

256 η8(τ)

η16(τ/2)
. (3.5.23b)

Again, in order to employ the expansion of eq. (3.5.9), one can consider the functions

R′
3(τ) = R3(2τ) =

η8(τ)

η16(2τ)
, (3.5.24a)

L′
3(τ) = L3(2τ) =

256 η8(2τ)

η16(τ)
. (3.5.24b)
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These have c1 = 4 and G(α) ≥ 0, as required. Once more, eq. (3.5.9) provides the

complete information on the leading and subleading contributions of this sector. For

R′
3, one has n0 = 1, c2(2ω + 2) = 1 and c3(2ω + 2) = 24, with c3(2ω + 1) = 0, while

for L′
3 one finds n0 = 0, c2(2ω + 1) = 1/16 and c3(2ω + 1) = 12, with c3(2ω + 2) = 0.

One can easily evaluate the asymptotic forms. For R′
3, one has c0 = 6 for α0 = 2,

with c2(2) = 1 and P2(n) = (−1)n, while for L′
3 one finds c0 = 12 for α0 = 1, with

c2(1) = 1/16 and P1(n) = 1 (with an overall factor 256), therefore

a
R′

3
n

n∼∞≃ 1

2

(−1)n

(n− 1)
11
4

e(4π
2(n−1))

1
2 , (3.5.25a)

a
L′
3

n
n∼∞≃ 2 · 2

1
2

2
1
4

1

n
11
4

e(8π
2n)

1
2 . (3.5.25b)

As above, the coefficients appearing in the third term of the partition function are

aR3

n+1/2 = a
R′

3
2n+1 and aL3

n = a
L′
3

2n . The corresponding asymptotic behaviour reads

a3nn =
1

2
aR3

n+ 1
2

aL3
n

n∼∞≃ 1

64 · 2
1
4

(−1)2n+1

n
11
2

e[(16π
2)

1
2+(8π2)

1
2 ]n

1
2 . (3.5.26)

In terms of the variable q = e2πiτ , the six factors have the Laurent expansions

R1(τ) = 16 + 256q + 2304q2 + 15360q3 + 84224q4 +O(q5; 0), (3.5.27a)

L1(τ) = q−1
[
1− 8q + 36q2 − 128q3 + 402q4 +O(q5; 0)

]
, (3.5.27b)

R2(τ) = −q−
1
2
[
1 + 8q

1
2 + 36q + 128q

3
2 + 402q2 +O(q

5
2 ; 0)

]
, (3.5.27c)

L2(τ) = 256− 4096q
1
2 + 36864q − 245760q

3
2 + 1347584q2 +O(q

5
2 ; 0), (3.5.27d)

R3(τ) = q−
1
2
[
1− 8q

1
2 + 36q − 128q

3
2 + 402q2 +O(q

5
2 ; 0)

]
, (3.5.27e)

L3(τ) = 256 + 4096q
1
2 + 36864q + 245760q

3
2 + 1347584q2 +O(q

5
2 ; 0). (3.5.27f)

From the leading-order results from each contribution aσnn, in eqs. (3.5.17, 3.5.22, 3.5.26),

it is evident that, extending the asymptotic forms to pairs of functional forms ±Φσ(n),

one can confirm that such envelope functions cancel out, even in this formulation. Below,

fig. 3.4 reports a plot of the three different sectors that one individuates when writing the

partition function in terms of Dedekind η-quotients.

It is worth highlighting the fact that, up to the scaling τ → τ ′ = 2τ and to the shift

τ → τ̃ = τ + 1/2, the heterotic SO(16)×SO(16)-theory can be written entirely in terms of

two functions. Indeed, one has the identities

R′
3(τ) = L1(τ) = R′

2(τ + 1/2), (3.5.28a)

L′
3(τ) = 16R1(τ) = L′

2(τ + 1/2). (3.5.28b)

As a final remark, notice that a quotient of Dedekind η-functions does not necessarily satisfy

the requirements of applicability of the HRR-expansion of eq. (3.5.9). In the specific case

at hand, nevertheless, simple manipulations on τ allow one to bypass the problem of a

non-positive semi-definite function G(α) in eq. (3.5.8).
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Φ1(n)

−Φ1(n)
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Figure 3.4: The lightest string states in the heterotic SO(16)×SO(16)-theory. The interpolating

functions ±Φσ(n), for σ = 1, 2, 3, correspond to the three terms Z1, Z2 and Z3 that combine into

the total partition function, and in particular they are simply the degeneracies aσn at leading order

plotted for a continuous variable n. Notice that, although Φ2(n) = Φ3(n), i.e. Z2 and Z3 contribute

equally to physical states, the associated off-shell coefficients are different.

3.5.3 Anti-D-Branes on O-Planes

in Terms of Dedekind η-quotients

This subsection shows how to formulate the theory of an anti-Dp-brane on top of an Op-

plane as an η-quotient, in order to then employ the expansions in eq. (3.5.9, 3.5.10) to study

the asymptotic expansion of and the subleading contributions to the state degeneracies.

To discuss the anti-Dp-brane/Op-plane theory, it is convenient to just focus on the

p-independent part of the partition function in eq. (3.4.14). This can be simplified by

exploiting the properties of the so(2n)-characters. First of all, it is convenient to remove

the dependence on the constant real part in the argument by means of the identities [33]

(S2n + C2n)

[
it+

1

2

]
= (S2n + C2n)(O2n − V2n)[2it],

η2n
[
it+

1

2

]
= η2n(O2n + V2n)[2it].

Second, the Jacobi triple-product identity can be recast as

(S2n + C2n)(O2n + V2n)(O2n − V2n) = 2n.

Both expressions can be simplified by noticinng that S2n = C2n. Further, in the particular

case n = 4, a further simplification arises as a consequence of the Jacobi identity V8 = S8.

Summing up, one has

V8

[
it+

1

2

]
= V8(O8 − V8)[2it],
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η8
[
it+

1

2

]
= η8(O8 + V8)[2it],

V8(O8 + V8)(O8 − V8) = 8.

Using all these relationships, one finds the identity

V8
η8

[
it+

1

2

]
=

23

η8
(O8 + V8)

−2[2it] = 8ϑ3[2it]
−8. (3.5.29)

Therefore, the p-independent Möbius strip amplitude associated to the anti-Dp-brane/Op-

plane theory, from eq. (3.4.14), can be written as

M(it) = −V8
η8

[
it+

1

2

]
= −8ϑ3[2it]

−8 (3.5.30)

In order to take advantage of the Sussman HRR-analysis, it is necessary to consider a

function with a generic complex argument, namely M = M(τ), knowing that the physical

properties are actually contained at the locus τ = it. Following the discussion above, the

generic function to be analysed is

M(τ) = −8ϑ−8
3 (2τ) = −8 η16(τ) η16(4τ)

η40(2τ)
, (3.5.31)

where the Jacobi ϑ-function has been written as a Dedekind quotient. Appendix A.1.1

contains details about the relevant identities. Of course, one could obtain the same result

by simply starting from the function M = M(τ) as given in eq. (3.4.14) and then directly

expanding the Jacobi ϑ-functions appearing in it in terms of Dedekind η-function factors, via

other well-known identities in appendix A.1.1. However, it is sometimes convenient to deal

with the function ϑ3(τ) alone, hence the method above, which singles it out immediately.

The function in eq. (3.5.31) has c1 = 4, but it turns out not to be amenable to the

expansion of eq. (3.5.9) since the condition G(α) ≥ 0 is not satisfied. Nevertheless, as

for the heterotic SO(16)×SO(16)-string example, this problem can be easily overcome by

shifting the variable as τ → τ +1/2, which amounts to dealing with an expansion in powers

of q without alternating signs. This leads to a ‘dual’ function

M̃(τ) =M(τ + 1/2) = −8 η8(2τ)

η16(τ)
. (3.5.32)

For the function −M̃(τ), the condition G(α) ≥ 0 is satisfied and therefore the expansion of

eq. (3.5.9) is applicable and allows one to work out all leading and subleading contributions.

In particular, one finds n0 = 0, c1 = 4, c2(2ω+1) = 1/16, c3(2ω+2) = 0 and c3(2ω+1) = 12.

One can easily evaluate the asymptotic form. Indeed, one has c0 = 12 for α0 = 1 and

c2(1) = 1/16, with an overall factor 8. Therefore, inserting a factor (−1)n+1 to trace back

to the coefficients of M(τ) =
∑∞

n=0 anq[τ ]
n, the asymptotic form of an is

an
n∼∞≃ 1

8 · 8
1
4

(−1)n+1

n
11
4

e(8π
2n)

1
2 . (3.5.33)

As expected, this result confirms exactly the asymptotic behaviour found in eq. (3.4.16).

To conclude, it is worthwhile to emphasise that the function in eq. (3.5.32) is related to

the heterotic SO(16)×SO(16)-theory by the series of identities

−M(τ + 1/2) =
1

2
R1(τ) =

1

32
L′
2(τ + 1/2) =

1

32
L′
3(τ). (3.5.34)
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3.6 Systematic Cancellations at All Orders

This section finally shows that, in the class of models for which the tools presented in

section 3.5 can be employed, the cancellations implied by misaligned supersymmetry occur

at all orders in the HRR-expansions and the conjecture Ceff = 0 holds. This outcome relies

crucially on the result of eq. (3.5.11).

To start, subsection 3.6.1 provides a general prescription to construct the envelope

functions at any HRR-order and to verify their net cancellation. This result is based on the

easy structure of the Sussman HRR-expansion and it is also such that these functions are real

when n is continuos even beyond leading order, thus overcoming the problems mentioned in

subsection 3.3.1. Then, the discussion is specialised to the two models analysed explicitly

in the present work: open strings and the anti-Dp-brane/Op-plane system, in subsection

3.6.2, and closed strings and the heterotic SO(16)×SO(16)-theory, in subsection 3.6.3. Their

order of presentation is reverted compared to previous sections for clarity of exposition.

3.6.1 General Procedure

This subsection outlines the general features of the method that is going to be used in

subsections 3.6.2 and 3.6.3 to discuss all-order cancellations in misaligned supersymmetry.

3.6.1.1 All-Order Envelope Functions

The starting point for the discussion is the framework presented in subsection 3.5.1. In the

same notation therein introduced, for any function Z(τ) = q−n0
∑∞

n=0 anq
n amenable to

the Sussman HRR-expansion in eq. (3.5.9), the Laurent coefficients in the q-expansion for

n > n0 can be written in the form

an =
∑
α∈Γ

an(α) =
∑
α∈Γ

Pα(n)fn(α), (3.6.1)

where the terms Pα(n) are the Kloosterman-like sums and the functions fn = fn(α) are

defined as

fn(α) =
2π c2(α) [c3(α)]

c1+1
2

α[24(n− n0)]
c1+1

2

Ic1+1

[(
2π2

3α2
c3(α)(n− n0)

) 1
2
]
.

Each term an(α) represents a different contribution to the coefficient an, whose relevance in

the limit n ∼ ∞ is weighed by the ratio c3(α)/α
2. However, the analysis in this subsection

is going to be referred to all possible values of n.

In order to go over the usual analysis of misaligned supersymmetry presented in sections

3.3 and 3.4, and extend it beyond leading order, it is necessary to define a notion of ‘envelope

functions’. The general prescription presented there amounts to individuating the characters

of the theory and, for each of them, i.e. for all the degeneracies an that belong to each of

them, to letting n be a continuous variable, thus promoting the discretised terms an to

their functional forms with n ∈ R+. Here, for any term appearing in the partition function,
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‘sectors’ may be identified by the leading-order results.3.3 In the case of open strings, these

can be typically identified with the bosonic and fermionic states (cfr. subsection 3.5.3). For

closed strings, this is more complicated since each term comes from the interplay of right-

and left-moving oscillators, but one can just consider the leading-order terms given by each

of the products of Dedekind η-quotients in which one can arrange the full partition function

(cfr. subsection 3.5.2). Anyway, for the time being, one can focus on open strings; closed

strings will be discussed later, in subsection 3.6.3.

One can extend the idea of interpolating functions to all the contributions an(α), thus

getting some envelope functions for each admitted value of α. Now, whilst the terms with

α = 1 are manifestly real, being P1(n) ≡ 1, the terms with α > 1 can be complex, due to

the fact that Pα(n) is a complex number, in general, for n ∈ R+. To overcome this problem

and to construct a real envelope function, one should notice two facts.

(i) In general, the leading-order contribution in the expression of the degeneracies an
can underestimate or overestimate the correct value. This means that subleading

corrections may come with either positive or negative signs.

(ii) As noticed in section 3.5, for each fixed α, there are only α independent real values of

the function Pα(n) as n ∈ N varies. To stress the fact that they are being employed

with this fact in mind, it is convenient to introduce a notation such that, for all values

β = 1, . . . , α, the Kloosterman-like terms are identified as

Pα(n) = Pα(β) ≡ pα(β) ∈ R, ∀n ∈ Nα(β), (3.6.2)

where Nα(β) = {n ∈ N : n = βmodα} are the α subsets of N in which the function

Pα(n) takes each of its specific values. The result in eq. (3.5.11) indicates that the

sum of pα(β) over β = 1, . . . , α is zero, i.e.
∑α

β=1 pα(β) = 0.

Because the aim of this discussion is to define functional forms that interpolate between

the physical degeneracies at discrete n, one can define α different subsectors, depending on

the value taken by the function Pα(n). In particular, for each of these α different values,

one can define functional forms Φα(n;β), with β = 1, . . . , α, such that

Φα(n;β) = pα(β) fn(α). (3.6.3)

The crucial step here is that the terms Pα(n), that are generically complex if n ∈ R, are being
replaced by the discrete and manifestly real terms pα(β), which instead are independent of

n. Therefore, the functions in eq. (3.6.3) are now real even if n is a continuous variable. So,

3.3It might be helpful to think of the terms α = 1 and α > 1 as leading and subleading orders, respectively.

However, this identification could be misleading. Indeed, what governs the exponential growth in eq. (3.5.9)

is the quantity c3(α)/α
2 and it is not guaranteed to be maximized at α = 1. Moreover, the condition

c3(1) ≤ 0 may also happen, and therefore the corresponding term with α = 1 would not appear in the

sum. In fact, such cases indeed appear for instance in subsection 3.5.2. Nevertheless, when present, the

contribution with α = 1 has P1(n) = 1 and there is only one subsector β = 0, thus making this case somehow

special. These subtleties will be commented on when they come up in the examples of subsections 3.6.2 and

3.6.3, but for the time being the discussion is going to be kept as plain as possible.
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taking into account the fact that the theory has sectors σ – recalling that, for open strings,

one can simply think of bosonic and fermionic states –, at each α > 1 this procedure is in

fact introducing α different subsectors within each sector σ, and the envelope functions are

introduced via the enhancements

aσn(α) 7→ Φα(n;β), (3.6.4)

which are defined for each β = 1, . . . , α. Indeed, in a given sector σ, for a given integer n

and a given order α, the term aσn(α) is expressed in terms of a specific Kloosterman-like

term Pα(n) = pα(β), for some β, but the presence of the other Kloosterman-like terms at

different values of n in the same sector means that, when defining the interpolating functions

of a given sector, one is associating all the possible α terms pα(β) to each value of n.

The total number of subsectors increases with α in the HRR-expansion, up to an infinite

number of them. As explained above, in general these subsectors are populated by positive

and negative contributions, therefore one should expect that cancellations can occur among

them. That this is indeed the case is a consequence of the lemma on the functions Pα(β),

in eq. (3.5.11). To see this explicitly, one just needs to average the envelope functions

Φα(n;β) over all the subsectors at the fixed value of α, labelled by β = 1, . . . , α. In fact,

because the functions fn(α) do not depend on the label β, at any fixed order α > 1 one can

immediately conclude that such an average is vanishing, i.e.

α∑
β=1

Φα(n;β) =

[ α∑
β=1

pα(β) fn(α)

]
=

[ α∑
β=1

pα(β)

]
fn(α) = 0, (3.6.5)

where use has been made of the identity
∑α

β=1 pα(β) = 0. As shown in the proof of eq.

(3.5.11), this result holds for every integer α > 1, including the limit α → ∞. Observing

these cancellations for every order in the HRR-expansions, one is left at most with α = 1, if

it is present in the original expansion in eq. (3.5.9). This value is special in some sense, since

there are no subsectors associated to it and therefore the mechanisms outlined above cannot

work. However, here comes to rescue the presence of the other sectors. Indeed, cancellations

among terms with α = 1 have to occur among different sectors, analogous to the original

formulation of misaligned supersymmetry reviewed in subsection 3.3. Therefore, due to

the cancellations of all sectors against each other for α = 1 and the cancellations among

subsectors β = 1, . . . , α for α > 1, a net cancellation of the envelope functions follows and

hence the vanishing of the effective inverse Hagedorn temperature, i.e. Ceff = 0.

As an example, one can consider for instance the function M̃(τ), defined in eq. (3.5.32),

that is associated to the description of an anti-Dp-brane on top of an Op-plane. The sectors

are the bosonic and fermionic sectors, which at leading order α = 1 are interpolated by

the same functions, up to a sign. Therefore, the leading-order envelope functions cancel

out against each other, as observed in a different formalism in subsection 3.4.3. Now, as

discussed in subsection 3.5.3, this function is such that the even values α = 2ω + 2 do not

take part in the HRR-expansion, the only contributions to the Laurent coefficient being from

odd values α = 2ω+1. For the first correction beyond leading order, i.e. α = 3, one has the

complex-valued function P̃3(n) = e−
2πi
3

(n−2) + e−
4πi
3

(n+1). Restricting to integer values of n,

one finds the three possible real values P̃3(1) = −1, P̃3(2) = +2 and P̃3(3) = −1, and these
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add up to zero, as expected. All values of α behave in a similar way. One can therefore

follow the argument above to claim that Ceff = 0 in this case. In subsection 3.6.2, the

cancellations in the anti-Dp-brane/Op-plane system are discussed in full detail.

3.6.1.2 Remarks

There are a few subtle points in the previous reasoning that have been omitted for conve-

nience of presentation and that are going to be addressed below.

To start, an important remark is due on the definition of the envelope functions, which

is going to impact the discussion of cancellations in subsections 3.6.2 and 3.6.3. It is

necessary to specify that, technically, instead of eq. (3.6.4), the proper enhancement of the

state degeneracies aσn(α) to define envelope functions should be of the kind

aσn(α) 7→ Φσα(n;β
σ), (3.6.6)

with the superscript in βσ indicating the fact that, for the values of n appearing in a

given sector σ, as determined by the physical degeneracies aσn belonging to that sector, not

necessarily all the terms pα(β) appear, but only a subset, with elements denoted as pα(β
σ).

In fact, only the values n ∈ Nσ appear among the net degeneracies aσn in a given sector σ,

for some subset Nσ ⊂ N, and not all terms pα(β) appear in that subsector if the subsets Nσ

and Nα(β) do not intersect, i.e. if Nσ ∩ Nα(β) = ∅.3.4 The envelope functions Φσα are also

labelled following this reasoning. This is a technical subtlety that has been be ignored in

the general introduction for the sake of clarity, as the replacement of eq. (3.6.4) has been

enough to explain the fundamental ideas. However a definition as in eq. (3.6.6) may be

necessary if the coefficients in each sector are computed separately, as in subsection 3.6.2.

Second, in sections 3.3 and 3.4, a defining feature of misaligned supersymmetry has

been identified in the presence of a boson-fermion oscillation at leading order in the HRR-

expansion. Therefore, in general it is going to be assumed that the partition functions that

are being dealt with have this property.

For simplicity, let the partition function be given by a single term which is also a

Dedekind η-quotient. In this case, the Laurent series must have oscillating-sign coefficients.

In particular, this case also corresponds to open-string theories and the anti-Dp-brane/Op-

plane theory that is being used as an example is no exception. If one is considering a

closed-string theory, instead, then typically one has to deal with a product of right- and left-

movers, which individually are Dedekind η-quotients. Some slight differences may occur,

for instance just either the right- or left-moving sector contributions may oscillate, with

the other one having coefficients of a given sign. The heterotic SO(16)×SO(16)-theory is

indeed of this latter type. Moreover, if the Dedekind η-quotient describes an open string,

it is also assumed to be tachyon-free, which instead is not necessary for the closed-string

case scenario, but this does not play a direct role in the following discussion. All these

3.4A prototypical instance of this kind is as follows. Let the sector aσ
n be defined only for even values

n ∈ 2N (as is a typical case if the sectors are bosons and fermions): for a given even order α = 2ω + 2

appearing in eq. (3.5.9), then a subset of the possible terms pα(n) would be sufficient to interpolate all the

values aσ
n(2ω + 2), namely those corresponding to an even argument pα(2), pα(4), . . . , pα(2ω + 2).
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complications are not fundamental for the following arguments and anyway they will be

taken into account in the specific examples later on. If several Dedekind η-quotients are

present, one can just repeat the analysis for each of them separately. Shortcomings related

to fractional indices are not going to be considered since they merely represent a need for

a suitable index labelling, when computing the degeneracies. As a final remark, it should

also be noted that the terminology so far has implicitly assumed the discussion of single

Dedekind η-quotients to refer to open strings and of products thereof to closed strings. The

annulus and the Möbius-strip amplitudes, which involve single Dedekind η-quotients, are

intrinsically open-string terms, but Klein-bottle terms technically refer to closed strings. Of

course, their analysis is analogous.

Now, let the function Z = Z(τ) be a single η-quotient Z(τ) = q−n0
∑∞

n=0 anq
n with

oscillating-sign coefficients an ⋚ 0. It is convenient to distinguish the following situations.

1. The conditions of applicability of eq. (3.5.9), i.e. a positive constant c1 > 0 and a non-

negative function G(α) ≥ 0, are met either by the function Z(τ) or by the function

Z̃(τ) = Z(τ + 1/2), up to overall factors. Then, two subcases must be considered.

(a) If the conditions of applicability of eq. (3.5.9) are met by Z̃(τ) = Z(τ + 1/2),

which corresponds to a Laurent series with definite-sign coefficients, as the orig-

inal Z(τ) has oscillating coefficients by assumption, one can work out the alter-

nating coefficients an of the original series from the definite-sign coefficients ãn
of the new series by just noticing that they are trivially related as an = (−1)nãn.

One will then simply have to keep track of which states have positive/negative

coefficients before the shift of τ is performed. A concrete example is the partition

function M(τ) of an anti-Dp-brane on top of an Op-plane, as in subsection 3.5.3.

(b) If the conditions of applicability of eq. (3.5.9) are met by Z(τ), which has os-

cillating coefficients an, then the latter are given immediately by the Sussman

HRR-expansion. A concrete example are the functions L1(τ) and R
′
3(τ) in sub-

section 3.5.2.

Both the functions Z(τ) and Z̃(τ) may be amenable to the expansion of eq. (3.5.9). Of

course, in such a situation one can choose which subcase to adopt for the discussion.

2. The conditions of applicability of eq. (3.5.9) are met neither by the function Z(τ) nor

by the function Z̃(τ) = Z(τ + 1/2).

In the following, case 2 is not going to be considered. In fact, none of the examples taken

into account presents an incompatibility with the Sussman HRR-expansion. On the other

hand, for a partition function Z(τ), case 1b3.5 happens to be trivially described as in the

general treatment above, since all the degeneracies an can be extended to envelope functions

3.5Notice that, in case 1b, the leading-order sector should be expected to be for α > 1, since, with α = 1,

the function P1(n) = 1 cannot give sign oscillations in the series coefficients. In such a circumstance, if

the term α = 1 is absent from the series, the reasoning on the cancellation of the envelope functions at all

orders proceeds straightforwardly. However this should always be checked for the specific function under

consideration: in case the term α = 1 appeared, one should reconsider its whole cancellation mechanism.
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that cancel out against each other, without the need to make any distinction among ‘sectors’

to compute the degeneracies. Instead, case 1a is intrinsically more subtle: in fact, in this

case, in order to compute the degeneracies, one has to deal explicitly with two different

sectors, typically the bosonic and the fermionic states, due to the distinction made when

using the function Z̃(τ) instead of the function Z(τ). This is going to be the central focus

of subsection 3.6.2. Such a scenario also corresponds to the open-string system of interest

with anti-Dp-branes on top of Op-planes.

As anticipated, the situation is more involved for closed strings, where a product of

two factors has to be considered and the array of possibilities is much larger. Here, the

partition functions may involve a combination of factors falling both in cases 1a and 1b,

but also of factors with all their coefficients being of a definite sign. For the latter, the

Laurent coefficients may still be worked out by means of the Sussman HRR-expansion. So,

the methods to discuss the presence of misaligned supersymmetry for closed strings are

intrinsically different and more complicated compared to those for open strings. Exten-

sions of the open-string reasoning to the closed-string scenario are going to be discussed in

subsection 3.6.3, focussing again on the heterotic SO(16)×SO(16)-model as an example.

3.6.2 All-Order Cancellations for Open Strings

This subsection discusses in detail open-string partition functions falling into the scenario

presented in case 1a and then specialises it to the case of an anti-Dp-brane sitting on top

of an Op-plane. Instead, case 1b is not treated explicitly since it is immediate.

3.6.2.1 General Discussion

In the function Z̃(τ) = Z(τ +1/2), the shift τ +1/2 flips the signs of the state degeneracies

and leads to coefficients ãn that are all of the same sign, e.g. positive for definiteness.

Therefore, one cannot distinguish anymore which states are bosons and which are fermions,

in Z̃ = Z̃(τ). In order to discuss cancellations among bosons and fermions for the actual

model Z = Z(τ), therefore, one must treat separately the values of n that correspond

to original bosonic degeneracies, namely an = ãn, and those that correspond to original

fermionic degeneracies, namely an = −ãn. Using a tilde-notation to stress that all the

quantities refer to the function Z̃ = Z̃(τ), the degeneracies can be written as

an = ãn =
∑
α∈Γ̃

ãn(α) =
∑
α∈Γ̃

P̃α(n)f̃n(α), ∀n ∈ Nb, (3.6.7a)

−an = ãn =
∑
α∈Γ̃

ãn(α) =
∑
α∈Γ̃

P̃α(n)f̃n(α), ∀n ∈ Nf , (3.6.7b)

where Nb ⊂ N and Nf ⊂ N represent the subsets of values of n with a bosonic degeneracy

an = ãn and a fermionic degeneracy an = −ãn, respectively. Although this formally looks

the same as the generic case above, the fact that n only takes values in a subset of N is

crucial. Indeed, since the periodicity of the function P̃α(n) is such that P̃α(n) = P̃α(n+α),

one is no longer guaranteed that the values of n at disposal in Nb are sufficient for P̃α(n) to
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take all the distinct α values p̃α(β) that it would assume if its domain was N, and similarly

for Nf . In particular, one may write

an(α) = ãn(α) = p̃α(β)f̃n(α), ∀n ∈ Nα(β) ∩ Nb; (3.6.8a)

−an(α) = ãn(α) = p̃α(β)f̃n(α), ∀n ∈ Nα(β) ∩ Nf . (3.6.8b)

It is therefore manifest that, e.g. in the bosonic sector, the value P̃α(n) = p̃α(β) is only

found if Nα(β) ∩ Nb ̸= ∅. Of course, the missing values of p̃α(β) would be found in the

fermionic sector, and vice versa, but this means that they would contribute with an extra

(−1)-factor, invalidating the cancellation as presented in eq. (3.5.11). For definiteness, let

the bosonic sector be such that Nb = 2N0 + 1. In this case, the contributions that appear

in the corrections to the bosonic degeneracies in eq. (3.6.7a) are

. . . , ã2n−1(α),

P̃α(2n+1)

ã2n+1(α),

P̃α(2n+3)

ã2n+3(α), . . . ,

P̃α(2n+2α−1)

ã2n+2α−1(α), ã2n+2α+1(α)

P̃α(2n+1)

, . . .

and it is possible to observe how the periodicity mod 2α in the functions P̃α(n) allows one to

recognise the sectors P̃α(2n+ 1 + 2l), with l = 0, . . . , α− 1. Now one needs to understand

whether the values P̃α(2n+ 1), P̃α(2n+ 3), . . . , P̃α(2n+ 2α− 1) suffice to individuate all

the α terms p̃α(β) that add up to zero. The answer is affirmative if α is odd, as one can

see by direct inspection. The situation is similar for the fermionic terms in eq. (3.6.7b). A

more explicit treatment is below. See also figs. 3.5 and 3.6 for an explicit example.

• In the bosonic sector, one has the sequence

ã1(α)

p̃α(1)

, ã3(α), ã5(α), . . . , ã2α−5(α), ã2α−3(α)

p̃α(α−3)

, ã2α−1(α)

p̃α(α−1)

,

p̃α(1)

ã2α+1(α), . . .

and, therefore, for odd α each sequence of α consecutive terms contains all the α

different terms p̃α(β), which ultimately happens because the difference of two odd

numbers is even, whereas for even α half of the terms p̃α(β) are never hit by the

degeneracies because α− (2l + 1), for any l, is never even if α is even.

• In the fermionic sector, one has the sequence

ã0(α)

p̃α(0)

, ã2(α), ã4(α), . . . , ã2α−6(α), ã2α−4(α)

p̃α(α−4)

, ã2α−2(α)

p̃α(α−2)

,

p̃α(0)

ã2α(α), . . .

and, therefore, for odd α every sequence of α consecutive terms contains all the α

different terms p̃α(β), whereas for even α half of the terms p̃α(β) are never hit by the

degeneracies.
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Figure 3.5: Periodicity of the function P̃α(n) for α = 3, with odd argument n ∈ 2N0 + 1. Each

circle contains increasing odd integers n = 2l+1, while the horizontal lines represent the associated

term P̃3(n), expressed as p̃3(β) for the appropriate β. The periodicity P̃3(n) = P̃3(nmod3) permits

to group all odd numbers n in α = 3 different groups. All different values of p̃α(β) can be populated

by P̃α(n) for odd values of α. Even arguments n ∈ 2N0 behave in the same way for odd values of α.
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Figure 3.6: Periodicity of the function P̃α(n) for α = 4, with odd argument n ∈ 2N0+1. Each circle

contains increasing odd integers n = 2l + 1, while the horizontal lines represent the corresponding

value P̃4(n), expressed as p̃4(β) for the appropriate β. The periodicity P̃4(n) = P̃4(nmod4) nec-

essarily leaves out half of the possible values p̃α(β) in the first column. Even arguments n ∈ 2N0

behave in the same way for odd values of α.

In all cases in which the subsectors of a given sector are enough to individuate all the

Kloosterman-like terms p̃α(β) at an order α, one can define envelope functions ±Φα(n;β)

via the replacement in eq. (3.6.6), based on eqs. (3.6.8a, 3.6.8b), and therefore conclude that

their average is zero, according to the property in eq. (3.5.11), for which
∑α

β=1 p̃α(β) = 0

(similarly as with eqs. (3.6.4, 3.6.5)). Therefore, the outcome of this analysis is that models

exhibiting an oscillatory degeneracy pattern, i.e. misaligned supersymmetry, experience

a net cancellation, taking place among the pure bosonic and pure fermionic sectors indi-

vidually, at all odd subleading orders α = 2ω + 1. If these odd orders are the only ones

appearing in the HRR-expansion of eq. (3.5.9), and if the leading-order terms are also such

as to cancel out their envelope functions, then one can conclude that the effective inverse

Hagedorn temperature of the theory is zero, i.e.

Ceff = 0. (3.6.9)

On the other hand, at all even subleading orders α = 2ω+2, the pure bosonic and fermionic

sectors generally do still combine together among themselves into nonzero values. In short,

this suggests that the even orders α = 2ω+2 may be problematic within the case 1a under

consideration and it is not possible to draw any general conclusion for them at this stage.

However, this situation does not appear in the open-string case example of interest, the

anti-Dp-brane/Op-plane theory. Notice that, instead, these cases are easily tractable for

the closed-string cases of interest below.
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3.6.2.2 All-Order Cancellations for Anti-D-Branes on O-Planes

As anticipated, for the partition function M = M(τ) of an anti-Dp-brane sitting on top of

an Op-plane, given in eq. (3.5.31), the shifted function M̃(τ) in eq. (3.5.32) that one needs

to consider is such that all the even orders in the HRR-expansions are vanishing, the only

contributions being from α = 2ω + 1. This is discussed in subsection 3.5.3. Therefore, one

does not have to deal with additional complications and the machinery presented above

can be applied directly. This shows that the interpolating functions cancel at all subleading

orders, with bosonic and fermionic corrections averaging out to zero independently from each

other. On the other hand, the leading-order contributions cancel out straightforwardly, as

discussed in subsection 3.4.3. Ultimately, this reasoning proves that the effective inverse

Hagedorn temperature for an anti-Dp-brane sitting on top of an Op-plane is

C
Dp/Op
eff = 0. (3.6.10)

This is a formal derivation of the result that has been anticipated in subsection 3.4.3. This

method, nevertheless, allows for a detailed analysis even in cases in which the effective

cancellations may not be so apparent. Below, fig. 3.7 reports a schematic representation of

the cancellations taking place at leading and next-to-leading order in the anti-Dp-brane/Op-

plane theory.

Φ1(n)

−Φ1(n)

Φ3(n; 1) = Φ3(n; 3)

Φ3(n; 2)

0 10 20 n

−20

20

(−1)Fn ln (gn)

p̃3(1) = −1

p̃3(2) = +2

p̃3(3) = −1

Figure 3.7: A schematic plot representing the spectrum of an anti-Dp-brane on top of an Op-plane,

including the terms at leading order, for α = 1, and the (magnified) corrections at next-to-leading

order, for α = 3. One has to consider bosons (odd n) and fermions (even n) separately as the

corrections to the coefficients of the partition function M(τ) are computed with the dual function

M̃(τ). Then, levels n = 1mod 3, n = 2mod 3 and n = 3mod 3 have corrections multiplied by the

values p̃3(1) = −1, p̃3(2) = +2 and p̃3(3) = −1, respectively. For each different value the function

p̃α(n) can take, one can individuate a different interpolating function, both for bosons and for

fermions. Evidently, the average of such interpolating functions vanishes, independently from each

other, both in the bosonic and in the fermionic sector.
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3.6.3 All-Order Cancellations for Closed Strings

In dealing with closed strings, one typically has to consider products of two functions, one

for the right- and one for the left-moving sector. Usually, there are several such products

that need to be added to make up the full partition function of the theory. However, the

tools of section 3.5 allow for a separate treatment of each of these products, so in an actual

partition function one just needs to combine the results obtained from each of these terms.

3.6.3.1 General Discussion

The generic function that is considered in this subsubsection is a product of the form

Z(τ, τ) = R(τ)L(τ), where R = R(τ) and L = L(τ) are the functions of q = e2πiτ coming

from the string oscillations in the right- and left-moving sectors, respectively. In general,

the level-matched net degeneracies have an expression of the kind

ann = aR
n+nR

0
aL
n+nL

0
=

[∑
α

aR
n+nR

0
(α)

][∑
β

aL
n+nL

0
(β)

]
,

where aR
n+nR

0
and aL

n+nL
0
are the Laurent coefficients of the series R(τ) and L(τ), respectively,

and the summations over α and β represent their HRR-expansions. In this case, addressing

an all-encompassing analysis is quite arduous, so the discussion is going to be centred on the

instance where bothR(τ) and L(τ) are immediately amenable to eq. (3.5.9), which is enough

for example to discuss the heterotic SO(16)×SO(16)-theory, without extra complications

such as the shift τ + 1/2. This should suffice to provide all the basic elements that one

may need to take care of in the investigation of a given theory. In detail, the full state

degeneracies can be expressed as

ann =
∑
α∈ΓR

∑
β∈ΓL

ann(α, β),

with the indices ‘R’ and ‘L’ referring of course to the functions R(τ) and L(τ), respectively,

and their related quantities, where, emphasising the Kloosterman-like terms, the definition

has been made

ann(α, β) = PRα (n+ nR0 )P
L
β (n+ nL0 )f

R
n+nR

0
(α)fL

n+nL
0
(β). (3.6.11)

Then, for any given couple of values α ∈ ΓR and β ∈ ΓL, the series of terms ann(α, β) can

be associated to some envelope functions Φℓαβ
(n;α, β), for an index ℓαβ = 1, . . . , lcm(α, β),

with the least common multiple being lcm(α, β) = αβ/ gcd(α, β). Indeed, the series of

contributions ann(α, β) allows one to define a number lcm(α, β) of continuous functions of

n ∈ R+ as

Φℓαβ
(n;α, β) = PRα (ℓαβ + nR0 )P

L
β (ℓαβ + nL0 )f

R
n+nR

0
(α)fL

n+nL
0
(β). (3.6.12)

For any given (α, β)-pair, observing the two different periodicities PRα (m) = PRα (mmodα)

and PLβ (m) = PLβ (mmodβ), this defines an envelope function for each of the possible out-

comes of the product PRα (n+ nR0 )P
L
β (n+ nL0 ). Such envelope functions are parametrised by
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the counter ℓαβ, which is defined in such a way that, if n = ℓαβmod lcm(α, β), then the con-

dition holds PRα (n+ nR0 )P
L
β (n+ nL0 ) = PRα (ℓαβ + nR0 )P

L
β (ℓαβ + nL0 ). In fact, at all the val-

ues of n ∈ N such that n = ℓαβmod lcm(α, β), one has the identification ann = Φℓαβ
(n;α, β),

with the envelope functions then being extended to any continuous value n ∈ R+.

In order to show that misaligned supersymmetry takes place at any order in the Sussman

HRR-series, one needs to show that these envelope functions average out to zero, i.e. that∑lcm(α,β)
ℓαβ=1 Φℓαβ

(n;α, β) = 0. To do that, it is sufficient to rearrange the sum over ℓαβ in

terms of a simple double sum. In fact, defining the term ξαβ = β/ gcd(α, β), one can write

lcm(α,β)∑
ℓαβ=1

Φℓαβ
(n;α, β) =

α∑
kα=1

ξαβ−1∑
m=0

Φkα+mα(n;α, β)

=
α∑

kα=1

ξαβ−1∑
m=0

PRα (kα +mα+ nR0 )P
L
β (kα +mα+ nL0 )f

R
n+nR

0
(α)fL

n+nL
0
(β)

=
α∑

kα=1

PRα (kα + nR0 )f
R
n+nR

0
(α)fL

n+nL
0
(β)

[ξαβ−1∑
m=0

PLβ (kα +mα+ nL0 )

]

= 0,

where it has been taken advantage of the periodicity of the right-moving P -function and, in

the last line, use has been made of eq. (3.5.11) for the left-moving one. In order to exploit

this result, the condition ξαβ = β/gcd(α, β) > 1 must be fulfilled. This is the case if β > α,

and, reverting the roles, an analogous discussion holds if α > β. However, the reasoning

does not generally hold if α = β, in which case showing the cancellation is not possible

in these terms. Therefore, the sector-averaging mechanism cannot be argued to work so

generally. Nevertheless, a systematic cancellation takes place for instance in all situations

where the function R has only odd αs and the function L has only even βs, or vice versa.3.6

If so, in the calculation above, notice that one could not draw the same conclusion by

splitting the sum over lαβ as a sum over kβ = 1, . . . , β and m = 0, . . . , α/gcd(α, β)−1 since,

in the case where β = 2rα, for r ∈ N, one would have α/gcd(α, β) = 1. To conclude, in such

a scenario, the cancellation thus shown is a general proof of the vanishing of the average of

the envelope function at any order (α, β) ∈ ΓR × ΓL, i.e.

lcm(α,β)∑
ℓαβ=1

Φℓαβ
(n;α, β) = 0. (3.6.13)

Therefore, in theories that exhibit misaligned supersymmetry and that are amenable to the

discussion above, one can claim that the effective inverse Hagedorn temperature is zero, i.e.

Ceff = 0. (3.6.14)

3.6This is a situation that should somehow be expected to be common. In fact, typically one should have

one sector with definite signs and another one with oscillations, with the former expected to have odd αs

and the latter expected to have even βs. Nevertheless, claiming this to be general would need a dedicated

analysis.
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The key to this result is just eq. (3.5.11), which is a general property of the Dedekind

η-quotients for which eq. (3.5.9) holds. Here the discussion has been centred around a

specific closed-string scenario, but the machinery that has been described is easy to adapt

to a large variety of closed-string models. Cancellations beyond leading order depend on

the specific details of the right- and left-moving factors that define their partition function.

3.6.3.2 All-Order Cancellations

for the Heterotic SO(16)×SO(16)-Theory

As discussed in subsection 3.5.2, the partition function of the heterotic SO(16)×SO(16)-

theory can be written as a sum of three terms that are separate products of right- and left-

moving Dedekind η-quotients. In particular, given eq. (3.5.14), the simplest contribution

to study is the product Z1(τ, τ) = R1(τ)L1(τ)/2. Both functions R1(τ) and L1(τ), defined

in eqs. (3.5.15a, 3.5.15b), are Dedekind η-quotients whose Laurent coefficients are given

by eq. (3.5.9). Moreover, the right-moving term R1 receives contributions only from odd

αs, and vice versa the left-moving term L1 is only determined by even βs. Therefore, the

analysis above applies immediately and one concludes that the average of the corresponding

envelope functions vanishes, i.e.

lcm(α,β)∑
ℓαβ=1

Φ1
ℓαβ

(n;α, β) = 0

For the remaining two contributions, one should consider the functions R2, L2, R3 and L3,

defined in eqs. (3.5.18a, 3.5.18b) and (3.5.23a, 3.5.23b). Actually, though, thanks to the

list of dualities in eqs. (3.5.28a, 3.5.28b), it is apparent that the functions Z2 = R2L2/2 and

Z3 = R3L3/2 contribute to physical states, which are what defines the envelope functions,

in an identical way, just with a different index labelling and with different overall factors.

Therefore, the total cancellation shown for Z1 holds for Z2 and Z3, too, i.e.

lcm(α,β)∑
ℓαβ=1

Φ2
ℓαβ

(n;α, β) = 0,

lcm(α,β)∑
ℓαβ=1

Φ3
ℓαβ

(n;α, β) = 0.

To conclude, even for the heterotic SO(16)×SO(16)-theory it has been proved that

C
het-SO(16)×SO(16)
eff = 0. (3.6.15)

3.6.3.3 Alternative Method for Open Strings

The open-string case discussed in subsection 3.6.2 can also be discussed with the tools

presented in subsubsection 3.6.3.1. Given the partition function M = M(τ) of an anti-

Dp-brane on top of an Op-plane, one can imagine a closed-string theory where the right-

moving sector is R(τ) = −M̃(τ) = −M(τ +1/2) and the left-moving sector has coefficients
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ln = (−1)n+1 for β = 2 and vanishing for all other βs. In this case, the right-moving sector

is defined only for odd values of α, so the number of envelope functions is lcm(α, 2) = 2α.

For ℓα = 1, . . . , 2α, the envelope functions can be defined as

Φℓα(n;α) = (−1)ℓα+1P̃α(ℓα + n0)f̃n+n0(α).

Therefore, one simply has

2α∑
ℓα=1

Φℓα(n;α) =
2∑

k=1

α−1∑
m=0

Φk+2m(n;α) =
2∑

k=1

(−1)k+1f̃n+n0(α)
α−1∑
m=0

P̃α(k + 2m+ n0) = 0.

3.7 Formal Interpretation

of Misaligned Supersymmetry

In the literature, the vanishing of the sector-averaged envelope functions in misaligned

spectra is interpreted as the manifestation of the structure for which one-loop observables

can be finite, despite the infinitely-growing mismatch in bosonic and fermionic degrees of

freedom. However, the details of how the necessary cancellations take place have never been

elucidated. A description of this is the main purpose of this section.

In subsection 3.7.1, the relationship between the one-loop cosmological constant and the

string-theory partition function is reviewed. Then, subsection 3.7.2 describes and comments

on the mathematical details of how the presence of misaligned supersymmetry is tied to a

finite one-loop cosmological constant for open strings. Finally, subsection 3.7.3 discusses

this for closed strings. It is going to be apparent that the mathematics of the physical

cancellations of exponential divergences is analogous to the envelope-function averaging.

3.7.1 String-Theory One-loop Cosmological Constant

As the cosmological constant is the observable on which the focus is going to be put, this

subsection reviews its definition in perturbative String Theory at one-loop level and points

out the most relevant aspects for the future analysis.

For a given string-theory construction, one can consider the D-dimensional quantum

field theory consisting of the associated tower of perturbative string states. In general,

these states can be labelled by a discrete index n ∈ S(N0) indicating the state mass level

M2
n, for some index set S(N0). At each of these mass levels, the net physical degeneracy, i.e.

the difference of the number of bosonic and fermionic states Nb(n) and Nf (n), respectively,

is denoted as (−1)Fngn = Nb(n)−Nf (n), with gn ≥ 0 counting its absolute value and Fn
representing its fermionic parity. Given an arbitrary mass scale µ2, in terms of a Schwinger

proper-time parameter t, the one-loop cosmological constant then reads [28,88]

Λ = −1

2

(
µ2

8π2

)D/2 ∑
n∈S(N0)

(−1)Fngn

∫ ∞

0

dt

t1+D/2
e−2πM2

nt/µ
2
. (3.7.1)

In this expression, the region where t ∼ ∞ leads to divergences only in the presence of

tachyons, whereas the region where t ∼ 0+ is instead generally singular, unless cancellations
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occur due to the structure of the net physical degeneracies or it is cut off via a physical

principle. For ease of presentation, this expression is going to be discussed for open and

closed strings below, separately, in subsubsections 3.7.1.1 and 3.7.1.2. In what follows, open

strings are always going to represent Dp- and anti-Dp-brane states.

3.7.1.1 One-loop Cosmological Constant for Open Strings

For tachyon-free open strings, the mass spectrum in both the NS- and R-sectors follows

the pattern M2
n = n/α′ for each mass level n ∈ N0, so it is convenient to set µ = 1/

√
α′.

Moreover, for the field theory of a Dp- or anti-Dp-brane, one must consider a spacetime of

dimension D = p+ 1. Therefore, eq. (3.7.1) can be rearranged as

ΛDp = − 1

2π
TDp

∫ ∞

0

dt

2t
MDp(t), (3.7.2)

where the tension of the Dp-brane is TDp = 2π/lp+1
s , with the string length being ls = 2π

√
α′,

and where the partition function has been singled out

MDp(t) =
1

(2t)
1
2
(p+1)

∑
n∈N0

(−1)Fngn e
−2πtn. (3.7.3)

In eq. (3.7.2), the cosmological constant is UV-divergent unless cancellations occur

such that the partition function in eq. (3.7.3) approaches the origin t = 0 at least as a

power tϵ, with ϵ > 0. This is the case for supersymmetric theories, where the partition

function is identically zero, by definition, due to the level-by-level exact matching in the

number of fermions and bosons, i.e. gn ≡ 0 for all n ∈ N0. In theories lacking level-

by-level supersymmetry, with gn ≥ 0, this condition is far from being guaranteed. In

subsection 3.7.2, nevertheless, this is going to be shown the case for theories with misaligned

supersymmetry. Of course, IR-divergences are absent in the lack of tachyons.

A comment on the counting of states is in order. According to eqs. (2.1.40, 2.1.52), the

open-string mass operator and the Virasoro 0-generator are related as L̃0 = α′p̃2/4+α′M2.

Here, the mass term takes values M2 = n/α′, with n ∈ N0 denoting the number-operator

eigenvalue up to the vacuum-energy shift, following the GSO-projection. Therefore, in ac-

cordance with eq. (2.1.50), ignoring spacetime momentum, open-string partition functions

are of the form Z ∼ tr q[iτ2]
α′M2/2 ∼

∑
n∈N0

(−1)Fngn q[iτ2]
n/2. Defining a t-parameter as

t = τ2/2, one finds Z ∼
∑

n∈N0
(−1)Fngn q[it]

n. In fact, this is precisely the rescaling per-

formed in section 3.4, eventually considering partition functions M(τ) with Im τ = t. This

confirms that the coefficients of the term q[τ ]n in these expansions effectively count the net

degeneracies at the n-level mass.

3.7.1.2 One-loop Cosmological Constant for Closed Strings

For tachyon-free closed strings, the mass spectrum typically follows the pattern M2
n =

4n/α′ for each mass level n ∈ N0/2. This is provided by two identical contributions from

the right- and left-moving sectors m2
n = m2

n = 2n/α′. Therefore, it is convenient to set

µ = 2/
√
α′. Defining a complex variable τ = τ1 + iτ2, with τ2 = t/2, the right-handside in
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eq. (3.7.1) can accommodate a further integration
∫ 1/2
−1/2 dτ1 = 1. More generally, any term

amn e
2πiτ1(m−n)e−2πτ2(m+n) can be added, with m ̸= n, leaving the result invariant, since

the τ1-integration trivially means
∫ 1/2
−1/2 dτ1 e

2πiτ1k = δk0. Note that this always works since

invariance under T-transformations requires m − n ∈ Z in string-theory constructions. In

fact, for q = e2πiτ , the cosmological constant can be expressed as

ΛD = − 1

8π

1

κ2Dl
2
s

∫
S

d2τ

τ22
Z(τ, τ), (3.7.4)

with the D-dimensional gravitational coupling constant being 2κ2D = lD−2
s /2π, where the

integrand is identified with the string-theory partition function, written as

Z(τ, τ) = τ
1−D/2
2

∑
m∈ 1

2
N0

∑
n∈ 1

2
N0

amn q
mqn, (3.7.5)

together with the PSL2(Z)-invariant measure d2τ/τ22 . This is integrated over the domain

S =
{
τ ∈ C : Re τ ∈ [−1/2, 1/2] ∧ τ2 ∈ [0,+∞[

}
. Here, one should note the identification

ann ≡ (−1)Fngn. In general, the one-loop cosmological constant in eq. (3.7.4) is free of

IR-divergences in the region τ2 ∼ ∞ if the theory is free of physical tachyons, which has

been assumed. On the other hand, it is UV-divergent in the region τ2 ∼ 0+. Thanks to

modular invariance, this can nonetheless be fixed, restricting the domain of integration to

non-redundant configurations.

In detail, because Z = Z(τ, τ) represents the one-loop partition function of a closed-

string theory, it is invariant under the modular group PSL2(Z), and the divergence can

be interpreted as a gauge divergence. In fact, a manifestly finite result can be obtained by

factorising out the redundant volume, restricting the integration to the fundamental domain

F =
{
τ ∈ C : τ1 ∈ [−1/2, 1/2] ∧ τ2 ∈ [0,+∞[∧ |τ | ∈ [1,+∞[

}
.

Explicitly, therefore, the regularised version of the cosmological constant of eq. (3.7.4) reads

Λ̃D = − 1

8π

1

κ2Dl
2
s

∫
F

d2τ

τ22
Z(τ, τ). (3.7.6)

This is an integral definition. Because the singular region corresponding to τ2 = 0 has been

removed, the UV-divergence is absent. In the absence of physical tachyons, this one-loop

cosmological constant is finite.

One may also express the regularised one-loop cosmological constant in a different way,

by means of the so-called Kutasov-Seiberg identity [93]. A heuristic argument to motivate

it is helpful, before commenting it. One can account for the gauge divergence in the volume

of integration by defining a regulated domain Sσ =
{
τ ∈ C : Re τ ∈ [−1/2, 1/2] ∧ Im τ ∈

[σ−1,+∞[
}
, with σ ≫ 1, and establishing the relationship

1

volPSL2(Z) F

∫
F

d2τ

τ22
Z(τ, τ)

σ∼∞≃ 1

volPSL2(Z) Sσ

∫
Sσ

d2τ

τ22
Z(τ, τ),
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where the volumes of Sσ and F with respect to the modular-invariant measure are

volPSL2(Z) Sσ ≡
∫

Sσ

d2τ

τ22
=

∫ 1/2

−1/2
dτ1

∫ ∞

σ−1

dτ2
τ22

= σ,

volPSL2(Z) F ≡
∫

F

d2τ

τ22
=

∫ ∞

√
3/2

dτ2
τ22

− 2

∫ 1

√
3/2

dτ2
τ22

√
1− τ22 =

π

3
.

In the Sσ-integration, the partition function effectively receives contributions only from the

physical states. In terms of the function

g(τ2) =

∫ 1/2

−1/2
dτ1 Z(τ1, τ2), (3.7.7)

one can write

lim
σ→∞

[
1

volPSL2(Z) Sσ

∫
Sσ

d2τ

τ22
Z(τ, τ)

]
= lim

σ→∞

1

σ

∫ ∞

σ−1

dτ2
τ22

g(τ2) = lim
σ→∞

g(σ−1),

assuming the integral to be dominated by the region around τ2 ∼ σ−1 ∼ 0+ and ignoring

the τ2-dependence of g(τ2). This represents a heuristic derivation of the Kutasov-Seiberg

identity

Λ̃D = − 1

24

1

κ2Dl
2
s

lim
σ→∞

g(σ−1). (3.7.8)

This equivalence matches an integral with a limit definition. It is proven in physical terms

in ref. [93], and it assumes a theory that is free of physical tachyons. In the mathematical

literature, this identity can be shown via a generalisation of the Rankin-Selberg-Zagier

technique that lies in unfolding the F-domain integration into an S-domain integration

by taking advantage of the modular invariance of the partition function [89, 125–128], as

recently reviewed by ref. [129]. Similarly to the case of open strings, it might be feared

that the cosmological constant in eq. (3.7.8) could be divergent, when approaching the

UV-region σ ∼ ∞. However, such a divergence must be absent due to modular invariance.

Therefore, the finiteness of eq. (3.7.8) can be interpreted as the result of some sort of

boson-fermion cancellation. This is a manifestation of misaligned supersymmetry.

In particular, expanding g(τ2) in terms of gn, it is possible to infer the small-τ2 behaviour∑
n∈ 1

2
N0

(−1)Fngn e
−4πτ2n τ2∼0+∼ −24κ2Dl

2
s Λ̃D τ

D/2−1
2 . (3.7.9)

This expression is important for the definition of the regularised supertraces (as also men-

tioned in section 3.3). Some of these are finite as a consequence of the identity in eq. (3.7.9)

and of the finiteness of the regularised cosmological constant [28]. Note that for open strings

one can formally define supertraces, but they are not manifestly related to the cosmological

constant in an obvious way. Along with further comments on closed-string supertraces, an

interpretation is proposed in section 3.8.

Again, it is worthwhile to conclude with a comment on the states counting. According

to eqs. (2.1.38, 2.1.52), the closed-string mass operators and the Virasoro 0-generators are

related as L̃0 = α′p̃2/4 + α′m2/2 and L̃0 = α′p̃2/4 + α′m2/2, with m2 = m2 = 2n/α′, with
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n ∈ N0/2 denoting the number-operator eigenvalue up to the vacuum-energy shift. There-

fore, in accordance with eq. (2.1.45), ignoring spacetime momentum, closed-string partition

functions are of the form Z ∼ tr q[τ ]α
′m2/2q[τ ]α

′m2/2 ∼
∑

k∈N0/2

∑
l∈N0/2

akl q[τ ]
kq[τ ]l. This

confirms that the coefficients of the term qnqn in these expansions effectively count the net

degeneracies at the mass level α′M2 = 4n, as in section 3.3.

