Whole genome sequencing reveals host factors underlying critical Covid-19

Athanasios Kousathanas^{‡,1}, Erola Pairo-Castineira^{‡,2,3}, Konrad Rawlik², Alex Stuckey¹, Christopher A Odhams¹, Susan Walker¹, Clark D Russell^{2,4}, Tomas Malinauskas⁵, Yang Wu⁶, Jonathan Millar², Xia Shen^{7,8}, Katherine S Elliott⁵, Fiona Griffiths², Wilna Oosthuyzen², Kirstie Morrice⁹, Sean Keating¹⁰, Bo Wang², Daniel Rhodes¹, Lucija Klaric³, Marie Zechner², Nick Parkinson², Afshan Siddiq¹, Peter Goddard¹, Sally Donovan¹, David Maslove¹¹, Alistair Nichol¹², Malcolm G Semple^{13,14}, Tala Zainy¹, Fiona Maleady-Crowe¹, Linda Todd¹, Shahla Salehi¹, Julian Knight⁵, Greg Elgar¹, Georgia Chan¹, Prabhu Arumugam¹, Christine Patch¹, Augusto Rendon¹, David Bentley¹⁵, Clare Kingsley¹⁵, Jack A. Kosmicki¹⁶, Julie E. Horowitz¹⁶, Aris Baras¹⁶, Goncalo R. Abecasis¹⁶, Manuel A. R. Ferreira¹⁶, Anne Justice¹⁷, Tooraj Mirshahi¹⁷, Matthew Oetjens¹⁷, Daniel J. Rader¹⁸, Marylyn D. Ritchie¹⁸, Anurag Verma¹⁸, Tom A Fowler^{1,19}, Manu Shankar-Hari²⁰, Charlotte Summers²¹, Charles Hinds²², Peter Horby²³, Lowell Ling²⁴, Danny McAuley^{25,26}, Hugh Montgomery²⁷, Peter J.M. Openshaw^{28,29}, Paul Elliott³⁰, Timothy Walsh¹⁰, Albert Tenesa^{2,3,8}, GenOMICC Investigators *, 23andMe *, Covid-19 Human Genetics Initiative *, Angie Fawkes⁹, Lee Murphy⁹, Kathy Rowan³¹, Chris P Ponting³, Veronique Vitart³, James F Wilson^{3,8}, Jian Yang^{32,33}, Andrew D. Bretherick³, Richard H Scott^{1,34}, Sara Clohisey Hendry^{†,2}, Loukas Moutsianas^{†,1}, Andy Law^{†,2}, Mark J Caulfield^{†,§,1,35}, J. Kenneth Baillie^{†,§,2,3,4,10}.

‡ - These authors contributed equally

* - A list of authors and their affiliations appears at the end of the paper.

[†] - These authors jointly supervised this work

§ - to whom correspondence should be addressed: m.j.caulfield@qmul.ac.uk, j.k.baillie@ed.ac.uk

¹Genomics England, London UK

²Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK

³MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK

⁴Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK

⁵Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK

⁶Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia

⁷Biostatistics Group, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China

⁸Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Teviot Place, Edinburgh EH8 9AG, UK

⁹Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, EH4 2XU, UK

¹⁰Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK

¹¹Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada

¹²Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland

¹³NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, L69 7BE, UK

¹⁴Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK

¹⁵Illumina Cambridge, 19 Granta Park, Great Abington, Cambridge, CB21 6DF, UK

¹⁶Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY10591, USA

¹⁷Geisinger, Danville, PA, 17822, USA

¹⁸Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
¹⁹Test and Trace, the Health Security Agency, Department of Health and Social Care, Victoria St, London, UK

²⁰Department of Intensive Care Medicine, Guy's and St. Thomas NHS Foundation Trust, London, UK

²¹Department of Medicine, University of Cambridge, Cambridge, UK

²²William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK

²³Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK

²⁴Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital,

Hong Kong, China

²⁵Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
²⁶Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, Northern Ireland, UK

 $^{27}\mathrm{UCL}$ Centre for Human Health and Performance, London, W1T 7HA, UK

 $^{28}\mbox{National}$ Heart and Lung Institute, Imperial College London, London, UK

²⁹Imperial College Healthcare NHS Trust:London,London,UK

³⁰Imperial College, London

³¹Intensive Care National Audit & Research Centre, London, UK

³²School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China

³³Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China

³⁴Great Ormond Street Hospital, London UK

³⁵William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1 6BQ

Critical Covid-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care¹ or hospitalisation^{2;3;4} following SARS-CoV-2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from critically-ill cases with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing in 7,491 critically-ill cases compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical Covid-19. We identify 16 new independent associations, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. Mendelian randomisation provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5, CD209) and coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of Covid-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication, or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between critically-ill cases and population controls is highly efficient for detection of therapeutically-relevant mechanisms of disease.

Critical illness in Covid-19 is both an extreme disease phenotype, and a relatively homogeneous clinical definition including patients with hypoxaemic respiratory failure⁵ with acute lung injury,⁶ and excluding many patients with non-pulmonary clinical presentations⁷ who are known to have divergent responses to therapy.⁸ In the UK, the critically-ill patient group is younger, less likely to have significant comorbidity, and more severely affected than a general hospitalised cohort,⁵ characteristics which may amplify observed genetic effects. In addition, since development of critical illness is in itself a key clinical endpoint for therapeutic trials,⁸ using critical illness as a phenotype in genetic studies enables detection of directly therapeutically-relevant genetic effects.¹

Using microarray genotyping in 2,244 cases, we previously discovered that critical Covid-19 is associated with genetic variation in the host immune response to viral infection (*OAS1*, *IFNAR2*, *TYK2*) and the inflammasome regulator *DPP9*.¹ In collaboration with international groups, we extended these findings to include a variant near *TAC4* (rs77534576).⁴ Several variants have been associated with milder phenotypes, including the ABO blood type locus,² a pleiotropic inversion in chr17q21.31,⁹ and associations in 5 additional loci including the T lymphocyte-associated transcription factor, *FOXP4*.⁴ An enrichment of rare loss-of-function variants in candidate interferon signalling genes has been reported,³ but this has yet to be replicated at genome-wide significance thresholds.^{10;11}

We performed whole genome sequencing (WGS) in partnership with Genomics England, to improve resolution and deepen fine-mapping of significant signals to enhance the biological insights into critical Covid-19. Here, we present results from a cohort of 7,491 critically-ill patients from 224 intensive care units, compared with 48,400 controls, describing discovery and validation of 23 gene loci for susceptibility to critical Covid-19 (Extended Data Figure 1).

Results

GWAS analysis

Following quality control procedures, we used a logistic mixed model regression, implemented in SAIGE, ¹² to perform association analyses with unrelated individuals (critically-ill cases: n = 7, 491, controls: n = 48, 400 (100k cohort: n = 46,770 and mild Covid-19: n = 1,630) (Methods, Supplementary Table 2). 1,339 of these cases were included in the primary analysis for our previous report.¹ Genome wide association studies (GWAS) were performed separately for genetic ancestry groups ($n_{cases}/n_{controls}$): European(EUR) 5,989/42,891; South Asian(SAS) 788/3,793; African(AFR) 440/1,350; East Asian(EAS) 274/366), and combined by inverse-variance weighted fixed effects meta-analysis using METAL (Methods). We established independence of signals using GCTA-cojo which we validated with conditional analysis using individual-level data with SAIGE (Methods, Supplementary Table 6). In order to reduce the risk of spurious associations arising from genotyping or pipeline errors, we required supporting evidence from variants in linkage disequilibrium for all genome-wide significant variants: observed z-scores for each variant were compared with imputed z-scores for the same variant, with discrepant values being excluded (see Methods, Supplementary Figure 12).

In population-specific analyses, we discovered 22 independent genome-wide significant associations in the EUR ancestry group (Figure 1, Supplementary Figure 11 and Table 1) at a *P*-value threshold adjusted for multiple testing $(2.2 \times 10^{-08};$ Supplementary Table 5). In multi-ancestry meta-analysis, we identified an additional three independent genome-wide significant association signals (Figure 1, Table 1).

To assess the sensitivity of our results to mismatches of demographic characteristics between cases and controls (Supplementary Figures 9,10), we performed an age-, sex- and body mass index (BMI)-matched case-control analysis (Supplementary Figures 18-21). Since there is a theoretical risk of mismatch between cases and 100k participants in risk factors for exposure (e.g. shielding behavior) or susceptibility to critical Covid-19 (e.g. immunosuppression), we performed a sensitivity analysis using only the mild cohort (see above; Supplementary Table 10). In both of these analyses, allele frequencies and directions of effect were concordant for all lead signals.

We inferred credible sets of variants using Bayesian fine-mapping with susieR¹³, by analysing the GWAS summaries of 17 regions of genomic length 3Mb that were flanking groups of lead signals. We obtained 22 independent credible sets of variants for EUR and an additional two from the transancestry meta-analysis with posterior inclusion probability > 0.95 (Extended Data Table 1 and Supplementary File: GWAS.xlsx). Fine mapping of the association signals revealed putative causal variants for both previously reported and novel association signals (See Supplementary Information, Extended Data Table 1). In 12 out of the 24 fine-mapped signals, the credible sets included five or fewer variants, and for 8 signals we detected variants with predicted missense or worse consequence across each credible set (Extended Data Table 1). We were able to fine-map multiple independent signals at previously identified loci (Figure 3, Extended Data Figures 2,3,4). For example, the signal in the 3p21.31 region, first reported by Ellinghaus $et al^{2}$ was fine-mapped into two independent associations, with the credible set for the first refined to a single variant in the 5' UTR region of *SLC6A20* (chr3:45796521:G:T, rs2271616, OR:1.29, 95%CI:1.21,1.37) and the second credible set including multiple variants in downstream and intronic regions of LZTFL1 (Figure 3). Among the novel signals, at 3q24 and 9p21.3 we detected missense variants that impact *PLSCR1* and *IFNA10* respectively (chr3:146517122:G:A, rs343320, p.His262Tyr, OR:1.24, 95%CI 1.15-1.33, CADD:22.6; chr9:21206606:C:G, rs28368148, p.Trp164Cys, OR:1.74, 95%CI 1.45-2.09, CADD:23.9). Both are predicted to be deleterious by the Combined Annotation Dependent Depletion (CADD) tool¹⁴. Structural predictions for these variants suggest functional effects (Extended Data Figure 5). We assessed whether the main signals of this study were underlain by rarer variants with lower minor allele frequency (MAF) (>0.02%) than our GWAS default threshold (>0.5%), by including rarer variant summaries when fine-mapping, but no additional variants were added to the main credible sets (Supplementary Table 9).

Consistent with our expectation that genetic susceptibility plays a stronger role in younger patients, age-stratified analysis (< 60 vs. \geq 60) in EUR revealed a signal in the 3p21.31 region with a significantly stronger effect in the younger age group (chr3:45801750:G:A, rs13071258, OR=3.34, 95%CI 2.98-3.75 vs. OR=2.1, 95%CI 1.88-2.34) that is in strong LD ($r^2=0.947$) with main GWAS signal indexed by rs73064425. Sex-specific analysis did not reveal significant effects (Supplementary Figure 17).

Replication

For replication, we performed a meta-analysis of summary statistics generously shared by 23andMe, Inc. and the Covid-19 Host Genetics Initiative (HGI) data freeze 6(B2). Since a previous analysis of GenOMICC¹ contributes a substantial part of the signal at each locus in HGIv6, and leave-one-out analyses were not available, we removed the signal from GenOMICC cases in HGIv6 using mathematical subtraction to ensure independence (Methods). Using LD clumping to find variants genotyped in both the discovery and replication studies, we required P < 0.002 (0.05/25) and concordant direction of effect (Table 1 and Supplementary Table 8) for replication. We interrogated two variants which failed replication in this set in a second GWAS meta-analysis of hospitalised Covid-19 patients from UKB, AncestryDNA, Penn Medicine Biobank, and Geisinger Health Systems, totaling 9937 hospitalized Covid-19 cases and 1,059,390 controls. This led to a further successful replicated finding, in *IFNA10* (Table 1).

We replicated 23 of the 25 significant associations identified in the population specific and/or multi-ancestry GWAS. One of the non-replicated signals (rs4424872) corresponds to a rare variant that may not be well represented in the replication datasets which are dominated by SNP genotyping data, but also had significant heterogeneity among ancestries. The second non-replicated signal is within the human leukocyte antigen (HLA) locus which has complex LD (see below).

HLA region

The lead variant in the HLA region, rs9271609, lies upstream of HLA-DQA1 and HLA-DRB1 genes. To investigate the contribution of specific HLA alleles to the observed association in the HLA region, we imputed HLA alleles at a four digit (two-field) level using HIBAG¹⁵. The only allele that reached genome-wide significance was HLA-DRB1*04:01 ($OR = 0.80, 95\% CI0.75 - 0.86, P = 1.6 \times 10^{-10}$ in EUR), which has a stronger P-value than the lead SNP in the region ($OR : 0.88, 95\% CI0.84 - 0.92, P = 3.3 \times 10^{-9}$ in EUR) and is a better fit to the data ($AIC_{DRB1*04:01} = 30241.34$, $AIC_{leadSNP} = 30252.93$)(Extended Data Figure 6). HLA-DRB1*04:01 has been previously reported to confer protection against severe disease in a small cohort of European ancestry¹⁶.

Gene burden testing

To assess the contribution of rare variants to critical illness, we performed gene-based analysis using SKAT-O as implemented in SAIGE-GENE¹⁷, using a subset of 12,982 individuals from our cohort (7,491 individuals with critical Covid-19 and 5,391 controls) for which the genome sequencing data were processed with the same alignment and variant calling pipeline. We tested the burden of rare (MAF<0.5%) variants considering the predicted variant consequence type (tested variant counts provided in sheet E of Supplementary File AVTsuppinfo.xlsx). We assessed burden using a strict definition for damaging variants (high-confidence loss-of-function (pLoF) variants as identified by LOFTEE¹⁸) and a lenient definition (pLoF plus missense variants with CADD ≥ 10)¹⁴, but found no significant associations at a gene-wide significance level. Moreover, all individual rare variants included in the tests had *P*-values $>10^{-5}$.

Consistent with other recent work,¹¹, we did not find any significant gene burden test associations among the 13 genes previously reported from an interferon pathway-focused study³ (tests for all genes had *P*-value>0.05, Supplementary File AVTsuppinfo.xlsx), and we did not replicate the reported association^{19;20;21} in *TLR7*(EUR P=0.30 for pLoF and P=0.075 for missense variants).

Transcriptome-wide association study (TWAS)

In order to infer the effect of genetically-determined variation in gene expression on disease susceptibility, we performed a TWAS using gene expression data (GTExv8²²) for two disease-relevant tissues, lung and whole blood. We found significant associations between critical Covid-19 and predicted expression in lung (14) and blood (6; Supplementary Figure 23) and all-tissue meta-analysis (GTExv8, 51; Supplementary Figure 24). Expression signals for 16 genes significantly colocalised with susceptibility (Figure 2). As the LD structure of the HLA is complex, we only assessed colocalisation for the significant association, HLA-DRB1. Although it was not significant in our TWAS analysis, eQTLs in the proximity of the association significantly colocalise with the GWAS signal for both blood and lung (both PP_{H4} >0.8, Supplementary File: TWAS.xlsx).

We repeated the TWAS analysis using models of intron excision rate from GTExv8 to obtain splicing TWAS, revealing significant signals in lung (16 genes) and whole blood (9 genes) and all-tissue meta-analysis (33 genes); 11 of these had strongly colocalising splicing signals (Supplementary File: TWAS.xlsx).

Mendelian randomisation

We performed generalised summary-data-based Mendelian randomisation (GSMR)²³ in a replicated outcome study design using used the pQTLs from the INTERVAL study.²⁴ GSMR incorporates information from multiple independent SNPs and provides stronger evidence of a causal relationship than single SNP based approaches. Of 16 proteome-wide significant associations in this study, 8 were replicated in an external dataset at a Bonferroni-corrected p-value threshold of P < 0.0031 (P < 0.05/16; Extended Data Table 2, Extended Data Figure 7).

Discussion

We report 23 replicated genetic associations with critical Covid-19, discovered in only 7,491 cases. This demonstrates the efficiency of the design of the GenOMICC study, an open-source²⁵ international research programme (https://genomicc.org) focusing on extreme phenotypes: patients with life-threatening infectious disease, sepsis, pancreatitis and other critical illness phenotypes. GenOMICC detects greater heritability and stronger effect sizes than other study designs across all variants (Supplementary Figures 22,14). In Covid-19, critical illness is not only an extreme susceptibility phenotype, but also a more homogeneous one: we have shown previously that critically-ill Covid-19

patients are more likely to have the primary disease process - hypoxaemic respiratory failure²⁶ - and that this group have a divergent response to immunosuppressive therapy from other hospitalised patients²⁷. We detect distinct signals at several of the associated loci, in some cases implicating different biological mechanisms.

Five critical Covid-19-associated variants have direct roles in interferon signalling and broadly concordant predicted biological effects. These include a probable destabilising amino acid substitution in a ligand, *IFNA10* (Trp164Cys, Extended Data Figure 5), and (as we reported previously¹) reduced expression of a subunit of its receptor *IFNAR2* (Figure 2). *IFNAR2* signals through a kinase encoded by *TYK2*.¹ Although the lead variant in *TYK2* in whole genome sequencing is a protein-coding variant with reduced STAT1 phosphorylation activity,²⁸ it is also associated with significantly increased *TYK2* expression (Figure 2, Methods). Fine-mapping reveals a significant association with an independent missense variant in *IL10RB*, a receptor for Type III (lambda) interferons (rs8178521, Table 1). Finally, we detected a lead risk variant in phospholipid scramblase 1 (chr3:146517122:G:A, rs343320; *PLSCR1*) which disrupts a nuclear localisation signal important for the antiviral effect of interferon (Extended Data Figure 5).²⁹ PLSCR1 controls replication of other RNA viruses including vesicular stomatitis virus, encephalomyocarditis virus and Influenza A virus.^{29;30}

Although our genome-wide gene-based association tests did not replicate any findings from a previous pathway-specific study of rare deleterious variants³, our results provide robust evidence implicating reduced interferon signalling in susceptibility to critical Covid-19. Importantly, systemic administration of interferon in two large clinical trials, albeit late in disease, did not reduce mortality.^{31;32}

We found significant associations in genes implicated in lymphopoesis, and differentiation of myeloid cells. *BCL11A* is essential in B- and T-lymphopoiesis³³ and promotes plasmacytoid dendritic cell differentiation.³⁴ *TAC4*, reported previously,⁴ encodes a regulator of B-cell lymphopoesis³⁵ and antibody production,³⁶ and promotes survival of dendritic cells.³⁷ Finally, although the strongest fine mapping signal at 5q31.1 (chr5:131995059:C:T, rs56162149) is in an intron of *ACSL6* with significant effects on expression (Supplementary Material: TWAS.xlsx), the credible set includes a missense variant in *CSF2* (granulocyte-macrophage colony stimulating factor, GMCSF) of uncertain significance (chr5:132075767:T:C, Extended Data Table 1). We have previously shown that GMCSF is strongly up-regulated in critical Covid-19,³⁸ and it is already under investigation as a target for therapy.³⁹ Mendelian randomisation results are consistent with a direct link between plasma levels of a closely-related cytokine receptor subunit, IL3ra, and critical Covid-19 (Extended Data Table 2).

Fine mapping, colocalisation and TWAS provide evidence for increased expression of MUC1 as the mediator of the association with rs41264915 (Supplementary Table 12). This suggests a potentially therapeutically-important role for mucins in the development of critical illness in Covid-19.

Mendelian randomisation reveals the first genetic evidence in support of a causal role for coagulation factors (F8) and platelet activation (PDGFRL) in critical Covid-19 (Extended Data Table 2, Extended Data Figure 7), consistent with autopsy,⁴⁰ proteomic,⁴¹ and therapeutic⁴² evidence. Perhaps more importantly, we identify specific and closely-related intercellular adhesion molecules with known roles in inflammatory cell recruitment to sites of inflammation, including E-selectin (*SELE*), intercellular adhesion molecule 5 (*ICAM5*), and dendritic cell-specific intercellular adhesion molecule-3-Grabbing non-integrin (DC-SIGN, *CD209*), which may present additional therapeutic targets. DC-SIGN (*CD209*) mediates pathogen endocytosis and antigen presentation, and has known roles in multiple viral infections, including SARS-CoV and influenza A virus. It has affinity for SARS-CoV-2.^{43;44;45}

Our previous report, in 2020, of an association between the OAS gene cluster and severe disease was robustly replicated in an external cohort,¹ but does not meet genome-wide significance in the present analysis (Supplementary Table 7). This may indicate a change in the observed effect size because any effect that is detected in GWAS is more likely to have been sampled from the larger end of the range of possible effect sizes - the "winner's curse". Alternatively it may indicate either a change in the patient population (cases or controls) or a change in the pathogen. For example it is possible that, as with the other coronaviruses known to infect humans,⁴⁶ more recent variants of SARS-CoV-2 have evolved to overcome this host antiviral defence mechanism.

Limitations

In contrast to microarray genotyping, whole genome sequencing is a rapidly evolving and relatively new technology for genome-wide association studies, with relatively few sources of population controls. We selected a control cohort from the 100,000 Genomes Project sequenced and analysed using a different platform and bioinformatics pipeline compared with the case cohort (Extended Data Figure 1). However, to minimise the risk of false positive associations due to technical artifacts, extensive quality measures were utilised (See Methods): briefly, we masked low-quality genotypes, filtered for genotype signal using a low threshold for missingness, and performed a control-control relative allele frequency filter using a subset of samples processed with both bioinformatics pipelines. Finally, we required all significant associations to be supported by local variants in linkage disequilibrium, which may be excessively stringent (see Methods). Although this approach may remove some true associations, our priority is to maximise confidence in the reported signals. Of 25 variants meeting this requirement, 23 are externally replicated, and the remaining 2 may be true associations that are yet to be replicated due to a lack of coverage or power in the replication datasets.

The design of our study incorporates genetic signals for every stage in the disease progression into a single phenotype. This includes establishment of infection, viral replication, inflammatory lung injury and hypoxaemic respiratory failure. Although we can have considerable confidence that the replicated associations with critical Covid-19 we report are robust, we cannot determine at which stage in the disease process, or in which tissue, the relevant biological mechanisms are active.

Conclusions

These genetic associations implicate new biological mechanisms underlying the development of life-threatening Covid-19, several of which may be amenable to therapeutic targeting. Furthermore, we demonstrate the value of whole genome sequencing in to fine map loci in a complex trait. In the context of the ongoing global pandemic, translation to clinical practice is an urgent priority. As with our previous work, biological and molecular studies, and, where appropriate, large-scale randomised trials, will be essential before translating our findings into clinical practice.

Acknowledgements

We thank the patients and their loved ones who volunteered to contribute to this study at one of the most difficult times in their lives, and the research staff in every intensive care unit who recruited patients at personal risk during the most extreme conditions we have ever witnessed in UK hospitals.

GenOMICC was funded by the Department of Health and Social Care (DHSC), Illumina, LifeArc, the Medical Research Council, UKRI, Sepsis Research (the Fiona Elizabeth Agnew Trust), the Intensive Care Society, a Wellcome Trust Senior Research Fellowship (J.K.Baillie, 223164/Z/21/Z) a BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070 and BBS/E/D/30002275) and UKRI grants MC_PC_20004, MC_PC_19025, MC_PC_1905, and MRNO2995X/1. Whole-genome sequencing was performed by Illumina at Illumina Laboratory Services (ILS) and was overseen by Genomics England. We would like to thank all at Genomics England who have contributed to the sequencing, clinical and genomic data analysis. This research is supported in part by the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant ref MC PC 20029). ADB would like to acknowledge funding from the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z), the Edinburgh Clinical Academic Track (ECAT) programme. We would like to thank the research participants and employees of 23 and Me for making this work possible. Genomics England and the 100,000 Genomes Project was funded by the National Institute for Health Research, the Wellcome Trust, the Medical Research Council, Cancer Research UK, the Department of Health and Social Care and NHS England. We are grateful for the support from Professor Dame Sue Hill and the team in NHS England and the 13 Genomic Medicine Centres that delivered the 100,000 Genomes Project which provide the majority of the control genome sequences for this study. We thank the participants of the 100,000 Genomes Project who made this study possible and the Genomics England Participant Panel for their strategic advice, involvement and engagement. We acknowledge NHS Digital, Public Health England and the Intensive Care National Audit and Research Centre who provided life course longitudinal clinical data on the participants. This work forms part of the portfolio of research of the National Institute for Health Research Barts Biomedical Research Centre. Mark Caulfield is an NIHR Senior Investigator. This study owes a great deal to the National Institute for Healthcare Research Clinical Research Network (NIHR CRN) and the Chief Scientist's Office (Scotland), who facilitate recruitment into research studies in NHS hospitals, and to the global ISARIC and InFACT consortia.

Additional replication was conducted using the UK Biobank Resource (Project 26041). The Penn Medicine BioBank is funded by a gift from the Smilow family, the National Center for Advancing Translational Sciences of the National Institutes of Health under CTSA Award Number UL1TR001878, and the Perelman School of Medicine at the University of Pennsylvania. We thank the AncestryDNA customers who voluntarily contributed information in the Covid-19 survey. HRS (dbGaP accession: phs000428.v1.p1): HRS was supported by the National Institute on Aging (NIA U01AG009740). The genotyping was funded separately by the National Institute on Aging (RC2 AG036495, RC4 AG039029). Genotyping was conducted by the NIH Center for Inherited Disease Research (CIDR) at Johns Hopkins University. Genotyping quality control and final preparation of the data were performed by the Genetics Coordinating Center at the University of Washington. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on August 22nd, 2021 (GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2).

We would like to thank the research participants and employees of 23andMe for making this work possible. A full list of contributors who have provided data that was collated in the HGI project, including previous iterations, is available at https://www.covid19hg.org/acknowledgements.

The views expressed are those of the authors and not necessarily those of the DHSC, the NHS, DID, NIHR, MRC, Wellcome Trust or PHE.

Data availability

All data is available through https://genomicc.org/data. This includes downloadable summary data tables and instructions for applying to access individual-level data. Individual-level genome sequence data for the Covid-19 severe and mild cohorts can be analysed by qualified researchers in the UK Outbreak Data Analysis Platform at the University of Edinburgh by application at https://genomicc.org/data. Genomic data for the 100,000 genomes participants and a subset of Covid-19 cases are also available through the Genomics England research environment

which can be accessed by application at https://www.genomicsengland.co.uk/join-a-gecip-domain. The full GWAS summary statistics for the 23andMe discovery dataset are available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. More information and access to the data are provided at https://research.23andMe.com/dataset-access/.

Code availability

Code to calculate the imputation of P-value based on LD SNPs is available at https://github.com/baillielab/GenO MICC_GWAS

Contributions

AK, EP-C, KR, AS, CAO, SW, TM, YW, XS, KSE, BW, DR, LK, MZ, NP, JAK, JEH, AB, GRA, MARF, AJ, TMi, MO, DJR, MDR, AV, JY, ADB, SCH, LMo, AL and JKB contributed to data analysis. AK, EP-C, KR, AS, CAO, SW, CDR, JM, AR, SCH, LMo and AL contributed to bioinformatics. AK, EP-C, KR, CDR, JM, DM, AN, MGS, SCH, LMo, MJC and JKB contributed to writing and reviewing the manuscript. EP-C, KR, KM, SK, AF, LM, KRo, CPP, VV, JFW, SCH, AL, MJC and JKB contributed to design. SW, FG, WO, PG and SD contributed to project management. FG, WO, KM, SK, PG, SD, DM, AN, MGS, SS, JK, TAF, MS-H, CS, CH, PH, LL, DMc, HM, PJO, PE, TW, AT, AF, LM, KRo, CPP, RHS, SCH and AL contributed to sample handling and sequencing. and ASi contributed to data collection. and TZ contributed to sample handing. TZ, GE, CP, DB and CK contributed to sequencing. and LT contributed to recruitment of controls. GC, PA, KRo and AL contributed to clinical data management. KRo, CPP, SCH and JKB contributed to conception. KRo, CPP, VV and JFW contributed to reviewing the manuscript. MJC and JKB contributed to scientific leadership.

Conflict of interest

J.A.K., J.E.H., A.B., G.R.A., and M.A.R.F. are current employees and/or stockholders of Regeneron Genetics Center or Regeneron Pharmaceuticals.

