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Occlusion-robust Visual Markerless Bone Tracking
for Computer-Assisted Orthopaedic Surgery

Xue Hu, Anh Nguyen, and Ferdinando Rodriguez y Baena, Member, IEEE

Abstract—Conventional computer-assisted orthopaedic naviga-
tion systems rely on the tracking of dedicated optical markers
for patient poses, which makes the surgical workflow more
invasive, tedious, and expensive. Visual tracking has recently been
proposed to measure the target anatomy in a markerless and
effortless way, but the existing methods fail under real-world
occlusion caused by intraoperative interventions. Furthermore,
such methods are hardware-specific and not accurate enough
for surgical applications. In this paper, we propose a RGB-D
sensing-based markerless tracking method that is robust against
occlusion. We design a new segmentation network that features
dynamic region-of-interest prediction and robust 3D point cloud
segmentation. As it is expensive to collect large-scale training data
with occlusion instances, we also propose a new method to create
synthetic RGB-D images for network training. Experimental
results show that our proposed markerless tracking method
outperforms recent state-of-the-art approaches by a large margin,
especially when an occlusion exists. Furthermore, our method
generalises well to new cameras and new target models, including
a cadaver, without the need for network retraining. In practice,
by using a high-quality commercial RGB-D camera, our proposed
visual tracking method achieves an accuracy of 1 – 2◦ and 2 – 4
mm on a model knee, which meets the standard for clinical
applications.

Index Terms—Biomedical applications, Image processing, Neu-
ral networks, Vision-based instrumentation and measurement.

I. INTRODUCTION

RESTORING the mechanical axis of the lower limb is
crucial in orthopaedic knee surgery [1]. For example,

in total knee arthroplasty (TKA), the distal femur should
be resected at a certain angle, and the prostheses should be
congruently placed on the surrounding anatomy [2]. However,
up to 20% of TKA procedures performed by experienced
surgeons result in knee axis misalignment greater than 3◦ [3].
Implant misalignment could cause abnormal polyethene wear,
joint instability and early implant failure, all of which would
have a significant impact on patients’ quality of life [1].

Over the past decade, navigation systems have been recog-
nised as a powerful tool to improve the efficacy and accuracy
of knee surgery [4], [5]. By providing intraoperative measure-
ments and pre-operative plannings in visual or numerical form,
navigation systems guide the surgeon to reach the goal in
various steps with greater control, precision, and consistency in
time [6]. Conventional orthopaedic navigation systems usually
embed an optical marker-based tracking mechanism to relate
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the computer-stored information to the actual patient pose on
the surgical table. These systems therefore rely on a dedicated
system to track the movement of passive or active infrared
(IR) markers that are rigidly pinned and registered to the target
bone. The patient-specific information could be image-based
(e.g., pre-operative or intra-operative medical scans such as CT
or MRI) [7] or image-free (e.g., generic kinematic and/or mor-
phological models parametrised onto the digitised anatomical
landmarks) [8]. Surgeons need to first manually collect a set of
key points such as implanted fiducials, anatomical landmarks
or surface points, to which the image-based or image-free
information can be registered by point-based [9] or surface-
based approaches [10]. The registered initial target pose can
then be updated according to the IR markers tracked by the
optical tracker.

While marker-based tracking is currently regarded as the
“gold standard” by many commercial navigation systems such
as NAVIO (Smith & Nephew PLC) and MAKO (Stryker
Corp.), three main limitations exist: first, the marker incision
causes an additional scar and further surgical exposure, which
may increase the risk of infection, nerve injury, and bone frac-
ture [11], [12]. Second, surgeon involvement is required for
marker preparation, fixation and marker-to-target registration.
These steps have the potential to introduce additional human
errors [13] and workload for surgeons [14], [15]. Finally, the
bulky IR markers may interfere with surgeon’s performance
[16], as the immobile tracker requires constant line-of-sight
to the target, which may restrict surgeon’s movement in the
operating room [17], [5].

