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Abstract

Background: Automating the recognition of out-
comes reported in clinical trials using machine
learning has a huge potential of speeding up ac-
cess to evidence necessary in healthcare decision
making. Prior research has however acknowledged
inadequate training corpora as a challenge for the
Outcome detection (OD) task. Additionally, sev-
eral contextualised representations (embeddings)
like BERT and ELMO have achieved unparalleled
success in detecting various diseases, genes, pro-
teins and chemicals, however, the same cannot be
emphatically stated for outcomes, because these
representation models have been relatively under-
tested and studied for the OD task.
Methods: We introduce “EBM-COMET”, a
dataset in which 300 Randomised Clinical Trial
(RCT) PubMed abstracts are expertly annotated for
clinical outcomes. Unlike prior related datasets that
use arbitrary outcome classifications, we use labels
from a taxonomy recently published to standard-
ise outcome classifications. To extract outcomes,
we fine-tune a variety of pre-trained contextualised
representations, additionally, we use frozen contex-
tualised and context-independent representations in
our custom neural model augmented with clinically
informed Part-Of-Speech embeddings and a cost-
sensitive loss function. We adopt strict evaluation
for the trained models by rewarding them for cor-
rectly identifying full outcome phrases rather than
words within the entities i.e. given an outcome
phrase “systolic blood pressure”, the models are re-
warded a classification score only when they pre-
dict all 3 words in sequence, otherwise, they are
not rewarded.
Results and Conclusion: We observe our best
model (BioBERT) achieve 81.5% F1, 81.3% sensi-
tivity and 98.0% specificity. We reach a consensus
on which contextualised representations are best
suited for detecting outcome phrases from clinical
trial abstracts. Furthermore, our best model outper-
forms scores published on the original EBM-NLP
dataset leader-board scores.

Keywords: Outcome detection, Outcome dataset, Contex-
tualised representations, Transfer Learning, Full outcome
phrase.

1 Introduction
There is growing recognition of the potential benefits of

using readily available sources of clinical information to sup-
port clinical research [1]. Of particular importance is the
identification of information about outcomes measured on pa-
tients, for example, blood pressure, fatigue, etc. The ability to
automatically detect outcome phrases contained within clini-
cal narrative text will serve to maximise the potential of such
sources. For example, hospital or GP letters, or free text fields
recorded within electronic health records, may contain valu-
able clinical information which is not readily accessible or
analysable without manual or automated extraction of rele-
vant outcome phrases. Similarly, automated identification of
outcomes mentioned in trial registry entries or trial publica-
tions could help to facilitate systematic review processes by
speeding up outcome data extraction. Furthermore, the ben-
efits of automated outcome recognition will be increased fur-
ther if it extends to categorisation of outcomes within a rele-
vant classification system such as taxonomy proposed in [2].
The potential contribution of Natural Language Processing
(NLP) to EBM [3] has been limited by the scarcity of publicly
available annotated corpora [4] and the inconsistency in how
outcomes are described in different trials [2, 5, 6]. Nonethe-
less, rapid advancement in NLP techniques has accelerated
NLP-powered EBM research, enabling tasks such as detect-
ing elements that collectively form the basis of clinical ques-
tions including Participants/population (P), Interventions (I),
Comparators (C), and Outcomes (O) [7]. I and C are often
collapsed into just I [4, 8, 9].

EBM-NLP corpus [4] is the only publicly available corpus
that can support individual outcome phrase detection. How-
ever, this dataset used an arbitrary selection of outcome clas-
sifications despite being aligned to Medical Subject Head-
ings (MESH)1. Moreover, it contains flawed outcome anno-
tations [10] such as measurement tools and statistical metrics
incorrectly annotated as outcomes and others which we men-
tion in section 2.

In this work, we are motivated by the outcome taxonomy
recently built and published to standardise outcome classifi-
cations [2]. We work closely with experts to annotate out-
comes with classification drawn from this taxonomy.

Several variations of state-of-the-art (SOTA) CLMs that in-
clude BioBERT [11], SciBERT [12], ClinicalBERT [13] and
others have recently emerged to aid clinical NLP tasks. De-
spite their outstanding performance in multiple clinical NLP
tasks such as BNER [14, 15] and relation extraction [16],

1https://www.nlm.nih.gov/mesh/
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they have been underutilised for the outcome detection task,
mainly because of inadequate corpora [4]. Given that, clinical
trial abstracts (which report outcomes) are part of the medi-
cal text on which these CLMs are pre-trained, we leverage
transfer learning (TL) and make full use of them to achieve
individual outcome detection. The goal in the outcome de-
tection task is to extract outcome phrases from clinical text.
For example, in a sentence,“Among patients who received
sorafenib, the most frequently reported adverse events, were
grade 1 or 2 events of rash (73%), fatigue 67%, hypertension
(55%) and diarrhea (51%)”, we extract all outcome phrases
such as those underlined and in bold font. This enables
those searching the literature including patients and policy-
makers to identify research that addresses the health out-
comes of most importance to them [17]. Following previous
studies that investigated which embeddings are best suited
for clinical-NLP text classification tasks [18], we focus this
work on probing for some consensus amongst various SOTA
domain-specific CLM embeddings, determining which em-
beddings are best suited for outcome detection. A summary
of our contributions includes,

1. We introduce a novel outcome dataset, EBM-COMET,
in which outcomes within randomised clinical trial
(RCT) abstracts are expertly annotated with outcome
classifications drawn from [2].

2. We assess the performance of domain-specific (clini-
cal) context-dependent representations in comparison to
generic context-dependent and context-independent rep-
resentations for the outcome detection task.

3. We assess the quality in detecting full mention of out-
come phrases in comparison to detection of individual
words contained in outcome phrases. Ideally, given an
outcome phrase “systolic blood pressure”, full outcome
phrase evaluation strictly rewards models for correctly
detecting all 3 words in that sequence (exact match),
whereas word-level evaluation rewards models for cor-
rectly detecting any single word in phrase. The former is
particularly informative for the biomedical domain audi-
ence [19].