Genomics England Ltd is a wholly owned Department of Health and Social Care company created in 2013 to work with the NHS to introduce advanced genomic technologies and analytics into healthcare. All Genomics England affiliated authors are, or were, salaried by Genomics England during this programme.

All other authors declare that they have no conflicts of interest relating to this work.

Tables and Figures

chr:pos (hg38)	rsid	REF	ALT	RAF	OR	OR _{CI}	P	$P_{hgib2.23m}$	Preg	Consequence	Gene	Cit
1:155066988	rs114301457	С	т*	0.0058	2.40	1.82-3.16	6.8×10^{-10}	0.00011 *	-	synonymous	EFNA4	-
1:155175305 [‡]	rs7528026	G	A*	0.032	1.39	1.24-1.55	7.16×10^{-9}	0.00012 *	-	intron	TRIM46	-
1:155197995	rs41264915	A*	G	0.89	1.28	1.19-1.37	1.02×10^{-12}	1.51×10^{-9} *	-	intron	THBS3	(4)
2:60480453 [‡]	rs1123573	A*	G	0.61	1.13	1.09-1.18	9.85×10^{-10}	0.000018 *	-	intron	BCL11A	-
3:45796521	rs2271616	G	т*	0.14	1.29	1.21-1.37	9.9×10^{-17}	4.95×10^{-9} *	-	5' UTR	SLC6A20	(4)
3:45859597	rs73064425	С	т*	0.077	2.71	2.51-2.94	1.97×10^{-133}	1.02×10^{-77} *	-	intron	LZTFL1	2
3:146517122	rs343320	G	A*	0.081	1.25	1.16-1.35	4.94×10^{-9}	0.00028 *	-	missense	PLSCR1	-
5:131995059	rs56162149	C	т*	0.17	1.20	1.13-1.26	7.65×10^{-11}	0.00074 *	-	intron	ACSL6	-
6:32623820	rs9271609	т*	С	0.65	1.14	1.09-1.19	3.26×10^{-9}	0.89	-	-	HLA-DRB1	-
6:41515007 [‡]	rs2496644	A*	С	0.015	1.45	1.32-1.60	7.59×10^{-15}	3.17×10^{-7} *	-	intron	LINC01276	4
9:21206606	rs28368148	С	G*	0.013	1.74	1.45-2.09	1.93×10^{-9}	0.0024	0.00089 *	missense	IFNA10	-
11:34482745	rs61882275	G*	Α	0.62	1.15	1.10-1.20	1.61×10^{-10}	1.9×10^{-10} *	-	intron	ELF5	-
12:132489230	rs56106917	GC	G*	0.49	1.13	1.09-1.18	2.08×10^{-9}	0.00047 *	-	upstream	FBRSL1	-
13:112889041	rs9577175	С	т*	0.23	1.18	1.12-1.24	3.71×10^{-11}	1.29×10^{-6} *	-	downstream	ATP11A	-
$15:93046840^{\dagger}$	rs4424872	т*	A	0.0079	2.37	1.87-3.01	8.61×10^{-13}	-	0.29	intron	RGMA	-
16:89196249	rs117169628	G	A*	0.15	1.19	1.12-1.26	4.4×10^{-9}	6.57×10^{-9} *	-	missense	SLC22A31	
17:46152620	rs2532300	т*	С	0.77	1.16	1.10-1.22	4.19×10^{-9}	2.49×10^{-9} *	-	intron	KANSL1	9
17:49863260	rs3848456	C	A*	0.029	1.50	1.33-1.70	4.19×10^{-11}	1.34×10^{-7} *	-	regulatory		4
19:4717660	rs12610495	A	G*	0.31	1.32	1.27-1.38	3.91×10^{-36}	5.74×10^{-19} *	-	intron	DPP9	1
19:10305768	rs73510898	G	A*	0.093	1.28	1.19-1.37	1.57×10^{-11}	0.00016 *	-	intron	ZGLP1	-
19:10352442	rs34536443	G	C^*	0.050	1.50	1.36-1.65	6.98×10^{-17}	4.06×10^{-11} *	-	missense	TYK2	1
19:48697960	rs368565	С	т*	0.44	1.15	1.1-1.2	3.55×10^{-11}	0.00087 *	-	intron	FUT2	-
21:33230000	rs17860115	С	A*	0.32	1.24	1.19-1.3	9.69×10^{-22}	1.77×10^{-18} *	-	5' UTR	IFNAR2	1
21:33287378	rs8178521	С	т*	0.27	1.18	1.12-1.23	3.53×10^{-12}	8.02×10^{-6} *	-	intron	IL10RB	-
21:33959662	rs35370143	Т	TAC*	0.083	1.26	1.17-1.36	1.24×10^{-9}	2.33×10^{-7} *	-	intron	LINC00649	-

Table 1: Lead variants from independent association signals in the per-population GWAS and multi-ancestry meta-analysis. Variants and the reference and alternate allele are reported according to GRCh38. The three variants discovered in multi-ancestry meta-analysis but not in the European ancestry GWAS are labelled with \ddagger , and \ddagger indicates genome-wide significant heterogeneity. REF and ALT columns indicate the reference and alternative alleles; an asterisk (*) indicates the risk allele. For each variant, we report the risk allele frequency in Europeans (RAF), the odds ratio and 95% confidence interval (OR and OR_{CI}), and the association *P*-value. Consequence indicates the predicted worst consequence type across GENCODE basic transcripts predicted by VEP(v104), and Gene indicates the VEP-predicted gene, but not necessarily the causal mediator. For the HLA locus, the gene that was identified by HLA allele analysis is displayed. An asterisk (*) next to replication *P*-value ($P_{hgib2.23m}$ or P_{reg}) indicates that the lead signal (from multi-ancestry meta-analysis) is replicated with a Bonferroni-corrected *P* < 0.002 (0.05/25) with a concordant direction of effect. Cit column lists citation numbers for the first publication of confirmed genome-wide associations with critical illness or (in brackets) any Covid-19 phenotype.

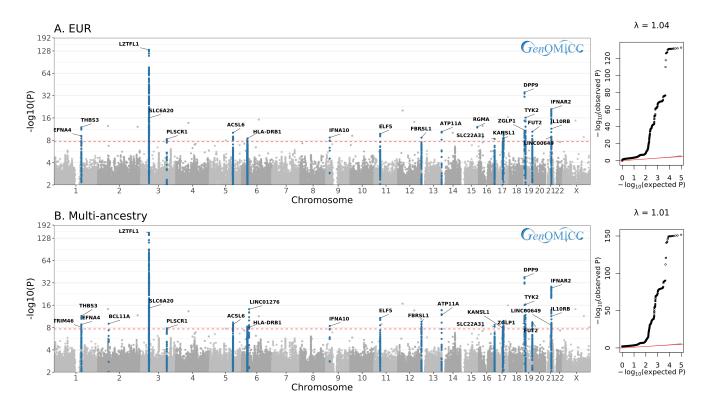


Figure 1: GWAS results for the EUR ancestry group, and multi-ancestry meta-analysis. Manhattan plots are shown on the left and quantile–quantile (QQ) plots of observed versus expected P values are shown on the right, with genomic inflation (λ) displayed for each analysis. Highlighted results in blue in the Manhattan plots indicate variants that are LD-clumped ($r^2=0.1$, $P_2=0.01$, EUR LD) with the lead variants at each locus. Gene name annotation indicates genes impacted by the predicted worst consequence type of each lead variant (annotation by Variant Effect Predictor (VEP)). For the HLA locus, the gene that was identified by HLA allele analysis is annotated. GWAS was performed using logistic regression and meta-analysed by the inverse variant method. The red dashed line shows the Bonferroni-corrected P-value= 2.2×10^{-8} .



Figure 2: Gene-level Manhattan plot showing results from TWAS meta-analysis and highlighting genes that colocalise with GWAS signals or have strong metaTWAS associations. Highlighting color is different for lung and blood tissue data that were used for colocalisation and we also distinguish loci that were significant in both. Results are grouped according to two classes for the posterior probability of colocalisation (PP_{H4}) : P>0.5 and P>0.8. If a variant is placed in both classes then the color corresponding to the higher probability class is displayed. Arrows show direction of change in gene expression associated with an increased disease risk. Red dashed line shows bonferroni-corrected significance threshold for the metaTWAS analysis at $P < 2.3 \times 10^{-6}$.

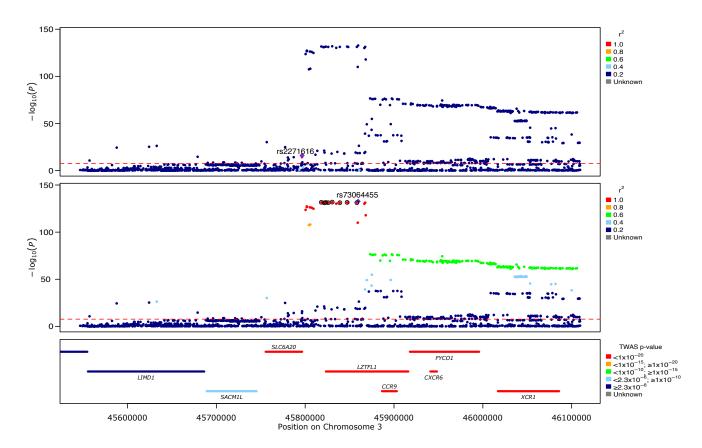


Figure 3: Regional detail showing fine-mapping to identify two adjacent independent signals on Chromosome 3. Top two panels: variants in linkage disequilibrium with the lead variants shown. The variants that are included in two independent credible sets are displayed with black outline circles. r^2 values in the legend denote upper limits, *i.e.* 0.2=[0,0.2], 0.4=[0.2,0.4], 0.6=[0.4,0.6], 0.8=[0.6,0.8], 1=[0.8,1]. Bottom panel: locations of protein-coding genes, coloured by TWAS *P*-value. The red dashed line shows the Bonferroni-corrected *P*-value= 2.2×10^{-8} for Europeans.

Methods

Ethics

GenOMICC Study: GenOMICC was approved by the following research ethics committees: Scotland "A" Research Ethics Committee, 15/SS/0110; Coventry and Warwickshire Research Ethics Committee (England, Wales and Northern Ireland), 19/WM/0247). Current and previous versions of the study protocol are available at https://genomicc.org/protocol/. 100,000 Genomes project: the 100,000 Genomes project was approved by East of England – Cambridge Central REC REF 20/EE/0035. Only individuals from the 100,000 Genomes project for whom Whole Genome Sequencing data were available and who consented for their data to be used for research purposes were included in the analyses. UK Biobank study: ethical approval for the UK Biobank was previously obtained from the North West Centre for Research Ethics Committee (11/NW/0382). The work described herein was approved by UK Biobank under application number 26041. GHS study: approval for DiscovEHR analyses was provided by the Geisinger Health System Institutional Review Board under project number 2006-0258. AncestryDNA study: all data for this research project was from subjects who provided prior informed consent to participate in AncestryDNA's Human Diversity Project, as reviewed and approved by our external institutional review board, Advarra (formerly Quorum). All data was de-identified prior to use. PMBB study: appropriate consent was obtained from each participant regarding storage of biological specimens, genetic sequencing and genotyping, and access to all available EHR data. This study was approved by the Institutional Review Board of the University of Pennsylvania and complied with the principles set out in the Declaration of Helsinki. Informed consent was obtained for all study participants. 23andMe study: Participants in this study were recruited from the customer base of 23 and Me, Inc., a personal genetics company. All individuals included in the analyses provided informed consent and answered surveys online according to 23 and Me human subjects research protocol, which was reviewed and approved by Ethical and Independent Review Services, a private institutional review board (http://www.eandireview.com).

Recruitment of cases

Patients were recruited to the GenOMICC (Genetics Of Mortality In Critical Care) study in in 224 UK intensive care units (https://genomicc.org). All cases had confirmed Covid-19 according to local clinical testing and were deemed, in the view of the treating clinician, to require continuous cardiorespiratory monitoring. In UK practice this kind of monitoring is undertaken in high-dependency or intensive care units.

Recruitment of controls

Mild/asymptomatic controls

Participants were recruited to the mild Covid-19 cohort on the basis of having experienced mild (non-hospitalised) or asymptomatic Covid-19. Participants volunteered to take part in the study via a microsite and were required to self-report the details of a positive Covid-19 test. Volunteers were prioritised for genome sequencing based on demographic matching with the critical Covid-19 cohort considering self-reported ancestry, sex, age and location within the UK. We refer to this cohort as the covid-mild cohort.

100,000 Genomes project controls

Participants were enrolled in the 100,000 Genomes Project from families with a broad range of rare diseases, cancers and infection by 13 regional NHS Genomic Medicine Centres across England and in Northern Ireland, Scotland and Wales. For this analysis, participants for whom a positive SARS-CoV-2 test had been recorded as of March, 2021 were not included due to uncertainty in the severity of Covid-19 symptoms. Only participants for whom genome sequencing was performed from blood derived DNA were included and participants with haematological malignancies were excluded to avoid potential tumour contamination.

DNA extraction

For severe Covid-19 cases and mild cohort controls, DNA was extracted from whole blood either manually using Nucleon Kit (Cytiva) and re-suspended in 1 ml TE buffer pH 7.5 (10mM Tris-Cl pH 7.5, 1mM EDTA pH 8.0), or automated on the Chemagic 360 platform using Chemagic DNA blood kit (Perkin Elmer) and re-suspended in 400 μ L Elution Buffer. The yield of the DNA was measured using Qubit and normalised to 50ng/ μ l before sequencing.

For the 100,000 Genomes Project samples, DNA was extracted from whole blood at designated extraction centres following sample handling guidance provided by Genomics England and NHS England.

Whole Genome Sequencing

Sequencing libraries were generated using the Illumina TruSeq DNA PCR-Free High Throughput Sample Preparation kit and sequenced with 150bp paired-end reads in a single lane of an Illumina Hiseq X instrument (for 100,000 Genomes Project samples) or NovaSeq instrument (for the Covid-19 critical and mild cohorts).

Sequencing data QC

All genome sequencing data were required to meet minimum quality metrics and quality control measures were applied for all genomes as part of the bioinformatics pipeline. The minimum data requirements for all genomes were $> 85 \times 10^{-9}$ bases with $Q \ge 30$ and $\ge 95\%$ of the autosomal genome covered at $\ge 15x$ calculated from reads with mapping quality > 10 after removing duplicate reads and overlapping bases, after adaptor and quality trimming. Assessment of germline cross-sample contamination was performed using VerifyBamID and samples with > 3% contamination were excluded. Sex checks were performed to confirm that the sex reported for a participant was concordant with the sex inferred from the genomic data.

WGS Alignment and variant calling

Covid-19 cohorts

For the critical and mild Covid-19 cohorts, sequencing data alignment and variant calling was performed with Genomics England pipeline 2.0 which uses the DRAGEN software (v3.2.22). Alignment was performed to genome reference GRCh38 including decoy contigs and alternate haplotypes (ALT contigs), with ALT-aware mapping and variant calling to improve specificity.

100,000 Genome Project cohort (100K-genomes)

All genomes from the 100,000 Genomes Project cohort were analysed with the Illumina North Star Version 4 Whole Genome Sequencing Workflow (NSV4, version 2.6.53.23); which is comprised of the iSAAC Aligner (version 03.16.02.19) and Starling Small Variant Caller (version 2.4.7). Samples were aligned to the Homo Sapiens NCBI GRCh38 assembly with decoys.

A subset of the genomes from the Cancer program of the 100,000 Genomes Project were reprocessed (alignment and variant calling) using the same pipeline used for the Covid-19 cohorts (DRAGEN v3.2.22) for equity of alignment and variant calling.

Aggregation

Aggregation was conducted separately for the samples analysed with Genomics England pipeline 2.0 (severe-cohort, mild-cohort, cancer-realigned-100K), and those analysed with the Illumina North Star Version 4 pipeline (100K-Genomes).

For the first three, the WGS data were aggregated from single sample gVCF files to multi-sample VCF files using GVCFGenotyper (GG) v3.8.1, which accepts gVCF files generated via the DRAGEN pipeline as input. GG outputs multi-allelic variants (several ALT variants per position on the same row), and for downstream analyses the output was decomposed to bi-allelic variants per row using software vt v0.57721. We refer to the aggregate as aggCOVID_vX, where X is the specific freeze. The analysis in this manuscript uses data from freeze v4.2 and the respective aggregate is referred to as aggCOVID_v4.2.

Aggregation for the 100K-Genomes cohort was performed using Illumina's gvcfgenotyper v2019.02.26, merged with bcftools v1.10.2 and normalised with vt v0.57721.

Sample Quality Control (QC)

Samples that failed any of the following four BAM-level QC filters: freemix contamination (>3%), mean autosomal coverage (<25X), percent mapped reads (<90%), and percent chimeric reads (>5%) were excluded from the analysis.

Additionally, a set of VCF-level QC filters were applied post-aggregation on all autosomal bi-allelic SNVs (akin to gnomAD v3.1¹⁸). Samples were filtered out based on the residuals of eleven QC metrics (calculated using bcftools) after regressing out the effects of sequencing platform and the first three ancestry assignment principal components (including all linear, quadratic, and interaction terms) taken from the sample projections onto the SNP loadings from the individuals of 1000 Genomes Project phase 3 (1KGP3). Samples were removed that were four median absolute deviations (MADs) above or below the median for the following metrics: ratio heterozygous-homozygous, ratio insertions-deletions, ratio transitions-transversions, total deletions, total insertions, total heterozygous snps, total transitions, total transversions. For the number of total singletons (snps), samples were removed that were more than 8 MADs above the median. For the ratio of heterozygous to homozygous alternate snps, samples were removed that were more than 4 MADs above the median.

After quality control, 79,803 individuals were included in the analysis with the breakdown according to cohort shown in Supplementary Table 2.

Selection of high-quality (HQ) independent SNPs

We selected high-quality independent variants for inferring kinship coefficients, performing PCA, assigning ancestry and for the conditioning on the Genetic Relatedness matrix by the logistic mixed model of SAIGE and SAIGE-GENE. To avoid capturing platform and/or analysis pipeline effects for these analyses, we performed very stringent variant QC as described below.

HQ common SNPs

We started with autosomal, bi-allelic SNPs which had frequency > 5% in aggV2 (100K participant aggregate) and in the 1KGP3. We then restricted to variants that had missingness <1%, median genotype quality QC>30, median depth (DP) >=30 and >= 90% of heterozygote genotypes passing an ABratio binomial test with *P*-value > 10^{-2} for aggV2 participants. We also excluded variants in complex regions from the list available in https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD) (lifted over for GRCh38), and variants where the ref/alt combination was CG or AT (C/G, G/C, A/T, T/A). We also removed all SNPs which were out of Hardy Weinberg Equilibrium (HWE) in any of the AFR, EAS, EUR or SAS super-populations of aggV2, with a *P*-value cutoff of pHWE < 10^{-5} . We then LD-pruned using plink v1.9 with an $r^2 = 0.1$ and in 500kb windows. This resulted in a total of 63,523 high-quality sites from aggV2.

We then extracted these high-quality sites from the aggCOVID_v4.2 aggregate and further applied variant quality filters (missingness <1%, median QC>30, median depth >=30 and >= 90% of heterozygote genotypes passing an ABratio binomial test with *P*-value > 10^{-2}), per batch of sequencing platform (i.e, HiseqX, NovaSeq6000).

After applying variant filters in aggV2 and aggCOVID_v4.2, we merged the genomic data from the two aggregates for the intersection of the variants which resulted in a final total of 58,925 sites.

HQ rare SNPs

We selected high-quality rare (MAF< 0.005) bi-allelic SNPs to be used with SAIGE for aggregate variant testing analysis. To create this set, we applied the same variant QC procedure as with the common variants: We selected variants that had missingness <1%, median QC>30, median depth >=30 and >= 90% of heterozygote genotypes passing an ABratio binomial test with *P*-value > 10^{-2} per batch of sequencing and genotyping platform (i.e, HiSeq+NSV4, HiSeq+Pipeline 2.0, NovaSeq+Pipeline 2.0). We then subsetted those to the following groups of MAC/MAF categories: MAC 1, 2, 3, 4, 5, 6-10, 11-20, MAC 20 - MAF 0.001, MAF 0.001 - 0.005.

Relatedness, ancestry and principal components

Kinship

We calculated kinship coefficients among all pairs of samples using software plink2 and its implementation of the KING robust algorithm. We used a kinship cutoff < 0.0442 to select unrelated individuals with argument "-king-cutoff".

Genetic Ancestry Prediction

To infer the ancestry of each individual we performed principal components analysis (PCA) on unrelated 1KGP3 individuals with GCTA v1.93.1_beta software using HQ common SNPs⁴⁷ and inferred the first 20 PCs. We calculated loadings for each SNP which we used to project aggV2 and aggCOVID_v4.2 individuals onto the 1KGP3 PCs. We then trained a random forest algorithm from R-package randomForest with the first 10 1KGP3 PCs as features and the super-population ancestry of each individual as labels. These were 'AFR' for individuals of African ancestry, 'AMR' for individuals of American ancestry, 'EAS' for individuals of East Asian ancestry, 'EUR' for individuals of European ancestry, and 'SAS' for individuals of South Asian ancestry. We used 500 trees for the training. We then used the trained model to assign probability of belonging to a certain super-population class for each individuals for which no class had probability >=0.8 were labelled as "unassigned" and were not included in the analyses.

Principal component analysis

After labelling each individual with predicted genetic ancestry, we calculated ancestry-specific PCs using GCTA v1.93.1_beta⁴⁷. We computed 20 PCs for each of the ancestries that were used in the association analyses (AFR, EAS, EUR, and SAS).

Variant Quality Control

Variant QC was performed to ensure high quality of variants and to minimise batch effects due to using samples from different sequencing platforms (NovaSeq6000 and HiseqX) and different variant callers (Strelka2 and DRAGEN). We first masked low-quality genotypes setting them to missing, merged aggregate files and then performed additional variant quality control separately for the two major types of association analyses, GWAS and AVT, which concerned common and rare variants, respectively.

Masking

Prior to any analysis we masked low quality genotypes using bcftools setGT module. Genotypes with DP<10, GQ<20, and heterozygote genotypes failing an AB-ratio binomial test with P-value $< 10^{-3}$ were set to missing.

We then converted the masked VCF files to plink and bgen format using plink v.2.0.

Merging of aggregate samples

Merging of aggV2 and aggCOVID_v4.2 samples was done using plink files with masked genotypes and the merge function of plink v.1.9.⁴⁸ for variants that were found in both aggregates.

GWAS analyses

Variant QC

We restricted all GWAS analyses to common variants applying the following filters using plink v1.9: MAF > 0 in both cases and controls, MAF> 0.5% and MAC >20, missingness < 2%, Differential missingness between cases and controls, mid-*P*-value < 10^{-5} , HWE deviations on unrelated controls, mid-*P*-value < 10^{-6} , Multi-allelic variants were additionally required to have MAF > 0.1% in both aggV2 and aggCOVID_v4.2.

Control-control QC filter

100K aggV2 samples that were aligned and genotype called with the Illumina North Star Version 4 pipeline represented the majority of control samples in our GWAS analyses, whereas all of the cases were aligned and called with Genomics England pipeline 2.0 (Supplementary Table 1). Therefore, the alignment and genotyping pipelines partially match the case/control status which necessitates additional filtering for adjusting for between-pipeline differences in alignment and variant calling. To control for potential batch effects, we used the overlap of 3,954 samples from the Genomics England 100K participants that were aligned and called with both pipelines. For each variant, we computed and compared between platforms the inferred allele frequency for the population samples. We then filtered out all variants that had > 1% relative difference in allele frequency between platforms. The relative

difference was computed on a per-population basis for EUR (n=3,157), SAS (n=373), AFR (n=354) and EAS (n=81).

Model

We used a 2-step logistic mixed model regression approach as implemented in SAIGE v0.44.5 for single variant association analyses. In step 1, SAIGE fits the null mixed model and covariates. In step 2, single variant association tests are performed with the saddlepoint approximation (SPA) correction to calibrate unbalanced case-control ratios. We used the HQ common variant sites for fitting the null model and sex, age, age^2 , age * sex and 20 principal components as covariates in step 1. The principal components were computed separately by predicted genetic ancestry (i.e, EUR-specific, AFR-specific, etc.), to capture subtle structure effects.

Analyses

All analyses were done on unrelated individuals with pairwise kinship coefficient < 0.0442. We conducted GWAS analyses per predicted genetic ancestry, for all populations for which we had >100 cases and >100 controls (AFR, EAS, EUR, and SAS).

Multiple testing correction

As our study is testing variants that were directly sequenced by WGS and not imputed, we calculated the *P*-value significance threshold by estimating the effective number of tests. After selecting the final filtered set of tested variants for each population, we LD-pruned in a window of 250Kb and $r^2 = 0.8$ with plink 1.9. We then computed the Bonferroni-corrected *P*-value threshold as 0.05 divided by the number of LD-pruned variants tested in the GWAS. The *P*-value thresholds that were used for declaring statistical significance are given in Supplementary Table 5.

LD-clumping

We used plink 1.9 to do clumping of variants that were genome-wide significant for each analysis with P1 set to per-population P-value from Supplementary Table 5, P2 = 0.01, clump distance 1500Kb and $r^2 = 0.1$.

Conditional analysis and signal independence

To find the set of independent variants in the per-population analyses, we performed a step-wise conditional analysis with the GWAS summary statistics for each population using GCTA 1.9.3 –cojo-slct function ⁴⁷. The parameters for the function were $pval = 2.2 \times 10^{-8}$, a distance of 10,000 kb and a colinear threshold of 0.9^{49} . For establishing independence of multi-ancestry meta-analysis signals from per-population discovered signals, we performed LD-clumping using the meta-analysis summaries and identified signals with no overlap with the LD-clumped results from the per-population analyses. In addition to the GCTA-cojo analysis, we also performed confirmatory individual-level conditional analysis as implemented in *SAIGE*. For every lead variant signal (including the multi-ancestry meta-analysis signals), we conditioned on the lead variants of all other signals identified as independent by GCTA-cojo and located on the same chromosome with option –condition of SAIGE (Supplementary Table 6).

Fine-mapping

We performed fine-mapping for genome-wide significant signals using Rpackage SusieR v0.11.42⁵⁰. For each genomewide significant variant locus, we selected the variants 1.5 Mbp on each side and computed the correlation matrix among them with plink v1.9. We then ran the susieR summary-statistics based function susie_rss and provided the summary z-scores from SAIGE (i.e, effect size divided by its standard error) and the correlation matrix computed with the same samples that were used for the corresponding GWAS. We required coverage ≥ 0.95 for each identified credible set and minimum and median absolute correlation coefficients (purity) of r=0.1 and 0.5, respectively.

Functional annotation of credible sets

We annotated all variants included in each credible set identified by SusieR using the online VEP v104 and selected the worst consequence across GENCODE basic transcripts (Supplementary File: GWAS.xlsx). We also ranked each variant within each credible set according to the predicted consequence and the ranking was based on the table provided by Ensembl: https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html.

Multi-ancestry meta-analysis

We performed a meta-analysis across all ancestries using an inverse-variance weighting method and control for population stratification for each separate analysis in the METAL software⁵¹. The meta-analysed variants were filtered for variants with heterogeneity P-value $p < 2.22 \times 10^{-8}$ and variants that are not present in at least half of the individuals. We used the meta R package to plot forest plots of the clumped multi-ancestry meta-analysis variants⁵².

LD-based validation of lead GWAS signals

In order to quantify the support for genome-wide significant signals from nearby variants in LD, we assessed the internal consistency of GWAS results of the lead variants and their surroundings. To this end, we compared observed z-scores at lead variants with the expected z-scores based on those observed at neighbouring variants. Specifically, we computed the observed z-score for a variant i as $s_i = \hat{\beta}/\hat{\sigma}_{\hat{\beta}}$ and, following the approach of 53 , the imputed z-score at a target variant t as

$$\hat{s}_t = \mathbf{\Sigma}_{t,P} (\mathbf{\Sigma}_{P,P} + \lambda \mathbf{I})^{-1} \mathbf{s}_P$$

where \mathbf{s}_P are the observed z-scores at a set P of predictor variants, $\Sigma_{x,y}$ is the empirical correlation matrix of dosage coded genotypes computed on the GWAS sample between the variants in x and y, and λ is a regularization parameter set to 10^{-5} . The set P of predictor variants consisted of all variants within 100 kb of the target variant with a genotype correlation with the target variant greater than 0.25. This approach is similar to one proposed recently by Chen et al.⁵⁴

Stratified analysis

We performed sex-specific analysis (male and females separately) as well as analysis stratified by age (*i.e.*, participants <60 and >=60 years old) for the EUR ancestry group. To compare effect of variants within groups for the age and sex stratified analysis we first adjusted the effect and error of each variant for the standard deviation of the trait in each stratified group and then used the following t-statistic, as in previous studies $^{55;56}$

$$t = \frac{b_1 - b_2}{\sqrt{se_1^2 + se_2^2 - 2 \cdot rse_1 \cdot rse_2}}$$

where b_1 is the adjusted effect for group 1, b_2 is the adjusted effect for group 2, se_1 and se_2 are the adjusted standard errors for group 1 and 2 respectively and r is the Spearman rank correlation between groups across all genetic variants.