Thanks to the fast development in depth sensing, commer-
cial RGB-D cameras can be explored to replace the dedicated
optical system. Once the camera sees the exposed target, the
pixels associated with the target are automatically segmented
from the RGB-D frames by trained neural networks, then the
segmented surface is registered to a reference model in real-
time to obtain the target pose. Albeit the concise workflow
[18], [19], two aspects must be improved to move markerless
tracking one step closer to surgical application [20]: first, as
both training data collection and network design consider no
target occlusion, markerless tracking drifts during intraoper-
ative interventions (e.g., bone drilling). Therefore, the target
must be kept still during manipulation, which is impossible for
knee surgeries. Second, the networks are trained on a dataset
collected by a single consumer-level RGB-D camera. Limited
by the camera’s quality, the achieved accuracy is below the
clinical acceptance. A more precise camera is essential to
achieve higher tracking accuracy. Ideally, the network should
be adaptable to new cameras without retraining.
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This paper presents a RGB-D markerless tracking method
for knee surgeries, which is robust to target occlusions and
better in precision. To do so, we propose a new deep neural
network for automatic RGB-D segmentation and, since collect-
ing and labelling a large number of training data are highly
tedious and time-consuming, we augment the existing real
data containing no occlusion instances with synthetic RGB-
D data containing various simulated target interactions. We
show that, by utilising both 2D RGB images and 3D point
clouds converted from depth frames, our network successfully
learns to be robust to occlusion from synthetic data only, and
generalises well to new RGB-D cameras and knee targets. A
video is provided in supporting file to demonstrate the success
of our network in the real world.

Our contributions can be summarised as follows:
1) We propose a robust markerless bone tracking algorithm

for orthopaedic navigation, which proves the usability of
RGB-D tracking for surgical navigation.

2) We introduce a new large-scale synthetic RGB-D dataset
generated with simulated target occlusion that allows
network training in an effort-efficient way.

3) We conduct intensive experiments to verify the effec-
tiveness of our network design under different cameras,
lighting conditions, and synthetic-to-real transfer learn-
ing scenarios.

4) Our method achieves clinically acceptable tracking error
on a model leg with a high-quality commercial RGB-D
camera. To the best of our knowledge, this is the first
study that verifies the suitability of visual markerless
tracking for clinical applications.

The rest of the paper is organised as follows. Starting with
related work in Section II, we describe our methodology in
Section III. Section IV presents an evaluation of network
accuracy on real test data collected under occlusion. Section
V shows the performance of markerless tracking on different
targets and for different RGB-D cameras. Finally, we conclude
the paper and discuss the future work in Section VI.

II. RELATED WORKS

A. Pose Measurement for Surgical Guidance

Research effort has been dedicated to improving the ro-
bustness and cost effectiveness of current navigation systems.
Some studies combined the optical tracking with additional
measurements to solve the line-of-sight problem: Vaccarella
et al. fused optical and electromagnetic tracking based on
an unscented Kalman filter [5]; Enayati et al. synchronised
optical and inertial data by a quaternion-based unscented
Kalman Filter [21]; Ottacher et al. proposed a compact 3D
ultrasound system that combines conventional 2-D ultrasound
with optical tracking [22]. Alternatively, for surgeries such as
maxillofacial surgery [23] whose target is relatively clean and
feature-rich, prominent anatomy features can be detected from
RGB recording and registered for poses [24]. For surgeries
with complex scenes (e.g., where the target is surrounded by
blood and tissues), depth-sensing is exploited to improve the
detection robustness. For example, Sta et al. proposed a point-
pair features algorithm to estimate the pose of TKA implant

from depth captures, but such a feature-based method cannot
be run in real-time.

B. RGB-D Learning-based Markerless Tracking

Commercial RGB-D cameras can achieve fast and accurate
measurement in a high resolution, making them potential new
tools for surgical navigation. For real-time tracking purposes,
learning-based methods were explored in the literature to
extract comprehensive features automatically. Yang et al. de-
signed a fully convolutional network (FCN) to automatically
segment spine area from RGB-D captures so that the pre-
plannings can be overlayed accordingly [19]. The RGB and
depth features were encoded from input 2D maps, fused at
different stages of encoder, and decoded jointly to predict
the segmentation mask [19]. Liu et al. proposed a sequential
RGB-D network for automatic femur tracking [25]. The target
centre was roughly localised by a convolutional neural network
(CNN) in the RGB frame first. Then the aligned depth map
was cropped around the predicted centre with a fixed size of
160×160 pixels, and passed to another CNN to finely predict
the femur mask. The femur area was segmented from depth
maps according to the prediction, converted to 3D points, and
registered to a scanned model by iterative closest point (ICP)
in real-time.

Unlike these literature methods which focus on a clean
target surface and train the network with collected real data
[19], [25], we aim to improve the tracking robustness when
the target is manipulated under occlusion, by generating a
synthetic dataset to train a segmentation network with new
design.

