Genomic and antigenic diversity of colonising *Klebsiella pneumoniae* isolates mirrors that of invasive isolates in Blantyre, Malawi

Supplementary Material

O-type	n (%)	Cumulative n (%)
O1v1	60 (29.6%)	60 (29.6%)
O2v2	30 (14.8%)	90 (44.3%)
O1v2	29 (14.3%)	119 (58.6%)
O4	29 (14.3%)	148 (72.9%)
O3b	16 (7.9%)	164 (80.8%)
O2v1	13 (6.4%)	177 (87.2%)
O5	6 (3.0%)	183 (90.1%)
OL101	6 (3.0%)	189 (93.1%)
OL103	6 (3.0%)	195 (96.1%)
Unknown	6 (3.0%)	201 (99.0%)
012	1 (0.5%)	202 (99.5%)
OL104	1 (0.5%)	203 (100.0%)

Supplementary Table 1: Distribution of O-antigens

K-type	n (%)	Cumulative n (%)
KL2	23 (11.3%)	23 (11.3%)
KL102	19 (9.4%)	42 (20.7%)
KL15	13 (6.4%)	55 (27.1%)
KL25	12 (5.9%)	67 (33.0%)
KL111	11 (5.4%)	78 (38.4%)
Unknown	9 (4.4%)	87 (42.9%)
KL149	8 (3.9%)	95 (46.8%)
KL30	8 (3.9%)	103 (50.7%)
KL16	7 (3.4%)	110 (54.2%)
KL24	7 (3.4%)	117 (57.6%)
KL10	6 (3.0%)	123 (60.6%)
KL17	6 (3.0%)	129 (63.5%)
KL57	6 (3.0%)	135 (66.5%)
KL112	5 (2.5%)	140 (69.0%)
KL23	5 (2.5%)	145 (71.4%)
KL27	5 (2.5%)	150 (73.9%)
KL110	4 (2.0%)	154 (75.9%)
KL48	4 (2.0%)	158 (77.8%)
KL137	3 (1.5%)	161 (79.3%)
KL18	3 (1.5%)	164 (80.8%)
KL39	3 (1.5%)	167 (82.3%)
KL108	2 (1.0%)	169 (83.3%)
KL13	2 (1.0%)	171 (84.2%)
KL136	2 (1.0%)	173 (85.2%)
KL151	2 (1.0%)	175 (86.2%)
KL155	2 (1.0%)	177 (87.2%)
KL21	2 (1.0%)	179 (88.2%)
KL54	2 (1.0%)	181 (89.2%)
KL63	2 (1.0%)	183 (90.1%)
KL67	2 (1.0%)	185 (91.1%)
KL8	2 (1.0%)	187 (92.1%)
KL103	1 (0.5%)	188 (92.6%)
KL105	1 (0.5%)	189 (93.1%)
KL114	1 (0.5%)	190 (93.6%)
KL115	1 (0.5%)	191 (94.1%)
KL12	1 (0.5%)	192 (94.6%)
KL123	1 (0.5%)	193 (95.1%)
KL14	1 (0.5%)	194 (95.6%)
KL145	1 (0.5%)	195 (96.1%)
KL157	1 (0.5%)	196 (96.6%)
KL19	1 (0.5%)	197 (97.0%)
KL52	1 (0.5%)	198 (97.5%)
KL59	1 (0.5%)	199 (98.0%)
KL62	1 (0.5%)	200 (98.5%)
KL64	1 (0.5%)	201 (99.0%)
KL74	1 (0.5%)	202 (99.5%)
KL9	1 (0.5%)	203 (100.0%)

Supplementary Table 2: Distribution of K-antigens

Supplementary Table 3: Fisher's exact test Benjamini-Hochberg corrected p-values testing equal distribution of O-types across invasive and carriage isolates