4. We compare the performance of the CLMs in our exper-
imental setup to the current leader-board performance
on extracting PIO elements from the original EBM-NLP
dataset [4].

2 Related Work
2.1 Outcome detection
Outcome detection has previously been simultaneously
achieved along with Participant and Intervention detection,
where researchers aim to classify sentences (extracted from
RCT abstracts) into one of P, I and O labels [8,20,21]. Despite
being restrained by shortage of expertly labeled datasets, few
attempts to create EBM-oriented datasets have been made.
Bryon et al., [20] use distant supervision to annotate sen-
tences within clinical trial articles with PICO elements. Dina
et al., [22] use an experienced Nurse and a medical student
to annotate outcomes by identifying and labelling sentences
that best summarise the consequence of an intervention. Sim-
ilarly, other attempts have precisely partitioned PubMed ab-
stracts into sentences that they label one of P, I, and O [8, 9].
Given the sentence-level annotation adopted in these datasets,
it becomes difficult to use them for tasks that require extrac-
tion of individual PICO elements [23, 24] such as outcome

phrase detection. Nye et al., [4] recently released EBM-NLP
corpus that they built using a mixture of crowd workers (non-
experts) and expert workers (with the non-experts being ex-
ceedingly more) to annotate individual spans of P, I, O ele-
ments within clinical trial articles. This dataset has however
been discovered with annotation flaws [10] and uses arbitrary
outcome classification labels as discussed in section 2. Cog-
nizant of the growing body of research to standardise classi-
fications of outcomes, we are motivated to annotate a dataset
with outcome types drawn from a standardised taxonomy.

2.2 Transfer Learning (TL)
TL is a machine learning (ML) approach that enables usage
of a model to achieve a task that it was not initially built and
trained for [25]. Usually, the assumption is that, train and
test data for a specific task exists, however this is never the
case, therefore, TL allows learning across different task do-
mains i.e. the term pre-trained, implies a model was previ-
ously trained on a task different from the current target task.
Context-dependent embeddings such as context2vec [26],
ELMo [27] and BERT [28] have emerged and outperformed
context-independent embeddings [29, 30] in various down-
stream NLP tasks.

Bert variants, SciBERT [12] and ClinicalBERT [13]
yielded performance improvements in the BNER tasks on
the BC5DR dataset [16, 31], text-classification tasks like Re-
lation extraction on the ChemProt [32] and on PICO ex-
traction. Despite being pre-trained on English biomedical
text, BioBERT [11] outperformed generic BERT model ( pre-
trained on Spanish biomedical text) in Pharma-CoNER, a
multi-classification task for detecting mentions of chemical
names and drugs from Spanish biomedical text [25]. Recently
Qiao et al., [33] discovered that, in comparison to BioBERT,
BioELMo (Biomedical ELMo) better clustered entities of the
same type such as, an acronym having multiple meanings or a
homonym. For example, unlike BioBERT, BioELMo clearly
differentiated between ER referring to “Estrogen Receptor”
and ER referring to “Emergency Room” in their work.
3 Materials and Methods

We design two setups in our assessment approach, where
(1) we fine-tune pre-trained biomedical CLMs on the out-
come datasets EBM-COMET (introduced in this paper) and
EBM-NLPrev (a revised version of the original EBM-NLP
[10]) and (2) we augment a neural model to train frozen
biomedical embeddings. The aim is to compare the evalua-
tion performance of fine-tuned, frozen biomedical CLM em-
beddings, generic CLM embeddings and traditional context-
independent embeddings such as word2Vec [29] in the out-
come detection task defined below.

Outcome Detection Problem (ODP) Task: Given a sen-
tence s of n words, s = w1, . . . , wn within an RCT ab-
stract, outcome detection aims to extract an outcome phrase
b = wx, . . . , wd within s, where 1 ≤ x ≤ d ≤ n. In order to
extract outcome phrases such as b, we label each word using
the “BIO” tagging scheme [34] where “B” denotes the first
word of the outcome phrase, “I” denotes inside the outcome
phrase and “O” denotes all non-outcome phrase words.

3.1 Data
EBM-COMET
EBM-COMET is prepared to facilitate outcome detection in
EBM. Our annotation scheme adopts a widely acknowledged



definition of outcome which is “a measurement or an obser-
vation used to capture and assess the effect of treatment such
as assessment of side effects (risk) or effectiveness (bene-
fits)” [35]. Previous EBM dataset construction efforts have
lacked a standard classification system to accurately inform
their annotation process and instead opted for arbitrary labels
such as those terms aligned to MeSH [4]. We however lever-
age an outcome taxonomy recently developed to standardise
outcome reporting in electronic databases [2]. The taxonomy
authors iteratively reviewed how core outcome sets (COS)
studies within the Core Outcome Measures in Effectiveness
Trials (COMET) database categorised their outcomes. This
review culminated into a taxonomy of 38 outcome domains
hierarchically classified into 5 outcome types/core areas.

Data collection
Using the Entrez API [36], we automatically fetch 300
abstracts from open access PubMed. Our search criteria
only retrieve articles of type “Randomised controlled Trial”.
We relied on two domain-experts to review these abstracts
and eliminate those reporting outcomes in animals (or non-
humans). Each eliminated abstract was replaced by another
reporting human outcomes from PubMed.

Annotation
The two experts we work with have sufficient experience in
reviewing human health outcomes in clinical trials. Some
of their work pertaining to outcomes in clinical trials in-
cludes [35, 37–39]. These experts jointly annotate granular
outcomes within the gathered abstracts resulting into EBM-
COMET using guidelines below. We are aware of annotation
tools such as BRAT [40], however because of the nature of
the annotations i.e. some with contiguous outcome spans, the
experts prefer to directly annotate them in Microsoft text doc-
uments.

Annotation guidelines
The annotators are tasked to identify and verify outcome
spans and then assign each an outcome domain referenced
from the taxonomy partially presented in table 1 and full pre-
sented in Appendix C. The annotators are instructed to assign
each span all relevant outcome domains.