III. SYNTHETIC DATA CREATION

While the available dataset collected in [25] by a RealSense
D415 camera (Intel Corp.) has a limited size (5200 inde-
pendent frames on a cadaver knee and a model knee) and
contains no target occlusion, a large dataset with occlusion
instances is essential to train a network that works within an
intraoperative scenario. To expand the current training data in
a fast and efficient way, we generate synthetic data using a
modular procedural pipeline, BlenderProc [26], on an open-
source rendering platform, Blender [27]. The details of data
generation are described below.

1) Creation of Randomised Scenes: A model knee is
scanned by a highly precise scanner (HDI 3D scanner, LMI
Technologies Inc.). The obtained frames are co-registered into
a single point cloud. After hole filling [28] and Laplacian
normal smoothing [29], a 3D knee model is reconstructed from
the merged point cloud by application of the Screened Poisson
algorithm [30]. Then, the model is manually divided into the
femur and not-femur sections and imported into the Blender
pipeline via the Python scripting interface.

As suggested in [31], domain randomisation is critical to
overcoming the simulation-to-reality gap in RGB data. There-
fore, we randomly alter the scene during image generation
regarding (Fig. 1):

• The type (point or surface) and strength of lighting.
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• The room background, which contains arbitrary extru-
sions and objects loaded from the Ikea dataset [32] as
distractors. The materials of the wall, floor and loaded
objects are randomly sampled from a large public material
database, ambientCG [33].

• The material of skin and exposed bone, by blending a
random texture with a random RGB colour.

2) Simulation of Foreground Occlusion: Five 3D models of
human hands and surgical tools are prepared and imported as
foreground distractors. These objects are randomly positioned
and orientated within the camera’s line-of-sight of the exposed
femur to simulate partial target occlusion. The fingertip or
tooltip, defined as the origin of local object coordinates, can
optionally contact and translate on the femur surface. The
material of these objects is also altered following the random
texture blending method mentioned above.

3) Adding Depth Sampling Noise: The simulation-to-reality
gap was found to be more significant in depth imaging due to
the complex noise profiles and diverse ecosystem of sensors
[34]. A commercial structured-light depth camera mainly
experiences three kinds of sampling noise:

• Pixel location offsets due to quantised disparity [35]: the
final depth value at a pixel Z(x, y) is interpolated from
the raw sampling at adjacent pixels Z(x + δx, y + δy).

• The IID Gaussian deviation of depth values, presumably
due to sensor noise or errors in the stereo algorithm [36]
(i.e., Z(x, y) = Ẑ(x, y) + δz).

• The depth value dropout at some pixels (i.e., Z(xd, yd) =
0) due to two reasons: the interaction of the projected
IR pattern with illumination and target material, or the
interaction of the depth camera’s projector-receiver pair
with the scene [34].

Modelling the dropout noise is extremely challenging, since
the material- and illumination-dependent interaction can not be
physically simulated. Besides, the dropout density is subject
to specific camera properties like spatial sampling resolution
and the baseline distance between projector and receiver.
Therefore, we model the first two types of noise in a Gaussian
distribution with (δx, δy) ∼ N (0, 1/2) and δz ∼ 0.08N(0, 1/3)
(in mm), according to the datasheet of D415 camera [37].

Fig. 1: Example synthetic images with variations in the
strengths and types of lighting, background and foreground.

4) Statistics: For each image-generation session with a
settled scene, 20 captures are taken with random camera poses.
The viewpoint is controlled to be 0.5-1m away from the
target to replicate the physical working distance. The sampling
intrinsic parameters and resolution are set to the physical
values of a RealSense camera calibrated by a standard routine
[38]. The visibility of the exposed femur is checked for each
sampling pose to ensure a meaningful capture. The simulation
is repeated to produce 10, 000 randomised synthetic RGB-
D images together with automatically labelled binary femur
masks. Fig. 1 shows some examples of generated synthetic
images.

IV. MARKERLESS SEGMENTATION AND REGISTRATION

Fig. 2 shows an overview of the proposed markerless
tracking workflow. The whole procedure can be divided into
two steps: automatic target segmentation and real-time pose
registration. In this section, we will describe how we imple-
ment each part for better tracking robustness and accuracy.

A. Automatic Segmentation Network

Similar to [25], our segmentation network contains a se-
quential arrangement to leverage both RGB and depth imaging
(Fig. 2). The stable RGB stream ensures robust target localisa-
tion in the full scope of captures, while the depth data ensure
fine segmentation, as they are less impacted by bleeding and
surgical lighting [39]. The RoI box is first predicted from the
global RGB frame by a RoINet, according to which the aligned
depth frame is cropped and resampled into a 3D point cloud.
A SegNet then predicts the femur mask from the cloud for
point-wise segmentation. The details for both networks are
explained below.