O-type	Uncorrected p- value	Benjamini-Hochberg corrected p-values
O1/O2v1	0.15400	0.431
O12	1.00000	1.000
O1v1	0.20300	0.474
O1v2	0.04140	0.290
O2v1	0.29800	0.596
O2v2	0.53000	0.824
O3/O3a	0.00906	0.127
O3b	0.09730	0.341
O4	0.75500	0.903
O5	0.77400	0.903
OL101	0.48800	0.824
OL103	0.08520	0.341
OL104	1.00000	1.000
Unknown	0.75800	0.903

Supplementary Table 4: Fisher's exact test Benjamini-Hochberg corrected p-values testing equal distribution of K-types across invasive and carriage isolates

K-type	Uncorrected p-	Benjamini-Hochberg
	value	corrected p-values
KL10	0.154000	0.6640
KL102	0.054300	0.5120
KL103	1.000000	1.0000
KL104	0.394000	0.8390
KL105	1.000000	1.0000
KL106	1.000000	1.0000
KL108	0.521000	0.8820
KL109	0.394000	0.8390
KL110	0.157000	0.6640
KL111	0.032300	0.3550
KL112	0.161000	0.6640
KL114	1.000000	1.0000
KL115	1.000000	1.0000
KL12	1.000000	1.0000
KL122	0.394000	0.8390
KL123	1.000000	1.0000
KL125	0.394000	0.8390
KL127	0.394000	0.8390
KL13	1.000000	1.0000
KL132	1.000000	1.0000
KL134	0.394000	0.8390
KL136	0.521000	0.8820
KL137	0.282000	0.8390
KL14	0.564000	0.9080
KL142	0.394000	0.8390
KL145	1.000000	1.0000
KL149	0.094500	0.6640

KL15	0.013900	0.2290
KL151	0.521000	0.8820
KL155	0.521000	0.8820
KL157	1.000000	1.0000
KL158	0.394000	0.8390
KL16	0.774000	1.0000
KL165	0.394000	0.8390
KL17	1.000000	1.0000
KL18	0.282000	0.8390
KL19	1.000000	1.0000
KL2	0.865000	1.0000
KL20	0.003490	0.0768
KL21	0.521000	0.8820
KL23	0.252000	0.8390
KL24	0.538000	0.8880
KL25	0.176000	0.6830
KL27	0.085200	0.6640
KL3	0.154000	0.6640
KL30	0.770000	1.0000
KL39	0.652000	1.0000
KL43	0.000194	0.0128
KL45	0.154000	0.6640
KL48	0.652000	1.0000
KL5	0.394000	0.8390
KL51	0.154000	0.6640
KL52	1.000000	1.0000
KL53	0.394000	0.8390
KL54	0.521000	0.8820
KL55	0.154000	0.6640
KL57	1.000000	1.0000
KL59	1.000000	1.0000
KL62	0.001280	0.0422
KL63	1.000000	1.0000
KL64	1.000000	1.0000
KL67	0.521000	0.8820
KL74	1.000000	1.0000
KL8	0.521000	0.8820
KL9	1.000000	1.0000
Unknown	0.028400	0.3550

Supplementary Table 5: Distribution of Kleborate-identified virulence loci stratified by invasive versus colonising isolates in the full collection (top) and sensitivity analysis population (bottom).

	Locus			
Virulence locus	Invasive Isolates	Colonising Isolates	p value	
All samples				
clb	4/139 (3%)	0/214 (0%)	0.023	
iro	8/139 (6%)	1/214 (0%)	0.003	
iuc	18/139 (13%)	1/214 (0%)	<0.001	
rmpA	3/139 (2%)	1/214 (0%)	0.304	
rmpA2	18/139 (13%)	1/214 (0%)	<0.001	
ybt	26/139 (19%)	68/214 (32%)	0.007	
Sensitivity analysis population				
clb	4/78 (5%)	0/191 (0%)	0.007	
iro	7/78 (9%)	1/191 (1%)	0.001	
iuc	7/78 (9%)	1/191 (1%)	0.001	
rmpA	3/78 (4%)	1/191 (1%)	0.075	
rmpA2	7/78 (9%)	1/191 (1%)	0.001	
ybt	21/78 (27%)	61/191 (32%)	0.467	

Supplementary Table 6: Distribution of VFDB-defined virulence loci stratified by invasive versus colonising isolates in the full collection (top) and sensitivity analysis population (bottom).