3.7.2 Open-String Misaligned Supersymmetry

For simplicity, it is convenient to start by considering open strings since their partition

functions just involve a single term. According to eq. (3.7.2), the key fact to make sure

there are no UV-divergences is that the partition function

MDp(t) =
1

(2t)
p+1
2

M(it) (3.7.10)

approaches the region t ∼ 0+ like tϵ, with ϵ > 0, which guarantees a finite cosmological

constant in the absence of tachyons. The main topic of this section is the motivation of the

conditions under which the one-loop open-string comsological constant is finite. The focus

is going to be on the p-independent termM(it) =M(τ = it), where the functionM =M(τ)

is typically expressed as a pure Dedekind η-quotient, with the power-law prefactor being the

only difference between branes of different spacetime dimensions. It is going to be shown

that the misaligned symmetry in the associated state degeneracies leads to cancellation of

exponential divergences in the one-loop partition function. A remnant modular symmetry

moreover ensures that all power-law divergences cancel, leading to a finite result.

3.7.2.1 Setup

For definiteness, the focus is going to be on the class of tachyon-free open-string theo-

ries in which the partition function M = M(τ) is not amenable to the special Suss-

man HRR-expansion of eq. (3.5.9), but the negative of the shifted-argument function

M̃(τ) = M(τ + 1/2) is. This reduces in fact to case 1a in the discussion of subsection

3.6.2, but case 1b could be discussed analogously. Note that generically there can also be

an overall numerical positive prefactor that leads to trivial modifications of the equations

below, but it is immediate to include this rescaling in the results.

For q[τ ] = e2πiτ , if the partition function M(τ) has the Laurent expansion

M(τ) =
∑
n∈N0

(−1)Fngn q[τ ]
n, (3.7.11)

then the negative of the shifted-argument function M̃(τ) reads

− M̃(τ) =
∑
n∈N0

(−1)n+1(−1)Fngn q[τ ]
n. (3.7.12)

An instance of this scenario is that of an anti-Dp-brane on top of an Op-plane as discussed in

great detail in subsections 3.5.3 and 3.6.2. Extensions to other more complicated scenarios
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are immediate. Employing the Sussman HRR-expansion of eq. (3.5.9) for the function

f(τ) = −M̃(τ), the coefficients are found to be

(−1)n+1(−1)Fngn =
∑
α∈Γ

2π c2(α) [c3(α)]
c1+1

2

[24n]
c1+1

2

Pα(n)

α
Ic1+1

[(
2π2

3α2
c3(α)n

) 1
2
]
. (3.7.13)

The terms in eq. (3.7.13) are only valid for n > 0, since the general expression of the

coefficients does not cover the case corresponding to n = 0. Taking all this into account,

one can now restrict the attention to the case τ = iτ2, and the function M(iτ2) can be

expressed in the form

g(τ2) ≡M(iτ2) = (−1)F0g0 +
∑
α∈Γ

α∑
β=1

Pα(β)gα(τ2;β). (3.7.14)

In this expression, the terms Pα(β), with β = 1, . . . , α, are the α different values that the

periodic function Pα(n) can assume. Moreover, the sets Nα(β) = {n ∈ N : n = βmodα}
denote the sets of integers which satisfy Pα(n) = Pα(β) for all n ∈ Nα(β). Furthermore,

the functions gα(τ2;β) are defined as

gα(τ2;β) =
∑

n∈Nα(β)

(−1)n+1 2πc2(α)[c3(α)]
c1+1

2

α[24n]
c1+1

2

Ic1+1

[(
2π2

3α2
c3(α)n

) 1
2
]
e−2πτ2n. (3.7.15)

Up to this point, for each α ∈ Γ, the sum over n ∈ N has been reorganised into α sums over

n ∈ Nα(β), for β = 1, . . . , α. For each of these sums, the quantity Pα(β) factorizes out, due

to its α-periodicity.

It is actually convenient to make a further distinction, namely to distinguish the contri-

butions for which (−1)n+1 is positive from those for which it is negative. As in subsection

3.6.2, it is assumed that only odd terms α = 2ω+1 ∈ 2N0+1 can appear in the HRR-sum.

Then, one can introduce the two sets N±
α (β) = {n ∈ Nα(β) : (−1)n+1 = ±1} and express

the full function g(τ2) as

g(τ2) = (−1)F0g0 +
∑
α∈Γ

α∑
β=1

Pα(β)
[
g+α (τ2;β)− g−α (τ2;β)

]
, (3.7.16)

where the two definite-sign functions g±α (τ2;β) have been defined as

g±α (τ2;β) =
∑

n∈N±
α (β)

2πc2(α)[c3(α)]
c1+1

2

α[24n]
c1+1

2

Ic1+1

[(
2π2

3α2
c3(α)n

) 1
2
]
e−2πτ2n. (3.7.17)

Notice that for the functions g±α (τ2;β) the superscript sign does not relate to their effective

contribution to g(τ2) being positive or negative: this also depends on the sign of the overall

term Pα(β) they are multiplied with. In the rest of this section, eqs. (3.7.16, 3.7.17) will

constitute the fundamental tool to discuss misaligned supersymmetry.
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3.7.2.2 Cancellation of Exponential Divergences

In order to discuss the behaviour of the function g(τ2) in eq. (3.7.16), one can take advantage

of the series expansion of the modified Bessel function of the first kind, reviewed in appendix

A.2.1, i.e.

Iδ(z) =
(z
2

)δ ∞∑
k=0

(z2
4

)k
k! (δ + k)!

, (3.7.18)

where it is understood that δ is a positive integer. Thanks to this, setting δ = c1 + 1, the

functions in eq. (3.7.17) can be expressed as

g±α (τ2;β) =
2πc2(α)

α1−δ

∑
n∈N±

α (β)

∞∑
k=0

[
π

12

c3(α)

α2

]k+δ (2πn)k

k! (k + δ)!
e−2πτ2n. (3.7.19)

This expression makes it possible to study the region τ2 ∼ 0+ in quite a fruitful way. In

what follows, a finite τ2 > 0 will be considered in order to carry out the calculations with

the infinite sums, then the behaviour of the functions of interest will be assessed in the limit

τ2 → 0+.

Because the elements in the infinite summations over k and n are positive-definite, the

order of the two summations in eq. (3.7.19) can be interchanged. The sum for n ∈ N±
α (β)

can be rearranged by observing that its elements can be written as n = m±
α (β)mod γα,

where m±
α (β) is an integer depending on α and β and γα = lcm (2, α) = 2α, with α assumed

to be odd. For the time being, it is convenient to leave the notation γα, with the explicit

α-dependence not written for brevity, to facilitate the analogous closed-string discussion

below. Note that m±
α (β) is by definition the smallest element in the set N±

α (β), and it is

generally not corresponding to β. For instance, m+
α (β) is the smallest positive odd natural

equal to βmodα. As α is assumed to be odd, if β is odd too one has m+
α (β) = β, while if

β is even one has m+
α (β) = β +α, which is odd. An analogous reasoning applies to m−

α (β).

In general, it is possible to write

m±
α (β) = β +

(1± (−1)β)

2
α. (3.7.20)

This relationship will be helpful later on, but for now the terms m±
α (β) can be left unex-

panded. With this parametrisation, the summation over n can be performed in terms of

the geometric series, resulting in

∑
n∈N±

α (β)

(2πn)k e−2πτ2n =

∞∑
l=0

[
2π(m±

α (β) + lγα)
]k

e−2πτ2[m±
α (β)+lγα]

= (−1)k
dk

dτk2

∞∑
l=0

e−2πτ2[m±
α (β)+lγα]

= (−1)k
dk

dτk2

[
e2π[γα−m

±
α (β)]τ2

e2πγατ2 − 1

]
.

(3.7.21)
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In this way, to finally explore the region where τ2 ∼ 0+,3.7 it is sufficient to Taylor-expand the

leftover order-k derivative. In the notation reviewed in appendix A.1.2, from the expansion

e2π[γα−m
±
α (β)]τ2

e2πγατ2 − 1
=

1

2πγα

1

τ2
+
γα − 2m±

α (β)

2γα
+O(τ2; 0),

one learns that the function to be differentiated k times at leading order is 1/(2πγατ2).

It should be noted that this is the only β- and (±)-independent term, since the leftover

power-law term depends on β and the (±)-sign via the terms m±
α (β). In more detail, one

obtains

(−1)k
dk

dτk2

[
e2π[γα−m

±
α (β)]τ2

e2πγατ2 − 1

]
=

1

2πγα

k!

τ1+k2

+

∞∑
l=0

fl(k,m
±
α (β))τ

l
2, (3.7.22)

where fl(k,m
±
α (β)) are constants not depending on τ2 that will be discussed later on (see

eq. (3.7.32)) to keep the discussion here as plain as possible. Therefore, performing the sum

over n, eq. (3.7.22) provides the β- and (±)-independent divergent term in the function

g±α (τ2;β) defined in eq. (3.7.17). In particular, thanks to the expansion of eq. (3.7.22), the

original function g±α (τ2;β) appearing in eq. (3.7.17), and rearranged into a different form

in eq. (3.7.19), can now be written as

g±α (τ2;β) =
1

τ2

c2(α)

α1−δγα

[
π

12

c3(α)

α2

]δ ∞∑
k=0

[
π

12

c3(α)

α2

1

τ2

]k
(k + δ)!

+ ∆g±α (τ2;β), (3.7.23)

where, according to eq. (3.7.22), the remainder is

∆g±α (τ2;β) =
2πc2(α)

α1−δ

∞∑
k=0

∞∑
l=0

[
π

12

c3(α)

α2

]k+δ
k! (k + δ)!

fl(k,m
±
α (β)) τ

l
2. (3.7.24)

So, according to eq. (3.7.23), the function g±α (τ2;β) contains a β- and (±)-independent

singular part as τ2 ∼ 0+ and a β- and (±)-dependent power-series remainder. As anticipated

above, the key difference among these two terms consists in the fact that only the series has

a dependence on β and the (±)-sign. In the singular part, one can recognise the leftover

sum to be

∞∑
k=0

[
π

12

c3(α)

α2

1

τ2

]k
(k + δ)!

=
e

π
12

c3(α)

α2
1
τ2[

π

12

c3(α)

α2

1

τ2

]δ
[
1− 1

(δ − 1)!
Γ

[
δ,
π

12

c3(α)

α2

1

τ2

]]
, (3.7.25)

3.7To evaluate the series by writing (2πn)ke−2πτ2n = (−1)k(d/dτ2)
k e−2πτ2n, one must invert the order of

the differentiation with respect to k and of the summation over n. For a series of functions fn(x), if their series

f(x) =
∑

n∈N fn(x) is convergent and if the series of their derivatives
∑

n∈N f ′
n(x) is uniformly convergent,

then the identity holds f ′(x) =
∑

n∈N f ′
n(x) (see eq. (0.307, [130])). For the case at hand, the series is not

convergent in the region τ2 ∼ 0+, as shown by the term 1/τ2, so one should remove this and consider the

leftover sum. This is the working assumption being adopted. An alternative way to compute the required

series rigorously is to make use of the results for the arithmetico-geometric sum (see eq. (0.113, [130])).
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where Γ(ν, z) is the incomplete Γ-function. In the region τ2 ∼ 0+, the incomplete Γ-function

can also be expanded to write

∞∑
k=0

[
π

12

c3(α)

α2

1

τ2

]k
(k + δ)!

=
e

π
12

c3(α)

α2
1
τ2[

π

12

c3(α)

α2

1

τ2

]δ − 1

(δ − 1)!

τ2[
π

12

c3(α)

α2

] +O(τ2; 0)
2. (3.7.26)

One can eventually conclude that the function g±α (τ2;β) around the point τ2 ∼ 0+ reads

g±α (τ2;β)
τ2∼0+≃ c2(α)

γα
αδ−1 τ δ−1

2 e
π
12

c3(α)

α2
1
τ2 + r(α, τ2) + ∆g±α (τ2;β), (3.7.27)

where the exponential term comes from the leading divergent term in eq. (3.7.26), with an

associated finite remainder

r(α, τ2) = − 1

(δ − 1)!

c2(α)

γα
αδ−1

(
π

12

c3(α)

α2

)δ−1

+O(τ2; 0), (3.7.28)

and ∆g±α (τ2;β) is the power-series remainder defined in eq. (3.7.24). In the limit τ2 → 0+,

the functions in eq. (3.7.27) obviously diverge sector-by-sector due to the exponential of

1/τ2. However, the complete physical information relating to the one-loop cosmological

constant is contained in the complete (±)- and β-averaged function g(τ2) defined in eq.

(3.7.16), and in this one the singular part is automatically cancelled out by the fermion-

boson oscillation appearing therein at order α = 1 and by the HRR-expansion property∑α
β=1 Pα(β) = 0 in eq. (3.5.11) for higher orders α > 1. This is true not only for the

leading exponentially-divergent term in eq. (3.7.27), but also for the remainder terms in

r(α, τ2), since they all are independent of the (±)-sign and of β. In other words, this

structure carries over to all the subleading terms that descend from the term scaling as

1/τk+1
2 in the expansion of eq. (3.7.22), i.e. those contained in eq. (3.7.25). Due to the

(±)-independence, one may also still explain the subleading-order cancellations as more

standard boson-fermion cancellations, but, noticeably, this is not necessary (moreover, the

perspective in terms of the Pα(β)-cancellation is instrumental for the closed-string analysis

in section 3.7.3). All cancellations find an intuitive interpretation in the anti-Dp-brane/Op-

plane example represented in fig. 3.7. In fact, since all the β- and (±)-independent terms

in eq. (3.7.23) cancel out, the function g = g(τ2) appearing in eq. (3.7.16) can be simply

written as

g(τ2) = (−1)F0g0 +
∑
α∈Γ

α∑
β=1

Pα(β)
[
∆g+α (τ2;β)−∆g−α (τ2;β)

]
. (3.7.29)

Remarkably, this is just a constant term plus a power-series difference. Therefore, this is

a proof that all of the exponentially-divergent contributions to the one-loop cosmological

constant coming from the β- and (±)-independent part of eq. (3.7.23) cancel out when

summing over all of the sectors of the theory, leaving at most a power-law dependence

on τ2. The only thing that matters to reach this conclusion is that all of these singular

contributions to g±α (τ2;β) are identical for a given α (i.e. they are independent of β and of

the (±)-sign) and therefore cancel out when averaging over the sectors labelled by β and/or

when taking into account the difference between positive and negative terms.

132



3.7. Formal Interpretation of Misaligned Supersymmetry

All this is a formalisation of the cancellations taking place for open strings among the so-

called envelope functions. These are the functions Φ±
α (n;β) defined for a continuous variable

n ∈ R+ in subsection 3.6.2 as the functions that interpolate between the contributions to

the degeneracy numbers (−1)Fngn in the Hardy-Ramanujan-Rademacher-expansion from

the sector β, at a given order α. In fact, the mathematics underlying the cancellations is

exactly the same. In the case of the envelope functions, one reaches an all-order cancellation

as the envelope functions, by definition, depend on β only through the terms Pα(β), but

their actual meaning in physical quantities that depend on sums over discrete integers is not

apparent. In the calculation above, instead, it has been shown explicitly that the exponential

divergences appearing in the one-loop cosmological constant are indeed dependent on β just

via the terms Pα(β) and therefore their cancellation is automatic if the cancellation takes

place among envelope functions. In other words, the vanishing of the average of the envelope

functions discussed in subsection 3.6.2 is a sufficient condition to claim that the exponential

divergence in the function g(τ2) cancels out.

3.7.2.3 Power-Series Terms

In order to claim the finiteness of the one-loop cosmological constant, the leftover power-

law terms in eq. (3.7.29) need to be studied carefully as τ2 ∼ 0+. Indeed, although the

exponential divergences are proven to be absent, the integral defining the cosmological

constant may still be singular as a power-law. In general one can write

g(τ2) = (−1)F0g0 +∆g+(τ2)−∆g−(τ2) = (−1)F0g0 +

∞∑
l=0

blτ
l
2, (3.7.30)

where the τ2-dependence comes from the difference of the two power-series expansions

∆g±(τ2) =
∑
α∈Γ

α∑
β=1

Pα(β)∆g
±
α (τ2;β) =

∞∑
l=0

b±l τ
l
2, (3.7.31)

with the definition bl = b+l −b−l . On the other hand, the constant term is g(0) = (−1)F0g0+

b0. It turns out that a few manipulations allow one to determine an analytic expression for

the coefficients of these power-series expansions ∆g±(τ2).

To start, it is possible to characterise the power series ∆g±α (τ2;β) appearing in eq.

(3.7.24) in quite an explicit way. This requires knowledge of the coefficients fl(k,m
±
α (β)),

which can be gained by going back to their original introduction. As reviewed in appendix

A.2.2, from the definition of the Bernoulli polynomials one finds

e2π[γα−m
±
α (β)]τ2

e2πγατ2 − 1
=

1

2πγατ2

2πγατ2 e
2πγτ2

[
1−m±

α (β)
γα

]
e2πγατ2 − 1

=
∞∑
n=0

(−1)nBn

[
m±
α (β)

γα

]
(2πγατ2)

n−1

n!
,

where Bn(x) are the Bernoulli polynomials, with Bn(1 − x) = (−1)nBn(x). So, in the

expansion of eq. (3.7.22) one finds that the series coefficients read

fl(k,m
±
α (β)) =

(−1)l+1

l!

(2πγα)
l+k

k + l + 1
Bk+l+1

[
m±
α (β)

γα

]
. (3.7.32)
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Therefore, the coefficients b±l for the functions ∆g±(τ2) written in eq. (3.7.31) can be

determined by inserting eq. (3.7.32) in eq. (3.7.24) and read

b±l =
(−1)l+1

l!

∑
α∈Γ

2πc2(α)

α1−δ

α∑
β=1

Pα(β)
∞∑
k=0

[
π

12

c3(α)

α2

]k+δ
k! (k + δ)!

(2πγα)
k+l

k + l + 1
Bk+l+1

[
m±
α (β)

γα

]
.

Thanks to this result, one can write the total coefficient bl = b+l − b−l as

bl =
(−1)l+1

l!

∑
α∈Γ

πc2(α)
αl−1

(2π)δ−l

α∑
β=1

∞∑
k=0

[
π2

6

c3(α)

α

]k+δ
k! (k + δ)!

Pα(β)

· 2k+l+1

k + l + 1

[
Bk+l+1

[
m+
α (β)

2α

]
−Bk+l+1

[
m−
α (β)

2α

]]
,

where the identity γα = 2α has also been enforced. By plugging in the definition of m±
α (β)

in eq. (3.7.20), one can see that the difference of Bernoulli polynomials can be written as

Bk+l+1

[
m+
α (β)

2α

]
−Bk+l+1

[
m−
α (β)

2α

]
= (−1)β

[
Bk+l+1

(
β

2α
+

1

2

)
−Bk+l+1

(
β

2α

)]

=
k + l + 1

2k+l+1
(−1)βEk+l

(
β

α

)
,

where En(x) are the Euler polynomials, whose definition and relationship with Bernoulli

polynomials is also reviewed in appendix A.2.2. In view of this, the power-series coefficients

can be written as

bl =
(−1)l+1

l!

∑
α∈Γ

πc2(α)
αl−1

(2π)δ−l

α∑
β=1

∞∑
k=0

[
π2

6

c3(α)

α

]k+δ
k! (k + δ)!

(−1)βPα(β)Ek+l

(β
α

)

=
(−1)l

l!

∑
α∈Γ

πc2(α)
αl−1

(2π)δ−l

α−1∑
r=0

∞∑
k=0

[
π2

6

c3(α)

α

]k+δ
k! (k + δ)!

(−1)rPα(−r)Ek+l
(
1− r

α

)
,

where the change of variable β = α− r has been employed, knowing that α = 2ω+1 is odd

by assumption, and it has been made use of the periodicity condition Pα(α− r) = Pα(−r).
Because the Euler polynomials are such that En(1 − x) = (−1)nEn(x), one can conclude

that the power-series coefficients read

bl =
π

l!

∑
α∈Γ

c2(α)α
l−1

(2π)δ−l

∞∑
k=0

[
π2

6

c3(α)

α

]k+δ
k! (k + δ)!

α−1∑
r=0

(−1)k+rPα(−r)Ek+l
( r
α

)
. (3.7.33)

This represents the coefficient of the order-l term in the power series ∆g(τ2) for a generic

open-string model where only odd values of α appear in eq. (3.5.9). Unfortunately, this
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expression is too complicated, in general, to simplify it further in an analytic way. The

fundamental complication in eq. (3.7.33) lies in the form of the Kloosterman-like term

Pα(−r) defined in eq. (3.5.7): this is very hard to be dealt with analytically, which renders

the remaining sums untreatable too.

Although an explicit derivation of the characteristics of the power-series terms in a

similar way as for the exponential divergences is beyond reach, it is nonetheless possible to

determine the form of such power-law terms by relying on the mathematical properties of

the Dedekind η-function. Let the partition function be a Dedekind η-quotient

M(τ) = ξ

∞∏
m=1

[
η(mτ)

]δm , (3.7.34)

where ξ is some numerical constant. By exploiting the modular properties of the Dedekind

η-function, it is possible to determine the behaviour of this function on the imaginary axis

τ1 = 0 as τ2 ∼ 0+. In fact, under the generating S-transformation S(τ) = −1/τ of the

modular group PSL2(Z), the Dedekind η-function transforms as η(−1/τ) =
√
−iτ η(τ), so,

restricting to the imaginary axis τ = iτ2, one can write

η
( i

τ2

)
=

√
τ2 η(iτ2). (3.7.35)

The definition of the Dedekind η-function allows one to write η(it) = e−
πt
12
∏∞
m=1(1−e−2πmt),

which in turn gives

ln η(it) = −πt
12

+
∞∑
m=1

ln (1− e−2πmt) = −πt
12

+O(e−2πt;∞). (3.7.36)

So, combining the S-transformation relation and the limit as 1/τ2 ∼ ∞, one concludes that,

in the region where τ2 ∼ 0+, the Dedekind η-function behaves as (see appendix A.1.2 for

more details)

η(iτ2)
τ2∼0+≃ τ

− 1
2

2 e
− π

12τ2 . (3.7.37)

Therefore, recalling the definition of the constant c1 = −
∑∞

m=1 δm/2 and introducing the

coefficients

s =

∞∏
m=1

mδm , (3.7.38a)

c4 = −
∞∑
m=1

δm
m
, (3.7.38b)

one can simply write the asymptotic behaviour of the open-string partition function as

M(iτ2)
τ2∼0+≃ ξ s−

1
2 τ c12 e

πc4
12τ2 . (3.7.39)

In the absence of an exponential divergence, i.e. for c4 = 0, which one can assume and

indeed verify in all the explicit examples, including the situations where the cancellations of

subsubsection 3.7.2.2 take place, this provides a direct way to compute the series coefficients
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appearing in the expansion of eq. (3.7.30). Assuming c1 to be integer, which is also verified

in the string-derived examples considered here, eq. (3.7.39) indicates that the constant term

and the first c1 − 1 coefficients are zero and that the first non-zero one is bc1 , i.e.

(−1)F0g0 + b0 = b1 = · · · = bc1−1 = 0, (3.7.40a)

bc1 = ξ s−
1
2 . (3.7.40b)

Note that it is not just possible to easily find this leading power-law term, but that it is

actually possible to also show that all the coefficients bl except bc1 are vanishing. Indeed,

by plugging eq. (3.7.36) into eq. (3.7.37), one finds

η(iτ2) = τ
− 1

2
2 e

− π
12τ2

[
1 +O

(
e
− 2π

τ2 , 0
)]
. (3.7.41)

This means that eq. (3.7.39) is only corrected by terms that are exponentially-suppressed

compared to the leading term. Therefore, if c4 = 0, the conclusion is that bc1τ
c1
2 is the

only non-zero power-law term in the region τ2 ∼ 0+. From the discussion in subsubsection

3.7.1.1, one can see then that the cosmological constant of a Dp-brane theory is not divergent

if c1 > (p+ 1)/2.

Although neat, the result of eq. (3.7.39) hides its origin in terms of oscillations in the

spectrum degeneracies as following from the HRR-expansion. Even though it has not been

possible to show it directly, modular properties must constrain the state degeneracies in

such a way as to ensure such an asymptotic behaviour. In fact, in purely technical terms,

the discussion of the cancellations leading to eq. (3.7.29) may have been bypassed, relying

on the modular properties of open-string partition functions, but of course the reason for

showing those cancellations has been the necessity to give a physical interpretation to the

mechanisms underlying the finiteness of the one-loop cosmological constant. This is also

the reason for which it has been sensible to gather as much information as possible on the

power-series remainder, in the same spirit that has led to showing the cancellation of the

exponential divergences, despite the eventual unmanageability of eq. (3.7.33).

To conclude, it is worthwhile to notice that the expansion of eq. (3.7.39) has been

explained as a consequence of the PSL2(Z)-properties of the Dedekind η-function. However,

this can also be inferred from simpler considerations in mathematical analysis [131]. Details

about both methods are in appendix A.1.2.

3.7.2.4 Example: Anti-Dp-Brane/Op-Plane Theory

It may be enlightening to discuss an explicit example. As usual, the prototypical model

consists of the theory of an anti-Dp-brane sitting on top of an Op-plane.

The cancellation of the exponential divergence in the region τ2 ∼ 0+ has been demon-

strated in subsection 3.7.2.2. In fact, it has been shown that the shifted-argument function

M̃(τ) = −8 η8(2τ)/η16(τ) by which it can be described, defined in eq. (3.5.32), only receives

odd-α contributions in the Sussman HRR-expansion, so the cancellations therein described

take place and one is left at most with a power series in the form of eq. (3.7.29). To discuss

the details of the latter, the tools of subsection 3.7.2.3, and in particular the expansion in

eq. (3.7.39), are necessary.
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For an anti-Dp-brane on top of an Op-plane, according to eq. (3.5.31), the p-independent

partition function is

M(τ) = −8
η16(τ) η16(4τ)

η40(2τ)
. (3.7.42)

For this, besides ξ = −8, one finds s = 1/256, c1 = 4, and the exponential disappears as

c4 = 0, which means

g(τ2) =M(iτ2)
τ2∼0+≃ −128τ42 . (3.7.43)

So, in this case it is apparent that the expected cancellation of divergent terms take place,

and it is also possible to determine explicitly the full power-law dependence. In fact, there

is only one non-zero term. Unfortunately, for the open string there is no analogue of the

Kutasov-Seiberg formula and one has to calculate the integral in eq. (3.7.2) in order to

determine the cosmological constant Λp−. The integral receives contributions from small

and large τ2 so that the above expansion only ensures its finiteness for small τ2, but it does

not allow one to determine analytically its explicit value.

3.7.3 Closed-String Misaligned Supersymmetry

To describe misaligned supersymmetry for closed strings, following eq. (3.7.8), the fun-

damental tool to discuss is the function g(τ2) defined in eq. (3.7.7). The key for a finite

one-loop cosmological constant is a function g(τ2) approaching the region τ2 ∼ 0+ as a con-

stant, according to the Kutasov-Seiberg identity in eq. (3.7.8). The discussion is inherently

more complicated compared to the case of open strings since the partition function is the

product of right- and left-moving sectors, but most of the analysis follows the same pattern.

3.7.3.1 Setup

Let the closed-string partition function be of the form Z(τ, τ) = τ
1−D/2
2 R(τ)L(τ), where

the terms R(τ) = q−n
R
0
∑∞

n=0 a
R
n q

n and L(τ) = q−n
L
0
∑∞

n=0 a
L
nq

n are the right- and left-

moving contributions, respectively, with q = e2πiτ . More generally, the closed-string parti-

tion function can be the sum of several such terms, i.e. Z(τ, τ) = τ
1−D/2
2

∑
σ Zσ(τ, τ), with

Zσ(τ, τ) = Rσ(τ)Lσ(τ), in which case the discussion of exponential divergences below may

be applied to each term Zσ(τ, τ) individually. This is the case for example for the heterotic

SO(16)×SO(16)-theory discussed in subsections 3.5.2 and 3.6.3. It should be pointed out

that it is conceivable that there also may be models in which the cancellations happen

between different terms, and this would require an adaptation of the procedure discussed

below. Also notice that for simplicity here the analysis is referred to the case where n ∈ N0:

terms with n ∈ N0/2 can be studied similarly after a variable rescaling τ ′ = 2τ . The con-

stant terms nR0 and nL0 are also assumed to be integer, which can also follow from a variable

rescaling. Then, one can write

g(τ2) = τ
1−D/2
2

∞∑
n=−n0

(−1)Fngn e
−4πτ2n, (3.7.44)
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where, defining n0 = min (nR0 , n
L
0 ), the net physical degeneracies read

(−1)Fngn = aR
n+nR

0
aL
n+nL

0
. (3.7.45)

If both the functions R(τ) and L(τ) are Dedekind η-quotients that are amenable to the

Sussman HRR-expansion of eq. (3.5.9), then it is possible to express the Laurent coefficients

aR
n+nR

0
and aL

n+nL
0
as simplified HRR-sums, for n > 0. In fact, it is possible to write

g(τ2) = τ
1−D/2
2

[
h0(τ2) + h(τ2)

]
, (3.7.46)

where h0(τ2) represents the sum restricted to coefficients not amenable to the simplified

Sussman HRR-expansion and h(τ2) stands for the remaining infinite series, i.e.

h0(τ2) =

n0∑
n=0

(−1)F−ng−n e
4πτ2n, (3.7.47a)

h(τ2) =
∑
n∈N

∑
α∈ΓR

∑
β∈ΓL

PRα (n+ nR0 )P
L
β (n+ nL0 )f

R
n+nR

0
(α)f

L
n+nL

0
(β) e−4πτ2n. (3.7.47b)

Here, as usual, the two sets containing the contributions to the coefficients are defined as

ΓR = {α ∈ N : cR3 (α) > 0} and ΓL = {β ∈ N : cL3 (β) > 0}, whilst the functions fRn (α)

and fLn (β) represent the rest of the HRR-expansion factors aside from the P -functions.

One can see from eq. (3.7.6) that the cosmological constant is divergent due to the term

h0(τ2) if and only if n0 ̸= 0. In this case there are physical tachyons in the spectrum and

therefore there is no stable vacuum around which one can study the theory. For such cases

the Kutasov-Seiberg identity in eq. (3.7.8) is not applicable and therefore the analysis will

be restricted to theories with n0 = 0, which implies h0(τ2) = (−1)F0g0.

Because of the periodicity of the functions PRα (n) and PLβ (n), given the index ℓ =

1, . . . , lcm (α, β), with the dependence on α and β within its range being left implicit for

brevity, one can rearrange the infinite sum over n in h(τ2) by writing3.8

h(τ2) =
∑
α∈ΓR

∑
β∈ΓL

lcm(α,β)∑
ℓ=1

PRα (ℓ+ nR0 )P
L
β (ℓ+ nL0 )hαβ(τ2; ℓ), (3.7.48)

where the functions have been defined

hαβ(τ2; ℓ) =
∑

n∈Nαβ(ℓ)

fR
n+nR

0
(α)f

L
n+nL

0
(β) e−4πτ2n, (3.7.49)

with the sets Nαβ(ℓ) = {n ∈ N : n = ℓmod lcm(α, β)} being defined in such a way that the

condition PRα (n + nR0 )P
L
β (n + nL0 ) = PRα (ℓ + nR0 )P

L
β (ℓ + nL0 ) holds for all n ∈ Nαβ(ℓ). In a

3.8When summing over n, one has to be careful in exploiting properly the periodicity of the P -functions.

The correct strategy is the same as the one explained in subsection 3.6.3. One splits the sum over n into

ℓ = 1, . . . , lcm(α, β) contributions, in front of which the P -functions factorise. Then, within each of these

contributions one has to sum the f -functions over all of the possible values of n associated to the fixed ℓ,

namely those for which n = ℓmod lcm(α, β). This is needed since one wants to sum over all n such that

PR
α (n+ nR

0 )P̄
L
β (n+ nL

0 ) = PR
α (ℓ+ nR

0 )P̄
L
β (ℓ+ nL

0 ), for a fixed ℓ, to be able to ignore in this step the details

of the P -functions. In fact, the product PR
α (n+ nR

0 )P̄
L
β (n+ nL

0 ) is unchanged by an lcm(α, β)-step.

138



3.7. Formal Interpretation of Misaligned Supersymmetry

straightforward calculation, analogous to the open-string one discussed above, one can show

that if the functions hαβ(τ2; ℓ) have a divergent exponential term which is independent of ℓ,

then the vanishing of the pure P -function combinations in one sector is enough to conclude

that such exponential divergences cancel out. This is discussed below.

3.7.3.2 Cancellation of Exponential Divergences

Defining δR = cR1 +1 and δL = cL1 +1 for brevity, by making use of the explicit form of the

functions fRn (α) and f
L
n (β), and thanks to the Taylor expansion of the Bessel function, one

can write the functions in eq. (3.7.49) as

hαβ(τ2; ℓ) =

=
4π2cR2 (α)c

L
2 (β)

α1−δRβ1−δL

∞∑
a=0

∞∑
b=0

[
π

12

cR3 (α)

α2

]δR+a[ π
12

cL3 (β)

β2

]δL+b∑
n∈Nαβ(ℓ)

(2πn)a+b e−4πτ2n

a!b!(δR+a)!(δL+b)!
.
(3.7.50)

Defining the step γαβ = lcm (α, β), according to the definition of the sets Nαβ(ℓ) above, it

is possible to write

∑
n∈Nαβ(ℓ)

(2πn)a+b e−4πτ2n =

∞∑
k=0

[2π(ℓ+ kγαβ)]
a+b e−4πτ2(ℓ+kγαβ) =

(
−1

2

d

dτ2

)a+b e4π(γαβ−ℓ)τ2

e4πγαβτ2 − 1
.

So the Bernoulli polynomials appear again, enabling one to write in general(
−1

2

d

dτ2

)r e4π(γαβ−ℓ)τ2

e4πγαβτ2 − 1
=

1

4πγαβτ2

r!

(2τ2)r
+

∞∑
m=0

Bm+r+1

(
ℓ

γαβ

)
(−1)m+1(2πγαβ)

m+r(2τ2)
m

(m+ r + 1)m!
,

which eventually means∑
n∈Nαβ(ℓ)

(2πn)a+b e−4πτ2n =

=
1

4πγαβτ2

(a+ b)!

(2τ2)a+b
+

∞∑
m=0

Bm+a+b+1

(
ℓ

γαβ

)
(−1)m+1(2πγαβ)

a+b+m(2τ2)
m

(m+ a+ b+ 1)m!
.

(3.7.51)

This formally looks the same as for open strings, as expected. In particular, the first

term could again give rise to exponential divergences, once it is resummed over a and b.

However, as in the open-string case, such a divergent term is manifestly independent of ℓ

and therefore, in the full expression of h(τ2) in eq. (3.7.48), one can immediately perform

the sum over such ℓ. Defining ξαβ = β/ gcd(α, β), for instance, for β > α, this sum gives

lcm(α,β)∑
ℓ=1

PRα (ℓ+ nR0 )P
L
β (ℓ+ nL0 ) =

α∑
kα=1

ξαβ−1∑
m=0

PRα (kα +mα+ nR0 )P
L
β (kα +mα+ nL0 )

=

α∑
kα=1

PRα (kα + nR0 )

ξαβ−1∑
m=0

P
L
β (kα +mα+ nL0 )


= 0,

(3.7.52)
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implying the absence of exponential divergences, as for the open-string case. To achieve

this result, the periodicity of the PRα -function in the right-moving sector has been used and

it has been observed that the sum over the PLβ -function in the left-moving sector vanishes

due to the identity of eq. (3.5.11). For α > β, of course, one can simply exchange them

above. So, for an exhaustive analysis, one is left with α = β, in which case though one

cannot generically show a cancellation. This means that in such cases divergences can

arise. However, if for example only odd αs and even βs appear in the right- and left-moving

sectors, respectively, or viceversa, then such a condition is simply not encountered. In such

cases, all the exponential divergences cancel out. For other theories, the cancellations may

also happen to take place between different terms in the partition function (i.e. different

right-left products cancelling their contributions against each other). This may be the case

for theories where one also has to deal with any possible set of terms α and β. The formalism

developed up to this point is expected to be applicable to all such cases, but for the time

being a more general analysis is deferred for a case-by-case study.

As expected, this is a proof of the fact that the cancellation of the envelope functions at

all orders in the HRR-expansion implies a cancellation of the exponential divergence in the

cosmological constant of closed-string theories, if the condition α ̸= β holds for all right-left

products of Kloosterman-like sums. In fact, it is immediate to observe that the mathematics

underlying the envelope-function cancellation discussed in subsection 3.6.3 is precisely the

same as the one appearing in eq. (3.7.52). Moreover, it should also be apparent that

the mathematical structure is exactly the same as for open strings, with minor technical

complications only induced by the product of right- and left-moving sectors, again not

unexpectedly. As mentioned above, in terms of envelope functions, an explicit example is

given by the heterotic SO(16)×SO(16)-theory as discussed in detail in subsection 3.6.3.

3.7.3.3 Power-Series Terms

As the exponential divergences have been shown to be absent, the remaining contributions to

the one-loop cosmological constant are encoded in the function g(τ2) = τ
1−D/2
2

[
(−1)F0g0 +

h(τ2)
]
, as in eq. (3.7.46), where h = h(τ2) is just a power series. Indeed, following the

separation of the divergent part from the power series in the expansion of eq. (3.7.51), the

remaining uncancelled ℓ-dependent part means that the function h(τ2) takes the form

h(τ2) =

∞∑
m=0

bmτ
m
2 , (3.7.53)

with coefficients

bm =
∑
α∈ΓR

∑
β∈ΓL

lcm(α,β)∑
ℓ=1

PRα (ℓ+ nR0 )P
L
β (ℓ+ nL0 )

· 4π
2cR2 (α)c

L
2 (β)

α1−δRβ1−δL

∞∑
a=0

∞∑
b=0

[
π

12

cR3 (α)

α2

]δR+a[ π
12

cL3 (β)

β2

]δL+b
·

(2πγαβ)
a+b

a! b! (δR+a)! (δL+b)!
Bm+a+b+1

(
ℓ

γαβ

)
(−1)m+1(4πγαβ)

m

(m+a+b+1)m!
.

(3.7.54)
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The term (−1)F0g0 can be computed straightforwardly, and its treatment does not present

technical obstructions. On the other hand, the coefficients bm cannot be dealt with explicitly

since they consists of several infinite sums that, in particular due to the presence of the

Kloosterman-like terms, are very difficult to study analytically.

All in all, this is again reminiscent of the open-string result, where only a power series

in τ2 with coefficients given by an expression involving Bernoulli polynomials appears. As

anticipated, though, in the case of closed strings the expressions are even more involved due

to the mixing of the different right- and left-moving sectors. Moreover, a simple argument

giving the specific power-law behaviour is prevented, even if the closed-string partition

function can be written in terms of Dedekind η-quotients, due to the different structure of

the theory. Indeed, for closed strings, results similar to the one in eq. (3.7.39) for open

strings are harder to implement because, in order to discuss the function g(τ2) explicitly

without relying on the HRR-expansion, one has to integrate over the variable τ1, and the

resulting small-τ2 behaviour cannot be written as simply. So, for the closed-string case one

cannot obtain a trivial expression for the power series that arises when expanding g(τ2) for

τ2 ∼ 0+ based off the properties of the Dedekind η-function asymptotics.

To make progress, one has to be careful about the fact that the partition function

may be composed of several terms Zσ(τ, τ) = Rσ(τ)Lσ(τ), each modular non-invariant but

combining into a modular-invariant sum Z(τ, τ) = τ
1−D/2
2

∑
σ Zσ(τ, τ). In this case, the

function to be eventually considered is of the form g(τ2) = τ
1−D/2
2

[
(−1)F0g0 +

∑
σ h

σ(τ2)
]
,

where each function hσ(τ2) =
∑∞

m=0 b
σ
mτ

m
2 is a power series of the form outlined in eqs.

(3.7.53, 3.7.54). Having restored modular invariance, the one-loop cosmological constant is

of course finite and the limit of g(τ2) is finite too, according to the Kutasov-Seiberg identity

in eq. (3.7.8). In fact, in the derivation of the latter, an asymptotic behaviour analogous to

the open-string one in eq. (3.7.39) can be established by considering the Mellin transform

I(s) of the function g(τ2)/τ2. Following refs. [89, 129,131], one can show the relationship

I

[
g(τ2)

τ2

]
(s) ≡

∫ ∞

0
dτ2 τ

s−1
2

g(τ2)

τ2
=

∫
F

d2τ

τ22
E(τ, τ ; s)Z(τ, τ), (3.7.55)

where E(τ, τ ; s) is the non-holomorphic Eisenstein series. Denoting as si ∈ {s0, sa} = ΠI
the poles of the Mellin transform and as r(si) the corresponding residues, one can then

invert the Mellin transform to write

g(τ2)

τ2

τ2∼0+∼
∑
si∈ΠI

r(si)τ
−si
2 , (3.7.56)

On the real axis, s0 = 1 is the only pole. In the rest of the complex plane, these poles can

be seen to be related to the non-trivial zeros of the Riemann ζ-function as sa = ρa/2, where

ρa = 1/2± iγa, for γa ∈ R, assuming the Riemann hypothesis to be correct. In the function

g(τ2), the leading term for τ2 ∼ 0+ is clearly given by the real pole s0 = 1, implying the

finite limit limτ2→0+ g(τ2) = r(s0). The associated residue can be seen to be r(s0) = 3I/π,

where I =
∫

F d2τ Z(τ, τ)/τ22 . It should be noted that this is in fact the essence of the proof

of the Kutasov-Seiberg identity in eq. (3.7.8). To conclude, in analogy with the open-string

result in eqs. (3.7.40a, 3.7.40b), the result is that the coefficients of the power series can be
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written as

(−1)F0g0 +
∑
σ

bσ0 =
∑
σ

bσ1 = · · · =
∑
σ

bσD/2−2 = 0, (3.7.57a)∑
σ

bσD/2−1 = r(s0). (3.7.57b)

3.8 Open-String Supertraces

This section discusses supertraces in String Theory. After a review of their definition in

closed-string theories, it provides an interpretation for the meaning of supertraces in open-

string theories.

3.8.1 Recap: Closed-String Supertraces

In string-theoretic models, there is an infinite number of degrees of freedom, and there-

fore any deviation from supersymmetry generally implies that the standard supertraces

strM2β =
∑

n∈N0/2
(−1)FngnM

2β
n are infinite. In order to a provide a meaningful notion of

string-based supertraces, ref. [28] proposes the definition of supertraces of the form

StrM2β = lim
t→0

[ ∑
n∈ 1

2
N0

(−1)FngnM
2β
n e−2πtM2

n/µ
2

]
, (3.8.1)

for an arbitrary mass parameter µ. These reduce to the standard supertraces for a finite

number of degrees of freedom, but they are also well-defined quantities for theories with an

infinite number of fields, with the exponential of the mass operator playing the role of a

natural cut-off. In fact, in terms of the supertraces of eq. (3.8.1), the one-loop cosmological

constant of a closed-string theory in even D non-compact dimensions can be expressed

as [28]

Λ̃D =
1

κ2Dl
2
s

(−4π)
D
2

96π(D/2− 1)!
Str

(
α′M2

4

)D
2
−1

, (3.8.2)

with all the supertraces of smaller powers of M2 being zero, i.e. StrM0 = StrM2 = · · · =
StrMD−4 = 0. This can be inferred by expressing Λ̃D in eq. (3.7.8) in view of the expansion

of eq. (3.7.9), after fixing µ = 2/
√
α′. In particular, eq. (3.8.2) can be interpreted as a

generalisation of the QFT-expression for the one-loop cosmological constant, which is the

sum of a series of terms depending on the usual supertraces (see e.g. refs. [85, 132]). The

work of ref. [129] generalises these ideas to the scalar-mass corrections too.

As the one-loop cosmological constant Λ̃D is finite in theories exhibiting misaligned su-

persymmetry, in the cases where eq. (3.8.2) holds, misaligned supersymmetry motivates

the finiteness of the supertraces. However, for open strings there is no analogue of a rela-

tionship such as eq. (3.8.2). This dates back to the lack of modular invariance and thus of

a Kutasov-Seiberg-like identity in this case, which prevents the expression of the integral

defining the one-loop cosmological constant in terms of a simple limit. Below it is shown

that an expression in the spirit of eq. (3.8.1) also makes sense for open strings and how to

interpret it.
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3.8.2 Supertraces for Open Strings

In accordance with the definitions of eqs. (3.7.2, 3.7.3, 3.7.14), the one-loop cosmological

constant for the theory of a Dp- or anti-Dp-brane can be written as

ΛDp = −
TDp
2π

∫ ∞

0

dt

(2t)
p+3
2

g(t),

with

g(t) =
∞∑
n=0

(−1)Fngn e
−2πtn.

For tachyon-free theories, the integral can diverge at t = 0, whereas the limit t ∼ ∞ is finite

thanks to the exponential suppression factor e−2πtn, for n > 0, and the power-law damping

t−(p+3)/2, for n = 0. For masses M2
n = n/α′, setting µ2 = 1/α′, the supertraces defined in

eq. (3.8.1) read

StrM2β = lim
t→0

∞∑
n=0

(−1)Fngn

(
n

α′

)β
e−2πtn = lim

t→0

[(
− 1

2πα′
d

dt

)β
g(t)

]
. (3.8.3)

So far, supertraces for open strings are simple quantities that one can compute explicitly,

but their interpretation as physical observables is not apparent. A physical interpretation

is provided below.

Because it has been shown that the exponential divergences of the form e1/t cancel out

and the function g(t) is just a series of non-negative powers of t, as shown in the derivation

of eq. (3.7.29), the function g(t) can be Taylor-expanded around the point t = 0 as

g(t) =
∞∑
β=0

tβ

β!

[( d

dt

)β
g(t)

]
t=0

=
∞∑
β=0

tβ

β!
(−2πα′)β StrM2β.

Since the integration over t ∈ [ϵ,∞[ gives a finite result for an arbitrary ϵ ∈ R+, the

potentially divergent term in the cosmological constant corresponds to the part integrated

over t ∈ [0, ϵ[. The latter can be written as

δΛDp = −
TDp
2π

∫ ϵ

0

dt

(2t)
p+3
2

g(t) = −
TDp
2π

∫ ϵ

0

dt

(2t)
p+3
2

∞∑
β=0

tβ

β!
(−2πα′)β StrM2β.

For any given β, such an integral is convergent if β > (p+ 1)/2, which means that for the

one-loop cosmological constant to be finite one needs to have

StrM2β = 0, β = 0, 1, . . . ,
p+ 1

2
. (3.8.4)

This resembles the closed-string result, where the first non-zero supertrace likewise has to

be StrMD−2. Now, comparing the Taylor expansion of g(t) with the power series defined

in eq. (3.7.30), one can see the identification

bl + (−1)F0g0 δl0 =
(−1)l

l!
(2πα′)l StrM2l. (3.8.5)
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This is an alternative way to interpret the need for vanishing series coefficients: the fact

that the first few of them are zero can be interpreted via the vanishing of the first few

supertraces. Note that eq. (3.7.39) does not receive any power-law corrections. This also

allows one to actually conclude that all supertraces except one vanish in open-string models.

If the non-zero coefficient is bc1 , with c1 > 0, the non-zero supertrace is

StrM2c1 = (−1)c1
c1!

(2πα′)c1
bc1 . (3.8.6)

It is interesting to wonder whether the region near t ∼ ∞ can provide additional infor-

mation about the supertraces. This is not necessarily the case due to the peculiar properties

of string-theory one-loop partition functions under modular transformations. In fact, well-

behaved changes under S-transformations typically relate the regions around t ∼ 0 and

t ∼ ∞. For instance, let the function M(τ) transform as M(i/τ2) = s−1/2τ−c12 M(iτ2/k), for

some positive constant k. Then the leftover integration over t ∈ [ϵ,∞[ reads

ΛDp − δΛDp = −
TDp
2π

∫ ∞

ϵ

dt

(2t)
p+3
2

g(t) = −
TDp
2π

s−
1
2

2c1

(
k

4

)p+1
2

−c1∫ 1/kϵ

0

dy g(y)

(2y)2+c1−
p+3
2

,

thanks to the change of variable t = 1/ky. The potential divergence comes from the region

near y ∼ 0+. Taking again advantage of the expansion of the function g(t), one infers that

the integral is finite so long as β > (2c1 − p − 1)/2. This condition expresses an IR-UV

duality that relates Dp-branes to D(2c1 − 2− p)-branes.

3.8.2.1 Example: Anti-Dp-Brane/Op-Plane Theory

For an anti-Dp-brane on top of an Op-plane, in view of eq. (3.4.11), the one-loop cosmo-

logical constant in eq. (3.7.2) can be expressed as

Λp− = − gs
2π

τDp

∫ ∞

0

dt

2t
Mp−(t) = − gs

2π
τDp

∫ ∞

0

dtM(it)

(2t)p+3
, (3.8.7)

where M(it) is the function defined in eq. (3.5.30) and the Einstein-frame anti-Dp-brane

tension reads τDp = TDp/gs. It should be noted that the oscillatory part of the integrand

transforms under S-transformations as

M

(
i

t

)
=

(
t

2

)−4

M

(
it

4

)
, (3.8.8)

which is manifested as a duality relating anti-Dp- and anti-D(6− p)-branes, for p < 7, i.e.

−
gsτDp
2π

∫ ∞

0

dt M(it)

(2t)
p+3
2

= −
gsτDp
2π

∫ ∞

0

dy M(iy)

(2y)
(6−p)+3

2

,

obtained by a simple change of variable t = 1/(4y), which means

lpsΛp− = l6−ps Λ
(6−p)−. (3.8.9)

Such a condition confirms the fact that the information available in the region near t ∼ ∞
is equivalent to the information available around t ∼ 0+.
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The integral is easy to calculate explicitly. It is convenient to define the integral Ip as

Ip = −
∫ ∞

0

dt

2t
Mp−(t) =

∫ ∞

0

dt

(2t)
1
2
(p+3)

8

ϑ83[2it]
= 4

∫ ∞

0

dt

t
1
2
(p+3)

1

ϑ83[it]
, (3.8.10)

so that

Λp− =
gs
2π

τDp Ip. (3.8.11)

The value Ip is finite as long as p = 0, 1, 2, 3, 4, 5, 6, as can be seen immediately thanks to

the small-t expansion

ϑ−8
3 [it]

t∼0+≃ t4. (3.8.12)

One can evaluate the integral numerically and find

I0 = I6 ≃ 8.32542,

I1 = I5 ≃ 4.54293,

I2 = I4 ≃ 3.4919,

I3 ≃ 3.2305.

As anticipated, the equality for S-dual anti-Dp-/anti-D(6− p)-branes can be easily seen to

follow from the modular transformation

ϑ3[it
−1] = t

1
2ϑ3[it]. (3.8.13)

For p > 6, the one-loop cosmological constant diverges and the flat-spacetime calculation

does not give a sensible answer. This can be attributed to the fact that the corresponding

anti-Dp-brane on top of an Op-plane strongly backreacts and no asymptotic flat-spacetime

solution exists.

The full vacuum energy consists of the tree-level potential, which prior to the compact-

ification corresponds to the constant part of the DBI-term, plus the one-loop correction.

Let the shifted dilaton be ϕ = Φ− ⟨Φ⟩. Then, in the string frame, the contribution to the

action reads

Sp−Λ = −τDp
∫
W1,p

dp+1ξ
√

−Gp+1 e
−ϕ
[
1 +

gs
2π

Ip e
ϕ

]
, (3.8.14)

where Gp+1 is the determinant of the pulled-back metric, with φ : W1,p ↪→ X1,9 being

the embedding function of the anti-Dp-brane worldvolume W1,p into the 10-dimensional

spacetime X1,9. As expected, the one-loop correction to the tree-level vacuum energy is

suppressed by a factor gs, which is the open-string coupling. The 10-dimensional Einstein

frame is defined by the metric ĝMN = e−
ϕ
2GMN , which gives

Sp−Λ = −τDp
∫
W1,p

dp+1ξ
√
−ĝp+1 e

(p−3)
4

ϕ

[
1 +

gs
2π

Ip e
ϕ

]
. (3.8.15)

To conclude, one can eventually compute the supertraces. From the previous analysis,

it appears that the function g(t) is

g(t) = −8ϑ−8
3 [2it], (3.8.16)
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which means that the supertraces can be computed as

StrM2β = −8 lim
t→0

[(
− 1

2πα′
d

dt

)β
ϑ−8
3 [2it]

]
. (3.8.17)

From the small-t expansion in eq. (3.8.12), one can see immediately that the only non-zero

supertrace arises for β = 4, with StrM8 = −128·4!/(2πα′)4. This is consistent with the fact

that in the anti-Dp-brane/Op-plane theory one has bl + (−1)F0g0 δl0 = 0 for l = 0, 1, 2, 3,

with the first non-zero coefficient being b4 = (2πα′)4 StrM8/4! = −128 and a one-loop

cosmological constant finite up to p = 6.

3.9 Non-Supersymmetric Strings

and Misaligned Supersymmetry

In this section, a review is provided of the known consistent tachyon-free 10-dimensional non-

supersymmetric models, i.e. the heterotic SO(16)×SO(16)-theory, the Sugimoto USp(32)-

model and the type 0’B SU(32)-theory. It is going to be argued that they all exhibit

the defining features of misaligned supersymmetry in parts of their spectra.3.9 This sup-

ports the idea that misaligned supersymmetry is a generic feature appearing in the non-

supersymmetric string landscape.

3.9.1 Heterotic SO(16)×SO(16)-Theory

As discussed thoroughly in sections 3.3, 3.6 and 3.7, the heterotic SO(16)×SO(16)-theory is a

prototypical 10-dimensional non-supersymmetric closed-string theory exhibiting misaligned

supersymmetry. Its misalignment has to be studied in relation to a closed-string partition

function involving the product of right- and left-moving sectors.

As signalled by the dualities of eqs. (3.5.28a, 3.5.28b), the partition function can be

described in terms of the two functions defined in eqs. (3.5.15a, 3.5.15b), i.e.