Replication

In order to generate a replication set we conducted a meta-analysis of data from 23andMe, together with Host Genetic Initiative (HGI) GWAS meta-analysis round 6 hospitalised COVID vs population (B2 analysis), including all genetic ancestries. Although the HGI programme included an analysis designed to mirror the GenOMICC study (analysis "A2"), most of these cases come from GenOMICC are are alredy included in the discovery cohort. We therefore used the broader hospitalised phenotype ("B2") for replication.

In order to account for signal due to sample overlap we performed a mathematical subtraction form HGIv6B2, of the GenOMICC GWAS of European genetic ancestry. Publicly-available HGI data was downloaded from https://www.covid19hg.org/results/r6/. The subtraction was performed using MetaSubtract package (version 1.60) for R (version 4.0.2) after removing variants with the same genomic position and using the lambda.cohorts with genomic inflation calculated on the GenOMICC summary statistics.

We calculated a multi-ancestry meta-analysis for the three ancestries with summary statistics in 23andMe: African, Latino and European using variants that passed the 23andMe ancestry QC, with imputation score > 0.6 and with maf > 0.005, before performing a final meta-analysis of 23andMe and HGI B2 without GenOMICC to create the final replication set. Meta-analysis were performed using METAL ⁵¹, with the inverse-variance weighting method (STDERR mode) and genomic control ON. We considered that a hit was replicated if the direction of effect in the GenOMICC-subtracted HGI summary statistics was the same as in our GWAS, and the *P*-value was significant after Bonferroni correction for the number of attempted replications (*pval* < 0.05/25). If the main hit was not present in the HGI-23andMe meta-analysis or if the hit was not replicating we looked for replication in variants in high LD with the top variant ($r^2 > 0.9$), which helped replicate two regions.

In order to attempt additional replication of two associations, we performed a multi-ancestry meta-analysis across 5 continental ancestry groups in UKB, AncestryDNA, Penn Medicine Biobank (PMBB), and Geisinger Health Systems (GHS) totaling 9937 hospitalized Covid-19 cases and 1.059,390 controls (Covid-19 negative or unknown). Hospitalization status (positive, negative or unknown) was determined based on Covid-19-related ICD10 codes U071, U072, U073 in variable 'diag icd10' (table 'hesin diag') in the UKB study; self-reported hospitalization due to Covid-19 in the AncestryDNA study; medical records in the GHS and PMBB studies. Association analyses in each study were performed using the genome-wide Firth logistic regression test implemented in REGENIE. In this implementation, Firth's approach is applied when the P-value from standard logistic regression score test is below 0.05. We included in step 1 of REGENIE (i.e. prediction of individual trait values based on the genetic data) directly genotyped variants with a minor allele frequency (MAF) > 1%, < 10% missingness, Hardy-Weinberg equilibrium test $P > 1x10^{-15}$ and linkage-disequilibrium (LD) pruning (1000 variant windows, 100 variant sliding windows and $r^2 < 0.9$). The association model used in step 2 of REGENIE included as covariates age, aqe^2 , sex, age-by-sex, and the first 10 ancestry-informative principal components (PCs) derived from the analysis of a stricter set of LD-pruned (50 variant windows, 5 variant sliding windows and $r^2 < 0.5$) common variants from the array (imputed for the GHS study) data. Within each study, association analyses were performed separately for five different continental ancestries defined based on the array data: African (AFR), Hispanic or Latin American (HLA), East Asian (EAS), European (EUR) and South Asian (SAS). Results were subsequently meta-analyzed across studies and ancestries using an inverse variance-weighed fixed-effects meta-analysis.

HLA Imputation and Association Analysis

HLA types were imputed at two field (4-digit) resolution for all samples within aggV2 and aggCOVID_v4.2 for the following seven loci: HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1, HLA-DQB1, and HLA-DPB1 using the HIBAG package in R¹⁵. At time of writing, HLA types were also imputed for $\tilde{8}2\%$ of samples using HLA*LA⁵⁷. Inferred HLA alleles between HIBAG and HLA*LA were >96% identical at 4-digit resolution. HLA association analysis was run under an additive model using SAIGE, in an identical fashion to the SNV GWAS. The multi-sample VCF of aggregated HLA type calls from HIBAG were used as input where any allele call with posterior probability (T) < 0.5 were set to missing.

Aggregate variant testing (AVT)

Aggregate variant testing on aggCOVID_v4.2 was performed using SKAT-O as implemented in SAIGE-GENE v0.44.5¹⁷ on all protein-coding genes. Variant and sample QC for the preparation and masking of the aggregate files has been described elsewhere. We further excluded SNPs with differential missingness between cases and controls (mid-P value $< 10^{-5}$) or a site-wide missingness above 5%. Only bi-allelic SNPs with a MAF<0.5% were included.

We filtered the variants to include in the aggregate variant testing by applying two functional annotation filters: A putative loss of function (pLoF) filter, where only variants that are annotated by LOFTEE¹⁸ as high confidence loss of function were included, and a more lenient (*missense*) filter where variants that have a consequence of missense or worse as annotated by VEP, with a CADD_PHRED score of ≥ 10 , were also included. All variants were annotated using VEP v99. SAIGE-GENE was run with the same covariates used in the single variant analysis: *sex*, *age*, *age*², *age* * *sex* and 20 (population-specific) principal components generated from common variants (MAF $\geq 5\%$).

We ran the tests separately by genetically predicted ancestry, as well as across all four ancestries as a mega-analysis. We considered a gene-wide significant threshold on the basis of the genes tested per ancestry, correcting for the two masks (pLoF and *missense*, Supplementary Table 14).

Post-GWAS analysis

Transcriptome-wide Association Studies (TWAS)

We performed TWAS in the MetaXcan framework and the GTExv8 eQTL and sQTL MASHR-M models available for download in http://predictdb.org/. We first calculated, using the European summary statistics, individual TWAS for whole blood and lung with the S-PrediXcan function^{58;59}. Then we performed a metaTWAS including data from all tissues to increase statistical power using s-MultiXcan⁶⁰. We applied Bonferroni correction to the results in order to choose significant genes and introns for each analysis.

Colocalisation analysis

Significant genes from TWAS, splicing TWAS, metaTWAS and splicing metaTWAS, as well as genes where one of the top variants was a significant eQTL or sQTL were selected for a colocalisation analysis using the coloc R package⁶¹. We chose the lead SNPs from the European ancestry GWAS summary statistics and a region of ± 200 kb around each SNP to do the colocalisation with the identified genes in the region. GTExv8 whole blood and lung tissue summary statistics and eqtlGen (which has blood eQTL summary statistics for > 30,000 individuals) were used for the analysis^{22;62}. We first performed a sensitivity analysis of the posterior probability of colocalisation (P_{H4}) on the prior probability of colocalisation (P_{12}), going from $P_{12} = 10^{-8}$ to $P_{12} = 10^{-4}$ with the default threshold being $P_{12} = 10^{-5}$. eQTL signal and GWAS signals were deemed to colocalise if these two criteria were met: (1) At $P_{12} = 5 \times 10^{-5}$ the probability of colocalisation $PP_{H4} > 0.5$ and (2) At $P_{12} = 10^{-5}$ the probability of independent signal (PP_{H3}) was not the main hypothesis ($PP_{H3} < 0.5$). These criteria were chosen to allow eQTLs with weaker P-values due to lack of power in GTExv8, to be colocalised with the signal when the main hypothesis using small priors was that there was not any signal in the eQTL data.

As the chromosome 3 associated interval is larger than 200kb, we performed additional colocalisation including a region up to 500 kb, but no further colocalisations were found.

Mendelian Randomisation

We performed generalised summary-data-based Mendelian randomisation (GSMR)²³ in a replicated outcome study design. As exposures, we used the pQTLs from the INTERVAL study²⁴. We used the 1000 Genomes Project imputed data of the Health and Retirement Study (HRS) (n = 8,557) as the LD reference data required for GSMR analysis. The HRS data are available from dbGap (accession number: phs000428).

GSMR was undertaken using all exposures for which we were able to identify two or more independent SNPs associated with the exposure (*P*-value(exposure) $< 5 \times 10^{-8}$; linkage disequilibrium clumping +/- 1Mb, $r^2 < 0.05$; HEIDI-outlier filtering test, for the removal of SNPs with evidence of horizontal pleiotropy, was performed at the default threshold value of 0.01). Using GSMR, we identified those proteins implicated in determining Covid-19 severity in the new GenOMICC results (following genomic-control correction for inflation) at a false-discovery rate (FDR) < 0.05, and attempted replication in the GWAS of "Hospitalized covid vs. population" (phenotype B2) of COVID19 HGI⁶³ having excluded the previous GenOMICC results. We achieved this by mathematically removing the contribution of GenOMICC¹ from the meta-analysis. We considered as replicated those results that passed a Bonferroni-corrected P-value threshold, correcting for the total number replication tests attempted (i.e. the number of observations from the discovery set with FDR < 0.05).

Heritability

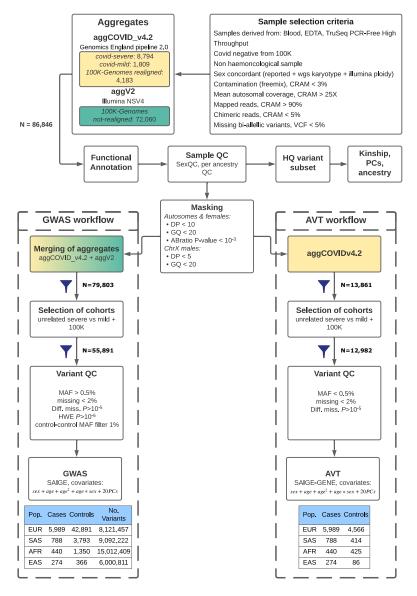
For the SNP-based narrow-sense heritabilities of severe Covid-19 and HGI COVID phenotypes, both HDL and LD score regression (LDSC) [PMID: 25642630] methods were applied. The HGI summary statistics were based on the GWAS analysis of all available samples, where the majority were European populations (see https://www.covid19hg.org/results/r6/). The munge_sumstats.py procedure in the LDSC software was used to harmonize the summary statistics, and in LDSC, the reference panel was built using the 1000 Genome European samples with SNPs that have minor allele frequencies (MAFs) > 0.05. As both HDL and LDSC are based on GWAS summary Z-score statistics, the estimated heritabilities are thus on the observed scale.

Enrichment analysis

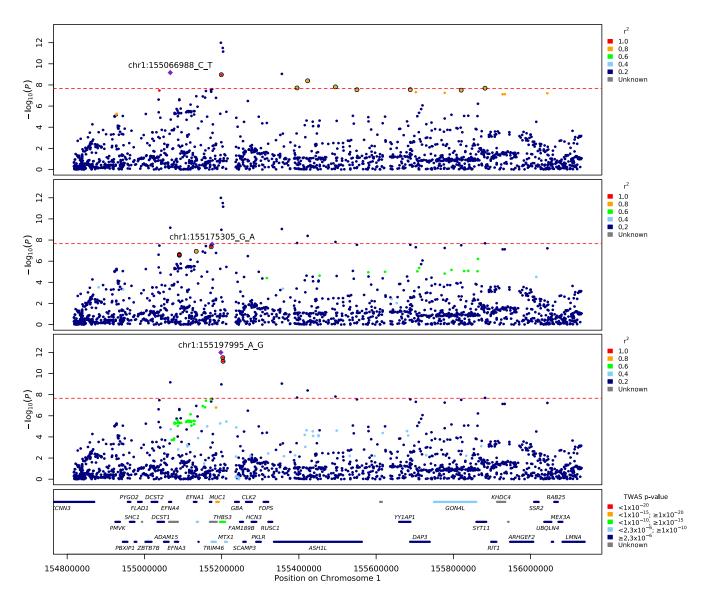
Enrichment analysis was performed to identify ontologies in which discovery genes were overrepresented. Using the XGR algorithm (http://galahad.well.ox.ac.uk/XGR)⁶⁴, 19 genes identified through lead variant proximity, credible variant sets, mutation consequence and TWAS analyses were tested for enrichment in disease ontology⁶⁵, gene ontologies (biological process, molecular function and cellular component)⁶⁶ and KEGG⁶⁷ and Reactome⁶⁸ pathways using default settings. This generated a P-value and FDR for overrepresentation of genes within each of the ontologies (Supplementary Table 15).

Extended Data Items

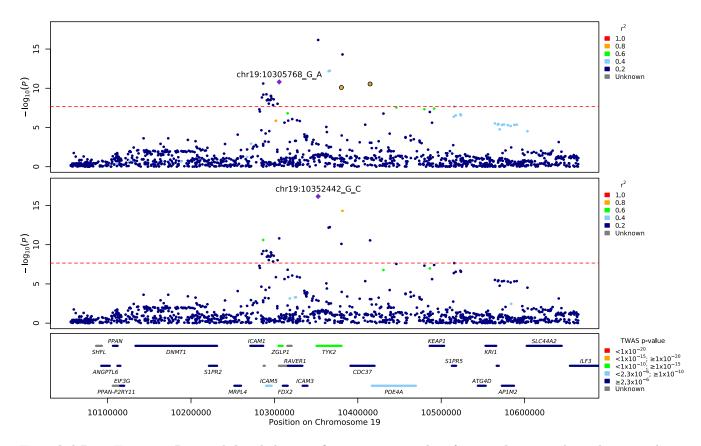
Extended Data Tables

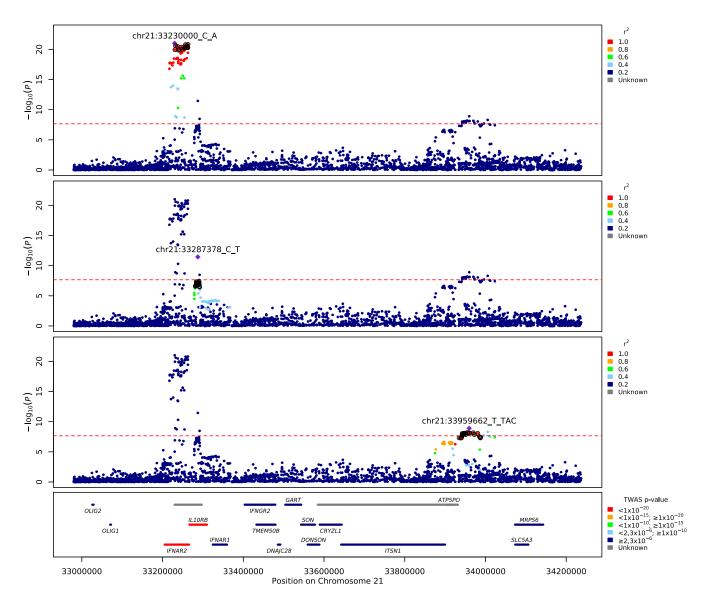

Lead variant	Pop	Focal CS	nCS	Worst variant	Worst variant Pval	Lead variant CADD	Worst variant CADD	Worst Consequence	Worst gene
chr1:155066988:C:T	EUR	chr1:155197995:A:G	9	chr1:155066988:C:T	6.8×10^{-10}	10.3	10.3	synonymous	EFNA4
chr1:155175305:G:A	META	chr1:155197995:A:G	5	chr1:155134292:T:C	1.17×10^{-07}	8.34	1.37	3' UTR	EFNA1
chr1:155197995:A:G	EUR	chr1:155197995:A:G	3	chr1:155202934:T:C	3.15×10^{-12}	2.1	21.2	missense	THBS3
chr3:45796521:G:T	EUR	chr3:45859597:C:T	1	chr3:45796521:G:T	9.9×10^{-17}	9.19	9.19	5' UTR	SLC6A20
chr3:45859597:C:T	EUR	chr3:45859597:C:T	9	chr3:45825948:A:G	6.1×10^{-132}	0.143	7.96	3' UTR	LZTFL1
chr3:146517122:G:A	EUR	chr3:146517122:G:A	9	chr3:146517122:G:A	4.94×10^{-09}	22.6	22.6	missense	PLSCR1
chr5:131995059:C:T	EUR	chr5:131995059:C:T	32	chr5:132075767:T:C	1.48×10^{-09}	0.206	6.09	missense	CSF2
chr6:32623820:T:C	EUR	chr6:32623820:T:C	33	chr6:32467073:G:C	6.65×10^{-08}	10.1	8.12	intron	HLA-DRB9
chr6:41515007:A:C	META	chr6:41515652:G:C	8	chr6:41515652:G:C	5.17×10^{-08}	4.11	4.17	intron	LINC01276
chr9:21206606:C:G	EUR	chr9:21206606:C:G	3	chr9:21206606:C:G	1.93×10^{-09}	23.9	23.9	missense	IFNA10
chr11:34482745:G:A	EUR	chr11:34482745:G:A	4	chr11:34479140:G:A	2.56×10^{-10}	0.073	1.32	3' UTR	ELF5
chr12:132489230:GC:G	EUR	chr12:132489230:GC:G	25	chr12:132565387:T:C	1.42×10^{-07}	4.91	4.64	non coding transcript exon	-
chr13:112889041:C:T	EUR	chr13:112889041:C:T	4	chr13:112886111:C:T	5.36×10^{-11}	0.676	5.5	3' UTR	ATP11A
chr15:93046840:T:A	EUR	chr15:93046840:T:A	2	chr15:93046840:T:A	8.61×10^{-13}	4.45	4.45	intron	RGMA
chr16:89196249:G:A	EUR	chr16:89196249:G:A	4	chr16:89196249:G:A	4.4×10^{-09}	22.8	22.8	missense	SLC22A31
chr17:46152620:T:C	EUR	chr17:46152620:T:C	1430	chr17:45830530:T:C	1.14×10^{-07}	5.27	3.96	stop lost	CRHR1
chr17:49863260:C:A	EUR	chr17:49863260:C:A	5	chr17:49880589:C:T	1.91×10^{-09}	5.38	7.22	TF binding site	-
chr19:4717660:A:G	EUR	chr19:4717660:A:G	1	chr19:4717660:A:G	3.91×10^{-36}	16.3	16.3	intron	DPP9
chr19:10305768:G:A	EUR	chr19:10352442:G:C	3	chr19:10380329:C:G	7.93×10^{-11}	0.422	7.91	intron	TYK2
chr19:10352442:G:C	EUR	chr19:10352442:G:C	1	chr19:10352442:G:C	6.98×10^{-17}	25.1	25.1	missense	TYK2
chr19:48697960:C:T	EUR	chr19:48697960:C:T	10	chr19:48703346:C:T	6.75×10^{-10}	2.44	7.02	synonymous	FUT2
chr21:33230000:C:A	EUR	chr21:33230000:C:A	16	chr21:33262573:G:A	5.35×10^{-21}	10.1	3.43	missense	IFNAR2
chr21:33287378:C:T	EUR	chr21:33230000:C:A	33	chr21:33288868:T:G	1.59×10^{-07}	3.63	5.84	intron	IL10RB
chr21:33959662:T:TAC	EUR	chr21:33230000:C:A	23	chr21:33972178:G:A	1.32×10^{-08}	0.246	0.282	non coding transcript exon	LINC00649

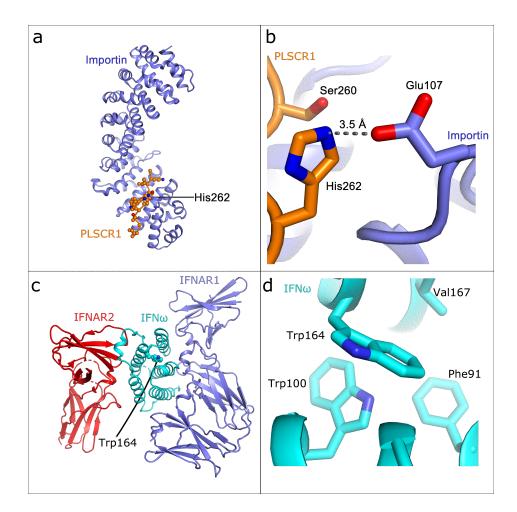
Extended Data Table 1: Fine-mapping results for lead variants and worst consequence variant in each credible set. Fine-mapping was performed in EUR for all variants except chr6:41515007:A:C which was fine-mapped in the SAS population for which the signal was strongest among the per-population analyses. Lead variant chr2:60480453:A:G (rs1123573) that was discovered in multi-ancestry meta-analysis is not included in the table as fine-mapping did not generate any credible sets with the required posterior inclusion probability of >0.95 for any of the populations. Focal CS is the index SNP that was used for fine-mapping with SusieR, 1.5 Mb on each side. nCS indicates the number of variants included in each credible set. Consequence annotation for all variants across credible sets was generated using VEPv104 and the worst consequence across GENCODE basic transcripts was chosen. All variants were ranked according to their consequence type and chr:pos_{hg38}:ref_{hg38}:alt, *P*-value and CADD score are provided for the variant with the worst consequence across all variants in each credible set.

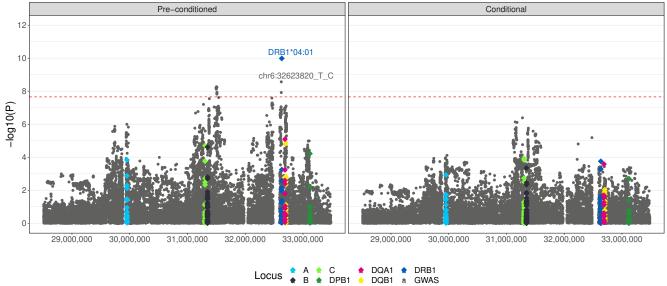

Gene	BETA	SE	P	$BETA_{hgib2.23m}$	$SE_{hgib2.23m}$	P _{hgib2.23m}
ICAM5	-0.15	0.025	2.82×10^{-9}	-0.07	0.013	7.65×10^{-8}
GOLM1	0.22	0.037	2.92×10^{-9}	0.20	0.021	1.04×10^{-21} *
ICAM1	0.10	0.017	6.33×10^{-9}	0.013	0.009	0.14
ICAM5	-0.19	0.033	1.58×10^{-8}	-0.048	0.017	0.0054
FAM3D	0.13	0.024	2.12×10^{-8}	0.12	0.013	3.12×10^{-18} *
PDGFRL	0.10	0.021	1.85×10^{-6}	0.021	0.010	0.041
CD209	0.11	0.024	6.58×10^{-6}	0.11	0.014	1.88×10^{-15} *
ABO	0.064	0.017	0.00012	0.084	0.0088	7.76×10^{-22} *
C1GALT1C1	0.13	0.037	0.00026	0.055	0.030	0.063
CCL25	0.15	0.040	0.00026	0.035	0.023	0.13
F8	0.14	0.042	0.0011	0.16	0.020	1.46×10^{-14} *
TLR4:LY96	-0.12	0.038	0.0014	-	-	-
IL3RA	-0.087	0.028	0.0019	-0.065	0.014	4.33×10^{-6} *
SELE	-0.069	0.022	0.0019	-0.095	0.013	3.76×10^{-14} *
CAMK1	-0.064	0.021	0.00205	0.0047	0.0110	0.664
IL27RA	-0.084	0.028	0.00229	0.0020	0.0150	0.892

Extended Data Table 2: Identification of 16 proteins by the GSMR analysis for Covid-19 severity at FDR < 0.05. We report the effect size *BETA*, the standard error *SE* and the *P*-value *P* for the GenOMICC analysis and the replication with HGI B2 and 23andme meta-analysis. An asterisk (*) next to the replication *P*-value ($P_{hgib2.23m}$) indicates that the protein result is replicated with concordant direction of effect. We considered as replicated those results that passed a Bonferroni correction of the p-values of the replicated outcome Mendelian randomisation.

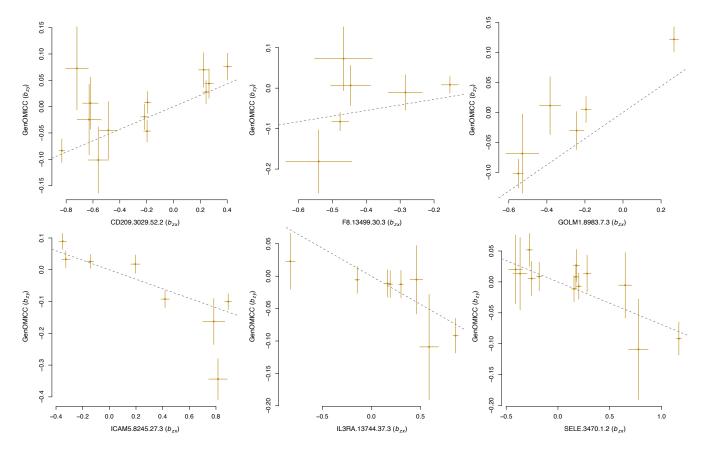

Extended Data Figures


Extended Data Figure 1: Diagram showing the analysis workflow for genome-wide association study (GWAS) and aggregate variant testing (AVT) analyses of this study. The cohorts displayed in yellow and green in the top box were processed with Genomics England Pipeline 2.0 and Illumina NSV4, respectively (see Methods on WGS Alignment and variant calling for details on differences between pipelines). We used individuals that were processed with either pipeline for the GWAS analyses and individuals processed only with Genomics England Pipeline 2.0 for the aggregate variant burden testing (AVT) analyses. The definition of the cases and controls was the same for GWAS and AVT, cases were the Covid-19 severe individuals for both, and controls included individuals from the 100,000 genomes project (100K-Genomes) and also Covid-19 positive individuals that were recruited for this study and experienced only mild symptoms (covid-mild).


Extended Data Figure 2: Regional detail showing fine-mapping to identify three adjacent independent signals on Chromosome 1. Top two panels: variants in linkage disequilibrium with the lead variants shown. The variants that are included in two independent credible sets are displayed with black outline circles. r^2 values in the legend denote upper limits, *i.e.* 0.2=[0,0.2], 0.4=[0.2,0.4], 0.6=[0.4,0.6], 0.8=[0.6,0.8], 1=[0.8,1]. Bottom panel: locations of protein-coding genes, coloured by TWAS *P*-value. The red dashed line shows the Bonferroni-corrected *P*-value= 2.2×10^{-8} for Europeans.


Extended Data Figure 3: Regional detail showing fine-mapping to identify two adjacent independent signals on Chromosome 19. Top two panels: variants in linkage disequilibrium with the lead variants shown. The variants that are included in two independent credible sets are displayed with black outline circles. r^2 values in the legend denote upper limits, *i.e.* 0.2=[0,0.2], 0.4=[0.2,0.4], 0.6=[0.4,0.6], 0.8=[0.6,0.8], 1=[0.8,1]. Bottom panel: locations of protein-coding genes, coloured by TWAS *P*-value. The red dashed line shows the Bonferroni-corrected *P*-value= 2.2×10^{-8} for Europeans.

Extended Data Figure 4: Regional detail showing fine-mapping to identify three adjacent independent signals on Chromosome 21. Top three panels: variants in linkage disequilibrium with the lead variants shown. The variants that are included in three independent credible sets are displayed with black outline circles. r^2 values in the legend denote upper limits, *i.e.* 0.2=[0,0.2], 0.4=[0.2,0.4], 0.6=[0.4,0.6], 0.8=[0.6,0.8], 1=[0.8,1]. Bottom panel: locations of protein-coding genes, coloured by TWAS *P*-value. The red dashed line shows the Bonferroni-corrected *P*-value= 2.2×10^{-8} for Europeans.