Virulence Icous	Identfied genes	All	Invasive	Colonising	p-
	_	isolates	isolates	Isolates	value
All samples					
AcrAB	acrA, acrB	350/353	136/139	214/214	0.060
		(99%)	(98%)	(100%)	
Regulation of	rcsA, rcsB	350/353	136/139	214/214	0.060
capsule		(99%)	(98%)	(100%)	
synthesis					
Type 1 fimbriae	fimA, fimB, fimC, fimE, fimH,	348/353	137/139	211/214	1.000
	fiml	(99%)	(99%)	(99%)	
Type 3 fimbriae	mrkA, mrkB, mrkC, mrkD,	347/353	135/139	212/214	0.217
	mrkF, mrkH, mrkI, mrkJ	(98%)	(97%)	(99%)	
T6SS	clpV/tssH, dotU/tssL,	338/353	134/139	204/214	0.789
	hcp/tssD, icmF/tssM,	(96%)	(96%)	(95%)	
	impA/tssA, KPHS_23120,				
	sciN/tssJ, tli1, tssF, tssG,				
	vasE/tssK, tle1, vgrG/tssl,				
	vipA/tssB, vipB/tssC				
E. coli common	yagW/ecpD, yagY/ecpB,	32/353	2/139	30/214	< 0.001
pilus	yagZ/ecpA, ykgK/ecpR	(9%)	(1%)	(14%)	
Allantion	allA, allB, allC, allD, allR,	12/353	4/139	8/214 (4%)	0.770
utilization	allS	(3%)	(3%)		
E. coli K1	kpsD, kpsE, kpsF	2/353	2/139	0/214 (0%)	0.154
capsule		(1%)	(1%)		
P fimbriae	papl	2/353	2/139	0/214 (0%)	0.154
		(1%)	(1%)		
Afa/Dr family	afaE-I	1/353	1/139	0/214 (0%)	0.394
		(0%)	(1%)		
Dr adhesins	draP	1/353	1/139	0/214 (0%)	0.394
		(0%)	(1%)		
E. coli heme	chuA, chuS, chuT, chuU,	1/353	1/139	0/214 (0%)	0.394
uptake	chuV, chuW, chuX, chuY	(0%)	(1%)		
Flagella	fliJ	1/353	1/139	0/214 (0%)	0.394
-		(0%)	(1%)		
Invasion of brain	ibeA	1/353	1/139	0/214 (0%)	0.394
endothelial cells		(0%)	(1%)		
Secreted	sat	1/353	1/139	0/214 (0%)	0.394
autotransporter		(0%)	(1%)		
toxin		、 ,	, , , , , , , , , , , , , , , , , , ,		
Shigella	senB	1/353	1/139	0/214 (0%)	0.394
enterotoxin 2		(0%)	(1%)	. ,	
Type II secretion	gspD, gspK	1/353	1/139	0/214 (0%)	0.394
system		(0%)	(1%)		
Sensitivity analysis population					
AcrAB	acrA, acrB	269/269	78/78	191/191	1.000
		(100%)	(100%)	(100%)	