Annotation heuristics
For annotation purposes, we firstly assign a unique symbol
to each outcome domain (domain symbol column in table 1).
The annotators are then instructed to use these symbols to la-
bel the outcome spans they identify. Annotation using these
symbols rather than the long domain names is less tedious.
Furthermore, we instruct annotators to use xml tags to de-
marcate the spans, such that an identified span is enclosed
within an opening tag with the assigned domain symbol and
a closing tag. We refer to easily identifiable outcome spans
as simple annotations, and the more difficult ones requiring
more demarcation indicators as complex annotations. Figure
1 shows examples of the annotations described below,

1. Simple annotations
(a) <P XX>. . .</>: Indicates an outcome belongs to

domain XX (where XX can be located in the tax-
onomy 1).

(b) <P XX, YY>. . .</>: Indicates an outcome be-
longs to both domain XX and YY.

2. Complex annotations
Some spans are contiguous in such a way that, they share

a word or words with other spans. For example, two out-
comes can easily be annotated as a single outcome be-
cause they are conjoined by a dependency word or punc-
tuation such as “and”, “or” and commas. We are how-
ever fully aware, that this contiguity previously resulted
in multiple outcomes annotated as a single outcome in
previous datasets [10]. Therefore, annotators are asked
to distinctively annotate them as below,

(a) Contiguous spans sharing bordering term/s appear-
ing at the start of an outcome span should be anno-
tated as follows,
<P XX>(S#). . .<P XX>. . .</>: which indicates
that, two outcomes are belonging to domain XX
that share # of words at the start of the annotated
outcome span.

(b) Contiguous spans sharing bordering term/s appear-
ing at the end of an outcome span, should be anno-
tated as follows,
<P XX>(E#). . .<P XX>. . .</>: The opposite of
the notation above indicating that, two outcomes
are belonging to domain XX that share # of words
at the end of the annotated outcome span.

Annotation consistency and quality
In the last phase of the annotation process, the annotations are
extracted into a structured format (excel sheet) for the annota-
tors to review them, make necessary alterations based on their
expertise judgement as well as handle minor errors (such as
wrong opening or closing braces) that result from the man-
ual annotation processes. We do not report inter-annotator
agreement because the two annotators did not conduct the
process independently, but rather jointly. Having previously
worked together on similar annotation tasks, they hardly dis-
agreed but whenever either was uncertain or disagreed, they
discussed between themselves and concluded.

The word, outcome phrase distribution and other statistics
of the EBM-COMET are summarised in table 4 with the ex-
perimental dataset statistics.

EBM-NLPrev

This dataset is a revision of the original hierarchical label’s
version of EBM-NLP dataset [4]. In the hierarchical labels
version, the annotated outcome spans were assigned specific
labels that include Physical, Pain, Mental, Mortality and Ad-
verse effects. Abaho et al., [10] built EBM-NLPrev using
a semi-automatic approach that involved POS-tagging and
rule-based chunking to correct flaws discovered (by domain-
experts) in EBM-NLP. In the evaluation of this revision, clas-
sification of outcomes resulted in a significant increase in the
F1-score (for all labels) from what it was when using the orig-
inal EBM-NLP. Some of the major flaws they corrected in-
clude,

• Statistical metrics and measurement tools annotated as
part of clinical outcomes e.g. “mean arterial blood-
pressure” instead of “arterial blood-pressure”, “Qual-
ity of life Questionnaire” instead of “Quality of life”,
“Work-related stress scores” instead of “Work-related
stress”.

• Multiple outcomes annotated as a single outcome e.g.
“cardiovascular events-(myocardial infarction, stroke
and cardiovascular death)” instead of “myocardial in-
farction”, “stroke”, and “cardiovascular death”.



Figure 1: Sample annotations of outcomes depicting the annotation style with each example showing the outcome span and its assigned
outcome domain label.

Core area Outcome domain Domain
Symbol

Physiological/Clinical Physiological/Clinical P 0
Death Mortality/survival P 1
Life Impact Physical functioning P 25

Social functioning P 26
Role functioning P 27
Emotional function
ing/wellbeing P 28
Cognitive functioning P 29
Global quality of life P 30
Perceived health status P 31
Delivery of care P 32
Personal circumstances P 33

Resource use Economic P 34
Hospital P 35
Need for further
intervention P 36
Societal/carer burden P 37

Adverse events Adverse events/effects P 38

Table 1: A partial version of the taxonomy of outcome classifica-
tions developed and used by [1] to classify clinical outcomes ex-
tracted from biomedical articles published in COMET, Cochrane re-
views and clinical trial registry. (Full taxonomy in Appendix C).

• Inaccurate outcome type annotations e.g. “Nausea and
Vomiting” labeled as a Mortality outcome instead of a
Physical outcome.

• Combining annotations in non-human studies with those
in human-studies particularly studies reporting out-
comes in treating beef cattle.

3.2 Biomedical Contextual Language Models
We leverage the datasets to investigate the ODP task perfor-
mance of 6 different biomedical CLMs (table 2) derived from
3 main architectures. 1) BERT [28], a CLM built by learning

deep bidirectional representations of input words by jointly
incorporating left and right context in all its layers. It works
by masking a portion of the input words and thereby predict-
ing missing words in each sentence. BERT encodes a word
by incorporating information about words around it within a
given input sentence using a self-attention mechanism [41]
2) ELMo [33] is a CLM that learns deep bidirectional repre-
sentations of input words by jointly maximizing the probabil-
ity of forward and backward directions in a sentence, and 3)
FLAIR [42], a character-level bidirectional LM which learns
representations of each character by incorporating character
information around it within a sequence of words.

We begin by further training the pre-trained CLMs in table
2 in a fine-tuning approach [46], where the CLMs learn to (1)
encode each word wi into a hidden state hi and (2) predict
the correct label given hi. Similar to Sun et al.. [25], we in-
troduce a non-linear softmax layer to predict a label for each
hi corresponding to word wi, as shown in figure 2, where
hi = CLM(wi), {BERT-variants, BioELMo, BioFLAIR}
∈ CLM. (see Appendix A.1 (Fine-tuning) for more details).