Extended Data Figure 5: Predicted structural consequences of lead variants at PLSCR1⁶⁹ and IFNA10⁷⁰.(a) Crystal structure of PLSCR1 nuclear localization signal (orange, Gly257–Ile266, numbering correspond to UniProt entry O15162) in complex with Importin α (blue), Protein Data Bank (PDB) ID 1Y2A. Side chains of PLSCR1 are shown as connected spheres with carbon atoms coloured in orange, nitrogens in blue and oxygens in red. Hydrogen atoms were not determined at this resolution (2.20 Å) and are not shown. (b) Close-up view showing side chains of PLSCR1 Ser260, His262 and Importin Glu107 as sticks. Distance (in Å) between selected atoms (PLSCR1 His262 $N\epsilon^2$ and Importin Glu107 carboxyl O) is indicated. A hydrogen bond between PLSCR1 His262 and Importin Glu107 is indicated with a dashed line. The risk variant is predicted to eliminate this bond, disrupting nuclear import, an essential step for effect on antiviral signalling²⁹ and neutrophil maturation.⁷¹ (c) Since there is very strong sequence conservation between IFNA10 and the gene encoding IFN ω , we used existing crystal structure data (Protein Data Bank ID 3SE4) for IFN ω (cvan) to display a ternary complex with interferon α/β receptor IFNAR1 (blue), IFNAR2 (red). The side chain of Trp164 is shown as spheres and indicated with a black line. (d) The hydrophobic core of IFN ω with Trp164 shielded from the solvent ind the center. Trp164-surrounding residues of IFN ω are numbered and correspond to UniProt entry P05000. Trp164 and surrounding residues are conserved in IFNA10 (UniProt ID P01566) and share the same numbering as in IFN ω (P05000). Side chains of four residues are shown as sticks. Carbon and nitrogen atoms coloured in cvan and blue, respectively. The critical Covid-19-associated mutation, Trp164Cvs, would replace an evolutionarily conserved, bulky side chain in the hydrophobic core of IFNA10 with a smaller one, which may destabilise IFNA10.

Overlaid GWAS and HLA associations: conditioned on DRB1*04:01 (Europeans, sev_vs_mld_aggV2)

Extended Data Figure 6: Manhattan plot of HLA and GWAS signal across the extended MHC region for the EUR cohort. Grey circles mark the GWAS (small variant) associations and diamonds represent the HLA each allele association, coloured by locus. The lead variant from the GWAS and lead allele from HLA are labelled. The left-panel shows the raw association $-\log 10(p-values)$ per variant - prior to conditional analysis. The right-panel shows the $-\log 10(p-values)$ per variant following conditioning on $DRB1^*04:01$. The dashed red line shows the Bonferroni-corrected genome-wide significance threshold for Europeans.

Extended Data Figure 7: Effect-effect plots for Mendelian randomisation analyses to assess causal evidence for circulating proteins in critical Covid-19. Each plot shows effect size (β) of variants associated with protein concentration (x-axis) and critical Covid-19 (y-axis). A full list of instruments is found in Supplementary table 13.

GenOMICC Investigators

GenOMICC Consortium

GenOMICC Co-Investigator J. Kenneth Baillie^{36,37}, Colin Begg³⁸, Sara Clohisey³⁶, Charles Hinds³⁹, Peter Horby⁴⁰, Julian Knight⁴¹, Lowell Ling⁴², David Maslove⁴³, Danny McAuley^{44,45}, Johnny Millar³⁶, Hugh Montgomery⁴⁶, Alistair Nichol⁴⁷, Peter J.M. Openshaw^{48,49}, Alexandre C Pereira⁵⁰, Chris P Ponting⁵¹, Kathy Rowan⁵², Malcolm G Semple^{53,54}, Manu Shankar-Hari⁵⁵, Charlotte Summers⁵⁶, Timothy Walsh³⁷.

Management, Laboratory and Data team Latha Aravindan⁵⁷, Ruth Armstrong³⁶, J. Kenneth Baillie^{36,37}, Heather Biggs⁵⁸, Ceilia Boz³⁶, Adam Brown³⁶, Richard Clark⁵⁹, Sara Clohisey³⁶, Audrey Coutts⁵⁹, Judy Coyle³⁶, Louise Cullum³⁶, Sukamal Das⁵⁷, Nicky Day³⁶, Lorna Donnelly⁵⁹, Esther Duncan³⁶, Angie Fawkes⁵⁹, Paul Finernan³⁶, Max Head Fourman³⁶, Anita Furlong⁵⁸, James Furniss³⁶, Bernadette Gallagher³⁶, Tammy Gilchrist⁵⁹, Ailsa Golightly³⁶, Fiona Griffiths³⁶, Katarzyna Hafezi⁵⁹, Debbie Hamilton³⁶, Ross Hendry³⁶, Andy Law³⁶, Dawn Law³⁶, Rachel Law³⁶, Sarah Law³⁶, Rebecca Lidstone-Scott³⁶, Louise Macgillivray⁵⁹, Alan Maclean⁵⁹, Hanning Mal³⁶, Sarah McCafferty⁵⁹, Ellie Mcmaster³⁶, Jen Meikle³⁶, Shona C Moore⁵³, Kirstie Morrice⁵⁹, Lee Murphy⁵⁹, Sheena Murphy⁵⁷, Mybaya Hellen³⁶, Wilna Oosthuyzen³⁶, Chenqing Zheng⁶⁰, Jiantao Chen⁶⁰, Nick Parkinson³⁶, Trevor Paterson³⁶, Katherine Schon⁵⁸, Andrew Stenhouse³⁶, Mihaela Das⁵⁷, Maaike Swets^{36,61}, Helen Szoor-McElhinney³⁶, Filip Taneski³⁶, Lance Turtle⁵³, Tony Wackett³⁶, Mairi Ward³⁶, Jane Weaver³⁶, Nicola Wrobel⁵⁹, Marie Zechner³⁶, Mybaya Hellen³⁶.

Guys and St Thomas' Hospital team Gill Arbane⁶², Aneta Bociek⁶², Sara Campos⁶², Neus Grau⁶², Tim Owen Jones⁶², Rosario Lim⁶², Martina Marotti⁶², Marlies Ostermann⁶², Manu Shankar-Hari⁶², Christopher Whitton⁶².

Barts Health NHS Trust team Zoe Alldis⁶³, Raine Astin-Chamberlain⁶³, Fatima Bibi⁶³, Jack Biddle⁶³, Sarah Blow⁶³, Matthew Bolton⁶³, Catherine Borra⁶³, Ruth Bowles⁶³, Maudrian Burton⁶³, Yasmin Choudhury⁶³, David Collier⁶³, Amber Cox⁶³, Amy Easthope⁶³, Patrizia Ebano⁶³, Stavros Fotiadis⁶³, Jana Gurasashvili⁶³, Rosslyn Halls⁶³, Pippa Hartridge⁶³, Delordson Kallon⁶³, Jamila Kassam⁶³, Ivone Lancoma-Malcolm⁶³, Maninderpal Matharu⁶³, Peter May⁶³, Oliver Mitchelmore⁶³, Tabitha Newman⁶³, Mital Patel⁶³, Jane Pheby⁶³, Irene Pinzuti⁶³, Zoe Prime⁶³, Oleksandra Prysyazhna⁶³, Julian Shiel⁶³, Melanie Taylor⁶³, Carey Tierney⁶³, Suzanne Wood⁶³, Anne Zak⁶³, Olivier Zongo⁶³.

James Cook University Hospital team Stephen Bonner⁶⁴, Keith Hugill⁶⁴, Jessica Jones⁶⁴, Steven Liggett⁶⁴, Evie Headlam⁶⁴.

Royal Stoke University Hospital team Nageswar Bandla⁶⁵, Minnie Gellamucho⁶⁵, Michelle Davies⁶⁵, Christopher Thompson⁶⁵.

North Middlesex University Hospital NHS trust team Marwa Abdelrazik⁶⁶, Dhanalakshmi Bakthavatsalam⁶⁶, Munzir Elhassan⁶⁶, Arunkumar Ganesan⁶⁶, Anne Haldeos⁶⁶, Jeronimo Moreno-Cuesta⁶⁶, Dharam Purohit⁶⁶, Rachel Vincent⁶⁶, Kugan Xavier⁶⁶, kumar Rohit⁶⁷, Frater Alasdair⁶⁶, Malik Saleem⁶⁶, Carter David⁶⁶, Jenkins Samuel⁶⁶, Zoe Lamond⁶⁶, Wall Alanna⁶⁶.

The Royal Liverpool University Hospital team Jaime Fernandez-Roman⁶⁸, David O. Hamilton⁶⁸, Emily Johnson⁶⁸, Brian Johnston⁶⁸, Maria Lopez Martinez⁶⁸, Suleman Mulla⁶⁸, David Shaw⁶⁸, Alicia A.C. Waite⁶⁸, Victoria Waugh⁶⁸, Ingeborg D. Welters⁶⁸, Karen Williams⁶⁸.

King's College Hospital team Anna Cavazza⁶⁹, Maeve Cockrell⁶⁹, Eleanor Corcoran⁶⁹, Maria Depante⁶⁹, Clare Finney⁶⁹, Ellen Jerome⁶⁹, Mark McPhail⁶⁹, Monalisa Nayak⁶⁹, Harriet Noble⁶⁹, Kevin O'Reilly⁶⁹, Evita Pappa⁶⁹, Rohit Saha⁶⁹, Sian Saha⁶⁹, John Smith⁶⁹, Abigail Knighton⁶⁹.

Charing Cross Hospital team David Antcliffe⁷⁰, Dorota Banach⁷⁰, Stephen Brett⁷⁰, Phoebe Coghlan⁷⁰, Ziortza Fernandez⁷⁰, Anthony Gordon⁷⁰, Roceld Rojo⁷⁰, Sonia Sousa Arias⁷⁰, Maie Templeton⁷⁰.

Nottingham University Hospital team Megan Meredith⁷¹, Lucy Morris⁷¹, Lucy Ryan⁷¹, Amy Clark⁷¹, Julia Sampson⁷¹, Cecilia Peters⁷¹, Martin Dent⁷¹, Margaret Langley⁷¹, Saima Ashraf⁷¹, Shuying Wei⁷¹, Angela Andrew⁷¹.

John Radcliffe Hospital team Archana Bashyal⁷², Neil Davidson⁷², Paula Hutton⁷², Stuart McKechnie⁷², Jean Wilson⁷².

Kingston Hospital team David Baptista⁷³, Rebecca Crowe⁷³, Rita Fernandes⁷³, Rosaleen Herdman-Grant⁷³, Anna Joseph⁷³, Denise O'Connor⁷⁴, Meryem Allen⁷³, Adam Loveridge⁷³, India McKenley⁷³, Eriko Morino⁷³, Andres Naranjo⁷³, Richard Simms⁷³, Kathryn Sollesta⁷³, Andrew Swain⁷³, Harish Venkatesh⁷³, Jacyntha Khera⁷³, Jonathan Fox⁷³.

Royal Infirmary of Edinburgh team Gillian Andrew⁷⁵, J. Kenneth Baillie⁷⁵, Lucy Barclay⁷⁵, Marie Callaghan⁷⁵, Rachael Campbell⁷⁵, Sarah Clark⁷⁵, Dave Hope⁷⁵, Lucy Marshall⁷⁵, Corrienne McCulloch⁷⁵, Kate Briton⁷⁵, Jo Singleton⁷⁵, Sohphie Birch⁷⁵.

Queen Alexandra Hospital team Lutece Brimfield⁷⁶, Zoe Daly⁷⁶, David Pogson⁷⁶, Steve Rose⁷⁶.

Morriston Hospital team Ceri Battle⁷⁷, Elaine Brinkworth⁷⁷, Rachel Harford⁷⁷, Carl Murphy⁷⁷, Luke Newey⁷⁷, Tabitha Rees⁷⁷, Marie Williams⁷⁷, Sophie Arnold⁷⁷.

Addenbrooke's Hospital team Petra Polgarova⁷⁸, Katerina Stroud⁷⁸, Charlotte Summers⁷⁸, Eoghan Meaney⁷⁸, Megan Jones⁷⁸, Anthony Ng⁷⁸, Shruti Agrawal⁷⁸, Nazima Pathan⁷⁸, Deborah White⁷⁸, Esther Daubney⁷⁸, Kay Elston⁷⁸.

BHRUT (Barking Havering) - Queens Hospital and King George Hospital team Lina Grauslyte⁷⁹, Musarat Hussain⁷⁹, Mandeep Phull⁷⁹, Tatiana Pogreban⁷⁹, Lace Rosaroso⁷⁹, Erika Salciute⁷⁹, George Franke⁷⁹, Joanna Wong⁷⁹, Aparna George⁷⁹.

Royal Sussex County Hospital team Laura Ortiz-Ruiz de Gordoa⁸⁰, Emily Peasgood⁸⁰, Claire Phillips⁸⁰, Laura Ortiz-Ruiz de Gordoa⁸⁰, Emily Peasgood⁸⁰, Claire Phillips⁸⁰.

Queen Elizabeth Hospital team Michelle Bates⁸¹, Jo Dasgin⁸¹, Jaspret Gill⁸¹, Annette Nilsson⁸¹, James Scriven⁸¹, Amy Collins¹⁴³, Waqas Khaliq¹⁴³, Estefania Treus Gude¹⁴³.

St George's Hospital team Carlos Castro Delgado⁸², Deborah Dawson⁸², Lijun Ding⁸², Georgia Durrant⁸², Obiageri Ezeobu⁸², Sarah Farnell-Ward⁸², Abiola Harrison⁸², Rebecca Kanu⁸², Susannah Leaver⁸², elena Maccacari⁸², Soumendu Manna⁸², Romina Pepermans Saluzzio⁸², Joana Queiroz⁸², Tinashe Samakomva⁸², Christine Sicat⁸², Joana Texeira⁸², Edna Fernandes Da Gloria⁸², Ana Lisboa⁸², John Rawlins⁸², Jisha Mathew⁸², Ashley Kinch⁸², William James Hurt⁸², Nirav Shah⁸², Victoria Clark⁸², Maria Thanasi⁸², Nikki Yun⁸², Kamal Patel⁸².

Stepping Hill Hospital team Sara Bennett⁸³, Emma Goodwin⁸³, Matthew Jackson⁸³, Alissa Kent⁸³, Clare Tibke⁸³, Wiesia Woodyatt⁸³, Ahmed Zaki⁸³.

Countess of Chester Hospital team Azmerelda Abraheem⁸⁴, Peter Bamford⁸⁴, Kathryn Cawley⁸⁴, Charlie Dunmore⁸⁴, Maria Faulkner⁸⁴, Rumanah Girach⁸⁴, Helen Jeffrey⁸⁴, Rhianna Jones⁸⁴, Emily London⁸⁴, Imrun Nagra⁸⁴, Farah Nasir⁸⁴, Hannah Sainsbury⁸⁴, Clare Smedley⁸⁴.

Royal Blackburn Teaching Hospital team Tahera Patel⁸⁵, Matthew Smith⁸⁵, Srikanth Chukkambotla⁸⁵, Aayesha Kazi⁸⁵, Janice Hartley⁸⁵, Joseph Dykes⁸⁵, Muhammad Hijazi⁸⁵, Sarah Keith⁸⁵, Meherunnisa Khan⁸⁵, Janet Ryan-Smith⁸⁵, Philippa Springle⁸⁵, Jacqueline Thomas⁸⁵, Nick Truman⁸⁵, Samuel Saad⁸⁵, Dabheoc Coleman⁸⁵, Christopher Fine⁸⁵, Roseanna Matt⁸⁵, Bethan Gay⁸⁵, Jack Dalziel⁸⁵, Syamlan Ali⁸⁵, Drew Goodchild⁸⁵, Rhiannan Harling⁸⁵, Ravi Bhatterjee⁸⁵, Wendy Goddard⁸⁵, Chloe Davison⁸⁵, Stephen Duberly⁸⁵, Jeanette Hargreaves⁸⁵, Rachel Bolton⁸⁵.

The Tunbridge Wells Hospital and Maidstone Hospital team Miriam Davey⁸⁶, David Golden⁸⁶, Rebecca Seaman⁸⁶.

Royal Gwent Hospital team Shiney Cherian⁸⁷, Sean Cutler⁸⁷, Anne Emma Heron⁸⁷, Anna Roynon-Reed⁸⁷, Tamas Szakmany⁸⁷, Gemma Williams⁸⁷, Owen Richards⁸⁷, Yusuf Cheema⁸⁷.

Pinderfields General Hospital team Hollie Brooke⁸⁸, Sarah Buckley⁸⁸, Jose Cebrian Suarez⁸⁸, Ruth Charlesworth⁸⁸, Karen Hansson⁸⁸, John Norris⁸⁸, Alice Poole⁸⁸, Alastair Rose⁸⁸, Rajdeep Sandhu⁸⁸, Brendan Sloan⁸⁸, Elizabeth Smithson⁸⁸, Muthu Thirumaran⁸⁸, Veronica Wagstaff⁸⁸, Alexandra Metcalfe⁸⁸.

Royal Berkshire NHS Foundation Trust team Mark Brunton⁸⁹, Jess Caterson⁸⁹, Holly Coles⁸⁹, Matthew Frise⁸⁹, Sabi Gurung Rai⁸⁹, Nicola Jacques⁸⁹, Liza Keating⁸⁹, Emma Tilney⁸⁹, Shauna Bartley⁸⁹, Parminder Bhuie⁸⁹.

Broomfield Hospital team Sian Gibson⁹⁰, Amanda Lyle⁹⁰, Fiona McNeela⁹⁰, Jayachandran Radhakrishnan⁹⁰, Alistair Hughes⁹⁰.

Northumbria Healthcare NHS Foundation Trust team Bryan Yates⁹¹, Jessica Reynolds⁹¹, Helen Campbell⁹¹, Maria Thompsom⁹¹, Steve Dodds⁹¹, Stacey Duffy⁹¹.

Whiston Hospital team Sandra Greer⁹², Karen Shuker⁹², Ascanio Tridente⁹².

Croydon University Hospital team Reena Khade⁹³, Ashok Sundar ⁹³, George Tsinaslanidis⁹³.

York Hospital team Isobel Birkinshaw⁹⁴, Joseph Carter⁹⁴, Kate Howard⁹⁴, Joanne Ingham⁹⁴, Rosie Joy⁹⁴, Harriet Pearson⁹⁴, Samantha Roche⁹⁴, Zoe Scott⁹⁴.

Heartlands Hospital team Hollie Bancroft⁹⁵, Mary Bellamy⁹⁵, Margaret Carmody⁹⁵, Jacqueline Daglish⁹⁵, Faye Moore⁹⁵, Joanne Rhodes⁹⁵, Mirriam Sangombe⁹⁵, Salma Kadiri⁹⁵, James Scriven⁹⁵.

Ashford and St Peter's Hospital team Maria Croft⁹⁶, Ian White⁹⁶, Victoria Frost⁹⁶, Maia Aquino⁹⁶.

Barnet Hospital team Rajeev Jha⁹⁷, Vinodh Krishnamurthy⁹⁷, Lai Lim⁹⁷, Rajeev Jha⁹⁷, Vinodh Krishnamurthy⁹⁷, Li Lim⁹⁷.

East Surrey Hospital team Edward Combes⁹⁸, Teishel Joefield⁹⁸, Sonja Monnery⁹⁸, Valerie Beech⁹⁸, Sallyanne Trotman⁹⁸.

Ninewells Hospital team Christine Almaden-Boyle⁹⁹, Pauline Austin⁹⁹, Louise Cabrelli⁹⁹, Stephen Cole⁹⁹, Matt Casey⁹⁹, Susan Chapman⁹⁹, Stephen Cole⁹⁹, Clare Whyte⁹⁹.

Worthing Hospital team Yolanda Baird¹⁰⁰, Aaron Butler¹⁰⁰, Indra Chadbourn¹⁰⁰, Linda Folkes¹⁰⁰, Heather Fox¹⁰⁰, Amy Gardner¹⁰⁰, Raquel Gomez¹⁰⁰, Gillian Hobden¹⁰⁰, Luke Hodgson¹⁰⁰, Kirsten King¹⁰⁰, Michael Margarson¹⁰⁰, Tim Martindale¹⁰⁰, Emma Meadows¹⁰⁰, Dana Raynard¹⁰⁰, Yvette Thirlwall¹⁰⁰, David Helm¹⁰⁰, Jordi Margalef¹⁰⁰.

Southampton General Hospital team Kristine Criste¹⁰¹, Rebecca Cusack¹⁰¹, Kim Golder¹⁰¹, Hannah Golding¹⁰¹, Oliver Jones¹⁰¹, Samantha Leggett¹⁰¹, Michelle Male¹⁰¹, Martyna Marani¹⁰¹, Kirsty Prager¹⁰¹, Toran Williams¹⁰¹, Belinda Roberts¹⁰¹, Karen Salmon¹⁰¹.

The Alexandra Hospital team Peter Anderson¹⁰², Katie Archer¹⁰², Karen Austin¹⁰², caroline Davis¹⁰², Alison Durie¹⁰², Olivia Kelsall¹⁰², Jessica Thrush¹⁰², Charlie Vigurs¹⁰², Laura Wild¹⁰², Hannah-Louise Wood¹⁰², Helen Tranter¹⁰², Alison Harrison¹⁰², Nicholas Cowley¹⁰², Michael McAlindon¹⁰², Andrew Burtenshaw¹⁰², Stephen Digby¹⁰², Emma Low¹⁰², Aled Morgan¹⁰², Naiara Cother¹⁰², Tobias Rankin¹⁰², Sarah Clayton¹⁰², Alex McCurdy¹⁰².

Sandwell General Hospital and City Hospital team Cecilia Ahmed¹⁰³, Balvinder Baines¹⁰³, Sarah Clamp¹⁰³, Julie Colley¹⁰³, Risna Haq¹⁰³, Anne Hayes¹⁰³, Jonathan Hulme¹⁰³, Samia Hussain¹⁰³, Sibet Joseph¹⁰³, Rita Kumar¹⁰³, Zahira Maqsood¹⁰³, Manjit Purewal¹⁰³.

Blackpool Victoria Hospital team Leonie Benham¹⁰⁴, Zena Bradshaw¹⁰⁴, Joanna Brown¹⁰⁴, Melanie Caswell¹⁰⁴, Jason Cupitt¹⁰⁴, Sarah Melling¹⁰⁴, Stephen Preston¹⁰⁴, Nicola Slawson¹⁰⁴, Emma Stoddard¹⁰⁴, Scott Warden¹⁰⁴.

Royal Glamorgan Hospital team Bethan Deacon¹⁰⁵, Ceri Lynch¹⁰⁵, Carla Pothecary¹⁰⁵, Lisa Roche¹⁰⁵, Gwenllian Sera Howe¹⁰⁵, Jayaprakash Singh¹⁰⁵, Keri Turner¹⁰⁵, Hannah Ellis¹⁰⁵, Natalie Stroud¹⁰⁵.

The Royal Oldham Hospital team Jodie Hunt¹⁰⁶, Joy Dearden¹⁰⁶, Emma Dobson¹⁰⁶, Andy Drummond¹⁰⁶, Michelle Mulcahy¹⁰⁶, Sheila Munt¹⁰⁶, Grainne O'Connor¹⁰⁶, Jennifer Philbin¹⁰⁶, Chloe Rishton¹⁰⁶, Redmond Tully¹⁰⁶, Sarah Winnard¹⁰⁶.

Glasgow Royal Infirmary team Susanne Cathcart¹⁰⁷, Katharine Duffy¹⁰⁷, Alex Puxty¹⁰⁷, Kathryn Puxty¹⁰⁷, Lynne Turner¹⁰⁷, Jane Ireland¹⁰⁷, Gary Semple¹⁰⁷.

St James's University Hospital and Leeds General Infirmary team Kate Long¹⁰⁸, Simon Whiteley¹⁰⁸, Elizabeth Wilby¹⁰⁸, Bethan Ogg¹⁰⁸.

University Hospital North Durham team Amanda Cowton¹⁰⁹, Andrea Kay¹⁰⁹, Melanie Kent¹⁰⁹, Kathryn Potts¹⁰⁹, Ami Wilkinson¹⁰⁹, Suzanne Campbell¹⁰⁹, Ellen Brown¹⁰⁹.

Fairfield General Hospital team Julie Melville¹¹⁰, Jay Naisbitt¹¹⁰, Rosane Joseph¹¹⁰, Maria Lazo¹¹⁰, Olivia Walton¹¹⁰, Alan Neal¹¹⁰.

Wythenshawe Hospital team Peter Alexander¹¹¹, Schvearn Allen¹¹¹, Joanne Bradley-Potts¹¹¹, Craig Brantwood¹¹¹, Jasmine Egan¹¹¹, Timothy Felton¹¹¹, Grace Padden¹¹¹, Luke Ward¹¹¹, Stuart Moss¹¹¹, Susannah Glasgow¹¹¹.

Royal Alexandra Hospital team Lynn Abel¹¹², Michael Brett¹¹², Brian Digby¹¹², Lisa Gemmell¹¹², James Hornsby¹¹², Patrick MacGoey¹¹², Pauline O'Neil¹¹², Richard Price¹¹², Natalie Rodden¹¹², Kevin Rooney¹¹², Radha Sundaram¹¹², Nicola Thomson¹¹².

Good Hope Hospital team Bridget Hopkins¹¹³, James Scriven¹¹³, Laura Thrasyvoulou¹¹³, Heather Willis¹¹³.

Tameside General Hospital team Martyn Clark¹¹⁴, Martina Coulding¹¹⁴, Edward Jude¹¹⁴, Jacqueline McCormick¹¹⁴, Oliver Mercer¹¹⁴, Darsh Potla¹¹⁴, Hafiz Rehman¹¹⁴, Heather Savill¹¹⁴, Victoria Turner¹¹⁴.

Royal Derby Hospital team Charlotte Downes¹¹⁵, Kathleen Holding¹¹⁵, Katie Riches¹¹⁵, Mary Hilton¹¹⁵, Mel Hayman¹¹⁵, Deepak Subramanian¹¹⁵, Priya Daniel¹¹⁵.

Medway Maritime Hospital team Oluronke Adanini¹¹⁶, Nikhil Bhatia¹¹⁶, Maines Msiska¹¹⁶, Rebecca Collins¹¹⁶.

Royal Victoria Infirmary team Ian Clement¹¹⁷, Bijal Patel ¹¹⁷, A Gulati¹¹⁷, Carole Hays¹¹⁷, K Webster¹¹⁷, Anne Hudson¹¹⁷, Andrea Webster¹¹⁷, Elaine Stephenson¹¹⁷, Louise McCormack¹¹⁷, Victoria Slater¹¹⁷, Rachel Nixon¹¹⁷, Helen Hanson¹¹⁷, Maggie fearby¹¹⁷, Sinead Kelly¹¹⁷, Victoria Bridgett¹¹⁷, Philip Robinson¹¹⁷.

Poole Hospital team Julie Camsooksai¹¹⁸, Charlotte Humphrey¹¹⁸, Sarah Jenkins¹¹⁸, Henrik Reschreiter¹¹⁸, Beverley Wadams¹¹⁸, Yasmin Death¹¹⁸.

Bedford Hospital team Victoria Bastion¹¹⁹, Daphene Clarke¹¹⁹, Beena David¹¹⁹, Harriet Kent¹¹⁹, Rachel Lorusso¹¹⁹, Gamu Lubimbi¹¹⁹, Sophie Murdoch¹¹⁹, Melchizedek Penacerrada¹¹⁹, Alastair Thomas¹¹⁹, Jennifer Valentine¹¹⁹, Ana Vochin¹¹⁹, Retno Wulandari¹¹⁹, Brice Djeugam¹¹⁹.

Queens Hospital Burton team Gillian Bell¹²⁰, Katy English¹²⁰, Amro Katary¹²⁰, Louise Wilcox¹²⁰.

North Manchester General Hospital team Michelle Bruce¹²¹, Karen Connolly¹²¹, Tracy Duncan¹²¹, Helen T-Michael¹²¹, Gabriella Lindergard¹²¹, Samuel Hey ¹²¹, Claire Fox¹²¹, Jordan Alfonso¹²¹, Laura Jayne Durrans¹²¹, Jacinta Guerin¹²¹, Bethan Blackledge¹²¹, Jade Harris¹²¹, Martin Hruska¹²¹, Ayaa Eltayeb¹²¹, Thomas Lamb¹²¹, Tracey Hodgkiss¹²¹, Lisa Cooper¹²¹, Joanne Rothwell¹²¹.

Aberdeen Royal Infirmary team Angela Allan¹²², Felicity Anderson¹²², Callum Kaye¹²², Jade Liew¹²², Jasmine Medhora¹²², Teresa Scott¹²², Erin Trumper¹²², Adriana Botello¹²².