1) RoINet: Unlike [25], where the authors regress a target
centre location and crop the depth frames with a fixed box
size to match the input dimension of the segmentation CNN,
our network directly predicts an RoI box with an adaptive size
to more tightly bound the exposed femur surface. The change
is required for two reasons: first, to ensure high segmentation
speed for real-time tracking, only a certain number of resam-
pled points (N) could be taken by the segmentation network.
However, a sufficient number of segmentation outputs (Nf) are
desired for reliable pose registration. Therefore, RoI cropping
should ensure a high target occupation rate Nf/N. Second,
when the camera moves towards or away from the target, or
the network is deployed to a new camera with a considerably
different focal length, a fixed cropping size may fail to cover
the whole target dimensions. Therefore, RoI cropping should
be dynamic in size to ensure a nearly constant value for Nf/N.

The RoINet, as shown in Fig. 3, is modified from the
localisation network proposed in [25], by adding two mid-
layer auxiliaries and a multi-box loss function. With a similar
design to Alexnet, the first five convolutional layers extract
feature maps with shrinking sizes from the input RGB image.
Inspired by the Single Shot Multibox Detector (SSD) [40],
M multi-scale feature maps are taken from different layers
and convoluted by 3×3 kernels to produce M bounding boxes
with a probability for the presence of the target in the box
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Fig. 2: Overview of markerless tracking: Starting from an aligned RGB-D frame, we initially compute the RoI for the exposed
target femur using our RGB-based RoINet. After cropping the depth frame with predicted RoI, a N×3 point cloud is resampled
and input to the segmentation network to predict the femur label for every point. The Nf segmented femur points are then
registered to a pre-scanned reference model by a Bounded ICP algorithm implementation in real-time to obtain the target pose.

Fig. 3: Architecture of the RoI prediction network based on RGB information. We extract feature maps by an Alexnet backbone,
and take multi-scale features for multi-box classification and corner regression. In our implementation, M=21×38+11×19.

(0<f<1)). Each bounding box c = [c1, c2, c3, c4] is uniquely
decided by the x and y offset of upper-left and lower-right
corners relative to the default box coordinates of [-0.5, -0.5,
0.5, 0.5]. The overall M× (4+1) predictions are processed by
a non-maximum suppression to decide the best RoI box.

2) SegNet: The generated depth maps shown in Fig. 1
apparently lack realistic depth dropout. Fortunately, compared
to 2D depth maps, the 3D point cloud representation of depth
data is less vulnerable to such sampling artefacts (Section
V-C). Network-learned features should be similar in both real
and synthetic domains to ensure knowledge transfer; they
should also be robust to camera sampling properties so that
the trained network is camera-agnostic.

Consequently, as shown in Fig. 4, our SegNet is designed
to learn from the 3D point cloud representation rather than
the 2D depth maps (as used in [19], [25]). It takes over the
PointNet architecture [41] to predict from an N×3 input point
cloud {p}. The input points are processed by a succession of
Multi-Layer Perceptrons (MLPs) to produce N×1024 encoded

features. A symmetric maximum pooling function is applied
to extract a 1024-dimensional global descriptor, which is then
concatenated with a local feature vector taken from a mid-
layer. Next, the combined latent features are decoded by MLPs
and reshaped into an N-dimensional vector. The predicted
vector is finally mapped between 0-1 by a sigmoid function.
The output values {p} represent how possible is it that each
of the N points belongs to the femur surface. The point with
predicted probability pj higher than a threshold (0.8 in our
implementation) can be regarded as a target femur point.

3) Network Training: The whole dataset is randomly di-
vided into training and validation sets by a ratio of 8:2.
The two networks are separately trained using the Tensorflow
library [42]. For the RoINet, the batch size is set to 4 and the
training loss CRoI is defined as the total difference of predicted
box corner locations and probabilities (ci,j, fj) of the labelled
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Fig. 4: Architecture of the 3D SegNet. N×3 input points are resampled from the cropped depth frames according to the
predicted RoI. The encoder-decoder structure follows the design of PointNet. The decoded 1-channel output is additionally
processed by a sigmoid function to predict the probability. N=2000 in our implementation.

values (ĉi,j, f̂j):

CRoI =

M∑︁
j=1

(
4∑︁

i=1

|ci – ĉi |j + |fj – f̂j |) (1)

For the SegNet, the batch size is set to 32 and the training
loss CSeg is defined as the sum of absolute differences between
the predicted probabilities pj and binary femur labels p̂j.

