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Abstract We define balance games, which describe the formation of friendships and enmity
in social networks. We show that if the agents give high priority to future profits over short
term gains, all Pareto optimal strategies will eventually result in a balanced network. If, on
the other hand, agents prioritize short term gains over the long term, every Nash equilibrium
eventually results in a network that is stable but that might not be balanced.
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1 Introduction

A social network consists of a number of agents and positive or negative relations between
them. The agents could be countries, individuals or groups. A positive relation represents a
friendship or alliance, while a negative relation represents an enmity or rivalry. Structural
balance theory describes such networks, and was introduced by Heider [15,16] and later
generalized by Cartwright and Harary [11,12,3]. It argues that certain patterns are likely
to occur while other patterns are unlikely; the likely patterns are referred to as balanced
while the unlikely ones are unbalanced. There is also empirical support for the assertion that
networks tend towards balance, see for example [27,30], though a fully balanced network is
not always (nor easily) reached [20].

Balance theory describes a network as a whole; it is claimed (quite convincingly) that
networks usually become more balanced over time, but relatively little attention is paid to
the actions and motivations of individual agents on the way towards balance. Here, we take
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a game-theoretic approach: we explicitly treat the tendency towards balance as evidence for
a preference by agents for balanced states over unbalanced ones. This allows us to take a
detailed look at how this tendency follows from the rational choices by the individual agents.

We introduce a class of balance games, which are multi-stage games where in each stage
one agent updates its relationship with someone else, and all agents prefer being involved in
balanced relations over unbalanced ones. We show that if the agents are sufficiently patient
or far-sighted (i.e., if they evaluate future income with a sufficiently small discount), any
Pareto optimal strategy profile will, with probability 1, eventually result in a balanced net-
work. If the agents are less patient, the end result may not be a balanced network. We show
that for sufficiently impatient or short-sighted agents, any subgame perfect Nash equilibrium
strategy profile will, with probability 1, result in a network that need not be balanced but that
is stable. The concept of stability was defined in [17,19] and is related to but strictly weaker
than the concept of balance.

The structure of the paper is as follows. We first give definitions for balance, stability
and the balance game in Section 2, where we also present a few useful lemmas, give an
example, and discuss related work. Then, in Section 3 we consider the case of patient agents,
and show that for them every Pareto optimal strategy profile results in balance. In Section 4
we study the cases of impatient agents. We generalize these results to directed graphs that
are complete in Section 5, and that can be incomplete in Section 6 where we also introduce
a structural theorem that generalizes [13, Theorem 13.2]. In Section 7 we discuss some
generalizations as well as some limitations of our results. We conclude in Section 8.

2 Definitions and Preliminaries

In this section we first provide definitions of social balance theory, including structural bal-
ance and stability. Many of these are from the literature (mainly [3,17,19]). We give ex-
amples and introduce some results which will be used in later proofs. We then move on to
define a class of balance games and some relevant notions. We use an example to explain
the idea of balance games. We then discuss related approaches.

In this paper, we shall study balance games based on different versions of definitions
of a social network (network for short). While in all versions a network is regarded as an
irreflexive graph, they may differ in being undirected or directed, complete or incomplete:

– In Sections 2–4 we define balance games on complete, undirected networks.
– In Section 5 we generalize the games to work on complete directed networks.
– Finally, in Section 6 we generalize the games to work on any directed networks.

We will not consider incomplete undirected networks, for reasons that we briefly discuss in
Section 6.3.

2.1 Structural balance and stability

A complete undirected network (abbreviated as a network in Sections 2–4) is a pair (A,E)
such that A is a finite set of agents (represented by vertices of a graph), and E : {{i, j} ⊆ A |
i 6= j} → {+,−} is an edge function that assigns to each unordered pair of different agents
a positive (+) or a negative (−) edge. For simplicity, for pairs of agents we write i j, ik, etc,
and for triads we write i jk, i jl, etc. We only consider networks with at least three agents.
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2.1.1 Balance

Given a network N = (A,E), a triad i jk of N is called balanced, if the labels of its edges
are of one of the types +++ or +−− up to isomorphism. So in a balanced triad there
is an even number of negative edges. The unbalanced triads therefore have either of the
other two types: ++− or −−−. A network is balanced, if all of its triads are balanced, and
unbalanced otherwise.

In a triad of the type−−−, all three agents are enemies of one another. In that situation,
it is likely that two of them will set aside their differences and unite against their common
foe. Doing so would turn the triad into +−−, which is balanced. In a triad ++−, there is
one agent i that is friends with both j and k, while j and k are enemies. It is then likely
that one of two things will happen: either the mutual friendship with i will form a basis for
reconciliation between j and k, resulting in the balanced triad +++, or the tension between
j and k will force i to end its friendship with one of them, resulting in the balanced triad
+−−. So both types of unbalanced triad have a tendency to evolve into a balanced triad.
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Fig. 1: The ten different triad shapes (up to isomorphism).

2.1.2 Stability

In addition to balance, we will also use the weaker notion of stability, which is defined in
terms of mutual and anti-mutual ties. For a pair i j of a network N = (A,E), a mutual tie of
i j is an agent k of N such that k is a mutual friend or mutual enemy of i and j, i.e., either
E(ik) = E( jk) = + or E(ik) = E( jk) =−.

An anti-mutual tie of i j is an agent k of N such that k is either a friend of i and an enemy
of j, or an enemy of i and a friend of j, i.e., if one of the following is true:

– E(ik) = + and E( jk) =−
– E(ik) =− and E( jk) = +.

We say a pair i j is stable, if it is one of the following cases (and unstable otherwise):

– E(i j) = + and i j has at least as many mutual ties as anti-mutual ties;
– E(i j) =− and i j has at least as many anti-mutual ties as mutual ties.

Finally, a network is stable, if all of its pairs are stable.
A mutual tie is a reason to stay or become friends, while an anti-mutual tie is a reason

to stay or become enemies. A network is therefore stable if every pair of friends has at least
as many reasons to remain friends as to become enemies, and every pair of enemies has at
least as many reasons to remain hostile as to become friends.
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2.1.3 Balance vs. stability

If i jk is a balanced triad and E(i j) = +, then k is a mutual tie for i j. Specifically, if i jk is
of type +++ then k is a mutal friend, and if i jk is of type +−− then k is a mutual foe.
Likewise, if i jk is balanced and E(i j) = −, then k is an anti-mutual tie for i j. A balanced
network is therefore a stable network with the additional property that for all pairs i j, if
E(i j) = + then i j has only mutual ties and if E(i j) =− then i j has only anti-mutual ties.