Derriford Hospital team Liana Lankester¹²³, Nikitas Nikitas¹²³, Colin Wells¹²³, Bethan Stowe¹²³, Kayleigh Spencer¹²³.

Manchester Royal Infirmary team Craig Brandwood¹²⁴, Lara Smith¹²⁴, Richard Clark¹²⁴, Katie Birchall¹²⁴, Laurel Kolakaluri¹²⁴, Deborah Baines¹²⁴, Anila Sukumaran¹²⁴.

Salford Royal Hospital team Elena Apetri¹²⁵, Cathrine Basikolo¹²⁵, Bethan Blackledge¹²⁵, Laura Catlow¹²⁵, Bethan Charles¹²⁵, Paul Dark¹²⁵, Reece Doonan¹²⁵, Jade Harris¹²⁵, Alice Harvey¹²⁵, Daniel Horner¹²⁵, Karen Knowles¹²⁵, Stephanie Lee¹²⁵, Diane Lomas¹²⁵, Chloe Lyons¹²⁵, Tracy Marsden¹²⁵, Danielle McLaughlan¹²⁵, Liam McMorrow¹²⁵, Jessica Pendlebury¹²⁵, Jane Perez¹²⁵, Maria Poulaka¹²⁵, Nicola Proudfoot¹²⁵, Melanie Slaughter¹²⁵, Kathryn Slevin¹²⁵, Melanie Taylor¹²⁵, Vicky Thomas¹²⁵, Danielle Walker¹²⁵, Angiy Michael ¹²⁵, Matthew Collis¹²⁵.

William Harvey Hospital team Tracey Cosier¹²⁶, Gemma Millen¹²⁶, Neil Richardson¹²⁶, Natasha Schumacher¹²⁶, Heather Weston¹²⁶, James Rand¹²⁶.

Queen Elizabeth University Hospital team Nicola Baxter¹²⁷, Steven Henderson¹²⁷, Sophie Kennedy-Hay¹²⁷, Christopher McParland¹²⁷, Laura Rooney¹²⁷, Malcolm Sim¹²⁷, Gordan McCreath¹²⁷.

Bradford Royal Infirmary team Louise Akeroyd¹²⁸, Shereen Bano¹²⁸, Matt Bromley¹²⁸, Lucy Gurr¹²⁸, Tom Lawton¹²⁸, James Morgan¹²⁸, Kirsten Sellick¹²⁸, Deborah Warren¹²⁸, Brian Wilkinson¹²⁸, Janet McGowan¹²⁸, Camilla Ledgard¹²⁸, Amelia Stacey¹²⁸, Kate Pye¹²⁸, Ruth Bellwood¹²⁸, Michael Bentley¹²⁸.

Bristol Royal Infirmary team Jeremy Bewley¹²⁹, Zoe Garland¹²⁹, Lisa Grimmer¹²⁹, Bethany Gumbrill¹²⁹, Rebekah Johnson¹²⁹, Katie Sweet¹²⁹, Denise Webster¹²⁹, Georgia Efford¹²⁹.

Norfolk and Norwich University hospital (NNUH) team Karen Convery¹³⁰, Deirdre Fottrell-Gould¹³⁰, Lisa Hudig¹³⁰, Jocelyn Keshet-Price¹³⁰, Georgina Randell¹³⁰, Katie Stammers¹³⁰.

Queen Elizabeth Hospital Gateshead team Maria Bokhari¹³¹, Vanessa Linnett¹³¹, Rachael Lucas¹³¹, Wendy McCormick¹³¹, Jenny Ritzema¹³¹, Amanda Sanderson¹³¹, Helen Wild¹³¹.

Sunderland Royal Hospital team Anthony Rostron¹³², Alistair Roy¹³², Lindsey Woods¹³², Sarah Cornell¹³², Fiona Wakinshaw¹³², Kimberley Rogerson¹³², Jordan Jarmain¹³².

Aintree University Hospital team Robert Parker¹³³, Amie Reddy¹³³, Ian Turner-Bone¹³³, Laura Wilding¹³³, Peter Harding¹³³.

Hull Royal Infirmary team Caroline Abernathy¹³⁴, Louise Foster¹³⁴, Andrew Gratrix¹³⁴, Vicky Martinson¹³⁴, Priyai Parkinson¹³⁴, Elizabeth Stones¹³⁴, Llucia Carbral-Ortega¹³⁵.

University College Hospital team Georgia Bercades¹³⁶, David Brealey¹³⁶, Ingrid Hass¹³⁶, Niall MacCallum¹³⁶, Gladys Martir¹³⁶, Eamon Raith¹³⁶, Anna Reyes¹³⁶, Deborah Smyth¹³⁶.

Royal Devon and Exeter Hospital team Letizia Zitter¹³⁷, Sarah Benyon¹³⁷, Suzie Marriott¹³⁷, Linda Park¹³⁷, Samantha Keenan¹³⁷, Elizabeth Gordon¹³⁷, Helen Quinn¹³⁷, Kizzy Baines¹³⁷.

The Royal Papworth Hospital team Lenka Cagova¹³⁸, Adama Fofano¹³⁸, Lucie Garner¹³⁸, Helen Holcombe¹³⁸, Sue Mepham¹³⁸, Alice Michael Mitchell¹³⁸, Lucy Mwaura¹³⁸, Krithivasan Praman¹³⁸, Alain Vuylsteke¹³⁸, Julie Zamikula¹³⁸.

Ipswich Hospital team Bally Purewal¹³⁹, Vanessa Rivers¹³⁹, Stephanie Bell¹³⁹.

Southmead Hospital team Hayley Blakemore¹⁴⁰, Borislava Borislavova¹⁴⁰, Beverley Faulkner¹⁴⁰, Emma Gendall¹⁴⁰, Elizabeth Goff¹⁴⁰, Kati Hayes¹⁴⁰, Matt Thomas¹⁴⁰, Ruth Worner¹⁴⁰, Kerry Smith¹⁴⁰, Deanna Stephens¹⁴⁰.

Milton Keynes University Hospital team Louise Mew¹⁴¹, Esther Mwaura¹⁴¹, Richard Stewart¹⁴¹, Felicity Williams¹⁴¹, Lynn Wren¹⁴¹, Sara-Beth Sutherland ¹⁴¹.

Royal Hampshire County Hospital team Emily Bevan¹⁴², Jane Martin¹⁴², Dawn Trodd¹⁴², Geoff Watson¹⁴², Caroline Wrey Brown¹⁴².

Great Ormond St Hospital and UCL Great Ormond St Institute of Child Health NIHR Biomedical Research Centre team Olugbenga Akinkugbe¹⁴⁴, Alasdair Bamford¹⁴⁴, Emily Beech¹⁴⁴, Holly Belfield¹⁴⁴, Michael Bell¹⁴⁴, Charlene Davies¹⁴⁴, Gareth A. L. Jones¹⁴⁴, Tara McHugh¹⁴⁴, Hamza Meghari¹⁴⁴, Lauran O'Neill¹⁴⁴, Mark J. Peters¹⁴⁴, Samiran Ray¹⁴⁴, Ana Luisa Tomas¹⁴⁴.

Stoke Mandeville Hospital team Iona Burn¹⁴⁵, Geraldine Hambrook¹⁴⁵, Katarina Manso¹⁴⁵, Ruth Penn¹⁴⁵, Pradeep Shanmugasundaram¹⁴⁵, Julie Tebbutt¹⁴⁵, Danielle Thornton¹⁴⁵.

University Hospital of Wales team Jade Cole¹⁴⁶, Michelle Davies¹⁴⁶, Rhys Davies¹⁴⁶, Donna Duffin¹⁴⁶, Helen Hill¹⁴⁶, Ben Player¹⁴⁶, Emma Thomas¹⁴⁶, Angharad Williams¹⁴⁶.

Basingstoke and North Hampshire Hospital team Denise Griffin¹⁴⁷, Nycola Muchenje¹⁴⁷, Mcdonald Mupudzi¹⁴⁷, Richard Partridge¹⁴⁷, Jo-Anna Conyngham¹⁴⁷, Rachel Thomas¹⁴⁷, Mary Wright¹⁴⁷, Maria Alvarez Corral¹⁴⁷.

Arrowe Park Hospital team Reni Jacob¹⁴⁸, Cathy Jones¹⁴⁸, Craig Denmade¹⁴⁸.

Chesterfield Royal Hospital Foundation Trust team Sarah Beavis¹⁴⁹, Katie Dale¹⁴⁹, Rachel Gascoyne¹⁴⁹, Joanne Hawes¹⁴⁹, Kelly Pritchard¹⁴⁹, Lesley Stevenson¹⁴⁹, Amanda Whileman¹⁴⁹.

Musgrove Park Hospital team Patricia Doble¹⁵⁰, Joanne Hutter¹⁵⁰, corinne Pawley¹⁵⁰, Charmaine Shovelton¹⁵⁰, Marius Vaida¹⁵⁰.

Peterborough City Hospital team Deborah Butcher¹⁵¹, Susie O'Sullivan¹⁵¹, Nicola Butterworth-Cowin¹⁵¹.

Royal Hallamshire Hospital and Northern General Hospital team Norfaizan Ahmad¹⁵², Joann Barker¹⁵², Kris Bauchmuller¹⁵², Sarah Bird¹⁵², Kay Cawthron¹⁵², Kate Harrington¹⁵², Yvonne Jackson¹⁵², Faith Kibutu¹⁵², Becky Lenagh¹⁵², Shamiso Masuko¹⁵², Gary H Mills¹⁵², Ajay Raithatha¹⁵², Matthew Wiles¹⁵², Jayne Willson¹⁵², Helen Newell¹⁵², Alison Lye¹⁵², Lorenza Nwafor¹⁵², Claire Jarman¹⁵², Sarah Rowland-Jones¹⁵², David Foote¹⁵², Joby Cole¹⁵², Roger Thompson¹⁵², James Watson¹⁵², Lisa Hesseldon¹⁵², Irene Macharia¹⁵², Luke Chetam ¹⁵², Jacqui Smith¹⁵², Amber Ford¹⁵², Samantha Anderson¹⁵², Kathryn Birchall¹⁵², Kay Housley¹⁵², Sara Walker¹⁵², Leanne Milner¹⁵², Helena Hanratty¹⁵², Helen Trower¹⁵², Patrick Phillips¹⁵², Simon Oxspring¹⁵², Ben Donne¹⁵².

Dumfries and Galloway Royal Infirmary team Catherine Jardine¹⁵³, Dewi Williams¹⁵³, Alasdair Hay¹⁵³.

Royal Bolton Hospital team Rebecca Flanagan¹⁵⁴, Gareth Hughes¹⁵⁴, scott Latham¹⁵⁴, Emma McKenna¹⁵⁴, Jennifer Anderson¹⁵⁴, Robert Hull¹⁵⁴, Kat Rhead¹⁵⁴.

Lister Hospital team Carina Cruz¹⁵⁵, Natalie Pattison¹⁵⁵.

Craigavon Area Hospital team Rob Charnock¹⁵⁶, Denise McFarland¹⁵⁶, Denise Cosgrove¹⁵⁶.

Southport and Formby District General Hospital team Ashar Ahmed¹⁵⁷, Anna Morris¹⁵⁷, Srinivas Jakkula¹⁵⁷.

Calderdale Royal Hospital team Asifa Ali¹⁵⁸, Megan Brady¹⁵⁸, Sam Dale¹⁵⁸, Annalisa Dance¹⁵⁸, Lisa Gledhill¹⁵⁸, Jill Greig¹⁵⁸, Kathryn Hanson¹⁵⁸, Kelly Holdroyd¹⁵⁸, Marie Home¹⁵⁸, Diane Kelly¹⁵⁸, Ross Kitson¹⁵⁸, Lear Matapure¹⁵⁸, Deborah Melia¹⁵⁸, Samantha Mellor¹⁵⁸, Tonicha Nortcliffe¹⁵⁸, Jez Pinnell¹⁵⁸, Matthew Robinson¹⁵⁸, Lisa Shaw¹⁵⁸, Ryan Shaw¹⁵⁸, Lesley Thomis¹⁵⁸, Alison Wilson¹⁵⁸, Tracy Wood¹⁵⁸, Lee-Ann Bayo¹⁵⁸, Ekta Merwaha¹⁵⁸, Tahira Ishaq¹⁵⁸, Sarah Hanley¹⁵⁸.

Prince Charles Hospital team Bethan Deacon¹⁵⁹, Meg Hibbert¹⁵⁹, Carla Pothecary¹⁵⁹, Dariusz Tetla¹⁵⁹, Chrsitopher Woodford¹⁵⁹, Latha Durga¹⁵⁹, Gareth Kennard-Holden¹⁵⁹.

Royal Bournemouth Hospital team Debbie Branney¹⁶⁰, Jordan Frankham¹⁶⁰, Sally Pitts¹⁶⁰, Nigel White¹⁶⁰.

Royal Preston Hospital team Shondipon Laha¹⁶¹, Mark Verlander¹⁶¹, Alexandra Williams¹⁶¹.

Whittington Hospital team Abdelhakim Altabaibeh¹⁶², Ana Alvaro¹⁶², Kayleigh Gilbert¹⁶², Louise Ma¹⁶², Loreta Mostoles¹⁶², Chetan Parmar¹⁶², Kathryn Simpson¹⁶², Champa Jetha¹⁶², Lauren Booker¹⁶², Anezka Pratley¹⁶².

Princess Royal Hospital team Colene Adams¹⁶³, Anita Agasou¹⁶³, Tracie Arden¹⁶³, Amy Bowes¹⁶³, Pauline Boyle¹⁶³, Mandy Beekes¹⁶³, Heather Button¹⁶³, Nigel Capps¹⁶³, Mandy Carnahan¹⁶³, Anne Carter¹⁶³, Danielle Childs¹⁶³, Denise Donaldson¹⁶³, Kelly Hard¹⁶³, Fran Hurford¹⁶³, Yasmin Hussain¹⁶³, Ayesha Javaid¹⁶³, James Jones¹⁶³, Sanal Jose¹⁶³, Michael Leigh¹⁶³, Terry Martin¹⁶³, Helen Millward¹⁶³, Nichola Motherwell¹⁶³, Rachel Rikunenko¹⁶³, Jo Stickley¹⁶³, Julie Summers¹⁶³, Louise Ting¹⁶³, Helen Tivenan¹⁶³, Louise Tonks¹⁶³, Rebecca Wilcox¹⁶³, Denise Skinner¹⁹², Jane Gaylard¹⁹², Dee Mullan¹⁹², Julie Newman¹⁹².

Macclesfield District General Hospital team Maureen Holland¹⁶⁴, Natalie Keenan¹⁶⁴, Marc Lyons¹⁶⁴, Helen Wassall¹⁶⁴, Chris Marsh¹⁶⁴, Mervin Mahenthran¹⁶⁴, Emma Carter¹⁶⁴, Thomas Kong¹⁶⁴.

Royal Surrey County Hospital team Helen Blackman¹⁶⁵, Ben Creagh-Brown¹⁶⁵, Sinead Donlon¹⁶⁵, Natalia Michalak-Glinska¹⁶⁵, Sheila Mtuwa¹⁶⁵, Veronika Pristopan¹⁶⁵, Armorel Salberg¹⁶⁵, Eleanor Smith¹⁶⁵, Sarah Stone¹⁶⁵, Charles Piercy¹⁶⁵, Jerik Verula¹⁶⁵, Dorota Burda¹⁶⁵, Rugia Montaser¹⁶⁵, Lesley Harden¹⁶⁵, Irving Mayangao¹⁶⁵, Cheryl Marriott¹⁶⁵, Paul Bradley¹⁶⁵, Celia Harris¹⁶⁵.

Hereford County Hospital team Susan Anderson¹⁶⁶, Eleanor Andrews¹⁶⁶, Janine Birch¹⁶⁶, Emma Collins¹⁶⁶, Kate Hammerton¹⁶⁶, Ryan O'Leary¹⁶⁶.

University Hospital of North Tees team Michele Clark¹⁶⁷, Sarah Purvis¹⁶⁷.

Lincoln County Hospital team Russell Barber¹⁶⁸, Claire Hewitt¹⁶⁸, Annette Hilldrith¹⁶⁸, Karen Jackson-Lawrence¹⁶⁸, Sarah Shepardson¹⁶⁸, Maryanne Wills¹⁶⁸, Susan Butler¹⁶⁸, Silvia Tavares¹⁶⁸, Amy Cunningham¹⁶⁸, Julia Hindale¹⁶⁸, Sarwat Arif¹⁶⁸.

Royal Cornwall Hospital team Sarah Bean¹⁶⁹, Karen Burt¹⁶⁹, Michael Spivey¹⁶⁹.

Royal United Hospital team Carrie Demetriou¹⁷⁰, Charlotte Eckbad¹⁷⁰, Sarah Hierons¹⁷⁰, Lucy Howie¹⁷⁰, Sarah Mitchard¹⁷⁰, Lidia Ramos¹⁷⁰, Alfredo Serrano-Ruiz¹⁷⁰, Katie White¹⁷⁰, Fiona Kelly¹⁷⁰.

Royal Brompton Hospital team Daniele Cristiano¹⁷¹, Natalie Dormand¹⁷¹, Zohreh Farzad¹⁷¹, Mahitha Gummadi¹⁷¹, Kamal Liyanage¹⁷¹, Brijesh Patel¹⁷¹, Sara Salmi¹⁷¹, Geraldine Sloane¹⁷¹, Vicky Thwaites¹⁷¹, Mathew Varghese¹⁷¹, Anelise C Zborowski¹⁷¹.

University Hospital Crosshouse team John Allan¹⁷², Tim Geary¹⁷², Gordon Houston¹⁷², Alistair Meikle¹⁷², Peter O'Brien¹⁷².

Basildon Hospital team Miranda Forsey¹⁷³, Agilan Kaliappan¹⁷³, Anne Nicholson¹⁷³, Joanne Riches¹⁷³, Mark Vertue¹⁷³, Miranda Forsey¹⁷³, Agilan Kaliappan¹⁷³, Anne Nicholson¹⁷³, Joanne Riches¹⁷³, Mark Vertue¹⁷³.

Glan Clwyd Hospital team Elizabeth Allan¹⁷⁴, Kate Darlington¹⁷⁴, Ffyon Davies¹⁷⁴, Jack Easton¹⁷⁴, Sumit Kumar¹⁷⁴, Richard Lean¹⁷⁴, Daniel Menzies¹⁷⁴, Richard Pugh¹⁷⁴, Xinyi Qiu¹⁷⁴, Llinos Davies¹⁷⁴, Hannah Williams ¹⁷⁴, Jeremy Scanlon¹⁷⁴, Gwyneth Davies¹⁷⁴, Callum Mackay¹⁷⁴, Joannne Lewis¹⁷⁴, Stephanie Rees¹⁷⁴.

West Middlesex Hospital team Metod Oblak¹⁷⁵, Monica Popescu¹⁷⁵, Mini Thankachen¹⁷⁵.

Royal Lancaster Infirmary team Andrew Higham¹⁷⁶, Kerry Simpson¹⁷⁶, Jayne Craig¹⁷⁶.

Western General Hospital team Rosie Baruah¹⁷⁷, Sheila Morris¹⁷⁷, Susie Ferguson¹⁷⁷, Amy Shepherd¹⁷⁷.

Chelsea & Westminster NHS Foundation Trust team Luke Stephen Prockter Moore¹⁷⁸, Marcela Paola Vizcaychipi¹⁷⁸, Laura Gomes de Almeida Martins¹⁷⁸, Jaime Carungcong¹⁷⁸.

The Queen Elizabeth Hospital team Inthakab Ali Mohamed Ali¹⁷⁹, Karen Beaumont¹⁷⁹, Mark Blunt¹⁷⁹, Zoe Coton¹⁷⁹, Hollie Curgenven¹⁷⁹, Mohamed Elsaadany¹⁷⁹, Kay Fernandes¹⁷⁹, Sameena Mohamed Ally¹⁷⁹, Harini Rangarajan¹⁷⁹, Varun Sarathy¹⁷⁹, Sivarupan Selvanayagam¹⁷⁹, Dave Vedage¹⁷⁹, Matthew White¹⁷⁹.

King's Mill Hospital team Mandy Gill¹⁸⁰, Paul Paul¹⁸⁰, Valli Ratnam¹⁸⁰, Sarah Shelton¹⁸⁰, Inez Wynter¹⁸⁰.

Watford General Hospital team Siobhain Carmody¹⁸¹, Valerie Joan Page¹⁸¹.

University Hospital Wishaw team Claire Marie Beith¹⁸², Karen Black¹⁸², Suzanne Clements¹⁸², Alan Morrison¹⁸², Dominic Strachan¹⁸², Margaret Taylor¹⁸², Michelle Clarkson¹⁸², Stuart D'Sylva¹⁸², Kathryn Norman¹⁸².

Forth Valley Royal Hospital team Fiona Auld¹⁸³, Joanne Donnachie¹⁸³, Ian Edmond¹⁸³, Lynn Prentice¹⁸³, Nikole Runciman¹⁸³, Dario Salutous¹⁸³, Lesley Symon¹⁸³, Anne Todd¹⁸³, Patricia Turner¹⁸³, Abigail Short¹⁸³, Laura Sweeney¹⁸³, Euan Murdoch¹⁸³, Dhaneesha Senaratne¹⁸³.

George Eliot Hospital NHS Trust team Michaela Hill¹⁸⁴, Thogulava Kannan¹⁸⁴, Wild Laura¹⁸⁴.

Barnsley Hospital team Rikki Crawley¹⁸⁵, Abigail Crew¹⁸⁵, Mishell Cunningham¹⁸⁵, Allison Daniels¹⁸⁵, Laura Harrison¹⁸⁵, Susan Hope¹⁸⁵, Ken Inweregbu¹⁸⁵, Sian Jones¹⁸⁵, Nicola Lancaster¹⁸⁵, Jamie Matthews¹⁸⁵, Alice Nicholson¹⁸⁵, Gemma Wray¹⁸⁵.

The Great Western Hospital team Helen Langton¹⁸⁶, Rachel Prout¹⁸⁶, Malcolm Watters¹⁸⁶, Catherine Novis¹⁸⁶.

Harefield Hospital team Anthony Barron¹⁸⁷, Ciara Collins¹⁸⁷, Sundeep Kaul¹⁸⁷, Heather Passmore¹⁸⁷, Claire Prendergast¹⁸⁷, Anna Reed¹⁸⁷, Paula Rogers¹⁸⁷, Rajvinder Shokkar¹⁸⁷, Meriel Woodruff¹⁸⁷, Hayley Middleton ¹⁸⁷, Oliver Polgar¹⁸⁷, Claire Nolan ¹⁸⁷, Vicky Thwaites¹⁸⁷, Kanta Mahay¹⁸⁷.

Rotherham General Hospital team Dawn Collier¹⁸⁸, Anil Hormis¹⁸⁸, Victoria Maynard¹⁸⁸, Cheryl Graham¹⁸⁸, Rachel Walker¹⁸⁸, Victoria Maynard¹⁸⁸.

Ysbyty Gwynedd team Ellen Knights¹⁸⁹, Alicia Price¹⁸⁹, Alice Thomas¹⁸⁹, Chris Thorpe¹⁸⁹.

Diana Princess of Wales Hospital team Teresa Behan¹⁹⁰, Caroline Burnett¹⁹⁰, Jonathan Hatton¹⁹⁰, Elaine Heeney¹⁹⁰, Atideb Mitra¹⁹⁰, Maria Newton¹⁹⁰, Rachel Pollard¹⁹⁰, Rachael Stead¹⁹⁰.

Russell's Hall Hospital team Vishal Amin¹⁹¹, Elena Anastasescu¹⁹¹, Vikram Anumakonda¹⁹¹, Komala Karthik¹⁹¹, Rizwana Kausar¹⁹¹, Karen Reid¹⁹¹, Jacqueline Smith¹⁹¹, Janet Imeson-Wood¹⁹¹.

Denise Skinner¹⁹², Jane Gaylard¹⁹², Dee Mullan¹⁹², Julie Newman¹⁹².

St Mary's Hospital team Alison Brown¹⁹³, Vikki Crickmore¹⁹³, Gabor Debreceni¹⁹³, Joy Wilkins¹⁹³, Liz Nicol¹⁹³.

University Hospital Lewisham team Waqas Khaliq¹⁹⁴, Rosie Reece-Anthony¹⁹⁴, Mark Birt¹⁹⁴.

Colchester General Hospital team Alison Ghosh¹⁹⁵, Emma Williams¹⁹⁵.

Queen Elizabeth the Queen Mother Hospital team Louise Allen¹⁹⁶, Eva Beranova¹⁹⁶, Nikki Crisp¹⁹⁶, Joanne Deery¹⁹⁶, Tracy Hazelton¹⁹⁶, Alicia Knight¹⁹⁶, Carly Price¹⁹⁶, Sorrell Tilbey¹⁹⁶, Salah Turki¹⁹⁶, Sharon Turney¹⁹⁶.

Royal Albert Edward Infirmary team Joshua Cooper¹⁹⁷, Cheryl Finch¹⁹⁷, Sarah Liderth¹⁹⁷, Alison Quinn¹⁹⁷, Natalia Waddington¹⁹⁷.

Victoria Hospital team Tina Coventry¹⁹⁸, Susan Fowler¹⁹⁸, Michael MacMahon¹⁹⁸, Amanda McGregor¹⁹⁸.

Eastbourne District General Hospital team Anne Cowley¹⁹⁹, Judith Highgate¹⁹⁹, Anne Cowley¹⁹⁹, Judith Highgate¹⁹⁹.

Cumberland Infirmary team Alison Brown²⁰⁰, Jane Gregory²⁰⁰, Susan O'Connell²⁰⁰, Tim Smith²⁰⁰, Luigi Barberis²⁰⁰.

New Cross Hospital team Shameer Gopal²⁰¹, Nichola Harris²⁰¹, Victoria Lake²⁰¹, Stella Metherell²⁰¹, Elizabeth Radford²⁰¹.

The Princess Alexandra Hospital team Amelia Daniel²⁰², Joanne Finn²⁰², Rajnish Saha²⁰², Nikki White²⁰², Amy Easthope²⁰².

Salisbury District Hospital team Phil Donnison²⁰³, Fiona Trim²⁰³, Beena Eapen²⁰³.

Dorset County Hospital team Jenny Birch²⁰⁴, Laura Bough²⁰⁴, Josie Goodsell²⁰⁴, Rebecca Tutton²⁰⁴, Patricia Williams²⁰⁴, Sarah Williams²⁰⁴, Barbara Winter-Goodwin²⁰⁴.

University College Dublin team Ailstair Nichol²⁰⁵, Kathy Brickell²⁰⁵, Michelle Smyth²⁰⁵, Lorna Murphy²⁰⁵.

Glangwili General Hospital team Samantha Coetzee²⁰⁶, Alistair Gales²⁰⁶, Igor Otahal²⁰⁶, Meena Raj²⁰⁶, Craig Sell²⁰⁶.

Gloucestershire Royal Hospital team Paula Hilltout²⁰⁷, Jayne Evitts²⁰⁷, Amanda Tyler²⁰⁷, Joanne Waldron²⁰⁷.

Yeovil Hospital team Kate Beesley²⁰⁸, Sarah Board²⁰⁸, Agnieszka Kubisz-Pudelko²⁰⁸, Alison Lewis²⁰⁸, Jess Perry²⁰⁸, Lucy Pippard²⁰⁸, Di Wood²⁰⁸, Clare Buckley²⁰⁸.

Leicester Royal Infirmary team Peter Barry²⁰⁹, Neil Flint²⁰⁹, Patel Rekha²⁰⁹, Dawn Hales²⁰⁹.

Royal Manchester Children's Hospital team Lara Bunni²¹⁰, Claire Jennings²¹⁰, Monica Latif²¹⁰, Rebecca Marshall²¹⁰, Gayathri Subramanian²¹⁰.

Royal Victoria Hospital team Peter J McGuigan²¹¹, Christopher Wasson²¹¹, Stephanie Finn²¹¹, Jackie Green²¹¹, Erin Collins²¹¹, Bernadette King²¹¹.

Wrexham Maelor Hospital team Andy Campbell²¹², Sara Smuts²¹², Joseph Duffield²¹², Oliver Smith²¹², Lewis Mallon²¹², Watkins Claire²¹².