3.3 ODP-tagger
We build ODP-tagger to not only assess context-independent
(W2V) representations, but also assess the performance of
frozen context-dependent representations for the ODP task.
Demonstrated by the dotted line from Fine-tuning to input to-
kens in figure 2, is a feature extraction [47] approach, where
the tagger’s embedding layer takes as input, a sequence of to-
kens (sentence) and a sequence of POS terms corresponding
to the tokens. We add a POS feature for each token to enrich
the model in a manner similar to how prior neural classifiers
are enhanced with character and n-gram features [48]. Each
word/token is therefore represented by concatenating either
a pre-trained CLM or a W2V embedding w and a randomly
initialised embedding for the corresponding POS term p. The
token embeddings are then encoded to obtain hidden-states
for each sequence position,

hi = α(W[wi;pi] + b) (1)
where wi ∈ Ew and pi ∈ Ep, {Ew,Ep} ∈ Rn×d denote

Word and POS matrices, each containing d-dimensional em-
beddings for n words and n corresponding POS terms. wi



Figure 2: BNER for token-level outcome phrase detection, for two setups, left: Fine-tuning and right Feature extraction using ODP-tagger

Model Biomedical
Variant Pre-trained on

Bert BioBERT [11]

4.5B words from PubMed
abstracts + 13.5B words
from PubMed Central (PMC)
articles.

SciBERT [12]

1.14M Semantic scholar
papers [43] (18%
from Computer science and
82% from biomedical
domains).

ClinicalBERT [13]

2 million notes in the
MIMIC-III v1.4 database [44]
(hospital care data recorded
by nurses). (Bio+Clinical
BERT is BioBERT pre-trained
on the above notes)

DischargeSumm
aryBERT [13]

Similar to ClinicalBERT but
only discharge summaries are
used (Bio+DischargeSummary
BERT is BioBERT pre-trained
on the summaries)

ELMo BioELMo [33] 10M PubMed abstracts
(ca. 2.64B tokens)

FLAIR BioFLAIR [45] 1.8m PubMed abstracts.

Table 2: A catalogue of CLMs used for the outcome detection task

and pi are the word and POS embeddings representing the
ith word and its POS term, ; implies a concatenation opera-
tion and then α is a linear activation function that generates
hidden states for the input words. We then use a condition
random field (CRF) layer for classification given the hidden
state hi. A CRF is an undirected graphical model which de-
fines a conditional probability distribution over possible la-
bels [49].

All the models are each trained to maximize the probability
of the labels given each word wi ∈ s.

argmax
θ

P (yi|wi; θ) (2)

The training loss objective.

loss = −β
∑

(S,L)∈T

n∑
i

p(yi|wi) (3)

where β is a scaling factor that empirically sets each labels
weights to be inversely proportional to the square root of the
label frequency i.e. β = 1√

Ny

and Ny is the number of train-

ing samples with ground-truth label y. T is the training set
containing sentences, wi ∈ S and y ∈ L.

3.4 Training
All models are evaluated on the two datasets discussed in sec-
tion 3.1. These datasets are each partitioned as follows, 75%
for training (train), 15% for development (dev) and 10% for
testing (test). We exploit the large size of EBM-NLPrev (as
shown in table 4) and use its dev set to tune hyperparam-
eters for the ODP-tagger and fine-tuned models (Parameter
settings in Appendix B). Each model is trained on a train
split of a particular dataset and evaluated on the correspond-
ing test split culminating into results shown in table 3. We
use a simple powerful NLP python framework called flair2

to extract word embeddings from all the BERT and FLAIR
variants, and AllenAI3 for BioELMO. Dimensions of the ex-
tracted BioFLAIR and BioELMO embeddings are very large,
i.e. 7672 and 3072 respectively, which would most likely
overwhelm our memory and power-constrained devices dur-
ing training. Therefore, we apply Principal component Anal-
ysis (PCA) dimensionality reduction technique to reduce their
dimensions to half their original sizes while preserving se-
mantic information [50]. Alongside these embeddings, we
evaluate context-independent embeddings which we obtain
by training word2vec (W2V) embedding algorithm [29] on
5.5B tokens of PubMed and PMC abstracts. Python and Py-
Torch [51] deep learning framework are used for implementa-
tion, which together with the datasets are made publicly avail-
able here https://github.com/MichealAbaho/ODP-tagger.

2https://github.com/flairNLP/flair
3https://github.com/allenai/bilm-tf

https://github.com/MichealAbaho/ODP-tagger
https://github.com/flairNLP/flair
https://github.com/allenai/bilm-tf


Fine-tuning Feature extraction
Model EBM-NLPrev EBM-COMET Model EBM-NLPrev EBM-COMET
W2V ODP-tagger + W2V 44.0 59.3
BERT 51.8 75.5 +BERT 43.2 64.2
ELMO 49.6 71.4 +ELMO 43.0 61.2
BioBERT 53.1 81.5 +BioBERT 48.5 69.3
BioELMO 52.0 75.0 +BioELMO 46.5 62.9
BioFLAIR 51.4 76.7 +BioFLAIR 40.7 60.5
SciBERT 52.8 77.6 +SciBERT 48.1 70.4
ClinicalBERT 51.0 68.5 +ClinicalBERT 45.2 65.7
Bio+ClinicalBERT 51.0 68.3 +Bio+ClinicalBERT 45.8 66.3
Bio+Disc Summary
BERT 51.0 70.0 +Bio+Disc Summary

BERT 46.1 68.4

Table 3: Macro-average F1 scores obtained from generic CLMs and their respective In-domain (biomedical) versions for both fine-tuning and
ODP-tagger (feature extraction) for token-level detection of outcome phrases from both datasets.

EBM-COMET EBM-NLPrev

# of sentences 5193 40092
# of train/dev/test
sentences 3895 / 779 / 519 30069 / 6014 / 4009

# of outcome labels 5 6
# of sentences with
outcome phrases in
train/dev/test

1569 / 451 / 221 12481 / 4116 / 3257

Avg # of tokens per
train/dev/test sentence 20.6 / 21.5 / 21.2 25.5 / 26.4 / 25.6

Avg # of outcome
phrases per sentence
in train/dev/test

0.69 / 0.78 / 0.71 0.44 / 0.38 / 0.45

Table 4: Statistics summary of experimental datasets splits. Figures
pertaining to Train, Dev and Test sets are separated by a forward
slash accordingly.