Not all stable networks are balanced, however. Two typical examples of stable networks
that are not balanced are illustrated in Figure 2. In Figure 2(1), one can verify that every pair

2 3

1 4

6 5

(1)

2 3

1 4

6 5

(2) N(2)

k1 · · · km

i j

l1 · · · lm

(3) N(m)

Fig. 2: Stable networks that are unbalanced, where a solid line stands for a positive edge and
the lack of a line for a negative edge.

has an equal number of mutual and anti-mutual ties. For instance, pair {1,3} has two mutual
ties (i.e., agents 4 and 5) and two anti-mutual ties (i.e., agents 2 and 6). It is therefore stable,
and so is the entire network. Yet the network is not balanced, for, e.g., the triad {1,2,3} is
not balanced. Similarly, the network of Figure 2(2) is also stable but not balanced.

The benefit of the latter network is that it can be generalized to a class of stable and
unbalanced networks illustrated in Figure 2(3). For each natural number m ≥ 2, the net-
work N(m) can be divided into three cliques: the {k1, . . . ,km}-party (k-party for short), the
{l1, . . . , lm}-party (l-party for short) which are of equal size, and a small, third party {i, j}.
Agents are friendly towards members of their own clique and hostile towards members of
other cliques. The network shown in 2(2) is N(2).

One can verify that for any pair {kx,ky}, {lx, ly} or {i, j} in the same party, there are 2m
mutual ties (i.e., all others are their mutual ties), and is therefore stable. Any pair {kx, lx}
across the two major parties are stable, as there are 2 mutual ties (i.e., i and j) and (2m−2)
anti-mutual ties. Any pair {i,kx}, {i, lx}, { j,kx} or { j, lx} across the third party and a major
party has an equal number (i.e., m) of mutual and anti-mutual ties, and is thus stable as well.
For every m≥ 2, the network N(m) is therefore stable. It is not balanced, however, because
it contains triads of the type −−−.

Let us consider a few technical lemmas that will be useful later on. The first lemma is
easy to obtain in balance theory, which follows immediately from the fact that a triad is
balanced if and only if it contains an even number of negative edges.

Lemma 1 If a triad i jk is balanced, then flipping (the sign of) any single edge of the triad
will make it unbalanced. Likewise, if i jk is unbalanced then flipping any single edge of the
triad will make it balanced.

A pair i j is stable if and only if it is part of at least as many balanced triads as unbalanced
triads. The following lemma therefore follows from Lemma 1.
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Lemma 2 If a pair i j is stable, then flipping E(i j) does not increase the number of balanced
triads containing i, nor does it decrease the number of unbalanced triads containing i.

If a pair i j is unstable, then flipping E(i j) will strictly increase the number of balanced
triads in the network.

Finally, we need a Relevance Lemma that is less trivial and new in this paper.

Lemma 3 (relevance) For any network, if there is an unbalanced triad, then all agents
occur in an unbalanced triad.

Proof If i jk contains an odd number of negative edges, then for every agent l 6∈ {i, j,k} at
least one of li j, l jk or lik also has an odd number of negative edges. ut

The Relevance Lemma says that any unbalanced triad i jk is relevant to an agent l, since the
existence of i jk implies that l itself is also involved in at least one unbalanced triad.

2.2 Balance games

We study structural balance from the viewpoint of game theory, by introducing a balance
game which is a type of multi-stage game of infinitely many stages. All the agents in a
network are players of a balance game. Each agent is better off if it is involved in more
balanced triads. Players are allowed to update their ties with others, but only one player
can update its relationship with one of the others in one step, and that takes one round or
stage of a multi-stage game. Updates of relationships are made sequentially, which induces
a sequence of networks, and this is common knowledge among all the players. Yet who will
make a move in each step is completely non-deterministic.

Every stage game is based on a network, and different networks naturally yield different
games. Moreover, we restrict to memoryless balance games, so that one network only yields
one stage game (since players do not remember the previous moves, they have to make their
moves based only on the network they are in). Therefore, in our setting there is a one-one
correspondence between networks and stage games.

For a given network of players, the stage game for them is fixed. But since who will make
a move is non-deterministic, there can be multiple succeeding stage games, each treated
as being possible to happen under an equal probability. The entire game is composed of
infinitely many stages, in a tree structure. Below we make this formal.

Valuation Given a network N, the valuation for an agent i in that network is the number
of balanced triads i is part of minus the number of unbalanced triads it is part of. This
valuation is denoted vali(N).

Actions At every stage, a single agent (chosen uniformly at random) will be given an
opportunity to change one of its relations. This agent can choose to change its relation to one
other agent, or it can choose to pass and leave all relations unchanged. Note that an agent
can only change those relations that it is involved in. Agent i can decide to become enemies
with j, but i cannot choose to create an enmity between j and k—although i might be able to
create a situation where j and k have an incentive to become enemies. In a balanced network
all triads are balanced, so balance is a global optimum of vali for every i. In a stable network
no single change to any relation i j would result in an increase in the number of balanced
triads for either i or j (see Lemma 2), so stability is a local optimum of vali for every i.

Discount factor At every stage of the game, the agents immediately receive utility
equal to their valuation of the current network. This rewards them for having more balanced
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relations and punishes them for unbalanced ones. Additionally, they receive utility from fu-
ture game stages. A reward today is worth more than the same reward tomorrow, however,
so the agents multiply their future utility by a discount factor δ ∈ (0,1). The value of δ

indicates the kind of agents that are being modeled; patient agents place (relatively) high
value on the future and therefore have a high value for δ , impatient agents prioritize short
term gain and therefore have a low value for δ . The utility for agent i in a network N there-
fore equals vali(N) plus δ times the expected utility in the successor network (if applicable,
minus the cost of change that is explained below).

Cost of change If an agent decides to change a relation, it will incur a cost of change.
This cost represents the effort and social cost associated with changing one’s relation to
another agent. For example, deciding to end an enmity might require an apology and a good
bottle of wine, whereas ending a friendship may reduce one’s social capital. The exact value
that this cost of change can be debated. We believe that it should lie in the open interval
(0,2). In order to keep all calculations as simple as possible we prefer to have an integer
cost of change, so we set it to be 1. See Section 7 for a discussion of why we believe that
the cost of change should be between 0 and 2, and an overview of how any cost of change
in the interval [0,∞) would influence our results.

We consider only memoryless pure strategies, so a strategy for an agent i can be repre-
sented by a function that maps every network to either a single change in a relation for i or
to no change.1 Below we introduce the formal definitions. We assume a fixed set of agents
A = {1, . . . ,n} with n≥ 3, and use N to denote the set of all networks over A.

Definition 1 The balance game over a network N = (A,E) is a pair (N,s) given by

– (Players) A is the set of players.
– (Strategies) s = (s1, . . . ,sn) is a strategy profile, such that for every player i,

si : N→{(+, i, j),(−, i, j) | j ∈ A\{i}} is a strategy for i.
– (Outcomes) The outcome of (N,s) is one of {(Nsi ,s) | i ∈ A}, chosen uniformly at ran-

dom, where Nsi = (A,Esi) is given by

Esi(kl) =


+, if si(N) = (+, i, j) and kl = i j,
−, if si(N) = (−, i, j) and kl = i j,
E(kl), otherwise.