CSeg =

N∑︁
j=1

|pj – p̂j | (2)

The Adam optimiser with an exponentially decaying learning
rate starting from 0.001 is used for both training to ensure a
steady rate of learning.

B. Markerless Registration

As the segmented points have a limited spatial spread over
the partially exposed femur area, classical ICP-based registra-
tion is vulnerable to rotational misalignment [43]. For higher
registration accuracy and better robustness against wrongly
segmented points, we thus adopt a previously validated and
published Bounded ICP (BICP) method [18]. BICP uses a
remote pair of corresponding features (e.g., the model hip h
and measured hip centre h(D) ) to bound the registration error
between the scanned model surface s and the automatically
segmented femur surface s(D) :

P(D) (t) = BICP(s(D) (t), s, h(D) (t), h) (3)

s, h and h(D) (t) are obtained with a setup similar to that
proposed in [18]:

1) Model surface and hip location: In our laboratory setup,
before online tracking, the model surface s is digitised from
the femur under maximum skin exposure. The hip centre h is
sphere-fitted from the probed surface points of the ball joint
(Fig. 5). In a clinical setup, the model s and h would instead be
reconstructed from pre-operative images such as CT or MRI.

Fig. 5: The system setup for BICP registration and evalua-
tion. Blue lines: transformation from the tracked landmark
o into o(A) for hip centre calculation; Green lines: online
transformation of the fitted hip centre h(A) into h(D) . Red
lines: transformation of ground truth femur surface or pose
for labelling or evaluation.

2) Measured hip location: As shown in Fig. 5, an optical
marker Md is rigidly anchored to the depth camera D, which
is tracked by a global optical tracker A (FusionTrack 500,
Atracsys LLC.) to obtain a hip centre estimate. The hip centre
can be modelled as the pivot point around which the leg
is rotated. To track a femur landmark during rotation in a
markerless way, we combine the aforementioned automatic
segmentation with ICP registration to track a rough femur
pose P(D)

ICP (t). The local model origin o = [0, 0, 0, 1]T is chosen
as the landmark to avoid any projection bias due to the
rotational registration error. The landmark positions tracked
by ICP-based markerless tracking are transformed into global
coordinates by the hand-eye calibrated transformation Md

DT and
optically tracked A

Md
T as follows:

o(A) (t) = A
Md

T(t) × Md
DT × P(D)

ICP (t) × o (4)

During rotation, more than 40 frames of o(A) are recorded,
from which the still hip centre h(A) is computed by a sphere-
fitting algorithm [18]. The estimated global hip location h(A) is
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finally transformed back to the depth camera frame as h(D) (t)
by Md

AT(t) for online BICP registration (green path in Fig. 5).

V. NETWORK EVALUATION

A. Test Data Collection

To evaluate the performance of the trained segmentation
network in the real world, we collected 800 RGB-D captures
by a RealSense D415 camera, during which the target femur
was partially occluded by hands or tools. To automatically
label the femur pixels, an optical marker Mf was inserted into
the metal leg so that the ground truth (gt) femur surface could
be optically tracked (red path in Fig. 5). After a standard
exposure, the femur surface was manually digitised as s(A)

gt .
The probed surface was then calibrated to Mf as s(Mf )

gt , and
further transformed into D according to:

s(D)
gt (t) = D

Md
T × Md

AT(t) × A
Mf

T(t) × s(Mf )
gt (5)

As suggested by [25], the transformed surface points s(D)
gt

were finally registered to the raw depth capture by a standard
ICP algorithm to identify the matching pixels that should be la-
belled as femur points. However, when hands or tools occluded
the target surface, the registration between digitised surfaces
and unsegmented captures became highly unreliable. To ensure
correct annotation under target occlusion, we utilised pairwise
captures. As shown in Fig. 6, the target was first captured with
no surface occlusion or contact, then labelled by ICP-based
point matching as described above (frame 1). Subsequently,
without moving the camera or target, another capture was
carried out for the femur surface while being partially occluded
by a hand in a purple glove or a tool wrapped in purple tape
to simplify the segmentation process, as follows. The femur
mask labelled in frame 1 was applied to frame 2’s RGB frame
to segment an RoI, which was then converted to hue saturation
and value (HSV) format, and filtered by a band-pass hue filter
in the purple colour range to identify the pixels that belong to
the foreground. The gt femur pixels for frame 2 were finally
computed by subtracting the femur pixels in frame 1 by the
detected foreground pixels in frame 2. The gt RoI box was
computed as the smallest rectangle that covers all gt femur
pixels.

Fig. 6: Generation of the ground truth label mask for a target
femur under surface contact based on a pairwise capture.