3.5 Evaluation results
Results shown in table 3 firstly reveal the superiority of fine-
tuning the CLMs in comparison to the ODP-tagger. The best
performance across both set-ups is obtained when BioBERT
is fine-tuned on the EBM-COMET dataset. However, we
observe SciBERT outperform it in the ODP-tagger set-up
on the EBM-COMET dataset. Secondly, we observe CLM
embeddings produce stronger performances in comparison
to context-independent (W2V) embeddings especially with
the EBM-COMET dataset. BioFLAIR and ClinicalBERT
were the least performing models. For BioFLAIR, we hy-
pothesize that, (1) pre-training on a relatively smaller cor-
pus, (2) it being of much less depth (1-layered BiLSTM)
compared to multi-layered BERT and ELMo and (3) down-
sizing its embeddings using PCA dimensionality reduction
are reasons that led to its low performance. For Clinical-
BERT, we attributed its struggles to the nature of the cor-
pora on which it is pre-trained. Unlike BioBERT, SciBERT
and BioELMo which are pre-trained on PubMed text which
is mostly clinical trial abstracts that more often report health
outcomes, ClinicalBERT is pre-trained on clinical notes asso-
ciated with patient hospital admissions [44]. An additional in-
sight we drew was, performance on the EBM-NLPrev dataset
is lower compared to that achieved on EBM-COMET. This
was attributed to the annotation inconsistencies in the origi-

nal EBM-NLP, some of which were resolved in [10]. Another
aspect we closely observed was the runtime. Using a TITAN
RTX 24GB GPU, the average runtime for the fine-tuning ex-
periments on EBM-COMET and EBM-NLPrev respectively
was 7 and 12 hrs. On the other-hand, feature extraction
(ODP-tagger) experiments were much longer consuming 20
and 36 hours respectively on the same datasets. Overall, we
recommend fine-tuning as a preferred approach for outcome
detection, more saw using BioBERT and SciBERT as ideal
embedding models.

3.6 Full outcome phrase detection
Motivated by the need to detect accurate fine-grained infor-
mation in the medical domain [52], we examine the extent
to which our models detect precise mentions of full outcome
phrases. To achieve this, we investigate how well the best per-
forming models (Fine-tuned+BioBERT+EBM-COMET and
Fine-tuned+BioBERT+EBM-NLPrev from Table 3) can de-
tect full mentions of outcome phrases or otherwise exact
matches of outcome phrases in prediction results. We use
a strict criteria to evaluate full mention of outcomes, where a
classification error FN (False Negative) accounts for the num-
ber of full outcome phrases the model fails to detect, which
includes partially correctly detected phrases i.e. some of their
tokens were misclassified. In table 6, we observe the F1 of
the best models drop from 53.1 to 52.4 for EBM-NLPrev and
81.5 to 69.6 for EBM-COMET. This implies that the model
struggles to identify full outcome phrases, especially with the
EBM-NLPrev dataset. Specificity on the other hand is very
high for both datasets simply because it is calculated as a True
Negative Rate (TNR), in which case True Negatives (non-
outcomes) are certainly so many because they are precisely
individual words and therefore are counted word by word as
opposed to True positives (actual outcome phrases) that can
consist of multiple words.

We further investigate the errors from the best performing
models BioBERT+EBM-COMET (Fine-tuned) and ODP-
tagger+SciBERT+EBM-COMET. In table 5, we show exam-
ples of outputs of both models for the ODP task given an input
sentence with known actual outcome phrases (underlined).
Fine-tuned model correctly detects (blue-coded) all full out-
come phrase in the first example sentence i.e. Precision (P),
Recall/Sensitivity (R) are 100%, whereas tagger only detects
3/4 outcomes, hence P is 100%, R is 75%. Neither of the
models correctly capture full mention of the outcome phrase
in the second example, they incorrectly predict some words



Method Abstract sentence Full outcome phrase

Input
sentence

Among patients who received sorafenib, the most
frequently reported adverse events were grade 1 or 2
events of rash (73%), fatigue (67%), hypertension
(55%) and diarrhea (51%).

- adverse events
- rash

- fatigue
- hypertension
- diarrhea

BioBERT+
EBM-COMET Output

Among patients who received sorafenib, the most
frequently reported adverse events were grade 1 or 2
events of rash (73%), fatigue (67%), hypertension
(55%) and diarrhea (51%).

- adverse events
- rash

- fatigue
- hypertension
- diarrhea

ODP-tagger+
SciBERT
+EMB-COMET

Output

Among patients who received sorafenib, the most
frequently reported adverse events were grade 1 or 2
events of rash (73%), fatigue (67%), hypertension
(55%) and diarrhea (51%)..

- fatigue
- diarrhea - hypertension

Input
sentence

The average duration of operating procedure was
1 hour and 35 minutes. - duration of operating procedure

BioBERT+
EBM-COMET Output The average duration of operating procedure was

1 hour and 35 minutes.
ODP-tagger+
SciBERT
+EMB-COMET

Output The average duration of operating procedure was
1 hour and 35 minutes.

Input
sentence

The objective of this study was to evaluate
right heart size and function assessed by
echocardiography during long term treatment with
riociguat.

- right heart size
- right heart function

BioBERT+
EBM-COMET Output

The objective of this study was to evaluate
right heart size and function assessed by
echocardiography during long term treatment with
riociguat.

- right heart size

ODPtagger+
SciBERT+
EMB-COMET

Output

The objective of this study was to evaluate
right heart size and function assessed by
echocardiography during long term treatment with
riociguat.

Table 5: Example outcome detection outputs from best fine-tuned BioBERT and ODP-tagger+SciBERT models.