– (Utility) The utility function u = (u1, . . . ,un), where ui is the utility of player i, is given
recursively by ui(N,s) = vali(N)+ δ · 1

n · (∑ j∈A ui(Ns j ,s)− c j), where c j – the cost of
change for j – is such that c j = 1 if i = j and N 6= Ns j , and c j = 0 otherwise.

The recursive definition of utility does not immediately provide a practical way to com-
pute ui(N,s). It is therefore useful to also have a direct characterization of ui(N,s). For this
purpose, we use the concept of timelines. Given a strategy profile s, an s-timeline is an infi-
nite sequence l = 〈N0,N1, . . .〉 such that for every t ∈ N, Nt+1 ∈ {Nsi

t | i ∈ A}. The utility of
agent i in such a timeline is given by ui(l) = ∑

∞
t=0 δ t(vali(Nt)− c), where c = 1 if i brought

about a change from Nt−1 to Nt and c = 0 otherwise. The utility ui(N,s) is then simply the
expected value of {ui(l) | l = 〈N,N1, . . .〉 is an s-timeline}.

For a given s-timeline l = 〈N0,N1, . . .〉, if there is a natural number T such that Nt1 = Nt2
for all t1, t2 ≥ T , then we say l finalizes in NT , or NT is the final of l.

1 Neither of these restrictions is fundamentally necessary, all proofs presented in this paper can easily be
adapted to mixed strategies that do use memory. But the restrictions do greatly simplify the proofs, so we
assume them for reasons of clarity of presentation.
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k1 · · · km

i j

l1 · · · lm

(1) A balanced outcome of
N(m) where i and j take the
same side.

k1 · · · km

i j

l1 · · · lm

(2) A balanced outcome of
N(m) where i and j take dif-
ferent sides.

k1 · · · km

i j

l1 · · · lm

(3) A successor of N(m)
where i and k1 become
friends.

Fig. 3: Possible evolutions of the network N(m) from Figure 2(3).

We write N ;i N′ if there is a strategy si for agent i such that N′ = Nsi , and we write
N ; N′ if there is at least one i such that N ;i N′.

As usual, we say a strategy profile is Pareto optimal (or simply, optimal) if there is no
other strategy profile with which all players receive no less utility and at least one player gets
a higher utility. A strategy profile is called a subgame perfect Nash equilibrium (or simply,
an equilibrium), if no player could obtain a higher utility in any network by unilaterally
changing its strategy.

2.3 Example

Consider the network N(m) for a given m ≥ 2 as depicted in Figure 2(3). In this network,
most triads are balanced, but some remain unbalanced: the triads ikl and jkl are unbalanced
for every k ∈ {k1, . . . ,km} and every l ∈ {l1, . . . , lm}, since those triads are of the form−−−.

The agents could choose to pass, leaving the network in the state N(m) forever. Alter-
natively, the agents can take actions that change the network. Taking such an action would
incur a cost of change, however, so a rational agent will only do so in the expectation of a
sufficiently high reward later. The main reward which all agents would like to obtain (though
they may or may not be willing to pay the price for doing so) would be a balanced network.

There are many ways in which N(m) can be changed to a balanced network. For ex-
ample, all agents could decide to become friends with one another. That change would be
very costly, however. Rational agents would instead aim for a balanced state that is easier
to reach. A more feasible way to reach balance would be for the agents i and j to join the
k-party or l-party, as shown in Figures 3(1) and 3(2).

Suppose that i joins the k-party. So eventually i will become friends with every agent kx.
Then at first, a friendship between i and some agent kx must form. Without loss of generality,
we can assume that this first friendship is with k1, as shown in Figure 3(3). Consider the
effect this has on the valuation of the different agents. Triads ik1ky and ik1 j used to be of
the form +−− but are now ++−. So they have turned from balanced to unbalanced. Triads
ik1lz, on the other hand, used to be −−− and have become +−−, so they have turned from
unbalanced to balanced. All other triads are unaffected. In total, there are m−1 triads ik1ky,
1 triad ik1 j and m triads ik1lz. So the number of triads that become balanced and the number
of triads that become unbalanced are both m.

The agents i and k1 are part of all triads that change, so their valuation is unchanged.
One of them does have to pay the cost of change, but they suffer no harm from the change
in the network. Agents ly are part of one triad that changes, and it turns balanced. So their
valuation increases, without them having to take any action. They quite like this change.
The agents j and ky are less happy, however: they too are part of one triad that changes, but
theirs turns unbalanced. So they lose out due to this new friendship.
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Once this first friendship has been established, all other members of the k-clique have
an incentive to follow k1 and become friends with i as well: currently, k1kyi is of the type
++−, but by allying i they can turn this into the balanced type +++. So the first friendship
ik1 is likely to be followed by a flood of new friendships between i and the members of the
k-party. Every such new friendship will be welcomed by the l-party, by i and by all ky that
are already friends with i, since it makes their relations more balanced. For those ky that
are not yet friends with i, the situation turns even worse, however. Every time an agent kx
becomes friends with i, the triad ikykx becomes unbalanced, depriving ky of another 2 points
of valuation. In particular, if km is the last agent to become friends with i then just before
they do so their valuation is 2(m− 1) lower than it was in N(m). Eventually, however, the
network reaches one of the balanced states depicted in Figure 3, at which point all temporary
losses are wiped away and replaced by the benefits of being part of a balanced network.

For highly impatient agents, paying the initial cost of change is not worth it, so remaining
in N(m) is the only rational option. If agents are more patient, however, aiming for balance
may be the only rational choice. How patient agents have to be in order for remaining in
N(m) not to be an option depends on whether we are considering optimal strategy profiles
or equilibria. The fact that the agents who are late to become friends with i (or j) suffer until
balance is achieved means that remaining in N(m) remains optimal until δ becomes very
high. But the agents that experience a loss in valuation are not the ones that take action, it’s
the ones that have not yet taken action. So if the agents are even a little bit patient (δ = 0.5
suffices, for example), the agents who decide to initiate the friendships will benefit by doing
so, thereby making the strategy of remaining in N(m) not an equilibrium.