Walsall Manor Hospital team Liam Botfield²¹³, Joanna Butler²¹³, Catherine Dexter²¹³, Jo Fletcher²¹³, Atul Garg²¹³, Aditya Kuravi²¹³, Poonam Ranga²¹³, Emma Virgilio²¹³.

Darent Valley Hospital team Zakaula Belagodu²¹⁴, Bridget Fuller²¹⁴, Anca Gherman²¹⁴, Olumide Olufuwa²¹⁴, Remi Paramsothy²¹⁴, Carmel Stuart²¹⁴, Naomi Oakley²¹⁴, Charlotte Kamundi²¹⁴, David Tyl²¹⁴, Katy Collins²¹⁴, Pedro Silva²¹⁴, June Taylor²¹⁴, Laura King²¹⁴, Charlotte Coates²¹⁴, Maria Crowley²¹⁴, Phillipa Wakefield²¹⁴, Jane Beadle ²¹⁴, Laura Johnson²¹⁴, Janet Sargeant²¹⁴, Madeleine Anderson²¹⁴.

Warrington General Hospital team Ailbhe Brady²¹⁵, Rebekah Chan²¹⁵, Jeff Little²¹⁵, Shane McIvor²¹⁵, Helena Prady²¹⁵, Helen Whittle²¹⁵, Bijoy Mathew²¹⁵.

Warwick Hospital team Ben Attwood²¹⁶, Penny Parsons²¹⁶.

University Hospitals Coventry & Warwickshire NHS Trust team Geraldine Ward²¹⁷, Pamela Bremmer²¹⁷.

University Hospital Monklands team West Joe²¹⁸, Baird Tracy²¹⁸, Ruddy Jim²¹⁸.

Princess of Wales Hospital team Ellie Davies²¹⁹, Lisa Roche²¹⁹, Sonia Sathe²¹⁹.

Northwick Park Hospital team Catherine Dennis²²⁰, Alastair McGregor²²⁰, Victoria Parris²²⁰, Sinduya Srikaran²²⁰, Anisha Sukha²²⁰.

Raigmore Hospital team Rachael Campbell²²¹, Noreen Clarke²²¹, Jonathan Whiteside²²¹, Mairi Mascarenhas²²¹, Avril Donaldson²²¹, Joanna Matheson²²¹, Fiona Barrett²²¹, Marianne O'Hara²²¹, Laura Okeefe²²¹, Clare Bradley²²¹.

Royal Free Hospital team Christine Eastgate-Jackson²²², Helder Filipe²²², Daniel Martin²²², Amitaa Maharajh²²², Sara Mingo Garcia²²², Glykeria Pakou²²², Mark De Neef²²².

Scunthorpe General Hospital team Kathy Dent²²³, Elizabeth Horsley²²³, Muhmmad Nauman Akhtar²²³, Sandra Pearson²²³, Dorota Potoczna²²³, Sue Spencer²²³.

West Cumberland Hospital team Melanie Clapham²²⁴, Rosemary Harper²²⁴, Una Poultney²²⁴, Polly Rice²²⁴, Tim Smith²²⁴, Rachel Mutch²²⁴, Luigi Barberis²²⁴.

Airedale General Hospital team Lisa Armstrong²²⁵, Hayley Bates²²⁵, Emma Dooks²²⁵, Fiona Farquhar²²⁵, Brigid Hairsine²²⁵, Chantal McParland²²⁵, Sophie Packham²²⁵.

Birmingham Children's Hospital team Rehana Bi²²⁶, Barney Scholefield²²⁶, Lydia Ashton²²⁶.

Liverpool Heart and Chest Hospital team Linsha George²²⁷, Sophie Twiss²²⁷, David Wright²²⁷.

Pilgrim Hospital team Manish Chablani²²⁸, Amy Kirkby²²⁸, Kimberley Netherton²²⁸.

Prince Philip Hospital team Kim Davies²²⁹, Linda O'Brien²²⁹, Zohra Omar²²⁹, Igor Otahal²²⁹, Emma Perkins²²⁹, Tracy Lewis²²⁹, Isobel Sutherland²²⁹.

Furness General Hospital team Karen Burns²³⁰, Andrew Higham²³⁰.

Scarborough General Hospital team Dr Ben Chandler²³¹, Kerry Elliott²³¹, Janine Mallinson²³¹, Alison Turnbull²³¹.

Southend University Hospital team Prisca Gondo²³², Bernard Hadebe²³², Abdul Kayani²³², Bridgett Masunda²³².

Alder Hey Children's Hospital team Taya Anderson²³³, Dan Hawcutt²³³, Laura O'Malley²³³, Laura Rad²³³, Naomi Rogers²³³, Paula Saunderson²³³, Kathryn Sian Allison²³³, Deborah Afolabi²³³, jennifer whitbread²³³, Dawn jones ²³³, Rachael Dore ²³³.

Torbay Hospital team Matthew Halkes²³⁴, Pauline Mercer²³⁴, Lorraine Thornton²³⁴.

Borders General Hospital team Joy Dawson²³⁵, Sweyn Garrioch²³⁵, Melanie Tolson²³⁵, Jonathan Aldridge²³⁵.

Kent & Canterbury Hospital team Ritoo Kapoor²³⁶, David Loader²³⁶, Karen Castle²³⁶.

West Suffolk Hospital team Sally humphreys²³⁷, Ruth Tampsett²³⁷.

James Paget University Hospital NHS Trust team Katherine Mackintosh²³⁸, Amanda Ayers²³⁸, Wendy Harrison²³⁸, Julie North²³⁸.

The Christie NHS Foundation Trust team Suzanne Allibone²³⁹, Roman Genetu²³⁹, Vidya Kasipandian²³⁹, Amit Patel²³⁹, Ainhi Mac²³⁹, Anthony Murphy²³⁹, Parisa Mahjoob²³⁹, Roonak Nazari²³⁹, Lucy Worsley²³⁹, Andrew Fagan²³⁹.

The Royal Marsden Hospital team Thomas Bernand²⁴⁰, Ethel Black²⁴⁰, Arnold Dela Rosa²⁴⁰, Ryan Howle²⁴⁰, Shaman Jhanji²⁴⁰, Ravishankar Rao Baikady²⁴⁰, Kate Colette Tatham²⁴⁰, Benjamin Thomas²⁴⁰.

University Hospital Hairmyres team Dina Bell²⁴¹, Rosalind Boyle²⁴¹, Katie Douglas²⁴¹, Lynn Glass²⁴¹, Emma Lee²⁴¹, Liz Lennon²⁴¹, Austin Rattray²⁴¹.

Withybush General Hospital team Abigail Taylor²⁴², Rachel Anne Hughes²⁴², Helen Thomas²⁴², Alun Rees²⁴², Michaela Duskova²⁴², Janet Phipps²⁴², Suzanne Brooks²⁴², Michelle Edwards²⁴².

Ealing Hospital team Victoria Parris²⁴³, Sheena Quaid²⁴³, Ekaterina Watson²⁴³.

North Devon District Hospital team Adam Brayne²⁴⁴, Emma Fisher²⁴⁴, Jane Hunt²⁴⁴, Peter Jackson²⁴⁴, Duncan Kaye²⁴⁴, Nicholas Love²⁴⁴, Juliet Parkin²⁴⁴, Victoria Tuckey²⁴⁴, Lynne Van Koutrik²⁴⁴, Sasha Carter²⁴⁴, Benedict Andrew²⁴⁴, Louise Findlay²⁴⁴, Katie Adams²⁴⁴.

St John's Hospital Livingston team Jen Service²⁴⁵, Alison Williams²⁴⁵, Claire Cheyne²⁴⁵, Anne Saunderson²⁴⁵, Sam Moultrie²⁴⁵, Miranda Odam²⁴⁵.

Northampton General Hospital NHS Trust team Kathryn Hall²⁴⁶, Isheunesu Mapfunde ²⁴⁶, Charlotte Willis²⁴⁶, Alex Lyon²⁴⁶.

Harrogate and District NHS Foundation Trust team Chunda Sri-Chandana²⁴⁷, Joslan Scherewode²⁴⁷, Lorraine Stephenson ²⁴⁷, Sarah Marsh ²⁴⁷.

National Hospital for Neurology and Neurosurgery team David Brealey²⁴⁸, John Hardy²⁴⁸, Henry Houlden²⁴⁸, Eleanor Moncur²⁴⁸, Eamon Raith²⁴⁸, Ambreen Tariq²⁴⁸, Arianna Tucci²⁴⁸.

Bronglais General Hospital team Maria Hobrok²⁴⁹, Ronda Loosley²⁴⁹, Heather McGuinness²⁴⁹, Helen Tench²⁴⁹, Rebecca Wolf-Roberts²⁴⁹.

Golden Jubilee National Hospital team Val Irvine²⁵⁰, Benjamin Shelley²⁵⁰.

Homerton University Hospital Foundation NHS Trust team Amy Easthope²⁵¹, Claire Gorman²⁵¹, Abhinav Gupta²⁵¹, Elizabeth Timlick²⁵¹, Rebecca Brady²⁵¹.

Royal Hospital for Children team Colin Begg³⁸, Barry Milligan³⁸.

Sheffield Children's Hospital team Arianna Bellini²⁵², Jade Bryant²⁵², Anton Mayer²⁵², Amy Pickard²⁵², Nicholas Roe²⁵², Jason Sowter²⁵², Alex Howlett²⁵².

The Royal Alexandra Children's Hospital team Katy Fidler²⁵³, Emma Tagliavini²⁵³, Kevin Donnelly²⁵³.

³⁶Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
 ³⁷Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
 ³⁸Roval Hospital for Children, Glasgow, UK

³⁹William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK

⁴⁰Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK

⁴¹Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK

⁴², Prince of Wales Hospital, Hong Kong, China

⁴³Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada

⁴⁴Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
⁴⁵Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, Northern Ireland, UK

⁴⁶UCL Centre for Human Health and Performance, London, W1T 7HA, UK

⁴⁷Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland

⁴⁸National Heart and Lung Institute, Imperial College London, London, UK

⁴⁹Imperial College Healthcare NHS Trust:London,London,UK

⁵⁰Heart Institute, University of Sao Paulo, Brazil

⁵¹MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK

⁵²Intensive Care National Audit & Research Centre, London, UK

⁵³NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, L69 7BE, UK

⁵⁴Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK

⁵⁵Department of Intensive Care Medicine, Guy's and St. Thomas NHS Foundation Trust, London, UK

⁵⁶Department of Medicine, University of Cambridge, Cambridge, UK

⁵⁷NIHR Clinical Research Network (CRN), North West London Core Team, 3rd Floor Administrative Block South, Clock Tower, Hammersmith Hospital, Du Cane Road, London W12 0HS

⁵⁸Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK

⁵⁹Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, EH4 2XU, UK

⁶⁰Biostatistics Group, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China

⁶¹Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

⁶²Guys and St Thomas' Hospital, London, UK

⁶³Barts Health NHS Trust, London, UK ⁶⁴James Cook University Hospital, Middlesbrough, UK ⁶⁵Royal Stoke University Hospital, Staffordshire, UK ⁶⁶North Middlesex University Hospital NHS trust, London, UK ⁶⁷north Middlesex University Hospital NHS trust, London, UK ⁶⁸The Royal Liverpool University Hospital, Liverpool, UK ⁶⁹King's College Hospital, London, UK ⁷⁰Charing Cross Hospital, St Mary's Hospital and Hammersmith Hospital, London, UK ⁷¹Nottingham University Hospital, Nottingham, UK ⁷²John Radcliffe Hospital, Oxford, UK ⁷³Kingston Hospital, Surrey, UK ⁷⁴kingston Hospital, Surrey, UK ⁷⁵Royal Infirmary of Edinburgh, Edinburgh, UK ⁷⁶Queen Alexandra Hospital, Portsmouth, UK ⁷⁷Morriston Hospital, Swansea, UK ⁷⁸Addenbrooke's Hospital, Cambridge, UK ⁷⁹BHRUT (Barking Havering) - Queens Hospital and King George Hospital, Essex, UK ⁸⁰Royal Sussex County Hospital, Brighton, UK ⁸¹Queen Elizabeth Hospital, Birmingham, UK ⁸²St George's Hospital, London, UK ⁸³Stepping Hill Hospital, Stockport, UK ⁸⁴Countess of Chester Hospital, Chester, UK ⁸⁵Royal Blackburn Teaching Hospital, Blackburn, UK ⁸⁶The Tunbridge Wells Hospital and Maidstone Hospital, Kent, UK ⁸⁷Royal Gwent Hospital, Newport, UK ⁸⁸Pinderfields General Hospital, Wakefield, UK ⁸⁹Royal Berkshire NHS Foundation Trust, Berkshire, UK ⁹⁰Broomfield Hospital, Chelmsford, UK ⁹¹Northumbria Healthcare NHS Foundation Trust, North Shields, UK ⁹²Whiston Hospital, Prescot, UK ⁹³Croydon University Hospital, Crovdon, UK ⁹⁴York Hospital, York, UK ⁹⁵Heartlands Hospital, Birmingham, UK ⁹⁶Ashford and St Peter's Hospital, Surrey, UK ⁹⁷Barnet Hospital, London, UK ⁹⁸East Surrey Hospital, Redhill, UK ⁹⁹Ninewells Hospital, Dundee, UK ¹⁰⁰Worthing Hospital, Worthing, UK and St Richard's Hospital, Chichester, UK ¹⁰¹Southampton General Hospital, Southampton, UK ¹⁰²The Alexandra Hospital, Redditch and Worcester Royal Hospital, Worcester, UK ¹⁰³Sandwell General Hospital and City Hospital, Birmingham, UK ¹⁰⁴Blackpool Victoria Hospital, Blackpool, UK ¹⁰⁵Royal Glamorgan Hospital, Pontyclun, UK ¹⁰⁶The Royal Oldham Hospital, Manchester, UK ¹⁰⁷Glasgow Royal Infirmary, Glasgow, UK ¹⁰⁸St James's University Hospital and Leeds General Infirmary, Leeds, UK ¹⁰⁹University Hospital North Durham, Darlington, UK and Darlington Memorial Hospital, Darlington, UK ¹¹⁰Fairfield General Hospital, Bury, UK ¹¹¹Wythenshawe Hospital, Manchester, UK ¹¹²Royal Alexandra Hospital, Paisley, UK ¹¹³Good Hope Hospital, Birmingham, UK ¹¹⁴Tameside General Hospital, Ashton Under Lyne, UK ¹¹⁵Royal Derby Hospital, Derby, UK ¹¹⁶Medway Maritime Hospital, Gillingham, UK ¹¹⁷Royal Victoria Infirmary, Newcastle Upon Tyne, UK ¹¹⁸Poole Hospital, Poole, UK

¹¹⁹Bedford Hospital, Bedford, UK ¹²⁰Queens Hospital Burton, Burton-On-Trent, UK ¹²¹North Manchester General Hospital, Manchester, UK ¹²²Aberdeen Royal Infirmary, Aberdeen, UK ¹²³Derriford Hospital, Plymouth, UK ¹²⁴Manchester Royal Infirmary, Manchester, UK ¹²⁵Salford Royal Hospital, Manchester, UK ¹²⁶William Harvey Hospital, Ashford, UK ¹²⁷Queen Elizabeth University Hospital, Glasgow, UK ¹²⁸Bradford Royal Infirmary, Bradford, UK ¹²⁹Bristol Royal Infirmary, Bristol, UK ¹³⁰Norfolk and Norwich University hospital (NNUH), Norwich, UK ¹³¹Queen Elizabeth Hospital Gateshead, Gateshead, UK ¹³²Sunderland Royal Hospital, Sunderland, UK ¹³³Aintree University Hospital, Liverpool, UK ¹³⁴Hull Royal Infirmary, Hull, UK ¹³⁵Hull Royal Infirmary, Hull, Uk ¹³⁶University College Hospital, London, UK ¹³⁷Royal Devon and Exeter Hospital, Exeter, UK ¹³⁸The Royal Papworth Hospital, Cambridge, UK ¹³⁹Ipswich Hospital, Ipswich, UK ¹⁴⁰Southmead Hospital, Bristol, UK ¹⁴¹Milton Keynes University Hospital, Milton Keynes, UK ¹⁴²Royal Hampshire County Hospital, Hampshire, UK ¹⁴³Queen Elizabeth Hospital, Woolwich, London, UK ¹⁴⁴Great Ormond St Hospital and UCL Great Ormond St Institute of Child Health NIHR Biomedical Research Centre, London, UK ¹⁴⁵Stoke Mandeville Hospital, Buckinghamshire, UK ¹⁴⁶University Hospital of Wales, Cardiff, UK ¹⁴⁷Basingstoke and North Hampshire Hospital, Basingstoke, UK ¹⁴⁸Arrowe Park Hospital, Wirral, UK ¹⁴⁹Chesterfield Royal Hospital Foundation Trust, Chesterfield, UK ¹⁵⁰Musgrove Park Hospital, Taunton, UK ¹⁵¹Peterborough City Hospital, Peterborough, UK and Hinchingbrooke Hospital, Huntingdon, UK ¹⁵²Royal Hallamshire Hospital and Northern General Hospital, Sheffield, UK ¹⁵³Dumfries and Galloway Royal Infirmary, Dumfries, UK ¹⁵⁴Royal Bolton Hospital, Bolton, UK ¹⁵⁵Lister Hospital, Stevenage, UK ¹⁵⁶Craigavon Area Hospital, County Armagh, NI ¹⁵⁷Southport and Formby District General Hospital, Ormskirk, UK ¹⁵⁸Calderdale Royal Hospital, Halifax, UK and Huddersfield Royal Infirmary, Huddersfield, UK ¹⁵⁹Prince Charles Hospital, Merthyr Tydfil, UK ¹⁶⁰Royal Bournemouth Hospital, Bournemouth, UK ¹⁶¹Royal Preston Hospital, Preston, UK ¹⁶²Whittington Hospital, London, UK ¹⁶³Princess Royal Hospital, Telford and Royal Shrewsbury Hospital, Shrewsbury, UK ¹⁶⁴Macclesfield District General Hospital, Macclesfield, UK ¹⁶⁵Royal Surrey County Hospital, Guildford, UK ¹⁶⁶Hereford County Hospital, Hereford, UK ¹⁶⁷University Hospital of North Tees, Stockton on Tees, UK ¹⁶⁸Lincoln County Hospital, Lincoln, UK ¹⁶⁹Roval Cornwall Hospital, Truro, UK ¹⁷⁰Royal United Hospital, Bath, UK ¹⁷¹Royal Brompton Hospital, London, UK ¹⁷²University Hospital Crosshouse, Kilmarnock, UK ¹⁷³Basildon Hospital, Basildon, UK

¹⁷⁴Glan Clwvd Hospital, Bodelwyddan, UK ¹⁷⁵West Middlesex Hospital, Isleworth, UK ¹⁷⁶Royal Lancaster Infirmary, Lancaster, UK ¹⁷⁷Western General Hospital, Edinburgh, UK ¹⁷⁸Chelsea & Westminster NHS Foundation Trust, London, UK ¹⁷⁹The Queen Elizabeth Hospital, King's Lynn, UK ¹⁸⁰King's Mill Hospital, Nottingham, UK ¹⁸¹Watford General Hospital, Watford, UK ¹⁸²University Hospital Wishaw, Wishaw, UK ¹⁸³Forth Valley Royal Hospital, Falkirk, UK ¹⁸⁴George Eliot Hospital NHS Trust, Nuneaton, UK ¹⁸⁵Barnsley Hospital, Barnsley, UK ¹⁸⁶The Great Western Hospital, Swindon, UK ¹⁸⁷Harefield Hospital, London, UK ¹⁸⁸Rotherham General Hospital, Rotherham, UK ¹⁸⁹Ysbyty Gwynedd, Bangor, UK ¹⁹⁰Diana Princess of Wales Hospital, Grimsby, UK ¹⁹¹Russell's Hall Hospital, Dudley, UK ¹⁹²Princess Royal Hospital, Haywards Heath, UK ¹⁹³St Mary's Hospital, Newport, UK ¹⁹⁴University Hospital Lewisham, London, UK ¹⁹⁵Colchester General Hospital, Colchester, UK ¹⁹⁶Queen Elizabeth the Queen Mother Hospital, Margate, UK ¹⁹⁷Royal Albert Edward Infirmary, Wigan, UK ¹⁹⁸Victoria Hospital, Kirkcaldy, UK ¹⁹⁹Eastbourne District General Hospital, East Sussex, UK and Conquest Hospital, East Sussex, UK ²⁰⁰Cumberland Infirmary, Carlisle, UK ²⁰¹New Cross Hospital, Wolverhampton, UK ²⁰²The Princess Alexandra Hospital, Harlow, UK ²⁰³Salisbury District Hospital, Salisbury, UK ²⁰⁴Dorset County Hospital, Dorchester, UK ²⁰⁵University College Dublin, St Vincent's University Hospital, Dublin, Ireland ²⁰⁶Glangwili General Hospital, Camarthen, UK ²⁰⁷Gloucestershire Royal Hospital, Gloucester, UK ²⁰⁸Yeovil Hospital, Yeovil, UK ²⁰⁹Leicester Royal Infirmary, Leicester, UK ²¹⁰Royal Manchester Children's Hospital, Manchester, UK ²¹¹Royal Victoria Hospital, Belfast, NI ²¹²Wrexham Maelor Hospital, Wrexham, Wales ²¹³Walsall Manor Hospital, Walsall, UK ²¹⁴Darent Valley Hospital, Dartford, UK ²¹⁵Warrington General Hospital, Warrington, UK ²¹⁶Warwick Hospital, Warwick, UK ²¹⁷University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK ²¹⁸University Hospital Monklands, Airdrie, UK ²¹⁹Princess of Wales Hospital, Llantrisant, UK ²²⁰Northwick Park Hospital, London, UK ²²¹Raigmore Hospital, Inverness, UK ²²²Royal Free Hospital, London, UK ²²³Scunthorpe General Hospital, Scunthorpe, UK ²²⁴West Cumberland Hospital, Whitehaven, UK ²²⁵Airedale General Hospital, Keighlev, UK ²²⁶Birmingham Children's Hospital, Birmingham, UK ²²⁷Liverpool Heart and Chest Hospital, Liverpool, UK ²²⁸Pilgrim Hospital, Lincoln, UK ²²⁹Prince Philip Hospital, Lianelli, UK

²³⁰Furness General Hospital, Barrow-in-Furness, UK ²³¹Scarborough General Hospital, Scarborough, UK ²³²Southend University Hospital, Westcliff-on-Sea, UK ²³³Alder Hey Children's Hospital, Liverpool, UK ²³⁴Torbay Hospital, Torquay, UK ²³⁵Borders General Hospital, Melrose, UK ²³⁶Kent & Canterbury Hospital, Canterbury, UK ²³⁷West Suffolk Hospital, Bury St Edmunds, UK ²³⁸James Paget University Hospital NHS Trust, Great Yarmouth, UK ²³⁹The Christie NHS Foundation Trust, Manchester, UK ²⁴⁰The Royal Marsden Hospital, London, UK ²⁴¹University Hospital Hairmyres, East Kilbride, UK ²⁴²Withybush General Hospital, Pembrokeshire, Wales ²⁴³Ealing Hospital, Southall, UK ²⁴⁴North Devon District Hospital, Barnstaple, UK ²⁴⁵St John's Hospital Livingston, Livingston, UK ²⁴⁶Northampton General Hospital NHS Trust, Northampton, UK ²⁴⁷Harrogate and District NHS Foundation Trust, Harrogate, UK ²⁴⁸National Hospital for Neurology and Neurosurgery, London, UK ²⁴⁹Bronglais General Hospital, Aberystwyth, UK ²⁵⁰Golden Jubilee National Hospital, Clydebank, UK ²⁵¹Homerton University Hospital Foundation NHS Trust, London UK ²⁵²Sheffield Children's Hospital, Sheffield, UK ²⁵³The Royal Alexandra Children's Hospital, Brighton, UK

Covid-19 Human Genetics Initiative

Covid-19 Human Genetics Initiative Gita A. Pathak²⁵⁴, Juha Karjalainen²⁵⁵, Christine Stevens²⁵⁶, Shea J. Andrews²⁵⁷, Masahiro Kanai²⁵⁶, Mattia Cordioli²⁵⁵, Renato Polimanti²⁵⁴, Matti Pirinen²⁵⁵, Nadia Harerimana²⁵⁷, Kumar Veerapen²⁵⁶, Brooke Wolford²⁵⁸, Huy Nguyen²⁵⁶, Matthew Solomonson²⁵⁶, Rachel G. Liao²⁵⁶, Karolina Chwialkowska²⁵⁹, Amy Trankiem²⁵⁶, Mary K. Balaconis²⁵⁶, Caroline Hayward²⁶⁰, Anne Richmond²⁶⁰, Archie Campbell²⁶⁰, Marcela Morris²⁶¹, Chloe Fawns-Ritchie²⁶⁰, Joseph T Glessner^{262,263}, Douglas M Shaw²⁶⁴, Xiao Chang²⁶², Hannah Polikowski²⁶⁴, Petty E Lauren²⁶⁴, Hung-Hsin Chen²⁶⁴, Zhu Wanying²⁶⁴, Hakon Hakonarson^{262,263}, David J Porteous²⁶⁰, Jennifer Below²⁶⁴, Kari North²⁶⁵, Joseph B McCormick²⁶¹, Paul RHJ Timmers²⁶⁰, James F Wilson²⁶⁰, Albert Tenesa^{260,266}, Kenton D'Mellow²⁶⁶, Shona M Kerr²⁶⁰, Mari E.K. Niemi²⁵⁵, Lindokuhle Nkambul^{256,267}, Kathrin Aprile von Hohenstaufen²⁶⁸, Ali Sobh²⁶⁹, Madonna M. Eltoukhy²⁷⁰, Amr M. Yassen²⁷¹ Mohamed A.F. Hegazy²⁷², Kamal Okasha²⁷³, Mohammed A. Eid²⁷⁴, Hanteera S. Moahmed²⁷⁵, Doaa Shahin²⁷⁶, Yasser M. El-Sherbiny^{276,277}, Tamer A. Elhadidy²⁷⁸, Mohamed S. Abd Elghafar²⁷⁹, Jehan J. El-Jawhari^{276,277}, Attia A.S. Mohamed²⁷⁰, Marwa H. Elnagdy²⁸⁰, Amr Samir²⁷², Mahmoud Abdel-Aziz²⁸¹, Walid T. Khafaga²⁸², Walaa M. El-Lawaty²⁷⁵, Mohamed S. Torky²⁷⁵, Mohamed R. El-shanshory²⁸³, Chiara Batini²⁸⁴, Paul H Lee²⁸⁴, Nick Shrine²⁸⁴, Alexander T Williams²⁸⁴, Martin D Tobin^{284,285}, Anna L Guyatt²⁸⁴, Catherine John²⁸⁴, Richard J Packer²⁸⁴, Altaf Ali²⁸⁴, Robert C Free²⁸⁶, Xueyang Wang²⁸⁴, Louise V Wain²⁸⁴, Edward J Hollox²⁸⁷, Laura D Venn²⁸⁴, Catherine E Bee²⁸⁴, Emma L Adams²⁸⁴, Ahmadreza Niavarani²⁸⁸, Bahareh Sharififard²⁸⁸, Rasoul Aliannejad²⁸⁹, Ali Amirsavadkouhi²⁹⁰, Zeinab Naderpour²⁸⁹, Hengameh Ansari Tadi²⁹¹, Afshar Etemadi Aleagha²⁹², Saeideh Ahmadi²⁹³, Seyed Behrooz Mohseni Moghaddam²⁹⁴, Alireza Adamsara²⁹⁵, Morteza Saeedi²⁹⁶, Hamed Abdollahi²⁹⁷, Abdol-majid Hosseini²⁹⁸, Pajaree Chariyavilaskul^{299,300}, Monpat Chamnanphon^{299,301}, Thitima B. Suttichet²⁹⁹, Vorasuk Shotelersuk^{302,303}, Monnat Pongpanich^{304,305}, Chureerat Phokaew^{302,303,306}, Wanna Chetruengchai^{302,303}, Watsamon Jantarabenjakul^{307,308}, Opass Putchareon^{307,309}, Pattama Torvorapanit^{307,309}, Thanyawee Puthanakit^{308,310}, Pintip Suchartlikitwong^{310,311}, Nattiya Hirankarn^{312,313}, Voraphoj Nilaratanakul^{309,314}, Pimpayao Sodsai^{312,313}, Ben M Brumpton^{315,316,317}, Kristian Hveem^{315,316}, Cristen Willer^{258,318,319}, Wei Zhou^{267,320}, Tormod Rogne^{321,322,323}, Erik Solligard^{321,323}, Bjørn Olav Åsvold^{315,316,317}, Malak Abedalthagafi³²⁴, Manal Alaamery³²⁵, Saleh Alqahtani³²⁶, Dona Baraka³²⁷, Fawz Al Harthi³²⁴, Ebtehal Alsolm³²⁴, Leen Abu Safieh³²⁴, Albandary M Alowayn³²⁴, Fatimah Alqubaishi³²⁴, Amal Al Mutairi³²⁴, Serghei Mangul³²⁸, Abdulraheem Alshareef³²⁹, Mona Sawaji³³⁰, Mansour Almutairi³²⁵, Nora Aljawini³³¹, Nour Albesher³³¹, Yaseen M Arabi³³², Ebrahim S Mahmoud³³², Amin K Khattab³³³, Roaa T Halawani³³³, Ziab Z Alahmadey³³³, Jehad K Albakri³³³, Walaa A Felemban³³³, Bandar A Suliman³²⁹, Rana Hasanato³²⁷, Laila Al-Awdah³³⁴, Jahad Alghamdi³³⁵, Deema AlZahrani³³⁶, Sameera