(red-coded) to not belong to the outcome phrase. While tra-
ditionally, results of fine-tuned model would be a P of 100%
and R of 50% for correct prediction of 2/4 tokens, in our strict
full name evaluation, P and R are 0%, because some tokens
in the full outcome phrase are mis-classified in both models
i.e. True positives = 0. Similarly, in the third example, fine-
tuned model achieves P of 100% and R of 60% for correct
prediction of 3/5 tokens in the traditional evaluation, whereas
for the strict full name evaluation, R is 50% because only 1/2
full outcome phrases are detected. We attribute these errors
to the length of some outcome phrases with some containing
extremely common words such as prepositions (“of”). Ad-
ditionally, we note that the contiguous outcome span annota-
tions (containing several outcomes sharing terms e.g. “right
heart size and function” in the third example) are rare.

P R S F
EBM-NLPrev 53.7 51.2 99.2 52.4
EBM-COMET 60.8 81.3 98.0 69.6

Table 6: Precision (P), Recall/Sensitivity (R), Specificity (S) and F1
of outcome entities in EBM-NLPrev and EBM-COMET.

3.7 Evaluation on the original EBM-NLP
We additionally fine-tune our best model for the task of de-
tection of all PIO elements in the original EBM-NLP dataset.
To be consistent with the original EBM-NLP paper, we con-
sider the token-level detection of the PIO elements task in
their work, comparing their evaluation results for hierarchi-
cal labels with those we obtain by fine-tuning our best model.
Using their published training (4670) and test (190) sets of
the starting spans, we see fine-tuned BioBERT model outper-
form the current leader board results 4 and the SOTA results
published by Brockmeier et al [24] (table 7). We attribute this
improvement to the fact, unlike the LSTM-CRF and Logreg
models in previous SOTA scores, BioBERT’s has an internal
capability to encode information using self-attention mecha-
nisms to generate context-sensitive representations of words.

3.8 Outcome phrase length
To further understand our results, we investigated how well
the best models BioBERT+EBM-COMET (Fine-tuned) and
ODP-tagger+SciBERT+EBM-COMET (Feature-extraction)
detected outcome phrases of varying lengths. We calcu-
late a prediction accuracy as number of correctly predicted
outcome-phrases of length x/number of all outcome-phrases

4https://ebm-nlp.herokuapp.com/

https://ebm-nlp.herokuapp.com/


P I O
Logreg 45.0 25.0 38.0
Lstm-crf 40.0 50.0 48.0
Brockmeier et.al [24] 70.0 56.0 70.0
Fine-tuned BioBERT 71.6 69.0 73.1
Fine-tuned BioBERT – Full
outcome phrase mentions 61.6 64.0 53.1

Table 7: F1 scores of token level detection of PIO elements reported
for EBM-NLP hierarchical labels dataset by the EBM-NLP [4]
leader board,

of length x, where x ranged from 1-10. As observed in figure
3, the fine-tuned model slightly outperforms the ODP-tagger
especially for outcome phrases having 3-6 words (i.e. 3-6 en-
tity span length). However, it is also clear that both models
struggled to accurately detect outcome phrases containing 7
or more words.

Figure 3: Prediction accuracy per entity text-span length.

4 Conclusion
In this work, we present EBM-COMET, a dataset of clini-

cal trial abstracts with outcome annotations to facilitate EBM
tasks. Experiments showed that CLMs perform much bet-
ter on EBM-COMET than they do on EBM-NLP, indicat-
ing it is suited for ODP task especially because it is well
aligned to standardised outcome classifications. Our as-
sessment showed) fine-tuned models consistently outperform
and converge faster than feature extraction, particularly pre-
trained BioBERT and SciBERT embedding models. Addi-
tionally, we show the significance of accurate detection of
full mention of granular outcome phrases which is beneficial
for clinicians searching for this information.
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Appendix
A Adapting CLMs to Outcome Detection

Task
1 Fine-tuning
The biomedical CLMs presented under section 3.2 are fine-
tuned for the Outcome Detection (ODP) task. Given an input
sentence containing n words/tokens, e.g. s = w1, . . . , wn,
the CLMS are used to encode each a word wi to obtain a
hidden state representation hi = CLM(wi), where 1 ≤
i ≤ n, {BERT-variants, BioELMo, BioFLAIR}∈ CLM and
hi ∈ Rn×d (i.e. hi is a vector of size d). We then ap-
ply softmax function to return a probability of each label for
each position in the sentence s, y = softmax(W · hi + b),
where W ∈ R|L|×k i.e. W is a matrix with dimensions
|L| (size of label set) ×k (hidden-state size). L represents
the set of outcome type target labels. Given the probability
distribution the softmax generates at each position, we use
argmax

θ
P (y|wn; θ) to to return the predicted outcome type

label.

2 Building an Outcome Detection Model
(ODP-tagger)

In this work, we augment a BiLSTM model with in-domain
resources including medically oriented part-of-speech tags
(POS) and PubMed word2vec vectors [29]. We then train
the model on EBM-NLPrev incorporating a class distribution
balancing factor which essentially aims to regularize the mul-
tiway softmax loss with a balanced weighting across multiple
classes. The conscious effort of augmenting a regular BiL-
STM was indeed re-enumerated with a visible gradual im-
provement in dev set F1 scores for the ODP task as table 10
presents. Below sections cover the augmentation steps.

Custom trained biomedical POS
We compare the performance of 3 Part-Of-Speech (POS) tag-
gers, which include, 2 popular generic and fully established
Natural language Processing (NLP) libraries, spaCy5 [1],
Stanford Core NLP6 [53], and a tagger specifically tuned for
POS tagging tasks on biomedical text (Genia-Tagger) [54].
The Genia-Tagger is pre-trained on a collection of articles
extracted from the MEDLINE database [55]. To avoid any
biased analysis in the comparative study, spaCy and Stanford
Core NLP are also customised for biomedical text by training
them on a corpus of 6,700 Medline sentences (MedPOST) an-
notated with 60 POS tags [56]. These 3 taggers are each used
to provide POS features to input samples (words) for a task to
classify outcome phrases into five outcome types that include
Physical, Pain, Mental, Mortality, Adverse effects and Other
as predefined in EBM-NLPrev dataset. A BiLSTM network
and a softmax classification layer are used to complete this
task. The model using trained Stanford tagger outperforms
the other two models (table 8), and as a result, we use Stan-
ford Core NLP for POS tagging in the proceeding ODP task.