2.4 Related work

Our definition of balance is called 3-balance in the classical literature (e.g., [3]), where the
number 3 refers to the length of the cycles to be examined – 3-cycles for triangles. In general,
k-balance of a network requires that all cycles of length up to k contain an even number of
negative edges. There is also pressure of balance from longer cycles, but it is considered of
less effect [3]. This leads to a difference between viewing balance of networks as a property
and as a process. Taking the former view, as in the classical literature, all cycles of all lengths
are examined before we can decide the balance of the whole network. The lesser effect of
longer cycles is modeled by assigning a weight or strength to each length [3,25]. In the latter
view as proposed in [17] and adopted in this paper, however, the balance of a network lies in
the balance of its local parts. The balance of longer cycles is achieved gradually over time
by the constraints of balance among shortest cycles (triads in the case of undirected graphs).

The structure theorem [3,13] states that a balanced network can be partitioned into two
mutually antagonistic and self-solidary components. The structure theorem was later gener-
alized in [5] to consider a weaker version of balance which corresponds to more than two
partitions. This gives a different way of studying the tendency of balance: it can be viewed
as a process of partitioning a network. This approach has been developed in [7,8,26].

In recent years the study of link formation has drawn much attention in various fields
including social network analysis, economics, information and computer science. Some of
these are empirical studies that investigate, say, the formation of social networks or how
technology is adopted in a network [31,4], and some are theoretical studies that focus on,
say, the prediction, formal model, statistical and computational results of network formation
[23,33,32,6,34,29]. This paper falls into theoretical side, and we focus on the formal model
of a type of link formation from the viewpoint of game theory.
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The study of structural balance theory has not been limited to a single field since the very
beginning. It was initiated in Heider’s work [15,16] in social psychology and reinvented by
Harary et al. [11,12,3,13] using graph theory. Empirical studies on the impact of structural
balance theory was carried out in the area of social network analysis (see, e.g., [27,28]). The
trend to study and adopt the theory from new perspectives and in new fields has not come
to an end. For example, the impact of structural balance on opinion formation has been
evaluated in the framework of evolutionary games [22]. In our paper we also have structural
balance and games in the same framework, but we focus more on the theoretical aspects of
the structural balance of social networks.

Another area of related work is that of games on networks, a discipline of game theory
concerned with networks. See for example [24,9,21]. Balance games can be considered part
of this field, but they differ significantly from the games that have been studied before. Other
disciplines of game theory, such as coalition formation and evolutionary games (see, e.g.,
[35]), are also related to balance games but very different from a technical point of view.

3 Patient Players

We show that for sufficiently patient players, a Pareto optimal strategy profile finalizes in a
balanced network with probability 1. First, however, we consider two lemmas.

Lemma 4 Let s be optimal and N a balanced network. Then Nsi = N for every agent i.

Proof Taking any action other than passing incurs a cost of change, so in an optimal strategy
an agent can only take such an action if they expect that doing so will eventually increase the
valuation for at least one agent. In a balanced network every agent already has the highest
possible valuation, so when playing an optimal strategy every agent passes.

Lemma 5 Let s be a strategy profile, N0 a network and L the set of s-timelines starting in
N0 that do not finalize in balance. If L occurs in the game (N0,s) with probability greater
than 0, then there is a δhigh < 1 such that for all δ > δhigh, s is not Pareto optimal.

Proof Suppose towards a contradiction that s is Pareto optimal and that L occurs with proba-
bility p > 0. Let Ngoal be any balanced network, and let s′ be the strategy where every agent,
when given the opportunity, change their relations to match the ones in Ngoal. We will show
that, for sufficiently high δ , s′ Pareto dominates s.

Every agent is part of b := (n−1)·(n−2)
2 different triads. In a balanced network, all triads

are balanced, so every agent has a valuation of b. In every non-balanced network, every agent
has a valuation of at most b− 2, since by Lemma 3 every agent is part of at least one un-
balanced triad. Furthermore, by Lemma 4, every timeline that contains a balanced network
must finalize in that network. So every network in every timeline l ∈ L has a valuation of at
most b−2, for every agent. This means that the expected valuation at any point in time is at
most p ·(b−2)+(1− p) ·b. We therefore have ui(N0,s)≤∑

∞
t=0 δ t(p ·(b−2)+(1− p) ·b) =

p·(b−2)+(1−p)·b
1−δ

.
Now, let N be any network and let k be the number of edges that differ between N and

Ngoal. We will compute a lower bound f (k) on the expectation of ui(N,s′). If k = 0 then
f (k) = ∑

∞
t=0 δ t · b = b

1−δ
. If k > 0, then there are two possibilities: either the agent that is

chosen to act still has one or more edges left to change and does so, or it has no changes left
to make and passes. The first possibility occurs with a probability of at least 1

n and the second
with probability at most n−1

n . The valuation of N is at worst −b, so the expected utility in
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N is at least f (k) = −b+ δ ( 1
n ( f (k− 1)− c)+ n−1

n f (k)). Solving for f (k) yields f (k) =
−b+ δ

n f (k−1)− δ
n c

1−δ
n−1

n
. It follows that f (k) = ∑

k
i=1

(−b− δ
n c)·( δ

n )
i−1

(1−δ
n−1

n )
i +

( δ
n )

k
f (0)

(1−δ
n−1

n )
k . As δ approaches 1,

the latter expression approaches (−bnk− ck)+ f (0) = (−bnk− ck)+ b
1−δ

. So the strategy
profile s′ pays a constant price (−bnk− ck), but in return it gains b times 1

1−δ
, whereas s

avoids the constant price but multiplies 1
1−δ

by the lower amount p(b− 2)+ (1− p)b. For
sufficiently high δ , we therefore have ui(N0,s) < ui(N0,s′) for every agent i, contradicting
the optimality of s. ut

We get the following theorem from the above lemmas.

Theorem 1 For a given number of players, there exists a discount factor δhigh such that for
every δ > δhigh and every Pareto optimal strategy profile s the following hold:

1. Every s-timeline that contains a balanced network finalizes in that network;
2. For every N, the game (N,s) reaches a balanced network with probability 1.

Note that the bound δhigh depends on the number of agents. In fact, limn→∞ δhigh = 1, so
the required amount of patience approaches 1 as the number of agents increases.

This can, for example, be seen from the network N(m) depicted in Figure 2(3). In order
for N(m) to become balanced, the central two agents i and j need to join either the clique
k1, . . . ,km or the clique l1, . . . , lm. While i is in the process of joining a clique, those members
of the clique that are not yet friends with i experience a loss in valuation equal to twice
the number of agents that are already friends with i. This loss is temporary, but both its
magnitude and its duration increase with the number of agents. The amount of patience
needed for any “go to balance” strategy to beat the “everyone passes in N(m)” strategy for
every agent therefore increase with m.

4 Impatient Players

Here we show that if the discount factor δ is sufficiently close to 0, then every subgame
perfect Nash equilibrium finalizes in a stable state with probability 1.

Unlike the case for patient agents, where the bound depends on the number of agents,
our bound δlow for impatient agents is constant. The proofs below can be used to determine
an exact bound, which is the solution to a long equation that works out to something slightly
greater than 1

10 . This bound is not tight, however, so its exact value does not seem very
important. We therefore use the approximation δlow = 1

10 instead.