Regulation of	rcsA, rcsB	269/269	78/78	191/191	1.000
capsule		(100%)	(100%)	(100%)	
synthesis					
Type 1 fimbriae	fimA, fimB, fimC, fimE, fimH,	266/269	78/78	188/191	0.559
	fiml	(99%)	(100%)	(98%)	
Type 3 fimbriae	mrkA, mrkB, mrkC, mrkD,	266/269	77/78	189/191	1.000
	mrkF, mrkH, mrkI, mrkJ	(99%)	(99%)	(99%)	
T6SS	clpV/tssH, dotU/tssL,	258/269	76/78	182/191	0.519
	hcp/tssD, icmF/tssM,	(96%)	(97%)	(95%)	
	impA/tssA, KPHS_23120,	. ,		. ,	
	sciN/tssJ, tli1, tssF, tssG,				
	vasE/tssK, tle1, vgrG/tssl,				
	vipA/tssB, vipB/tssC				
E. coli common	yagW/ecpD, yagY/ecpB,	27/269	2/78	25/191	0.007
pilus	yagZ/ecpA, ykgK/ecpR	(10%)	(3%)	(13%)	
Allantion	allA, allB, allC, allD, allR,	11/269	3/78	8/191 (4%)	1.000
utilization	allS	(4%)	(4%)		
Afa/Dr family	afaE-I	1/269	1/78	0/191 (0%)	0.290
		(0%)	(1%)	, , , , , , , , , , , , , , , , , , ,	
Dr adhesins	draP	1/269	1/78	0/191 (0%)	0.290
		(0%)	(1%)		
E. coli heme	chuA, chuS, chuT, chuU,	1/269	1/78	0/191 (0%)	0.290
uptake	chuV, chuW, chuX, chuY	(0%)	(1%)		
Invasion of brain	ibeA	1/269	1/78	0/191 (0%)	0.290
endothelial cells		(0%)	(1%)		
E. coli K1	kpsD, kpsE, kpsF	1/269	1/78	0/191 (0%)	0.290
capsule	, , , , ,	(0%)	(1%)	, , , , , , , , , , , , , , , , , , ,	
P fimbriae	papl	1/269	1/78	0/191 (0%)	0.290
		(0%)	(1%)	, , , , , , , , , , , , , , , , , , ,	
Secreted	sat	1/269	1/78	0/191 (0%)	0.290
autotransporter		(0%)	(1%)		
toxin		. ,	` ,		
Shigella	senB	1/269	1/78	0/191 (0%)	0.290
enterotoxin 2		(0%)	(1%)	, , , , , , , , , , , , , , , , , , ,	
Type II secretion	gspD, gspK	1/269	1/78	0/191 (0%)	0.290
system		(0%)	(1%)	. ,	
Flagella	fliJ	0/269	0/78	0/191 (0%)	1.000
-		(0%)	(0%)	. ,	

Supplementary Figure 1: Multilocus sequence type (ST) distribution of all included Malawian genomes.

Supplementary Figure 2: Midpoint-rooted core-gene maximum-likelihood phylogenetic trees of isolates from the study. (A) shows the full phylogeny with species (coloured bar) and sequence type (ST, black bars); (B) restricts to *K. pneumoniae subsp. pneumoniae*, showing STs (black bars). Scale bars show nucleotide substitutions per site.

Supplementary Figure 3: Jaccard-distance heatmap of presence of ARIBAidentified AMR genes, clustered with a hierarchical clustering algorithm. Several AMR-gene clusters are apparent.

Supplementary Figure 4: Presence of ARIBA-identified AMR genes mapped back to phylogeny for (A) KPI isolates only (B) all samples. Some lineage association of AMR genes is apparent.

Supplementary Figure 5: Virulence determinants of Malawian isolates stratified by (A) carriage or infecting isolate (B) ESBL or non-ESBL isolate

Supplementary Figure 6: Midpoint rooted core-gene maximum-likelihood phylogenetic tree of Malawian isolates, showing VFDB-identified virulence determinants. Included are all genomes from this study and context genomes from Malawian studies (n = 353), and restricted to *Klebsiella pneumoniae subsp. pneumoniae*.

Supplementary Figure 7: K-, O-locus and ST distribution in all samples and in sensitivity analysis population

Supplementary Figure 8: O- and K- type distribution in colonising and infecting isolates in the sensitivity analysis population