Context-Independent PubMed word2vec vectors (W2V)
We train word2vec (W2V) on 5.5B tokens of PubMed and
PMC abstracts to obtain these vectors. These fixed vectors
are later replaced by the pre-trained CLMs in the feature ex-
traction approach during evaluation.

5https://spacy.io/
6https://nlp.stanford.edu/software/tagger.html

https://spacy.io/
https://nlp.stanford.edu/software/tagger.html


EBM-NLPrev (F1%)
BiLSTM-spaCY-MedPOST 80.5
BiLSTM-stanford-MedPOST 81.3
BiLSTM-Genia-Tagger 79.0

Table 8: Macro-average F1 scores in a text classification task of Out-
comes in EBM-NLPrev corpus. Biomedical POS taggers including
spaCY-MedPOST, stanford-MedPOST and Genia-Tagger are used
to provide POS features which alongside the text are used in train-
ing the BiLSTM model.

Probing for a loss function for the ODP-tagger
We assess 3 cost-sensitive functions premised on a log-
likelihood objective log p(y|w), (log probability of label y
given input word w) to identify a suitable learning loss for
the ODP-tagger experiments.

ODPloss = −
∑

(S,L)∈T

n∑
i

p(yi|wi) (4)

where T is the training set containing sentences, wi ∈ S and
y ∈ L.

Imputed Inverse loss (IIL) function
Empirically setting each labels’ weights to be inversely pro-
portional to the label frequency. A relatively simple heuristic
that has been widely adopted [57].

IIL = β ·ODPloss (5)

We check two variants of the scaling factor β in the Imputed
Inverse Loss equation IIL1, β = 1

Ny
and a smoothed version

IIL2, β = 1√
Ny

, where Ny is the number of training samples

labelled y or frequency of ground truth label y.

Class balanced loss (CB)
The Class balanced loss proposed by Cui et al., [58] discusses
the concept of effective number of samples to capture the di-
minishing marginal benefits of incrementing the samples of
a class. Due to the intrinsic similarities among real-world
data, increasing the sample size of a class might not necessar-
ily improve model-performance. Cui et al., [58] introduces a
weighting factor that is inversely proportional to the effective
number samples En.

Where En = 1−β
1−βny , β = N−1

N , N is dataset size and ny
is the sample size of label y, βny =

ny−1
ny

.

CL =
1

En
ODPloss (6)

Focal loss (FL)
Focal loss assigns higher weights to harder examples and
lower ones to the easier examples [59]. It introduces a scaling
factor (1− p)λ. λ is a focusing parameter in the loss function
which decays to zero as the confidence in the correct class
increases hence automatically down weighting the contribu-
tion of easy examples in the training and rapidly focusing on
harder examples.

FL = −αy(1− Py)λODPloss (7)

where α is a weighting factor, α ∈ [0, 1], αy is set to 1
Ny

, Ny is the number of training samples for class y, Py is the
probability of ground truth label y. We do not hypertune the
focusing parameter λ, and instead set it to λ = 2 based on
having achieved good results in examples [58].

EBM-NLPrev

BiLSTM 27.0
BiLSTM + IIL1 37.0
BiLSTM + IIL2 38.0
BiLSTM + CB 37.0
BiLSTM + FL 19.0

Table 9: F1 % scores in the ODP task for various cost-sensitive loss
functions on the EBM-NLPrev corpus. BiLSTM∗ implies the model
was training with default ODPloss objective as shown in (4)

Results in table 9 indicate both IIL variants and CB are
quite competitive, however we chose IIL2 particularly be-
cause it slightly outperforms all the other tested IIL2 for the
objective loss function.

Introducing an undersampling hyper-parameter (US)
In this strategy, we randomly undersample the majority class
of the dataset by a specified percentage. The objective of the
ODP-tagger is to minimize the Imputed Inverse loss (IIL2)
derived from the preceding section which probes for a suit-
able loss function,

IIL2 = − 1√
Ny

∑
(S,L)∈T

n∑
i

p(yi|wi) (8)

Table 10 results are emblematic of the positive impact each
of the different strategies had in architecting the ODP-tagger.
We observe slight performance improvements upon adopting
US50 (a strategy in which the majority class is undersampled
by 50% during training) and replacement of the softmax with
a CRF for classification. We observe cumulative gains in

Model F1
1 BiLSTM 32.5
2 BiLSTM + POS 37.9
3 BiLSTM + POS + W2V 41.1
4 BiLSTM + POS + W2V + IIL 43.2
5 BiLSTM + POS + W2V + IIL + US50 43.6
6 BiLSTM + POS + W2V + IIL + US50 + CRF 44.0
7 BiLSTM + POSSt + W2VPb + IIL2 42.8 (1.5)
8 BiLSTM + POSSt + W2VPb + IIL2 + US50 43.2 (1.9)
9 BiLSTM + POSSt + W2VPb + IIL2 + US50 + CRF 44.3 (1.4)

Table 10: F1 % scores in the ODP task resulting from incremen-
tally augmenting the BiLSTM with various components to build the
ODP-tagger. BiLSTM∗ implies the model was training with default
ODPloss objective as shown in (4), POSSt denotes POS tagging by
Stanford CoreNLP tagger, W2VPb denotes Word2Vec trained using
PubMed articles (Only non-contextual embeddings are tested in this
investigation because they have smaller dimensions), IIL2 denotes
Imputed Inverse loss, US50 denotes Undersampling majority class
by 50%. Exps 1-5 use a softmax classifier which is replaced by a
CRF in 5. Exps 7-9 report the mean and (standard deviation) over 5
random train/test splits



performance of 5.4%, 3.2% and 2.1% upon adding POSSt,
W2VPb and IIL2 respectively. On the otherhand, adopting
US50 and replacement of the softmax with a CRF for classi-
fication lead to slight improvements of 0.4% each.