Lemma 6 Let N0 be a network, and let m be the maximum increase of valuation brought
about by any action of agent i, i.e., m = max{vali(N1)− vali(N0) | N0 ;i N1}. Then for
any strategy profile s, any s-timeline 〈N0,N1,N2, . . .〉 and any t ∈ N we have vali(Nt) ≤
vali(N0)+(m+2t)t.

Proof Consider the same action carried out in N0 and Nk. This action will make some triads
balanced, while making others unbalanced. Since N0 and Nk differ in at most k edges, the
number of triads made balanced when performing the action in Nk is at most k higher than
in N0, and the number of triads made unbalanced is at most k lower.

Turning a triad balanced increases valuation by 2, turning it unbalanced decreases it by
2. So in Nk the action yields at most 2k + 2k more valuation than in N0, where it yields
at most m. So the increase in valuation from Nk to Nk+1 is at most m+ 4k. It follows that
vali(Nt)≤ vali(N0)+∑

t−1
k=0(m+4k)≤ vali(N0)+m · t + 4t

2 · t = vali(N0)+(m+2t)t. ut
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Lemma 6 places an upper bound on how quickly an agent’s valuation can increase.
Importantly, while the bound depends on the maximum possible gain m that the agent could
make at time 0, it does not depend on the total number of agents in the network.

Lemma 7 Let δ ≤ 1
10 and s a Nash equilibrium. Then at every game (N,s), none of the

agents take any action that changes the network unless that action increases their valuation.

Proof Let k be the largest loss in valuation that any agent is willing to inflict upon them-
selves in any equilibrium, and suppose towards a contradiction that k > 0. Gains and losses
in valuation come in multiples of 2, so k ≥ 2.

Now, let (N,s) be a subgame where i makes a move that causes a loss of k in valuation
and, as in the previous lemma, let m =max{vali(N′)−vali(N) |N ;i N′}. Consider also the
alternative strategy s′i where i always (i) makes the move with the highest possible immediate
increase in valuation or (ii) passes if no increase in valuation is available, and let s′ be the
strategy profile that differs from s only in that i plays s′i instead of si.

Let 〈N,N0,N1, . . .〉 and 〈N,N′0,N
′
1, . . .〉 be any s- and s′-timelines, respectively, with the

property that in N it is i’s action that is executed. Furthermore, let l be the maximal possible
gain in valuation for i in N0. Undoing the action that led to N0 yields k in valuation, while
doing any other action will yield at most m+ 4 valuation. So l ≤ max{k,m+ 4}. Then, by
Lemma 6, we have vali(Nt)≤ vali(N0)+(l +2t)t = vali(N)− k+(l +2t)t.

In the sequence N′0 ; N′1 · · · agent i may lose valuation. But this loss is bounded by k
per time step: the only way for i to lose more than 2 in valuation in a single step is if an edge
ia is changed, and in that case agent a shares the same loss, and by assumption no agent is
willing to lose more than k valuation. So vali(N′t )≥ vali(N′0)− k · t = vali(N)+m− k · t.

Finally, note that in the worst case the s′-timeline may require agent i to pay 1 utility as
cost of change in each time step, whereas in the best case s never requires i to pay the cost
of change after i’s first action. We therefore have

ui(s′)−ui(s)
δ

≥ m+ k+∑
∞
t=1 δ t(−1+ vali(N′t )− vali(Nt))

≥ m+ k+∑
∞
t=1 δ t(−1+(m− kt)− (−k+(l +2t)t))

= m+ k+∑
∞
t=1 δ t(m+ k−1− (k+ l +2t)t)

> m+ k−∑
∞
t=1 δ t(k+ l +2)t2

≥ m+ k− (m+2k+6)∑
∞
t=1 δ tt2.

Because δ ≤ 1
10 we have ∑

∞
t=1 δ tt2 < 1

6 (the property that we use is that ∑
∞
t=1(

1
10 )

tt2 = 110
729 <

1
6 ). Therefore, for any m≥ 0 and k ≥ 2, m+ k ≥ 1

6 (m+2k+6)> (m+2k+6)∑
∞
t=1 δ tt2. It

follows that ui(s′)> ui(s), so s is not an equilibrium.
We have arrived at a contradiction, so the assumption that k > 0 must have been false,

which proves the lemma. ut

Finally, if some agent has a valuation increasing move available, then such a move will
be taken by at least one agent.

Lemma 8 Let δ ≤ 1
10 and s a Nash equilibrium. Then in every subgame (N,s), if any agent

has an available action that will increase its valuation, then at least one agent takes an
action that increases its valuation.

Proof Any action that increases valuation increases it by at least two, so the increase in
valuation outweighs the cost of change, resulting in a short term increase in utility. We omit
the detailed calculations, but reasoning similar to that used in the proof of the previous
lemma can be used to show that δ ≤ 1

10 suffices to make this short term increase in utility
outweigh any possible reward of not taking the valuation increasing action. ut
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Theorem 2 Let δlow = 1
10 . Then for any discount factor δ ≤ δlow and any subgame perfect

Nash equilibrium s, the following hold:

1. Every s-timeline that contains a stable network finalizes in that stable network;
2. For every N, the subgame (N,s) reaches a stable network with probability 1.

Proof Clause 1 follows from Lemma 7, and clause 2 from Lemmas 7 and 8. ut

5 Extending to Complete Directed Networks

So far, we have treated social networks as undirected graphs. So if i is a friend of j then j
is also assumed to be a friend of i. This is a simplifying assumption that is often justified;
asymmetric relations are theoretically possible but almost never last. After all, if j hates i
then it will be very hard for i to remain a friend of j.

However, because i’s relation to j and j’s relation to i may occasionally differ for a short
while, it may at times be useful to have a more complex model where asymmetric relations
are possible. In this section, we therefore introduce a variant of balance games on digraphs.
Since we already introduced a variant of the game we can omit some of the details. We
emphasize only those points where the definition and results of this section differ from the
ones in Sections 2–4.

5.1 Stability over complete directed networks

In this section we generalize the results introduced in the previous sections to complete
directed networks. That is to say, a network in this section is treated as a pair N = (A,E)
such that A is a finite set of agents, and E : {(i, j) ∈ A×A | i 6= j} → {+,−} is an edge
function that assigns to each ordered pair of different agents a positive (+) or negative (−)
edge. We still write i j, ik, etc. for pairs of agents, and i jk, i jl, etc. for triads, though in the
case of a digraph an edge between agents has a direction, so i j is different from ji.

While an edge in an undirected network can be thought of as a relation between two
agents, an edge from i to j in a directed network is perhaps better understood as i’s attitude
towards j. The sign of the edge is + if it is a positive attitude, and − if negative.