R1(τ) =
2S8
η8

(τ) =
ϑ42(τ)

η12(τ)
=

16 η8(2τ)

η16(τ)
, (3.9.1)

L1(τ) =
ϑ83(τ)ϑ

8
4(τ)

η24(τ)
=

η8(τ)

η16(2τ)
. (3.9.2)

For both R1 and L1, the Sussman HRR-expansion of eq. (3.5.9) applies, with only odd αs

and even βs appearing, respectively. Not all terms in the partition function are of the form

of eq. (3.9.1) or eq. (3.9.2), but, apart from the rescaling τ ′ = 2τ that only amounts to

index labelling, they differ at most due to 1/2-shifts as

R̃1(τ) = R1(τ + 1/2) =
16 η16(τ)η16(4τ)

η40(2τ)
, (3.9.3)

3.9It is worth pointing out ref. [118] for a recent review on non-supersymmetric strings and ref. [133] for

an analysis of the interactions between branes in them.
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L̃1(τ) = L1(τ + 1/2) = − η8(2τ)

η8(τ)η8(4τ)
. (3.9.4)

The function L̃1 can be studied via eq. (3.5.9). On the other hand, the function R̃1 is not

amenable to this Sussman HRR-expansion, but this does not constitute a problem since

for counting the state degeneracies one can just work with R1 and keep track of the signs

produced by the shift. A plot of the lightest energy states in the spectrum is in fig. 3.1.

3.9.2 Sugimoto USp(32)-Theory

The Sugimoto USp(32)-theory, introduced in section 2.1.3, is a non-supersymmetric open-

string theory and, in fact, its partition function presents the same structure as the anti-Dp-

brane/Op-plane theory. The latter has been considered in detail in sections 3.4, 3.6 and 3.7

as a prototypical case-study of open-string misaligned supersymmetry.

Effectively, implementing the Jacobi identity V8 = S8, the Sugimoto model is described

by the Möbius-strip amplitude in eq. (2.1.68), which can be written as

S =
1

2

∫ ∞

0

dt

t6
V8 + S8
η8

[
it+

1

2

]
. (3.9.5)

Ignoring the power-law term, the integrand can be analysed by considering it as the restric-

tion to imaginary arguments of the function

S(τ) =
1

2

V8 + S8
η8

[
τ +

1

2

]
. (3.9.6)

Not unexpectedly, this has exactly the same structure as the open-string theory shown to ex-

hibit misaligned supersymmetry, i.e. an anti-Dp-brane sitting on top of an Op-plane, whose

p-independent partition function in eq. (3.5.31) is in fact M = −S. This is not amenable

to the Sussman HRR-expansion, but the shifted-argument function is. This means that the

exponential UV-divergences cancel automatically as in eq. (3.7.29). In the classification of

section 3.6, this is case 1a. One should also rememeber that in fact, up to a constant factor,

this is the function R̃1, according to the dualities in eq. (3.5.34).

Importantly, one should note that there is an IR-divergence. Since the function above

is R̃1 as defined in eq. (3.9.3), its small-τ2 expansion can be obtained from eq. (3.7.43) and

starts with a power τ42 . So, the integral in eq. (3.9.5) is IR-divergent. This is due to the

uncancelled NSNS-tadpole. For these codimension-zero sources, such a tadpole leads to a

runaway potential for the dilaton and could be cancelled by a non-trivial dilaton profile, see

for example refs. [5, 22].

It is interesting to interpret the physical content of the Sugimoto USp(32)-model. The

closed-string sector is the same as the one of the type I theory, and it is supersymmetric. The

open-string sector presents misaligned supersymmetry, and this is reflected in the fact that

the gauge representations of bosons and fermions follow an alternating misaligned pattern:

even-mass level bosons are in symmetric representations and even-mass level fermions are

in antisymmetric representations of USp(32), and vice versa at odd mass levels. This can

be seen easily by counting the degrees of freedom stemming from the combination of the
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V8-terms in the annulus and in the Möbius strip to count the bosons, and the S8-terms to

count fermions [5]. A plot of the open-string sector states can be reconstructed from the

one in fig. 3.3.

3.9.3 Type 0’B SU(32)-Theory

The type 0’B SU(32)-theory represents an especially instructive instance of a 10-dimensional

non-supersymmetric theory, and therefore it is going to be discussed in detail here.

Modular invariance allows one to define type 0A and type 0B theories, as discussed in

subsection 2.1.3. Unlike the case of the type 0A theory, where chirality cannot be achieved,

an orientifold projection of the type 0B theory reveals the existence of a theory with a

chiral spectrum hosting both bosons and fermions. Actually, there exist three possible such

projections with chiral spectra [15, 16, 26, 134], and only one of them, remarkably, removes

the tachyon. For this theory, referred to as type 0’B theory [15], the open-descendant

direct-channel amplitudes are

K = −1

2

∫ ∞

0

dτ2
τ62

O8 − V8 − S8 + C8

η8
[2iτ2],

A = −1

2

∫ ∞

0

dτ2
τ62

1

η8
[
− 2 (nvnc + nons)O8 − 2(nvns + nonc)V8

+ 2(nonv + nsnc)S8 + (n2o + n2v + n2s + n2c)C8

][ iτ2
2

]
,

M =
1

2

∫ ∞

0

dτ2
τ62

(no − nv − ns + nc)C8

η8

[
iτ2
2

+
1

2

]
,

where no, nv, ns and nc are non-negative integers fixed by consistency conditions that are

shortly going to be discussed. In the transverse channel, these amplitudes read

K̃ = −1

2
26
∫ ∞

0
dℓ
C8

η8
[iℓ],

Ã =
1

2
2−6

∫ ∞

0
dℓ

1

η8
[
− (no + nv − ns − nc)

2O8 + (no + nv + ns + nc)
2V8

+ (no − nv + ns − nc)
2S8 − (no − nv − ns + nc)

2C8

]
[iℓ],

M̃ =
1

2
2

∫ ∞

0
dℓ

(no − nv − ns + nc)C8

η8

[
iℓ+

1

2

]
.

Focussing on the consistency conditions stemming from these, one should set the coefficients

of the O8- and S8-terms to zero, since they describe bosonic and fermionic contributions with

the wrong sign: this pair of conditions reduces to no = nc and nv = ns. Further, tadpole

cancellation requires that the ubiquitous C8-contributions vanish, thus fixing no = 32+ nv.

Next, one should notice that the closed-string tachyon in the halved torus amplitude is

removed by the Klein-bottle term, in the direct channel. To additionally remove the open-

string tachyon from the annulus term, too, in view of the tadpole constraints, one has to

fix nv = ns = 0, which means no = nc = 32. Note that these conditions still leave a dilaton

tadpole [15] from the V8-term in the transverse-channel annulus.
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To recap, the total type 0’B one-loop amplitude, proportional to the one-loop cosmo-

logical constant, is

T /2 +K +A+M =

=
1

2

∫
F

d2τ

τ62

|O8|2+|V8|2+|S8|2+|C8|2

|η|16
[τ, τ ]− 1

2

∫ ∞

0

dτ2
τ62

O8−V8−S8+C8

η8
[2iτ2]

−1

2

∫ ∞

0

dτ2
τ62

[
−2 · 322 V8 + 2 · 322C8

]
η8

[
iτ2
2

]
+

1

2

∫ ∞

0

dτ2
τ62

2 · 32C8

η8

[
iτ2
2

+
1

2

]
.

(3.9.7)

Along with the functions R1 and R̃1 of eqs. (3.9.1, 3.9.3) – recalling that S8 = C8 –, this

amplitude also involves the functions already defined in eqs. (3.5.18a, 3.5.23a), i.e.

−R2(τ) =
O8 + V8
η8

(τ) =
ϑ43(τ)

η12(τ)
=

η8(τ)

η8(τ/2)η8(2τ)
, (3.9.8)

R3(τ) =
O8 − V8
η8

(τ) =
ϑ44(τ)

η12(τ)
=
η8(τ/2)

η16(τ)
. (3.9.9)

a convenient τ -rescaling of which gives the functions in eqs. (3.5.19a, 3.5.24a), i.e.

−R′
2(τ) =

η8(2τ)

η8(τ)η8(4τ)
, (3.9.10)

R′
3(τ) =

η8(τ)

η16(2τ)
. (3.9.11)

In accordance with the dualities in eq. (3.5.28a), one should notice the identities L1(τ) =

R′
2(τ + 1/2) = R′

3(τ).

In the amplitude of eq. (3.9.7), one has to study term by term, but luckily this is

a relatively easy task for most contributions. The open-string sector is analogous to the

Sugimoto USp(32)-theory one. On the other hand, a plot representing the total number of

closed-string states for the type 0’B theory is in fig. 3.8.

• The open-string sector exhibits misaligned supersymmetry. The annulus amplitude

happens to vanish by the Jacobi identity, so it represents a supersymmetric term.

On the other hand, the Möbius-strip term is proportional to R̃1(τ), and therefore its

exponential divergences cancel out in the same way as for anti-Dp-branes/Op-planes

and the Sugimoto model. This is a manifestation of misaligned supersymmetry, and

it refers to the so-called case 1a. In fact, this open-string sector follows exactly the

same pattern as the Sugimoto USp(32)-model.

• In the closed-string sector, the spectrum is purely bosonic. Yet, the interpretation that

one may give of it can be seen in the perspective of a misalignment. To start, one

has to observe that the torus amplitude has a tachyonic term which is only cancelled

by the combination with the Klein bottle. This eliminates IR-divergences. Then,

UV-divergences can be seen to be absent from the spectrum since the Klein bottle,

described by the function R′
3, undergoes the cancellations discussed in sections 3.6

and 3.7. In particular, this corresponds to case 1b. Although the physical interpre-

tation of this fact cannot be phrased in terms of bosonic and fermionic oscillations,
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the mathematics is the same and in fact one can observe the cancellation of the di-

vergences of the form e1/τ2 as τ2 ∼ 0+ coming from O8 and V8. The correct physical

interpretation regards the projection undergone by the bosons of the closed-string

sector after the interplay of the halved torus with the Klein bottle. The oscillation

given by the Klein-bottle function −R′
3(τ) = −q−1

[
1− 8q+ 36q2 − 128q3 +O(q, 0)4

]
,

with q = e2πiτ , implies an alternating pattern in the spectrum when combined with

the halved torus [5].

0 5 10 n

10

(−1)Fn log (gn)

(+)-projected states
(−)-projected states

Figure 3.8: The net number of physical degrees of freedom for the lightest energy levels in the

closed-string sector of the type 0’B theory, defined as gn, at the n-th mass level. All states are

bosonic, and each point corresponds to states with mass M2
n = 4n/α′, with n = 0, 1/2, 1, . . . , 10.

There is a clear alternance between states receiving a positive contribution from both the torus and

the Klein bottle, i.e. undergoing the ‘(+)-projection’, and states receiving a positive contribution

from the torus and a negative contribution from the Klein bottle, i.e. undergoing the ‘(−)-projection’.

The type 0’B theory illustrates several important points in the closed-string sector.

Bearing in mind that the tachyon in the halved torus is removed by the tachyonic term in the

Klein bottle, the remaining integration of the torus amplitude is finite since the UV-region is

cut off from the domain thanks to modular invariance. This specific result does not require

misaligned supersymmetry, but also it does not violate the claim that all non-tachyonic

modular-invariant theories are either supersymmetric or misalignedly-supersymmetric [27],

since in fact this specific amplitude technically contains a tachyon. Moreover, the presence

of the tachyon also prevents one from making use of the Kutasov-Seiberg identity, bypassing

any possible physical interpretation based on the torus physical states near the region τ2 ∼
0+. Of course, the tachyon is actually removed due to an orientifold projection, which brings

in a Klein-bottle amplitude, whose mathematical structure is indeed of a misaligned-form

– though the physical interpretation of this closed-string term is just a peculiar orientifold-

induced modding-out of the closed-string states –, as well as misalignedly supersymmetric

open-string sectors. These observations also appear in ref. [135]. An interesting analysis of

the open strings appearing in the type 0’B theory is also in ref. [104].
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3.10 Conclusions

In this chapter, misaligned supersymmetry has been shown to be a feature that can charac-

terise non-supersymmetric theories for both closed and open strings and it has been shown

to be a useful conceptual tool to explain the finiteness of quantum-corrected observables.

An analysis has been performed of the mechanisms by which string theory is capable of

giving finite results in the absence of spacetime supersymmetry. Working at one-loop level

in perturbation theory, it has been reviewed how this is possible due to modular invariance,

which plays a role even when broken by the worldsheet boundaries. Then, such a finite-

ness has been interpreted as a consequence of cancellations between bosonic and fermionic

terms in the full infinite tower of string states. Since the spectrum is not supersymmet-

ric, such cancellations have been named ‘misaligned’ (or ‘asymptotic’) supersymmetry in

the literature [27, 88], and in fact here it has been shown that the analogy with standard

supersymmetric scenarios is indeed accurate.

To start, previous results on misaligned supersymmetry for closed strings, here epito-

mised by the heterotic SO(16)×SO(16)-theory, have been extended to the open-string case

for models in which an anti-Dp-brane is placed on top of an Op-plane. In all cases, mis-

aligned supersymmetry leads to cancellations between bosons and fermions at all different

energy levels. Such cancellations are usually visualised by proving that the sector-averaged

state degeneracies grow at an exponential rate governed by a coefficient Ceff that is smaller

than the inverse Hagedorn temperature, i.e. Ceff < Ctot. Here, it has been shown that in a

large class of theories such a coefficient is actually zero, i.e. Ceff = 0. This proves a total

cancellation, in the envelope functions necessary to define the sector-averaged degeneracies,

that previously has only been conjectured.

Then, given the fact that the formula for the net physical degeneracies is exact, taking

advantage of the results for the exact cancellation of the envelope functions, the way in

which non-zero results actually arise in physical quantities, such as the one-loop cosmo-

logical constant, has been analysed in full mathematical detail. The finite results do arise

when performing discrete sums over the states instead of using the interpolating envelope

functions. In fact, the improved understanding of all the subleading corrections has been

implemented in a mathematically rigorous way to show explicitly how discrete sums over

the number of states do indeed lead to a finite non-zero result. In particular, it has been

shown that the cancellation of the envelope functions is a sufficient condition to conclude

that the exponential high-energy divergences do cancel out. Eventually, the modular prop-

erties of string-theory partition functions have been taken advantage of to confirm these

results and to describe the leftover power-law terms.

As a complement, an interpretation has been given of supertraces for open strings,

relating them to the series coefficients of the function whose integral gives the one-loop

cosmological constant. This is reminiscent of the closed-string results of ref. [28]. It would be

interesting to examine the formulation of the light-fermion conjecture proposed in ref. [136],

which makes use of standard supertraces, in terms of these string-based supertraces for non-

supersymmetric models.

Finally, the presence of misaligned supersymmetry in all known 10-dimensional non-
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supersymmetric tachyon-free string constructions has been discussed. While the heterotic

SO(16)×SO(16)-theory and the Sugimoto USp(32)-model, along with the single anti-Dp-

brane/Op-plane theory, clearly exhibit misaligned supersymmetry, the type 0’B theory is

more interesting. Its closed spectrum is purely bosonic and thus it cannot realise misaligned

supersymmetry, strictly speaking. However, the Klein bottle, needed to remove the closed-

string tachyon, does exhibit a misalignment. Likewise the open-string annulus and Möbius-

strip amplitudes do realise misaligned supersymmetry, as conjectured in ref. [135].

It has been observed that misaligned supersymmetry is present in systems which in prin-

ciple do not share any common feature. For instance, the heterotic SO(16)×SO(16)-theory is

a non-supersymmmetric closed-string model, while anti-Dp-branes on Op-planes, including

the Sugimoto model, involve open-string states that spontaneously break the supersymme-

try preserved by the type-II closed-string sector they are coupled to. Moreover, while the

presence of misaligned supersymmetry in closed strings can be interpreted as a consequence

of the underlying modular invariance [27], this reasoning cannot be directly applied to open

strings. In the reference open-string theory example, the partition function turns out to

be invariant under a congruence subgroup of PSL2(Z), which is crucial for using a specific

version of the Hardy-Ramanujan-Rademacher sum. Certainly, misaligned supersymmetry

seems to be a general phenomenon that is capable of explaining in physical terms the reason

for which String Theory gives finite answers, even in the absence of supersymmetry. This

is an intriguing feature that might help interpreting the hierarchy of scales in the observed

world if, formulated in these terms, one were to discover phenomenologically viable string

constructions resulting in not just finite but also highly-suppressed loop corrections.

A great deal of attention has been devoted to models with anti-Dp-branes on top of

Op-planes, which are examples of brane supersymmetry breaking. The results thus point

towards a relation between this scenario and misaligned supersymmetry. Some models of

brane supersymmetry breaking can give finite answers thanks to misaligned supersymmetry.

Here, it has been shown that, in flat spacetime, the one-loop cosmological constant of these

models is finite and such a finiteness can be explained thanks to the presence of misaligned

supersymmetry. In addition, it is known that the worldvolume field theory living on an

anti-D3-brane on top of an O3-plane is described by non-linear supersymmetry [83, 137].

In this sense, this work also suggests that low-energy effective theories with non-linear

supersymmetry of this kind are completed in the high-energy regime into string theories

with misaligned supersymmetry. A key observation for this is that the mass scale of the non-

linear realisation of supersymmetry is the anti-D3-brane tension, m ∼ τ
1/4
D3 , and similarly

this is the scale that characterises the infinite tower of string states that define the realisation

of misaligned supersymmetry. It would be nice to relate this to the results of ref. [96]. Note

that the anti-D3-brane/O3-plane theory is of particular interest due to its relation to the

KKLT- and LVS-constructions.

There are various directions in which this work can be extended. First, it would be

compelling to extend the analysis to more realistic setups, including quasi-realistic parti-

cle spectra and the compactification to a 4-dimensional space. Here, the main working

example has consisted of only a single anti-Dp-brane in a flat 10-dimensional background

modded out by an orientifold projection. It would be interesting to analyse deviations from
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this, including multiple coincident and/or intersecting branes and considering compactified

4-dimensional theories. In these cases, a central question would be the stability of the

resulting construction, as discussed for example in ref. [121], and the role of the gauge de-

grees of freedom in the counting of states. The role played by the Kaluza-Klein towers of

states should also be investigated further, to check their misalignment. Similar consider-

ations hold for the heterotic SO(16)×SO(16)-theory and for all other theories exhibiting

misaligned supersymmetry, the Sugimoto model and type 0’B theory. In the literature,

heterotic string models exhibiting misaligned supersymmetry have appeared for instance in

refs. [90, 91, 99–103]; see also refs. [138–140] and refs. [141–143]. Noteworthy constructions

involving open strings are for instance refs. [26,87,104–107]. Such constructions have been

attracting significant attention of late, as evidence for supersymmetry in nature remains

elusive. Second, at a more formal level, the analysis of the partition function has been per-

formed only at the one-loop level. Therefore, a natural development would be to understand

whether or not higher-order loops introduce significant alterations to the scenario pictured

here. For the two-loop level, one can see for example ref. [91]. On the mathematical side, in

principle there may exist models that require extensions of the analysis presented here: the

proofs of misaligned boson-fermion cancellations may need to be extended by trying to relax

the assumptions on the form of the partition functions, such as the parity of the values α

denoting successively subleading terms in the HRR-sums, for both open and closed strings,

and the fact that cancellations take place individually within each term for open strings and

within each right-left product for closed strings, as one may expect cancellations of differ-

ent terms against each other. Furthermore, recently ref. [129] has discussed the calculation

of the one-loop scalar masses in string-theoretic constructions. It would be interesting to

analyse the expression of such masses with the tools presented here, in order to see how

misaligned supersymmetry acts concretely in observables other than the cosmological con-

stant. Ultimately, one would like to understand the extent to which modular invariance,

misaligned supersymmetry and the infinite towers of string states can help with the long-

standing hierarchy problems in the cosmological constant and Higgs mass. To conclude,

recently a connection between misaligned supersymmetry and swampland conjectures has

been pointed out in ref. [144]. It would be interesting to pursue along all these lines of

investigation.
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4 ANTI-D3-/D7-BRANES

IN WARPED THROATS

This chapter presents an instance of a quasi-realistic standard-like model construction em-

ploying anti-D3- and D7-branes, going over the material presented in the article [1].

The contents are organised as follows. To start, section 4.1 contextualises the research

for standard-like model realisations with anti-D3- and D7-branes. Then, section 4.2 reviews

strongly-warped scenarios in type IIB string theory, highlighting the hierarchies among

the string, Kaluza-Klein and flux-induced energy scales as well as the conditions for a

low-energy supergravity formulation to be valid, with focus on the role of anti-D3-branes.

As a helpful example, section 4.3 discusses the supergravity description of models with

intersecting D3-/D7-branes in strongly-warped regimes, including possible supersymmetry

breaking by fluxes. Then, section 4.4 extends to intersecting anti-D3-/D7-branes models,

making use of the tools of constrained superfields, and embeds them into scenarios where the

closed-string sector moduli are stabilised. Section 4.5 discusses the supergravity description

of quasi-realistic standard-like models on anti-D3-/D7-brane models at orbifold singularities.

Finally, a summary of possible mass scales in these setups is provided in section 4.6 and

section 4.7 outlines the main conclusions.

4.1 Context

In the string-theory literature, supersymmetry has been a key ingredient of model building

and a leading candidate for a solution to the long-standing gauge hierarchy problem [108,

145]. However, the present-day absence of supersymmetric partners in all experimental

observations [146], together with the failure of supersymmetry to explain the even bigger

cosmological-constant problem, suggests that the nature of supersymmetry breaking has

not yet been understood. In view of this, it is worthwhile to study the viability of string-

theoretic non-supersymmetric constructions also from a phenomenological standpoint.

The fact that anti-D-branes in type II Calabi-Yau orientifold compactifications [56, 60]

spontaneously break supersymmetry has received a great deal of attention [67,68,77,83,84,

95–98,147–167] (for earlier analyses, see refs. [18–21,23,24,121]). Together with fluxes, non-

perturbative and perturbative effects, whose interplay can address the moduli-stabilisation

problem, the positive-definite energy density of anti-D-branes may then also help to obtain

a (quasi-)de Sitter vacuum corresponding to the observed universe [54, 55]. Whilst the

consistency of these de Sitter constructions is still under debate (for an incomplete list, see
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refs. [58, 168–218]), the spontaneous breaking of supersymmetry by anti-D-branes means

that these objects can be used in string model building whilst maintaining the powerful

machinery of supersymmetry.

In more detail, there is a precise identification between the anti-D3-brane action in flat

space placed on an orientifold plane and the Volkov-Akulov theory of non-linearly realised

supersymmetry [83, 137]. Moreover, all the degrees of freedom on an anti-D3-brane can

be described using the tools familiar from linear supergravity by placing the low-energy

fields in constrained supermultiplets [77, 84, 96], where the constraints ensure that either

only the bosonic or only the fermionic component is an independent dynamical degree of

freedom [31,32]. In particular, the anti-D3-brane gaugino plays the role of the goldstino and

falls in a nilpotent superfield x. Here, the constraint x2 = 0 fixes the scalar φx in terms of

the spinor ψx and of the auxiliary field F x, with the F-term being non-zero by assumption.

Moreover, the standard non-linear supersymmetry transformation for the goldstino, i.e.√
2 δϵλ ∼ ϵ/l2, can be seen after the field redefinition λ ∼ ψx/(2l2F x), where l is the scale

at which the massive string states come into play.

This progress has made it possible to describe how the anti-D3-brane couples to bulk

fields in type IIB Calabi-Yau orientifold flux compactifications, including the closed-string

moduli, and to determine the mutual interplay between the closed- and the open-string

sectors [67,68,95,97,98,147,149,156,163]. The low-energy effective field theory corresponds

to a non-linear supergravity theory, including standard and constrained superfields, with

the anti-D3-brane uplift corresponding to an F x-term contribution to the scalar potential.

In particular, ref. [163] has derived the complete action for an anti-D3-brane in the KKLT-

scenario by means of constrained superfields, and ref. [68] has considered the coupling of

the anti-D3-brane goldstino to the complex-structure modulus controlling the warp factor

in a Klebanov-Strassler throat [64]. Non-linear supersymmetry strongly constrains the

theory; for example, the well-known non-renormalisation theorems fulfilled by low-energy

effective linearly realised supergravities descending from string theory extend to the non-

linear supergravity theories [156].

Given the null results thus far in searches for superpartners, the recent insights into anti-

D-brane supersymmetry breaking, and the potential importance of the latter in cosmological

model building, the material presented in this chapter develops the idea that quasi-realistic

particle physics models, with non-standard realisations of supersymmetry, may be obtained

using anti-D3-branes. Anti-D3-/D7-brane systems placed at orbifold singularities are known

to lead to interesting low-energy particle spectra, comprising non-Abelian gauge groups,

adjoint fermions, bifundamental scalars and bifundamental fermions [29, 30, 219–224] (for

reviews, see e.g. refs. [225, 226]). Intriguingly, as a consequence of the orbifold projec-

tion, the scalars and the fermions from the intersecting 37- and 73-sectors fall into distinct

bifundamental representations of the gauge groups, and so the low-energy spectrum does

not fulfil the usual superpartner pairing. It is therefore interesting to consider such sys-

tems at the tip of a strongly-warped throat, which may be dynamically obtained since

anti-D3-branes minimize their energy there. Depending on the warping, the volume and

the mass-sourcing fluxes, both closed- and open-string sectors may localise either in the

highly-redshifted region or in the bulk, and hierarchical mass scales may be explained via
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geometrical warping [53, 56, 57, 227, 228]. For definiteness, the focus is going to be put on

strongly-warped scenarios in which most of the degrees of freedom, from both the closed-

and the open-string sectors, tend to localise in the highly-redshifted region of the internal

space [228], but all the results could easily be adapted to any model with intersecting anti-

D3-/D7-branes. In fact, the strong-warping regime is chosen just because it also allows one

to explore further a class of 4-dimensional effective theories that may be phenomenologi-

cally relevant in the landscape of string-theory solutions. Eventually, interesting bottom-up

particle-physics models may then plausibly be embedded into complete string compactifi-

cations [29, 30], with in principle all closed- and open-string moduli stabilised via fluxes,

perturbative and non-perturbative effects.

Towards this objective, this work computes the low-energy effective field theory de-

scribing an anti-D3-/D7-brane system at an orbifold singularity at the tip of a strongly-

warped throat, within a supersymmetric type IIB Calabi-Yau orientifold flux compactifi-

cation [53, 56, 227–229]. Whilst the closed-string and 77-sector degrees of freedom fulfil a

linear supersymmetry, and fall into standard supermultiplets [52, 56, 230–237], the 33- and

37-/73-sector degrees of freedom have non-linear supersymmetry transformations, and fall

into constrained supermultiplets [77,84,96,156,163,235]. By a dimensional reduction of the

bulk and worldvolume actions, and by exploiting how the internal-spacetime symmetries

transform the intersecting states (for which no action is known), one can infer the non-

linear supergravity action, encapsulated as usual in a Kähler potential, a superpotential,

the gauge kinetic functions and the Fayet-Iliopoulos terms. This non-linear supergravity

theory allows one to infer the interactions related by supersymmetry, both linear and non-

linear, and to work out the consequences of closed-string moduli stabilisation, including

perturbative and non-perturbative effects, on the open-string sectors. Previous studies on

the supersymmetry-breaking effects of anti-D3-branes in the KKLT-setup have considered

the possibility in which the matter sector originates from D3- and D7-branes [98,238–241],

while in this construction the anti-D3-brane sectors provide both the uplift energy and

matter.

It is interesting to compare the effective field-theory description of anti-D3-brane su-

persymmetry breaking with the standard hidden-sector supersymmetry breaking via some

non-zero closed-string field F-term. For this purpose, pure anti-D3-brane breaking may

be assumed, though in the main text setups with both open- and closed-string breaking

active will also be considered. Similarly to the standard procedure, one considers a vacuum

that spontaneously breaks supersymmetry via a non-zero auxiliary field F x and expands

the action around this F-term, to obtain a set of soft-breaking terms in the Lagrangian.

The anti-D3-/D7-brane systems give rise to several further low-energy fields – beyond the

goldstino – which also lie in constrained superfields without physical superpartners and

which can acquire soft-breaking terms. As in standard gravity-mediated hidden-sector

supersymmetry-breaking scenarios, the scale of the soft-breaking masses is msoft ∼ fx/mP ,

where fx sets the uplift energy of the anti-D3-brane provided by the F x-term. Whereas,

in a standard supersymmetry-breaking scenario, the light fields would fall in constrained

superfields below the scale msoft, for the anti-D3-brane, constrained superfields are neces-

sary even above msoft, and there is no scale at which superpartners appear. Instead, the

156



4.2. Warped IIB Closed-String Sector

structure that gives the remarkable finiteness properties of string theory is expected to

involve the entire spectrum of string states, which appear at the warped string scale for

anti-D3-branes at the tip of strongly-warped throats. To contextualise these ideas for anti-

D3-/D7-brane constructions in the presence of moduli stabilisation, this work discusses the

scales that emerge in theories with anti-D3-/D7-brane systems embedded in a KKLT-like

scenario after the interplay between open- and closed-string F-terms.

4.2 Warped IIB Closed-String Sector

Focussing on strongly-warped type IIB compactifications, this section introduces the appro-

priate 10-dimensional metric, shows the hierarchies between the mass scales and discusses

the conditions for well-defined 4-dimensional supergravity formulations.

4.2.1 Warped Type IIB Closed-String Supergravity

In warped type IIB compactifications, the 10-dimensional metric takes the form [227,229]

ds210 =
γ

3
2 e2Ω[c]

[e−4A + c]
1
2

[
gµν dx

µdxν + 2∂µc ∂mbdx
µdym

]
+ [e−4A + c]

1
2 gmn dy

mdyn, (4.2.1)

where the coordinates xµ and ym describe the non-compact 4-dimensional spacetime X1,3

and the compact 6-dimensional space Y6, respectively, e
2Ω = e2Ω[c(x)] is a Weyl-rescaling

factor to the 4-dimensional Einstein frame, defined as

e2Ω[c] =

∫
Y6

d6y
√
g6∫

Y6

d6y
√
g6
[
e−4A + c

] , (4.2.2)

γ is an extra arbitrary constant, and b = b(y) is a compensator field needed to solve the

Einstein equations [229] but ignored in the following as it is sources only derivative couplings

with the open-string excitations. The warp factor e−4A = e−4A(y) and the volume-controlling

real Kähler modulus c = c(x) combine together into the generalised warp factor

e−4A[c(x),y] = e−4A(y) + c(x). (4.2.3)

From the metric above, the physical internal volume in the Einstein frame is

vol6 =

∫
Y6

d6y
√
g6 [e

−4A + c]
3
2 ,

whilst the dimensionless unwarped and warped internal volumes are defined respectively as

l6sℓ(0) =

∫
Y6

d6y
√
g6,

l6sℓw =

∫
Y6

d6y
√
g6 e

−4A.
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Moreover, the dimensionless physical internal volume is defined as V = vol6/ℓ(0)l
6
s , in units

of the unwarped volume. Given the 10-dimensional gravitational coupling 2κ̂210 = g2s l
8
s/2π,

with the string coupling gs and the string length ls, the 4-dimensional reduced Planck length

κ4 turns out to be

2κ24 =
2κ̂210

γ
3
2 l6sℓ(0)

=
g2s l

2
s

2πγ
3
2 ℓ(0)

, (4.2.4)

with the reduced Planck mass mP being defined as the inverse mP = 1/κ4. In the large-

volume limit, where warping becomes negligible, one can identify the field c as c = e4u =

V2/3 and the Weyl factor as e2Ω = 1/c = e−4u, and fixing the constant γ = ⟨c⟩ ensures that
the string and Planck scales are related by the physical internal volume [55,56].

In a type IIB Calabi-Yau orientifold compactification with Hodge number h1,1+ = 1, the

4-dimensional closed-string effective action, involving the axio-dilaton τ = C0 + i e−ϕ, the

complex-structure moduli uα, with α = 1, . . . , h2,1− , and the Kähler modulus ρ = χ + ic,

can be reproduced by means of a Kähler potential K̂ and a superpotential Ŵ of the form

[53,229,242]

κ24K̂ = −ln [−i(τ − τ)]− ln

[
−i

∫
Y6

e−4AΩ ∧ Ω

]
− 3 ln

[
2 e−2Ω

]
+ ln

[
2

π

ℓw
[ℓ(0)]3

]
, (4.2.5a)

κ34Ŵ =
gs
l2s

∫
Y6

G3 ∧ Ω. (4.2.5b)

Note that e−2Ω = Im ρ + c0, with c0 = ℓw/ℓ(0), gives a Kähler potential for the volume

modulus of the usual no-scale form. In fact, it is immediate to show the identity ∂ρe
2Ω =

i e4Ω/2, thanks to which one finds the derivatives

κ24K̂ρ =
3i

2
e2Ω, κ24K̂ρρ =

3

4
e4Ω,

and the Kähler-covariant derivative

κ34∇ρŴ =
3igs
2l2s

e2Ω
∫
Y6

G3 ∧ Ω =
3i

2
e2Ωκ34Ŵ .

The no-scale structure is a consequence of the identity κ24 K̂
ρρK̂ρK̂ρ = 3. The F-term for

the Kähler modulus is

F̂ ρ = −2i eκ
2
4K̂/2e−2Ω κ24Ŵ .

Some more details of these results are reviewed in appendix B, including the notation

employed later on for approximations. The focus in the current work is on local configu-

rations of intersecting anti-D3-/D7-branes within such warped geometries, and it will be

assumed throughout that the global configuration of fluxes, branes and O-planes within

the Calabi-Yau orientifold compactifications considered satisfy the RR-tadpole cancellation

conditions necessary for overall consistency.

4.2.2 Field Localisation and

4-dimensional Supergravity Conditions

In the presence of a highly-warped throat, there can be non-trivial localisation effects for the

closed-string sector fields; further, there are interesting hierarchies between mass scales in
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the bulk and in the redshifted region. These scenarios are studied in detail by ref. [228] and,

because they are relevant in the model-building setups considered in this work, a review of

their main features is provided below. For brevity, the normalisation ℓ(0) = 1 is assumed in

the rest of the subsection.

4.2.2.1 Closed-String Sector Field Localisation

As a guiding example for the closed-string sector fields with a flux-induced mass, one can

study the behaviour of the axio-dilaton τ in a strongly-warped compactification. The lin-

earised field equation for the axio-dilaton wavefunction, labelled as τw = τw(y), takes the

form [227,243]

− e2Ω

[e−4A + c]
K6 τw(y) +

m2
4

γ
3
2

τw(y) =
1

12 Im τ

e2Ω

[e−4A + c]2
GmnpG

mnp τw(y).

In this expression, m2
4 represents the 4-dimensional mass of the axio-dilaton τ = τ(x). The

term involving the 3-form product G3 · G3 constitutes the flux-induced mass, whereas the

differential operator K6 = −[∂m(
√
g gmn∂n)]/

√
g + [e−4A + c]1/2m2

10 sources the Kaluza-

Klein tower of states and accounts for further reduced 10-dimensional mass contributions

m2
10. By estimating these terms, one can qualitatively understand non-trivial localisation

effects. Without loss of generality, it will be assumed that integrals are dominated by the

bulk; this only changes the behaviour of the Weyl factor e2Ω, but since the estimates are

just going to be used for relative comparisons, this is actually irrelevant.

• In the bulk, the unwarped metric gmn is of order one and the 3-form flux is of the

order of its quantisation integer nf , that is Gmnp ∼ nf/ls. The background warp

factor is negligible compared to the volume modulus, that is

e−4A ≪ c ≃ V
2
3 .

Following these estimates, the order of magnitude of the flux-induced moduli masses

in the bulk is

m2
flux =

γ
3
2

12

e2Ω

[e−4A + c]2
GmnpG

mnp ∼
n2f
V2

γ
3
2

l2s
∼
g2sn

2
f

V2

1

κ24
. (4.2.6)

Also, given the characteristic length scale of the bulk λ as measured in terms of the

unwarped metric gmn (with λ6 ∼ ℓ(0) in general), the bulk Kaluza-Klein scale is

m2
KK ∼ e2Ω

[e−4A + c]

γ
3
2

λ2l2s
∼ 1

λ2V
4
3

γ
3
2

l2s
∼ g2s

λ2V
4
3

1

κ24
. (4.2.7)

Finally, one can observe that the (reduced) string mass is m2
s = g2sm

2
P /4πγ

3/2 = 1/l2s ,

so the bulk string scale must be defined as

m2
s =

g2s
4πV

1

κ24
. (4.2.8)
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• At the tip of a highly-warped throat, where e−4A ≫ c, the scenario changes drastically.

Let n0f be the order of magnitude the 3-form flux quanta therein, such as with a

Klebanov-Strassler throat threaded byM units of F3-flux on the 3-sphere and K units

of H3-flux on the dual 3-cycle of the deformed conifold. In the vicinity of the would-be

conifold singularity, the 10-dimensional Einstein-frame metric takes the form [56,64]

ds210 = e2A0 ğµν dx
µdxν + r20

[
1

2
dξ2 + dΩ2

3 +
1

4
ξ2 dΩ2

2

]
,

where ξ is the radial coordinate of the deformed conifold, the tip being located at

ξ = 0, while the other line elements describe the 3- and 2-sphere of the conifold base,

and r0 is the radius of the 3-sphere at the tip of the throat, such that r20 ∼ n0f .
4.1 This

indicates that the internal metric at the tip of the throat has the behaviour

g0mn ∼ n0f e
2A0 , (4.2.9)

where A0 is the warp factor at the tip of the throat, with the 3-form flux scaling

as G0
mnp ∼ n0f/ls. In this way, the characteristic scale of the closed-string sector

flux-induced mass evaluated at the tip of the throat is

(mw
flux)

2 =
γ

3
2

12
e2Ω+8A0 G0

mnpG
mnp
0 ∼ e2A0

n0fV
2
3

γ
3
2

l2s
∼ g2s

n0fV
2
3

1

κ24
e2A0 . (4.2.10)

On the other hand, according to the definition of the metric, the generic throat Kaluza-

Klein scale is

(mw
KK)

2 ∼ e2Ω+4A0

λ20

γ
3
2

l2s
∼ e2A0

n0fχ
2V

2
3

γ
3
2

l2s
∼ g2s

n0fχ
2V

2
3

1

κ24
e2A0 , (4.2.11)

where the length scale of a cycle at the tip of the throat, measured by g0mn, has been

written as λ20 ∼ n0f e
2A0 χ2, with χ a parameter independent of the warp factor. To

conclude, one may also infer that the warped string scale can be defined as

(mw
s )

2 =
g2s

4πV
2
3

1

κ24
e2A0 . (4.2.12)

The factor controlling the size of the throat is preferably taken to be χ > 1, so that

the warped Kaluza-Klein scale is smaller than the warped string scale.

In particular, if the warped mass of eq. (4.2.10) is smaller than the bulk mass of eq.

(4.2.6), then it is energetically favourable for the closed-string sector fields to be mostly

localised at the tip of the throat. Roughly, the condition for this to happen is therefore

V
2
3

nf (n
0
f )

1
2

≲ e−A0 . (4.2.13)

4.1Adapting from ref. [64], it is being assumed that the scalings are, roughly, of the form g0mn ∼ e2A0gsM

and Gmnp ∼ (gsM +K)/ls. One can thus set gsM ∼ K ∼ n0
f . Any more refined condition can be imple-

mented easily.
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Notably, the warped flux-induced and warped Kaluza-Klein scales mw
flux and mw

KK are com-

parable. Because the cutoff for the 4-dimensional effective theory has to be at most the

warped Kaluza-Klein scale, most of the degrees of freedom from the closed-string sector fall

above the 4-dimensional threshold. Fields surviving the cutoff include the Kähler volume

modulus, which does not have a flux-induced mass, and potentially some complex-structure

moduli associated to the geometry at the infrared end of the throat.

4.2.2.2 Conditions for a 4-dimensional Supergravity Formulation

Whilst below the warped Kaluza-Klein scale the effective theory is 4-dimensional, an N4 = 1

supergravity formulation is not always possible. In fact, in the presence of supersymmetry

breaking, the gravitino gauging the broken supersymmetry becomes massive and may hap-

pen to be localised by warping in the infrared end of the throat. In this case, it would have

stronger couplings than those of a simple 4-dimensional supergravity description, since they

would be suppressed by the warped Planck scale mw
P = eA0mP rather than by the Planck

scale mP governing the graviton interactions [228]. This will now be discussed in more

detail, beginning with supersymmetry breaking by fluxes, and followed by comments on

supersymmetry breaking with an anti-D3-brane.

The 4-dimensional gravitino corresponding to the least broken supersymmetry (i.e. bro-

ken at the smallest scale) is identified with the lightest Kaluza-Klein mode, which be-

comes massless as the supersymmetry-breaking parameter is taken to zero. Taking this

4-dimensional gravitino ψµ to be embedded in the 10-dimensional gravitino as Ψµ(x, y) =

ψµ(x)⊗ η(y), the qualitative behaviour of the gravitino wavefunction η in the extra dimen-

sions can be determined from the 10-dimensional gravitino field equation, which implies a

flux-induced mass for ψµ that is of order

m3/2

γ
3
4

∼ eΩ

[e−4A + c]
Gmnpγ

mnp,

where γm are the Dirac matrices representing the Clifford algebra {γm, γn} = 2gmn and

Gmnp is the supersymmetry-breaking 3-from flux. Similarly to the case of the axio-dilaton

described above, this mass gives rise to two possible scales across the internal manifold:

(i) a 3-form flux of order Gmnp ∼ nfθ/ls in the bulk generates a gravitino mass

m3/2 ∼
eΩγ

3
4

[e−4A + c]
Gmnpγ

mnp ∼
nfθ

V
γ

3
4

ls
∼
gsnfθ

V
1

κ4
; (4.2.14)

(ii) a 3-form flux of order Gmnp ∼ n0fθ0/ls in the throat generates a gravitino mass

mw
3/2 ∼ eΩ+4A0 G0

mnpγ
mnp
0 γ

3
4 ∼ θ0 e

A0

(n0f )
1
2V

1
3

γ
3
4

ls
∼ gsθ0

(n0f )
1
2V

1
3

1

κ4
eA0 . (4.2.15)

The numbers θ and θ0 represent the fact that the fluxes do not necessarily break super-

symmetry, so the magnitude of the breaking can vary. The scales in eqs. (4.2.14, 4.2.15)

are also the expected orders of magnitude of the mass splittings among the fields of any
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supermultiplet, depending on where the fields are localised. For supersymmetry-breaking

flux parameters such that mw
3/2 ≪ m3/2, which is the naive expectation from eq. (4.2.13),

it is energetically favourable for the lightest gravitino to localise at the infrared end of

the throat. Its interactions are then suppressed in terms of warped scales, in contrast to

the Planck-suppressed graviton interactions, making a standard supergravity description

difficult. However, when the flux parameters satisfy

θ

θ0
≪ eA0V

2
3

nf (n
0
f )

1
2

, (4.2.16)

which is fulfilled in particular as θ → 0, the gravitino mass scales in eqs. (4.2.14, 4.2.15) are

such that m3/2 ≪ mw
3/2. In this case, the 4-dimensional gravitino does not localise in the

throat, allowing it to have standard mP -suppressed interactions. Nevertheless, the actual

gravitino mass is still warped-down, that is m̂w
3/2 = eA0m3/2, as the warp factor governs the

physical scales at the tip of the throat, including the scale of supersymmetry breaking [228].

This is the framework considered in this work and, in it, it is thus sensible to formulate

an N4 = 1 supergravity theory below a cutoff scale set as the warped Kaluza-Klein scale

mw
KK if the supergravity condition in eq. (4.2.16) holds, in the regime set by the localisation

condition in eq. (4.2.13). In particular, one can reproduce the supergravity description of

a highly-warped theory by means of a Kähler potential with the structure

κ24K = 2A0 + κ24K, (4.2.17)

where K is the Kähler potential that one would define in the absence of the extremely

strong warping effects discussed above and A0 is the warp factor at the tip of the throat,

with the superpotential W (and the gauge kinetic functions fAB) unchanged.4.2 Indeed,

such a formulation manifestly provides redshifted energy scales and, in particular, all the

4-dimensional masses are warped down. This includes the warped-down gravitino mass,

m̂w
3/2 = eA0m3/2, where the redshift is induced by the 2A0-shift and the unwarped mass is

m3/2 = eκ
2
4K/2W , as given by eq. (4.2.14). From now on, FM = eA0FM and VF = e2A0VF

also denote the F-terms and the F-term potentials associated to a highly-warped scenario,

respectively.

To summarise, some fields are localised in the bulk region, like the graviton and the

gravitino, while others are localised at the tip of the warped throat, like the Kähler modulus

(see discussion below) and possible open-string states. These provide the degrees of freedom

for the standard-like model realisations of interest in this work. In more detail, one can

distinguish:

• fields that are localised at the tip of the throat, which can have redshifted mass scales

and be part of the low-energy effective theory, including the Kähler modulus and

local open-string states, or be heavier than the low-energy theory cutoff scale, like the

axio-dilaton and possible complex-structure moduli;

4.2In general, purely closed-string contributions to K, W and fAB are then independent of A0, but note

that the open-string terms (or local geometric closed-string moduli terms) may have a dependence on A0 if

they are located in a region of strong warping.
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• fields that are localised in the bulk, which typically have masses above the cutoff

scale (like bulk complex-structure moduli) and/or highly suppressed couplings with

the throat-localised degrees of freedom (like bulk branes, which could provide massless

degrees of freedom), and therefore can be neglected.

In ref. [228], this discussion refers to the spontaneous supersymmetry breaking by fluxes.

In this work, supersymmetry breaking by anti-D3-branes at the tip of a throat is also

considered. Although the way in which anti-D3-branes break supersymmetry is conceptually

different to flux supersymmetry breaking, the arguments on the localisation of the gravitino

in the bulk follow through in the same way, for small enough bulk gravitino mass-sourcing

fluxes. Hence, the following sections show how to incorporate open-string degrees of freedom

in a description with the 2A0-shift in the Kähler potential as in eq. (4.2.17).

Kähler Modulus Localisation

In KKLT-like constructions, in which the Kähler modulus is stabilised by non-perturbative

effects such as D7-brane gaugino condensates [244–247] or Euclidean D3-brane instantons

[248], the Kähler potential shift in eq. (4.2.17) implies that the scalar potential sourced by

non-perturbative effects is redshifted by the warp factor, even though the non-perturbative

effects are not necessarily localised near the throat.

To understand this redshifting, one should consider the localisation of the Kähler mod-

ulus ρ. The field ρ is massless before the compactification, so naively one expects it to be

not localised. However, an explicit analysis is performed in ref. [229] and reveals that:

(i) the wavefunction of the 4-dimensional graviton gµν is strongly peaked in the bulk

region, both in the presence and in the absence of strong warping;

(ii) the wavefunction of the Kähler modulus ρ tends to be more and more peaked in the

throat as the warping becomes stronger.

Notice that even with non-perturbative effects, the Kähler modulus is very light and

well below the warped KK-scale cutoff, suggesting that its wavefunction is perturbed only

slightly and in particular that it is still peaked in the throat. Then, ρ should feel any non-

perturbative effects localised in the bulk via a redshifted mediation to the tip of the throat.

Consistently with this picture, one can observe that with a warped-down non-perturbative

contribution to the scalar potential, the stronger the warping is – i.e. the longer the throat is

– the less efficient the stabilisation becomes. Another challenge is that the supersymmetry-

breaking (0, 3)-flux tends to localise around the gaugino condensate [61, 249], which in

some cases could result in the gravitino localising at the throat tip, making a supergravity

description difficult.

4.2.3 Note on Coupling Estimates

For definiteness, when providing estimates of the orders of magnitude of the field couplings,

all the results are always going to be referred to the case where integrations over the internal

space are dominated by the bulk region. Numerical order-1 constants are also going to be
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ignored for the estimates, unless explicitly stated. In particular, unless explicitly re-inserted,

the flux integers nf and n0f are going to be dropped in the remaining sections because, in

the qualitative analysis of the volume- and warp-factor-dependences of the mass scales, they

are irrelevant in fixing the reference orders of magnitude.

4.3 Warped D3- and D7-Branes

This section considers D3- and D7-branes in strongly-warped Calabi-Yau orientifold com-

pactifications, as a warm-up before the anti-D3-/D7-brane constructions. As D3-/D7-brane

systems preserve the same N4 = 1 supersymmetry as the closed-string sector, the only

sources of supersymmetry breaking considered here are (0, 3)-fluxes. An N4 = 1 supergrav-

ity description can be derived by matching with the operators that are obtained from the

dimensional reduction. As discussed in section 2.3, the low-energy degrees of freedom from

the branes, here composing the matter sector, are the following.

• D3-branes contain three complex scalars φa parametrising the position of the brane in

the internal space and three spinors ψa in an SU(3)-triplet with respect to the internal

tangent space group, which form three chiral multiplets, as well as one Abelian gauge

vector Aµ and a spinor λ in an SU(3)-singlet, which form a vector multiplet.

• D7-branes wrapping a 4-cycle in the internal space contain one complex scalar σ3

parametrising the position of the brane in the internal space and a spinor η3, which

together form a chiral multiplet, as well as one Abelian gauge vector Bµ and a spinor

ζ, which form a vector multiplet. Extra degrees of freedom associated to the Wilson

lines are absent if the wrapped cycle has no non-contractible 1-cycles.

• When D3- and D7-branes overlap, the intersecting 37- and 73-states correspond to two

complex scalars φ and φ∗ and two spinors ψ and ψ∗, which form two chiral multiplets

in conjugate representations of the gauge groups. Specifically, the chiral multiplets φ

and φ∗ have charges qD3 = +1,−1 and qD7 = −1,+1, respectively, under the D3- and

D7-brane U(1)-gauge groups.

A summary of the supergravity expansions for models with matter and supersymmetry-

breaking hidden sectors, the latter including bulk moduli, is given in appendix C.2. In the

following subsections, the specific form of these interactions is going be derived from the

dimensional reduction of D3-/D7-brane actions in warped flux compactifications and the

intersecting states are also going to be discussed. The total Kähler potential and the total

superpotential are going to be found to take the form

K =
2A0

κ24
+ K̂ + Zσ3σ3σ3σ3 +

1

2

[
Hσ3σ3σ3σ3 + c.c.

]
+Zφaφbφaφb + Zφφφφ+ Zφ∗φ∗φφ∗,

(4.3.1a)

W = Ŵ +
1

2
µ̃σ3σ3σ3σ3 + ỹ(βσ3 − φ3)φφ∗, (4.3.1b)
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where K̂ and Ŵ are the pure closed-string potentials of eqs. (4.2.5a, 4.2.5b) and all the

other terms represent the open-string couplings. The gauge kinetic functions, the D-term

potentials and – in the case of supersymmetry-breaking fluxes – the soft-breaking terms are

also going to be worked out. The 2A0-shift will be inserted if working under the conditions

of eqs. (4.2.13, 4.2.16), with all masses being redshifted by the warp factor.

The details of the open-string sector terms depend on the brane configuration, with two

main constructions considered. The D3-brane is going to be placed at the tip of a highly-

warped throat, whereas the D7-brane will wrap a 4-cycle either located at the tip of the

throat or extending from the tip into the bulk. Detailed global constructions are deferred

for future work and, when explicit, the wrapped 4-cycle will be assumed to be a toroidal

orbifold for simplicity (throats with such cycles have been constructed e.g. in ref. [30]).

Unless otherwise stated, only a pure (2, 1)-flux is going to be assumed to exist at the tip of

the throat. The dimensional reduction is not going to capture the complex-structure moduli

couplings, but the supergravity formulation will correctly account for them. Stabilisation

of the volume modulus ρ is going to be considered in subsection 4.4.3 for the main case

of interest, which is the presence of KKLT-like non-perturbative corrections and uplifting

anti-D3-branes. Further, notice that worldvolume fluxes will not be considered in this work.

4.3.1 Pure D3- and D7-Brane States

This subsection overviews the analysis of D3- and D7-branes in type IIB Calabi-Yau ori-

entifold compactifications, adapting it to the strongly-warped metric of eq. (4.2.1). In

the following, superscripts and subscripts ’0’ denote quantities evaluated at the tip of the

throat.

4.3.1.1 Warped D3-Branes

As discussed in appendix B.2, it is possible to express the action of the D3-brane degrees of

freedom by adapting the results of the dimensional reductions from refs. [80, 149,231,232].

4.3.1.1.1 D3-Brane Chiral Superfields

In the 4-dimensional Einstein frame, the pure kinetic action for the D3-brane scalars takes

the form (see also refs. [228,250,251], which work directly in the regime of strong warping)

SD3-scalars
kin = − 1

2πgs

∫
X1,3

d4x
√
−g4 e2Ω g0ab g

µν ∇µφ
a∇νφ

b.

Therefore, one can include this term within the Kähler potential of the Kähler modulus as

κ24K = −3 ln

[
2 e−2Ω − κ24

3πgs
g0
ab
φaφb

]
.

This logarithmic no-scale structure, with K of the form K = −3 log
[
fhid(ρ, ρ)+ fvis(φ,φ)

]
,

is a common feature of D-brane supergravity and suggests the possibility of sequestering

[53, 252] (see also ref. [232]). It implies that the brane scalars do not feel hidden-sector
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supersymmetry breaking at tree-level, and it turns out that brane fermions also stay massless

at tree-level. From the expression above, it follows that the Kähler matter metric is

Zφaφb =
1

2πgs
e2Ω g0

ab
. (4.3.2)

Due to supersymmetry, the D3-brane modulini are also captured by these couplings. Since

the chiral multiplet φa is massless in an imaginary self-dual flux background, this Kähler

potential is enough to account for the D3-brane chiral field couplings.

As discussed in subsection 4.2.2, for a low-energy effective field theory describing fields

at the tip of a highly-warped throat, the Kähler potential is shifted by the constant 2A0.

This clearly does not change the Kähler matter metric for the D3-brane fields.

4.3.1.1.2 D3-Brane Gauge Sector

The Weyl scaling from the 10- to the 4-dimensional Einstein frame does not affect the

D3-brane gauge kinetic terms in the action, so one has

SD3-vector
kin = − 1

4πgs

∫
X1,3

e−ϕ F2 ∧ ∗F2 +
1

4πgs

∫
X1,3

C0 F2 ∧ F2

and the gauge kinetic function is as usual

fD3 = − iτ

2πgs
. (4.3.3)

This does not depend on the warp factor due to the cancellation happening in the metric-

dependent factors. The dimensional reduction of the gaugino is not performed as the action

can be reproduced by supersymmetry arguments.

4.3.1.2 D7-Branes Extending from

the Tip of a Warped Throat into the Bulk

This subsubsection describes a D7-brane wrapping a 4-cycle Σ4 that extends from the tip

of a warped throat up into the bulk region. Details of the dimensional reduction of the D7-

brane worldvolume action can be found in refs. [235,236,253] (see also refs. [233,234,237])

and are briefly overviewed in appendix B.2. A toy model is described below, including the

geometric configuration and the corresponding dimensional reduction. This is not a fully

realistic construction, but it gives a simple way to capture the relevant orders of magnitude

in the mass scales that are sought after. In particular, the warp factor is assumed to be

only a function of the directions parallel to the 4-cycle.