AlJohani³³⁷, Hani Al-Afghani³³⁸, May Alrashed³³⁹, Nouf AlDhawi³³⁶, Hadeel AlBardis³²⁴, SARAH ALKWAI³³¹, MONEERA ALSWAILM³³¹, FAISAL ALMALKI³³⁶, MAHA ALBELADI³³⁶, IMAN ALMOHAMMED³³¹, EMAN BARHOUSH³⁴⁰, ANOUD ALBADER³³⁶, Salam Massadeh³²⁵, Abdulaziz AlMalik³⁴¹, Sara Alotaibi³²⁴, Bader Alghamdi³⁴², Junghyun Jung³⁴³, Mohammad S fawzy³²⁴, Yunsung Lee³⁴⁴, Per Magnus³⁴⁴, Lill-Iren S Trogstad³⁴⁵, Øyvind Helgeland³⁴⁶, Jennifer R Harris³⁴⁶, Massimo Mangino^{347,348}, Tim D Spector³⁴⁷, Duncan Emma³⁴⁷, Sandra P Smieszek³⁴⁹, Bartlomiej P Przychodzen³⁴⁹, Christos Polymeropoulos³⁴⁹, Vasilios Polymeropoulos³⁴⁹, Mihael H Polymeropoulos³⁴⁹, Israel Fernandez-Cadenas³⁵⁰, Jordi Perez-Tur^{351,352,353}, Laia Llucià-Carol^{350,354}, Natalia Cullell^{350,355}, Elena Muiño³⁵⁰, Jara Cárcel-Márquez³⁵⁰, Marta L DeDiego³⁵⁶, Lara Lloret Iglesias³⁵⁷, Anna M Planas^{354,358}, Alex Soriano³⁵⁹, Veronica Rico³⁵⁹, Daiana Agüero³⁵⁹, Josep L Bedini³⁵⁹, Francisco Lozano³⁶⁰, Carlos Domingo³⁵⁹, Veronica Robles³⁵⁹, Francisca Ruiz-Jaén³⁶¹, Leonardo Márquez³⁶², Juan Gomez³⁶³, Eliecer Coto³⁶³, Guillermo M Albaiceta³⁶³, Marta García-Clemente³⁶³, David Dalmau³⁶⁴, Maria J Arranz³⁶⁴, Beatriz Dietl³⁶⁴, Alex Serra-Llovich³⁶⁴, Pere Soler³⁶⁵, Roger Colobrán³⁶⁵, Andrea Martín-Nalda³⁶⁵, Alba Parra Martínez³⁶⁵, David Bernardo³⁶⁶, Silvia Rojo³⁶⁷, Aida Fiz-López³⁶⁶, Elisa Arribas³⁶⁶, Paloma de la Cal-Sabater³⁶⁶, Tomás Segura³⁶⁸, Esther González-Villa³⁶⁸, Gemma Serrano-Heras³⁶⁸, Joan Martí-Fàbregas³⁶⁹, Elena Jiménez-Xarrié³⁶⁹, Alicia de Felipe Mimbrera³⁷⁰, Jaime Masjuan³⁷⁰, Sebastian García-Madrona³⁷⁰, Anna Domínguez-Mayoral³⁷¹, Joan Mon-taner Villalonga³⁷¹, Paloma Menéndez-Valladares³⁷¹, Daniel I. Chasman^{372,373}, Julie E. Buring^{372,373}, Paul M Ridker^{372,373}, Giulianini Franco³⁷², Howard D. Sesso^{372,373}, JoAnn E. Manson^{372,373}, Joseph R Glessner^{262,374}, Hakon Hakonarson^{262,374,375}, Carolina Medina-Gomez³⁷⁶, Andre G Uitterlinden³⁷⁶, M. Arfan Ikram³⁷⁶, Kati Kristiansson³⁷⁷, Sami Koskelainen³⁷⁷, Markus Perola^{377,378}, Kati Donner²⁵⁵, Katja Kivinen²⁵⁵, Aarno Palotie²⁵⁵, Samuli Ripatti^{255,256,379}, Sanni Ruotsalainen²⁵⁵, Mari Kaunisto²⁵⁵, Tomoko Nakanishi^{380,381,382,383}, Guillaume Butler-Laporte^{380,381}, Vincenzo Forgetta³⁸⁰, David R. Morrison³⁸⁰, Biswarup Ghosh³⁸⁰, Laetitia Laurent³⁸⁰, Alexandre Belisle³⁸⁰, Danielle Henry³⁸⁰, Tala Abdullah³⁸⁰, Olumide Adeleye³⁸⁰, Noor Mamlouk³⁸⁰, Nofar Kimchi³⁸⁰, Zaman Afrasiabi³⁸⁰, Nardin Rezk³⁸⁰, Branka Vulesevic³⁸⁰, Meriem Bouab³⁸⁰, Charlotte Guzman³⁸⁰, Louis Petitjean³⁸⁰, Chris Tselios³⁸⁰, Xiaoqing Xue³⁸⁰, Erwin Schurr³⁸⁰, Jonathan Afilalo³⁸⁰, Marc Afilalo³⁸⁰, Maureen Oliveira³⁸⁰, Bluma Brenner³⁸⁰, Pierre Lepage³⁸⁰, Jiannis Ragoussis³⁸⁰, Daniel Auld³⁸⁰, Nathalie Brassard³⁸⁰, Madeleine Durand³⁸⁰, Michaël Chassé³⁸⁰, Daniel E. Kaufmann³⁸⁰, G. Mark Lathrop³⁸⁰, Vincent Mooser³⁸⁰, J. Brent Richards³⁸⁰, Rui Li³⁸⁰, Darin Adra³⁸⁰, Souad Rahmouni³⁸⁴, Michel Georges³⁸⁴, Michel Moutschen³⁸⁵, Benoit Misset^{384,385}, Gilles Darcis^{384,385}, Julien Guiot^{384,385}, Julien Guntz³⁸⁵, Samira Azarzar^{384,385}, Stéphanie Gofflot³⁸⁶, Yves Beguin³⁸⁶, Sabine Claassen³⁸⁷, Olivier Malaise³⁸⁵, Pascale Huynen³⁸⁵, Christelle Meuris³⁸⁵, Marie Thys³⁸⁵, Jessica Jacques³⁸⁵, Philippe Léonard³⁸⁵, Frederic Frippiat³⁸⁵, Jean-Baptiste Giot³⁸⁵, Anne-Sophie Sauvage³⁸⁵, Christian Von Frenckell³⁸⁵, Yasmine Belhaj³⁸⁴, Bernard Lambermont³⁸⁵, Mari E.K. Niemi²⁵⁵, Sara Pigazzini²⁵⁵, Lindokuhle Nkambule^{256,256,267}, Michelle Daya³⁸⁸, Jonathan Shortt³⁸⁸, Nicholas Rafaels³⁸⁸, Stephen J Wicks³⁸⁸, Kristy Crooks³⁸⁸, Kathleen C Barnes³⁸⁸, Christopher R Gignoux³⁸⁸, Sameer Chavan³⁸⁸, Triin Laisk³⁸⁹, Kristi Läll³⁸⁹, Maarja Lepamets³⁸⁹, Reedik Mägi³⁸⁹, Tõnu Esko³⁸⁹, Ene Reimann³⁸⁹, Lili Milani³⁸⁹, Helene Alavere³⁸⁹, Kristjan Metsalu³⁸⁹, Mairo Puusepp³⁸⁹, Andres Metspalu³⁸⁹, Paul Naaber³⁹⁰, Edward Laane^{391,392}, Jaana Pesukova³⁹¹, Pärt Peterson³⁹³, Kai Kisand³⁹³, Jekaterina Tabri³⁹⁴, Raili Allos³⁹⁴, Kati Hensen³⁹⁴, Joel Starkopf³⁹², Inge Ringmets³⁹⁵, Anu Tamm³⁹², Anne Kallaste³⁹², Pierre-Yves Bochud³⁹⁶, Carlo Rivolta^{397,398}, Stéphanie Bibert³⁹⁶, Mathieu Quinodoz^{397,398}, Dhryata Kamdar^{397,398}, Noémie Boillat³⁹⁶, Semira Gonseth Nussle³⁹⁹, Werner Albrich⁴⁰⁰, Noémie Suh⁴⁰¹, Dionysios Neofytos⁴⁰², Véronique Erard⁴⁰³, Cathy Voide⁴⁰⁴, Rafael de Cid⁴⁰⁵, Iván Galván-Femenía⁴⁰⁵, Natalia Blay⁴⁰⁵, Anna Carreras⁴⁰⁵, Beatriz Cortés⁴⁰⁵, Xavier Farré⁴⁰⁵, Lauro Sumoy⁴⁰⁵, Victor Moreno⁴⁰⁶, Josep Maria Mercader⁴⁰⁷, Marta Guindo-Martinez⁴⁰⁸, David Torrents⁴⁰⁸, Manolis Kogevinas^{409,410,411,412}, Judith Garcia-Aymerich^{409,411,412}, Gemma Castaño-Vinyals^{409,410,411,412}, Carlota Dobaño^{409,412}, Alessandra Renieri^{413,414,415}, Francesca Mari^{413,414,415}, Chiara Fallerini^{413,415}, Sergio Daga^{413,415}, Elisa Benetti⁴¹⁵, Margherita Baldassarri^{413,415}, Francesca Fava^{413,414,415}, Elisa Frullanti^{413,415}, Floriana Valentino^{413,415}, Gabriella Doddato^{413,415}, Annarita Giliberti^{413,415}, Rossella Tita⁴¹⁴, Sara Amitrano⁴¹⁴, Mirella Bruttini^{413,414,415}, Susanna Croci^{413,415}, Ilaria Meloni^{413,415}, Maria Antonietta Mencarelli⁴¹⁴, Caterina Lo Rizzo⁴¹⁴, Anna Maria Pinto⁴¹⁴, Giada Beligni^{413,415}, Andrea Tommasi⁴¹⁶, Laura Di Sarno^{413,415}, Maria Palmieri^{413,415}, Miriam Lucia Carriero^{413,415}, Diana Alaverdian^{413,415}, Stefano Busani⁴¹⁷, Raffaele Bruno^{418,419}, Marco Vecchia⁴¹⁸, Mary Ann Belli⁴²⁰, Nicola Picchiotti^{421,422}, Maurizio Sanarico⁴²³, Marco Gori⁴²², Simone Furini⁴¹⁵, Stefania Mantovani⁴¹⁸, Serena Ludovisi⁴²⁴, Mario Umberto Mondelli^{418,419}, Francesco Castelli⁴²⁵, Eugenia Quiros-Roldan⁴²⁵, Melania Degli Antoni⁴²⁵, Isabella Zanella^{426,427}, Massimo Vaghi⁴²⁸, Stefano Rusconi^{429,430}, Matteo Siano⁴³⁰, Francesca Montagnani^{415,431}, Arianna Emiliozzi⁴³², Massimiliano Fabbiani⁴³¹, Barbara Rossetti⁴³¹, Elena Bargagli⁴³³, Laura Bergantini⁴³³, Miriana D'Alessandro⁴³³, Paolo Cameli⁴³³, David Bennett⁴³³, Federico Anedda⁴³⁴, Simona Marcantonio⁴³⁴, Sabino Scolletta⁴³⁴, Federico Franchi⁴³⁴, Maria Antonietta Mazzei⁴³⁵, Susanna Guerrini⁴³⁵, Edoardo Conticini⁴³⁶, Luca Cantarini⁴³⁶, Bruno Frediani⁴³⁶, Danilo Tacconi⁴³⁷, Chiara Spertilli⁴³⁷, Marco Feri⁴³⁸, Alice Donati⁴³⁸, Raffaele Scala⁴³⁹, Luca Guidelli⁴³⁹, Genni Spargi⁴⁴⁰, Marta Corridi⁴⁴⁰, Cesira Nencioni⁴⁴¹, Leonardo Croci⁴⁴¹, Maria Bandini⁴⁴², Gian Piero Caldarelli⁴⁴³, Paolo Piacentini⁴⁴², Elena Desanctis⁴⁴², Silvia Cappelli⁴⁴²,

Anna Canaccini⁴⁴⁴, Agnese Verzuri⁴⁴⁴, Valentina Anemoli⁴⁴⁴, Agostino Ognibene⁴⁴⁵, Alessandro Pancrazzi⁴⁴⁵, Maria Lorubbio⁴⁴⁵, Antonella D'Arminio Monforte⁴⁴⁶, Federica Gaia Miraglia⁴⁴⁶, Massimo Girardis⁴¹⁷, Sophie Venturelli⁴¹⁷, Andrea Cossarizza⁴⁴⁷, Andrea Antinori⁴³², Alessandra Vergori⁴³², Arianna Gabrieli⁴³⁰, Agostino Riva^{429,430}, Daniela Francisci^{416,448}, Elisabetta Schiaroli^{416,448}, Francesco Paciosi⁴⁴⁸, Pier Giorgio Scotton⁴⁴⁹, Francesca Andretta⁴⁴⁹, Sandro Panese⁴⁵⁰, Renzo Scaggiante⁴⁵¹, Francesca Gatti⁴⁵¹, Saverio Giuseppe Parisi⁴⁵², Stefano Baratti⁴⁵², Matteo Della Monica⁴⁵³, Carmelo Piscopo⁴⁵³, Mario Capasso^{454,455,456}, Roberta Russo^{454,455}, Immacolata Andolfo^{454,455}. Achille Iolascon^{454,455}, Giuseppe Fiorentino⁴⁵⁷, Massimo Carella⁴⁵⁸, Marco Castori⁴⁵⁸, Giuseppe Merla^{454,459}, Gabriella Maria Squeo⁴⁵⁹, Filippo Aucella⁴⁶⁰, Pamela Raggi⁴⁶¹, Carmen Marciano⁴⁶¹, Rita Perna⁴⁶¹, Matteo Bassetti^{462,463}, Antonio Di Biagio⁴⁶³, Maurizio Sanguinetti^{464,465}, Luca Masucci^{464,465}, Serafina Valente⁴⁶⁶, Marco Mandalà⁴⁶⁷, Alessia Giorli⁴⁶⁷, Lorenzo Salerni⁴⁶⁷, Patrizia Zucchi⁴⁶⁸, Pierpaolo Parravicini⁴⁶⁸, Elisabetta Menatti⁴⁶⁹, Tullio Trotta⁴⁷⁰, Ferdinando Giannattasio⁴⁷⁰, Gabriella Coiro⁴⁷⁰, Fabio Lena⁴⁷¹, Domenico A. Coviello⁴⁷², Cristina Mussini⁴⁷³, Enrico Martinelli⁴⁷⁴, Sandro Mancarella⁴²⁰, Luisa Tavecchia⁴²⁰, Lia Crotti^{475,476,477,477}, Chiara Gabbi⁴²³, Marco Rizzi⁴⁷⁸, Franco Maggiolo⁴⁷⁸, Diego Ripamonti⁴⁷⁸, Tiziana Bachetti⁴⁷⁹, Maria Teresa La Rovere⁴⁸⁰, Simona Sarzi-Braga⁴⁸¹, Maurizio Bussotti⁴⁸², Stefano Ceri⁴⁸³, Pietro Pinoli⁴⁸³, Francesco Raimondi⁴⁸⁴, Filippo Biscarini⁴⁸⁵, Alessandra Stella⁴⁸⁵, Kristina Zguro⁴¹⁵, Katia Capitani^{415,486}, Claudia Suardi⁴⁸⁷, Simona Dei⁴⁸⁸ Gianfranco Parati^{475,476}, Sabrina Ravaglia⁴⁸⁹, Rosangela Artuso⁴⁹⁰, Giordano Bottà⁴⁹¹, Paolo Di Domenico⁴⁹¹, Ilaria Rancan⁴³¹, Antonio Perrella⁴⁹², Francesco Bianchi^{415,492}, Davide Romani⁴⁴², Paola Bergomi⁴⁹³, Emanuele Catena⁴⁹³, Riccardo Colombo⁴⁹³, Marco Tanfoni⁴²², Antonella Vincenti⁴⁹⁴, Claudio Ferri⁴⁹⁵, Davide Grassi⁴⁹⁵, Gloria Pessina⁴⁹⁶, Mario Tumbarello^{415,497}, Massimo Di Pietro⁴⁹⁸, Ravaglia Sabrina⁴⁸⁹, Sauro Luchi⁴⁹⁹, Chiara Barbieri⁵⁰⁰, Donatella Acquilini⁵⁰¹, Elena Andreucci⁴⁹⁰, Francesco Vladimiro Segala⁵⁰², Giusy Tiseo⁵⁰⁰, Marco Falcone⁵⁰⁰, Mirjam Lista^{413,415}, Monica Poscente⁴⁹⁶, Oreste De Vivo⁴⁶⁶, Paola Petrocelli⁴⁹⁹, Alessandra Guarnaccia⁴⁶⁴, Silvia Baroni⁵⁰³, Albert V Smith²⁵⁸, Andrew P Boughton²⁵⁸, Kevin W. Li²⁵⁸, Jonathon LeFaive²⁵⁸, Aubrey Annis²⁵⁸, Anne E Justice⁵⁰⁴, Tooraj Mirshahi⁵⁰⁵, Geetha Chittoor⁵⁰⁴, Navya Shilpa Josyula⁵⁰⁴, Jack A. Kosmicki⁵⁰⁶, Manuel A.R. Ferreira⁵⁰⁶, Joseph B. Leader⁵⁰⁷, Dave J. Carey⁵⁰⁵, Matthew C. Gass⁵⁰⁷, Julie E Horowitz⁵⁰⁶, Michael N. Cantor⁵⁰⁶, Ashish Yadav⁵⁰⁶, Aris Baras⁵⁰⁶, Goncalo R. Abecasis⁵⁰⁶, David A van Heel⁵⁰⁸, Karen A Hunt⁵⁰⁸, Dan Mason⁵⁰⁹, Qin Qin Huang⁵¹⁰, Sarah Finer⁵⁰⁸, Bhavi Trivedi⁵⁰⁸, Christopher J Griffiths⁵⁰⁸, Hilary C Martin⁵¹⁰, John Wright⁵⁰⁹, Richard C Trembath⁵¹¹, Nicole Soranzo^{512,513,514}, Jing Hua Zhao⁵¹⁵, Adam S. Butterworth^{513,515,516,517}, John Danesh^{512,513,515,516,517}, Emanuele Di Angelantonio^{513,515,516,517}, Lude Franke⁵¹⁸, Marike Boezen⁵¹⁸, Patrick Deelen⁵¹⁹, Annique Claringbould⁵¹⁸, Esteban Lopera⁵¹⁸, Robert Warmerdam⁵¹⁸, Judith. M. Vonk⁵²⁰, Irene van Blokland⁵¹⁸, Pauline Lanting⁵²¹, Anil P. S. Ori^{518,522}, Sebastian Zöllner²⁵⁸, Jiongming Wang²⁵⁸, Andrew Beck²⁵⁸, Gina Peloso^{523,524}, Yuk-Lam Ho⁵²⁵, Yan V Sun⁵²⁶, Jennifer E Huffman⁵²⁴, Christopher J O'Donnell⁵²⁴, Kelly Cho⁵²⁵, Phil Tsao⁵²⁷, J. Michael Gaziano⁵²⁵, Michel (M.G.) Nivard⁵²⁸, Eco (E.J.C.) de geus⁵²⁸, Meike Bartels⁵²⁸ Jouke Jan Hottenga⁵²⁸, Scott T Weiss³⁷², Elizabeth W. Karlson³⁷², Jordan W. Smoller⁴⁰⁷, Robert C. Green⁵²⁹, Yen-Chen Anne Feng⁴⁰⁷, Josep Mercader⁵²⁹, Shawn N Murphy⁴⁰⁷, James B. Meigs⁴⁰⁷, Ann E. Woolley³⁷², Emma F Perez⁴⁰⁷, Daniel Rader⁵³⁰, Anurag Verma⁵³⁰, Marylyn D. Ritchie⁵³⁰, Binglan Li⁵²⁷, Shefali S Verma⁵³⁰, Anastasia Lucas⁵³⁰, Yuki Bradford⁵³⁰, Hugo Zeberg^{531,532}, Robert Frithiof⁵³³, Michael Hultström^{533,534}, Miklos Lipcsey^{533,533}, Lindo Nkambul^{256,267,535}, Nicolas Tardif⁵³⁶, Olav Rooyackers⁵³⁶, Jonathan Grip⁵³⁶, Tomislav Maricic⁵³², Konrad J. Karczewski^{256,407}, Elizabeth G. Atkinson^{256,407}, Kristin Tsuo^{256,407}, Nikolas Baya^{256,407}, Patrick Turley^{256,407}, Rahul Gupta^{256,407}, Shawneequa Callier⁵³⁷, Raymond K. Walters^{256,407}, Duncan S. Palmer^{256,407}, Gopal Sarma^{256,407}, Nathan Cheng^{256,407}, Wenhan Lu^{256,407}, Sam Bryant^{256,407}, Claire Churchhouse^{256,407}, Caroline Cusick²⁵⁶, Jacqueline I. Goldstein^{256,407}, Daniel King^{256,407}, Cotton Seed^{256,407}, Hilary Finucane^{256,407}, Alicia R. Martin^{256,407}, F. Kyle Satterstrom^{256,407}, Daniel J Wilson⁵³⁸, Jacob Armstrong⁵³⁸, Justine K Rudkin⁵³⁸, Gavin Band⁵³⁹, Sarah G Earle⁵³⁸, Shang-Kuan Lin⁵³⁸, Nicolas Arning⁵³⁸, Derrick W Crook⁵⁴⁰, David H Wyllie⁵⁴¹, Anne Marie O'Connell⁵⁴², Chris C A Spencer⁵⁴³, Nils Koelling⁵⁴³, Mark J Caulfield⁵⁴⁴, Richard H Scott⁵⁴⁴, Tom Fowler⁵⁴⁴, Loukas Moutsianas⁵⁴⁴ Athanasios Kousathanas⁵⁴⁴, Dorota Pasko⁵⁴⁴, Susan Walker⁵⁴⁴, Augusto Rendon⁵⁴⁴, Alex Stuckey⁵⁴⁴, Christopher A Odhams⁵⁴⁴, Daniel Rhodes⁵⁴⁴, Georgia Chan⁵⁴⁴, Prabhu Arumugam⁵⁴⁴, Catherine A. Ball⁵⁴⁵, Eurie L. Hong⁵⁴⁵, Kristin Rand⁵⁴⁵, Ahna Girshick⁵⁴⁵, Harendra Guturu⁵⁴⁵, Asher Haug Baltzell⁵⁴⁵, Genevieve Roberts⁵⁴⁵, Danny Park⁵⁴⁵, Marie Coignet⁵⁴⁵, Shannon McCurdy⁵⁴⁵, Spencer Knight⁵⁴⁵, Raghavendran Partha⁵⁴⁵, Brooke Rhead⁵⁴⁵, Miao Zhang⁵⁴⁵, Nathan Berkowitz⁵⁴⁵, Michael Gaddis⁵⁴⁵, Keith Noto⁵⁴⁵, Luong Ruiz⁵⁴⁵, Milos Pavlovic⁵⁴⁵, Laura G. Sloofman²⁵⁷, Alexander W. Charney²⁵⁷, Noam D. Beckmann²⁵⁷, Eric E. Schadt²⁵⁷, Daniel M. Jordan²⁵⁷, Ryan C. Thompson²⁵⁷, Kyle Gettler²⁵⁷, Noura S. Abul-Husn²⁵⁷, Steven Ascolillo²⁵⁷, Joseph D. Buxbaum²⁵⁷, Kumardeep Chaudhary²⁵⁷, Judy H. Cho²⁵⁷, Yuval Itan²⁵⁷, Eimear E. Kenny²⁵⁷, Gillian M. Belbin²⁵⁷, Stuart C. Sealfon²⁵⁷, Robert P. Sebra²⁵⁷, Irene Salib²⁵⁷, Brett L. Collins²⁵⁷, Tess Levy²⁵⁷, Bari Britvan²⁵⁷, Katherine Keller²⁵⁷, Lara Tang²⁵⁷, Michael Peruggia²⁵⁷, Liam L. Hiester²⁵⁷, Kristi Niblo²⁵⁷, Alexandra Aksentijevich²⁵⁷, Alexander Labkowsky²⁵⁷, Avromie Karp²⁵⁷, Menachem Zlatopolsky²⁵⁷, Michael Preuss²⁵⁷, Ruth J.F. Loos²⁵⁷, Girish N. Nadkarni²⁵⁷, Ron Do²⁵⁷, Clive Hoggart²⁵⁷, Sam Choi²⁵⁷, Slayton J. Underwood²⁵⁷, Paul O'Reilly²⁵⁷, Laura M. Huckins²⁵⁷, Marissa

Zvndorf²⁵⁷, Mark J. Dalv^{255,256}, Benjamin M. Neale²⁵⁶, Andrea Ganna^{255,256}, ²⁵⁴Yale University, New Haven, CT, USA ²⁵⁵Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland ²⁵⁶Broad Institute of MIT and Harvard, Cambridge, MA, USA ²⁵⁷Icahn School of Medicine at Mount Sinai, New York, NY, USA ²⁵⁸University of Michigan, Ann Arbor, MI, USA ²⁵⁹Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland ²⁶⁰Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK ²⁶¹University of Texas Health, Texas, USA ²⁶²Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA ²⁶³Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ²⁶⁴Vanderbilt University Medical Center, Tenessee, USA ²⁶⁵University of North Carolina at Chapel Hill, NC, USA ²⁶⁶The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK ²⁶⁷Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA ²⁶⁸Genolier Innovation Network and Hub, Swiss Medical Network, Genolier Healthcare Campus, Route du Muids 3, 1272 Genolier, Switzerland ²⁶⁹Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁷⁰Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt ²⁷¹Department of Anaethesia and Critical Care, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁷²Department of Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁷³Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt ²⁷⁴Faculty of Science, Tanta University, Tanta, Egypt ²⁷⁵Chest Department, Faculty of Medicine, Tanta University, Tanta, Egypt ²⁷⁶Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁷⁷Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK ²⁷⁸Chest Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁷⁹Anesthesia, Surgical Intensive Care & Pain Management Department, Faculty of Medicine, Tanta University, Tanta, Egypt ²⁸⁰Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁸¹Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt ²⁸²pediatric and neonatology, Kafr Elzayat General Hospital, Kafr El-Zayat, Egypt ²⁸³Pediatrics Department, Faculty of Medicine, Tanta University, Tanta, Egypt ²⁸⁴Department of Health Sciences, University of Leicester, Leicester, UK ²⁸⁵Leicester NIHR Biomedical Research Centre, Leicester, UK ²⁸⁶Department of Respiratory Sciences, University of Leicester, UK ²⁸⁷University of Leicester, Leicester, UK ²⁸⁸Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran ²⁸⁹Department of Pulmonology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran ²⁹⁰Department of Critical Care Medicine, Noorafshar Hospital, Tehran, Iran ²⁹¹Department of Emergency Intensive Care Unit, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran ²⁹²Department of Anesthesiology, School of Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran. Iran ²⁹³Department of Pulmonology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ²⁹⁴Department of Pathology, Parseh Pathobiology and Genetics Laboratory, Tehran, Iran ²⁹⁵Department of Microbiology, Health and Family Research Center, NIOC Hospital, Tehran, Iran ²⁹⁶Department of Emergency Medicine, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran ²⁹⁷Department of Anesthesiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ²⁹⁸Department of Pathology, Faculty of Medicine, Tehran Azad University, Tehran, Iran ²⁹⁹Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ³⁰⁰Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok Thailand