Before introducing a formal definition of stability, we first explain the idea by intro-
ducing all the possible cases of shapes. Unlike in the case of undirected networks where
we considered only the shapes of triads, the relationship between a pair is already relevant
for stability in the case of directed networks. There are three possible cases of relationships
between a pair of agents, namely ++, +− and −−. Typically, two agents tend to have the
same attitude towards each other. If not, there is usually a pressure or motivation for at least
one of them to make a change. After all, it is hard to be friends with someone who considers
you a foe. So among the three cases, ++ and −− are balanced, while +− is not.

For triads, there are however more cases to be considered than in the case of undirected
networks. We list and categorize them into balanced and unbalanced ones in Figure 4.

Now we introduce the definition of stability of a digraph. We make use of the notions
of attraction and repulsion, which extend the notions of mutual and anti-mutual ties seen in
Section 2.1.2. The attraction between i and j is the number of balanced pairs and triads the
edge i j is part of, while the repulsion is the number of unbalanced pairs and triads the edge
is part of. Intuitively, the attraction is the number of reasons for two to become (or remain)
friends, while the repulsion is the number of reasons to become (or remain) enemies.
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Fig. 4: The 15 different pair/triad shapes (up to isomorphism) for complete directed net-
works, where an arrow stands for a positive attitude, and a dasharrow for a negative attitude.

Definition 2 (stability) Let (A,E) be a social network, and let i,k ∈ A. The attraction of
ik, denoted attr(i,k), is given by attr(i,k) = attr2(i,k)+attr3(i,k) such that:

attr2(i,k) =
{

1, if E(ki) = +,
0, otherwise.

attr3(i,k) = |{ j | E(i j) = E( jk) = +}|+ |{ j | E(i j) = E( jk) =−}|
+ |{ j | E(i j) = E(k j) = +}|+ |{ j | E(i j) = E(k j) =−}|
+ |{ j | E( ji) = E( jk) = +}|+ |{ j | E( ji) = E( jk) =−}|
+ |{ j | E( ji) = E(k j) = +}|+ |{ j | E( ji) = E(k j) =−}|.

The repulsion of ik, denoted rep(i,k) is given by rep(i,k) = rep2(i,k)+ rep3(i,k) such that:

rep2(i,k) =
{

1, if E(ki) =−,
0, otherwise.

rep3(i,k) = |{ j | E(i j) = + and E( jk) =−}|+ |{ j | E(i j) =− and E( jk) = +}|
+ |{ j | E(i j) = + and E(k j) =−}|+ |{ j | E(i j) =− and E(k j) = +}|
+ |{ j | E( ji) = + and E( jk) =−}|+ |{ j | E( ji) =− and E( jk) = +}|
+ |{ j | E( ji) = + and E(k j) =−}|+ |{ j | E( ji) =− and E(k j) = +}|.

A pair i j is stable if it is one of the following cases (and unstable otherwise):

– E(i j) = + and attr(i, j)≥ rep(i, j);
– E(i j) =− and rep(i, j)≥ attr(i, j).

A network is stable if every pair of it is stable, and unstable otherwise.

The attr2 and rep2 components of attraction and repulsion represent the pressure on i’s
attitude towards j due to j’s attitude towards i. The attr3 and rep3 components represent the
pressure on i’s attitude towards j due to the relations of i and j with third parties. It is easy
to see from the definition that the attr3 and rep3 components are symmetric.

Proposition 1 For any pair i j of a network, attr3(i, j)= attr3( j, i) and rep3(i, j)= rep3( j, i).

5.2 Properties of stability over complete directed networks

Lemma 9 All stable networks are symmetric networks (i.e., its edges are symmetric).
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Proof Given a stable network N = (A,E) and a pair i j of N. Suppose E(i j) = +. Since N is
stable, attr(i, j) ≥ rep(i, j). Suppose towards a contradiction that E( ji) = −. By definition
attr2(i, j) = 0 and rep2(i, j) = 1. Thus, attr(i, j) = attr3(i, j) and rep(i, j) = 1+ rep3(i, j).
On the other hand, attr2( j, i) = 1 and rep2( j, i) = 0, and so attr( j, i) = 1+ attr3( j, i) and
rep( j, i) = rep3( j, i). By Proposition 1, attr3(i, j) = attr3( j, i) and rep3(i, j) = rep3( j, i).
Therefore attr( j, i) = attr(i, j) + 1 and rep( j, i) = rep(i, j)− 1, and we have attr( j, i) >
rep( j, i). It contradicts with the stability of N. The case when E(i j) =− is analogous. ut

A symmetric network is close to an undirected network. It is not the case, however, that
the attraction and repulsion of an edge in a symmetric directed network are exactly the same
as the attraction and repulsion of the edge in the corresponding undirected network. This
is because directed and undirected networks use slightly different methods for computing
the attraction and repulsion of an edge. Fortunately, this difference turns out to be purely
quantitative, as opposed to qualitative: an edge in a symmetric directed network is stable if
and only if the corresponding edge in the undirected network is stable.

Definition 3 Given a symmetric directed network N = (A,E), the undirectification of N is
an undirected network N′ = (A,E ′) such that E ′({i, j}) = E((i, j)).

Theorem 3 An edge (i, j) in a symmetric (complete, directed) network is stable if and only
if the undirected edge {i, j} is stable in its undirectification.

Proof Given a symmetric network N = (A,E), let N′ be the undirectification of N. Suppose
i j is a stable edge N and E(i j) = +, we have attr(i, j) ≥ rep(i, j). Observe that attr(i, j) =
1+4 ·# {mutual ties of i j in N′} and rep(i, j)= 4 ·# {anti-mutual ties of i j in N′}. It follows
that i j has no less mutual ties than anti-mutual ties, hence stable in N′. Similar arguments
apply to the case where E(i j) = −. Suppose on the other hand that i j is a stable edge of
N′ and E ′(i j) = +. The number of mutual ties of i j is not less than that of anti-mutual ties.
By similar calculation we have attr(i, j)> rep(i, j), and so i j is stable in N. We can show a
similar result in the case when E ′(i j) =−. ut

Corollary 1 A network is stable, iff it is symmetric and its undirectification is stable.

5.3 Balance games over complete directed networks

Definition 4 The balance game over a complete directed network N = (A,E) is a pair (N,s)
such that:

– (Players) A = {1, . . . ,n} (with n≥ 2) is the set of players.
– (Strategies) s = (s1, . . . ,sn) is a strategy profile, such that for every player i, si : N →
{(+, i, j),(−, i, j) | j ∈ A \ {i}} is a strategy for i, where N is the set of all networks
(digraphs) over A.