4.3.1.2.1 D7-Brane Configuration and Field Localisation Conditions

It is assumed that the internal space, locally in the neighbourhood of the wrapped D7-brane,

takes the form Σ4⋉Σ2. Let the coordinates y
m′

span the 4-space Σ4, for m
′ = 4, . . . , 7, with

z1, z2 the corresponding complexified directions, and let the coordinates yṁ, for ṁ = 8, 9,
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parametrise the transverse 2-space Σ2, with z
3 the associated complex coordinate. Given

some convenient coordinates rm
′
= rm

′
(yn

′
) and θṁ = θṁ(yṅ), the metric is of the form

ds26 = e−2A gmndy
mdyn = e−2A(r)

(
gm′n′(r) dym

′
dyn

′
+ g33(r, θ) dz

3dz3
)
.

At some r2 = rm′rm
′
= r2UV, the bulk is glued to a warped throat, which ends at its tip

with a tiny warp factor e2A(r = 0) = e2A0 . The D7-brane wraps the slice corresponding

to the coordinates θ = 0. See fig. 4.1 for a schematic represention of the geometry under

consideration.

rUV

θ

r

Σ4

Σ2

Σ2

D7-brane

(anti-)D3-brane

Figure 4.1: A sketch of the toy configuration under consideration, with the D7-brane wrapping

the 4-space at θ = 0 and some throat being glued to the bulk at r = rUV. The D3- or anti-D3-brane

provides extra open-string states, as discussed in sections 4.3 and 4.4, respectively.

In order to be able to perform explicit calculations, the warp factor is assumed to be a

function of only the 4-space coordinates. Further, the 4-cycle is assumed to be the orbifold

Σ4 = T4/Z2 and locally the orthogonal directions correspond to the 2-torus T2, i.e. the

metric is such that

gm′n′(r ∈ Σ4) = g
T4/Z2

m′n′ , g33(r ∈ Σ4, θ = 0) = gT
2

33
. (4.3.4)

Finally, in analogy with the Klebanov-Strassler throat, it is assumed that at the throat tip

the metric scales with the constant e2A0 , as in eq. (4.2.9), that is

gm′n′(r < rUV)
r∼0≃ e2A0 , g33(r < rUV, θ = 0)

r∼0≃ e2A0 . (4.3.5)

Localisation Scenarios

In analogy with what happens for the closed-string sector, one might guess that the open-

string moduli of the wrapped D7-brane can become localised at the tip of the throat too.

The conditions under which this occurs will now be worked out.

One can analyse the internal wavefunction of the D7-brane scalar fields by dimensionally

reducing the real fields σṁ = σṁ(x, y), with ṁ = 8, 9, in a similar way to refs. [253, 254].
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The D7-brane 8-dimensional scalar action can be written in terms of the 4-dimensional

Einstein frame metric as

Sscalar
D7 = −τD7σ

2
s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
gΣ4

[
e2Ω+ϕ [e−4A + c] gṙṡ g

µν ∇µσ
ṙ∇νσ

ṡ

+γ
3
2 e4Ω+ϕ gṙṡ g

m′n′∇m′σṙ∇n′σṡ +
1

2

γ
3
2 e4Ω+2ϕ

e−4A + c
Gm′n′ṙG

m′n′
ṡ σ

ṙσṡ
]
,

where it is understood that only some of the 3-form fluxes contribute, as determined by

the interference of the DBI- and CS-actions [235]. For constant Kähler-modulus and axio-

dilaton backgrounds, one finds the field equation

γ−
3
2 ∆4σ

ṙ +
e2Ω

[e−4A + c]
∆Σ4σ

ṙ +
1

2 Im τ

e2Ω

[e−4A + c]2
Gm

′n′ṙGm′n′ṡ σ
ṡ = 0.

Then, defining the Kaluza-Klein decomposition of the field as

σṙ(x, y) =
∑
ω

σṙω(x) ζ
ṙ
ω(y)

and imposing the Klein-Gordon equations ∆4σ
ṙ
ω = −m2

ωσ
ṙ
ω, one eventually obtains the

internal wavefunction field equation

− e2Ω

[e−4A + c]
∆Σ4ζ

ṙ
ω +

m2
ω

γ
3
2

ζ ṙω =
1

2 Im τ

e2Ω

[e−4A + c]2
Gm

′n′ṙGm′n′ṡ ζ
ṡ
ω.

This internal wave equation gives the same 4-dimensional mass contributions as the equation

defining the axio-dilaton wavefunction, with the only difference that here the wavefunction

is 4- rather than 6-dimensional. Notice that the axio-dilaton equation also includes generic

10-dimensional mass terms that here have been neglected for simplicity.

Following subsection 4.2.2, the compactification volume can be sufficiently large that

warped-down masses are still greater than bulk masses (see eq. (4.2.13)), and fields tend to

localise in the bulk. In any case, the D7-brane chiral superfield is localised near the tip of

the throat whenever the warped-down mass mw
D7 is smaller than the unwarped bulk mass

mD7, that is if

eA0V
2
3

nf (n
0
f )

1
2

≲
θ′

θ′0
, (4.3.6)

where the fluxes sourcing the D7-brane field masses have been taken to be Gmnp ∼ θ′nf/ls
in the bulk and Gmnp ∼ θ′0n

0
f/ls near the tip. For generic flux parameters, θ′ and θ′0, the

warped mass is of the same order as the warped flux-induced axio-dilaton mass mw
flux of eq.

(4.2.10) and the warped Kaluza-Klein scale mw
KK of eq. (4.2.11), i.e.

(mw
D7)

2 ∼ g2sθ
′
0
2

n0fV
2
3

1

κ24
e2A0 ,

so that these fields are too heavy to stay in the low-energy theory. However, if θ′0 is small

enough, it may be that fluxes sourcing the D7-brane masses allow both mw
D7 ≲ mD7, so
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fields are localised, and also mw
D7 ≪ mw

KK, so fields stay in the low-energy theory. It may

also happen that θ′ is small enough that the hierarchy is mw
D7 ≳ mD7, so it is energetically

favourable for the D7-brane fields to be localised in the bulk, and yet the mass is warped-

down in the effective field theory, analogously to what happens to the gravitino. Such

possible scenarios are now going to be discussed in detail.

4.3.1.2.2 D7-Brane Chiral Superfield in the Bulk

For large enough internal volumes that do not satisfy the localisation condition of eq.

(4.3.6), mD7 ≲ mw
D7 and D7-brane fields generally extend along the throat from the tip into

the bulk. Before the compactification over the wrapped 4-cycle, the kinetic term for the

D7-brane transverse complexified scalar σ3 reads

SD7-scalar
kin = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
gΣ4 [e−4A + c] e2Ω+ϕ g33 g

µν ∇µσ
3∇νσ

3.

Since the warp factor varies only longitudinally with respect to the brane, one can respec-

tively define the dimensionless unwarped and warped 4-dimensional volumes as

l4sℓ
Σ4

(0) =

∫
Σ4

d4y
√
gΣ4 ,

l4sℓ
Σ4
w =

∫
Σ4

d4y
√
gΣ4 e−4A.

In particular, the internal metric, being that of a torus, is independent of the 4-cycle

coordinates and, following the definition of the Weyl factor in eq. (4.2.2), it is apparent

that the kinetic term becomes

SD7-scalar
kin = −

ℓΣ4

(0)

2πgs

∫
X1,3

d4x
√
−g4 eϕ g33 g

µν ∇µσ
3∇νσ

3.

One can reproduce this within the type IIB supergravity action by modifying the axio-

dilaton Kähler potential as

κ24K = −ln

[
−i(τ − τ)− κ24

πgs
ℓΣ4

(0)g33 σ
3σ3
]
,

or equivalently by defining the Kähler matter metric

Zσ3σ3 =
ℓΣ4

(0)

πgs

g33
[−i(τ − τ)]

. (4.3.7)

As far as the mass term is concerned, one can again proceed by engineering a way to

reproduce the 4-dimensional mass obtained via dimensional reduction in supergravity. In

real notation, one finds an action of the form4.3

SD7-scalar
mass = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
gΣ4

1

8πℓ(0)

g2s
κ24

e4Ω+2ϕ

e−4A + c
l2s Gm′n′ṙG

m′n′
ṡ σ

ṙσṡ.

4.3Notice that the overall volume factor is not related to any non-locality. It appears only by inserting

a factor 1 = l2s/l
2
s in the action to have the appropriate scalings for 4- and 6-dimensional operators and

expressing one string-length factor ls in terms of the Planck length κ4. In fact, in these dimensional reductions

one finds a volume factor ℓ(0) for each factor κ2
4.
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D7-branes have a supersymmetric mass sourced by a (2, 1)-flux. In the toy model under con-

sideration, in the vicinity of the brane it is possible to decompose forms in the 6-dimensional

space into products of forms in the 4- and 2-dimensional spaces Σ4 = T4/Z2 and T2, re-

spectively. In particular, the specific mass-sourcing (2, 1)-flux can be written as [235] (the

hat denotes the specific component)

Ĝ3(r, 0) = f(r, 0)χϑ,

where the (2, 1)-form χϑ = η ∧ dw3 is defined in terms of the (2, 0)-form η = dw1 ∧ dw2

of the 4-cycle and dw3, with wa = za/ls a dimensionless coordinate, and f = f(r, θ) is

a function representing the near-brane dependences. For definiteness, let the integrals be

dominated by the throat region, where e−4A ≫ ⟨c⟩. As e4AĜ3 is a harmonic form, one can

express the 2-form component g2 = f(r, θ = 0) η in terms of the harmonic (2, 0)-form η as

e4Ag2 =
1

ωΣ4
w

η

∫
Σ4

g2 ∧ η,

with ωΣ4
w =

∫
Σ4

e−4Aη ∧ η. Appendix B.3 provides useful supplementary details. Now,

starting from the general action above, the supersymmetric mass term can be expressed as

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

∫
Σ4

d2w d2w
√
gΣ4

1

8πℓ(0)

g2s
κ24

e4Ω+4A+2ϕ l2s(g2 · g2)σ3σ3.

Notice that, to respect the dimensionality of G3, i.e. G3 ∼ l2s , with Gmnp ∼ l−1
s , the 2-form

is defined as g2 = ls ga′b′ dz
a′ ∧ dzb

′
, with ga′b′ ∼ l−1

s . Of course the ls-factors just come

from considering dimensionless coordinates. Now, because g2 is automatically self-dual, i.e.

∗4g2 = g2, the 4-cycle integral is∫
Σ4

d2w d2w
√
gΣ4 e4A g2 ·g2 =

1

l6s

∫
Σ4

e4A g2∧g2 =
1

(ωΣ4
w )2

1

l6s

∫
Σ4

e−4A η∧η
∫
Σ4

g2∧η
∫
Σ4

g2∧η.

The first integral factor can be written as

λΣ4 =

∫
Σ4

e−4A η ∧ η = ωΣ4
w ≃ ωΣ4

w

ℓΣ4
w

ℓΣ4

(0)

e2Ω,

where an approximate unit factor has been introduced in the final relation for convenience

in the comparison of the dimensionally reduced action with the supergravity. In the end

the scalar mass term becomes

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

1

8πℓ(0)

g2s
κ24

e6Ω+2ϕ

ωΣ4
w

ℓΣ4
w

ℓΣ4

(0)

1

l4s

∫
Σ4

g2 ∧ η
∫
Σ4

g2 ∧ η σ3σ3.

The opposite approximation to that used above, where integrals are dominated by the bulk

region, can be obtained easily by taking formally e4A = 1 everywhere, and e2Ω = 1/c.

In view of ref. [237], to generate the (2, 1)-flux-induced mass one introduces the holo-

morphic superpotential bilinear coupling

µ̃σ3σ3 = −
ℓ(0)

π

1

κ4l2s
∂τ∂uϑ

∫
Y6

[
G3 ∧ Ω

]
δ(2)(θ)

=

[
ℓ(0)

π[−i(τ − τ)]κ4l2s

∫
Y6

(G3 −G3) ∧
(

i

ωw
(∂uϑωw) Ω− χuϑ

)
δ(2)(θ)

]
,

(4.3.8)
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where use has been made of the identity ∂uαΩ = [∂uα lnωw] Ω + iχα. Dirac δ-functions on

a compact space I are normalised as
∫
I dx δ(x) = l, where l is the length dimension of

x. Indeed, in the specific case in which the background is pure (2, 1)-flux, this is (for the

calculation of the mass, notice that g33 = 1)[
µ̃σ3σ3

]
(2,1)

=

[
ℓ(0)

π [−i(τ − τ)]κ4l2s

∫
Σ4

g2 ∧ η
]
δ33.

As required, the effective coupling µσ3σ3 = eκ
2
4K̂/2[µ̃σ3σ3 ](2,1), reproduces a supersymmetric

mass m2
σ3σ3 = Zσ

3σ3
µσ3σ3µσ3σ3 that corresponds precisely to the one inferred from the

dimensional reduction. The identification takes place if eκ
2
4K̂csℓw = ℓΣ4

w /ωΣ4
w , otherwise the

bilinear coupling µ̃σ3σ3 should be rescaled by an order-1 factor (ℓw/ωw)
−1/2 (ℓΣ4

w /ωΣ4
w

)1/2
,

in which the apparent non-holomorphicity is expected to cancel. For the canonically nor-

malised field, one recognises the expected scale

m2
D7 ∼

g2s
V2

1

κ24
.

As will be seen from all the dimensional reductions, all the couplings of the theory have 4-

dimensional scales which are defined in terms of the reduced Planck length with, depending

on the interactions, various suppressions from the string coupling, the volume and/or the

warp factor, while the string length factors precisely account for the integrations over the

compact space.

Comment on Generic Flux Backgrounds

For a generic flux background, one can again take advantage of the results of refs. [235,237]

and a similar dimensional reduction follows as above: one obtains the same supersymmetric

mass just found, plus some soft-breaking scalar mass terms.

In detail, ref. [237] considers unwarped toroidal orbifold compactifications and shows

that all these terms can be generated by the holomorphic coupling µ̃σ3σ3 of eq. (4.3.8)

and a non-vanishing Kähler-potential H-term, which, together with the axio-dilaton and

complex-structure moduli F-terms, give the same effective µ-coupling as above, generated

only by (2,1)-fluxes, along with the soft-breaking terms (see eqs. (C.2.2a, C.2.5a, C.2.5b)).

For less isotropic scenarios, where for instance only the wrapped cycle is a toroidal

orbifold O4 = T4/Z2, some difficulties may arise. The complex-structure moduli Kähler

potential should include κ24K̂(u, u) = −lnωw, with ωw = i ℓΣ4
w ℓT

2

(0)

∏3
a=1[−i(ua − ua)], where

u3 = uϑ is the modulus associated to the (2, 1)-form χϑ, and the H-coupling should be

Hσ3σ3 = − 1

πgs

ℓΣ4

(0)

[−i(τ − τ)][−i(u3 − u3)]
δ33. (4.3.9)

The interplay between the various terms in eq. (C.2.2a) can take place here only if the

closed-string sector terms are all properly factorised, singling out integrations over the 4-

cycle. This is true only if the 3-form flux is constant over the whole transverse space. Similar

considerations hold for the soft-breaking masses of eq. (C.2.5a). The B-term also follows

from eq. (C.2.5b). This reasoning has only considered purely flux-induced F-terms; the

effects of moduli-stabilisation effects are going to be discussed in KKLT-like stabilisation

scenarios with anti-D3-brane supersymmetry breaking in section 4.4.
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4.3.1.2.3 Strongly-Warped Throats with D7-Brane Chiral Superfield at Tip

If the internal volume is sufficiently small as to satisfy the condition of eq. (4.2.13) and

in particular the D7-brane mass flux parameters satisfy eq. (4.3.6), i.e. mw
D7 ≲ mD7, the

D7-brane chiral superfield field localises at the tip of the throat.

One can impose the localisation of the D7-brane scalar at the level of the dimensional

reduction by means of a delta-function that accompanies the superfield σ3, meaning the

substitution σ3σ3 → δ(4)(y − y0)σ
3σ3. Adapting the previous results (in particular, notice

that the integration over the 4-cycle gives a factor e2A0 originating from the metric, which

at the tip scales as gm′n′ ∼ e2A0), one finds the action

SD7-scalar =− 1

2πgs

∫
X1,3

d4x
√
−g4 e2Ω+2A0+ϕ gµν ∇µσ

3∇νσ
3

− 1

2πgs

∫
X1,3

d4x
√
−g4

1

8πℓ(0)

g2s
κ24

e4Ω+8A0+2ϕ l2s(g
0
2 · g02)σ3σ3.

Again, this analysis manifestly neglects the dependence on the complex-structure moduli.

The 2-form g02 is the component of the mass-sourcing flux precisely at the tip of the throat,

with G0
3 = g02 ∧ dw3. It is convenient to absorb the warp factors into the scalar σ̇3 = eA0σ3,

for which the kinetic action becomes

SD7-scalar = −
∫
X1,3

d4x
√
−g4

[
1

πgs

e2Ω

[−i(τ − τ)]
gµν ∇µσ̇

3∇ν σ̇
3

+
gs

4π2ℓ(0)

e4Ω+6A0

[−i(τ − τ)]2
l2s(g

0
2 · g02)

1

κ24
σ̇3σ̇

3
]
.

The action can be reproduced by means of the Kähler matter metric

Z
σ̇3σ̇

3 =
1

πgs

e2Ω

[−i(τ − τ)]
(4.3.10)

and, in the presence of only (2, 1)-flux at the tip, the superpotential bilinear coupling

[
µ̃σ̇3σ̇3

]
(2,1)

=
ℓ(0) lsg

0
12

π[−i(τ − τ)]κ4
. (4.3.11)

Notice that the bilinear coupling is holomorphic since it can be seen to arise from the

GVW-superpotential deformation

δW = −
ℓ(0)

2π

1

κ4l2s
∂τ∂uϑ

∫
Y6

[
G3 ∧ Ω

]
δ(4)(r) δ(2)(θ) σ̇3σ̇3 ≡ 1

2
µ̃σ3σ3 σ̇3σ̇3.

This reproduces the mass term when the total Kähler potential contains the 2A0-shift,

namely when the theory is formulated as in eq. (4.2.17). Note that the supergravity

calculation does provides an extra factor ℓw/ωw, which accounts for the ignorance on the

complex-structure moduli above. As expected, the canonically normalised mass reads

(mw
D7)

2 ∼ g2s

V
2
3

1

κ24
e2A0 .
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The structure in the Kähler- and super-potential couplings for the D7-brane chiral su-

perfields here is identical to the case in which the D7-brane wraps a 4-cycle localised at the

tip of the throat, as is going to be discussed in subsubsection 4.3.1.3, after replacing the

flux evaluated at the warped end of the 4-cycle with the integral of the flux in the 4-cycle at

the tip. Therefore, the case discussed above will not be treated separately in the following.

4.3.1.2.4 Strongly-Warped Scenarios with D7-Brane fields in the Bulk

An interesting scenario arises in the presence of fluxes at the tip of the throat that would

give a warped-down mass for the D7-brane fields, mw
D7, that is still heavier than flux-

induced masses in the bulk, mD7. In this case, the D7-brane fields minimise their energy by

localising in the bulk, so the D7-brane couplings are those in eqs. (4.3.7, 4.3.8). However, as

discussed above, strongly-warped scenarios fulfilling eq. (4.2.13), which allow a supergravity

description thanks to eq. (4.2.16), have a Kähler potential with the structure in eq. (4.2.17).

So, similarly to what happens with the gravitino when eq. (4.2.16) is satisfied, in the 4-

dimensional effective theory the canonically normalised D7-brane scalar mass scales as

eA0 mD7 ∼
θ′gs
V

1

κ4
eA0 .

4.3.1.2.5 D7-Brane Gauge Sector

From the DBI-action of a stack of D7-branes one can observe the kinetic action for the

4-dimensional gauge field to be

SD7-vector
kin = − 1

8πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
gΣ4 [e−4A + c] gµρgνσ FµνFρσ.

It is thus possible to recognise the inverse of the Weyl factor and write

SD7-vector
kin = −

ℓΣ4

(0)

8πgs

∫
X1,3

d4x
√
−g4 e−2Ω gµρgνσ FµνFρσ,

so that from the Yang-Mills coupling condition

4π

g2YM

= Im τYM =
1

gs
e−2ΩℓΣ4

(0) =
1

gs

[
− i

2
(ρ− ρ) +

ℓΣ4
w

ℓΣ4

(0)

]
ℓΣ4

(0),

together with holomorphicity, one concludes that the gauge kinetic function has to be

fD7 = −
iℓΣ4

(0)

2πgs

[
ρ+ ic′0

]
, (4.3.12)

with the constant c′0 = ℓΣ4
w /ℓΣ4

(0). With a volume facorisation such that c0 = c′0, this preserves

exactly the usual structure of D7-brane gauge couplings, provided the inclusion of the shift

suggested by ref. [229]. In the limit where integrals are dominated by the bulk region, the

gauge-kinetic function becomes fD7 = −iℓΣ4

(0)ρ/2πgs.

It would be interesting to study localisation effects such as those that can take place in

the chiral sector. The gaugino soft-breaking mass is provided by (0, 3)-fluxes, following eq.

(C.2.7). Meanwhile, similar mechanisms seem to be prevented for the gauge field, since the

vectors do not have flux-induced masses.
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4.3.1.3 D7-Branes at the Tip of Warped Throats

This subsubsection describes the dimensional reduction and the supergravity formulation

of a D7-brane wrapping a 4-cycle Σ4 at the tip of a warped throat, assuming that the warp

factor varies only transversally with respect to the brane. A toy model is described below,

including the geometric configuration and the corresponding dimensional reduction.

4.3.1.3.1 D7-Brane Configuration

Let the internal 6-dimensional space in the vicinity of the D7-brane wrapped at the tip

of the warped throat take the form Σ4 ⋊ Σ2. Let the coordinates ym
′
span a 4-space, for

m′ = 4, . . . , 7, with z1, z2 their complexified version, and let yṁ parametrise the transverse

2-space, for ṁ = 8, 9, with z3 the corresponding complex direction. Given some conve-

nient coordinates ψm
′
= ψm

′
(yn

′
) and rṁ = rṁ(yṅ) for the 4- and 2-dimensional spaces,

respectively, the internal metric near the throat tip is

ds26 = e−2A gmndy
mdyn = e−2A(r)

(
gm′n′(ψ, r) dym

′
dyn

′
+ g33(r) dz

3dz3
)
.

The D7-brane is assumed to wrap the 4-dimensional slice corresponding to the position

r = 0 at the tip and this 4-space is assumed to see a warp factor which ends up at the

tiny value e2A(r = 0) = e2A0 . The warped throat is glued to some conformal Calabi-Yau

orientifold representing the bulk at r2 = rṁr
ṁ = r2UV, for some rUV. See fig. 4.2 for a

schematic represention of the geometry under consideration.

0

rUV

r

(anti-)D3-brane

Σ2

Σ4

Σ4

D7-brane

Figure 4.2: A sketch of the toy configuration under consideration, with the D7-brane wrapping

the 4-space at r = 0. The D3- or anti-D3-brane provides extra open-string states, as discussed in

sections 4.3 and 4.4, respectively.

To make calculations explicit, it will be assumed that the metric at the tip of the throat

corresponds to the geometry (T4/Z2) × T2. Moreover, in analogy with the KS-metric at

the throat tip in eq. (4.2.9), an overall scaling with the constant e2A0 is assumed, giving

gm′n′(ψ, r < rUV)
r∼0≃ g

(T4/Z2)
m′n′ e2A0 , g33(r < rUV)

r∼0≃ g
(T2)

33
e2A0 . (4.3.13)
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4.3.1.3.2 D7-Brane Chiral Superfield

If the D7-brane wraps a 4-cycle which is entirely localised at the tip of the warped throat,

then the metric of the 4-cycle needs to be evaluated at that point in the transverse space.

In view of the strong-warping condition e−4A0 ≫ c, the kinetic term for the D7-brane scalar

field takes the form

SD7-scalar
kin = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
g0Σ4

e2Ω−4A0+ϕ g0
33
gµν ∇µσ

3∇νσ
3.

Because in the current setup neither the warp factor nor the internal metric depend on the

4-cycle coordinates, one can easily observe that such an action reads

SD7-scalar
kin = − ℓ04

2πgs

∫
X1,3

d4x
√
−g4 e2Ω−4A0+ϕ g0

33
gµν ∇µσ

3∇νσ
3,

where the 4-cycle dimensionless unwarped volume at the tip of the throat is defined as

ℓ04 =
1

l4s

∫
Σ4

d4y
√
g0Σ4

∼ e4A0 .

In the end, the Kähler matter metric has to be

Zσ3σ3 =
1

πgs

e2Ω−4A0

[−i(τ − τ)]
ℓ04 g

0
33
.

Notably, the D7-brane scalar Kähler matter metric shows two distinct features now that

the D7-brane lies at the strongly-warped throat-tip rather than extending along the throat:

- a dependence on the warp factor, which is reasonable because the whole D7-brane is

localised at strong warping;

- a dependence on the Kähler modulus, which means the D7-brane fields are sequestered

and effectively very similar to a D3-brane localised at the tip of the throat.

Also notice that the matter metric has the effective volume and warp factor scaling Zσ3σ3 ∼
e2Ω+2A0/gs, in accord with the result of ref. [228], following the scaling of the metric g0

33

and, correspondingly, of the volume of the 4-cycle at the tip of the throat ℓ04.

Again, the total mass term emerges from the interference of the DBI- and CS-actions,

but for the purposes of determining the suppression factors one can simply focus on e.g.

the DBI-action, which, in real notation, is of the form

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
g0Σ4

g2s e
4Ω+4A0+2ϕ

8πℓ(0)κ
2
4l

2
s

G0
m′n′ṙG

0
p′q′ṡ g

m′p′

0 gn
′q′

0 σṙσṡ.

As the theory at the tip of the throat sees a constant warp factor, one can expand the

harmonic mass-sourcing (2, 1)-flux easily. The supersymmetric mass-sourcing (2, 1)-flux is

still proportional to the harmonic form χϑ = η ∧ dw3, with η the holomorphic (2, 0)-form

of the space T4/Z2, and can be written as [235]

Ĝ0
3 = f(0)χϑ,
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where f = f(r) is a function of the transverse direction (again, the hat denotes the compo-

nent of the flux that sources the mass term). In terms of the 2-form component, which can

be identified as g02 = f η, the expansion thus reads

g02 =
1

ωΣ4

(0)

η

∫
Σ4

g02 ∧ η,

where ωΣ4

(0) =
∫
Σ4
η ∧ η. The mass term can thus be expressed as

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
g0Σ4

1

8πℓ(0)

g2s
κ24l

2
s

e4Ω+4A0+2ϕ g02 · g02 σ3σ3.

It turns out that the 4-cycle integral can be performed straightforwardly and reads∫
Σ4

d4y
√
g0Σ4

g02 · g02 =
1

l2s

∫
Σ4

g2 ∧ g2 =
1

ωΣ4

(0)

1

l2s

∫
Σ4

g02 ∧ η
∫
Σ4

g02 ∧ η,

so the scalar mass term is simply

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

g2s
8πℓ(0)

e4Ω+4A0+2ϕ

ωΣ4

(0)κ
2
4l

4
s

∫
Σ4

g02 ∧ η
∫
Σ4

g02 ∧ η σ3σ3.

With a pure (2, 1)-flux background at the tip, such a mass can be generated by means of

the superpotential bilinear coupling

[
µ̃σ3σ3

]
(2,1)

= −
e−A0ℓ(0)

πκ4l2s

[
g0
33

ℓ04
ℓΣ4

(0)

]1
2
[
∂τ∂uϑ

∫
Y6

[
G3 ∧ Ω

]
δ(2)(r)

]
(2,1)

=
e−A0ℓ(0)

π [−i(τ − τ)]κ4l2s

[
g0
33

ℓ04
ℓΣ4

(0)

]1
2
∫
Σ4

g02 ∧ η,

(4.3.14)

which works in the presence of the 2A0-shift in eq. (4.2.17). Similarly to the case of eq.

(4.3.8), the identification is made assuming the relationship eκ
2
4K̂csℓw = ℓΣ4

(0)/ω
Σ4

(0) to hold.

This is not necessarily true in every compactification, in which case an additional factor

[(ℓΣ4

(0)ω(0))/(ω
Σ4

(0)ℓ(0)))]
1/2 can be inserted in µ̃σ3σ3 .

Comment on Generic Flux Backgrounds

For generic flux-backgrounds, similar challenges arise as in paragraph 4.3.1.2.2. However,

for ISD-fluxes, if the Kähler modulus is stabilised by non-perturbative effects in the bulk,

the (0, 3)-flux is localised away from the tip [61,249]. So, the (0, 3)-flux does not contribute

to the integral in µ̃σ3σ3 , and the Kähler potential coupling Hσ3σ3 can also be set to zero.

Following eqs. (C.2.5a, C.2.5b), even if (0, 3)-flux is present in the bulk, and so there is a

non-zero F-term for the volume modulus, for such a pure flux-induced F-term cancellations

hold such that if Hσ3σ3 = 0 then it follows that Bσ3σ3 = 0 and m2
σ3σ3, soft = 0, consistently

with the fact that the tip of the throat only sees (2, 1)-fluxes [235, 237].4.4 The effects of

non-perturbative corrections besides flux localisation are going to be discussed in KKLT-like

stabilisation scenarios with anti-D3-brane supersymmetry breaking in section 4.4.

4.4As an aside, notice the discrepancy between eqs. (3.25, [235]) and (6.24, [237]).
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Warp Factors and Field Redefinitions

The superpotential bilinear coupling µ̃σ3σ3 in eq. (4.3.14) depends on the warp factor

through e−A0 , g0
33

and ℓ04. It is convenient to make the warp-factor dependences explicit.

Two possible approaches are now discussed.

In order to match the D7-brane chiral multiplet kinetic and mass terms with such a

structure, first of all one has to redefine the D7-brane scalar field as

σ̌3σ̌
3
= e−4A0 ℓ04 g

0
33
σ3σ3, (4.3.15)

and analgously its superpartner too. In this way, the kinetic and mass terms read

SD7-scalar =− 1

2πgs

∫
X1,3

d4x
√
−g4 e2Ω+ϕ gµν ∇µσ̌

3∇ν σ̌
3

− 1

2πgs

∫
X1,3

d4x
√
−g4

g2s
8πℓ(0)

e4Ω+2A0+2ϕ

ωΣ4

(0)κ
2
4l

4
s

e6A0

ℓ04 g
0
33

∫
Σ4

g02 ∧ η
∫
Σ4

g02 ∧ η σ̌3σ̌
3
.

By relabelling the fields as σ̌3 → σ3 for simplicity, one obtains the final action via the

Kähler matter metric

Zσ3σ3 =
1

πgs

e2Ω

[−i(τ − τ)]
(4.3.16)

and the superpotential bilinear coupling

[
µ̃σ3σ3

]
(2,1)

=

[
e6A0

g0
33

1

ℓ04ℓ
Σ4

(0)

]1
2
[

ℓ(0)

π[−i(τ − τ)]κ4l2s

∫
Σ4

g02 ∧ η
]
. (4.3.17)

Therefore, thanks to the field redefinition and the Kähler-potential shift, the bilinear po-

tential is now effectively independent of the warp factor.

A second possibility is to replace the original eA0-dependence in the bilinear coupling

µ̃σ3σ3 with a trilinear term coupling z
1
3 to the product σ3σ3 [67,68], where z is the complex-

structure modulus fixing the warp factor at the tip as ⟨z⟩1/3 ∼ eA0 , assuming for concrete-

ness a Klebanov-Strassler throat. This will be further commented on below.

4.3.1.3.3 D7-Brane Gauge Sector

From the D7-brane DBI-action, one can observe the kinetic action for the 4-dimensional

gauge field to be

SD7-vector
kin = − 1

8πgs

∫
X1,3

d4x
√
−g4 [e−4A0 + c] ℓ04 g

µρgνσ FµνFρσ

and therefore, following the condition e−4A0 ≫ c, the Yang-Mills coupling is

4π

g2YM

= Im τYM = [e−4A0 + c]
ℓ04
gs

=

[
e−4A0 − i

2
(ρ− ρ)

]
ℓ04
gs

≃ e−4A0
ℓ04
gs
.

One can thus conclude that the gauge kinetic function has to be

fD7 =
ℓ04

2πgs

[
e−4A0 − iρ

]
≃ ℓ04

2πgs
e−4A0 . (4.3.18)

177



Chapter 4. Anti-D3-/D7-Branes in Warped Throats

Notice that, as the volume of the wrapped 4-cycle depends on the warp factor due to the

behaviour of the metric in eq. (4.3.13), the term ℓ04 e
−4A0 is actually independent of the

warp factor. The subleading term in fD7 instead depends on the warp factor, and, as for

the µ̃-term above, it may be written as a holomorphic contribution in the complex-structure

modulus z4/3 [67,68]. Also, although the subleading term in fD7 contributes a soft gaugino

mass, due to the e4A0-redshift factor it is always suppressed with respect to the anomaly-

mediated mass contributions discussed below.

4.3.2 D3-/D7-Brane Intersecting States

Interactions in the low-energy effective action involving D3-/D7-brane intersecting states

are now going to be worked out. Tools other than dimensional reduction need to be used

since a higher-dimensional effective theory for such states is unknown.

4.3.2.1 D3-Brane and D7-Brane Extending

from the Throat Tip into the Bulk

For intersecting D3-/D7-branes, where the D3-brane is at the tip of a warped throat and

the D7-brane wraps a 4-cycle extending from the tip into the bulk with the configuration

described in paragraph 4.3.1.2.4, the couplings for the intersecting states in the Kähler- and

super-potential of eqs. (4.3.1a, 4.3.1b) are as follows.

• Following the studies of scattering amplitudes of the intersecting D3-/D7-brane states,

refs. [230, 233, 234] find the structure Zφφ = Zφ∗φ∗ = 1/[−i(ρ− ρ)] in an unwarped

compactification, so, generalising this, for a warped compactification one can define

the Kähler matter metrics for the intersecting states as

Zφφ = Zφ∗φ∗ =
1

2πgs
e2Ω. (4.3.19)

Further, symmetry arguments reveal that the fields φ and φ∗ do not have flux-induced

masses [235]. In fact the resulting no-scale structure implies they can be included

within the logarithmic Kähler potential (together with the other chiral superfields) by

defining the ρ-term as

κ24K = −3 ln

[
2 e−2Ω − κ24

3πgs
φφ

]
.

• As they need to be massless, the intersecting states do not have any bilinear H- or

µ̃-coupling. However, one needs to account for a would-be mass term in the case in

which the D3- and D7-brane are separated, as explained by ref. [235]. As will also

be argued in subsubsection 4.3.2.3, the superpotential term which accounts for this

interaction is generated by the Yukawa couplings

Ỹσ3φφ∗ = −Ỹφ3φφ∗ =
1

gs

[
2

π
[ℓ(0)]

3

]1
2

= ξ̃. (4.3.20)
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It will be shown below that such terms are fundamental in order to generate the

leading-order flux-mediated couplings between the D7-brane and the intersecting

states. Notice that the canonically normalised physical Yukawa couplings involving

σ3 are suppressed by the warp factor, while those involving φ3 are not, consistently

with their different localisations with respect to φ and φ∗.

The corresponding low-energy supergravity action has a D-term potential, an F-term po-

tential, and some soft supersymmetry-breaking couplings.

• The D-term potential emerges because the intersecting states are charged under the

D3- and the D7-brane gauge fields, with couplings

g−2
D3 = − i

4πgs
(τ − τ),

g−2
D7 = −

iℓΣ4

(0)

4πgs
(ρ− ρ+ 2ic0) =

ℓΣ4

(0)

2πgs
e−2Ω,

where for simplicity it is being implied that c0 = c′0. It is now easy to infer that the

D-term potential for the field φ is

V
(susy)
D =

1

2
g2D3 (Zφφφφ)

2 +
1

2
g2D7 (Zφφφφ)

2

=
e4Ω

2πgs [−i(τ − τ)]
(φφ)2 +

e6Ω

4πgsℓ
Σ4

(0)

(φφ)2,
(4.3.21)

and similarly for the field φ∗. It is worthwhile to observe that the specific value of the

redshift factor at the tip of the throat does not appear.

• On the other hand, in an ISD-background the F-term potential comes from the effec-

tive superpotential

Wsusy =
1

2
µσ3σ3σ3σ3 + ξ (σ3 − φ3)φφ∗,

where for the sake of simplicity the trilinear term ξ = eκ
2
4K/2ξ̃ has been defined, and

reads V susy
F = Zij

[
∂iWsusy

][
∂jW susy

]
. This potential gives the redshifted D7-brane

supersymmetric mass, but also the couplings between the pure and the intersecting-

brane states. First of all, one has the cubic interaction

V
(σ3φφ∗)
cubic = Zσ

3σ3
µσ3σ3ξσ3 φφ∗ + Zσ

3σ3
µσ3σ3ξσ3 φφ∗

=
1

4πκ4

e6Ω+2A0

[−i(τ − τ)][−iωΣ4
w ]

[
2

πℓ(0)

]1
2ℓΣ4
w

ℓΣ4

(0)

[[
1

l2s

∫
Σ4

g2 ∧ η
]
σ3 φφ∗+c.c.

]
.

(4.3.22)

Additionally, one can observe two distinct quartic interactions which involve only the

intersecting states. First of all, there is the standard quartic potential

V
(φφ)
quartic = Zσ

3σ3
ξξ φφ∗ φφ∗ + Zφ

3φ3
ξξ φφ∗ φφ∗

=
1

2πgs

e6Ω+2A0

[−iωΣ4
w ]

ℓΣ4
w

ℓΣ4

(0)

φφ∗ φφ∗ +
ℓΣ4
w

πgs

e4Ω+2A0 g330
[−i(τ − τ)] [−iωΣ4

w ]
φφ∗ φφ∗,

(4.3.23)
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in which the warp factor redshifts the D7-brane term, but not the D3-brane one due

to the cancellation induced by the inverse metric g330 ∼ e−2A0 . This does not happen

for the D7-brane because its matter metric is determined by the bulk metric g33 = 1.

Second, there are the quartic interactions that represent the would-be mass terms, i.e.

V
(σ3φφ)
quartic = ξξ Zφ∗φ∗ (σ3 − φ3)(σ3 − φ3)φφ

=
1

πgs

e4Ω+2A0 ℓΣ4
w

[−i(τ − τ)] [−iωΣ4
w ]

(σ3 − φ3)(σ3 − φ3)φφ
(4.3.24)

and the equivalent term for the field φ∗, which are redshifted by the warp factor as

must be due to the location of the intersection at the tip of the throat.

• In order to determine the supersymmetry-breaking terms for the states φ and φ∗,

instead, it is necessary to determine the Riemann tensor associated to the Kähler

matter metrics. In order to show the general structure of the couplings, in this discus-

sion the possibility of having both (2, 1)- and (0, 3)-fluxes is considered.4.5 One finds

the Levi-Civita connection Γφρφ = i e2Ω/2, which implies that the only non-vanishing

component of the Riemann tensor is

Rρρφφ =
1

2πgs

1

4
e6Ω.

So, as a manifestation of sequestering, in an ISD-background the identity still holds

m2
φφ, soft = m̂w

3/2m̂
w
3/2 Zφφ − F̂ρF̂ρRρρφφ = 0,

and the fields φ and φ∗ stay massless even when supersymmetry is broken by ρ. Due

to the lack of an H- or a µ̃-term for these fields, there is no B-coupling either.

Finally, one has to consider the supersymmetry-breaking scalar trilinear couplings,

which must be studied with some care. For the couplings to the D7-brane scalar σ3,

one finds

∇ρYσ3φφ∗ = ∂ρYσ3φφ∗ +
1

2
κ24K̂ρYσ3φφ∗ − 3Γlρσ3Ylφφ∗ =

3i

2
e2ΩYσ3φφ∗

as a consequence of the fact that, because of the form of the D7-brane matter metric,

its associated Levi-Civita connection vanishes, i.e. Γσ
3

ρσ3 = 0. One also finds

∇ρYφφ∗σ3 = ∂ρYφφ∗σ3 +
1

2
κ24K̂ρ Yφφ∗σ3 − 3Γlρφ Ylφ∗σ3 = 0,

∇ρYφ∗σ3φ = ∂ρYφ∗σ3φ +
1

2
κ24K̂ρ Yφ∗σ3φ − 3Γlρφ∗ Ylσ3φ = 0,

because in this case the connection is exactly such as to cancel the first two terms. For

the couplings with the D3-brane scalar φ3, one finds that all the covariant derivatives

4.5Notice that a (0, 3)-flux does not affect the supersymmetric couplings: the D3-brane does not have

supersymmetric couplings depending on ISD-fluxes, while the D7-brane effective µ-term is correct so long

as the conditions around eq. (4.3.9) are fulfilled.

180



4.3. Warped D3- and D7-Branes

vanish too as a consequence of the form of the Kähler matter metric. Therefore,

the only supersymmetry-breaking trilinear coupling is Aσ3φφ∗ (see eq. (C.2.5c)). If

one writes the (0, 3)-flux as G′
3 = g′2(w

3, w3) ∧ dw3, with a suitable (0, 2)-form g′2 =

g′2(w
3, w3) on the 4-cycle, then this becomes4.6

Aσ3φφ∗ =
3

4πκ4

e6Ω+2A0

[−i(τ − τ)] [−iωΣ4
w ]

ℓΣ4
w

ℓΣ4

(0)

[
2r2

πℓ(0)

]1
2 1

l2s

∫
Σ4

g′2 ∧ η, (4.3.25)

where the ratio has been defined r = ℓΣ4

(0)ℓ
T2

(0)/ℓ(0), with ℓ
T2

(0) coming from the tranverse

integration of the superpotential term. Of course, in general one can always set r = 1.

Evidently, in the presence of supersymmetry-breaking imaginary anti-self-dual fluxes,

one would obtain mass corrections for the scalars φ and φ∗ sourced by both the axio-

dilaton and the complex-structure modulus. Also, one would obtain new trilinear

terms coupling these fields to the D3-brane scalar φ3 too.

Notice that in an ISD-background the intersecting D3-/D7-brane states couple to the

background fluxes only via the mediation of the D7-brane fields as the interactions with the

D3-brane fields are protected by the no-scale structure of the latter.

4.3.2.2 D3-Brane and D7-Brane at the Tip of the Throat

For a system of intersecting D3-/D7-branes where the D7-brane wraps a 4-cycle that is

localised at the tip of a warped throat, as in subsubsection 4.3.1.3, or where the D7-brane

wraps a 4-cycle extending through the throat with fields localised at the tip, as in para-

graph 4.3.1.2.3, the intersecting-state parameters of the Kähler- and super-potentials of eqs.

(4.3.1a, 4.3.1b) are as follows:

• the Kähler matter metric is

Zφφ = Zφ∗φ∗ =
1

2πgs
e2Ω; (4.3.26)

• setting β = e−A0 , as argued in subsubsection 4.3.2.3, the Yukawa couplings are

Ỹσ3φφ∗ =
1

gs

[
2

π
[ℓ(0)]

3

]1
2

β = ξ̃β, (4.3.27a)

Ỹφ3φφ∗ = −ξ̃. (4.3.27b)

In this case the canonically normalised physical Yukawa couplings are not redshifted.

These account for the sequestered nature of the fields as well as for the presence of the

would-be mass term due to any brane separation.

For the intersecting-state contributions to the D-term potential, F-term potential and

soft supersymmetry-breaking terms, the fact that the D7-brane is localised and therefore

has a no-scale-like matter metric (cfr. eqs. (4.3.7, 4.3.16)) gives rise to particular features.

4.6In this calculation the coupling involving the intersecting states is present only if there is a (0, 3)-flux

at the tip of the throat. This is not necessarily what happens in a fully stabilised model, where the non-

perturbative corrections that stabilise the volume modulus localise the (0, 3)-flux in the bulk.
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• The D3- and the D7-brane gauge couplings are (neglecting the ρ-dependent term for

the D7-brane)

g−2
D3 = − i

4πgs
(τ − τ),

g−2
D7 =

ℓ04
2πgs

e−4A0 ,

so the D-term potential for the field φ reads

V
(susy)
D =

1

2πgs [−i(τ − τ)]
e4Ω (φφ)2 +

1

4πgs ℓ04
e4Ω+4A0 (φφ)2. (4.3.28)

The volume dependence is now different for the D7-brane-induced potential. However,

the warp factor at the tip of the throat is still effectively missing.

• As usual, the F-term potential comes from the effective superpotential and, in addition

to the D7-brane supersymmetric mass, there are couplings between the pure and the

intersecting-brane states. One finds the cubic interaction

V
(σ3φφ∗)
cubic =

1

4πκ4

e4Ω+A0

[−i(τ − τ)] [−iωΣ4

(0)]

[
2ς

π

ℓΣ4

(0)

ℓ(0)

]1
2

[[
1

l2s

∫
Σ4

g02 ∧ η
]
σ3 φφ∗ + c.c.

]
.

(4.3.29)

where the ratio ς = e6A0/(g0
33
ℓ04) has been defined for brevity. Compared to the po-

tential of eq. (4.3.22), this potential is less warped-down due to the term β = e−A0 .

The quartic interactions for pure intersecting states are

V
(φφ)
quartic =

e4Ω

2πgs

ℓΣ4

(0)

[−iωΣ4

(0)]
φφ∗ φφ∗ +

1

πgs

e4Ω+2A0 g330
[−i(τ − τ)]

ℓΣ4

(0)

[−iωΣ4

(0)]
φφ∗ φφ∗, (4.3.30)

where for the D3-brane induced term, the redshift effect is again cancelled by the

metric, while for the D7-brane the cancellation arises due to the specific setup with the

wrapped 4-cycle at the tip of the throat and the field redefinition of eq. (4.3.15) (see

subsubsection 4.3.2.3). There is also the quartic would-be separation mass interaction

V
(σ3φφ)
quartic =

1

πgs

e4Ω+2A0

[−i(τ − τ)]

ℓΣ4

(0)

[−iωΣ4

(0)]
(σ3e−A0 − φ3)(σ3e−A0 − φ3)φφ. (4.3.31)

• For the supersymmetry-breaking terms, it is obvious that in a pure (2, 1)-flux there

cannot be any. In particular, one finds no flux-dependent A-couplings for the inter-

secting D3-/D7-brane states. In fact, even if there were a (0, 3)-flux, the trilinear

scalar coupling Aσ3φφ∗ would vanish due to the no-scale structure of the modulus ρ.

4.3.2.3 A 6-dimensional Picture of the Intersecting States

One can heuristically motivate the form of the Kähler- and super-potential for the D3-/D7-

brane intersecting states by a qualitative analysis of their would-be effective field theory.
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One can consider the setup in which the branes are separated by a non-zero string-frame

coordinate distance δz3 = (⟨π3⟩ − ⟨ϕ3⟩) l2s/(2π), in the static gauge, where π3 and ϕ3 are

the D7- and D3-brane positions in the D7-brane transverse direction, respectively, with

σ3 = γ3/4π3 and φ3 = γ3/4ϕ3 (see appendix B.2). A displacement of the D3-brane in the

D7-brane longitudinal directions does not induce mass terms, so the intersecting states can

be pictured as 6-dimensional fields living in the non-compact 4-dimensional spacetime plus

the 2-dimensional compact space Y2, in the z3-direction, along which the D3- and D7-branes

can be separated. In the string frame, the supersymmetric mass term for the 6-dimensional

intersecting states θ and θ∗ is (see subsection 2.1.2)

M2
θθ

=M2
θ∗θ∗

=
4π2

l4s
G33δz

3δz3,

with GMN the string-frame metric, and θ and θ∗ are soon going to be related to the 4-

dimensional fields φ and φ∗. The kinetic action must be of the form

SD3/D7 = − 1

2πl2s

∫
X1,3×Y2

d6x
√

−G6 e
−nΦ

[
Gµν∂µθ∂νθ +

4π2

l4s
G33δz

3δz3 θθ

]
,

with n a constant representing the fact that usually actions in the string frame are nor-

malised with overall dilaton factors. Then, in the 4-dimensional Einstein frame one obtains

SD3/D7 = −
ℓY2(0)

2πgns

∫
X1,3

d4x
√
−g4 e2Ω+(1−n)ϕ

[
gµν∂µφ∂νφ+e2Ω+ϕ

(
g33δζ

3δζ
3)
φφ

]
, (4.3.32)

where the brane position moduli have been rescaled as explained in appendix B.2, leading

to δζ3 = γ3/4δz3 = (β⟨σ3⟩ − ⟨φ3⟩) l2s/(2π), and the same scaling has been performed on the

intersecting states, i.e. φ = γ3/4θ. The extra factor is β = 1 for a D7-brane extended from

tip to bulk and β = e−A0 for a D7-brane localised at tip, following the extra field redefinition

in eq. (4.3.15). Such a construction is compatible with a simple supersymmetric description,

i.e. by means of a µ̃-tilde coupling, only if the dilaton power takes the value n = 1 as a

different choice cannot reproduce in supergravity the action of eq. (4.3.32).

So far, this action applies to any intersecting D3-/D7-brane setup, but it is convenient

to specialise to the case in which the D3-brane is located at the tip of a warped throat. As

the intersection takes place at the tip of the throat, the action has the form

SD3/D7 = − 1

2πgs

∫
X1,3

d4x
√
−g4

[
e2Ω gµν∂µφ∂νφ+ e4Ω+2A0+ϕ δζ3δζ

3
φφ

]
,

where advantage has been taken of the fact that the internal metric scales as g0
33

∼ e2A0 and

the 2-space volume factor has been absorbed into the field φ. Assuming the formulation with

the Kähler potential 2A0-shift, the action above can be reproduced in a supersymmetric

way by means of the Kähler- and super-potential terms

Zφφ =
1

2πgs
e2Ω, (4.3.33a)

µ̃φφ =
1

gs

[
2

π

[
ℓ(0)
]3]12

δζ3. (4.3.33b)
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This generates an additional factor ℓw/[−iωw] that has not been captured by the previous

discussion picturing a dimensional reduction. In a theory in which the D3- and D7-brane

scalars are dynamical, the terms µ̃φφ can be used to fix the trilinear couplings as Ỹσ3φφ =

µ̃φφ|⟨φ3⟩=0/⟨σ⟩3, Ỹφ3φφ = µ̃φφ|⟨σ⟩3=0/⟨φ⟩3. This is a simplified example since it contains only

one intersecting field, while in reality there are both the 37- and the 73-states. However,

provided a diagonalisation of the states, the structure of the Yukawa couplings is correct.

In this way, from the bilinear couplings in eq. (4.3.33b) one obtains the trilinear couplings

in eqs. (4.3.20) and (4.3.27).

As commented on in subsubsection 4.3.1.3, if a complex-structure modulus z associated

to the tip of the throat controls the warp factor, then one might choose to not use the

redefinition eq. (4.3.15) of the D7-brane scalars at the tip of the warped throat, instead

obtaining couplings to zp, with p ≥ 0.

4.4 Warped Anti-D3- and D7-Branes

This section discusses the supergravity description of intersecting anti-D3- and D7-branes

in strongly-warped Calabi-Yau orientifold compactifications.

First, the description of anti-D3-branes in terms of constrained superfields is overviewed,

adapting the results of ref. [163], which refer to a different metric Ansatz to eq. (4.2.1) and

outside the regime of field localisation of eqs. (4.2.13, 4.2.16) (see also ref. [156]). Second,

it is shown how to extend these results to anti-D3-/D7-brane constructions, including in

particular the intersecting states, building on the results for D3-/D7-branes. Finally, con-

sidering how these local models may eventually be embedded in global compactifications,

the effects of moduli stabilisation and anomaly mediation on the open-string degrees of

freedom are worked out, referring to the KKLT-scenario for definiteness. Along with the

dimensional reductions in appendix B.2, use is made of appendix C.3, which reports the

supergravity expansions that are suitable in the presence of non-linear supersymmetry.

4.4.1 Pure Anti-D3-Brane

The particle content of D3- and anti-D3-branes is the same, but the couplings with the bulk

and other sources are different due to their opposite RR-charge, with implications on their

supersymmetry transformations too. This subsection begins with a brief general discussion

on anti-D3-brane supersymmetry breaking, then the anti-D3-brane field content and its

low-energy effective action in terms of constrained superfields are described in detail.

4.4.1.1 Anti-D3-Brane Supersymmetry Breaking

In type IIB Calabi-Yau orientifolds, anti-D3-branes do not preserve the same supersymmetry

as the closed-string sector since the orientifold-invariant supersymmetry charge realises

supersymmetry only non-linearly on their worldvolume, whereas the supersymmetry charge

that would be linearly realised on the brane is projected out. In particular, the gaugino

transformation under the surviving supersymmetry takes the form
√
2δϵλ ∼ ϵ/l2, where the

factor l ∼ 1/m̃s is the relevant string scale at the brane location, i.e. either the string scale
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ms or the warped string scale mw
s . This can be seen by adapting the analysis of subsections

2.3.2 and 2.4.2 in view of the warped compactification introduced in section 4.2.

Because the scale 1/l never vanishes, there is no scale at which supersymmetry becomes

linearly realised, and the 4-dimensional effective theory does not involve the usual F- or D-

terms whose vacuum expectation value may become zero to restore linear supersymmetry.

Nevertheless, because the worldvolume action remains supersymmetric, whilst there is no

vacuum in which the anti-D3-brane goldstino has a non-zero supersymmetry transformation,

this is effectively a spontaneous supersymmetry breaking. As a consequence of non-linearity,

the anti-D3-brane degrees of freedom cannot be encoded in standard N4 = 1 multiplets;

instead, all the massless degrees of freedom of the anti-D3-brane must be packaged into

constrained superfields. Once the tool of constrained supermultiplets is introduced, there is

no technical difference with respect to the low-energy effective theory describing standard

F-term spontaneous supersymmetry breaking below the supersymmetry-breaking scale.

Constrained superfields in global supersymmetry are thoroughly discussed in ref. [31]

as a tool to describe effective theories with broken supersymmetry when the superpartners

that become heavy due to the mass-splitting are integrated out. The simplest example is

the nilpotent chiral superfield, whose only physical degree of freedom is its fermion playing

the role of Volkov-Akulov goldstino for broken supersymmetry [137]. A generic treatment

of constrained superfields in both global and local supersymmetry can be found in ref. [32].

As discussed in ref. [96], it should be noted that, although the massless degrees of freedom

realise non-linear supersymmetry as if their superpartners had been integrated out, above

the supersymmetry-breaking scale the full infinite tower of string states is necessary for a

consistent supersymmetric theory, and there is no energy scale above which supersymmetry

in the usual sense is restored. In fact, in view of the discussion in chapter 3, this is not

surprising since the anti-D3-brane spectrum exhibits a form of misaligned supersymmetry.

4.4.1.2 Anti-D3-Brane Constrained Multiplets

To place the anti-D3-brane fields in constrained supermultiplets, one matches the non-linear

supersymmetry transformations for the brane fields with those of a specific constrained

superfield [77, 78, 84], as reviewed in subsection 2.4.4. For notational convenience, the

notation from now on is different, and constrained superfields are denoted with lower-case

letters.