We are aware that the improvements narrated above can
dramatically change given new splits of the data, particularly
the slight improvements brought about by US50 and the CRF.
Therefore, to account for this, we check for the robustness
of the improvements brought about by US50 and the CRF by
measuring performance across 5 different randomly split train
and test sets. The mean and (standard deviation) across the 5
experiments of the random splits are reported in Exps 7, 8 and
9. Results obtained in 8 and 9 show that both US50 and the
CRF respectively lead to substantial improvements in perfor-
mance when added to the ODP-tagger. Later on, we hyper-
tune multiple parameters to obtain the optimal parameter set-
tings (11) for fine-tuning and feature extraction experiments.
B Hyper-parameter Tuning

The tuned ranges for the hyper-parameters used in our
models are included in table 11.

Fine-tuning
Tuned range Optimal

Learning rate [1e-5,1e-4, 1e-3, 1e-2] 1e-5
Train Batch size [16, 32] 32
Epochs [3, 5, 10] 10
Sampling % (US) [50, 75, 100] 100
Optimizer [Adam, SGD] Adam

ODP-tagger
Learning rate [1e-4, 1e-3, 1e-2, 1e-1] 1e-1
Train Batch size [50, 150, 250, 300] 300
Epochs [60, 80, 120, 150] 60
Sampling % (US) [10, 25, 50, 75] 50
Optimizer [Adam, SGD] SGD

Table 11: Hyper-parameter tuning details in the feature extraction
approach for the fine-tuned CLMs and the ODP-tagger (feature ex-
traction).



C A classification taxonomy of outcome domains suitable for retrieval of outcome phrases from
clinical text

Core area Outcome domain Domain symbol Explanation

Physiological Physiological/Clinical P 0
Includes measures of physiological function, signs and
symptoms, laboratory (and other scientific) measures
relating to physiology.

Death Mortality/survival P 1

Includes overall (all-cause) survival/mortality and
cause-specific survival/mortality, as well as composite
survival outcomes that include death (e.g. disease-free
survival, progression-free survival, amputation-free survival).

Life impact Physical functioning P 25

Impact of disease/condition on physical activities of
daily living (for example, ability to walk, independence,
self-care, performance status, disability index, motor skills,
sexual dysfunction. health behaviour and management).

Social functioning P 26

Impact of disease/condition on social functioning (e.g.
ability to socialise, behaviour within society, communication,
companionship, psychosocial development, aggression,
recidivism, participation).

Role functioning P 27 Impact of disease/condition on role (e.g. ability to care for
children, work status).

Emotional functioning/wellbeing P 28

Impact of disease/condition on emotions or overall wellbeing
(e.g. ability to cope, worry, frustration, confidence, perceptions
regarding body image and appearance, psychological status,
stigma, life satisfaction, meaning and purpose, positive affect,
self-esteem, self-perception and self-efficacy).

Cognitive functioning P 29

Impact of disease/condition on cognitive function (e.g. memory
lapse, lack of concentration, attention); outcomes relating to
knowledge, attitudes and beliefs (e.g. learning and applying
knowledge, spiritual beliefs, health beliefs/knowledge).

Global quality of life P 30 Includes only implicit composite outcomes measuring global
quality of life.

Perceived health status P 31 Subjective ratings by the affected individual of their relative
level of health.
Includes outcomes relating to the delivery of care, including
- adherence/compliance, withdrawal from intervention
e.g. time to treatment failure).
- tolerability/acceptability of intervention.
- appropriateness, accessibility, quality and adequacy of
intervention.
- patient preference, patient/carer satisfaction (emotional
rather than financial burden).
- process, implementation and service outcomes (e.g.
overall health system performance and the impact of service
provision on the users of services).

Personal circumstances P 33 Includes outcomes relating to patient’s finances, home
and environment.

Resource use Economic P 34 Includes general outcomes (e.g. cost, resource use) not
captured within other specific resource use domains.

Hospital P 35 Includes outcomes relating to inpatient or day care hospital
care (e.g. duration of hospital stays, admission to ICU).

Need for further intervention P 36

Includes outcomes relating to,
- medication (e.g. concomitant medications, pain relief)
- surgery (e.g. caesarean delivery, time to transplantation)
- other procedures (e.g. dialysis-free survival, mode of delivery)

Societal/carer burden P 37
Includes outcomes relating to financial or time implications
on carer or society as a whole e.g. need for home help, entry
to institutional care, effect on family income

Adverse events Adverse events/effects P 38

Includes outcomes broadly labelled as some form of unintended
consequence of the intervention e.g. adverse events/effects,
adverse reactions, safety, harm, negative effects, toxicity,
complications, sequelae. Specifically named adverse events
should be classified within the appropriate taxonomy domain
above

Table 12: A taxonomy of outcome classifications developed and used by [2] to classify clinical outcomes extracted from biomedical articles
published in repositories that include Core Outcome Measures in Effectiveness Trials (COMET), Cochrane reviews and clinical trial registry


	1 Introduction
	2 Related Work
	2.1 Outcome detection
	2.2 Transfer Learning (TL)

	3 Materials and Methods
	3.1 Data
	EBM-COMET
	EBM-NLPrev

	3.2 Biomedical Contextual Language Models
	3.3 ODP-tagger
	3.4 Training
	3.5 Evaluation results
	3.6 Full outcome phrase detection
	3.7 Evaluation on the original EBM-NLP
	3.8 Outcome phrase length

	4 Conclusion
	A Adapting CLMs to Outcome Detection Task
	1 Fine-tuning
	2 Building an Outcome Detection Model (ODP-tagger)
	Custom trained biomedical POS
	Context-Independent PubMed word2vec vectors (W2V) 
	Probing for a loss function for the ODP-tagger
	Imputed Inverse loss (IIL) function
	Class balanced loss (CB)
	Focal loss (FL)
	Introducing an undersampling hyper-parameter (US)


	B Hyper-parameter Tuning
	C A classification taxonomy of outcome domains suitable for retrieval of outcome phrases from clinical text