– (Outcomes) The outcome of (N,s) is one of {(Nsi ,s) | i ∈ A}, chosen at random, where
Nsi = (A,Esi) is given by

Esi(kl) =


+, if si(N) = (+, i, j) and (k, l) = (i, j),
−, if si(N) = (−, i, j) and (k, l) = (i, j),
E(kl), otherwise.

– (Utility) Given a network N, player i’s valuation in N, denoted vali(N), is the number of
i’s balanced pair or triad shapes in N minus the number of i’s unbalanced pair or triad
shapes in N. The utility function u = (u1, . . . ,un), where ui is the utility of player i is
given by ui(N,s) = vali(N)+ δ · 1

n ·∑
n
j=1(ui(Ns j ,s)− c j), where δ is a discount factor,

c j = 1 if i = j and N 6= Ns j , and c j = 0 otherwise.
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For explanations of the definition of balance games we refer to Section 2.2. The differ-
ence between a balance game over digraphs and that over undirected graphs are mainly in
the values of the utility (counting pair and triad shapes instead of only undirected triads).

We find similar results of balance games, based on a distinction between patient and
impatient players just as what was done in the case of undirected graphs.

Theorem 4 (decisions of patient players) For a given number of players, there exists a dis-
count factor δhigh such that the following hold for every δ > δhigh and every Pareto optimal
strategy profile s:

1. Every s-timeline that contains a balanced network finalizes in that network;
2. For every N, the game (N,s) reaches a balanced network with probability 1.

Proof It can be shown using the same method as that for Theorem 1. ut

Theorem 5 (decisions of impatient players) Let δlow = 1
34 . Then for any discount factor

δ ≤ δlow and any subgame perfect Nash equilibrium s, the following hold:

1. Every s-timeline that contains a stable network finalizes in that stable network;
2. for every N, the subgame (N,s) reaches a stable network with probability 1.

Proof Similarly to the proof of Theorem 2, let N0 be a network and m be the maximum
increase of valuation brought about by any action of agent i, then for any strategy profile s,
any s-timeline 〈N0,N1,N2, . . .〉 and any t ∈ N, we have vali(Nt) ≤ vali(N0)+ (m+ 10t)t (a
proof can be given similarly to that of Lemma 6). Using the same method as in the proof of
Lemmas 7 and 8 (note that m≥ 0, k ≥ 2 and l ≤max{k,m+20} in this case), we have that
when δ ≤ 1

34 , in a Nash equilibrium strategy profile, no agent takes an action that does not
increase its valuation, and at least one of them takes an action that increases it. ut

6 Extending to Directed Networks That Can Be Incomplete

In this section, we generalize our results further to cover incomplete graphs. In this more
complex variant, we allow a third type of edges representing the lack of a relationship, in
addition to positive and negative ones. This new version of balance games is of the same
style as the versions discussed previously, though significantly more complex, so we shall
emphasize the differences from those based on complete graphs.

6.1 3-signed directed networks

We consider directed social networks that can be incomplete, which by definition are ir-
reflexive 2-signed digraphs (with “+” and “−” for the positive and negative signs, respec-
tively). Yet, formally, we introduce a third sign “0” for the lack of an attitude2, and treat a
directed network as an irreflexive, complete, 3-signed digraph.

Besides the balanced and unbalanced shapes studied previously, we see more cases in
regard to the lack of attitudes. We illustrate the possible pair shapes and triad shapes in
Figure 5. A pair in the shape +− has a pressure to change to ++ or −−. Shape +0 has a

2 The lack of an attitude may be due to an agent’s ignorance or unawareness of the other. Occasionally we
may also understand a 0-edge to be a neutral or indifference attitude.
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Fig. 5: The 6 different pair shapes and 38 different triad shapes (up to isomorphism) for
directed networks that can be incomplete, where an arrow, a dasharrow and a dotted arrow
stand for a positive, a negative and the lack of an attitude, respectively.

pressure to change to ++3, and −0 to −−. For triads, we can likewise categorize them into
four cases, the balanced, unbalanced, partially balanced and pressure-free ones. For pairs
and triads, the balanced and pressure-free shapes (together, we call them semi-balanced) are
not subject to change, while all or part of the agents involved in the other two types (we
shall call them semi-unbalanced) has a reason to revise their attitudes. Moreover, we say a
network is semi-balanced if all of its pair and triad shapes are semi-balanced.

Definition of stability of a 3-signed digraph needs to cover the cases of 0-edges. We can
extend Definition 2 (for 2-signed digraphs) with an extra condition for the stability of a pair
i j (and keeping other parts untouched):

– E(i j) = 0 and attr(i, j) = rep(i, j).

We can also consider 3-signed undirected graphs, categorize its triad shapes into four
cases similarly to that in Figure 5 (with only 10 different cases), and define stability for it
like in Section 2.1.2 (a precise definition appeared in [17,19]).

3 We consider it hard for someone to go from a positive or negative attitude towards someone to be ignorant
of that person, so 00 is in general not a possible output of +0.
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Theorem 6 (3-signed version of Theorem 3)

1. An edge (i, j) in a symmetric 3-signed digraph is stable if and only if the undirected
edge {i, j} is stable in its undirectification.

2. As a corollary, a 3-signed digraph is stable, if and only if it is symmetric and its undi-
rectification is stable (cf. [19, Definition 4]).

6.2 Structural properties of stability

Now that we have introduced various concepts of networks/graphs, we would like to give a
summary as follows:

balanced digraphs < semi-balanced digraphs < stable digraphs < symmetric digraphs

where < means that the concept on the left is strictly less general than the one on the right,
and the above holds for 3-signed graphs (for 2-signed graphs, the above holds if we skip the
concept “semi-balanced digraphs”).

The above is not hard to see. By definition semi-balance is a more general concept than
balance. Also, all stable digraphs are symmetric (Lemma 9 and Theorem 6), but not vice
versa (an unstable symmetric digraph exists). Moreover, the following hold.

Proposition 2 Every semi-balanced network is stable, but not necessarily vice versa.

Proof To see that all semi-balanced networks are stable, all we need is to verify that all the
shapes allowed are stable, and that is the case. For the converse direction, consider Figure
2(1), which is undirectedly stable (just treat every line as a pair of bidirectional arrows; recall
that the lack of a line there stands for negative attitudes), and thus stable by Theorem 9, but
yet it is not semi-balanced (check, say, the triad (1,4,5) which is unbalanced). ut

In [13] it is shown (Theorem 13.2) that, for any network (i.e., 2-signed incomplete di-
graph) N, N is balanced4 if and only if the vertices of N can be partitioned into two subsets
(one of them may be empty) such that every positive edge joins two vertices of the same
subset and every negative edge joins two vertices of different subsets. This is often referred
to as structure theorem or balance theorem. We can show a parallel in terms of semi-balance.