• The anti-D3-brane gaugino λ, which plays the role of the goldstino, is described in

terms of the fermion component ψx of a chiral superfield x that satisfies the nilpotency

condition [255–258]

x2 = 0. (4.4.1)

This effectively removes its scalar φx in favour of the spinor ψx, indeed implying the

identification φx = ψxψx/(2F x), with the auxiliary field F x being non-vanishing by

assumption. At leading order in l, i.e. the scale at which the tower of string states

enters into play, the gaugino λ and the goldstino ψx are then related as

λ ∼ 1

2l2
ψx

F x
,
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with the non-linear supersymmetry variation
√
2δϵλ ∼ ϵ/l2. If the anti-D3-brane sits

at the tip of a warped throat, then this supersymmetry-breaking scale is the warped

string scale l ∼ 1/mw
s .

As the goldstino is contained in a chiral multiplet, the would-be gaugino D-term

breaking is actually described as an F-term breaking. Eventually the gaugino is fixed

as λ = 0 in the unitary gauge. The supergravity generalisation of this construction is

discussed by refs. [259–263].

• The anti-D3-brane Abelian gauge field Aµ is contained in the vector degrees of freedom

of a field-strength chiral multiplet Wα satisfying the constraint [31,86]

xWα = 0, (4.4.2)

which removes the gaugino ζW by making it proportional to the goldstino ψx.

• The anti-D3-brane modulini ψa are described by the fermionic degrees of freedom of

three chiral superfields ya satisfying the constraints [264,265]

xya = 0, (4.4.3)

which remove the scalars φy
a
by making them proportional to the goldstino ψx.

• The anti-D3-brane scalars φa describing position fluctuations are encoded in the scalar

degrees of freedom of three chiral superfields ha satisfying the constraints [31,32]

xDαh
a = 0, (4.4.4)

with Dα the supersymmetry-covariant derivative, which makes both the spinors ψh
a

and the auxiliary fields F h
a
proportional to the goldstino ψx. As it is constrained,

the solution to the F-term field equation is not the usual F h
a
= eκ

2
4K/2KhaI∇IW , but

rather a goldstino-dependent expression which vanishes in the unitary gauge.

4.4.1.3 Anti-D3-Brane Supergravity

The supergravity formulation of a single anti-D3-brane at the tip of a warped throat in an

orientifold compactification with Hodge number h1,1+ = 1 is reported below. One can follow

the dimensional reductions of refs. [80, 149, 163, 231, 232] and adapt them to the metric of

eq. (4.2.1).

4.4.1.3.1 Anti-D3-Brane Uplift Energy

Anti-D3-branes provide a positive energy uplift to the vacuum energy at the classical level.

Given the warp factor A0 at the anti-D3-brane location, in the 4-dimensional Einstein frame

it reads

SD3
Λ = − 1

κ44

∫
d4x

√
−g4

g3s
4π[ℓ(0)]2

e4Ω

e−4A0 + c
.
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In the setup with the anti-D3-brane at the tip of the throat, the warp factor dominates over

the volume modulus, so that the effective form of the term above is

SD3
Λ = − 1

κ44

∫
d4x

√
−g4

g3s
4π[ℓ(0)]2

e4Ω+4A0 .

Such a vacuum energy can be reproduced in supergravity as the F-term potential contri-

bution of the nilpotent superfield x introduced in eq. (4.4.1) by defining the Kähler- and

super-potential

κ24K̂ = − ln[−i(τ − τ)]− ln[−iωw] + ln

[
2

π

ℓw
[ℓ(0)]3

]
− 3 ln

[
2 e−2Ω − 4κ24

3gs

ℓw
ℓ(0)

e−2A0 xx

[−i(τ − τ)][−iωw]

]
,

(4.4.5a)

κ34Ŵ =
gs
l2s

∫
Y6

G3 ∧ Ω+
√
2 gsκ4x, (4.4.5b)

with the actual total Kähler potential being κ24K = 2A0+κ
2
4K̂. In fact, in the unitary gauge,

the only change to the closed-string sector theory induced by the nilpotent superfield is the

anti-D3-brane uplift contribution to the F-term potential, as long as the goldstino is aligned

completely with the x-spinor [147], since the gauge fixing sets φx = ψx = 0. Explicitly, the

correction to the F-term potential is δVF = e2A0+κ24K̂ K̂xx∇xŴ∇xŴ , with the terms

K̂xx =
2

gs

e2Ω−2A0

[−i(τ − τ)][−iωw]

ℓw
ℓ(0)

,

∇xŴ =

√
2gs
κ24

.

Notice that ref. [163] does not work with the 2A0-shift in the Kähler potential, as is

appropriate in regimes not fulfilling eq. (4.2.13). In fact, in ref. [163] the warp factor in

the Kähler potential depends on the brane scalars, i.e. A = A(ha, ha), which would imply a

kinetic-term correction for the scalars due to the 2A0-shift in the Kähler potential. In the

formulation presented here, instead, the term A0 is independent of the brane scalars.

Complex-Structure Moduli in Warped Throats

In type IIBN4 = 1 compactifications, the axio-dilaton and the complex-structure moduli are

typically stabilised at high energy scales. However, in a KS-throat, the complex-structure

modulus z controlling the size of 3-sphere at the throat tip stays in the low-energy effective

theory [67]. For a dimensionless field z, its vacuum expectation value fixes the warp factor

at the tip of the throat as [56]

⟨zz⟩
1
3 = e2A0 = e−4πK/3gsM , (4.4.6)

where M and K are the quantised F3- and H3-fluxes through the conifold 3-sphere and its

dual 3-cycle, respectively.

The Kähler metric for the complex-structure modulus z is computed in ref. [266]. More-

over, ref. [68] shows the way to include such a field within the supergravity formulation
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together with an uplifting anti-D3-brane. Including the Kähler-modulus shift used here,

one can write the Kähler- and super-potential as

κ24K̂ = −3 ln

[
2 e−2Ω − 4κ24

3gs

ℓw
ℓ(0)

xx

[−i(τ − τ)][−iωw]

]
+ Zzz(zz)zz,

κ34Ŵ =
gs
l2s

∫
Y6

G3 ∧ Ω+W (z) +
√
2 gsκ4z

1
3x,

where the Kähler metric Zzz and the superpotential W (z) determine the vacuum expecta-

tion value of the field z to be that in equation (4.4.6); for brevity, the constant term and

the axio-dilaton and other complex-structure moduli have been dropped. Also, one may

include the Kähler potential shift as the extra Kähler potential coupling

κ24δK̂ =
1

3
ln zz = 2A0.

Such a term does not participate in the Kähler metric but only in the overall scaling of the

energy scales, as it needs to do, and to some scalar and fermionic couplings.

In the KS-throat, the unwarped metric at the tip of the throat scales as g0mn ∼ e2A0 ,

which is crucial as it sets the Kähler matter metric of the open-string degrees of freedom

sitting at the tip of the throat. Therefore, writing the warp factor at the tip in terms of

the complex-structure modulus leads, for example, to a coupling from the would-be kinetic

term of the form

δK =
1

2πgs
e2Ωg0

ab
hahb ∼ 1

2πgs
(zz)

1
3 e2Ωδabh

ahb.

It would be interesting to incorporate all such interactions between z and the open-string

fields in a complete supergravity description.

Obviously, if the throat is not of the Klebanov-Strassler type, the details of the potentials

are different, but by analogy one should expect qualitatively similar results.

4.4.1.3.2 Anti-D3-Brane Modulini

For the modulini of an anti-D3-brane, the pure kinetic term reads

SD3-modulini
kin = − i

2πgs

∫
X1,3

d4x
√
−g4 e2Ω g0ab ψ

bσµ∇µψ
a.

This can be matched with a supergravity formulation by encoding the spinors ψa in the

constrained multiplets ya defined in eq. (4.4.3) and using the Kähler potential

κ24K̂ = −3 ln

[
2 e−2Ω − 4κ24

3gs

e−2A0

[−i(τ − τ)][−iωw]

ℓw
ℓ(0)

xx− κ24
3πgs

g0
ab
yayb

]
,

or alternatively, after an easy logarithmic expansion, with the Kähler matter metric

Zyayb =
1

2πgs
e2Ω g0

ab
. (4.4.7)

For the mass term, from the dimensional reduction one finds

SD3-modulini
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

[
mψaψbψaψb + c.c.

]
,
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with the mass4.7

mψaψb = − 1[
4πℓ(0)

] 1
2

gs
4κ4

e3Ω+4A0+ϕ/2 l4sg
0
c(aΩ

0
b)de (G

0−
3 )cde.

Following the method of ref. [163], this mass term can be generated via a Kähler-potential

bilinear coupling

Hyayb =
1

4πg2s

ℓ
1
2
w

[−i(τ − τ)][−iωw]
1
2

e2Ω+A0 l4s g
0
c(aΩ

0
b)de (G

0−
3 )cde κ4x. (4.4.8)

Indeed, as required, in an imaginary self-dual background one obtains the effective µ-term

µyayb = −F̂x∂xHyayb =
1

2πgs
mψaψb .

It is possible to observe that the scale of the canonically normalised mass is [228]

mw
D3

∼ gs

V
1
3

1

κ4
eA0 .

4.4.1.3.3 Anti-D3-Brane Scalars

The pure kinetic action for the anti-D3-brane scalars takes the form

SD3-scalars
kin = − 1

2πgs

∫
X1,3

d4x
√
−g4 e2Ω g0ab g

µν ∇µφ
a∇νφ

b.

In order to correctly account for the expected no-scale structure (also see paragraph 4.3.1.1.1),

one needs to generalise the full Kähler potential for the Kähler modulus as

κ24K̂ = −3 ln

[
2 e−2Ω − 4κ24

3gs

e−2A0

[−i(τ − τ)][−iωw]

ℓw
ℓ(0)

xx− κ24
3πgs

g0
ab
yayb − κ24

3πgs
g0
ab
hahb

]
,

where ha are the constrained chiral multiplets defined in eq. (4.4.4) and containing the

scalars φa. An expansion of the logarithm shows that the Kähler matter metric is

Zhahb =
1

2πgs
e2Ω g0

ab
+

κ24
3πg2s

e4Ω−2A0

[−i(τ − τ)][−iωw]

ℓw
ℓ(0)

xx g0
ab
. (4.4.9)

As far as scalar masses are concerned, from the combination of the relevant parts of the

DBI- and CS-actions one finds the term

SD3-scalars
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

e4Ω

4πℓ(0)

g2s
κ24

[l2s∇a∇b(e
4A + α)]0 φ

aφb.

4.7In ref. [80] the holomorphic 3-form is defined in terms of the γ-matrices that are suitable for the geometry

at the tip of the throat. Given the internal Dirac matrices γm and the internal spinor η+ of positive chirality

and norm η†
+η+ = 1 which defines the SU(3)-structure of the space, with η− its conjugate, the holomorphic

3-form and the Kähler form are defined as

l3sΩmnp = η†
−γmnpη+, ω̃mn = i η†

+γmnη+.

To make estimates in terms of the warp-factor scaling, then one needs to consider the qualitative behaviour

l3sΩ
0 ∼ e3A0 (n0

f )
3/2, consistently with the metric behaviour. This observation is useful for section 4.6.
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If only (2, 1)-flux is present at the tip of the throat, the anti-D3-brane scalar mass-squared

trace can be evaluated at leading order thanks to the GKP-equations, which, at a position

in the internal space with pure (2, 1)-flux background, for some order-1 constant k, imply

the relation [56,231,267]4.8

gab∇a∇be
4A =

k

12
e8A+ϕG−

2,1 ·G
−
2,1.

In fact, in a pure (2, 1)-flux background, the anti-D3-brane mass supertrace vanishes [231],

which reflects the fact that in the absence of the orientifold the theory would be super-

symmetric. So, the scalar masses are provided by a µ-term equivalent to the modulini one.

It is then natural to try to generate the µ-term by using the same H-coupling as for the

modulini, in eq. (4.4.8). However, for an H-coupling of the form Hhahb , because the con-

strained superfield ha does not have an independent F-term, the supergravity expansions

are different to the standard case, as shown in appendix C.3. It turns out that the coupling

Hhahb = Hyayb , is still able to generate a mass

m2
φaφb = 2Zh

chdF̂M F̂NHhahc,NHhbhd,M ,

but this also originates unwanted bilinear couplings, as is going to be seen around the

derivation of eq. (4.4.13). An alternative way to describe the mass term is to use a mixed

yahb-coupling Hyahb , with Hyahb = Hyayb . One now obtains a scalar mass

m2
φaφb = Zy

cydF̂xF̂xHhayc,xHhbyd,x

and it also turns out that the unwanted bilinear interactions are avoided. Such an H-term

also contributes a coupling m2
yayb

yayb, but this is actually a fermionic term that vanishes in

the unitary gauge. The key for this structure is the presence, in the expression of the mass,

of the inverse of the diagonal Kähler matter metric combined with two off-diagonal H-

terms. All this can be checked explicitly by working out the details of the F-term potential

expansion, as explained in appendix C.4. In conclusion, the would-be supersymmetric scalar

mass can be reproduced by means of the Kähler potential bilinear coupling

Hhayb =
1

4πg2s

ℓ
1
2
w

[−i(τ − τ)][−iωw]
1
2

e2Ω+A0 l4s g
0
c(aΩ

0
b)de (G

0−
3 )cde κ4x. (4.4.10)

4.8In the GKP-setup [56], by rearranging the 4-dimensional components of the Einstein equations and the

field equation of the 4-form potential, one can show the condition (see subsection 2.2.4)

∇m∇m

(
e4A + α

)
=

e2A

24 Im τ

[
iGmnp + (∗̂6G)mnp

][
− iGm̂n̂p̂ + (∗̂6G)m̂n̂p̂]

+e−6A [
∇̂m

(
e4A + α

)][
∇̂m̂(

e4A + α
)]

−2κ̂2
10 e

2A
[1
4

(
ĝµν T̂µν − ĝmnT̂mn

)
σ
− T3 ρ

σ
(3)

]
.

In a background with ISD-fluxes G3 = −i ∗6 G3 and the condition e4A = α, one can observe that:

• the source term vanishes for an anti-D3-brane (and is subleading in the string length for a D7-brane);

• all the flux contributions are expected to have the same functional dependence as the 3-form term.

Therefore, in a pure (2, 1)-flux, one finds the equation in the main text. Obviously a similar result holds for

a generic imaginary self-dual (2, 1)- and (0, 3)-flux background.
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The analysis of subsection C.3 shows that in general there is also a would-be soft

supersymmetry-breaking coupling mass of the form

m2
φaφb, soft

= κ24V̂FZhahb − F̂M F̂N
[
Zhahb,MN − 2Γh

c

Mha Zhchd Γ
hd

Nhb
]

+
[
m̂w

3/2F̂
MZhahb,M + m̂w

3/2F̂
NZhahb,N

]
.

In a pure (2, 1)-flux background, the only contribution is from the x-field F-term, which

gives the would-be soft-breaking mass

m2
φaφb, soft

=
2

3
κ24VD3 Zhahb . (4.4.11)

This term can be seen to emerge in the dimensional reduction as follows. In the presence

of the anti-D3-brane scalars, the volume is shifted and the total Weyl factor should be such

that [227,268]

e−2Ω′
= e−2Ω − κ24

6πgs
g0
ab
hahb, (4.4.12)

with the actual uplift energy V ′
D3

= 4πγ3 e4Ω
′+4A0/gsl

4
s . If one expands this energy in ha,

then what is obtained is exactly the sought-after factor, being

V ′
D3

(e2Ω
′
) = VD3(e

2Ω)

[
1 +

2

3
κ24Zhahbh

ahb
]
.

If a non-zero (0, 3)-flux were present at the tip of the throat too, the scalar masses

would receive extra contributions in the dimensional reduction. This flux instead would not

modify the modulini masses, but it would provide a mass to the gaugino. The scalar mass

correction cannot be added as a would-be supersymmetric µ-term, since an F x-induced extra

contribution gives cross-terms between (2, 1)- and (0, 3)-fluxes in the scalar mass-squared

trace, which are not seen in the dimensional reduction [231], and an F ρ-induced would-be

µ-coupling cannot work either because it is impossible to find a scaling Hab ∝ enΩ giving a

mass m2
ab

∝ e4Ω. Instead, the matching can be achieved via a would-be soft-breaking term,

by adding an extra xx-term in the Kähler metric in eq. (4.4.9). Notice that, even in the

presence of a non-vanishing F ρ-term, the scalar masses are still partially protected by a

no-scale cancellation

Zhahb, ρρ − 2Γh
c

ρha Zhchd Γ
hd

ρhb = 0.

This is a specific feature of the constrained-superfield would-be supersymmetry-breaking

mass expression, since the usual soft supersymmetry-breaking mass vanishes in the presence

of a logarithmic structure but due to a different cancellation involving the gravitino mass.

However, there is an extra F ρ-induced term giving an unwanted mass m2
ab

∝ e6Ω: this is

a common issue for highly-warped setups if working with just one Kähler modulus, but, if

needed, it can be removed by an extra xx-term. In the main scenario considered, only a

(2, 1)-flux is present at the tip of the throat, so the (0, 3)-flux-induced mass must vanish.

From the dimensional reduction one also obtains bilinear and trilinear couplings. For

an Abelian anti-D3-brane, the bilinear coupling is

SD3-scalars
bilinear = − 1

2πgs

∫
X1,3

d4x
√
−g4

e4Ω

8πℓ(0)

g2s
κ24

(
[l2s∇a∇b(e

4A + α)]0 φ
aφb + c.c.

)
,
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whilst there are no trilinear couplings. The description within supergravity follows from

the discussions in subsections C.2 and C.3. As there are no bilinear µ̃-couplings, for a term

Hhahb the generic B-coupling would be

Bφaφb = κ24V̂FHhahb + m̂w
3/2F̂

M∂MHhahb + m̂w
3/2F̂

M∇̂MHhahb

−F̂M F̂N
(
Hhahb,MN − 4ΓlMiHhahb,N

)
.

One can now observe that if a term Hhahb ∝ x e2Ω were used to generate the mass term

mφaφb , it would also give a B-term scaling as Bφaφb ∝ e6Ω+4A0 , which is not present in

the dimensional reduction. Although this may be cancelled by a suitable counter-term

H ′
hahb

∝ xx e4Ω−2A0 , it is simpler to instead obtain the mass term via the coupling Hhayb ,

as chosen in eq. (4.4.10); this only generates a bilinear term Bhayb , which is not a scalar

coupling and vanishes in the unitary gauge. The required coupling Bφaφb above can be

obtained by defining an extra H-term

H ′
hahb =

1

2πgs

e4Ω

8πℓ(0)

g2s
κ24

[l2s∇a∇b(e
4A + α)]0

xx

F̂xF̂x
. (4.4.13)

This generates only the required coupling since it just affects the B-term because this is

the only operator with a term scaling as a second x-derivative of the H-term.

4.4.1.3.4 Anti-D3-Brane Gauge Field

Compared to the D3-brane gauge field, the anti-D3-brane gauge field is described by the

same DBI-term but by an opposite CS-term, which results in the 4-dimensional action

SD3-vector
kin = − 1

4πgs

∫
X1,3

e−ϕ F2 ∧ ∗F2 −
1

4πgs

∫
X1,3

C0 F2 ∧ F2.

Of course, the gauge kinetic function cannot be simply fD3 = iτ/2πgs as it is not holomor-

phic in the axio-dilaton. A solution to this issue is given in ref. [163], which finds

fD3 =
(
D

2 − 8R
)(xfD3(τ)

D
2
x

)
,

with Dα the supergravity fermionic derivative and R the gravity multiplet. This function

is holomorphic thanks to the projectors but at the same time has a superspace expansion

fD3 =
iτ

2πgs
+O(x). (4.4.14)

Because x is the nilpotent superfield, all the extra terms are proportional to the goldstino

and therefore vanish in the unitary gauge.

4.4.2 Anti-D3-/D7-Brane Intersecting States

For intersecting anti-D3-/D7-branes systems, the pure anti-D3- and pure D7-states have

been described in the previous subsections. It is also possible to provide a supergravity

formulation of anti-D3-/D7-brane intersecting states:
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• on the one hand, one can infer the scaling factors for the kinetic and interaction terms

of anti-D3-/D7-brane intersecting states using the D3-/D7-brane system discussed in

subsection 4.3.2;

• on the other hand, the tools of constrained superfields allow one to formulate the

low-energy theory in the language of supergravity.

4.4.2.1 Anti-D3-/D7-Brane Constrained Superfields and Couplings

The strings stretching between the anti-D3- and the D7-brane give two scalar fields φ and

φ∗ as well as two Weyl spinors ψ and ψ∗; in particular, the fields (φ,ψ) and (φ∗, ψ∗) are in

conjugate representations of the gauge groups.

Similarly to the pure anti-D3-brane states, because the anti-D3-/D7-brane intersecting

states do not preserve the supersymmetry of the Calabi-Yau orientifold bulk, the natural

tool to describe them consists in constrained superfields. It is impossible to identify the

constrained superfields for the intersecting states by comparing with supersymmetry varia-

tions because the latter are unknown as they cannot be inferred directly from a dimensional

reduction. However, one can postulate the following ones:

(i) the scalar fields φ and φ∗ belong to the chiral superfields h and h∗ satisfying the

spinor-removing constraints

xxDαh = 0, (4.4.15a)

xxDαh∗ = 0; (4.4.15b)

(ii) the Weyl spinors ψ and ψ∗ belong to the chiral superfields y and y∗ satisfying the

scalar-removing constraints

xy = 0, (4.4.16a)

xy∗ = 0. (4.4.16b)

These constraints have been chosen because they are the easiest way [32] to remove the unde-

sired degrees of freedom from the effective theory below the anti-D3-brane supersymmetry-

breaking scale. In particular, notice that the constraint for the scalar fields is such as to

leave an independent F-term [269].

In the strongly-warped regime set by eqs. (4.2.13, 4.2.16), the Kähler potential contains

the 2A0-shift as in eq. (4.2.17). Given the closed-string and anti-D3-brane goldstino poten-

tials K̂ and Ŵ of eqs. (4.4.5a, 4.4.5b), one can argue that the total Kähler potential and

superpotential are

K = K̂ + Zyayby
ayb +

1

2

[
Hhahby

ayb + c.c.
]

+ Zhahbh
ahb +

1

2

[
Hyahby

ahb + c.c.
]

+ Zσ3σ3σ3σ3 +
1

2

[
Hσ3σ3σ3σ3 + c.c.

]
+ Zhhhh+ Zyyyy + Zh∗h∗h∗h∗ + Zy∗y∗y∗y∗,

(4.4.17a)
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W = Ŵ +
1

2
µ̃σ3σ3σ3σ3 + ξ̃(βσ3 − y3 − h3)yy∗

+ ξ̃(βσ3 − y3 − h3)hy∗ + ξ̃(βσ3 − y3 − h3)yh∗,
(4.4.17b)

The pure anti-D3- and D7-brane terms follow from those discussed in subsubsections 4.3.1.2,

4.3.1.3, 4.4.1.3, and their theory is the same except for the anti-D3-brane uplift effect on

the D7-brane theory to be discussed. The other terms represent the intersecting states and

they are going to be discussed below.

The fields belonging to the supermultiplets h, y, and h∗, y∗ have charges qD3 = 1,−1

and qD7 = −1, 1, respectively, under the anti-D3- and D7-brane gauge groups.

4.4.2.2 Anti-D3-Brane with D7-Brane

from the Throat Tip into the Bulk

In the setup in which the anti-D3-brane sits at the tip of the warped throat and the D7-

brane wraps a 4-cycle extending from the throat tip into the bulk, the couplings for the

intersecting states in eqs. (4.4.17a, 4.4.17b) are as follows.

• Because the kinetic terms are not affected by the flux-induced supersymmetry break-

ing, for anti-D3-/D7-brane intersecting states one can make use of the same Kähler

matter metric terms as for the D3-/D7-brane case. The logarithmic structure that is

equivalent to eq. (4.3.19) for D3-/D7-branes is generaralised to

κ24K = −3 ln

[
2 e−2Ω − 4κ24

3gs

ℓw
ℓ(0)

e−2A0 xx

[−i(τ − τ)][−iωw]
− κ24

3πgs
φφ

]
,

so the matter metrics for anti-D3-/D7-branes are defined to be

Zhh =
1

2πgs
e2Ω +

κ24
3πg2s

e4Ω−2A0

[−i(τ − τ)][−iωw]

ℓw
ℓ(0)

xx, (4.4.18a)

Zyy =
1

2πgs
e2Ω. (4.4.18b)

This is consistent with the intersecting states not acquiring flux-induced masses [235]

due to similar cancellations to those discussed for the intersecting D3-/D7-brane

scalars. This is also going to be discussed explicitly in subsection 4.4.3.

• For the trilinear couplings in the superpotential, further explanations are required, as

two related but distinct features from the higher-dimensional setup need considering.

(i) Using the internal-space symmetries of the flux-dependent couplings, ref. [235]

shows that the anti-D3-/D7-brane intersecting states couple only to the pure

anti-D3-brane states and not to the pure D7-brane states. The coupling 3-form

flux can be written as G′′
3 = g′′2 ∧ dw3, where g′′2 = g′′2(w

3, w3) is a combination

of (1, 1)-forms on the 4-cycle, and the scalar trilinear couplings are of the kind

tαβγ =
1

κ4
u(e2Ω, e2A0) cαβγ ,
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where (see appendix B.3 for the explicit expressions of the (1, 1)-forms ζi)

ch3hh∗ =
1

l2s

∫
Σ4

g′′2 ∧ ζ1, (4.4.19a)

ch3hh∗ =
1

l2s

∫
Σ4

g′′2 ∧ ζ2, (4.4.19b)

ch3h∗h∗ =
1

l2s

∫
Σ4

g′′2 ∧ (ζ3 + ζ4) = ch3hh, (4.4.19c)

with the overall factor

u(e2Ω, e2A0) =
1

4π

e7Ω+3A0

[−i(τ − τ)]
1
2 [−iωΣ4

w ]

[
1

πℓ(0)

] 1
2 ℓΣ4

w

(ℓΣ4

(0))
1
2

.

A (2, 1)-flux sources the coupling, but it is not the same flux that sources the D7-

brane mass. Indeed ref. [235] identifies the flux components that the couplings

depend on, while the overall scaling u has been inferred from the D3-/D7-brane

case by matching the canonically normalised couplings (see eqs. (4.3.22, 4.3.25),

and notice the ratio (Zφ3φ3/Zσ3σ3)1/2 = (g0
33
/g33)

1/2eΩ[−i(τ − τ)]1/2/(2ℓΣ4

(0))
1/2).

(ii) Also, one needs to account for the mass due to the brane separation in a super-

symmetric way since both the scalars and the spinors acquire the same separation

mass. A way to do that is via a trilinear coupling in the superpotential.

A natural guess to implement both these facts in the 4-dimensional effective theory

is a generalisation of the trilinear coupling in eq. (4.3.20), with all the permutations

accounting for the fact that now scalars and spinors are in different multiplets. Because

for ISD-fluxes both the anti-D3- and the D7-brane have an effective superpotential

bilinear coupling, though, such a term would again generate a coupling of the D7-brane

state σ3 with the intersecting states. A way to avoid it is to exclude the coupling4.9

δW = ξ̃(σ3 − h3 − y3)hh∗.

As a matter of fact the trilinear couplings of the proposed superpotential in eq.

(4.4.17b), namely

Ỹσ3yy∗ = Ỹσ3hy∗ = Ỹσ3yh∗ = ξ̃, (4.4.20a)

Ỹy3yy∗ = Ỹy3hy∗ = Ỹy3yh∗ = −ξ̃, (4.4.20b)

Ỹh3yy∗ = Ỹh3hy∗ = Ỹh3yh∗ = −ξ̃, (4.4.20c)

are enough to generate the desired couplings apart from a couple, which however will

be dealt with in paragraph 4.4.2.2.2.

4.9The removal of the term δ1W = ξ̃σ3hh∗ prevents the couplings with the D7-brane, the absence of the

term δ2W = −ξ̃h3hh∗ prevents the generation of quartic couplings of the anti-D3-brane with the intersecting

states already generated by the other terms – which however generate the would-be separation mass terms

in an easy way including the D7-brane scalar too – and the absence of the term δ3W = −ξ̃y3hh∗ prevents

the cubic scalar coupling δVF = ξµ33φ
3φφ∗ + c.c., which is also forbidden by the symmetry arguments of

ref. [235]. All these facts can be checked in the F-term potential in eq. (4.4.27).
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4.4.2.2.1 Standard Supergravity Terms

One now needs to determine the effective D- and F-term potentials as well as the soft would-

be supersymmetry-breaking couplings. Most of the terms have already been worked out in

the earlier discussions on anti-D3- and D7-brane states, so one can focus on the interplay

between the branes and on the new terms from intersecting states.

• For the D7-brane, most of the calculations hold as in the analysis of the pure D7-brane

in subsubsection 4.3.1.2 and others are similar to the case of intersecting D3-/D7-

branes in subsubsection 4.3.2.1, as now summarised.

For the supersymmetric terms, the effective µ-coupling and the corresponding super-

symmetric mass is exactly the same as for the pure D7-brane construction. On the

other hand, the effective superpotential couplings follow straightforwardly from the

superpotential and are

Yσ3yy∗ = Yσ3hy∗ = Yσ3yh∗ = ξ. (4.4.21)

Notice that the superpotential gives exactly the same (and no extra) Yukawa couplings

as the D3-/D7-brane construction, since only the terms with one scalar and two spinors

generate proper Yukawa terms.

For the supersymmetry-breaking terms, assuming that the Kähler metric and the

H-term do not depend on x since they come from a deformation of the axio-dilaton

Kähler potential, from the general expression one can observe the soft-breaking mass

m2
σ3σ3, soft =

(
m̂w

3/2m̂
w
3/2 + κ24VF

)
Zσ3σ3 −FMFN RMNσ3σ3

= (mflux
σ3σ3, soft)

2 + δm2
σ3σ3, soft,

where mflux
σ3σ3, soft

represents the flux-induced soft-breaking terms, which then get an

extra uplifting contribution due to the supersymmetry breaking by the anti-D3-brane,

with

δm2
σ3σ3, soft = κ24VD3 Zσ3σ3 =

[
gs

2πℓ(0)

]2 e4Ω+4A0ℓΣ4

(0)

κ24[−i(τ − τ)]
. (4.4.22)

The effective B-term follows a similar destiny since it can be seen to read

Bσ3σ3 = Bflux
σ3σ3 + κ24VD3Hσ3σ3 . (4.4.23)

Finally, the trilinear A-terms do not generate any scalar trilinear coupling as the

trilinear terms of eq. (4.4.21) never involve three scalars due to the constraints, which

means that the would-be scalar trilinear coupling is actually a fermionic interaction.

• For the anti-D3-brane, there is no substantial difference with respect to the analysis of

subsubsection 4.4.1.3 since there are no new bilinear couplings in the Kähler potential

or in the superpotential. One also has the superpotential trilinear couplings

Yy3yy∗ = Yy3hy∗ = Yy3yh∗ = −ξ, (4.4.24a)

Yh3yy∗ = Yh3hy∗ = Yh3yh∗ = −ξ. (4.4.24b)
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Evidently, these terms just add couplings between the anti-D3-brane and the inter-

secting states, but do not cause any particular modification to the pure anti-D3-brane

action. Again, the superpotential also gives exactly the same Yukawa couplings as in

the D3-/D7-brane construction.

• For the anti-D3-/D7-brane intersecting states, because their Kähler potential and

superpotential expansion terms do not involve bilinear terms apart from the Kähler

matter metric, one simply has the trilinear superpotential couplings discussed above

and the soft-breaking masses

m2
φφ, soft =

(
m̂w

3/2m̂
w
3/2 Zhh −FρFρRρρhh

)
+
(
κ24VD3 Zhh −FxFxRxxhh

)
,

and similarly for the counterpart φ∗. This is referred to an ISD-background for def-

initeness. The first contribution always vanishes before non-perturbative corrections

kick in, but the second one does not and reads

δm2
φφ, soft =

2

3
κ24VD3 Zhh =

[
gs

2πℓ(0)

]2 e6Ω+4A0

3κ24
. (4.4.25)

Because these fields have no pure bilinear and trilinear couplings in the Kähler- and

super-potential, they do not have further couplings among themselves alone.

To conclude, one must consider the complete effective D- and F-term potentials. First

of all, for the D-term potential, one has again the positive semi-definite quartic self-

interaction terms (and similarly for the corresponding field φ∗)

V
(susy)
D =

1

2
g2
D3

(Zhhφφ)
2 +

1

2
g2D7 (Zhhφφ)

2

=
e4Ω

2πgs [−i(τ − τ)]
(φφ)2 +

e6Ω

4πgsℓ
Σ4

(0)

(φφ)2.
(4.4.26)

Second, for the F-term potential, most of the terms that are generated are actually

fermionic interactions and not scalar couplings. Taking into account the effective

bilinear terms from the pure D7- and anti-D3-branes as well as the Yukawa couplings

in eqs. (4.4.21, 4.4.24), one obtains the effective superpotential

Wsusy =
1

2
µσ3σ3σ3σ3 +

1

2
µyayby

ayb + µyahby
ahb + ξ (σ3 − y3 − h3)yy∗

+ξ (σ3 − y3 − h3)hy∗ + ξ (σ3 − y3 − h3)yh∗.

Therefore, the effective F-term potential takes the form

V
(susy)
F = Zσ

3σ3
µσ3σ3µσ3σ3σ3σ3 + Zy

ayb µyahcµybhdφ
cφd

+Zyy
[
ξ
(
σ3 − φ3

)
φ∗
][
ξ
(
σ3 − φ3

)
φ∗
]

+Zy∗y∗
[
ξ
(
σ3 − φ3

)
φ
][
ξ
(
σ3 − φ3

)
φ
]
.

(4.4.27)
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One immediately recognises the D7-brane supersymmetric mass, the anti-D3-brane

scalar mass and the would-be separation mass for the anti-D3-/D7-brane intersecting

states, with the same volume scaling as for the D3-/D7-brane case.4.10

The constrained multiplets ha have constrained F-terms, but they always appear in

mixed hayb-, hayy∗-, h
ahy∗- and h

ayh∗-couplings. Therefore they both contribute the

non-standard couplings discussed in appendix C.3, which turn out be fermionic and

vanishing in the unitary gauge, and standard couplings via the effect of yb, y and y∗,

which have unconstrained F-terms and end up providing bosonic terms in the action.

This is exactly the same mechanism discussed in paragraph 4.4.1.3.3.

4.4.2.2.2 xx-Dependent Interaction Terms

The supergravity formulation described so far incorporates all the expected couplings, ex-

cept the trilinear flux couplings in eqs. (4.4.19a, 4.4.19b, 4.4.19c) and an anti-D3-/D7-brane

version of the D3-/D7-brane quartic potential in eq. (4.3.23).

These couplings can be obtained by considering a specific class of supersymmetric terms,

introduced in refs. [157] (for further developments and applications, see e.g. refs. [161,163,

270, 271]). This involves the nilpotent goldstino field in such a way as to only contribute

bosonic terms to the component action, with the fermionic terms vanishing in the unitary

gauge. Indeed, the coupling in eqs. (4.4.19a, 4.4.19b, 4.4.19c) can be described by adding

to the Kähler potential in eq. (4.4.17a) the deformation

δK =
2[ℓΣ4

w ]2

g4s

[
1

π

ℓ(0)

ℓΣ4

(0)

]1
2 κ24xx e

5Ω−3A0

[−i(τ − τ)]
3
2 [−iωΣ4

w ]2

[
κ4 cαβγh

αhβhγ + c.c.
]
. (4.4.28)

The only modification that this induces in the bosonic action comes from the second deriva-

tive with respect to x and x, namely δVF = δKxxFxFx as all the other terms contain the

scalar component of x, which is proportional to the goldstino. One can similarly include

the coupling of eq. (4.3.23).

4.4.2.3 Anti-D3-Brane and D7-Brane at the Tip of the Throat

If the anti-D3-brane and the D7-brane are localised at the tip of the warped throat, the su-

pergravity couplings for the intersecting states in eqs. (4.4.17a, 4.4.17b) are given explicitly

as follows.

4.10For ease of notation, only the non-fermionic terms have been reported. Denoting the fermionic terms

that one would have in a generic way as rx, the actual expression one finds is

V
(susy)
F = Zσ3σ3(

µσ3σ3σ3 + rx
)(
µσ3σ3σ

3 + rx
)
+ Zyayb(

µyahcφc + rx
)(
µybhdφ

d + rx
)

+Zyy[ξ(σ3 − φ3)φ∗ + rx
][
ξ
(
σ3 − φ3)φ∗ + rx

]
+Zy∗y∗

[
ξ
(
σ3 − φ3)φ+ rx

][
ξ
(
σ3 − φ3)φ+ rx

]
.

198



4.4. Warped Anti-D3- and D7-Branes

• As in subsubsection 4.4.2.2, the Kähler matter metric terms for the anti-D3-/D7-brane

intersecting states read

Zhh =
1

2πgs
e2Ω +

κ24
3πg2s

e4Ω−2A0

[−i(τ − τ)][−iωw]

ℓw
ℓ(0)

xx, (4.4.29a)

Zyy =
1

2πgs
e2Ω. (4.4.29b)

• For the cubic superpotential term, one can again follow subsubsection 4.4.2.2. For a

localised D7-brane there is no (0, 3)-flux coupling for the intersecting D3-/D7-brane

states, so, following the tangent-space symmetry arguments of ref. [235] and the scaling

factors determined therein, the trilinear scalar couplings are still of the form

tαβγ =
1

κ4
u(e2Ω, e2A0) cαβγ ,

where the flux and index structure is

ch3hh∗ =
1

l2s

∫
Σ4

g′′2 ∧ ζ1, (4.4.30a)

ch3h∗h∗ =
1

l2s

∫
Σ4

g′′2 ∧ (ζ2 + ζ3) = ch3hh, (4.4.30b)

but with an overall factor

u(e2Ω, e2A0) =
1

4π

e4Ω+2A0

[−i(τ − τ)]
1
2 [−iωΣ4

(0)]

[
2ς

π

ℓΣ4

(0)

ℓ(0)

]1
2

.

The matching with the scaling for the D3-/D7-brane coupling in eq. (4.3.29) is done

in terms of the canonically normalised fields. Anyway, as in subsubsection 4.4.2.2, the

Yukawa couplings are still simply

Ỹσ3yy∗ = Ỹσ3hy∗ = Ỹσ3yh∗ = ξ̃β, (4.4.31a)

Ỹy3yy∗ = Ỹy3hy∗ = Ỹy3yh∗ = −ξ̃, (4.4.31b)

Ỹh3yy∗ = Ỹh3hy∗ = Ỹh3yh∗ = −ξ̃, (4.4.31c)

with β = e−A0 , from the discussion of subsubsection 4.3.2.3.

4.4.2.3.1 Standard Supergravity Terms

Again, one can study the interactions term by term.

• For the D7-brane, the results of subsubsection 4.3.1.3 still hold with the further anti-

D3-brane contribution to the soft-breaking mass4.11

δm2
σ3σ3, soft = κ24VD3 Zσ3σ3 =

[
gs

2πℓ(0)

]2 e6Ω+4A0

κ24[−i(τ − τ)]
(4.4.32)

4.11Since the Kähler metric now contains a factor e2Ω/Im τ , it is ambiguous whether it comes from a shift

in the axio-dilaton Kähler potential or the Kähler-modulus one. In the latter case, the D7-brane Kähler

metric acquires an xx-dependence, and there is an additional contribution to δm2
σ3σ3, soft, which results in

an overall factor f = 2/3 in the total expression.
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and the B-term

Bσ3σ3 = κ24VD3Hσ3σ3 . (4.4.33)

Further, now one has the effective superpotential couplings

Yσ3yy∗ = Yσ3hy∗ = Yσ3yh∗ = ξ e−A0 . (4.4.34)

Finally, the trilinear A-terms do not generate any scalar trilinear coupling since in

fact they correspond to fermionic interactions.

• For the anti-D3-brane, the same results as in subsubsection 4.4.1.3 hold identically.

Further, there are the superpotential trilinear couplings

Yy3yy∗ = Yy3hy∗ = Yy3yh∗ = −ξ, (4.4.35a)

Yh3yy∗ = Yh3hy∗ = Yh3yh∗ = −ξ. (4.4.35b)

• For the anti-D3-/D7-brane intersecting states, once again the only thing to add is the

soft-breaking mass

δm2
φφ, soft =

2

3
κ24VD3 Zhh =

[
gs

2πℓ(0)

]2 e6Ω+4A0

3κ24
. (4.4.36)

To conclude, one must discuss the effective D- and F-term potentials. For the D-term

potential, one has again

V
(susy)
D =

e4Ω

2πgs [−i(τ − τ)]
(φφ)2 +

e4Ω+4A0

4πgs ℓ04
(φφ)2. (4.4.37)

For the F-term potential, from the effective superpotential

Wsusy =
1

2
µσ3σ3σ3σ3 +

1

2
µyayby

ayb + µyahby
ahb + ξ (σ3e−A0 − y3 − h3)yy∗

+ξ (σ3e−A0 − y3 − h3)hy∗ + ξ (σ3e−A0 − y3 − h3)yh∗,

one can see that the effective F-term potential reads as usual

V
(susy)
F = Zσ

3σ3
µσ3σ3µσ3σ3σ3σ3 + Zy

ayb µyahcµybhdφ
cφd

+Zyy
[
ξ(σ3e−A0 − φ3)φ∗

][
ξ(σ3e−A0 − φ3)φ∗

]
+Zy∗y∗

[
ξ(σ3e−A0 − φ3)φ

][
ξ(σ3e−A0 − φ3)φ

]
.

(4.4.38)

4.4.2.3.2 xx-Dependent Interaction Terms

For completeness, one has to include in the theory the flux-dependent trilinear couplings

between the anti-D3-brane and the intersecting states in eqs. (4.4.30a, 4.4.30b). Again, one

can do so by means of the Kähler potential

δK =
2ℓΣ4

(0)

g4s

κ24xx e
2Ω−4A0

[−i(τ − τ)]
3
2 [−iωΣ4

(0)]
2

[
2ς

π
ℓ(0)ℓ

Σ4

(0)

]1
2 [
κ4 cαβγh

αhβhγ + c.c.
]
. (4.4.39)

One can do the same for the quartic coupling in eq. (4.3.30).
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4.4.3 Moduli Stabilisation and Anomaly Mediation

The scenario presented so far provides a toy model picturing anti-D3-/D7-brane construc-

tions where supersymmetry is non-linearly realised. However, the volume modulus is a

runaway direction due to the anti-D3-brane uplift and its stabilisation affects the other

fields of the theory. Moreover, as will also be discussed, some fields receive non-negligible

mass contributions from anomaly-mediation effects.

4.4.3.1 Perturbative and Non-Perturbative Corrections

Due to the no-scale structure of the theory, tree-level type IIB flux compactifications lack

the stabilisation of the Kähler modulus controlling the internal volume; nevertheless, this

can be fixed once non-perturbative and α′-corrections are included.

For concreteness, the KKLT-scenario [54] for the Kähler-modulus stabilisation is going to

be considered here, but analogous computations could be performed for the Large-Volume

Scenario [55]. To start, the two classes of modifications occurring to the closed-string

potentials K̂ and Ŵ are introduced, and then these are analysed for the strongly-warped

compactifications of interest.

(i) In KKLT-like constructions, the Kähler-modulus potential receives non-perturbative

corrections from effects such as D7-brane gaugino condensation4.12 or Euclidean D3-

brane instantons. Both effects can be described in the low-energy supergravity theory

by means of a superpotential of the form

δŴnp =
1

κ34
A eaiρ,

where A and a are parameters whose details depend on the string origin of the non-

perturbative effects. This correction against a non-zero flux superpotential stabilises

the volume modulus and, together with the anti-D3-brane uplift, it can be argued to

give a 4-dimensional non-supersymmetric de Sitter vacuum.

(ii) The perturbative α′-corrections modify the Kähler potential for the volume modulus

as [272,273]

κ24K̂ = −2 ln

[(
2 e−2Ω

) 3
2
+

1

2
ξ′
]
,

where, given the parameter ξ = −ζ(3)χ/16π3, with ζ = ζ(s) the Riemann ζ-function

and the Euler number χ = 2 (h1,1 − h2,1) taken to be positive, the deformation is

ξ′ = ξ′(τ, τ) = [−i(τ − τ)]
3
2 ξ.

Although α′-corrections to a KKLT-setup with anti-D3-brane uplift do not qualita-

tively modify the stabilisation of ρ, as they are subleading in the volume suppression,

4.12This mechanism and its stability after the anti-D3-brane uplift have been scrutinised carefully in the

literature and, despite the criticisms, there is no clear proof for it to be inconsistent. For recent discussions,

see for instance refs. [58, 201–203,206,210–213,215–217].
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they turn out to provide leading-order contributions to some open-string masses, in-

cluding the intersecting anti-D3-/D7-brane scalars.

Note that, as discussed in subsubsection 4.2.2.2, in strongly-warped scenarios, the effects of

supergravity corrections are warped down in the scalar potential due to localisation effects,

leading to a modification of the usual scales. This stems from the 2A0-shift in the Kähler

potential (see eq. (4.2.17)).

Typically the axio-dilaton and complex-structure moduli are fixed at higher energy

scales than the Kähler-modulus and the open-string degrees of freedom, determining the

flux background to be imaginary self-dual. This happens also in highly-warped compact-

ifications, as discussed in subsection 4.2.2, so in the low-energy effective field theory they

can be regarded as constant terms. An exception may be the complex-structure moduli as-

sociated to the throat base at the strongly-warped end [67,68]. For the open-string sector,

the anti-D3-brane scalars receive leading-order flux-induced mass contributions, so non-

perturbative and α′-corrections give at most subleading corrections. A similar reasoning

applies to the D7-brane scalars. Spinors are less affected than the scalars since they do

not get soft-breaking contributions. On the other hand, the intersecting states do not have

flux-induced masses, so such corrections play a relevant role.

Including perturbative and non-perturbative corrections, the relevant terms in the super-

gravity theory for the volume modulus ρ and for the anti-D3-/D7-brane intersecting-state

scalars φ are

κ24K = −2 ln

[(
[−i(ρ− ρ) + 2c0]−

κ24
3
γxx− κ24

3
ωhh

)3
2

+
ξ′

2

]
, (4.4.40a)

κ34W =W0 +A eaiρ + κ4sx, (4.4.40b)

where e−2Ω = Im ρ+ c0 with c0 = ℓw/ℓ(0). Here, from eqs. (4.4.18, 4.4.29), the constant ω

can be seen to be

ω =
1

πgs
,

while the definitions of the constant GVW-term and of the anti-D3-brane parameters W0,

γ and s, respectively, can be extracted from eqs. (4.4.5a, 4.4.5b) and read

γ =
4

gs

e−2A0

⟨−i(τ − τ)⟩⟨−iωw⟩
ℓw
ℓ(0)

,

W0 =
gs
l2s

〈∫
Y6

G3 ∧ Ω

〉
,

s =
√
2gs.

For brevity, the contributions from the vacuum expectation values of the axio-dilaton and

of the complex-structure moduli as well as the constant terms, including the constants in

eqs. (4.4.5a, 4.4.5b) and the 2A0-shift in eq. (4.2.17), have not been reported in the Kähler

potential, but they are going to be reinserted when discussing physical scales.

Although the underlying string construction is different, as far as the scalar fields are

concerned, up to constant terms, the supergravity theory of eqs. (4.4.40a, 4.4.40b) is struc-
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turally equivalent to the one studied in detail in ref. [98],4.13 so this subsubsection simply

summarises the main results of the calculations. It turns out that the F-term potential of

this model can be written as

VF = V̂F (ρ, ρ) + ∆VF (ρ, ρ;φ,φ),

where V̂F is the pure Kähler-modulus potential, as a consequence of the breaking of the

no-scale structure by the corrections and uplift term, while ∆VF is the scalar potential for

the scalar field φ, generating a mass term among other interactions.

4.4.3.1.1 Kähler-Modulus Stabilisation and Minkowski Vacuum

On the one hand, one can show that the leading-order hidden-sector supersymmetry-

breaking F-term potential reads

V̂F = V KKLT+α′

F + V D3+α′

F , (4.4.41)

where the α′-corrected KKLT-potential and uplift energy respectively read

V KKLT+α′

F =
1

κ44

[
a2AA eia(ρ−ρ)

3 [−i(ρ− ρ) + 2c0]
+
a(W0A e−iaρ +W 0A eiaρ)

[−i(ρ− ρ) + 2c0]2

]
+ δα′V KKLT

F ,

V D3+α′

F =
s2

γ[−i(ρ− ρ) + 2c0]2κ44
+ δα′V D3

F ,

with the α′-corrections being

δα′V KKLT
F =

ξ′

2κ44

[
1

6

a2AA eia(ρ−ρ)

[−i(ρ− ρ)+2c0]
5
2

− a[W0A e−iaρ +W 0A eiaρ]

2[−i(ρ− ρ) + 2c0]
7
2

+
3W0W 0

2[−i(ρ− ρ) + 2c0]
9
2

]
,

δα′V D3
F = − ξ′

2κ44

s2

γ[−i(ρ− ρ)+2c0]
7
2

.

By parametrising the superpotential constants as W0 = |W0| eiθ and A = |A| eiα, given the

definition of the Kähler modulus

ρ = χ+ i c,

one finds that at leading order the axion χ is minimised as a⟨χ⟩ = θ−α+nπ. Without loss

of generality, one can set θ = 0. Then, the leading-order c-dependent scalar potential is

V̂ (c) =
1

κ44

a|A|
2

[
1

3

a|A| e−2ac

[c+ c0]
− |W0| e−ac

[c+ c0]2

]
+

1

κ44

s2

4γ[c+ c0]2
. (4.4.42)

Defining the shifted variables c′ = c + c0 and |B| = |A| eac0 [229], one obtains results that

are formally equivalent to those of ref. [98]. In the large-volume regime, in which c ≫ 1,

the stationary condition ∂V/∂c = 0 gives the solution

|W0| =
2

3
⟨a[c+ c0]⟩|A|e−⟨ac⟩ +

1

aγ

s2

⟨a[c+ c0]⟩|A|
e⟨ac⟩. (4.4.43)

4.13In ref. [98], the matter sector is realised on a D3-brane, with supersymmetry being broken by a distant

anti-D3-brane. For the scalar fields, this turns out to have an analogous supergravity formulation, the only

differences being the 2A0-shift to the Kähler potential and the c0-shift to the Kähler modulus.
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Further, a Minkowski vacuum ⟨V̂F ⟩ = 0 can be obtained at leading order in the volume if

the anti-D3-brane uplift parameter s is such as to fulfil the equality

s2 =
2

3
aγ ⟨a[c+ c0]⟩|A|2e−2⟨ac⟩. (4.4.44)

This could be tuned even more precisely at subleading orders in the volume. Of course,

one may as well want to impose a de Sitter vacuum, but in any case the vacuum energy

has to be small. The ignored α′-corrections would only modify the vacuum conditions at

subleading order in the volume.

One can write the vacuum expectation value in eq. (4.4.43) in view of the volume

leading-order Minkowksi vacuum condition of eq. (4.4.44) as |W0| = (2/3) (⟨a[c + c0]⟩ +
1) |A| e−⟨ac⟩, or, more conveniently and simply expressing the leading-order term in the

volume, as

|W0|2 =
2s2

3γ
⟨[c+ c0]⟩.

By taking this into account, the gravitino mass, namely m̂2
3/2 = ⟨eκ24K̂κ44ŴŴ ⟩, at leading

order in the volume is

m̂2
3/2 =

1

κ24

s2

12γ⟨[c+ c0]⟩2
.

Similarly, one can see that the not-yet canonically normalised Kähler-modulus mass is

m̂2
cc =

1

2

∂2V̂

∂c2

∣∣∣∣
c=⟨c⟩

=
1

κ44

a2s2

4γ⟨[c+ c0]⟩2
.

Finally, the combination of fluxes, non-perturbative corrections and anti-D3-brane uplift

induces a non-zero F-term for the field ρ, along with the one for x. In the Minkowski vacuum

of eqs. (4.4.43, 4.4.44), at leading order in the volume one finds4.14

F̂ x =

[
6

γ

]1
2

(⟨c⟩+ c0)
1
2
m̂3/2

κ4
,

F̂ ρ =
i

a
m̂3/2.

This means that the goldstino ψg is now a linear combination of the anti-D3-brane gaugino

and of the Kähler modulino (see e.g. refs. [262, 274] for progress in the couplings between

the gravitino and ψx). The unitary gauge does not exactly set to zero the spinor component

ψx of the nilpotent superfield, but rather the goldstino. This means that the anti-D3-brane

models in this section have a plethora of interactions between the fields coupled to x and/or

ρ and the linear combination of ψx and ψρ that is orthogonal to the goldstino. This spinor ψ′
g

is massive, with a mass of at least the same order as the Kähler-modulus mass. However,

from the scalar potential, one can see that the scales characterising each F-term have a

different volume suppression, being [68]

fx =

[
1

3
K̂xxF̂

xF̂ x
] 1

2

≃
m̂3/2

κ4
, (4.4.45a)

4.14In the presence of perturbative and non-perturbative corrections (and an anti-D3-brane), the axio-dilaton

F-term becomes non-zero too. However, it is small compared to the F-terms for x and ρ [98].
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fρ =

[
1

3
K̂ρρF̂

ρF̂ ρ
] 1

2

≃ 1

2aV
2
3

m̂3/2

κ4
. (4.4.45b)

This suggests that, due to the hierarchically smaller volume suppression, the anti-D3-brane

still provides the dominant contribution to the goldstino ψg, thus not changing drastically

the scenario compared to the case where the goldstino is provided by the anti-D3-brane

alone.

4.4.3.1.2 Open-String Mass Terms

In order to write the open-string scalar potential in a convenient way it is helpful to consider

the complete canonical normalisation of the scalar field, including the α′-corrections. At

the end of the day, one finds the φ-field scalar potential

∆VF =

[
2κ24
3

(
V KKLT+α′

F + V D3+α′

F

)
+ΘF

]
(1 + δZφφ)ωφφ

[−i(ρ− ρ) + 2c0]
. (4.4.46)

where the correction to the field normalisation is δZφφ = −ξ′/2[−i(ρ− ρ) + 2c0]
3/2. In this

form, it is easy to impose the vacuum solutions. The ΘF -term reads

ΘF = ΘKKLT+α′

F +ΘD3+α′

F ,

with the KKLT- and uplift-like terms

ΘKKLT+α′

F =
5ξ′

72κ24

[
a2AA eai(ρ−ρ)

[−i(ρ− ρ) + 2c0]
5
2

+
3a(AW0e

−aiρ +AW 0e
aiρ)

[−i(ρ− ρ) + 2c0]
7
2

+
9W0W 0

[−i(ρ− ρ) + 2c0]
9
2

]
,

ΘD3+α′

F =
ξ′

12κ24

s2

γ[−i(ρ− ρ) + 2c0]
7
2

.