B. Results

Fig. 7 shows some example images with overlaid Grad-
CAM heat maps obtained by the proposed RoI prediction
network. Regardless of hand occlusion, tool manipulation,
capturing perspective and human presentation, the network
properly pays attention to the exposed femur. If the intersection
over union (IoU) between the predicted RoI and gt RoI is
higher than 0.5, the prediction is regarded as successful. The
overall accuracy is presented by the success rate of predictions
over the entire test dataset. The localisation network trained in
[25] is also tested as a reference for comparison. The predicted
RoI is regarded as the box drawn around the inferred target
location, with the same size as the ground truth RoI box.

Depending on the gt label (positive: is femur; otherwise
negative) and the correctness of prediction (true: prediction
matches gt; otherwise false), the N points can be classified
as true positive (TP), true-negative (TN), false positive (FP)
and false-negative (FN). To avoid the bias arising from a
large number of TN predictions for background points, the
segmentation accuracy is defined as the IoU score in each
frame:

IoU =
TP

TP + FP + FN
(6)

The overall accuracy is presented by the mean and standard
deviation of IoU values over the full dataset. Table I lists the
evaluated accuracy of our networks and the reference networks
proposed in [25]. Our networks are almost twice more accurate
than the reference networks.

TABLE I: Accuracy comparison of RoI prediction and
point/pixel segmentation, between our networks and the refer-
ence networks proposed in [25].

RoI Seg RoI+Seg
Liu et al. [25] 67.54% 42.03±32.96% 39.45±30.18%
Ours 94.78% 85.42±12.43% 84.20±14.43%

C. Ablation Study

The higher accuracy of our trained networks may be due
to the new network structures, or the synthetic data included
for training. We run ablation tests to study the effect of each
component. Specifically, we want to answer three questions:

1) Are the synthetic data helpful in improving the robust-
ness to occlusion for our networks?

2) Can other (e.g., Liu et al. [25]) networks be improved
by learning on synthetic data?

3) What is the critical factor that causes a difference in
transferring ability?

To answer the first two questions, we additionally trained
the proposed networks on the real part of the data only,
and the reference network [25] on our synthetic-included
dataset. By comparing the “Real” with “Real+sim” group
shown in Table II, the simulated images significantly improve
the robustness of our RGB and depth networks against real-
world occlusion, while it harms the reference networks [25].

For the last question, we investigated the segmentation
network first. The proposed structure learns 3D geometric
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Fig. 7: The femur class GRAD-CAM activation heat map with the predicted ROI box and confidence.

TABLE II: Ablation study for the effect of synthetic images
and network structure.

Network Training data RGB D

Liu et al. [25]
Real 67.54% 42.03±32.96%
Real+sim 60% 0
Real+sim
with dropout - 57.81±31.22%

Ours
Real 52.87% 76.81±17.83%
Real+sim 94.78% 85.42±12.43%
Real+sim
with dropout - 85.37±11.70%

Ours without
RGB auxiliary

Real 32.95% -
Real+sim 74.80% -

features from an unorganised point cloud, whereas the refer-
ence structure learns 2D features from a cropped depth map.
As shown in Table III, the depth dropout artefact makes the
simulated 2D depth maps clearly different from real captures,
but has less effect on the converted 3D point cloud since both
data are sampled from the same 3D geometry. To prove the
correlation between depth dropout and transferring ability, we
generated 5,000 synthetic depth frames with simulated partial
dropout noise caused by the interaction between scene and
projector-receiver: an extra viewpoint was set up in Blender
as the pattern projector in addition to the main viewpoint
as the signal receiver. The ray cast from the projector to
each sampled pixel was computed to find the pixels that
cannot receive projected patterns. The depth values of those
pixels were then overridden by zeros, resulting in a more
realistic 2D depth map (Table III). Our proposed network and
reference segmentation network [25] were then trained with
dropout-included synthetic data. By comparing the “Real+sim”
and “Real+sim with dropout” group shown in Table II, as
expected, the partially modelled dropout artefact improves the
knowledge transfer for the reference network, but makes no
difference to the proposed network.