Theorem 7 (structure theorem) Given a network N, N is semi-balanced if and only if its
edges are symmetric and the vertices of N can be partitioned into k (k≥ 1) subsets such that
all of the following hold:

1. Every pair of vertices in the same subset are joined by a positive edge;
2. Either all edges between two subsets are negative, or all of them are neutral;
3. Every vertex cannot have negative edges to or from more than one different subsets.

Proof Suppose N is semi-balanced. By definition it must be symmetric. Let V1,V2, . . . ,Vk
be the partition such that a,b ∈ Vi (for some i = 1, . . . ,k) if and only if there is a path of
positive edges from a to b via vertices in Vi. It is easy to observe from the definition of semi-
balance that the positive edges are transitive, and so the first and second clauses hold. For
the third clause, suppose there is a vertex that has two different negative edges to or from

4 The notion of balance in [13] is defined for a less general concept, in the sense that our definition of
balance in Section 5.1 (only for pairs and triads, but not longer cycles) is called 3-balance there, and the
balance defined there needs to be achieved for any length of cycles. For details see [13, p. 341].
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two different subsets, it follows that the vertex is involved in one of the −−− or −−0 triad
shapes (in any direction), which conflicts with the assumption that N is semi-balanced.

For the converse direction, suppose those conditions hold for a network N and we must
show N is semi-balanced. By the symmetry of N we get that all pairs are of the shape ++,
−− or 00. Now for any triad abc, if a, b and c are in the same partition, then by the first
clause the triad shape is +++ (in any direction). If two of them are in the same partition and
the other in a different one, then by the conditions they are of the shape +−− or +00 (in any
direction). If the three vertices are all in different partitions, then they are of the shape 000 or
−00 (in any direction). In each case, abc is balanced or pressure free, hence semi-balanced.

6.3 Balance games over incomplete digraphs

As for the balance games over 3-signed digraphs, we can adopt Definition 4 by replac-
ing the occurrences of “balanced” with “semi-balanced”, and “unbalanced” with “semi-
unbalanced”. We can also further extend the definition to allow a player i performing an ac-
tion (0, i, j) such that i becomes ignorant of another player j (better understood as i changes
to a neutral or indifferent attitude towards j in this case). We can show a 3-signed version of
Theorems 4 and 5 using a similar proof method. Details are omitted.

We did not focus on 3-signed undirected graphs in this paper, due to a difficulty in
defining an action (0, i, j). To enforce symmetry, an agent is either allowed to break up
without the feedback from others, or is forbidden to do so. While both are unnatural in
reality, the former even leads to a fact that all players have an easy way to profit, namely to
break up with all others. There does not seem to be an easy adaption to our framework that
avoids this issue.

7 Discussion

Accuracy Balance theory predicts that social networks broadly tend towards balance, but
that a fully balanced network is not always reached. This is also confirmed by empirical
studies. The same general behavior is observed in balance games: rational agents will gen-
erally increase the amount of balance in the network, but under most circumstances a fully
balanced outcome is not guaranteed.

Whether balance games accurately predict agents’ behaviour on a more detailed level is
not currently known, and remains an interesting question for further research.

Pareto optimality for low δ and subgame perfect Nash Equilibria for high δ Our results
are “asymmetric”, in the sense that δhigh is related to optimality while δlow is related to
equilibria. We conjecture that this asymmetry is fundamental: we think that for arbitrarily
high δ < 1 there remain equilibria that do not finalize in balanced networks and that for
arbitrarily low δ > 0 there remain Pareto optimal strategy profiles that do not finalize in
stable networks. Unfortunately, the strategy space for balance games is very large and hard
to describe. So while we have reasons to believe that there are no lower bound for optimality
and upper bound for equilibria, we have not yet managed to find the counterexamples that
prove this to be the case.



Who Should Be My Friends? 19

Cost of Change Changing a relation takes some amount of effort, so it should be associated
with some cost c > 0. Furthermore, agents seem willing to incur this cost in order to make
their relations more balanced. This suggests that the increase in valuation caused by the
increase in balance is higher than the cost of change, so c < 2. We therefore consider values
of c outside the interval (0,2) to be implausible. Still, for the sake of completeness we
explain how our results change for any c ∈ [0,∞).

The bound δhigh is not qualitatively affected by the cost of change: for every c ∈ [0,∞),
there is still a bound δhigh above which every optimal solution finalizes in balance with
probability 1 and δhigh approaches 1 as n approaches infinity.

For any c ∈ (0,2), the bound δlow is also qualitatively unaffected. The exact value of the
bound may change, but a δlow > 0 still exists and is independent of the number of agents.

For c ∈ (2,∞), on the other hand, we do get different results. The first statement of
Theorem 2 still applies: every equilibrium timeline that contains a stable network finalizes
in that network. But the second part of Theorem 2 does not hold for c ∈ (2,∞). If c > 2 and
δ is sufficiently low then some timelines finalize before reaching a stable network.

This leaves the two cases c = 0 and c = 2. If c = 0, then no bound δlow exists: for every
δ ∈ (0,1) there are equilibria where agents move out of a locally optimal stable state and
eventually reach a globally optimal balanced state. Finally, for c = 2, there is a bound δlow,
but in that case we do not know whether lim

n→∞
δlow = 0.

8 Conclusion

In this paper we viewed structural balance of a social network as a result of its agents play-
ing a balance game. When the agents are patient, their Pareto optimal strategies result in a
balanced network as the game proceeds. When the agents are impatient, their subgame per-
fect Nash equilibrium strategies result in a stable network. By a framework accommodating
both the concepts of balance and stability, our work bridged the classical literature on social
balance [3] and its recent development using a logical approach [17,19,34,29].

There is still work that remains to be done. In particular, while we have shown that
bounds δhigh and δlow exist, we have not yet found tight bounds. Furthermore, as mentioned
in Section 7, we conjecture that an equilibrium for patient agents may not finalize in balance
and that an optimal profile for impatient agents may not finalize in balance. A proof (or, for
that matter, a disproof) of these conjectures would be interesting. It would also be good to
know more about the behaviour of agents that are neither as patient as to guarantee balance
nor so impatient to guarantee stability.

Additionally, there are a number of further questions related to generalizations of the
balance game. The balance game could, e.g., be generalized to different kinds of networks,
including weighted networks (where some friendships/enmities are stronger than others). It
should also be interesting to allow different kinds of agents. Some agents might be more
patient than others, or have a higher tolerance for unbalance. The framework of Boolean
games [14,10] seems to be appropriate for modelling the diversity of agents in their goals.

Another way to increase diversity is in the strategies of agents. By going further to for-
malizing the dynamics of balance games in the framework of temporal logic, in particular,
alternating-time temporal logic [1,2], we can get a better characterization of the time evo-
lution and the flexibility of modeling agent’s strategies in a formal and unified manner. We
leave, however, all these for future work.
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