In the Minkowski vacuum of eqs. (4.4.43, 4.4.44), only ΘF contributes to the scalar masses.

At leading order, its KKLT-like term happens to vanish, so the potential is fixed by its

uplift-like term and it is positive definite. In particular, one finds the mass term

∆VF |ρ=⟨ρ⟩ =
s2ω

12γ[−i⟨ρ− ρ⟩+ 2c0]
9
2

ξ′

κ24
φφ. (4.4.47)

4.4.3.1.3 Complete Scalar Potential and Mass Terms

For a fully-fledged calculation, one must insert the axio-dilaton and complex-structure mod-

ulus Kähler potentials and the constant term, as in eqs. (4.4.5a, 4.4.5b). Further, the

2A0-shift in K also needs to be included, as in eq. (4.2.17), and the consequent redshift

will be indicated by the superscript ‘w’, in line with the notation in the rest of the chapter.

Finally, one should bear in mind that hatted quantities mean they are purely determined

by the supersymmetry-breaking hidden-sector potentials.

Developing the observations made at the end of subsubsection 4.2.2.2 on the redshifting

of non-perturbative contributions to the scalar potential in strongly-warped scenarios, notice

that the 2A0-shift in the Kähler potential does not change qualitatively the shape of the
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scalar potential in the presence of KKLT-like non-perturbative corrections and anti-D3-

brane uplift, but it affects it quantitatively. Indeed, the uplift term from the anti-D3-brane

is scaled by the usual factor e4A0 , but the pure closed-string sector term, which is usually

unwarped, is now also scaled down by a factor e2A0 . The moduli stabilisation is thus

somewhat more delicate, as the uplift from the anti-D3-brane should not be too large with

respect to the close string stabilisation so as to cause a runaway. Also, all the masses are

now redshifted by an extra factor e2A0 .

In detail, in the closed-string sector, the gravitino mass and the canonically normalised

Kähler-modulus mass respectively read

(m̂w
3/2)

2 =
1

κ24

g3s
12π[ℓ(0)]2

e4Ω+4A0 ∼ g3s

V
4
3

1

κ24
e4A0 , (4.4.48)

(m̂w
c )

2 = 4a2e−4Ω(m̂w
3/2)

2 ∼ a2g3s
1

κ24
e4A0 . (4.4.49)

Notice that two factors contribute to make the gravitino mass highly suppressed, i.e.

the e2A0-redshift and the small bulk (0, 3)-flux, which in the tuning towards a de Sit-

ter/Minkowski vacuum ends up providing a lower volume- but enhanced warp factor-

suppression.

Moreover, because the open-string scalars are the intersecting-state fields φ and φ∗, in

terms of the gravitino mass their canonically normalised mass is

m2
37

= m2
73

=
ξ

4
e3Ω−3ϕ/2 (m̂w

3/2)
2 ∼ ξg3s

V
7
3

1

κ24
e4A0 . (4.4.50)

Such a mass is quite small due to a large volume suppression and the effect of warping, but

it is necessarily positive definite. Notice that it vanishes in the absence of the α′-corrections,

namely if one sets ξ = 0.

Further, for D7-branes extending from the bulk to the throat the gauge kinetic function

is determined by the volume modulus (see eq. (4.3.12)) and one finds the F ρ-induced

gaugino mass

mD7
1/2 =

e2Ω

2a
m̂w

3/2 ∼
1

a

g3s
V2

1

κ24
e4A0 . (4.4.51)

For D7-branes at the tip of the throat, there is a dependence on the volume modulus but

it is highly redshifted (see eq. (4.3.18)).

4.4.3.1.4 Corrections to Pure Anti-D3- and D7-Brane Couplings

The effect of the Kähler-modulus stabilisation on the masses and the couplings of the pure

anti-D3- and D7-brane states can also be worked out using supergravity, as is now going

to be summarised. It is useful to note that the F-term for the volume modulus ρ has an

extra volume-power suppression in the presence of non-perturbative corrections, while the

F-term for the goldstino x is unchanged. A key observation will be that the non-perturbative

corrections induce scales that are never bigger than the flux-induced ones discussed before,

so in the end the orders of magnitude for masses and couplings are unchanged.
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For the pure D7- and anti-D3-brane chiral multiplets, the canonically normalised would-

be supersymmetric masses are eA0mD7 or mw
D7 for the D7-brane fields localised in the bulk

and at the tip, respectively (see subsubsection 4.3.1.2 and 4.3.1.3), and mw
D3

for the anti-

D3-brane (see subsubsection 4.4.1.3). On the one hand, for such fields, the ρ-field F-term

does not participate in the effective µ-terms, leaving these would-be supersymmetric masses

unchanged. On the other hand, the would-be soft-breaking masses can be seen to be never

bigger than these flux-induced terms, being at most of the order of the gravitino mass.

Indeed, after canonically normalising, the would-be soft-breaking masses scale as

msoft ∼ m̂w
3/2. (4.4.52)

For both bulk- and throat-localised D7-branes, one finds canonically normalised soft-break-

ing massesm77
soft ∼ m̂w

3/2, with e
A0mD7 ∼ m̂w

3/2, assuming θ ∼ θ′, andmw
D7 ≫ m̂w

3/2. For anti-

D3-branes, one similarly finds (m33
soft)

2 ∼ −(m̂w
3/2)

2, where, at leading order in the volume,

the key role is played by the F-term of the goldstino x. The B-terms are unaffected for

the anti-D3-branes, coming from an xx-term, while they receive normalised contributions

for the D7-branes of order Bi ∼ (eA0mD7 + m̂w
3/2)m̂

w
3/2 or Bi ∼ mw

D7m̂
w
3/2, for bulk or tip

localisation, respectively. In the former case, the soft-breaking corrections compete with

the flux-induced ones, but do not dominate, while in the latter the corrections are irrelevant

for the mass eigenvalues. Finally, notice that the trilinear would-be soft-breaking couplings

with the intersecting states are inserted via the xx-coupling and are thus unaffected.

In this construction, the non-perturbative effects do not directly affect the open-string

sector xx-couplings. However, one may expect corrections for all the couplings, with a

scale set by m̂w
3/2. For the pure anti-D3-brane, such corrections would be irrelevant, as

mw
D3

≫ m̂w
3/2. On the other hand, considering the counter-part D3-/D7-branes, the soft-

breaking trilinear coupling depends on the ρ-field F-term and is thus suppressed in the

presence of non-perturbative corrections. Such changes can be implemented by hand, mod-

ifying the scalings in the xx-terms.

In all these couplings, the α′-corrections may only contribute at most with volume-

suppressed terms and are thus irrelevant for fixing the orders of magnitude. An intuitive

explanation for this can be seen in the fact that they do not participate in the stabilisation

of the Kähler modulus and they are subleading in the F-terms.

4.4.3.2 Anomaly Mediation

In supersymmetric theories with a hidden sector, anomaly mediation provides a one-loop

contribution to gaugino masses and trilinear scalar couplings, and a two-loop contribution

to charged scalar masses [252,275]. Again, this is discussed in a setup similar to the current

one in ref. [98], so only an essential review is reported below.

In the case of a diagonalisable Kähler matter metric, given the corresponding canonically

normalised fields f i, with indices lowered and raised by Kronecker-deltas δij and δij , one

can show that the anomaly-mediated gaugino masses, the scalar masses and the trilinear

couplings read [252,275–279]

ṁa
1/2 =

βga
ga

[
m̂w

3/2 −
κ24
3

F̂MK̂M

]
, (4.4.53a)
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ṁ2
i =

1

2
βv
∂γi

∂v

[
m̂w

3/2 −
κ24
3

F̂MK̂M

][
m̂w

3/2 −
κ24
3

F̂MK̂M

]
, (4.4.53b)

ȧijk =
1

2
yijk (γ

i + γj + γk)
[
m̂w

3/2 −
κ24
3

F̂MK̂M

]
. (4.4.53c)

Here, yijk are the canonically normalised Yukawa couplings, v represents any running cou-

pling and βv is the corresponding beta-function, with γi the f i-field anomalous dimension.

More details on the corrections generated by anomaly mediation are provided below.

• Given the quadratic Casimir invariant in the adjoint representation C2(G) and the

generator normalisation factor C(rG) for the representation rG, respectively, the beta-

functions for the gauge couplings g read

βg = − g3

16π2
b,

where b is the coefficient

b =
11

3
C2(G)−

2

3
nf C(r

f
G)−

1

3
nsC(r

s
G),

with nf and ns being the spinors and scalars in the representations rfG and rsG of the

gauge group G, respectively. For the special unitary group SU(n), with n > 1, one

has the set of values

particle representation C C2

n
1

2

n2 − 1

2n

(n,n) n n

and for an Abelian group U(1) one finds C(q) = q2 and C2(q) = 0, where q is the

particle charge.

• One can write schematically the beta-functions for the Yukawa couplings yijk as

βyijk = f li (g, y) yljk + f lj (g, y) yilk + f lk (g, y) yijl ,

where f ij (g, y) are functions generally scaling as f(g, y) ∼ b′g2 + b′′yy, for some

model-dependent coefficients b′ and b′′, where the details of the index structure can

be ignored for simplicity for the present purposes of determining just parametric

dependences [252].

• Finally, the anomalous dimension γi can be written as

γi =
1

16π2

(
1

2

∑
j,k

yijkyijk − 2
∑
a

g2aC2(r
i
Ga

)

)
.
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The relevant mass scales are worked out below for intersecting anti-D3-/D7-branes. For

single branes, the only non-neutral fields of the model are in the intersecting sector, which

are thus the only one receiving corrections. More realistic non-Abelian models with multiple

branes have a larger non-neutral spectrum, but the mass scales, being fixed by the gauge

couplings, are analogous. In particular, the b-coefficients are typically negative due to the

large number of degrees of freedom.

• For a D7-brane wrapping a 4-cycle extending along the throat, the anomaly-mediated

gaugino mass is slightly more suppressed than the volume-modulus F-term contribu-

tion, being

ṁD7
1/2 ≃ −

g2D7

16π2
bD7 m̂

w
3/2 = − gsbD7

8πℓΣ4

(0)

e2Ω m̂w
3/2, (4.4.54)

Instead, if the D7-brane wraps a 4-cycle that is localised at the infrared end of the

throat, the anomaly-mediated mass is

ṁD7
1/2 ≃ −

g2D7

16π2
bD7 m̂

w
3/2 = − gsbD7

8π(e−4A0ℓ04)
m̂w

3/2. (4.4.55)

In the presence of non-Abelian anti-D3-branes, there are extra would-be gaugini apart

from the goldstino and their anomaly-mediated mass is4.15

ṁD3
1/2 ≃ −

g2
D3

16π2
bD3 m̂

w
3/2 = −

gsbD3

4π[−i(τ − τ)]
m̂w

3/2. (4.4.56)

• For the intersecting-state scalars, which classically are massless, the full anomaly-

mediated mass term is

ṁ2
φ ≃ 1

2

[
g4D7bD7C2(r

φ
D7) + g4

D3
bD3C2(r

φ

D3
)
](m̂w

3/2

8π2

)2

+ δyṁ
2
φ,

where δyṁ
2
φ represents the Yukawa coupling-dependent contribution. This scales as

δyṁ
2
φ ∼ yy(b′g2 + b′′yy). For anti-D3-branes and localised D7-branes, one finds the

scalings g2 ∼ gs and y ∼ g
1/2
s , while for extended D7-branes the anti-D3-brane terms,

unchanged, are the dominating ones. So the leading gauge coupling- and Yukawa

coupling-dependent corrections have the same parametric dependence, and in the

following the focus is going to be on the former for simplicity. In particular, notice

that these tend to be negative-definite in quasi-realistic constructions with b < 0,

and they therefore compete with the positive-definite α′-induced correction. So, for a

D7-brane wrapping a 4-cycle extending along the throat, the leading-order anomaly-

mediated scalar mass has a scale set by the anti-D3-brane contribution and reads

ṁ2
φ ≃

g2sbD3C2(r
φ

D3
)

8π2[−i(τ − τ)]2
(m̂w

3/2)
2 + δyṁ

2
φ. (4.4.57)

4.15If one considers the effects of a non-zero axio-dilaton F-term, the gaugino mass contribution is at most

of order mD3
1/2 ∼ m̂w

3/2/(aV2/3) [98], so it is usually subleading with respect to the anomaly-mediated one.
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On the other hand, for a D7-brane wrapping a 4-cycle localised at the tip of the throat,

the leading-order term is

ṁ2
φ ≃

[
g2sbD3C2(r

φ

D3
)

8π2[−i(τ − τ)]2
+

g2sbD7C2(r
φ
D7)

32π2(e−4A0ℓ04)
2

]
(m̂w

3/2)
2 + δyṁ

2
φ. (4.4.58)

As long as the b-coefficients are negative, which happens typically in Standard-like

Model extensions, the gauge coupling-induced scalar mass corrections are negative-

definite. These contributions are in a very close competition with the α′-induced

terms and the tachyonic terms might dominate, leading to an instability.

• The contributions to the trilinear couplings are again determined in view of the gauge-

coupling terms and read

ȧijk ≃ yijk
∑
a

1

ba

∑
l=i,j,k

C2(r
l
Ga

) ṁa
1/2 + δyȧijk,

where the Yukawa-coupling contribution is of order δyȧijk ∼ yijk yy m̂
w
3/2. This means

that such trilinear terms are of up to order ȧ ∼ gs y m̂
w
3/2. Compared to the pure

flux-induced terms, one can see that these tend to be leading for D7-branes extending

along the throat and subleading for D7-branes wrapping 4-cycles at the tip of the

throat.

4.5 Extension to Non-Abelian Theories

This section outlines a way to extend the previous results on single anti-D3- and D7-branes

to multiple coincident branes at orbifold singularities, which can provide quasi-realistic

particle sepctra with non-Abelian gauge groups and matter fields in bifundamental rep-

resentations. The identification of the non-Abelian sectors with appropriate constrained

superfields is worked out, and the new supergravity interactions are found, first for anti-

D3-brane stacks, then for anti-D3-/D7-brane systems. Finally, the low-energy effective field

theory corresponding to anomaly-free combinations of anti-D3-/D7-branes on orbifold-like

singularities within flux compactifications is spelled out in some detail.

Note that, although the explicit realisation of Calabi-Yau orientifolds with orbifold-like

singularities would be a successive step in this analysis, the core results in sections 4.3 and

4.4 hold in any such construction. In particular, the consequences of the orbifolding are

in the richer array of gauge group representations particles may fall into, but the orders

of magnitude of gauge couplings and masses are generally unchanged. At the same time,

there is a very interesting interplay between the orbifolding and supersymmetry break-

ing by anti-D3-branes, whereby, after the orbifolding, the bifundamental matter stretching

between anti-D3-branes and D7-branes has scalars and fermions in different gauge repre-

sentations. Other minor differences, due for instance to orbifold symmetries projecting out

certain background fluxes, are commented on explicitly. In a complete construction, RR-

tadpole cancellation conditions would restrict the combinations of fluxes, anti-D3-branes

and wrapped D7-branes appearing at each fixed point of the geometry.
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4.5.1 Non-Abelian Anti-D3-Branes

First of all, it is necessary to describe a stack of coincident anti-D3-branes in the language of

N4 = 1 supergravity by extending its constrained superfields to the non-Abelian framework

and adding a few new couplings which are non-zero only in the non-Abelian case.

4.5.1.1 Particle Content

The gauge group of a stack of n coincident anti-D3-branes at a smooth point in the internal

space is the non-Abelian group U(n). The group U(n) fulfils the isomorphism

U(n) ≃ SU(n)×U(1)/Zn,

so its generators tI , with I = 0, i, consist of the n-dimensional identity t0 = 1n and of

the n-dimensional Hermitean generators ti of the group SU(n), with i = 1, . . . , n2 − 1. As

explained in subsection 2.3.1,4.16 the particle content consists of the following degrees of

freedom:

• a non-Abelian gauge vector, i.e.

Âµ = ÂµI t
I = Aµ1n +Aµi t

i;

• a gaugino in the adjoint representation, i.e.

λ̂ = λ̂It
I = λ1n + λit

i;

• three complex scalars in the adjoint representation, i.e.

φ̂a = φ̂aI t
I = φa1n + φai t

i;

• three modulini in the adjoint representation, i.e.

ψ̂a = ψ̂aI t
I = ψa1n + ψai t

i.

The field Aµ gauges the U(1)-component and the fields Aµi gauge the non-Abelian SU(n)-

component. Also, the fields λ, φa and ψa are netural under the Abelian group and singlets

of the SU(n)-component, whereas the fields λi, φ
a
i and ψai are neutral under the Abelian

group and in the adjoint representation of the SU(n)-component.

Because it is a singlet under all the gauge groups, the gaugino λ can be identified as the

goldstino of the theory. Therefore, it can be placed in a nilpotent chiral superfield x just as

in eq. (4.4.1), with

x2 = 0. (4.5.1)

Being a singlet, the nilpotent superfield is sufficient to define the other constraints in a

similar fashion as for a single anti-D3-brane, thanks to the linearity of such constraints [31],

as shown in subsection 2.4.4.

4.16For clarity, compared to subsection 2.3.1, here matrix-valued fields carry hats or tildes in order to

distinguish them from the matrix components.
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• The non-Abelian gaugini λi can be packaged in the chiral superfield

x̃ = xit
i,

which is neutral under the U(1)- and in the adjoint of the SU(n)-component of the

gauge group, with the scalars removed by a constraint like the one in eq. (4.4.3), i.e.

xx̃ = 0. (4.5.2)

• Similarly, the full gauge vector can be described by the field-strength chiral superfield

Ŵα =Wα + W̃α,

with Wα =Wα1n and W̃α =Wiα t
i, where the spinor components are removed by the

constraints4.17 (generalising that of eq. (4.4.2))

xWα = 0, (4.5.3a)

xW̃α = 0. (4.5.3b)

As the nilpotent superfield x is a singlet, these constraints are gauge-invariant.4.18

Also notice that the condition xŴα = 0 is equivalent to the two constraints written

above.

• For the modulini, one can define the chiral superfields

ŷa = ya + ỹa,

with ya = ya1n and ỹa = yai t
i, and remove the scalar components by means of the

constraints (generalising the ones in eq. (4.4.3))

xya = 0, (4.5.4a)

xỹa = 0. (4.5.4b)

Again, gauge invariance is preserved and an equivalent condition is xŷa = 0.

• Finally, the scalars can again be encoded in the chiral superfields

ĥa = ha + h̃a,

with ha = ha1n and h̃a = hai t
i, with the spinor and auxilary-field components removed

by the constraints (generalising those of eq. (4.4.4))

xDαh
a = 0; (4.5.5a)

xDαh̃
a = 0. (4.5.5b)

These are gauge-invariant for gauge transformations with a chiral superfield Ω such

that x(Ω − Ω) = 0, which implies the constraint xDαΩ = 0 and is consistent with

the gauge-fixing choice xV = 0 (see ref. [31] for more details). Again, one can simply

write the condition as xDαĥ
a = 0.

4.17In addition to the constraint, there may be a modified Wess-Zumino gauge condition, as discussed in

the Abelian case by ref. [31], which easily extends to the non-Abelian case.
4.18Notice that, if the constraint reads xW̃ = 0, then, given the gauge transformation induced by the chiral

superfield Λ, the constraint x[eiΛW̃ e−iΛ] = eiΛxW̃ e−iΛ = 0 holds too.
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4.5.1.2 Supergravity Formulation

Given the superfield spectrum above, one needs to extend the N4 = 1 description of subsub-

section 4.4.1.3 to a non-Abelian theory. Adapting the existing Abelian couplings to their

non-Abelian version is straightforward. Moreover, to match the dimensionally-reduced ef-

fective action of refs. [80,232], one needs to generate further cubic and quartic scalar inter-

actions as well as some Yukawa couplings.

Quite remarkably, one can verify that the only extra terms which need to be included

in the supergravity theory are those in the trilinear superpotential

δŴ =
v

4πgs
l3sΩ

0
abc tr ŷ

aŷbĥc +
v

4πgs
l3sΩ

0
abc tr ŷ

aĥbĥc, (4.5.6)

where the normalisation constant is v2 = 4π e−2A0 [ℓ(0)]
3. One could account for the warp

factor by considering the throat complex-structure modulus [67,68].

• Since it contains two spinors and one scalar, the first term in the superpotential only

represents a Yukawa coupling between the modulini ψ̂a and the scalars φ̂a of the form

yψ̂aψ̂bφ̂c = yŷaŷbĥc =
e3Ω

2πgs[−i(τ − τ)]
1
2

ℓ
1
2
w

[−iωw]
1
2

l3sΩ
0
abc,

which corresponds to the couplings in refs. [80, 232], provided the insertion of the

complex-structure moduli in ωw (not captured explicitly in the dimensional reduction).

• In a similar way as for D3-branes, the Yukawa terms also generate the quartic scalar

potential and part of the cubic potential [232]. Indeed, now one has the effective

anti-D3-brane superpotential

WD3
susy =

1

2
µŷaŷbtr ŷ

aŷb +
1

2
µŷaĥbtr ŷ

aĥb +
1

2
yŷaŷbĥctr ŷ

aŷbĥc +
1

2
yŷaĥbĥctr ŷ

aĥbĥc,

which in the unitary gauge generates the F-term scalar potential

V
(susy)
F = Z ŷ

aŷ
b

tr
(
µŷaĥcφ̂

c + yŷaĥcĥdφ̂
cφ̂d
)(
µŷbĥeφ̂

e
+ yŷbĥeĥf φ̂

eφ̂f
)
.

Further, the D-term potential now reads

VD =
1

2
g2
D3

tr
(
Zĥaĥbφ̂

aφ̂b
)(
Zĥcĥdφ̂

cφ̂d
)
.

Obviously, the quadratic term in the F-term potential is the usual anti-D3-brane mass

term. Then, in accordance with the results of refs. [80, 232], the cubic term reads4.19

V D3
cubic =

e4Ω+4A0

8π[−i(τ − τ)]κ4

[
1

2π[−iωw]

ℓw
ℓ(0)

]1
2

·

ls
[
−gde0 g0f(dΩ

0
a)ghΩ

0
ebc
l6s(G

0−
3 )fgh

]
tr φ̂aφ̂bφ̂c + c.c.,

4.19In the presence of (0, 3)-flux at the tip of the throat, there would be a further soft-breaking contribution

to the trilinear scalar potential.
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while a combination the D-term potential and the quartic term of the F-term potential

is consistent with the usual would-be N4 = 4 scalar potential

V D3
quartic =

e4Ω

2πgs[−i(τ − τ)]
g0
ab
g0
cd
tr
[
[φ̂a, φ̂c][φ̂b, φ̂d] + [φ̂a, φ̂d][φ̂b, φ̂c]

]
.

4.5.2 Non-Abelian Anti-D3-/D7-Brane Systems

As a further step towards quasi-realistic constructions, one can add a stack of w intersecting

D7-branes to the system with n anti-D3-branes. New states appear in the theory along with

those listed in subsubsection 4.5.1.1.

The D7-brane worldvolume is enhanced to a non-Abelian U(w)-theory, where the gauge

group is factorisable as U(w) ≃ SU(w) × U(1)/Zw, with generators τK , for K = 0, k, and

k = 1, . . . , w2 − 1. The degrees of freedom are then:

• a non-Abelian gauge vector and a spinor in the adjoint representation, i.e.

B̂µ = Bµ1w +Bµ
k τ

k,

ζ̂ = ζ1w + ζkτ
k;

• a scalar and another spinor in the adjoint representation, i.e.

σ̂3 = σ31w + σ3kτ
k,

η̂3 = η31w + η3kτ
k.

As D7-branes do not break supersymmetry, these fields make up standard multiplets. In

particular, there are an Abelian vector superfield W ′
α, containing B

µ and ζ, a non-Abelian

SU(w)-group vector superfield W̃ ′
α, containing Bµ

k and ζk, a neutral chiral multiplet σ3,

containing σ3 and η3, and a chiral multiplet σ̃3, containing σ3k and η3k.

Along with the pure anti-D3- and D7-brane states, new particles arise from strings

stretching between these branes. For such anti-D3-/D7-brane intersecting states, the situ-

ation does not differ too much from the setup with single branes. The degrees of freedom

are:

• two scalar fields φ̂ and φ̂∗ from the 37- and 73-sectors, respectively, with the former

in the fundamental representation of the group U(n) and in the antifundamental

representation of the group U(w), and the latter in the conjugate representation;

• two spinor fields ψ̂ and ψ̂∗ from the 37- and 73-sectors, respectively, with the former

in the fundamental representation of the group U(n) and in the antifundamental

representation of the group U(w), and the latter in the conjugate representation.

As usual, these fields cannot be packaged in standard supermultiplets with respect to the

closed-string sector supersymmetry, but rather they fall into constrained superfields.

• The scalars can be encoded in the chiral superfields ĥ and ĥ∗ such as to remove their

spinor components, generalising eqs. (4.4.15), i.e.

xxDαĥ = 0, (4.5.7a)

xxDαĥ∗ = 0. (4.5.7b)
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• The spinors can be encoded in the chiral superfields ŷ and ŷ∗ such as to remove their

scalar components, generalising eqs. (4.4.16), i.e.

xŷ = 0, (4.5.8a)

xŷ∗ = 0. (4.5.8b)

Again, thanks to the linearity of the constraints, their solutions are simple generalisations

of the Abelian ones. Notice that a superfield in the fundamental representation of a group

U(p) has a charge q = +1 under the corresponding Abelian subgroup and is in the funda-

mental representation of the SU(p)-subgroup, and correspondingly for the antifundamental

representation.

4.5.3 Anti-D3-/D7-Branes at Orbifold Singularities

An interesting class of model-building setups is the one with anti-D3-branes and D7-branes

at orbifold singularities, introduced by ref. [29] and implemented by ref. [30] in a more

complete quasi-realistic geometrical setup (see also ref. [222]). The fact that the branes

sit at an orbifold singularity breaks each gauge group U(m) into several subgroups U(mi).

Interestingly, the anti-D3-/D7-intersecting scalars and spinors now transform in different

representations of the unbroken gauge groups, and so have no semblance to being super-

partners.

4.5.3.1 Gauge Group Breaking and Massless Spectrum

In a given 10-dimensional spacetime of the kind X1,9 = M1,3×Y6, the internal 6-dimensional

space can be assumed to host locally an orbifold singularity of the type appearing in the

quotient space Q6 = C3/ZN , for some integer N . The general principle is to build a quasi-

realistic matter spectrum locally at this singular point and then to embed this into a global

model at a later stage, in a purely bottom-up approach. The action θ of the ZN -twist on

the complex internal coordinates za, for a = 1, 2, 3, is

ZN : za
θ7→ αlaza,

with the definition α = e2πi/N . Under the condition
∑3

a=1 la = 0 modN , an N4 = 2

supersymmetry is preserved in the bulk. Moreover, for simplicity, only the case where l3 is

even is discussed. The action of the ZN -twist on the massless degrees of freedom of a stack

of n anti-D3-branes is then as follows (see refs. [29, 221]).

• Gauge vector fields Âµ correspond to states bµ−1/2|NS⟩ that are orthogonal to the

orbifolded directions, therefore the ZN -twist only affects the Chan-Paton degrees of

freedom. This means that the action of the orbifold on the non-Abelian gauge vector

can be written as

ZN : Âµ
θ7→ Γθ,3 Âµ Γ

−1
θ,3
,

where, given N arbitrary integers ni, with i = 0, 1, . . . , N−1, such that
∑N−1

i=0 ni = n,

the representation of the orbifold matrix is chosen to be

Γθ,3 = diag
(
1n0 , α1n1 , . . . , α

N−11nN−1

)
.
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Expressing the matrix-valued gauge vector in terms of ni×nj-dimensional blocks as

Âµ = (Âµninj ), the twist-invariant condition reads (Âµninj ) = αi−j(Âµninj ), so only the

blocks on the diagonal survive the projection. Therefore, the twist-invariant genera-

tors generate the subgroup

G(N) =

N−1⊗
i=0

U(ni).

• The three complex scalars φ̂a correspond to states ba−1/2|NS⟩ that carry an internal

index, so under the orbifold twist they undergo a transformation that affects them

both as twisted directions, in the static gauge, and due to the action on the gauge

degrees of freedom. In detail, their transformation is of the form

ZN : φ̂a
θ7→ αla Γθ,3 φ̂

a Γ−1
θ,3
.

In terms of ni×nj-dimensional defined by φ̂a = (φ̂aninj
), the twist-invariant condition

reads (φ̂aninj
) = αi−j+la(φ̂aninj

). This implies that the orbifold-invariant scalar fields

fall into the representations
3∑

a=1

N−1∑
i=0

(ni,ni+la).

• The four Weyl spinors are associated to the states |{sm}⟩3m=0, where the half-integers

sm = ±1/2 define their chirality, and, compatibly with the GSO-projection, they

can be labelled as ψ̂ω, with ω = 0 corresponding to the would-be gaugino λ̂ and

ω = a = 1, 2, 3 corresponding to the three would-be modulini ψ̂a. The orbifold twist

takes the form

ZN : ψ̂ω
θ7→ αsmkm Γθ,3 ψ̂

ω Γ−1
θ,3
,

where km are integers defining the orbifold action on the fermions, with
∑3

m=0 km =

0 modN , and l1 = k2+k3, l2 = k1+k3 and l3 = k1+k2. A supersymmetric singularity

with
∑3

a=1 la = 0modN requires k0 = 0, which fixes la = −ka. The calculations show
that the orbifold-invariant subset of the spinor λ̂ transforms in the representation

N−1∑
i=0

(ni,ni),

while from the would-be modulini ψ̂a one obtains the representations

3∑
a=1

N−1∑
i=0

(ni,ni+la).

In the presence of D7-branes, the reasoning is analogous. Just as for the action of the

orbifold twist on the anti-D3-brane gauge degrees of freedom, one defines the matrix

Γθ,7 = diag
(
1w0 , α1w1 , . . . , α

N−11wN−1

)
,

and then essentially the same reasoning as above can be followed, projecting the gauge field

B̂µ, the gaugino ζ̂, the scalar field σ̂3 and the modulino η̂3.
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The description of the orbifold action on the anti-D3-/D7-brane intersecting states can

also be worked out in a similar way. A crucial difference with respect to all the other states

is that, in this case, the twist-invariant scalars and spinors transform under different rep-

resentations of the gauge group, and therefore could never form supersymmetric multiplets

with respect to any supersymmetry generator. This is a consequence of the fact that the

GSO-projection for brane/antibrane states needs to be opposite compared to brane/brane

and antibrane/antibrane states [20, 40–43]. Therefore, the projection is different for the

scalar φ̂ and the spinor ψ̂, and similarly it is different for the scalar φ̂∗ and the spinor ψ̂∗.

For D3-/D7-brane intersecting states, instead, scalars and spinors would still combine into

chiral multiplets in conjugate representations.

To sum up, all the orbifold-invariant open-string states living on the the C3/ZN -singularity
can be worked out explicitly as explained above. One can directly implement the tools pre-

sented above with the states discussed in detail in subsubsection 2.3.1.1. The full spectrum

is summarised below.

• The 33-sector provides a simple would-be supersymmetric massless spectrum.

(i) The vector fields and adjoint Weyl spinors transform in identical representations

of the group
⊗N−1

i=0 U(ni), i.e. in particular:

33-sector vectors: r(33)v =
N−1∑
i=0

(ni,ni); (4.5.9a)

33-sector Weyl spinors: r
(33)
W0

=
N−1∑
i=0

(ni,ni). (4.5.9b)

(ii) The 3N complex scalar fields and the remaining 3N Weyl spinors transform in

identical bi-fundamental representations of the group
⊗N−1

i=0 U(ni), namely:

33-sector scalars: r(33)s =
3∑

a=1

N−1∑
i=0

(ni,ni+la); (4.5.10a)

33-sector Weyl spinors: r
(33)
W =

3∑
a=1

N−1∑
i=0

(ni,ni+la). (4.5.10b)

• The 73- and 37-sectors provide the following non-supersymmetric massless spectrum,

transforming in distinct bifundamental representations:

(i) two sets of N scalar fields:

73-sector scalars: r(73)s =
N−1∑
i=0

(ni,wi+(l1−l2)/2), (4.5.11a)

37-sector scalars: r(37)s =
N−1∑
i=0

(ni+(l1−l2)/2,wi); (4.5.11b)
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(ii) two sets of N Weyl spinors:

73-sector Weyl spinors: r
(73)
W =

N−1∑
i=0

(ni,wi−l3/2), (4.5.12a)

37-sector Weyl spinors: r
(37)
W =

N−1∑
i=0

(ni−l3/2,wi). (4.5.12b)

• Finally, in the 77-sector, one has a supersymmetric spectrum, as follows:

(i) the vector fields and a class of Weyl spinors form a number N of N4 = 1 vector

multiplets:

77-sector vector multiplets: r
(77)
V =

N−1∑
i=0

(wi,wi); (4.5.13)

(ii) the scalars fields and the Weyl spinors form a number N of N4 = 1 chiral multi-

plets:

77-sector chiral multiplets: r
(77)
C =

N−1∑
i=0

(wi,wi+l3). (4.5.14)

Such representations factorise according to the factorisation of the groups U(pi). For in-

stance, if a field is in the representation pi with respect to the group U(pi), it has charge

qi = 1 under its U(1)-component, denoted as U(1)i from now on, and it is in the represen-

tation pi of its SU(pi)-component.

As models with anti-D3- and D7-branes at orbifold singularities contain chiral fermions

in fundamental representations of the gauge groups, the theory is anomalous unless special

cancellations occur, which is usually guaranteed by the cancellation of RR-tadpoles [221].

The specific configurations which make the theory anomaly-free are spelled out below and

amount to the combinations of the sets of integers {ni}N−1
i=0 and {wi}N−1

i=0 that happen to

give a theory in which all the anomalous Feynman diagrams add up to zero.

1. It can be shown that the condition whose fulfilment guarantees the cancellation of

all the cubic non-Abelian anomalies arising from the SU(ni)- and SU(wi)-subgroups

is [29,30,221]

4

[ 3∏
a=1

sin
(πkla
N

)]
tr Γθk,3 − sin

(πkl3
N

)
tr Γθk,7 = 0, (4.5.15)

for all values k = 0, 1, . . . , N −1. This condition also gaurantees the absence of mixed

Abelian-gravitational anomalies.

2. Under the condition above, the mixed Abelian/non-Abelian diagrams as well as the

cubic Abelian diagrams are pseudo-anomalous, which implies that the Abelian factors
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actually acquire a mass via the Green-Schwarz mechanism, apart from the linear

combination4.20 [29, 30,280]

Q =
N−1∑
i=0

Qi
ni
, (4.5.16)

with Qi being the generators of the U(1)i-factors. Depending on the model, there

may be additional non-anomalous combinations.

In principle, the gauge fields in the multiplets from the spectrum reported in eq. (4.5.9a)

are the vectors4.21 Âµi = Aµi + Ãµi , one for each different U(ni)-subgroup, and similarly for

the U(wi)-subgroups. However:

i. the non-Abelian gauge fields Ãµi of the SU(ni)-components are non-anomalous if the

condition in eq. (4.5.15) is satisfied, and similarly for the SU(wi)-components;

ii. all the Abelian gauge vectors Aµi are anomalous and hence disappear from the low-

energy effective theory, apart from the linear combination given in eq. (4.5.16), i.e.

V µ =

N−1∑
i=0

1

ni
Aµi .

Additional anti-D3-branes at other fixed points are also included in order to cancel the

D7-brane anomaly induced there. Even though the corresponding new U(1)-factors are

anomaly-free, they still acquire a mass via the Stückelberg coupling [30,280].

4.5.3.2 Supergravity Formulation

Given the massless spectrum of anti-D3-/D7-branes at orbifold singularities, one can now

describe the effective theory in the language of N4 = 1 supergravity. In particular, one

needs to identify the goldstino and understand how to encode the remaining degrees of

freedom in supermultiplets.

If the anti-D3-brane sits at an orbifold singularity, the goldstino survives and the same

supersymmetry breaking takes place as if it is at a smooth point. A similar breaking

also happens for anti-D3-branes sitting at an orientifold singularity, as in ref. [83]. With

multiple anti-D3-branes, the goldstino undergoes the projection in eq. (4.5.9b) and the

following reasoning holds.

(i) At a smooth point, the anti-D3-brane goldstino would be the neutral singlet contained

in the would-be U(n)-gaugino λ̂. At an orbifold singularity, the original spinor λ̂ suffers

the orbifold projection

λ̂ = Γθ,3 λ̂Γ
−1
θ,3
,

4.20Actually, this combination exists as long as all the integers ni are non-zero. Moreover, some ZN -orbifolds

might have further anomaly-free linear combinations. An explanation to this is in ref. [29], ss. 2.3.
4.21One must be careful with the notation, if hatted or tilded fields carry an i-index: for instance, Ãµ

i

denotes the vector field gauging the SU(ni)-subgroup, and it can be expanded as Ãµ
i = (Ãµ

nini
) = Ãµ

ikt
k
i ,

with tki being the Hermitian generators of SU(ni), for k = 1, . . . , n2
i − 1.
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which singles out several diagonal components as several gaugini λ̂i for each of the

subgroups U(ni). For each of these, one extracts a neutral singlet λi under the U(1)i
and SU(ni) subgroups.

(ii) Only one linear combination of the gaugini and their would-be vector superpartners

is actually massless, with orthogonal combinations acquiring a mass via the Green-

Schwarz mechanism [30]. In accordance with eq. (4.5.16), the goldstino of the theory

is thus the linear combination

ψg =
N−1∑
i=0

1

ni
λi,

since it is the only massless gauge-neutral spinor on the anti-D3-brane worldvolume.

The goldstino can be encoded as usual in a nilpotent superfield x. After the identification

of the goldstino, one can easily infer the main characteristics of the supergravity effective

field theory of the remaining fields in the massless spectrum. Details are below.

• In the 33-sector, the situation is as follows.

(i) The vectors and the Weyl spinors that transform in the adjoint representations

r(33)v = r
(33)
W0

of eqs. (4.5.9a, 4.5.9b) correspond to the orbifold-invariant blocks

of the fields Ãµ and λ̃, plus the non-anomalous Abelian component V µ and the

goldstino ψg. Therefore, they belong to the orbifold-invariant blocks from the

constrained superfields W̃α and x̃, to the constrained superfield Wα and to the

fundamental nilpotent chiral mulitplet x, respectively.

The vectors are massless and provide the standard-like model gauge fields, with

the goldstino being set to zero in the unitary gauge. On the other hand, the

would-be non-Abelian gaugini are extra massless degrees of freedom that are

made massive by non-trivial effects such as anomaly mediation.

(ii) The complex scalars and the Weyl spinors transforming in the bifundamental

representations r(33)s = r
(33)
W of eqs. (4.5.10a, 4.5.10b) are the orbifold-invariant

blocks of the fields φa, φ̃a, ψa and ψ̃a, and therefore belong to the orbifold-

invariant blocks from the constrained superfields ha, h̃a, ya and ỹa, respectively.

All these fields are massive in the presence of (2, 1)-flux at the anti-D3-brane

location. Scalars receive further subleading contributions originating from per-

turbative and non-perturbative corrections to the theory. Notice that not all the

orbifold singularities allow for (2, 1)-fluxes, in which case the corrections become

leading for the scalars, with the spinors staying massless.4.22

• In the 73- and 37-sectors, the situation is as follows.

4.22For a supersymmetric ZN -twist, a necessary condition for the (2, 1)-flux to survive the orbifold projection

is that at least one of the la-coefficients be la = N/2, which is not satisfied e.g. by a C3/Z3-singularity,

but it is for instance by C3/Z4; the flux can also be preserved for singularities of the form (C2/ZN ) × C,
C3/[ZM×ZN ] and C3/[ZM×ZN×ZK ] [29,231,235]. Moreover, depending on the orbifold action, the specific

flux components that render the modulini massive [231] might be projected out. The trace condition permits

this situation while keeping the scalars massive.
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(i) The scalars transforming in the bifundamental representations r(37)s and r(73)s

of eqs. (4.5.11a, 4.5.11b) are the orbifold-invariant blocks of the fields φ̂ and φ̂∗,

and therefore belong to the corresponding blocks from the constrained superfields

ĥ and ĥ∗, respectively.

In theories stabilised by non-perturbative and including perturbative effects, such

fields are massive and, moreover, they also receive contributions from anomaly

mediation. Anomaly-mediated mass contributions can be negative and lead to

tachyonic instabilities, but they may be balanced by other effects such as the

α′-corrected uplift contribution.

(ii) The Weyl spinors belonging to the bifundamental representations r
(37)
W and r

(73)
W

of eqs. (4.5.12a, 4.5.12b) are the orbifold-invariant blocks of the fields ψ̂ and ψ̂∗,

and therefore belong to the corresponding blocks from the constrained superfields

ŷ and ŷ∗, respectively.

Such fields are always massless and therefore they always contribute to the mass-

less matter content of the standard-like model extension built at the orbifold-like

singularity.

• In the 77-sector, the situation is the following.

(i) The fields in the vector multiplets in the adjoint representations r
(77)
V are the

invariant blocks from the fields Bµ (if anomaly-free), B̃µ, ζ and ζ̃, and therefore

belong to the corresponding blocks of the vector multiplets W ′
α and W̃ ′

α.

Such gauge fields are modelled to correspond to interactions in a hidden sector.

In a pure-flux background, the gaugini are massive only in the presence of (0, 3)-

flux, which is not present at the tip of the throat. However, for bulk-extended

D7-branes they acquire masses from a non-zero volume-modulus F-term and even

for throat-localised D7-branes they acquire a mass by anomaly mediation.

(ii) The fields in the chiral multiplets in the bifundamental representations r
(77)
C are

the invariant blocks of the fields σ3, σ̃3, η3 and η̃3, and therefore belong to the

corresponding blocks of the chiral superfields σ3 and σ̃3.

All these fields are massive in the presence of (2, 1)-flux, with further contribu-

tions from perturbative and non-perturbative corrections to the theory.

Now that the supermultiplets have been identified, given the N4 = 1 supergravity formula-

tion of a system with intersecting anti-D3- and D7-branes at a smooth point in the internal

space, in order to describe the theory of intersecting anti-D3- and D7-branes at an orbifold

singularity one can simply reduce the original superfields to the subset that is invariant

under the orbifold twist. An extensive work in the construction of quasi-realistic particle

spectra on anti-D3-/D7-branes at orbifold singualities can be found in refs. [29,30,231,235].

All the analysis carried out so far can be adapted to more complicated orbifolds than

the one hosting just C3/ZN -singularities. Such orbifolds induce additional structure in the

matter spectrum, but they do not bring in fundamental differences in terms of the tools that

one has to use to set up a supergravity description in terms of constrained superfields. The

most prominent difference is that there exist singularities with further massless would-be
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vector superfields. In particular, this is a feature of orbifolds which leave invariant at least

one of the complex directions [29]. In this case this gives rise to extra massless Abelian

gauge fields and neutral spinor fields.

4.6 Analysis of the Mass Hierarchies

Together, sections 4.3, 4.4 and 4.5 provide the tools to formulate the supergravity de-

scription of chiral gauge theories from intersecting anti-D3-/D7-branes on warped orbifold

singularities in type IIB Calabi-Yau orientifold flux compactifications. For completness,

the physical mass scales that emerge in such constructions are now discussed, with a view

towards quasi-realistic standard-like models. In the scenario considered:

• the localisation condition of eq. (4.2.13) is assumed, implying that closed-string sector

fields, apart from the gravitino, tend to localise near the redshifted end of the throat;

• the hierarchy of eq. (4.2.16) between the gravitino mass-sourcing fluxes is assumed,

implying that the gravitino is localised in the bulk and a low-energy supergravity

description is consistent.

For definiteness, it is also assumed that (2, 1)-fluxes are present at the tip of the throat, with

no other fluxes. For ease of notation, the normalisation ℓ(0) = 1 is considered throughout

the rest of this section, and similarly for the other numerical constants. The visible sector

is constituted by particles that are charged under the anti-D3-brane gauge groups; all the

rest represents hidden sectors. This section should also serve as a recap of the mechanisms

and effects that have been discussed in this chapter.

4.6.1 Pure D7- and Anti-D3-Brane States

Pure D7- and anti-D3-brane states are discussed first, as their masses are essentially de-

termined by the dimensional reduction of the worldvolume actions. In particular, except

for some of the gaugini, the 77- and 33-states are not critically dependent on the interplay

between each other and neither on the way in which the Kähler modulus is stabilised nor

on anomaly-mediation effects.

• For D7-branes that wrap 4-cycles extending from the tip of a warped throat into the

bulk, the fate of the hidden matter chiral multiplets can be one of two possibilities,

in accord with subsubsection 4.3.1.2.

– If the mass-sourcing fluxes do not have specific hierarchies, then the D7-brane

chiral superfield is localised near the tip of the throat with a mass of the order

of the flux-induced axio-dilaton one, that is, from the normalisation induced

by the matter metric and the µ-coupling in eqs. (4.3.10, 4.3.11), a canonical

supersymmetric mass

m2
77 ∼ (mw

D7)
2 ∼ g2s

V
2
3

1

κ24
e2A0 , (4.6.1)
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which is of the same order of magnitude as the warped Kaluza-Klein scale mw
KK

of eq. (4.2.11), above the cutoff scale of the theory.

– If the fluxes are such that the D7-brane chiral multiplet does not localise near

the tip, then, from the matter metric and the µ-coupling in eqs. (4.3.7, 4.3.8),

the canonically normalised supersymmetric mass is

m2
77 ∼ e2A0m2

D7 ∼
θ′2g2s
V2

1

κ24
e2A0 , (4.6.2)

where θ′ is a small number representing the small bulk flux. In this case, the

chiral multiplet survives the warped Kaluza-Klein cutoff.

Again following subsubsection 4.3.1.2, given the gauge kinetic function of eq. (4.3.12),

the hidden-sector gauge couplings are of order

g2D7 ≃
2πgs

V
2
3

. (4.6.3)

In the absence of (0, 3)-flux, if there are no supersymmetry-breaking or anomaly-

mediation effects, the D7-brane gaugino is massless.

• For D7-branes that wrap 4-cycles localised at the tip of a warped throat, from the

discussion in subsubsection 4.3.1.3 with the matter metric and the µ-coupling of eqs.

(4.3.16, 4.3.17), the hidden chiral matter multiplets acquire the canonical mass [228]

m2
77 ∼ (mw

D7)
2 ∼ g2s

V
2
3

1

κ24
e2A0 . (4.6.4)

This means that the fields do not survive the cutoff unless the mass-sourcing (2, 1)-

flux is parametrically smaller than other fluxes in the throat that generate the warped

Kaluza-Klein scale. Also, subsubsection 4.3.1.3, thanks to the gauge kinetic function

of eq. (4.3.18), indicates that the hidden gauge couplings scale as

g2D7 ≃ 2πgs. (4.6.5)

Again, the gaugino is massless in the absence of supersymmetry-breaking or anomaly-

mediation effects.

• For anti-D3-branes, the modulini and scalar exotics have masses of the same order

of magnitude, as discussed in subsubsection 4.4.1.3. From the matter metrics of eqs.

(4.4.7, 4.4.9) and the H-couplings of eqs. (4.4.8, 4.4.10), one finds once again that a

(2, 1)-flux sources a canonical mass [228]

m2
33

∼ (mw
D3

)2 ∼ g2s

V
2
3

1

κ24
e2A0 . (4.6.6)

Further, given the gauge kinetic function in eq. (4.4.14), the gauge coupling scales as

g2
D3

≃ 2πgs. (4.6.7)

As the anti-D3-brane gaugino is the goldstino of the theory, it is always massless. For

non-Abelian branes, there can be anomaly-mediation effects, otherwise the gaugini

are always massless in the models under consideration.
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4.6.2 Anti-D3-/D7-Brane Intersecting states

and Stable Kähler Modulus

In the presence of intersecting anti-D3- and D7-branes, following subsection 4.4.2, the

spinors from the 37- and 73-sectors are massless, with the scalars just receiving a small

uplift-induced mass correction. However, the string perturbative and non-perturbative ef-

fects are crucial for both stabilising the Kähler modulus and for making the intersecting

scalars massive, as discussed in subsection 4.4.3. In contrast, for the pure anti-D3- and

D7-brane states, these only induce suppressed extra contributions that are only significant

for some of the gaugini. A relevant role can also be played by anomaly mediation.

As discussed in subsection 4.4.3, following eq. (4.4.48), the interplay between non-

perturbative corrections and the anti-D3-brane uplift implies that the gravitino acquires a

mass of order

(m̂w
3/2)

2 ∼ g3s

V
4
3

1

κ24
e4A0 . (4.6.8)

Roughly, this can be written in terms of the warped Kaluza-Klein scale and the condition

of eq. (4.2.13) shows that this mass is bounded above as

(m̂w
3/2)

2 ≲
gs
V2

(mw
KK)

2.

This means that the gravitino is well within the cutoff of the theory. Also, the Kähler

modulus is stabilised and, from eq. (4.4.49), its canonically normalised4.23 mass is of order

(m̂w
V )

2 ∼ a2V
4
3 (m̂w

3/2)
2, (4.6.9)

with the upper bound

(m̂w
V )

2 ≲
a2gs

V
2
3

(mw
KK)

2,

leaving it well within the warped Kaluza-Klein cutoff too. Finally, in accordance with eq.

(4.4.50), the canonical masses for the 37-/73-sector visible scalars are of order

m2
37

∼ m2
73

∼ ξ

V
(m̂w

3/2)
2. (4.6.10)

Again, one can easily verify that these fields survive the 4-dimensional cutoff, being

m2
37

∼ m2
73

≲
gsξ

V3
(mw

KK)
2.

As discussed in subsection 4.4.3, moduli stabilisation has effects on the gaugini, and

anomaly mediation affects both the gaugini and the intersecting states.

• For D7-branes wrapping a 4-cycle extended from the throat tip into the bulk, from

eq. (4.4.51), the non-zero volume F-term induces D7-brane hidden gaugini masses of

order

mD7
1/2 ∼

1

aV
2
3

m̂w
3/2, (4.6.11)

4.23For ease of notation, although this is the mass of the canonically normalised modulus, the symbol V is

maintained from now on since the volume is what is controlled by the field c.
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An anomaly-mediated contribution is also there but it has an extra string-coupling

suppression, as can be seen in eq. (4.4.54). Also, from eq. (4.4.57), the anomaly-

mediated mass contribution for the anti-D3-/D7-brane visible-sector intersecting sca-

lars is of order

δm2
37

∼ δm2
73

∼ −g2s(m̂w
3/2)

2, (4.6.12)

which competes closely with the α′-induced volume-suppressed contribution. One

generally also has a Yukawa coupling-induced term of the same order of magnitude.

• If the D7-brane wraps a 4-cycle which is localised at the tip of the warped throat,

then eq. (4.4.55) indicates that the D7-brane hidden gaugino acquires an anomaly-

mediated mass of order

mD7
1/2 ∼ gs m̂

w
3/2. (4.6.13)

Further, from eq. (4.4.58), the anomaly-mediated contribution for the anti-D3-/D7-

brane visible-sector intersecting scalars is of order

δm2
37

∼ δm2
73

∼ −g2s (m̂w
3/2)

2. (4.6.14)

This can dominate the term originated by the α′-induced contribution, generating

an instability, depending on how the volume and the string coupling are tuned. A

Yukawa coupling-induced term of the same order of magnitude is also generally there.

• Anomaly mediation also generates masses for the anti-D3-brane visible-sector would-

be gaugini apart from the goldstino, which are present for non-Abelian anti-D3-branes.

In this case, thanks to eq. (4.4.56), the order of magnitude is

mD3
1/2 ∼ gs m̂

w
3/2. (4.6.15)

An interesting scenario is the one in which the mass-sourcing (2, 1)-flux is such that

the pure anti-D3- and D7-brane chiral multiplets are heavier than the cutoff scale. Since

their positions are stabilised at the expectation values ⟨φa⟩ = 0 and ⟨σ3⟩ = 0, the trilinear

couplings disappear. One is left with an effective theory in which the 4-dimensional degrees

of freedom are:

• the non-anomalous visible and hidden gauge vectors from anti-D3- and D7-branes,

which are massless, and the corresponding gaugini, which have masses of the order of

magnitude in eqs. (4.6.11)/(4.6.13) and (4.6.15);

• the intersecting anti-D3-/D7-brane states, i.e. some standard-like model spinors and

exotic scalars in fundamental representations of the gauge groups, where the spinors

are massless and the scalars have masses of the order of magnitude in eq. (4.6.10);

• the graviton, which is obviously massless, and a gravitino with a mass of the order of

magnitude in eq. (4.6.8), after the combination with the anti-D3-brane goldstino;

• the Kähler modulus and its superpartner, with masses of the order in eq. (4.6.9),

which constitute the lightest closed-string hidden-sector particles after the gravitino.
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In models at orbifold singularities, the intersecting states are generally such that the scalars

and the spinors are in different representations of the gauge groups, meaning that they do

not even have would-be superpartners, but rather represent just a bunch of different charged

spin-0 and spin-1/2 particles.

4.6.3 Sample Mass Scales

A qualitative spectrum reproducing the typical mass scales in models with intersecting anti-

D3- and D7-branes for strongly-warped compactifications, i.e. satisfying the condition in eq.

(4.2.13), and in the limit where the bulk (0, 3)-flux is sufficiently small that a 4-dimensional

supergravity formulation is allowed, i.e. satisfying eq. (4.2.16), is reported below.

In detail, fig. 4.3 reports a qualitative sample spectrum, in units of the reduced Planck

mass mP = 1/κ4, in the case where the anti-D3-brane sits at the tip of the warped throat

and the D7-brane wraps a 4-cycle extending from the throat tip into the bulk, with its chiral

multiplet localised at the tip (see paragraph 4.3.1.2.3 and subsubsections 4.4.1.3, 4.4.2.3).

A similar spectrum emerges if the D7-brane wraps a 4-cycle localised at the throat tip

(see subsubsections 4.3.1.3, 4.4.1.3, 4.4.2.3), with only minor changes in the gauge sector.

Instead, if the D7-brane wraps a 4-cycle extending from the bulk into the tip, with the

chiral multiplet localised in the bulk, the difference is also in the smaller mass of the latter

(see paragraph 4.3.1.2.4 and subsubsections 4.4.1.3, 4.4.2.2).