We then turned our attention to the RoI prediction network.
Compared to the reference network, our network is different
by having two mid-layer auxiliaries and a multi-box loss
for training. We removed the mid-layer auxiliaries from the
proposed architecture and trained the modified network on the
proposed dataset. As shown in Table II, the network can still
learn from simulated images (i.e., with an improvement from
32.95% to 74.80%), but the prediction accuracy was reduced
by around 20%. The degradation implies the importance of
mid-layers for prediction accuracy, but not for synthetic-to-
real transfer. Therefore, we speculate that the learning ability
on synthetic data mainly comes from the training on multi-

Real capture Simulated, no
dropout noise

Simulated, with
dropout noise

2D
depth
map

3D
point
cloud

TABLE III: Examples of simulated depth data represented in
2D depth map and 3D point cloud.

box loss. In fact, our RoINet localises the target in RGB
frames by multi-box classification rather than direct regression.
The classification is more tolerant of inconsistent features on
different domains.

VI. EXPERIMENTS ON MARKERLESS TRACKING

A. Implementation

While the network inference was scripted in Python, for
faster speed, the BICP registration was coded in C++ and
compiled into a dynamic linked library (DLL) that could be
called in Python. Executed on a computer (IntelR©CoreTMi5-
8250U processor) with no dedicated graphics processing unit,
each RoI prediction took approximately 0.01s, the point seg-
mentation took approximately 0.04s, and the BICP registration
took approximately 0.05s. Two threads were executed in
parallel for the frame acquisition and inference, and the BICP
registration, respectively. Given the RealSense camera’s 30 Hz
frame rate, the overall markerless tracking update frequency
was found to be around 12 Hz.

The same setup shown by the red path in Fig. 5 was used
to obtain the gt femur pose for accuracy evaluation. The pre-
scanned model s was first registered to the manually digitised
bone surface for the initial pose P(A)

gt , then transformed into Mf

as a time-invariant local pose P(Mf )
gt . The registered initial gt

pose can be updated continuously based on optical tracking:

P(D)
gt (t) = D

Md
T × Md

AT(t) × A
Mf

T(t) × P(Mf )
gt (7)

The real-time tracking error was defined as the relative trans-
formation between the markerless-tracked femur pose and the
gt pose in D:

Perr = P(D)
gt (t)–1 × P(D) (t) (8)
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Perr was decomposed into the 3D rotational and translational
misalignment. During each experiment, the RGB-D camera
was held by a tripod and randomly placed at 10 different
locations around the target knee. More than 50 frames of
evaluated Perr were collected from each camera position to
quantify the overall tracking error.

B. Comparison with the Literature

The RealSense D415 camera was first tested on the same
model knee used for synthetic data creation. The markerless
tracking proposed in [25] was implemented and tested under
the same setup, as a reference for performance comparison.
As shown in Fig. 8, without target interaction, both reference
and proposed methods track properly. When the femur is
partially occluded by the hand, the RoI centre predicted by
the reference RGB network drifts slightly from the actual
femur centre. Fortunately, as the fixed cropping size (i.e.,
160) is large enough at the working distance, the cropped
depth frames may still contain the target femur. However,
the reference segmentation network fails to identify the femur
pixels, resulting in an unreliable pose. In contrast, both the
proposed RoI prediction and segmentation networks work well
under hand occlusion.

(a) Not occluded (b) Occluded by hand

Fig. 8: Overlaid markerless segmentation (predicted RoI and
segmented points) by Liu et al. (red) and our networks (blue).

Fig. 9: Accuracy of our proposed method and the reference
method by Liu et al. [25] with/without target occlusion.

Fig. 9 compares the BICP-based markerless tracking ac-
curacy obtained by the proposed and reference segmentation

networks. The Kruskal-Wallis test was used to check whether
the difference between obtained results is statistically sig-
nificant. No matter whether the target occlusion exists, the
proposed tracking can achieve better accuracy than the ref-
erence tracking (p-values<0.001 in both rotation and transla-
tion). The proposed markerless tracking achieves 1.02◦±0.33◦,
4.39 mm±0.33 mm error with no occlusion (unocc), and
2.05◦±1.10◦, 4.33 mm±0.78 mm error under occlusion (occ).
There is no significant difference in translation (p-value =
0.21) but in rotation (p-value<0.001).

C. Camera Agnostic Performance

Despite the promising results, the RealSense D415 camera
is not designed for highly precise tasks. Therefore, a more
accurate depth camera should be adopted for future clinical
applications. To test the generalisability of the proposed net-
work on new cameras, and to show the potential of markerless
tracking in achieving higher accuracy, we deployed the trained
network with an Acusense RGB-D camera (Revopoint 3D
Technologies Inc.) that claims sub-millimetre accuracy within
the 1-meter working distance. The Acusense camera, based
on the coded IR structured light technology, has a higher
RGB resolution (600×800) and much longer focal length
(e.g., fx=2061 compared to fx=460 for RealSense camera). We
subsampled the raw RGB frames into 300×400 and padded the
margin by white pixels into the designed input size of 360×640
for RoINet. The predicted box corners were then mapped
to the depth frames for cropping. Given the camera’s much
lower frame rate of around 6-7 Hz, the overall markerless
tracking reached a 5-6 Hz refresh rate with multi-threading
computation.