³⁰¹Department of Pathology, Faculty of Medicine, Nakornnayok, Srinakharinwirot University, Thailand

³⁰²Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³⁰³Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand

³⁰⁴Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

³⁰⁵Omics Sciences and Bioinfomatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand ³⁰⁶Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³⁰⁷Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand

³⁰⁸Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³⁰⁹Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³¹⁰Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Bangkok, Thailand
³¹¹Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³¹²Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³¹³Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

³¹⁴Healthcare-associated Infection Research Group STAR (Special Task Force for Activating Research), Chulalongkorn University, Bangkok, Thailand

³¹⁵K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway

³¹⁶HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway

³¹⁷Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway

³¹⁸Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

³¹⁹Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
³²⁰Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA

³²¹Gemini Center for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway

³²²Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA

³²³Clinic of Anaesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
³²⁴Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz
City for Science and Technology, Riyadh, Saudi Arabia

³²⁵Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard- Health Affairs, Riyadh, Kingdom of Saudi Arabia and Saudi Human Genome Project (SHGP), King Abdulaziz City for Science and Technology (KACST), Satellite Lab at King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Kingdom of Saudi Arabia

³²⁶The Liver Transplant Unit, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. The Division of Gastroenterology and Hepatology, Johns Hopkins University

³²⁷Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia

³²⁸Titus Family Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, USA
³²⁹College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia

³³⁰Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

³³¹KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia

³³²Ministry of the National Guard Health Affairs, King Abdullah International Medical Research Center and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia

³³³Ohud Hospital, Ministry of Health, Madinah, Saudi Arabia

³³⁴Pediatric Infectious Diseases, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
³³⁵The Saudi Biobank, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

³³⁶Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia

³³⁷Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia

³³⁸Laboratory Department, Security Forces Hospital, General Directorate of Medical Services, Ministry of Interior, Riyadh, Saudi Arabia

³³⁹Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia

³⁴⁰King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia

³⁴¹Life Science and environmental institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
³⁴²Department of Developmental Medicine, King Abdullah International Medical Research Center, King Saud Bin
Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs,
Riyadh, Saudi Arabia

³⁴³Titus Family Department of Clinical Pharmacy, USC School of Pharmacy University of Southern California ³⁴⁴Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway

³⁴⁵Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway

³⁴⁶Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway

³⁴⁷King's College London, Department of Twin Research and Genetic Epidemiology, London, UK

³⁴⁸NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK ³⁴⁹Vanda Pharmaceuticals Inc, London, UK

³⁵⁰Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain

³⁵¹Institute of Biomedicine of Valencia (IBV), CSIC, València, Spain

³⁵²Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), València, Spain

³⁵³Neurology and Genetic Mixed Unit, La Fe Helath Research Institute, València, Spain

³⁵⁴Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), Barcelona, Spain

³⁵⁵Department of Neurology, Hospital Universitari MútuaTerrassa, Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain

³⁵⁶Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain

³⁵⁷Instituto de Física de Cantabria (IFCA-CSIC)

³⁵⁸Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

³⁵⁹Hospital Clínic, Barcelona, Spain

³⁶⁰Hospital Clínic, IDIBAPS, School of Medicine, University of Barcelona Barcelona, Spain

³⁶¹IDIBAPS, Barcelona, Spain

³⁶²IIBB-CSIC, Barcelona, Spain

³⁶³Servicio de Salud del Principado de Asturias, Oviedo, Spain

³⁶⁴Hospital Mutua de Terrassa, Terrassa, Spain

³⁶⁵Hospital Valle Hebrón, Barcelona, Spain

³⁶⁶Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Spain

³⁶⁷Hospital Clínico Universitario de Valladolid (SACYL), Spain

³⁶⁸University Hospital of Albacete, Albacete, Spain

³⁶⁹Department of Neurology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

³⁷⁰Hospital Universitario Ramon Y Cajal, IRYCIS, Madrid, Spain

³⁷¹Institute de Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain

³⁷²Brigham and Women's Hospital, Boston, MA, USA

³⁷³Harvard Medical School, Boston, MA

³⁷⁴Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsyl-

vania, Philadelphia, PA, USA ³⁷⁵Faculty of Medicine, University of Iceland, Reykjavik, Iceland ³⁷⁶Erasmus MC, Rotterdam, Netherlands ³⁷⁷Finnish Institute for Health and Welfare (THL), Helsinki, Finland ³⁷⁸University of Helsinki, Faculty of Medicine, Clinical and Molecular Metabolism Research Program, Helsinki, Finland ³⁷⁹Public Health, Faculty of Medicine, University of Helsinki, Finland ³⁸⁰Department of Human Genetics, McGill University, Montréal, Québec, Canada ³⁸¹Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada ³⁸²Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan ³⁸³Research Fellow, Japan Society for the Promotion of Science ³⁸⁴University of Liege, Liege, Belgium ³⁸⁵CHU of Liege, Liege, Belgium ³⁸⁶5BHUL (Liege Biobank), CHU of Liege, Liege, Belgium ³⁸⁷CHC Mont-Legia, Liege, Belgium ³⁸⁸University of Colorado - Anschutz Medical Campus, Aurora, CO, USA ³⁸⁹Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia ³⁹⁰University of Tartu, Tartu, Estonia ³⁹¹Kuressaare Hospital, Kuressaare, Estonia ³⁹²Tartu University Hospital, Tartu, Estonia ³⁹³Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia ³⁹⁴West Tallinn Central Hospital, Tallinn, Estonia ³⁹⁵Estonian Health Insurance Fund, Tallinn, Estonia ³⁹⁶Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland ³⁹⁷Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland ³⁹⁸Department of Ophthalmology, University of Basel, Basel, Switzerland ³⁹⁹Centre for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland ⁴⁰⁰Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland ⁴⁰¹Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland ⁴⁰²Infectious Disease Service, Department of Internal Medicine, Geneva University Hospital, Geneva, Switzerland ⁴⁰³Clinique de Médecine et spécialités, Infectiologie, HFR-Fribourg, Fribourg, Switzerland ⁴⁰⁴Infectious Diseases Division, University Hospital Centre of the canton of Vaud, hospital of Valais, Sion, Switzerland ⁴⁰⁵GCAT-Genomes for Life, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Crta. de Can Ruti, Cami de les Escoles s/n.08916 Badalona, Catalonia, Spain ⁴⁰⁶Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Consortium for Biomedical Research in Epidemiology and Public Health and University of Barcelona, Barcelona, Spain ⁴⁰⁷Massachusetts General Hospital, Boston, MA, USA ⁴⁰⁸Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS).Life & Medical Sciences, Barcelona, Spain ⁴⁰⁹ISGlobal, Barcelona, Spain ⁴¹⁰IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ⁴¹¹Universitat Pompeu Fabra (UPF), Barcelona, Spain ⁴¹²CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain ⁴¹³Medical Genetics, University of Siena, Siena, Italy ⁴¹⁴Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy ⁴¹⁵Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italv ⁴¹⁶Infectious Diseases Clinic, Department of Medicine 2, Azienda Ospedaliera di Perugia and University of Perugia, Santa Maria Hospital, Perugia, Italy ⁴¹⁷Department of Anesthesia and Intensive Care, University of Modena and Reggio Emilia, Modena, Italy ⁴¹⁸Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy ⁴¹⁹Department of Internal Medicine and Therapeutics, University of Pavia, Italy ⁴²⁰U.O.C. Medicina, ASST Nord Milano, Ospedale Bassini, Cinisello Balsamo (MI), Italy

⁴²¹Department of Mathematics, University of Pavia, Pavia, Italy

⁴²²University of Siena, DIISM-SAILAB, Siena, Italy

 $^{423} \mathrm{Independent}$ Researcher, Milan, Italy

⁴²⁴Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

⁴²⁵Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy

⁴²⁶Department of Molecular and Translational Medicine, University of Brescia, Italy

⁴²⁷Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy

⁴²⁸Chirurgia Vascolare, Ospedale Maggiore di Crema, Crema, Italy

⁴²⁹III Infectious Diseases Unit, ASST-FBF-Sacco, Milan, Italy

⁴³⁰Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy

⁴³¹Dept of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy

⁴³²HIV/AIDS Department, National Institute for Infectious Diseases, IRCCS, Lazzaro Spallanzani, Rome, Italy

⁴³³Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy

⁴³⁴Dept of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University Hospital, Siena, Italy

⁴³⁵Department of Medical, Surgical and Neuro Sciences and Radiological Sciences, Unit of Diagnostic Imaging, University of Siena, Siena, Italy

⁴³⁶Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy

⁴³⁷Department of Specialized and Internal Medicine, Infectious Diseases Unit, San Donato Hospital Arezzo, Arezzo, Italy

⁴³⁸Dept of Emergency, Anesthesia Unit, San Donato Hospital, Arezzo, Italy

⁴³⁹Department of Specialized and Internal Medicine, Pneumology Unit and UTIP, San Donato Hospital, Arezzo, Italy

⁴⁴⁰Department of Emergency, Anesthesia Unit, Misericordia Hospital, Grosseto, Italy

⁴⁴¹Department of Specialized and Internal Medicine, Infectious Diseases Unit, Misericordia Hospital, Grosseto, Italy

⁴⁴²Department of Preventive Medicine, Azienda USL Toscana Sud Est, Tuscany, Italy

⁴⁴³Clinical Chemical Analysis Laboratory, Misericordia Hospital, Grosseto, Italy

⁴⁴⁴Territorial Scientific Technician Department, Azienda USL Toscana Sud Est, Arezzo, Italy

⁴⁴⁵Clinical Chemical Analysis Laboratory, San Donato Hospital, Arezzo, Italy

⁴⁴⁶Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy

⁴⁴⁷Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy

⁴⁴⁸Infectious Diseases Clinic, Santa Maria Hospital, University of Perugia, Perugia, Italy

⁴⁴⁹Department of Infectious Diseases, Treviso Hospital, Treviso, Italy

⁴⁵⁰Clinical Infectious Diseases, Mestre Hospital, Venezia, Italy

⁴⁵¹Infectious Diseases Clinic, ULSS1, Belluno, Italy

⁴⁵²Department of Molecular Medicine, University of Padova, Padua, Italy

⁴⁵³Medical Genetics and Laboratory of Medical Genetics Unit, A.O.R.N. "Antonio Cardarelli", Naples, Italy

⁴⁵⁴Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy

⁴⁵⁵CEINGE Biotecnologie Avanzate, Naples, Italy

⁴⁵⁶IRCCS SDN, Naples, Italy

⁴⁵⁷Unit of Respiratory Physiopathology, AORN dei Colli, Monaldi Hospital, Naples, Italy

⁴⁵⁸Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy

⁴⁵⁹Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy

⁴⁶⁰Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy

⁴⁶¹Clinical Trial Office, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
⁴⁶²Department of Health Sciences, University of Genova, Genova, Italy

⁴⁶³Infectious Diseases Clinic, Policlinico San Martino Hospital, IRCCS for Cancer Research, Genova, Italy

⁴⁶⁴Microbiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Medicine, Rome, Italy

⁴⁶⁵Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

- ⁴⁶⁶Department of Cardiovascular Diseases, University of Siena, Siena, Italy
- ⁴⁶⁷Otolaryngology Unit, University of Siena, Siena, Italy
- ⁴⁶⁸Department of Internal Medicine, ASST Valtellina e Alto Lario, Sondrio, Italy
- ⁴⁶⁹Oncologia Medica e Ufficio Flussi Sondrio, Sondrio, Italy

⁴⁷⁰First Aid Department, Luigi Curto Hospital, Polla, Salerno, Italy

- ⁴⁷¹Local Health Unit-Pharmaceutical Department of Grosseto, Toscana Sud Est Local Health Unit, Grosseto, Italy ⁴⁷²U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto G. Gaslini, Genova, Italy
- ⁴⁷³Infectious Diseases Clinics, University of Modena and Reggio Emilia, Modena, Italy

⁴⁷⁴Department of Respiratory Diseases, Azienda Ospedaliera di Cremona, Cremona, Italy

⁴⁷⁵Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy

⁴⁷⁶Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy

⁴⁷⁷Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy

⁴⁷⁸Unit of Infectious Diseases, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy

⁴⁷⁹Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy

⁴⁸⁰Department of Cardiology,Istituti Clinici Scientifici Maugeri IRCCS, Institute of Montescano, Pavia, Italy

⁴⁸¹Istituti Clinici Scientifici Maugeri, IRCCS, Department of Cardiac Rehabilitation, Institute of Tradate (VA), Pavia, Italy

⁴⁸²Cardiac Rehabilitation Unit, Fondazione Salvatore Maugeri, IRCCS, Scientific Institute of Milan, Milan, Italy
 ⁴⁸³Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
 ⁴⁸⁴Scuola Normale Superiore, Pisa, Italy

⁴⁸⁵CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy ⁴⁸⁶Core Research Laboratory, ISPRO, Florence, Italy

⁴⁸⁷Fondazione per la ricerca Ospedale di Bergamo, Bergamo, Italy

⁴⁸⁸Health Management, Azienda USL Toscana Sudest, Tuscany, Italy

⁴⁸⁹IRCCS Mondino Foundation, Pavia, Italy

⁴⁹⁰Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy

⁴⁹¹Allelica Inc, New York, NY, USA

⁴⁹²Department of Medicine, Pneumology Unit, Misericordia Hospital, Grosseto, Italy

⁴⁹³Department of Anesthesia and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Milan, Italy

⁴⁹⁴Infectious Disease Unit, Hospital of Massa, Massa, Italy

⁴⁹⁵Department of Clinical Medicine, Public Health, Life and Environment Sciences, University of L'Aquila, L'Aquila, Italy

⁴⁹⁶UOSD Laboratorio di Genetica Medica - ASL Viterbo, San Lorenzo, Italy

⁴⁹⁷Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy

⁴⁹⁸Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy

⁴⁹⁹Infectious Disease Unit, Hospital of Lucca, Lucca Italy

⁵⁰⁰Department of Clinical and Experimental Medicine, Infectious Diseases Unit, University of Pisa, Pisa, Italy

⁵⁰¹Infectious Disease Unit, Santo Stefano Hospital, AUSL Toscana Centro, Prato, Italy

⁵⁰²Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy

⁵⁰³Department of Diagnostic and Laboratory Medicine, Institute of Biochemistry and Clinical Biochemistry, Fon-

dazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy

⁵⁰⁴Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA

⁵⁰⁵Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA

⁵⁰⁶Regeneron Genetics Center, Tarrytown, NY, USA

⁵⁰⁷Phenomic Analytics & Clinical Data Core, Geisinger Health System, Danville, PA, USA

⁵⁰⁸Queen Mary University of London, London, United Kingdom

⁵⁰⁹Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford, UK ⁵¹⁰Medical and Population Genomics, Wellcome Sanger Institute, Hinxton, UK

⁵¹¹School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom

⁵¹²Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK

⁵¹³National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK

⁵¹⁴Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK

⁵¹⁵British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK

⁵¹⁶British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK

⁵¹⁷Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
 ⁵¹⁸Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
 ⁵¹⁹Department of Genetics, University Medical Centre Groningen, University of Groningen / Department of Genetics, University Medical Centre Groningen, University of Groningen / Department of Genetics, University Medical Centre Groningen, University of Groningen / Department of Genetics, University Medical Centre Groningen, University of Groningen / Department of Genetics, University Medical Centre Groningen, University of Groningen / Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands

⁵²⁰Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

⁵²¹University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands

⁵²²Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands ⁵²³Department of Biostatistics, Boston University School of Public Health

⁵²⁴Center for Population Genomics, MAVERIC, VA Boston Healthcare System, Boston, MA, USA

⁵²⁵MAVERIC, VA Boston Healthcare System, Boston, MA, USA

⁵²⁶Department of Epidemiology, Emory University Rollins School of Public Health, GA, USA

⁵²⁷Stanford University, CA, USA

⁵²⁸Vrije Universiteit Amsterdam, Amsterdam, UK

⁵²⁹Broad Institute of MIT and Harvard, Boston, MA, USA

⁵³⁰Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

⁵³¹Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

⁵³²Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

⁵³³Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

⁵³⁴Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

⁵³⁵Stanley Center for Psychiatric Research & Program in Medical and Population Genetics

⁵³⁶Division Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden

⁵³⁷Department of Clinical Research and Leadership, George Washington University, Washington, DC, USA

⁵³⁸Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom

⁵³⁹Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
⁵⁴⁰Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom

⁵⁴¹Public Health England, Field Service, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom

⁵⁴²Public Health England, Data and Analytical Services, National Infection Service, London, NW9 5EQ, United Kingdom

⁵⁴³Genomics PLC, King Charles House, Park End Street, Oxford, OX1 1JD, United Kingdom

⁵⁴⁴Genomics England, London, United Kingdom

⁵⁴⁵Ancestry, Lehi, UT, USA

23andMe Investigators

Janie F. Shelton⁵⁴⁶, Anjali J. Shastri⁵⁴⁶, Chelsea Ye⁵⁴⁶, Catherine H. Weldon⁵⁴⁶, Teresa Filshtein-Sonmez⁵⁴⁶, Daniella Coker⁵⁴⁶, Antony Symons⁵⁴⁶, Jorge Esparza-Gordillo⁵⁴⁷, Stella Aslibekyan⁵⁴⁶, Adam Auton⁵⁴⁶.

⁵⁴⁶ 23andMe Inc., 223 N Mathilda Ave, Sunnyvale, CA 94086

⁵⁴⁷ Human genetics - R&D, GSK Medicines Research Centre, Target Sciences-R&D, Stevenage, UK

Extended References

- [1] Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in COVID-19. Nature 591, 92–98 (2021).
- [2] Ellinghaus, D. et al. Genomewide association study of severe covid-19 with respiratory failure. The New England journal of medicine 383, 1522–1534 (2020).
- [3] Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science (New York, N.y.) **370**, eabd4570 (2020). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857407/.
- [4] COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature (2021). URL https://doi.org/10.1038/s41586-021-03767-x.
- [5] Docherty, A. B. et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 369 (2020).
- [6] Dorward, D. A. et al. Tissue-Specific Immunopathology in Fatal COVID-19. American Journal of Respiratory and Critical Care Medicine 203, 192–201 (2021).
- [7] Millar, J. E. et al. Robust, reproducible clinical patterns in hospitalised patients with COVID-19. medRxiv 2020.08.14.20168088 (2020).
- [8] Horby, P. et al. Dexamethasone in Hospitalized Patients with Covid-19 Preliminary Report. New England Journal of Medicine (2020).
- [9] Degenhardt, F. *et al.* New susceptibility loci for severe COVID-19 by detailed GWAS analysis in European populations. *medRxiv* 2021.07.21.21260624 (2021).
- [10] Povysil, G. et al. Rare loss-of-function variants in type i ifn immunity genes are not associated with severe covid-19. The Journal of clinical investigation 131 (2021).
- [11] Kosmicki, J. A. et al. Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. American Journal of Human Genetics 108, 1350–1355 (2021). URL https://www.ncbi.nlm.nih.gov /pmc/articles/PMC8173480/.
- [12] Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nature Genetics 50, 1335–1341 (2018). URL http://www.nature.com/articles/s41588-018-0184-y.
- [13] Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 82, 1273–1300 (2020). URL https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12388https: //rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12388https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12388.
- [14] Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. *Nucleic Acids Research* 47, D886–D894 (2018). URL https: //doi.org/10.1093/nar/gky1016.
- [15] Zheng, X. et al. HIBAG HLA genotype imputation with attribute bagging. Pharmacogenomics Journal 14, 192–200 (2014).
- [16] Langton, D. J. et al. The influence of hla genotype on the severity of covid-19 infection. HLA 98, 14–22 (2021). URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tan.14284. https://onlinelibrary.wiley.com/doi/pdf/10.1 111/tan.14284.
- [17] Zhou, W. et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nature Genetics 52, 634–639 (2020). URL https://www.nature.com/articles/s41588-020-0621-6.
- [18] Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). URL https://www.nature.com/articles/s41586-020-2308-7.

- [19] Made, C. I. V. D. et al. Presence of genetic variants among young men with severe covid-19. JAMA 324, 663–673 (2020). URL https://jamanetwork.com/journals/jama/fullarticle/2768926.
- [20] Asano, T. et al. X-linked recessive tlr7 deficiency in ~1% of men under 60 years old with life-threatening covid-19. Science immunology 6 (2021). URL https://pubmed.ncbi.nlm.nih.gov/34413140/.
- [21] Fallerini, C. et al. Association of toll-like receptor 7 variants with life-threatening covid-19 disease in males: Findings from a nested case-control study. eLife 10 (2021).
- [22] Consortium, T. G. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020). URL https://science.sciencemag.org/content/369/6509/1318. Publisher: American Association for the Advancement of Science __eprint: https://science.sciencemag.org/content/369/6509/1318.full.pdf.
- [23] Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from gwas summary data. Nature communications 9, 224 (2018).
- [24] Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
- [25] Dunning, J. W. et al. Open source clinical science for emerging infections. The Lancet Infectious Diseases 14, 8–9 (2014).
- [26] Docherty, A. B. et al. Features of 20,133 uk patients in hospital with covid-19 using the isaric who clinical characterisation protocol: prospective observational cohort study. BMJ 369 (2020). URL https://www.bmj.co m/content/369/bmj.m1985https://www.bmj.com/content/369/bmj.m1985.abstract.
- [27] Horby, P. et al. Dexamethasone in hospitalized patients with covid-19. The New England journal of medicine 384, 693–704 (2021).
- [28] Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Science Translational Medicine 8, 363ra149 (2016).
- [29] Dong, B. et al. Phospholipid scramblase 1 potentiates the antiviral activity of interferon. Journal of virology 78, 8983–93 (2004).
- [30] Luo, W. et al. Phospholipid scramblase 1 interacts with influenza a virus np, impairing its nuclear import and thereby suppressing virus replication. PLoS pathogens 14, e1006851 (2018).
- [31] Repurposed Antiviral Drugs for Covid-19 Interim WHO Solidarity Trial Results. New England Journal of Medicine 0, null (2020).
- [32] Kalil, A. C. et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-bind, randomised, placebo-controlled, phase 3 trial. The Lancet Respiratory Medicine 0 (2021).
- [33] Yu, Y. et al. Bcl11a is essential for lymphoid development and negatively regulates p53. The Journal of experimental medicine **209**, 2467–83 (2012).
- [34] Reizis, B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 50, 37–50 (2019).
- [35] Zhang, Y., Lu, L., Furlonger, C., Wu, G. E. & Paige, C. J. Hemokinin is a hematopoietic-specific tachykinin that regulates b lymphopoiesis. *Nature immunology* 1, 392–7 (2000).
- [36] Wang, W. et al. Hemokinin-1 activates the mapk pathway and enhances b cell proliferation and antibody production. Journal of immunology (Baltimore, Md. : 1950) 184, 3590–7 (2010).
- [37] Janelsins, B. M. et al. Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity. Blood 113, 3017–26 (2009).
- [38] Thwaites, R. S. *et al.* Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. *Science Immunology* **6** (2021).
- [39] Lang, F. M., Lee, K. M.-C., Teijaro, J. R., Becher, B. & Hamilton, J. A. Gm-csf-based treatments in covid-19: reconciling opposing therapeutic approaches. *Nature reviews. Immunology* 20, 507–514 (2020).

- [40] DA, D. et al. Tissue-specific immunopathology in fatal covid-19. American journal of respiratory and critical care medicine 203, 192–201 (2021). URL https://pubmed.ncbi.nlm.nih.gov/33217246/.
- [41] Reyes, L. et al. ——-a type i ifn, prothrombotic hyperinflammatory neutrophil signature is distinct for covid-19 ards–. Wellcome open research 6, 38 (2021).
- [42] Lawler, P. R. et al. Therapeutic anticoagulation with heparin in noncritically ill patients with covid-19. The New England journal of medicine 385, 790–802 (2021).
- [43] Thépaut, M. et al. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLOS Pathogens 17, e1009576 (2021).
- [44] Amraei, R. et al. Cd2091/l-sign and cd209/dc-sign act as receptors for sars-cov-2. bioRxiv : the preprint server for biology (2021).
- [45] Amraei, R. et al. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Central Science 7, 1156–1165 (2021).
- [46] Silverman, R. H. & Weiss, S. R. Viral Phosphodiesterases That Antagonize Double-Stranded RNA Signaling to RNase L by Degrading 2-5A. Journal of Interferon & Cytokine Research 34, 455–463 (2014).
- [47] Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Gcta: a tool for genome-wide complex trait analysis. American journal of human genetics 88, 76–82 (2011). URL https://pubmed.ncbi.nlm.nih.gov/21167468/.
- [48] Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics 81, 559–575 (2007). URL https://www.sciencedirect.com/science/ar ticle/pii/S0002929707613524.
- [49] Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics 44, 369–375 (2012). URL https://doi.org/10.1038/ng.2213.
- [50] Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. *Journal of the Royal Statistical Society Series B (Statistical Methodology)* 82, 1273–1300 (2020). URL https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12388.
- [51] Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics (Oxford, England)* 26, 2190–2191 (2010).
- [52] Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evidence-Based Mental Health 22, 153–160 (2019). URL https://ebmh.bmj.com/content/22/4/153. Publisher: Royal College of Psychiatrists Section: Statistics in practice.
- [53] Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914 (2014). URL https://doi.org/10.1093/bioinformatics/btu416. https://academic.oup.com/bioinformatics/article-pdf/30/20/2906/17147061/btu416.pdf.
- [54] Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors (2020).
- [55] Bernabeu, E. et al. Sexual differences in genetic architecture in uk biobank. bioRxiv (2020). URL https: //www.biorxiv.org/content/early/2020/07/21/2020.07.20.211813. https://www.biorxiv.org/content/early/2020 /07/21/2020.07.20.211813.full.pdf.
- [56] Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: A large-scale genome-wide interaction study. PLOS Genetics 11, 1–42 (2015). URL https://doi.org/10.1371/jour nal.pgen.1005378.
- [57] Dilthey, A. T. et al. HLA*LA—HLA typing from linearly projected graph alignments. Bioinformatics 35, 4394–4396 (2019). URL https://doi.org/10.1093/bioinformatics/btz235. https://academic.oup.com/bioinformatics/article-pdf/35/21/4394/30330845/btz235.pdf.
- [58] Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications 9, 1825 (2018). URL https://doi.org/10.1038/s41467-018-03621-1.

- [59] Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nature Genetics 47, 1091–1098 (2015). URL https://doi.org/10.1038/ng.3367.
- [60] Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLOS Genetics 15, 1–20 (2019). URL https://doi.org/10.1371/journal.pgen.1007889. Publisher: Public Library of Science.
- [61] Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLOS Genetics 10, e1004383 (2014). URL https://journals.plos.org/plosgenetics/article?i d=10.1371/journal.pgen.1004383. Publisher: Public Library of Science.
- [62] Võsa, U. et al. Large-scale cis- and trans-eqtl analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics 2021 53:9 53, 1300–1310 (2021). URL https: //www.nature.com/articles/s41588-021-00913-z.
- [63] The covid-19 host genetics initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the sars-cov-2 virus pandemic. European journal of human genetics : EJHG 28, 715–718 (2020).
- [64] Fang, H., Knezevic, B., Burnham, K. L. & Knight, J. C. XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits. *Genome Medicine* 8, 129 (2016). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154134/.
- [65] Schriml, L. M. et al. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Research 40, D940–D946 (2012). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245088/.
- [66] Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature genetics 25, 25–29 (2000). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037419/.
- [67] Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28, 27–30 (2000). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102409/.
- [68] Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Research 48, D498–D503 (2020). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145712/.
- [69] Chen, M.-H. et al. Phospholipid scramblase 1 contains a nonclassical nuclear localization signal with unique binding site in importin alpha. The Journal of Biological Chemistry 280, 10599–10606 (2005).
- [70] Thomas, C. et al. Structural linkage between ligand discrimination and receptor activation by type i interferons. Cell 146, 621–32 (2011).
- [71] Chen, C.-W., Sowden, M., Zhao, Q., Wiedmer, T. & Sims, P. J. Nuclear phospholipid scramblase 1 prolongs the mitotic expansion of granulocyte precursors during G-CSF-induced granulopoiesis. *Journal of Leukocyte Biology* 90, 221–233 (2011).