The volume-controlling modulus is stabilised by KKLT-like non-perturbative corrections

and α′-corrections are inserted too, as in subsection 4.4.3. The sample values are gs = 5·10−2

and e2A0 = 10−8 as well as a = 0.1, |A| = 1 and |W0| = 10−5, with ⟨Im τ⟩ = 1, ⟨−iωw⟩ = 1,

ℓw/ℓ(0) = 1 and c0 = 1, which, for the scalar potential in eq. (4.4.42), give a volume vacuum

expectation value ⟨V⟩ ≃ 1.6 · 103 and a minimum energy Λ ≃ 2.2 · 10−26m4
P (which can of

course be adjusted with a more precise fine-tuning). As usual, these parameters have been

tuned to ensure the volume-modulus stabilisation (for recent progress towards a top-down

understanding of the parameter space for the KKLT-setup see e.g. refs. [67,204,206,281]).

In particular, the sample values chosen here are close to the original ref. [54] and roughly

satisfy the assumptions of the current setup, but are only one example in a vast parameter

space. Along with the Minkowski vacuum condition of eqs. (4.4.43, 4.4.44), the most

stringent bounds are:

• the localisation condition in eq. (4.2.13), which requires a small enough volume,

compared to the warp factor, such that ⟨V⟩2/3 ≲ e−A0 ;

• a small GVW-superpotential |W0|, which is necessary for the KKLT-vacuum but also

to accomplish the supergravity condition in eq. (4.2.16);

• a string coupling that is large enough to be a reasonable gauge coupling in the visible

sector, being g2vis ≃ 2πgs, but also sufficiently small, as to prevent tachyons in the

intersecting sector.4.24

4.24This is a highly model-dependent problem: it is quite delicate and it requires taking into account the
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Roughly, in order to have reasonable gauge couplings and to avoid open-string tachyons,

the string coupling has to be of order gs ∼ 10−2 and the volume is thus forced to be roughly

at most of the order of magnitude ⟨V⟩ ∼ 103. Therefore, the gravitino mass in eq. (4.6.8) -

to which all the other 4-dimensional effective masses are proportional - indicates that what

really suppresses the masses is the redshift factor eA0 . In particular, the parameters chosen

here place the gravitino mass and scalar exotics just above the current observational bounds.

However, by stretching the parameters of the non-perturbative superpotential correction,

one may achieve scenarios where the redshift eA0 is small enough to make the gravitino

– and consequently all the other low-energy fields – arbitrarily light. On the other hand,

bigger values of the redshift eA0 are also possible and provide masses that can be a few

orders of magnitude larger.

Although a detailed exploration of the phenomenological implications of such scenarios

is not the main aim of this analysis, a few comments are due. Notice that in the mass

scales all the numerical factors have been dropped and only the parametric dependences on

eA0 , gs and ⟨V⟩ have been taken into account, i.e. numerical values are computed with the

estimates summarised in this section.

• From the cosmological perspective, the models do not present the cosmological moduli

problem [282–285] since all the hidden moduli are heavier than the visible scalars.

Whether or not there is a gravitino problem depends on the decay channels and

abundances, but, in any case, the gravitino, with a mass of order m̂w
3/2 ≃ 8 · 10−13mP ,

is sufficiently heavy to decay soon enough as not to spoil the BBN-physics, with a

lower bound at roughly mmin
3/2 ∼ 10−13mP [285–287]. The models also contain some

massless hidden U(1)-gaugini and some heavy non-Abelian gaugini from the 77-sector,

with masses mD7
1/2 ≃ 6 · 10−14mP for a wrapped 4-cycle extending into the bulk, with

a very small gauge coupling of order g2hid ≃ 2 · 10−3, or mD7
1/2 ≃ 4 · 10−14mP for a

wrapped 4-cycle at the throat tip, with coupling g2hid ≃ 0.3. If the D7-brane chiral

multiplet localises near the tip, its mass scale is above the cutoff, while if its mass-

sourcing bulk flux is small enough and it stays in the bulk, then its mass is comparable

to the gravitino one, i.e. m77 ∼ m̂w
3/2.

• From the particle-physics point of view, the visible sector consists of one Abelian and

a few non-Abelian gauge groups plus some charged massless spinors in bifundamen-

tal representations as well as some heavy charged bifundamental scalars and a few

slightly heavier non-Abelian gaugini. All the gauge couplings are of order g2vis ≃ 0.3.

For a gravitino with a mass of order m̂w
3/2 ≃ 8 · 10−13mP , these scalar masses are

of order mscalar
37

∼ mscalar
73

≃ 7 · 10−15mP (including the factor ξ/4 ≃ 1/8), while the

gaugino masses are mD3
1/2 ≃ 4 · 10−14mP . Such values are not inconsistent with the

observational bounds [146].

details of the mass terms. As an example, taking a sample value ξ ≃ 0.5, one finds a soft-breaking α′-induced

mass of order m2
37
/(m̂w

3/2)
2 = ξ/(4⟨V⟩) ≃ 8 · 10−5, while, taking a sample value

∑
i biC2(r

i) = −1 (often the

groups SU(ni) with the largest ni tend to have b > 0, with larger C2, and the opposite happens for smaller

values ni; for instance this is the case in the MSSM and in the models of ref. [30]), the anomaly-mediated

corrections are δm2
37
/(m̂w

3/2)
2 = g2sbC2/(32π

2) ≃ −8 · 10−6.
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Figure 4.3: A qualitative sample of the mass scales in models with intersecting anti-D3- and

D7-branes in highly-warped compactifications, i.e. such that ⟨V⟩2/3 ≤ e−A0 , with KKLT-like non-

perturbative corrections and α′-corrections, and a small bulk (0, 3)-flux such that the gravitino

localises in the bulk. Where the spin is not indicated, the masses refer to the supermultiplet as

the soft-breaking corrections do not dominate. The observed standard-model energy range and the

relevant scales above the cutoff are shown explicitly. The graph refers to an anti-D3-brane sitting

at the throat tip and a D7-brane wrapping a 4-cycle extending from the tip into the bulk, with

the D7-brane chiral multiplet localised at the tip, where the gauge couplings are g2
D3

≃ 0.3 and

g2D7 ≃ 2 ·10−3. A similar spectrum emerges if the D7-brane wraps a 4-cycle localised at the tip, with

then the D7-brane scales similar to the anti-D3-brane scales, so g2D7 ≃ g2
D3

and mD7
1/2 ∼ mD3

1/2. If the

D7-brane wraps a 4-cycle extending into the bulk and the mass-sourcing (2, 1)-fluxes are such that

the D7-brane chiral multiplet localises in the bulk, then the latter approaches the gravitino mass

scale, m77 ∼ m̂w
3/2.

It is important to discuss the scale at which the supersymmetry-breaking mass split-

tings come into play. Indeed, whilst there is no scale at which superpartners emerge for

the 33- and 37-/73-states, closed-string and 77-multiplets do have supersymmetry-breaking

mass splittings, and 33-states and 37-/73-scalars also acquire soft mass contributions from

supersymmetry-breaking effects. The breaking of supersymmetry by the anti-D3-branes
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takes place at the warped-string scale mw
s , where the full tower of string states comes into

play [2,96]. However, the relevant mass scale for supersymmetry breaking in the low-energy

theory is instead controlled by the gravitino mass scale m̂w
3/2, as will now be commented on.

In a near-Minkowski vacuum, the orders of magnitude of the contributions to the F-term

scalar potential are fixed by the scales [68,98]

fwx =

[
1

3
KxxFxFx

]1
2

≃ m̂w
3/2mP , (4.6.16a)

fwρ =

[
1

3
KρρFρFρ

]1
2

≃ 1

2aV
2
3

m̂w
3/2mP , (4.6.16b)

although the anti-D3-brane uplift energy and the KKLT-like Kähler-modulus potentials

combine non-trivially with the gravitino mass-dependent contribution to give a near-zero

cosmological constant, being the leading-order contributions in the scalar potential such that

⟨VF /3⟩ ≃ (fwx )
2 − (m̂w

3/2mP )
2 ≃ 0. One may then define a supersymmetry-breaking scale

in the low-energy theory as mSUSY ∼ (fwx )
1/2. Nevertheless, for both the Kähler modulus

and the open-string sector, the orders of magnitude of the mass splittings read

m̂w
V ∼ aV

2
3 m̂w

3/2,

mopen
soft ∼ m̂w

3/2.

So, even though there is no order parameter able to restore supersymmetry for the anti-D3-

brane, the mass-splittings are not at the scale mw
s or mSUSY, but rather they are fixed by

the gravitino mass m̂w
3/2 in the stabilised model: as usual, the canonical normalisation in

physical units sets the volume-modulus mass at a slightly volume-enhanced gravitino scale,

whereas for the open-string contributions the order of magnitude is immediately set at the

scale msoft ∼ m2
SUSY/mP ∼ m̂w

3/2 by the mediation of gravity. Moreover, for the low-energy

bifundamental scalars, this scale is further reduced by cancellations at leading order and

they are the lightest (exotic) visible particles.

To end, it is worthwhile to stress that the particle spectra discussed here represent

the generic low-energy effective theory corresponding to intersecting anti-D3-/D7-branes

at an orbifold-like singularity, located at the tip of a strongly-warped throat in a Calabi-

Yau orientifold flux compactification, with the Kähler modulus stabilised in a KKLT-like

framework. An explicit and globally consistent realisation of such constructions is left for

future work.

4.7 Conclusions

This chapter has developed the supergravity description for the low-energy effective field the-

ory of intersecting anti-D3-/D7-brane systems on orbifold singularities at the tip of warped

throats, in KKLT-stabilised type IIB Calabi-Yau orientifold flux compactifications. Such

string configurations could plausibly provide a realisation of the gauge and matter sectors

of the Standard Model of Particle Physics, along with a rich hidden sector, with a geometric

origin for large hierarchies of scales and a non-standard realisation of supersymmetry break-

ing. The anti-D3-brane degrees of freedom realise the bulk N4 = 1 supersymmetry only
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non-linearly, and thus break supersymmetry spontaneously, with the goldstino correspond-

ing to the neutral massless gaugino that is always present. When the branes are placed

on orbifold singularities, moreover, the anti-D3-/D7-brane intersecting fermions and bosons

transform in different bifundamental representations of the gauge groups, thus they in no

way resemble superpartners. A new description is therefore necessary, namely non-linear

supergravity using constrained superfields. The focus has been on the main distinctive fea-

tures of these novel non-supersymmetric scenarios and their low-energy descriptions, while

the realisation of globally consistent concrete models is left for future studies.

The analysis has begun by reviewing the properties of warped flux compactifications

in section 4.2. In particular, for strongly-warped throats and bulk volumes that are not

too large, i.e. satisfying eq. (4.2.13), bulk fields tend to dynamically localise near the tip

of the throat, where energy scales are suppressed due to a gravitational redshift. In order

to have a 4-dimensional gravitino localised in the bulk, with Planck-suppressed couplings

to match those of the graviton, as expected in supergravity, special fluxes satisfying eq.

(4.2.16) have also been assumed. The strong warping can eventually be captured in the

low-energy supergravity theory describing degrees of freedom at the bottom of the throat

via a constant shift of the Kähler potential by the redshift logarithm ln e2A0 = 2A0 [228].

Taking this highly-warped flux background, the low-energy effective theory for a super-

symmetric D3-/D7-brane system has been reviewed in section 4.3. Two qualitatively differ-

ent scenarios have been considered: first with the D7-brane wrapping a 4-cycle extending

from the tip along the throat into the bulk, second with the wrapped 4-cycle localised at

the tip. Moreover, in the first case, the D7-brane chiral supermultiplet may be localised

in the bulk or at the tip, depending on its mass-sourcing fluxes. The possibility of inter-

nal integrals being dominated by the warped throat or the bulk has also been considered.

For the 33- and 77-states, the effective field theory for the light degrees of freedom can be

found by simply matching the 4-dimensional interactions found via dimensional reduction

with those obtained in linear supergravity (including soft-breaking terms in the presence

of supersymmetry-breaking fluxes). For the 37- and 73-states, further tools are necessary,

and in particular the allowed interactions can be inferred using the internal-space symme-

tries [235]. The power of linear supergravity is that, having identified the Kähler potential,

superpotential, gauge kinetic functions and Fayet-Iliopoulos terms by matching with a few

dimensionally-reduced interactions, the complete action necessary for supersymmetry can

be inferred, including couplings to bulk moduli.

With these preparations, the low-energy description of anti-D3-/D7-branes at the bot-

tom of warped throats in supersymmetric warped flux compactifications has been worked

out, first for Abelian setups in section 4.4 and then for non-Abelian stacks of branes on

orbifold singularities in section 4.5. Despite supersymmetry breaking, the non-linear su-

pergravity construction provides a useful framework for the low-energy theory, including

the couplings with bulk fields. After identifying the appropriate constrained superfields to

encapsulate the low-energy fields, their interactions have been worked out, building on both

the single anti-D3-brane case [163] and the supersymmetric D3-/D7-brane cases above.

Most of the interactions can be described within standard supergravity expansions with

hidden-sector supersymmetry breaking and soft-breaking terms. However, in the presence
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of constrained superfields where the constraint also fixes the auxiliary field in the multiplet

in terms of the goldstino, the supergravity expansions are non-standard, and are computed

in appendix C.3. Another consequence of the anti-D3-brane supersymmetry breaking is

in a few couplings involving intersecting states, which would follow from analogy with the

supersymmetric D3-/D7-brane case, but do not appear to fit in to the non-linear super-

gravity expansions. These can instead be realised via a new interaction proportional to the

nilpotent goldstino superfield, i.e. an xx-term [157], which provides each coupling term by

term, plus further interactions proportional to the goldstino and vanishing in the unitary

gauge. Although this somewhat weakens the power of the supergravity formulation, at

least in the current understanding, the latter allows for an embedding of bottom-up open-

string scenarios with brane supersymmetry breaking into fully stabilised compactifications,

including perturbative and non-perturbative effects. This is essential to understand their

phenomenology and cosmology.

To this end, the D-brane setups were embedded in the KKLT-scenario, with the anti-

D3-branes providing both gauge and matter sectors as well as the anti-D3-brane uplift to a

Minkowski/de Sitter vacuum energy. Attractively, the small bulk (0, 3)-flux backgrounds,

necessary to balance against non-perturbative effects and stabilise the Kähler modulus, also

help satisfy condition (4.2.16) allowing for a supergravity description [228]. The technology

developed can easily be applied to other moduli-stabilisation scenarios, and less warped

scenarios, outside the validity of eqs. (4.2.13, 4.2.16).

The low-energy effective actions thus found have several interesting features. The

complex-structure, axio-dilaton, 77-, and 33-sector chiral multiplets acquire would-be su-

persymmetric mass terms from (2, 1)-fluxes, at a scale that can be above the cut-off (as

well as subleading soft-breaking masses from the anti-D3-brane supersymmetry breaking).

Physically, this means that the open-string moduli corresponding to brane positions are

stabilised at the tip of the throat. Instead, fermionic 37- and 73-states remain massless and

could provide the standard-like model light visible sector, whilst scalar visible-sector exotic

37- and 73-states – in distinct bifundamental representations – always receive would-be soft-

breaking mass contributions, due to the anti-D3-brane and volume-modulus supersymmetry

breaking. Because the latter are suppressed by no-scale-like cancellations, α′-corrections

(positive-definite) and anomaly mediation (tachyonic) actually compete in setting the scale

of the exotic scalar masses [98], and which contribution wins depends on the parameter

choices. Moduli stabilisation and anomaly mediation also provide mass terms for the 77-

and 33-sector gaugini. As well as the mass scales, the leading supersymmetric and soft-

breaking bilinear and trilinear couplings have all been computed. The visible 33-sector

gauge couplings are fixed by the string coupling, while for the hidden 77-sector the volume

can also play a role. All this is spelled out in section 4.6.

As well as the lighter part of the visible sector (standard-like model gauge fields and

fermions, and some scalar exotics and gaugini), and a light hidden gauge sector plus mat-

ter, when embedding in KKLT-like scenarios for the Kähler modulus stabilisation, the

volume modulus and gravitino remain in the effective field theory, whereby cosmological

bounds on the gravitino constrain the parameter space. Notice that the KKLT-like small

GVW-parameter |W0| implies a small gravitino mass, which is then further reduced by
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warping. Although the precise mass scales are model-dependent, the pattern of masses

and their parametric dependence on the warp factor, volume and string-coupling are fairly

universal within the KKLT-scenario. Whilst a thorough phenomenological study, including

renormalisation-group flows of the scales, has been beyond the reach of this work, if the

warping is too strong, the gravitino mass m̂w
3/2 ∼ (g

3/2
s eA0/V2/3)mP e

A0 may be so sup-

pressed as to be ruled out by the observational bounds that confirm the BBN-physics, while

the exotic scalar masses m37 ∼ m̂w
3/2/V

1/2 may be ruled out by observation in accelerators.

Conversely, weaker warping allows scales to be pushed far beyond current experimental

bounds.

This work leads to several interesting and important open questions. First and foremost

is a rigorous understanding of the extent to which non-linearly realised supersymmetry

and strong warping can help resolve hierarchy problems like the gauge hierarchy. The

presence of spontaneous supersymmetry breaking, and yet no scale at which the usual

superpartners appear, is an intriguing feature of these scenarios. Recently there has been

a great deal of interest towards non-supersymmetric constructions in string theory (see

e.g. refs. [90,91,99–103,115,288–293]) and it is very compelling to understand the relation

between the D-brane supersymmetry breaking considered here and other approaches in the

literature. The work of refs. [2, 3] is also aligned in this direction. It is also worth pointing

out that recently ref. [294] has argued for the fact that, in pure 4-dimensional supergravity

terms, constructions based on constrained superfields can be stable against loop corrections

coming from the integrated-out heavy non-supersymmetric particles.

From a model-building point of view, it would be essential to build warped throats that

allow for viable singularities at their tip, and the presence of simple 4-cycles (like for instance

the K3-surface or the 4-torus T4) at their tip or along their length would then allow for easy

explicit dimensional reductions. Geometric constructions with warped throats hosting a 4-

torus T4 at the tip and Z3-singularities are built in ref. [30]. It would be fruitful to extend

the present work to anti-D3/D7-brane systems on more general toric singularities, such as in

refs. [223,295–298], at the tip of warped throats. Related work on the construction of throats

with branes at singularities can already be found e.g. in refs. [95, 97, 223, 297–301] and on

throats with wrapped D7-branes in refs. [302–304]. Ultimately, the results presented here

could be applied for globally consistent compactifications, with appropriate singularities,

cycles and sources that fulfil RR-tadpole cancellation conditions, in a standard bottom-up

approach.

Various possible instabilities arising from anti-D3-branes in flux backgrounds should

also be explored, since this work has completely neglected the brane backreaction and the

details of the complex-structure modulus that governs the warp factor at the throat tip. In

particular, as shown by ref. [168], p anti-D3-branes in the flux background of the KS-throat

with M units of RR-flux are metastable and long-lived for sufficiently small ratio p/M ,

with brane-flux decay occurring non-perturbatively via brane polarisation à la Myers [72]

(for an overview of past debates on this picture, see ref. [205]). Recently, ref. [212] has

provided an effective interpretation of this KPV-like decay in 4-dimensional supergravity

in terms of the evaporation of the nilpotent goldstino superfield (see also refs. [154, 160]).

Also, ref. [67] has shown that for a KS-throat the anti-D3-branes may induce a complex-
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structure instability, depending on the amount of flux relative to the branes. It would be

interesting to investigate these dynamics in other relevant throats and in the presence of

orbifold singularities. Additionally, so far, world-volume fluxes on the D7-branes have been

neglected for simplicity, though they can contribute interesting D-terms and F-terms.

Once globally-consistent realistic constructions approaching the standard model of par-

ticle physics have been identified, detailed phenomenological and cosmological studies would

be possible.
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5 CONCLUSIONS

This work has been centred around aspects of the breaking of supersymmetry by anti-D-

branes in String Theory. This has been done in two different perspectives. On the one

hand, the nature of anti-D-brane supersymmetry breaking has been considered in its funda-

mental aspects, evidencing the emergence of patterns that are characteristic of misaligned

supersymmetry. On the other hand, the study of a purely phenomenological scenario has

been discussed, with the description of a standard-like model realised on intersecting anti-

D3-/D7-branes at orbifold-like singularities in the formalism of constrained multiplets.

The work has started, in chapter 2, with a detailed contextualisation of the basic concep-

tual tools that constitute the foundational common ground for the material presented later

on. Starting from the quantisation of the worldsheet superstring theory, it has overviewed

core topics of String Theory and String Phenomenology such as the role and the interpre-

tation of partition functions, string compactifications and the conceptual nature of D-brane

supersymmetry breaking.

The key concept of the formal analysis of anti-D-brane supersymmetry breaking has

been misaligned supersymmetry, in chapter 3. In fact, it has been shown that the open-

string theory corresponding to an anti-D-brane sitting on top of an orientifold plane exhibits

the defining features of misaligned supersymmetry, i.e. an oscillating degeneracy between

fermionic and bosonic abundances at each mass level and yet a finite one-loop cosmological

constant. The oscillating and exponentially-growing net degeneracies are defining features

of other closed-string non-supersymmetric models. Focussing on the paradigmatic examples

of the heterotic SO(16)×SO(16)-theory and of the anti-Dp-brane/Op-plane theory, it has

been shown that, in a vast class of cases in which the partition function can be written in

terms of a family of Dedekind η-quotients, these theories experience a net cancellation in

the interpolating functions of the state degeneracies. This has been proven to take place at

all orders in the Hardy-Ramanujan-Rademacher series that describes them, extending pre-

existing results in the literature, which only concern the leading-order terms in closed-string

theories. Furthermore, a mathematical analysis of the one-loop cosmological constant has

been carried out. For both open and closed strings, this evidences that the cancellation

of the interpolating functions is sufficient to conclude that the exponential divergences

appearing in the calculation do indeed cancel out, at all orders. The results are valid for a

generic class of non-supersymmetric string-theory constructions, and the Sugimoto USp(32)-

and type 0’B SU(32)-theories have also been argued to show misaligned elements in their

spectra. Further generalisations are possible, both in physical and mathematical terms. An

achievement to pursue is the description of more realistic constructions, in compactified
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theories and with non-Abelian gauge sectors, in terms of misaligned supersymmetry, in

order to understand more about non-supersymmetric theories and their fate in hierarchy

naturnalness problems. On the other hand, the proofs of misaligned-like boson-fermion

cancellations can be extended by trying to relax the assumptions on the form of the partition

functions.

As a parallel line of investigation, an inherently phenomenological analysis has been per-

formed of quasi-realistic standard-like model realisations revolving around anti-D3-branes,

in chapter 4. It is known that anti-D3-branes in type IIB theories come with the effect

of breaking the supersymmetry that is preserved by Calabi-Yau orientifolds and provide a

positive contribution to the vacuum energy. At the same time, when they sit at orbifold

singularities, intersecting with D7-branes as well, the corresponding low-energy chiral spec-

trum can accommodate for non-Abelian gauge theories with scalars and spinors in different

representations. This has motivated the interest in the analysis of a model in which the

anti-D3-branes do the double job of breaking supersymmetry, uplifting the vacuum energy,

and of providing the particle content of a quasi-realistic standard model extension, in their

interplay with the D7-branes. The technical tool that has been used for this task consists

in constrained superfields. These allow one to make use of many of the well-known super-

gravity results while working in a model where supersymmetry is intrinsically broken by

the theory. For definiteness, the work has focussed on highly-warped scenarios, working out

the relevant mass scales and arguing for their reliability as noteworthy toy models, with the

perspective of more refined future constructions.

These analyses provide an enrichment of the current understanding of supersymmetry

breaking in String Theory. Since supersymmetry, if present at all, must be broken in the

vacuum, and, at the same time, since its conceptual and mathematical features provide one

with sharp computational tools, this is a topic of great relevance. In line with notable results

in the literature, this work has provided further evidence for the idea that the mathematical

and conceptual tools inherent to standard supersymmetric theories can be adapted, to a

specific extent, in order to also describe string theories that lack spacetime supersymme-

try. Such a conclusion is expected to help addressing fundamental puzzles of Theoretical

Physics such as the hierarchy problem and the potential description of a consistent string-

theoretic de Sitter vacuum. A compelling open question whose answer this work lays some

grounds for is the relation between non-linear realisations of supersymmetry, intrinsically

non-supersymmetric theories, and misaligned supersymmetry. In fact, for instance, anti-

D-branes can both realise the supersymmetry of the closed-string sector non-linearly and

exhibit a misaligned spectrum. On the other hand, the heterotic SO(16)×SO(16)-theory

has a misaligned spectrum, but such a spectrum does not even have a gravitino at the

massless level, differently from the anti-D-brane case. This leads one to wonder what this

means, at a fundamental level, for non-supersymmetric string theories. In fact, misaligned

supersymmetry seems to be a common feature of most theories in this class. A feature that

can often be overlooked consists in the fact that String Theory, having an infinite number

of degrees of freedom, has a deeper structure than just the effective low-energy theory that

it gives rise to. Therefore even mechanisms such as supersymmetry breaking may take

place in an intrinsically stringy way, different from any possible pure field-theoretic reali-
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Chapter 5. Conclusions

sation. A refinement of the description of both the cases of non-linear supersymmetry and

of intrinsically non-supersymmetric string-theoretic realisations represents a fundamental

advancement in the study of String Theory. Knowledge of non-supersymmetric string the-

ories in a unified picture is of crucial importance in order to understand their effective role

in model-building and solving the hierarchy naturalness issues of present-day Theoretical

Physics. Any further understanding in this direction is worthwhile to be pursued.

This work has focussed on idealistic setups, leaving aside a variety of complications

that at some point have to emerge if looking for a theory of the universe based on String

Theory. In particular, the fundamental aspects of non-supersymmetric string theories in

relation to misaligned supersymmetry have been discussed prior to compactification and

without aiming for realistic particle spectra. The phenomenological modelling of quasi-

realistic theories based on anti-D3-branes has been performed in highly simplified setups, in

a bottom-up approach and ignoring features such as the brane backreaction and the details

of globally well-defined compactifications, thus avoiding certain technical complications.

Similarly, it has also been assumed that to keep control of all the approximations is possible.

All these restrictions have been dictated by the necessity to select the essential features of

the matter in order to make the initial step towards enriching its complete understanding,

and not by conceptual obstacles. Of course, this means that developments in this direction

are not only desirable but actually doable.
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A NOTATION AND CONVENTIONS

This appendix is a collection of the recurrent symbols and functions that appear throughout

the main text, with relevant references also provided.

A.1 Modular Forms

A modular form of weight k is a holomorphic function f = f(τ) defined on the complex

upper-half plane H = {τ ∈ C : Im z > 0} that under the action of the modular group

transforms as

f(Mτ) = (cτ + d)kf(τ), (A.1.1)

and that is also holomorphic at the cusp. The modular group is the group PSL2(Z) =

SL2(Z)/Z2 that can be identified with the elements of the matrices

M =

(
a b

c d

)
Z2∼ −M, a, b, c, d ∈ Z : detM = ad− bc = 1.

The modular group appears often because it maps a 2-dimensional torus into another torus,

when τ = τ1 + iτ2 represents the Teichmüller parameter of the torus. The fundamental

domain of the modular group is the region in the upper-half complex plane that represents

parameters τ that cannot be mapped into one another by a modular transformation and it

corresponds to

F =
{
τ ∈ C : Re τ ∈ [−1/2, 1/2] ∧ Im τ ∈ [0,+∞[∧ |τ | ∈ [1,+∞[

}
.

Any transformation in the modular group can be generated by a repeated application of the

generating T- and S-transformations, which act on the modular parameter as T (τ) = τ +1

and S(τ) = −1/τ . By a slight abuse of notation, sometimes the group SL2(Z) itself is called
the modular group, ignoring the equivalenceM ∼ −M . Ubiquitous modular forms in string

theory are the Dedekind η-function and the Jacobi ϑ-functions.

A.1.1 Dedekind η- and Jacobi ϑ-functions

For the Dedekind η-function and the Jacobi ϑ-functions, the notation follows the definitions

of refs. [33, 39]; see also ref. [305]. Here the main relationships employed throughout the

main text are reported explicitly for clarity. In terms of the variable q = e2πiτ , the Dedekind
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η-function is defined as

η(τ) = q
1
24

∞∑
n=−∞

(−1)nqn
(3n−1)

2 = q
1
24

∞∏
n=1

(1− qn), (A.1.2)

whereas the Jacobi ϑ-functions are defined as

ϑ

[
a

b

]
(z|τ) =

∞∑
n=−∞

q
1
2
(n+a)2e2πi(n+a)(z+b)

= e2πia(z+b)q
a2

2

∞∏
n=1

(1− qn)
[
1 + qn+a−

1
2 e2πi(z+b)

][
1 + qn−a−

1
2 e−2πi(z+b)

]
.

(A.1.3)

Four specific functions are particularly common, i.e.

ϑ1(q) ≡ ϑ

[
1
2
1
2

]
(0|τ) =

∞∑
n=−∞

(−1)n+
1
2 q

1
2
(n+ 1

2
)2 = iq

1
8

∞∏
n=1

(
1− qn

)2(1− qn−1), (A.1.4a)

ϑ2(q) ≡ ϑ

[
1
2

0

]
(0|τ) =

∞∑
n=−∞

q
1
2
(n+ 1

2
)2 = 2q

1
8

∞∏
n=1

(
1− qn

)(
1 + qn

)2
, (A.1.4b)

ϑ3(q) ≡ ϑ

[
0

0

]
(0|τ) =

∞∑
n=−∞

q
1
2
n2

=
∞∏
n=1

(
1− qn

)(
1 + qn−

1
2
)2, (A.1.4c)

ϑ4(q) ≡ ϑ

[
0
1
2

]
(0|τ) =

∞∑
n=−∞

(−1)nq
1
2
n2

=

∞∏
n=1

(
1− qn

)(
1− qn−

1
2
)2. (A.1.4d)

Useful relations related to these functions are

ϑ1 = 0, (A.1.5)

ϑ43 − ϑ44 − ϑ42 = 0, (A.1.6)

ϑ2ϑ3ϑ4 = 2η3. (A.1.7)

The second and third equalities are the Jacobi identity and the Jacobi triple-product iden-

tity. Under the action of the generating transformations T and S of the modular group, the

Dedekind η-function transforms as

T : η(τ + 1) = e
iπ
12 η(τ), (A.1.8)

S : η(−1/τ) =
√
−iτ η(τ), (A.1.9)

whereas the general form for the transformation of the Jacobi ϑ-functions is

T : ϑ

[
a

b

]
(z|τ + 1) = e−iπa(a−1) ϑ

[
a

a+ b− 1
2

]
(z|τ) (A.1.10)

S : ϑ

[
a

b

]
(z| − 1/τ) =

√
−iτ e2πiab+iπ z2

τ ϑ

[
b

−a

]
(z|τ). (A.1.11)

For the functions of interest, one can write

ϑ2(τ + 1) = e
iπ
4 ϑ2(τ), (A.1.12a)
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T : ϑ3(τ + 1) = ϑ4(τ), (A.1.12b)

ϑ4(τ + 1) = ϑ3(τ), (A.1.12c)

ϑ2(−1/τ) =
√
−iτ ϑ4(τ), (A.1.13a)

S : ϑ3(−1/τ) =
√
−iτ ϑ3(τ), (A.1.13b)

ϑ4(−1/τ) =
√
−iτ ϑ2(τ). (A.1.13c)

By use of the infinite-product definitions, it is possible to express the Jacobi ϑ-functions in

terms of the Dedekind η-function and vice versa via the identities

ϑ2(τ) =
2η2(2τ)

η(τ)
, (A.1.14a)

ϑ3(τ) =
η5(τ)

η2(τ/2)η2(2τ)
, (A.1.14b)

ϑ4(τ) =
η2(τ/2)

η(τ)
. (A.1.14c)

An application of the modular T-transformation also shows the relationship

η(τ + 1/2) = e
iπ
24

η3(2τ)

η(τ)η(4τ)
. (A.1.15)

For practical purposes, it is also useful to introduce the characters of the so(2n)-algebras,

which are defined as

O2n =
ϑn3 + ϑn4
2ηn

, (A.1.16a)

V2n =
ϑn3 − ϑn4
2ηn

, (A.1.16b)

S2n =
ϑn2 + i−nϑn1

2ηn
, (A.1.16c)

C2n =
ϑn2 − i−nϑn1

2ηn
. (A.1.16d)

Their modular properties can be determined straightforwardly from their definitions.

A.1.2 Asymptotic Expansion of the Dedekind η-function

It is instructive to discuss in some detail the derivation of the asymptotic expansion of

the Dedekind η-function. There are two ways for doing this: one relies on the modular

properties of the function, whilst another is just a result of mathematical analysis.

Based on the definitions in ref. [131], the notation and the terminology is as follows.

• The expression f(x) = O(g(x);x0) means that there exists a value M ∈ R+ such that

|f(x)| ≤ Mg(x) for any x in a sufficiently small neighbourhood Ix0 . The expression

f(x) = o(g(x);x0) means that limx→x0(f(x)/g(x)) = 0.
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• The expression f(x)
x∼x0≃ g(x) means that limx→x0 f(x)/g(x) = 1. The expression

f(x)
x∼0∼

∑
n fnx

n means that f(x) −
∑m

n=0 fnx
n = o(xm; 0) for any natural number

m ∈ N.

• The function f : R+ → R is a function of rapid decay at the point x0 if f(x)
x→x0→ 0

faster than any power (x− x0)
m, i.e. f(x) = o((x− x0)

m;x0) for any natural number

m ∈ N.

The two derivations of the asymptotic behaviour of the function η(iτ2) are discussed

below. They are reviews of the discussion in ref. [131].

1. One can make use of the behaviour of the Dedekind η-function under the modular

group PSL2(Z). Under the generating S-transformation S(τ) = −1/τ , the Dedekind

η-function restricted to an imaginary argument τ = iτ2 transforms as

η
( i

τ2

)
=

√
τ2 η(iτ2). (A.1.17)

At the same time, for a pure imaginary argument the Dedekind η-function can be

written as η(it) = e−
πt
12
∏∞
n=1(1− e−2πnt), so one finds that

ln η(it) = −πt
12

+
∞∑
n=1

ln (1− e−2πnt) = −πt
12

+O(e−2πt; +∞). (A.1.18)

The magnitude of the subleading terms stems from the Taylor-Maclaurin expansion

ln (1 + x) = O(x; 0): one finds ln (1 − e−2πt) = O(e−2πt; +∞). So, combining the S-

transformation relation of eq. (A.1.17) and the expansion of eq. (A.1.18) for t = 1/τ2,

one finds

ln η(iτ2) = −1

2
ln τ2 −

π

12τ2
+O(e−2π/τ2 ; 0). (A.1.19)

This represents a proof for the τ2-expansion of the Dedekind η-function with imagi-

nary argument as η(iτ2)
τ2∼0+≃ τ

−1/2
2 e−π/12τ2 , and it also quantifies the magnitude of

the subleading terms. Such an asymptotic behaviour is a direct consequence of the

modular properties of the Dedekind η-function.

2. One can make use of tools from mathematical analysis. One can prove the following

theorem (details of the proof can be found in ref. [131]).

Theorem. Let the function g = g(x) be defined as

g(x) =

∞∑
m=1

f(mx), (A.1.20)

where f is a smooth function on the positive real line with the following properties:

• at the origin, f has the asymptotic development

f(x)
x∼0∼ b ln

1

x
+

∞∑
n=0

fnx
n; (A.1.21)
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• at infinity, f and all of its derivatives are of rapid decay.

Further, let the definite integral of f be

If =

∫ ∞

0
dx f(x). (A.1.22)

Then, the function g = g(x) at the origin has the asymptotic development

g(x)
x∼0∼

If
x

− b

2
ln

2π

x
+

∞∑
n=0

(−1)n
fnBn+1

n+ 1
xn. (A.1.23)

This theorem is enough to determine the asymptotic behaviour of the Dedekind η-

function. Let the function f be

f(x) = ln
(
1− e−x

)
.

This has the asymptotic expansionA.1 and the definite integral

f(x)
x∼0∼ lnx+

∞∑
n=1

Bn
n · n!

xn,

If = −π
2

6
.

So, one can apply the theorem with b = −1, f0 = 0, fn = Bn
n·n! for n ≥ 1, and write

g(x) =
∞∑
m=1

f(mx)
x∼0∼ −π

2

6x
+
1

2
ln

2π

x
+

∞∑
n=1

(−1)n
BnBn+1

n · (n+ 1)!
xn = −π

2

6x
− 1

2
ln

x

2π
+
x

24
.

In particular, there are no powers beyond x1 since all the even Bernoulli numbers

vanish beyond B2 = 1/6, with moreover B0 = 1 and B1 = −1/2. This can be used to

write

ln η(iτ2) = −πτ2
12

+
∞∑
m=1

ln (1− e−2πmτ2)
τ2∼0∼ − π

12τ2
− 1

2
ln τ2,

in agreement with the expansion of eq. (A.1.19).

A.1To see this, one can expand the derivative as

df

dx
(x) =

1

x

x

ex − 1
=

1

x
+

∞∑
n=0

Bn+1

(n+ 1)!
xn

and integrate it to

f(x; c) = lnx+

∞∑
n=0

Bn+1

(n+ 1)(n+ 1)!
xn+1 + c.

By requiring that f(1) = f(1; c), for instance, one finds c = 0.
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Jacobi θ3-function

Since the elliptic function ϑ3(z, τ) has an important role in the discussion of anti-D-branes,

below are recored further useful properties. The Jacobi elliptic function ϑ3 = ϑ3(z, τ) can

be defined as the infinite sum

ϑ3(z, τ) =
∞∑

n=−∞
eiπn

2τe2niz (A.1.24)

and it is a solution of the heat equation

1

4
iπ
∂2ϑ3
∂z2

(z, τ) +
∂ϑ3
∂τ

(z, τ) = 0. (A.1.25)

In this work, many calculations involve the Jacobi ϑ3-constant, defined as

ϑ3(τ) ≡ ϑ3(z = 0, τ). (A.1.26)

It is often needed to restrict the attention to the case in which the argument is purely

imaginary, namely τ = it, with t > 0. In this case, ϑ3(it) satisfies the functional equation

ϑ3(it
−1) = t

1
2ϑ3(it), (A.1.27)

which can be interpreted as a modular S-transformation. It is also possible to show the

asymptotic behaviours

ϑ3(it)
t∼0+≃ t−

1
2 , (A.1.28)

ϑ3(it)
t∼∞≃ 1. (A.1.29)

These can be seen to follow from the relationship of the Dedekind η-function with the Jacobi

θ3-function, in eq. (A.1.14b), in view of the expansions of eqs. (A.1.18, A.1.19).

A.2 Useful Special Functions

This appendix reviews basic properties of the special functions appearing in the discussion

of misaligned supersymmetry, i.e. Bessel functions and Bernoulli and Euler polynomials.

A.2.1 Bessel Functions

The notation and the conventions for the Bessel functions are mutuated from ref. [306].

Here a short summary is reported in order to facilitate the reading.

The Bessel function of the first kind Jν = Jν(z) is defined as a solution, along with the

Bessel functions of the second and third kind, of the differential equation

z2
d2w

dz2
+ z

dw

dz
+ (z2 − ν2) = 0.
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The function Jν(z) can be Taylor-expanded as

Jν(z) =
(z
2

)ν ∞∑
k=0

(−1)k
(z2
4

)k
k! Γ(k + ν + 1)

, (A.2.1)

whereas its asymptotic expansion as |z| ∼ ∞, if |arg(z)| < π, reads

Jν(z)
|z|∼∞
≃

[ 2

πz

] 1
2

[ ∞∑
k=0

(−1)k
(ν, 2k)

(2z)2k
cos θν(z)−

∞∑
k=0

(−1)k
(ν, 2k + 1)

(2z)2k+1
sin θν(z)

]
, (A.2.2)

where the angle has been defined θν(z) = z−πν/2−π/4 and the Hankel’s symbol has been

used (m,n) = Γ(m+ n+ 1/2)/[n! Γ(m− n+ 1/2)].

The modified Bessel function of the first kind Iν = Iν(z) is defined as a solution, along

with the modified Bessel function of the second kind, of the differential equation

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2) = 0.

The function Iν(z) can be Taylor-expanded as

Iν(z) =
(z
2

)ν ∞∑
k=0

(z2
4

)k
k! Γ(k + ν + 1)

, (A.2.3)

whereas its asymptotic expansion as |z| ∼ ∞, if |arg(z)| < π/2, reads

Iν(z)
|z|∼∞
≃ ez

(2πz)
1
2

[ ∞∑
k=0

(ν, 2k)

(2z)2k
−

∞∑
k=0

(ν, 2k + 1)

(2z)2k+1

]
, (A.2.4)

where the definition has been made µν = 4ν2.

The Bessel functions Jν(z) and Iν(z) are related to each other, if −π < arg(z) ≤ π/2,

by the transformation

Iν(z) = e−iπν/2Jν(iz). (A.2.5)

If π/2 < arg(z) ≤ π, this is replaced by Iν(z) = e3iπν/2Jν(iz).

A.2.2 Bernoulli and Euler Polynomials

It is useful to collect the relevant expressions used in the main text about Bernoulli and

Euler polynomials. The main guidance is ref. [306].

For a given real number x ∈ R, Bernoulli and Euler polynomials Bn = Bn(x) and

En = En(x), respectively, are defined as the coefficients appearing in the Taylor expansions

t ext

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, (A.2.6)

2 ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
. (A.2.7)
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For the variable 1− x, one finds

Bn(1− x) = (−1)nBn(x), (A.2.8)

En(1− x) = (−1)nEn(x). (A.2.9)

A simple equation relates them to each other for n > 0, i.e.

En−1(x) =
2n

n

[
Bn

(x+ 1

2

)
−Bn

(x
2

)]
. (A.2.10)

Bernoulli numbers are defined as Bn = Bn(0), whilst Euler numbers are En = 2nEn(1/2),

for all n ∈ N

A.3 Differential Forms and Cohomology

This section provides a brief account of the relevant operations on and between p-forms of

a real smooth manifold. The main references are ref. [307] for the theoretical background

and refs. [50, 308] for the more advanced formulae.

A.3.1 Basic Operations

A rank-(p, q) tensor T on a real smooth manifold of dimension n in the coordinate basis is

defined as the expression

T = T
µ1...µp

ν1...νq ∂µ1 ⊗ · · · ⊗ ∂µp ⊗ dxν
1 ⊗ · · · ⊗ dxνq .

A differential p-form Ap is a completely antisymmetric rank-(0, p) tensor defined as

Ap =
1

p!
Aµ1...µp dx

µ1 ∧ · · · ∧ dxµp ,

where the basis elements are dxµ1 ∧ · · · ∧dxµp = dx[µ1 ⊗· · ·⊗dxµp], the antisymmetrisation

being defined including the division by p!.

Within this general framework, some standard and very common operations can easily

be defined on spacetimes of arbitrary curvature.

• Given a p-form Ap and a q-form Bq, the wedge product Ap ∧Bq of Ap and Bq is the

(p+ q)-form

Ap ∧Bq =
1

p! q!
Aµ1...µpBµp+1...µp+q dx

µ1 ∧ · · · ∧ dxµp ∧ dxν1 ∧ · · · ∧ dxνq ,

which means its components are defined as

(A ∧B)µ1...µp+q =
(p+ q)!

p! q!
A[µ1...µpBµp+1...µp+q ]. (A.3.1)

The wedge product turns out to satisfy the condition

Ap ∧Bq = (−1)pq Bq ∧Ap.
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• Given a p-form Ap, its exterior derivative dAp is a (p+ 1)-form defined as

dAp =
1

p!
∂µ1Aµ2...µp+1 dx

µ1 ∧ · · · ∧ dxµp+1 ,

i.e. whose components are

(dA)µ1...µp+1 = (p+ 1) ∂[µ1Aµ2...µp+1]. (A.3.2)

Notably, even if the manifold is curved, the Riemann-tensor factors turn out to cancel

out and thus we consider only partial derivatives. Moreover, for any p-form Ap one

has

d(dAp) = 0

and, given a q-form Bq, the property holds

d(Ap ∧Bq) = dAp ∧Bq + (−1)pAp ∧ dBq.

• The Hodge duality operator ∗ is a map of p-forms into (n − p)-forms which acts on

the basis as

∗(dxµ1 ∧· · ·∧dxµp) =
1

(n− p)!
(det g)

1
2 gµ1ν1 . . . gµpνp εν1...νpνp+1...νn dx

νp+1 ∧· · ·∧dxνn .

where det g is the metric determinant and εµ1...µn is the Levi-Civita symbol. Therefore,

given a p-form Ap, its Hodge dual ∗Ap is an (n− p)-form

∗Ap =
1

p!(n− p)!
(det g)

1
2 gµ1ν1 . . . gµpνp εν1...νpνp+1...νn Aµ1...µp dx

νp+1 ∧ · · · ∧ dxνn

whose components readA.2

(∗A)µ1...µn−p =
1

p!
(det g)

1
2 gν1ρ1 . . . gνpρp ερ1...ρpµ1...µn−p Aν1...νp . (A.3.3)

A double application of the Hodge star operator gives

∗ ∗Ap = (−1)s+p(n−p)Ap,

where s is the number of negative eigenvalues in the metric.

Stokes’ theorem states that, given a manifold M with boundary ∂M , the volume integral

of an (n− 1)-form is such that ∫
M

dAn−1 =

∫
∂M

An−1.

A.2In the string theory literature, it is common to find the definition of Hodge dual

(∗′A)µ1...µn−p =
1

p!
(det g)

1
2 gν1ρ1 . . . gνpρp εµ1...µn−pρ1...ρp Aν1...νp = (−1)p(n−p) (∗A)µ1...µp .
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The Levi-Civita symbol εµ1...µn , normalised as ε1...n = +1, is a tensor density of weight +1

and the Levi-Civita tensor is defined as

ϵµ1...µp = (det g)
1
2 εµ1...µn .

Similarly, one can define the symbol εµ1...µn ≡ (−1)s εµ1...µn and

ϵµ1...µp = (det g)−
1
2 εµ1...µn .

Importantly, the identity turns out to hold true

ϵµ1...µpρp+1...ρn ϵν1...νpρp+1...ρn = (−1)s p! (n− p)! δ
µ1...µp
ν1...νp ,

where the definition has been made

δ
µ1...µp
ν1...νp = δ

[µ1
[ν1

. . . δ
µp]
νp]
.

Remarkably, for any p-form Ap one has the identity

Aµ1...µp = δ
ν1...νp
µ1...µpAν1...νp .

Also, it is possible to write the volume element voln as

voln =
1

n!
(det g)

1
2 εµ1...µn dx

µ1 ∧ · · · ∧ dxµn =
1

n!
ϵµ1...µn dx

µ1 ∧ · · · ∧ dxµn

as one notice that we may write dx0 ∧ · · · ∧ dxn = εµ1...µn dx
µ1 ∧ · · · ∧ dxµn/n!.

The Hodge operator ∗ allows one to define an inner product on the space of real forms.

• Given two p-forms Ap and Bp, it is possibe to define the inner product (Ap, Bp) as

(Ap, Bp) =

∫
Ap ∧ ∗Bp,

which is symmetric, i.e. (Ap, Bp) = (Bp, Ap), and which can be written explicitly as

(Ap, Bp) =

∫
Ap ∧ ∗Bp =

1

p!

∫
dnx (det g)

1
2 Aµ1...µpB

µ1...µp . (A.3.4)

There are two more operators defined on differential forms that are used quite often.

• The adjoint d† of the exterior derivative operator is defined as the operator such that,

given a p-form Ap and a (p − 1)-form Bp−1, satisfies the condition (Ap,dBp−1) =

(d†Ap, Bp−1). Given a p-form Ap, one can show that

d† = (−1)n(p−1)+s+1 ∗ d ∗

and that

d†Ap = − 1

(p− 1)!
∇µAµµ1...µp−1 dx

µ1 ∧ · · · ∧ dxµp−1 ,

i.e., in terms of components,

(d†A)µ1...µp−1 = −∇µAµµ1...µp−1 .

• The Hodge-de Rham operator is defined as

∆ = dd† + d†d

and, given a p-form Ap, in terms of components one has

(∆A)µ1...µp = −∇µ∇µAµ1...µp − pRµ[µ1A
µ
µ2...µp]

− 1

2
p(p− 1)R[µ1ν1|µνA

µν
|µ3...µp].
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A.3.2 Cohomology on Smooth Manifolds

Given a smooth manifold M , let Ωp(M) denote the space of p-forms on the manifold. A

p-form ωp is closed if its exterior derivative vanishes, i.e. if dωp = 0, and Zp is defined as

the space of closed p-forms, i.e.

Zp = {ωp ∈ Ωp : dωp = 0}.

A p-form χp is exact if there exists a (p − 1)-form βp−1 such that χp = dβp−1 and Bp is

defined as the space of exact forms, i.e.

Bp = {χp ∈ Ωp : χp = dβp−1, βp−1 ∈ Ωp−1(M)}.

The p-th de Rham cohomology group Γp is defined as the quotient space

Γp = Zp/Bp.

Given a closed p-form ωp, the cohomology class [ωp] is defined as

[ωp] ∈ Γp

via the equivalence relation ωp = ωp + dβp−1 and ωp is called a representative of the

cohomology class. Equivalent definitions and relations can be estabilished with respect to

the adjoint exterior derivative d† instead of the exterior derivative d. This gives co-exact

forms.

A p-form ωp is harmonic if it is annihilated by the Hodge-de Rham operator, i.e. if

∆ωp = 0.

Because the inner product is positive definite, the p-form ωp is harmonic if and only if it is

both closed and co-closed, i.e. if it is such that dωp = 0 as well as d†ωp = 0. The space of

harmonic p-forms is denoted as Hp.

LetM be a closed compact Riemannian manifold. Then each p-form ωp admits a unique

decomposition into the sum of an harmonic p-form αp, an exact p-form dβp−1 and a co-exact

p-form d†γp+1, i.e.

ωp = αp + dβp−1 + d†γp+1.

Such an expression is called the Hodge decomposition. As a corollary, a closed p-form ωp
can always be written in terms of an harmonic p-form αp and an exact p-form dβp−1 as

ωp = αp + dβp−1

and similarly for co-closed p-forms. In fact, the cohomology group Γp and the space of

harmonic p-forms Hp are isomorphic, i.e.

Γp ≃ Hp.

In other words, each cohomology class Γp contains a unique harmonic representative αp in

the space Hp.
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A p-form ωp is harmonic if and only if its Hodge dual ∗ωp is harmonic. This relationship

is known as Poincaré duality. In fact, on an n-dimensional manifold, the cohomology

classes Γp and Γn−p are isomorphic. The Betti numbers bp are the dimensions of the p-th

cohomology group, i.e.

bp = dimΓp.

So, on a closed compact oriented n-dimensional manifold, the Betti numbers satisfy the

conditions

bp = bn−p.

The Euler characteristic of a manifold is the number χ defined as

χ =
n∑
p=0

(−1)p bp.

A.3.3 Complex, Kähler and Calabi-Yau Manifolds

This purely mathematical subsection is just a summary of the results of refs. [50, 51] and

it just reports the fundamental definitions and theorems which allow to study complex,

Hermitian, Kähler and finally Calabi-Yau manifolds.

As concerns notation, from now on real coordinates are denoted by xm, with m =

1, 2, . . . , 2n, and complex coordinates are written as zα, with α = 1, 2, . . . , n. An (r, s)-form

Ar,s in the complex-manifold formalism is defined as

Ar,s =
1

r!s!
Aα1...αrβ1...βs

dzα1 ∧ . . . zαr ∧ dzβ1 ∧ · · · ∧ dzβs .

Such a convention emerges naturally by expressing the p-form Ap in complex notation in

terms of the (r, s)-form Ar,s, with p = r + s.

A.3.3.1 Complex Manifolds

An m-dimensional almost-complex manifold is a manifold which admits a globally defined

rank-(1, 1) tensor field J , called an almost-complex structure, such that

J k
m J n

k = −δ n
m .

No mention of complex conjugation has been made, and the tensor J is necessarily real. It

can be shown that an almost-complex manifold must have even dimension m = 2n.

An n-dimensional complex manifold is a 2n-dimensional differentiable manifold with an

atlas of charts to open subsets U of Cn such that the transition functions are holomorphic. It

turns out that in a complex manifold, for any open neighbourhood with complex coordinates

zα one can define a rank-(1, 1) tensor J β
α such that

J β
α

∂

∂zβ
= +i

∂

∂zα
, J β

α

∂

∂zβ
= −i

∂

∂zα
.

In terms of components, this tensor reads J β
α = i δβα, J

β
α = −iδβα and J β

α = J β
α = 0. In

other words, this tensor J β
α is a complex structure.
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It can be shown that complex manifolds are almost-complex manifolds. Because of the

definition of the complex structure J β
α in complex manifolds, it is possible to have globally

well-defined complex coordinates. This is not the case for almost-complex manifolds because

the almost-complex structure must be expressed at each single point.

A.3.3.2 Hermitian Manifolds

Let M be an n-dimensional complex manifold with complex structure J n
m , and let gmn be

a Riemannian metric on M . The metric gmn is a Hermitian metric if it is of the form

ds2 = gαβ dz
α dzβ,

i.e. if its diagonal components vanish, namely gαβ = gαβ = 0. It can be shown that any

complex manifold admits a Hermitian metric.

Given a Hermitian manifold with metric gmn, the fundamental or Hermitian 2-form ωmn
is defined as

ωmn = J l
m gln.

Equivalently, it is possible to write ω2 = ωmn dx
m ∧ dxn/2. Importantly, the components

can be written as ωαβ = igαβ.

On a Hermitian manifold, a connection that is compatible with the metric gmn and the

complex structure J k
m , i.e. such that∇kgmn = 0 and∇mJ

l
k = 0, is called a Hermitian met-

ric. Hermitian metrics are not unique, and only a further constraint can identify a unique

metric. It can be shown that on a Hermitian manifold there exists a unique Hermitian con-

nection, called the Chern connection, such that, for any holomorphic and antiholomorphic

vectors V α and Wα, it satisfies the properties

∇αV
β = ∂αV

β,

∇αW
β = ∂αW

β.

It turns out that the only non-vanishing components in the Chern connection are those with

pure indices, with Γ γ
αβ = gγδ ∂αgβδ and Γ γ

αβ
= gγδ ∂αgβδ, while the only non-vanishing

components in the Riemann tensor are

Rα
βγδ

= −∂δΓ
α

γβ ,

Rα
βγδ

= −∂δΓ α
γβ

,

with the convention Rklmn = ∂mΓ
k

nl − ∂nΓ
k

ml +Γ k
mr Γ r

nl −Γ k
nr Γ r

ml . Of course, the Ricci

tensor is defined as Rmn = Rkmkn.

Let M be a Hermitian manifold with complex structure J k
m and metric gmn, with a

Chern connection. The Ricci form is defined as

r2 =
1

4
Rmnkl J

n
m dxk ∧ dxl.