(a) Not occluded (b) Occluded by hand

Fig. 10: Overlaid markerless segmentation by Liu et al. (red)
and proposed networks (blue) with a new Acusense camera.

Fig. 10 demonstrates the strength of our tracking over
the proposed method by Liu et al. [25] regarding device
dependency or the lack thereof. While the fixed-size cropping
by [25] fails to cover the full target, our dynamic RoINet
efficiently adapts to a larger cropping size. The segmentation
network in [25] is also less robust than our SegNet, which
could be caused by the different features in 2D depth maps,
since the Acusesne camera has a higher spatial resolution and
less dropout effect around the edges. Fig. 11 shows how the
tracking accuracy changes after using a more precise RGB-
D camera. There is a significant accuracy improvement in
translation (p-values<0.001 for both occ and unocc) but not
in rotation (unocc: p-value = 0.25; occ: p-value = 0.24). The
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Fig. 11: Accuracy of the proposed markerless tracking
with/without occlusion, tested on different cameras.

markerless tracking error is 0.95◦±0.55◦, 2.17 mm±0.62 mm
with no occlusion, and 2.24◦±0.73◦, 2.62 mm±0.85 mm under
occlusion. According to the quantitative score table for guide
concepts proposed by Audenaert et al. [44], the accuracy
obtained here is in the clinically “acceptable” range (i.e., error
less than 4◦ and 4 mm).

D. Generalisation Ability

A general question is whether the network will still work if
the target anatomy is different from the model/s used for train-
ing. We tested the qualitative segmentation performance on a
cadaveric knee during a partial joint replacement dissection
study (approved by Imperial College Healthcare NHS Trust
Tissue Bank with the number R15022 for the use of human
cadavers), where we had no ground truth to compare to, and
quantitative tracking accuracy on a new (and different) model
knee. Both of the targets had never been seen by the network
during training.

(a) By Liu et al. (b) By ours

Fig. 12: Markerless segmentation by Liu et al. (red) and pro-
posed networks (blue) on a new cadaver knee under occlusion.
Results are shown in pairwise recording.

As shown in Fig. 12, while the method proposed by
Liu et al. fails under occlusion, our network gives reliable
predictions. Fig. 13 shows the quantified tracking accuracy
by the proposed method on a new model knee. Although
never seeing the target, the tracking accuracy remains high
(i.e., 1.07◦±0.25◦, 4.94 mm±0.23 mm with no occlusion, and

2.82◦±1.22◦, 5.21 mm±0.83 mm with occlusion), indicating
good generalisability to new geometry. Compared to the old
knee, the new target experiences slightly higher tracking error
in unoccluded translation, occluded rotation and occluded
translation (p-values<0.05), suggesting that including more
instances of target geometry for training may further improve
the network performance.

Fig. 13: Accuracy of the proposed markerless tracking
with/without occlusion, tested on different model knees.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a new RGB-D based occlusion-
robust markerless femur tracking method for computer-
assisted knee surgeries. By training the network on a padded
dataset with synthetic images, the robustness to target occlu-
sion is learned in a cost and effort-efficient way. To ensure
effective synthetic-to-real transfer, we show that the multi-
box loss is critical for RoI prediction and learning on the 3D
point cloud is vital for robust segmentation. While the state-
of-the-art markerless tracking fails under target occlusion,
our method can achieve a stable accuracy of around 2◦ and
4 mm no matter whether the target is fully visible to the
camera or not. The proposed tracking can be deployed on
new target geometries (including a cadaver knee) and with
new RGB-D cameras without the need for network retraining.
Consequently, we demonstrated here that, by simply using a
more precise camera, we could achieve a tracking error of
around 1-2◦ and 2-4 mm, a marked performance improvement
that now meets the requirements for clinical deployment. The
results indicate the possible use of RGB-D imaging as a new
modality for surgical applications.

Our synthetic training data can be further improved for
better network performance. The imported knee model is cur-
rently considered as a rigid body with a fixed femur exposure.
By modelling the skin part as a non-rigid body controlled by
some critical nodes, various extents of skin exposure could
be included in the synthetic images. Besides, as suggested by
results on a new knee, including more target geometries in
simulation could enrich the generated data. Finally, we will
fully demonstrate the overall markerless navigation workflow
in a cadaveric study in the future.
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