Then, it can be shown that the Ricci form is

r2 = −i∂∂ ln (det g)
1
2 ,
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where ∂ and ∂ are exterior derivatives which act only on holomorphic and antiholomorphic

coordinates, respectively. In particular, ∂ and ∂ are called Dolbeault operators and satisfy

the condition d = ∂ + ∂. Further, they are such that ∂∂ = −d(∂ − ∂)/2. It can be shown

that the Ricci form r2 is not exact. However, it is closed.

The first Chern class c1 is the cohomology class of the Ricci form, namely

c1 = [r2/2π].

A.3.3.3 Kähler Manifolds

A Kähler manifold is a Hermitian manifold whose Hermitian form ωmn is closed, namely

dω1,1 = 0.

In a Kähler manifold, the metric gmn is called the Kähler metric and the fundamental form

ωmn is called the Kähler form.

It can be shown that, for some (p−1, q−1)-form χ, any closed (p, q)-form can be written

locally as

ωp,q = ∂∂χp−1,q−1.

In a Kähler manifold, it can be shown that, for some scalar function K = K(z, z) called

the Kähler potential, the Kähler metric can be written locally as

gαβ = ∂α∂βK.

On a Kähler manifold, it can be shown that the Chern connection is the Levi-Civita

connection. Moreover, it can be shown that, in a Kähler manifold, the Ricci tensor Rmn
and the Ricci form rmn components are such that (with all the other components being

vanishing)

Rαβ = −irαβ.

Curvature of Kähler Manifolds and Parallel Transport

Essentially, the holonomy group HM of a manifold M is the group of the rotations a vector

V m undergoes under parallel transport on a closed path γ. In practice, one considers a closed

path γ : [t0, t
′] → M on the 2n-dimensional manifold M , such that xm(t0) = xm(t′) = p.

A vector V m = V m(x) is parallel-transported along the path γ if it satisfies the equation,

with the corresponding initial condition,

dxl

ds
∇lV

m = 0, V m(t0) = V m,

where s is the proper length parameter. Because it is a linear first-order differential equation,

the solution V ′m = V m(t′) at the final point can be written as as

V ′m = SmnV
n.

Because parallel transport preserves vector lengths, in an orthonormal basis ea = ema ∂m at

the point p, i.e. a basis with metric gab = δab, the tensor S
a
b is just an orthogonal matrix of
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the group O(2n). The set of all such tensors is the holonomy group HM , which is therefore

a subgroup of O(2n), i.e.

HM ⊆ O(2n).

Notably, the holonomy group HK of an n-dimensional Kähler manifold K is a subgroup of

the group U(n) ⊂ O(2n), i.e.

HK ⊆ U(n).

This is a consequence of the form of the connection: because the connection does not have

mixed complex indices, e.g. a vector with a holomorphic index vα is parallel transported

into a vector v′α with a holomorphic index too. For instance, the orthonormal basis element

eA = eαA∂α is rotated to e′A = S B
A eB, therefore the element S B

A is a unitary matrix.

Further, one can see that a Ricci-flat Kähler manifold K̃ admits a holonomy group HK̃

which is contained in SU(n) ⊂ U(n), i.e.

HK̃ ⊆ SU(n).

To see this, one can consider the parallel transport of a vector V m along an infinitesimal

closed path whose edges are parallel to the directions ∂m and ∂n. The definition of the

Riemann tensor itself allows one to write the transformed vector as

V ′k = V k + δamnRklmnV
l.

Of course, the elements T kl = δkl + δamnRklmn are the elements of the holonomy group

U(n) which are infinitesimally close to the identity. In a Kähler manifold, an holonomy

tranformation maps e.g. a tensor with holomorphic components into a tensor with holo-

morphic components, and, moreover, the Riemann tensor Rklmn is pure in the indices (k, l).

Because of the isomorphism U(n) ≃ SU(n)×U(1)/Zn, one can see that the transformation

U(1), that which does not mix vector indices, is proportional to the trace δamnRkkmn, i.e.

δamnRγγmn = −4δaαβRαβ. This means that a Ricci-flat metric forbids the U(1)-part of

the holonomy transformations, thus reducing the holonomy group to SU(n).

Cohomology on Kähler Manifolds

For a complex manifold M , let Ωp,q(M) be the space of (p, q)-forms on the manifold. The

relevant operators to define cohomology groups and harmonic forms are the Dolbeault

operators ∂ and ∂ and it is possible to define the same spaces as above. In a complex as

well as in a Hermitian manifold the Dolbeault and de Rham cohomology classes turn out

to be different, while they do coincide in a Kähler manifold.

It can be shown that in a Kähler manifold the exterior derivative d and the Dolbeault

operators ∂ and ∂ are such that

∂∂† + ∂†∂ = ∂∂
†
+ ∂

†
∂ =

1

2
(dd† + d†d).

This means that in a Kähler manifold the Dolbeault and de Rham cohomology classes are

equivalent.
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In a Kähler manifold, denoting as Hr the space of harmonic r-forms with respect to d

and as Hr,s

∂
the spaces of harmonic (r, s)-forms with respect to ∂, the relationship can be

shown to hold

Hr =

r⊕
p=0

Hp,r−p
∂

.

The Hodge numbers hp,q are defined as the dimensions of the (p, q)-th cohomology groups

Hr,s

∂
, i.e.

hr,s = dimHr,s

∂
.

One can see that in a Kähler manifold, Betti and Hodge numbers satisfy the conditions

br =
r∑
p=0

hp,r−p.

It can be shown that in an n-dimensional complex manifold the Hodge numbers satisfy

the identities

hp,q = hq,p,

hp,q = hn−p,n−q.

One can shown that in a Kähler manifold the Kähler form is harmonic. This means that

in a Kähler manifold, one has h1,1 > 0 and hence b2 > 0. More generally, it can be shown

that, in an n-dimensional compact closed Kähler manifold, the Hodge number satisfy the

condition hp,p > 0 for p ≤ m, where n = 2m, and hence the Betti numbers satisfy the

conditions b2p > 0.

A.3.3.4 Calabi-Yau Manifolds

Calabi-Yau manifolds can be defined in a number of equivalent ways, all of which relying

on Yau’s theorem.

To start, it is possible to show that in a complex manifold, under a smooth variation

of the metric gmn as g′mn = gmn + δgmn, the first Chern class is invariant. Further, it is

possible to prove that, if a Kähler manifold admits a Ricci-flat metric, then its first Chern

class vanishes, i.e. c1 = 0.

Now, a necessary condition for a Kähler manifold to admit a Ricci-flat metric is that

it has a vanishing first Chern class c1. Calabi’s conjecture states that, in turn, if the first

Chern class of a Kähler manifold is vanishing, then it admits a Ricci-flat metric. Basically,

the proof of this conjecture is the main result of Yau’s theorem.

More precisely, Yau’s theorem states the following: given a Kähler manifold M with

metric gmn and Kähler form ωmn, let rmn be any representative of the first Chern class;

then, there exists a unique metric g′mn on the manifold M with Kähler form ω′
mn in the

same cohomology class as ωmn whose Ricci form is rmn. A corollary is as follows: let M be

a Kähler manifold with metric gmn and Kähler form ωmn with vanishing first Chern class

c1 = 0; then there exists a unique Ricci-flat metric g′mn with a Kähler form ω′
mn in the same

cohomology class as ωmn.
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A Calabi-Yau manifold is defined as a Kähler manifold with vanishing first Chern class.

As a consequence, it can be proven that an n-dimensional Calabi-Yau manifold is a Kähler

manifold with the following equivalent properties:

• its first Chern class is vanishing, i.e. c1 = 0;

• it admits a Ricci-flat metric;

• it admits a metric whose holonomy group is SU(n);

• it admits a unique holomorphic harmonic (n, 0)-form Ωn,0;

• it admits a pair of globally well-defined covariantly constant spinors.

Further interesting properties characterising a Calabi-Yau manifold are as follows.

• A Calabi-Yau manifold with nonzero Euler number χ has h1,0 = 0.

• An n-dimensional Calabi-Yau manifold has hn,0 = 1.

• An n-dimensional Calabi-Yau manifold has hp,0 = hn−p,0.

A.4 Supersymmetry Conventions

This subsection summarises the conventions employed in the main text to discuss N4 = 1

supersymmetry, based on ref. [85].

A.4.1 Essential Notions

Supersymmetry is conveniently described in superspace, i.e. an extension of the usual 4-

dimensional spacetime, with coordinates xµ, with µ = 0, 1, 2, 3, spanned by two more anti-

commuting coordinates θα and θα̇, with α, α̇ = 1, 2 representing chiral spinor indices. Left-

and right-handed spinors are denoted as ξα and χα̇, respectively, with conjugation such that

(ξα)
† = ξα̇; spinor indices are raised and lowered by the Levi-Civita symbol εαβ and εαβ,

normalised as ε21 = ε12 = 1, as ξα = εαβξ
β and ξα = εαβξβ. Spinor contractions are defined

as ξχ = ξαχα and ξχ = ξα̇χ
α̇. The Pauli-matrix 4-vectors are defined as σµαα̇ = (12, σ

i) and

σµ α̇α = (12,−σi). Superfields are fields defined in the superspace.

A.4.2 Chiral Superfields

A chiral superfield Φ is defined as a superfield solving the equation Dα̇Φ = 0, where Dα =

∂α − i(σµθ)α∂µ is the supersymmetric chiral-covariant derivative. It contains a complex

scalar φ, a Weyl spinor ψ and an auxiliary scalar F and can be expanded in the superspace

coordinates {xµ, θα, θα̇} as

Φ = φ(y) +
√
2 (θψ(y)) + (θθ)F (y), (A.4.1)
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with shifted coordinate yµ = xµ + i (θσµθ). The supersymmetry variations are

δϵφ =
√
2(ϵψ), (A.4.2a)

δϵψα = −i
√
2 (σµϵ)α ∂µφ+

√
2 ϵαF, (A.4.2b)

δϵF = −i
√
2 (ϵ σµ∂µψ). (A.4.2c)

Due to Lorentz invariance, only scalars can acquire a non-zero vacuum expectation value.

Therefore, the only possibility to spontaneously break supersymmetry is if the auxiliary

field is non-zero, giving δϵ⟨ψα⟩ =
√
2 ϵα⟨F ⟩.

A.4.3 Vector Superfields

A vector superfield V is defined as a general real scalar superfield V , i.e. a scalar superfield

such that V = V . Expanding in the superspace, such a field can be generally written as

V (x, θ, θ) = a+ (θξ) + (θξ) + (θθ) b+ (θθ) b+ (θσµθ)Aµ

+ (θθ)
[
θ
(
λ− i

2
σµ∂µξ

)]
+ (θθ)

[
θ
(
λ− i

2
σµ∂µξ

)]
+

1

2
(θθ) (θθ)

[
D +

1

2
ηµν∂µ∂νa

]
,

where a is a real scalar, b is a complex scalar, λ and χ are Weyl spinors and Aµ is a vector.

Component by component, the supersymmetry variations read

δϵa = (ϵξ) + (ϵξ), (A.4.3a)

δϵξα = 2ϵαb− (σµϵ)α(Aµ + i∂µa), (A.4.3b)

δϵb = (ϵλ)− i(ϵ σµ∂µξ), (A.4.3c)

δϵAµ = i(ϵ∂µξ)− i(ϵ∂µξ) + (ϵσµλ)− (ϵ σµλ), (A.4.3d)

δϵλ = ϵαD + i(σµσνϵ)α∂[µAν], (A.4.3e)

δϵD = −i(ϵσµ∂µλ)− i(ϵ σµ∂µλ). (A.4.3f)

Given an arbitrary chiral superfield Ω = (ϕΩ, ψΩ, FΩ), then the generalised gauge transfor-

mation

V → V − i(Ω− Ω)

gives a new vector superfield. In terms of components, the transformations read

a→ a− i(ϕΩ − ϕΩ),

ξ → ξ − i
√
2ψΩ,

b→ b− iFΩ,

Aµ → Aµ + ∂µ(ϕΩ + ϕΩ),

λ→ λ,

D → D.
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A.4. Supersymmetry Conventions

So the only non-redundant degrees of freedom are the spinor λ, the vector Aµ, that under-

goes a general gauge transformation, and the scalar D. It is therefore possible to fix the

so-called WZ-gauge

V (x, θ, θ) = (θσµθ)Aµ + (θθ)(θλ) + (θθ)(θλ) +
1

2
(θθ)(θθ)D.

A supersymmetry transformation can be shown to change the gauge, but any vector super-

field can be brought back to WZ-gauge by a subsequent supergauge transformation.

It is possible to show that the physical degrees of freedom of a vector superfield can be

described by means of a generalised field-strength tensor, namely the chiral superfield

Wα = −1

4
Dα̇D

α̇DαV,

which can be expanded in superspace as

Wα = λα(y) +
[
δβαD(y) +

i

2
(σµσν) β

α Fµν(y)
]
θβ + i(θθ) [σµ∂µλ(y)]α.
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B DIMENSIONAL REDUCTIONS

IN WARPED SPACETIMES

This section outlines the dimensional reduction of closed- and open-string sectors in warped

compactifications.B.1 It is meant to set the notation for the main text and to provide a

review of how the scaling factors are obtained in warped dimensional reductions.

It is useful to specify that a relationship a ∼ b means that the two terms a and b are

roughly of the same order of magnitude, ignoring constant order-1 factors, whereas the

relationship a ≃ b means that the two terms are roughly the same. One should notice that

the notation f(x)
x∼x0≃ g(x) indicates the fact that the two functions f and g are similar for

x ≃ x0 (this lightens the notation, rather than f(x)
x≃x0≃ g(x), and it is usually employed

at x ∼ 0 or x ∼ ∞, avoiding ambiguities).

B.1 Type IIB Closed-String Sector

The generic bosonic action for the type IIB closed-string sector in the 10-dimensional Ein-

stein frame is discussed in subection 2.2.1, and can be read in eq. (2.2.2). This is the

starting point for the following discussion on the dimensional reduction of the closed-string

sector action in warped Calabi-Yau orientifold compactifications.

In a Calabi-Yau orientifold compactification with non-zero background fluxes, the field

equations imply a non-trivial warp factor [53, 56]. Following refs. [227, 229], the volume-

controlling real Kähler modulus c = c(x) appears as a shift in the warp factor eA = eA(y),

leading to the definition of the generalised warp factor

e−4A[c(x),y] = e−4A(y) + c(x),

with the 10-dimensional Einstein-frame metric taking the form

ds210 = e2A[c] ğµν dx
µdxν + e−2A[c] ğmn dy

mdyn.

As discussed by ref. [229], one can Weyl-rescale this to the 4-dimensional Einstein frame,

while also introducing a compensator field b = b(y) that is necessary to solve the Einstein

equations, with the full metric reading

ds210 = γ
3
2 e2Ω e2A[c] (gµν dx

µdxν + 2∂µc ∂mbdx
µdym) + e−2A[c] gmn dy

mdyn. (B.1.1)

B.1See also ref. [309] for a recent discussion of the scaling properties of the closed- and open-string effective

theories in string compactifications.
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B.1. Type IIB Closed-String Sector

In particular, in the Weyl rescaling one has the Kähler modulus-dependent factor

e2Ω =

∫
Y6

d6y
√
g6∫

Y6

d6y
√
g6 [e

−4A + c]

and for generality also an arbitrary constant γ3/2 has been introduced, which in this case

will be chosen as γ = ⟨c⟩ [55].B.2 The warp factor has the following behaviours:

• in the infrared region of the throat τ6, the background warp factor is much larger than

the volume modulus, that is e−4A(y ∈ τ6) ≫ ⟨c⟩ ≫ 1 so that

e−⟨4A[c]⟩ ≃ e−4A, y ∈ τ6;

• in the bulk region of the compact space, the background warp factor is negligible, that

is e−4A(y ∈ Y6\τ6) ≪ c, so

e−⟨4A[c]⟩ ≃ ⟨c⟩, y ∈ Y6\τ6.

The dimensional reduction of the closed-string sector action, to find the 4-dimensional

low-energy effective theory corresponding to the flux compactification, is now reviewed for

the most relevant degrees of freedom. Following the very definition of the 4-dimensional

Einstein frame, the type IIB Einstein-Hilbert action contained in eq. (2.2.2) becomes

SIIB
EH =

1

2κ̂210

∫
X1,9

d10x
√
−ĝ10 R̂10 =

1

2κ24

∫
X1,3

d4x
√
−g4 R4 + δSIIB

EH ,

with the 4-dimensional gravitational coupling defined as

2κ24 =
2κ̂210

γ
3
2 l6sℓ(0)

=
g2s l

2
s

2πγ
3
2 ℓ(0)

(B.1.2)

and the term δSIIB
EH standing for the internal curvature and other derivative terms, emerging

from the remainder of the Ricci scalar, which provide contributions to the kinetic terms and

the scalar potential for the geometric moduli. In particular, the Kähler-modulus kinetic

term is reproduced by means of the Kähler potential [229]

κ24K̂(ρ, ρ) = −3 ln
[
−i(ρ− ρ) + 2c0

]
,

with c0 = ℓw/ℓ(0), where the complexified Kähler modulus ρ is defined as

ρ(x) = χ(x) + i c(x),

with χ being the 4-form axion. The description of the other closed-string sector fields follows

with specific features determined by warping effects [53,266].

B.2 Notice that the canonically normalised masses in Planck units are independent of constant Weyl rescal-

ings and most references work with γ = 1.
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Appendix B. Dimensional Reductions in Warped Spacetimes

• For the axio-dilaton τ , it is immediate to check that the kinetic term contained in eq.

(2.2.2) is

Saxio-dilaton =
1

2κ̂210

∫
X1,9

d10x
√
−ĝ10

[
− 1

2 (Im τ)2
ĝMN∂Mτ∂Nτ

]
=

1

2κ24

∫
X1,3

d4x
√
−g4

[
− 1

2 (Im τ)2
gµν ∂µτ∂ντ

]
,

which is reproduced by the usual Kähler potential κ24K̂(τ, τ) = −ln [−i(τ − τ)].

• For the complex-structure moduli uα, with α = 1, . . . , h2,1− , the dimensional reduction

is more involved. In particular, one needs the quantities

ωw =

∫
Y6

e−4AΩ ∧ Ω,

K̂αβ = − 1

ωw

∫
Y6

e−4A χα ∧ χβ,

which provide the warped version of the complex-structure moduli Kähler potential,

κ24K̂(u, u) = −ln [−iωw], and the explicit Kähler metric [53,310], where Ω and χα are

the unwarped harmonic 3-form and (2, 1)-form basis, respectively.

To have a complete supergravity formulation, one must also match the scalar potential

that arises from the dimensional reduction. The following calculation only captures the

axio-dilaton and complex-structure moduli potential as it neglects the details of the coupling

with the warp factor, the volume modulus and the compensator field. It is just meant to

argue the emergence of the GVW-superpotential [311] and to fix the overall constants. The

functional dependence of the scalar potential is set by the 3-form term as the remaining

terms from the Einstein-Hilbert and 5-form actions can be combined with the 3-form action,

cancelling the contribution from imaginary self-dual fluxes G−
3 and leaving pure imaginary

anti-self-dual fluxes G+
3 [53, 56], with

G±
3 =

1

2
(1± i∗6)G3.

Now, refs. [227, 229] show that if the warp factor e−4A solves the field equations, so does

the shifted warp factor e−4A + c. Assuming then for simplicity the background value for

the volume ⟨c⟩, one can express this 10-dimensional potential in terms of the 4-dimensional

Einstein-frame metric, i.e.

S3-form =
1

2κ̂210

∫
X1,9

d10x
√

−ĝ10
[
− 1

12 Im τ
G+

3 ·̂G+
3

]
=

γ3

2κ̂210

∫
X1,3

d4x
√
−g4

∫
Y6

d6y
√
g6

[
−e⟨4Ω⟩+⟨4A[c]⟩

12 Im τ
G+

3 ·G+
3

]
.

The most interesting case to consider is the one where integrations are dominated by the

throat region τ6, in which e−⟨4A[c]⟩ ≃ e−4A. Because the GKP field equations require the
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B.1. Type IIB Closed-String Sector

imaginary anti-self-dual 3-forms e4AG+
3 to be harmonic [53, 56], without loss of generality

one can focus on the (3, 0)-component and expand it as

e4AG(3,0) =
1

ωw
Ω

∫
τ6

G3 ∧ Ω,

so that the action can be written as

S3-form =
γ3

2κ̂210

∫
X1,3

d4x
√
−g4

∫
τ6

[
− i

2

e⟨4Ω⟩−4A

Im τ ω2
w

Ω ∧ Ω

[∫
τ6

G3 ∧ Ω

][∫
τ6

G3 ∧ Ω

]]
.

The integral over the internal space is now easily seen to be

λ ≃
∫
Y6

e−4AΩ ∧ Ω = ωw ≃ ωw
ℓw
ℓ(0)

e⟨2Ω⟩, (B.1.3)

where an approximate unit factor has been introduced in the final relation, for convenience

in the comparison with the supergravity action below. At the end of the day, the 3-form

action is (the numerical factor can be determined by properly taking into account the axio-

dilaton and 5-form contributions to the scalar potential [53])

S3-form =
γ3

2κ̂210

∫
X1,3

d4x
√
−g4

[
− i e⟨6Ω⟩

Im τ ωw

ℓw
ℓ(0)

[∫
Y6

G3 ∧ Ω

][∫
Y6

G3 ∧ Ω

]]

=
1

2κ44

g2s
4π

∫
X1,3

d4x
√
−g4

[
− i e⟨6Ω⟩

Im τ ωw

ℓw
[ℓ(0)]3

1

l4s

[∫
Y6

G3 ∧ Ω

][∫
Y6

G3 ∧ Ω

]]
.

The last step takes into account the definition of the 4-dimensional Planck units while keep-

ing the bulk integrals scaled with the appropriate string length factors (recalling the scalings

G3 ∼ l2s and Ω ∼ 1). This result gives a way to understand how to insert the volume and

warped-volume factors in the effective supergravity formulation whereby the axio-dilaton

scalar potential from the Kähler and superpotential of eqs. (4.2.5a, 4.2.5b) reproduce it ex-

actly. The complex-structure moduli scalar potential is found in the dimensional reduction

by considering the (1, 2)-components in the 3-form flux. On the other hand, the Kähler

modulus ρ is a flat direction since its F-term potential contribution cancels against the

negative-definite potential term corresponding to the squared gravitino mass.

A similar analysis can be done with the opposite approximation that bulk integrals

dominate over throat integrals, which leads to the unwarped limit. The calculation follows

analogously but it is easier since the warping in the integrations is irrelevant, i.e. ℓw ≃ ℓ(0)
and ωw ≃ ω(0) =

∫
Y6

Ω∧Ω. In more detail, one may start from the 10-dimensional potential

written above noticing the identities e4A[c] = 1/c = e−4u and e2Ω = 1/c = e−4u, and reduce

it along the same lines, with the 3-form flux G+
3 being harmonic. Alternatively, formally

this limit can be found by setting e4A = 1 in all the final integrated expressions, so that

ℓw = ℓ(0) and ωw = ω(0). One obtains the famous results of refs. [56, 236]. The warped

expressions are always kept in the main text for the sake of generality.
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Appendix B. Dimensional Reductions in Warped Spacetimes

B.2 D3-, Anti-D3- and D7-Branes

The generic bosonic action for Dp-branes in the 10-dimensional Einstein frame is discussed

in subection 2.3.2, and can be read in the DBI- and CS-actions in eqs. (2.3.2) and (2.3.3),

respectively. This is the starting point for the following discussion on the dimensional

reduction of D3, anti-D3- and D7-brane massless actions in warped Calabi-Yau orientifold

compactifications.

In the probe approximation, an explicit dimensional reduction of the D3- and anti-

D3-brane action has been performed in refs. [80, 149, 163, 231, 232], while the study of the

D7-brane action can be found in refs. [235,236,253]. Most references work with a metric of

the form

ds210 = e2A[c] ğµν dx
µdxν + e−2A[c] ğmn dy

mdyn.

In this subsubsection the results are adapted directly from such references. For a 4-

dimensional theory, the worldvolume degrees of freedom must be reduced, and they are

sensitive to the details of the wrapped (p− 3)-cycle. It is also convenient to combine pairs

of real scalars into single complex scalars as ϕa = ϕṁ=2a+2 + iϕṁ=2a+3, and similarly for

the modulini.

• For D3- and anti-D3-branes, the dimensional reduction proceeds in the same way

except for the different interference between the DBI- and CS-actions due to the

different RR-charge. All the terms evaluated at the brane location carry a symbol ’0’.

First of all one finds the cosmological constant contribution

S
D3q
Λ = −(1− q)τD3

∫
d4x

√
−ğ4 e4A0[c],

which explains the anti-D3-brane uplift energy.

Further, the pure scalar kinetic and mass terms turn out to be (there are also bilinear

ϕaϕb-couplings with the same scaling as the mass terms)

S
D3q
scalars = −τD3σ

2
s

∫
X1,3

d4x
√
−ğ4

[
ğ0
ab
ğµν ∇̆µϕ

a∇̆νϕ
b
+ [∇a∇b(e

4A[c] − qα)]0 ϕ
aϕ

b
]
.

Following the GKP-equations [53, 56, 227], the anti-D3-brane scalars are massive for

imaginary self-dual (2, 1)- and (0, 3)-fluxes, whereas for D3-branes they are massless.

For the modulini, one finds the kinetic and mass actionB.3

S
D3q
modulini = −τD3σ

2
s

∫
X1,3

d4x
√
−ğ4

[
iğ0
ab
ψ̆
b
σ̆
µ∇̆µψ̆

a +
(
m

(q)

ψ̆aψ̆b
ψ̆aψ̆b + c.c.

)]
.

For anti-D3-branes, the modulini masses are purely sourced by (2, 1)-fluxes and read

m
(q=−1)

ψ̆aψ̆b
= −1

4
e4A0[c]+ϕ/2 ğ0c(a l

3
sΩ̆

0
b)de (G

−
3 )

c̆d̆ĕ
0 ,

B.3The dimensional reduction of the 10-dimensional Majorana-Weyl spinor to the 4-dimensional Weyl

spinors is the same as in ref. [80] since e−4A0[c] ≃ e−4A0 for branes at the tip of the throat.
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B.2. D3-, Anti-D3- and D7-Branes

while for D3-branes they are sourced by imaginary anti-self-dual (1, 2)-fluxes.

One also finds the gauge vector action

S
D3q
gauge = −τD3σ

2
s

2

∫
X1,3

e−ϕ F2 ∧ ∗̆F2 +
qτD3σ

2
s

2

∫
X1,3

C0 F2 ∧ F2.

The gaugino mass is sourced by (0, 3)- and (3, 0)-fluxes for anti-D3- and D3-branes,

respectively.

• For D7-branes, the reduction to a 4-dimensional action depends on the wrapped in-

ternal 4-cycle, so only the general features of bosons will be discussed. Let the 4-cycle

be spanned by the coordinates (z1, z2) and let z3 be transverse direction.

For the transverse scalar π3 = ϕ3, the pure kinetic action is

SD7-scalar
kin = −τD7σ

2
s

∫
X1,3

d4x
√

−ğ4
∫
Σ4

d4y
√
ğΣ4 eϕ e−4A[c] ğ33 ğ

µν ∇̆µπ
3∇̆νπ

3.

The total mass term emerges from the interference of the DBI- and CS-actions, with

the terms adding up or cancelling out. The full expression is complicated, but the

scalings can be read from the DBI-term and the mass action has the form

SD7-scalar
mass = −τD7σ

2
s

2

∫
X1,3

d4x
√
−ğ4

∫
Σ4

d4y
√
ğΣ4 e2ϕ e4A[c]Gm′n′ṙG

m̆′n̆′
ṡ π

ṙπṡ,

in real notation. As D7-branes preserve the same supersymmetry as the orien-

tifold, the supersymmetric mass is sourced by a (2, 1)-flux (but IASD-fluxes source

supersymmetry-breaking masses as well). For the theory to have no Freed-Witten

anomalies [312], the 2-form B2 must be constant over the 4-cycle and in this case the

supersymmetric mass is sourced specifially by the flux G123.

One also finds the gauge vector kinetic action

SD7-vector
kin = −τD7σ

2
s

4

∫
X1,3

d4x
√
−ğ4

∫
Σ4

d4y
√
ğΣ4 e−4A[c] ğµρğνσ FµνFρσ,

with gaugino masses sourced by (0, 3)-fluxes.

In order to switch to the 4-dimensional Einstein frame defined in eq. (4.2.1), which

is necessary to single out the leading order Kähler-modulus couplings, one can make the

identifications

ğµν = e2Ω γ
3
2 gµν , ğmn = gmn.

Notice that one also needs to transform the Pauli matrix 4-vector as σ̆µ = e−Ω γ−3/4 σµ and

to rescale the spinors as ψ̆ = e−Ω/2γ−3/8ψ̃ (for similar calculations, see e.g. refs. [232,313]).

It is also convenient to renormalise the fields in such a way as to remove the γ-factors,

which turns out to be very helpful in order to obtain 4-dimensional quantities expressed in

the appropriate (string coupling, volume and/or warp factor suppressed) Planck units. So

for the D3- and anti-D3-branes one has

φa = γ
3
4ϕa, ψa = γ

3
4 ψ̃a,
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Appendix B. Dimensional Reductions in Warped Spacetimes

while for D7-branes one has

σ3 = γ
3
4π3.

Further couplings that arise from the redefinition of the volume modulus are given in the

main text (see eq. (4.4.12)). A complete analysis including the compensator field (see

eq. (B.1.1) is beyond the scope of this appendix but for progresses in that direction see

ref. [251], where it is shown that cancellations occur such that the D3-brane kinetic term is

unaffected. Worldvolume fluxes are also not considered.

B.3 Geometry of Warped 4-cycles

This appendix contains a few observations about the geometry of a 4-cycle wrapped by a

D7-brane in the two setups discussed in the main text.

B.3.1 Products of 2- and 4-cycles

In the main text, whenever it is necessary to consider the cycles wrapped by the D7-branes

explicitly, as in e.g. subsubsections 4.3.1.2 and 4.3.1.3, they are assumed to be (conformally)

a 4-dimensional orbifold O4 = T4/Z2, and the 6-dimensional space is locally assumed to be

(conformally) the product of the orbifold O4 and the 2-torus T2.

To be concrete, following refs. [234, 234, 237], one considers the 4-dimensional orbifold

O4 spanned by the coordinates (z1, z2) and the 2-torus T2 spanned by z3, with wa = za/ls
the dimensionless coordinates. Then:

• on the 4-cycle O4 = T4/Z2, the untwisted (2, 0)- and (1, 1)-forms are

η = dw1 ∧ dw2,

and
ζ1 = dw1 ∧ dw2, ζ2 = dw1 ∧ dw2,

ζ3 = dw1 ∧ dw1, ζ4 = dw2 ∧ dw2;

• the untwisted harmonic 3-forms on the 6-dimensional space (T4/Z2) × T2 are then

the holomorphic 3-form

Ω = η ∧ dw3 = dw1 ∧ dw2 ∧ dw3,

and the (2, 1)-forms

χ1 = dw1 ∧ dw2 ∧ dw3, χ2 = dw1 ∧ dw2 ∧ dw3, χϑ = dw1 ∧ dw2 ∧ dw3,

as well as

χ3 = dw1 ∧ dw1 ∧ dw3, χ4 = dw2 ∧ dw2 ∧ dw3.

One could insert the the complex-structure moduli ua into the relevant elements of

the basis by the definition dza = dya + uadya+3, for a = 1, 2, 3.
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B.3. Geometry of Warped 4-cycles

Also, there are extra moduli corresponding to blown-up singularities which are ignored.

One can show that the unwarped complex-structure Kähler potential reads

K̂(0)
cs = −ln

[
−i
∫
Y6

Ω ∧ Ω
]
= −ln

(
[−i(u1 − u1)][−i(u2 − u2)][−i(u3 − u3)]

)
− ln ℓ(0).

In warped scenarios, if the identification of the bulk complex-structure moduli still holds,

one finds analogus results with the substitution of the unwarped volume with ℓw.

B.3.2 Complex-Structure Kähler Metrics

It is convenient to collectively label the basis of the harmonic (1, 1)-forms on the orbifold

O4 = Σ4 as ζi, with i = 1, . . . , 4, and the basis of harmonic (2, 1)-forms on the 6-dimensional

product O4 × T2 as χα, with α = 1, . . . , 4, ϑ. Further there are the harmonic (2, 0)-form η

and the harmonic (3, 0)-form Ω. The explicit complex-structure moduli factors [−i(ua−ua)]
will be ignored for brevity. It is then possible to observe the following equivalences.

• If the wrapped 4-cycle is extended in the bulk and the warp factor does not vary over

the transverse space, then one can observe the identities

ωw =

∫
Y6

e−4AΩ ∧ Ω = ℓT
2

(0)

∫
Σ4

e−4Aη ∧ η

and ∫
Y6

e−4Aχα ∧ χβ = ℓT
2

(0)

[
δiαδ

j
β

∫
Σ4

e−4Aζi ∧ ζj − δϑαδ
ϑ
β

∫
Σ4

e−4Aη ∧ η
]
.

This implies that the complex-structure moduli metric can be written as

K̂αβ = − 1

ωw

∫
Y6

e−4Aχα ∧ χβ = δiαδ
j
β K̂ij + δϑαδ

ϑ
β
,

with the definitions

K̂ij = − 1

ωΣ4
w

∫
Σ4

e−4Aζi ∧ ζj , ωΣ4
w =

∫
Σ4

e−4Aη ∧ η.

• In a setup with the wrapped 4-cycle being localised at the tip of a warped throat,

i.e. with the warp factor varying only along the 2-torus, the analysis of the complex-

structure moduli is also easy. Then, one can observe the identities

ωw =

∫
Y6

e−4AΩ ∧ Ω = ℓT
2

w

∫
Σ4

η ∧ η

and ∫
Y6

e−4Aχα ∧ χβ = ℓT
2

w

[
δiαδ

j
β

∫
Σ4

ζi ∧ ζj − δϑαδ
ϑ
β

∫
Σ4

η ∧ η
]

so that the warped version of the complex-structure moduli metric is the same as the

unwarped one, i.e.

K̂αβ = − 1

ωw

∫
Y6

e−4Aχα ∧ χβ = δiαδ
j
β K̂

(0)

ij
+ δϑαδ

ϑ
β
,
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with the definitions

K̂
(0)

ij
= − 1

ωΣ4

(0)

∫
Σ4

ζi ∧ ζj , ωΣ4

(0) =

∫
Σ4

η ∧ η.

As an example to see this at work, one can expand a (2, 1)-flux for a warp factor not varying

over the transverse space. By defining the (2, 0)-form g2 via the identification G3 = g2∧dw3,

given the 3-form expansion e4AG3 = −K̂ϑϑχϑ
∫
Y6
G3 ∧ χϑ/ωw, one finds the same expansion

that is used in the main text, i.e.

e4Ag2 =
1

ωΣ4
w

η

∫
Σ4

g2 ∧ η.
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C SOFT TERMS FOR LINEAR AND

NON-LINEAR SUPERSYMMETRY

This section outlines the structure of the N4 = 1 low-energy effective theories of type IIB

compactifications with hidden-sector supersymmetry breaking: first it reviews the well-

known results for standard multiplets, then it discusses the modifications that occur in the

presence of constrained superfields.

C.1 Classification of Superfields

in Type IIB Low-Energy Supergravity

A convenient way to study the low-energy effective N4 = 1 theory of type IIB Calabi-Yau

orientifold compactifications starts from observing that the degrees of freedom of the model

are divided in three groups.

• Chiral superfields ϕM that are gauge-neutral and may acquire a non-zero expectation

value and/or a non-zero F-term. These constitute the hidden sector responsible for

the breaking of supersymmetry and typically correspond to the closed-string moduli

but may also include open-string fields.

• Chiral superfields φi that, in order to preserve the gauge symmetries, necessarily

have vanishing vacuum expectation values and F-terms, meaning they do not directly

break supersymmetry either. These are typically open-string degrees of freedom and

constitute the matter sector.

• Vector multiplets WA which come from both the closed- and the open-string sectors

and provide both hidden and observable gauge sectors.

In the main text, the breaking of supersymmetry is described as an F-term breaking, so the

vector superfields play quite a marginal role. Also, the terms in the action with a number n

of φi-fields correspond to order-n couplings as these have zero vacuum expectation values,

which motivates the expansion of their theory around the vacuum defined by the fields ϕM .

From the expansion of the F-term potential, one can compute the couplings of the

theory for all the chiral multiplets in the theory. To start, it is convenient to express the

total Kähler potential K and the total superpotential W of the theory in the form

K = K̂(ϕ, ϕ) + Zij(ϕ, ϕ)φ
iφj +

1

2

[
Hij(ϕ, ϕ)φ

iφj +H ij(ϕ, ϕ)φ
iφj
]
, (C.1.1a)
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W = Ŵ (ϕ) +
1

2
µ̃ij(ϕ)φ

iφj +
1

3
Ỹijk(ϕ)φ

iφjφk, (C.1.1b)

along with the gauge kinetic functions

fAB = fAB(ϕ), (C.1.2)

where the Kähler potential K̂ and the superpotential Ŵ describe the pure supersymmetry-

breaking hidden sector, while the gauge kinetic functions fAB and the expansion parameters

Zij , Hij , µ̃ij and Ỹijk describe their couplings to the fluctuations φi. All matter couplings

are assumed to be symmetric in their φi-indices and the gauge kinetic functions are always

assumed to be block-diagonal. Notice that the Kähler potential is expanded including only

the relevant renormalisable terms, whereas the superpotential only contains terms that lead

up to quartic scalar interactions.

Then, from an analysis of the general N4 = 1 supergravity action [314] for the theory

(C.1.1a, C.1.1b) and (C.1.2), one finds the standard low-energy effective component action

for the supersymmetry-breaking hidden sector ϕM and just a few relevant couplings involv-

ing the matter sector φi. In detail, denoting all the chiral multiplets of the theory with

the indices I = M, i, one can simply insert the potentials in eqs. (C.1.1a, C.1.1b) into the

F-term scalar potential

VF = KIJF
IF J − 3κ24 e

κ24KWW,

where the F-terms are fixed by their algebraic field equations to be F I = eκ
2
4K/2KIJ∇JW ,

with ∇IW = ∂IW+(κ24∂IK)W .C.1 Fermionic interactions can be discussed in a similar way,

and a similar analysis applies for the gauge sectors in eq. (C.1.2). A spontaneous breaking

of supersymmetry taking place in the hidden sector is also transmitted to the matter sector

with the emergence of mass splittings and certain softly non-supersymmetric couplings.

C.2 Theories with Linear Supersymmetry

If all the fields realise supersymmetry linearly, then all the degrees of freedom are encoded

within standard chiral and vector superfields and the expansions are lengthy but straight-

forward. This subsection summarises the results of refs. [232,315,316].

• All the hatted quantities represent the pure ϕM -field terms generated by the Kähler

and superpotential K̂ and Ŵ , namely the F-term scalar potential

V̂F = eκ
2
4K̂ (K̂MN∇̂MŴ ∇̂NŴ − 3κ24 ŴŴ ),

with the Kähler-covariant derivative ∇̂MŴ = ∂MŴ +(κ24∂MK̂)Ŵ , the auxilary fields

F̂M = eκ
2
4K̂/2 K̂MN ∇̂NŴ

C.1The matter sector is always expressed in standard mass units, i.e. [φi] = M, whereas the hidden sector

may be in standard units or dimensionless, with [ϕM ] = 1. As usual, the Kähler and superpotential units

are [K] = M2 and [W ] = M3. If all the fields are in standard units, the remaining mass dimensions are

[KIJ ] = 1 and [F I ] = M2. For dimensionless hidden sector fields, units are [KMN ] = M2 and [FM ] = M.

266



C.2. Theories with Linear Supersymmetry

and the gravitino mass

m̂3/2 = eκ
2
4K̂/2κ24Ŵ .

As explained above, the pure supersymmetry-breaking hidden-sector effective theory

is the same independently of the matter sector. In particular, the F-term scalar poten-

tial V̂F generically sets the supersymmetry-breaking scale at the order of magnitude

mSUSY ∼ [K̂MN F̂
M F̂N ]1/4 ∼ [m̂3/2mP ]

1/2.

• As far as the bosonic interactions are concerned, one can see that the theory generates

a low-energy theory described by the Lagrangian

Lφ-bosons = −Zij ∂µφ
i∂µφj − Vsusy − Vsoft,

where Vsusy and Vsoft are the φi-sector supersymmetric and soft supersymmetry-

breaking potentials, respectively, given by

Vsusy =
1

2
D2 + Zij ∂iWsusy∂jW susy, (C.2.1a)

Vsoft = m2
ij, soft

φiφj +

(
1

2
Bij φ

iφj +
1

3
Aijk φ

iφjφk + c.c.

)
. (C.2.1b)

In detail, one can conveniently define the effective superpotential as

Wsusy =
1

2
µij φ

iφj +
1

3
Yijk φ

iφjφk,

where the effective supersymmetric couplings read

µij = eκ
2
4K̂/2 µ̃ij + m̂3/2Hij − F̂N∂NHij , (C.2.2a)

Yijk = eκ
2
4K̂/2 Ỹijk. (C.2.2b)

In particular this generates the supersymmetric masses

m2
ij
= Zkl µikµjl (C.2.3)

as well as supersymmetric trilinear and supersymmetric quartic couplings. Another

supersymmetric term is the D-term potential determined by

D = −g Zij φ
iφj ,

with the gauge coupling being

g−2 =
1

2
(f + f). (C.2.4)

Second, one finds the soft supersymmetry-breaking terms

m2
ij, soft

= (m̂3/2m̂3/2 + κ24V̂F )Zij − F̂M F̂N RMNij , (C.2.5a)

Bij = (2 m̂3/2m̂3/2 + κ24V̂F )Hij − m̂3/2 F̂
M ∂MHij + m̂3/2 F̂

M∇̂MHij

−F̂M F̂N ∇̂M∂NHij − eκ
2
4K̂/2 µ̃ij m̂3/2 + F̂M∇̂M (eκ

2
4K̂/2µ̃ij),

(C.2.5b)
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Aijk = F̂M∇̂MYijk, (C.2.5c)

where, given the Levi-Civita connection of the Kähler metric Zij , i.e. Γ
j
Mi = Zjk∂MZik,

the Riemann tensor reads

RMNij = ∂M∂NZij − ΓkMi Zkl Γ
l
Nj ,

while the Kähler-covariant derivatives are

∇̂M (eκ
2
4K̂/2µ̃ij) = ∂M (eκ

2
4K̂/2µ̃ij) +

1

2
κ24K̂M eκ

2
4K̂/2µ̃ij − 2ΓkMi e

κ24K̂/2µ̃kj ,

∇̂MYijk = ∂MYijk +
1

2
κ24K̂M Yijk − 3ΓlMi Yljk,

along with ∇̂MHij = ∂MHij − 2ΓkMiHkj and ∇̂MHij,N = ∂MHij,N − 2ΓkMiHkj,N .

Unless there are further suppressions due to a systematic cancellation, the order of

magnitude of the canonically normalised matter soft-breaking terms is set by the scale

msoft ∼ m2
SUSY/mP ∼ m̂3/2.

• As far as fermionic interactions are concerned, the relevant terms are the ψi-field

fermionic masses mf
ij and Yukawa couplings yijk from the supersymmetric Lagrangian

Lψ-fermions = −Zij ψ
jσµ∂µψ

i −
(
1

2
mf
ij ψ

iψk +
1

3
yijk φ

iψjψk + c.c.

)
,

which turn out to be

mf
ij = µij , (C.2.6a)

yijk = Yijk. (C.2.6b)

Also, the supersymmetry-breaking gaugino masses read

m1/2 = F̂M∂M ln(f + f). (C.2.7)

C.3 Theories with Both Linear and

Non-Linear Supersymmetry

If the theory also contains fields that realise supersymmetry non-linearly, then it is necessary

to describe such degrees of freedom using constrained supermultiplets. This is the case for

instance of type IIB orientifold models with anti-D3-branes.

Non-linearly realised supersymmetry comes in by means of a nilpotent chiral super-

field X, whose scalar is constrained to be φX = ψXψX/2FX by the nilpotency condi-

tion X2 = 0: such a multiplet has a non-zero F-term and therefore must be included

in the supersymmetry-breaking hidden sector. Other fields may realise supersymmetry

non-linearly due to similar constraints with similar solutions, but usually they do not have

non-zero F-terms and thus are not in this sector. Anyway, for all such constrained multi-

plets, there are two distinct scenarios.
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• If the constraint does not fix the F-term of the multiplet, the usual supergravity

expansions of subsection C.2 still hold and the constraint only fixes either its bosonic

or fermionic dynamical degrees of freedom in the final action. In the unitary gauge

the fixed components vanish.

• If the constraint also fixes the F-term, then the expansions of subsection C.2 do not

hold anymore since they are derived by expanding the F-term too. If the fields φi

correspond to chiral multiplets without independent spinor and auxiliary fields, then

the calculation proceeds as follows:

- in principle, the full F-term potential is VF = KIJF
IF J − 3κ24 e

κ24KWW , with

the auxiliary fields given by the well-known solutions to their algebraic field

equations F J = eκ
2
4K/2KIJ∇IW ;

- however, the constraints on the φi-multiplet auxiliary fields make them purely

fermionic terms before algebraically fixing them, so that the actual F-term po-

tential is just VF = KMN Ḟ
M ḞN−3κ24 e

κ24KWW , with ḞN = eκ
2
4K/2KMN∇MW .

By performing an expansion as in equations (C.1.1a, C.1.1b), one can show that the

scalar potential for the fields φi is of the form

V = m2
ij
φiφj +m2

ij, soft
φiφj +

[
1

2
Bij φ

iφj +
1

3
Aijk φ

iφjφk + c.c.

]
.

Obviously there is no distinction between supersymmetric and supersymmetry-breaking

terms, but the notation is meant to emphasise the differences with respect to the stan-

dard case. In particular, the two mass contributions read

m2
ij
= 2Z lk F̂N F̂MHil,NHjk,M , (C.3.1a)

m2
ij, soft

= κ24V̂FZij − F̂M F̂N
[
Zij,MN − 2ΓkMi Zkl Γ

l
Nj

]
+
[
m̂3/2F̂

MZij,M + m̂3/2F̂
NZij,N

]
.

(C.3.1b)

Instead the bilinear B-coupling reads

Bij = κ24V̂FHij + eκ
2
4K̂/2F̂M∇̂M µ̃ij + m̂3/2F̂

NHij,N + m̂3/2F̂
MHij,M

−F̂M F̂N
(
Hij,MN − 4ΓlMiHlj,N

)
− 3 eκ

2
4K̂/2 m̂3/2µ̃ij .

(C.3.2)

As for the trilinear terms, one only has the would-be supersymmetry-breaking cou-

pling, namely

Aijk = eκ
2
4K̂/2

[
F̂M∇̂M Ỹijk − 3 m̂3/2Ỹijk

]
. (C.3.3)

The covariant derivatives are defined as below. Notably, although the structure of all

the coupling terms is different, one can observe that the theory is still invariant under

the usual Kähler transformations as all the terms are individually covariant. The case

where the scalar and the F-term components of a multiplet are constrained may be

discussed in a similar fashion. It is not encountered in the main text and thus left for

future study.

269



Appendix C. Soft Terms for Linear and Non-Linear Supersymmetry

C.4 Computational Details

This subsection explains the details of how to compute the soft-breaking terms up to the

cubic scalar potential; quartic interactions would be possible to determine analogously but

the calculations become extremely unwieldy.

As outlined above, the method to determine the form of the soft-breaking scalar terms

simply consists in computing the F-term scalar potential around the vacuum determined

by the pure hidden sector. This means that one should express all the relevant operators

stemming from eqs. (C.1.1a, C.1.1b) as φ-expansions of the hidden operators. In the

following, this will be denoted indicating as ‘φ’ any contribution of the form φi and/or φi.

The Kähler potential in eq. (C.1.1a) defines a Kähler metric KIJ = ∂I∂JK that can be

visualised as a block matrix, together with its inverse such that KIPK
JP = δJI , as

KIJ =

(
KMN KMj

KiN Kij

)
, KIJ =

(
KMN KiN

KMj Kij

)
,

where the blocks are

KMN = K̂MN + Zij,MNφ
iφj +

1

2

(
Hij,MNφ

iφj +H ij,MNφ
iφj
)
, (C.4.1a)

KMj = Zij,Mφ
i +H ij,Mφ

i, (C.4.1b)

KiN = Zij,Nφ
j +Hij,Nφ

j , (C.4.1c)

Kij = Zij , (C.4.1d)

andC.2

KMN = K̂MN − K̂MQ
[
Zij,PQφ

iφj +
1

2

(
Hij,PQφ

iφj +H ij,PQφ
iφj
)]
K̂PN

+ K̂MQ
(
Zlj,Pφ

l +H lj,Pφ
l
)
Zij
(
Zik,Qφ

k +Hik,Qφ
k
)
K̂PN +O(φ)4,

(C.4.2a)

KMj = −Z lj
[
Zlk,Qφ

k +Hlk,Qφ
k
]
K̂MQ +O(φ)3, (C.4.2b)

KiN = −K̂PN
[
Zkl,Pφ

k +Hkl,Pφ
k
]
Zil +O(φ)3, (C.4.2c)

Kij = Zij +O(φ)2. (C.4.2d)

In these expressions, only the orders in φ that are going to be necessary later on have been

written explicitly. If needed, they can be determined straightforwardly by inverting the

block Kähler metric up to the desired order. The superpotential in eq. (C.1.1b) induces

the Kähler-covariant derivatives

∇MW = ∇̂MŴ +
1

2
∇̂M µ̃ijφ

iφj +
1

3
∇̂M Ỹijkφ

iφjφk

+
[
Zij,Mφ

iφj +
1

2

(
Hij,Mφ

iφj +H ij,Mφ
iφj
)]
κ24Ŵ +O(φ)4,

(C.4.3a)

C.2Notice that the term KMN does not receive O(φ)3-corrections since these are also ignored in the original

reference Kähler potential K and therefore in the Kähler metric KMN .
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∇iW = µ̃ijφ
j + Ỹijkφ

jφk +
[
Zijφ

j +Hijφ
j
]
κ24Ŵ +O(φ)3, (C.4.3b)

where the Kähler-covariant derivatives are defined as ∇̂M µ̃ij = ∂M µ̃ij + (κ24K̂M )µ̃ij and

∇̂M Ỹijk = ∂M Ỹijk + (κ24K̂M )Ỹijk. Auxiliary fields are then determined by employing the

definitions above. One finds

FN = F̂N
[
1 +

κ24
2
Zijφ

iφj +
κ24
4

(
Hijφ

iφj +H ijφ
iφj
)]

+
1

2
eκ

2
4K̂/2K̂PN∇̂P µ̃ijφ

iφj +
1

3
eκ

2
4K̂/2K̂PN∇̂P Ỹijkφ

iφjφk

+ eκ
2
4K̂/2K̂PNκ24Ŵ

[
Zij,Pφ

iφj +
1

2

(
Hij,Pφ

iφj +H ij,Pφ
iφj
)]

− K̂PN F̂Q
[
Zij,PQφ

iφj +
1

2

(
Hij,PQφ

iφj +H ij,PQφ
iφj
)]

(C.4.4a)

+ K̂PN F̂Q
[
Zlj,Pφ

l +H lj,Pφ
l
]
Zij
[
Zik,Qφ

k +Hik,Qφ
k
]

− eκ
2
4K̂/2K̂PN

[
Zkl,Pφ

k +Hkl,Pφ
k
]
Zilµ̃ijφ

j

− eκ
2
4K̂/2K̂PN

[
Zkl,Pφ

k +Hkl,Pφ
k
]
ZilỸipqφ

pφq

− eκ
2
4K̂/2K̂PNκ24Ŵ

[
Zkl,Pφ

k +Hkl,Pφ
k
]
Zil
[
Zijφ

j +Hijφ
j
]
+O(φ)4,

F j = − F̂PZ lj
[
Zlk,Pφ

k +Hlk,Pφ
k
]

+ eκ
2
4K̂/2Zijµ̃ikφ

k + eκ
2
4K̂/2Zij Ỹiklφ

kφl (C.4.4b)

+ eκ
2
4K̂/2κ24ŴZij

[
Zikφ

k +Hikφ
k
]
+O(φ)3.

Moreover, one has

KMNF
N +KMjF

j = F̂M

[
1 +

κ24
2
Zijφ

iφj +
κ24
4

(
Hijφ

iφj +H ijφ
iφj
)]

+
1

2
eκ

2
4K̂/2∇̂M µ̃ijφ

iφj +
1

3
eκ

2
4K̂/2∇̂M Ỹijkφ

iφjφk (C.4.5a)

+ eκ
2
4K̂/2κ24Ŵ

[
Zij,Mφ

iφj +
1

2

(
Hij,Mφ

iφj +H ij,Mφ
iφj
)]

+O(φ)4,

KiNF
N +KijF

j = eκ
2
4K̂/2µ̃ijφ

j + eκ
2
4K̂/2Ỹijkφ

jφk (C.4.5b)

+ eκ
2
4K̂/2κ24Ŵ

[
Zijφ

j +Hijφ
j
]
+O(φ)3.

These expressions eventually determine the scalar potential expansion up to cubic scalar

interactions in the matter sector for theories with only linearly-realised supersymmetry. In

fact, working out the φ-expansion of the F-term scalar potential

VF = KMNF
MFN +KMjF

MF j +KiNF
iFN +KijF

iF j − 3κ24 e
κ24KWW,

one finds exactly the scalar matter couplings that have been spelled out in subsection C.2.

In the case in which the matter-sector F-terms are constrained to be fermionic, one needs
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to use

ḞN = F̂N
[
1 +

κ24
2
Zijφ

iφj +
κ24
4

(
Hijφ

iφj +H ijφ
iφj
)]

+
1

2
eκ

2
4K̂/2K̂PN∇̂P µ̃ijφ

iφj +
1

3
eκ

2
4K̂/2K̂PN∇̂P Ỹijkφ

iφjφk

+ eκ
2
4K̂/2K̂PNκ24Ŵ

[
Zij,Pφ

iφj +
1

2

(
Hij,Pφ

iφj +H ij,Pφ
iφj
)]

− K̂PN F̂Q
[
Zij,PQφ

iφj +
1

2

(
Hij,PQφ

iφj +H ij,PQφ
iφj
)]

+ K̂PN F̂Q
[
Zlj,Pφ

l +H lj,Pφ
l
]
Zij
[
Zik,Qφ

k +Hik,Qφ
k
]
+O(φ)4,

(C.4.6)

the scalar F-term potential being

VF = KMN Ḟ
M ḞN − 3κ24 e

κ24KWW.

In this case, expanding the theory in the fluctuations represented by the matter sector, one

finds the scalar matter couplings discussed in subsection C.3.
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