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Abstract

Adversarial training has been shown to be one of the
most effective approaches to improve the robustness of deep
neural networks. It is formalized as a min-max optimiza-
tion over model weights and adversarial perturbations,
where the weights can be optimized through gradient de-
scent methods like SGD. In this paper, we show that treat-
ing model weights as random variables allows for enhanc-
ing adversarial training through Second-Order Statistics
Optimization (S2O) with respect to the weights. By re-
laxing a common (but unrealistic) assumption of previous
PAC-Bayesian frameworks that all weights are statistically
independent, we derive an improved PAC-Bayesian adver-
sarial generalization bound, which suggests that optimizing
second-order statistics of weights can effectively tighten the
bound. In addition to this theoretical insight, we conduct an
extensive set of experiments, which show that S2O not only
improves the robustness and generalization of the trained
neural networks when used in isolation, but also integrates
easily in state-of-the-art adversarial training techniques
like TRADES, AWP, MART, and AVMixup, leading to a mea-
surable improvement of these techniques. The code is avail-
able at https://github.com/Alexkael/S2O.

1. Introduction
It is well known that it is simple to fool convolutional

neural networks – to whom we refer as neural networks in
this paper – to make incorrect predictions with high confi-
dence by adding human-imperceptible perturbations to their
input [27, 50, 72, 80]. Among many different approaches
[4,44,57,75,82] to detect or reduce such adversarial exam-
ples, adversarial training [45, 57] is known to be the most
effective [3].

Adversarial training is formulated as a min-max opti-
mization problem, where the inner maximization is to find
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the worst-case adversarial perturbations for the training in-
stances, while the outer minimization is to reduce the loss
induced by these adversarial perturbations. While finding
the optimal solution to this min-max optimization is chal-
lenging, the current wisdom is to first decompose the min-
max problem into a master minimization problem and a
slave maximization problem, and to then solve them via
alternating optimization. Both, the minimization and the
maximization, are typically solved by utilizing the gradients
of the loss function L. In particular, the master minimiza-
tion updates the weights according to the gradient over the
weight, i.e., ∇WL.

This paper takes a drastically different view: we believe
that adversarial training can benefit from also considering a
second-order statistics over weight. Our study covers both
theoretical and empirical perspectives.

Our theoretical argument is obtained through updating
the PAC-Bayesian framework [22, 48], which only deals
with the model generalization in its original format, by con-
sidering adversarial robustness and a second order statistics
over weight. Under Bayesian regime, weights are random
variables, and a model is a sample drawn from an a poste-
riori distribution. Our update of the framework draws from
two aspects as described in Sec. 3. First, by relaxing the un-
reasonable assumption that all weights are statistically inde-
pendent, we introduce a second-order statistics of weights,
i.e., a weight correlation matrix (or normalized covariance
matrix). Second, as in [25], we consider the adversarial ro-
bustness in addition to the model generalization.

This updated framework provides a theoretical indi-
cation that we may control an adversarial generalization
bound during training – and thus improve both robustness
and generalization of the resulting model – by monitoring
some norms (e.g., singular value, spectral norm, determi-
nant) of the weight correlation matrix. To enable such a
control, we need methods to estimate the weight correla-
tion matrix and conduct training, respectively. As described
in Sec. 4 we employ two methods for the former: one is
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Figure 1. Visualization of the (PGD-20) distributions of penultimate latent representations for each label through t-SNE with trained CNN
models on Fashion-MNIST. (a) natural training; (b) adversarial training (PGD-10); and (c) adversarial training (PGD-10) with S2O.

a sampling method and the other a Laplace approximation
method inspired by [9, 61]. For the latter, we propose a
novel Second-Order Statistics Optimization (S2O) method.

To intuitively understand why S2O can improve the ro-
bustness, Fig. 1 shows that adversarial training based on
S2O (abbreviated AT+S2O) leads to a visually improved
separation between points of different classes under PGD-
20 attack -– a clear sign of increased robustness.

Through extensive experiments and comparison with the
strate-of-the-art in Sec. 5, we show that S2O can not only
significantly improve the robustness and generalization of
the trained models by itself, but also enhance the existing
adversarial training techniques further. Notably, S2O can
be used in a plug-and-play manner with other adversarial
training techniques, including TRADES [85], MART [78],
AWP [81], and AVMixup [41], four state-of-the-art adver-
sarial training techniques that represent different directions
of the effort to improve the min-max optimization scheme.
Importantly, we note that the enhancement from S2O only
leads to a marginal increase of the training time (Sec. 5.2).

We remark that S2O is different from other second-order
adversarial training methods: e.g., [43] proposes an adver-
sarial regularization through approximating the loss func-
tion as a second-order Taylor series expansion, [77] im-
proves robustness via Hessian matrix of the input, and [68]
studies adversarial attack through Hessian of the weight ma-
trix (while we focus on the weight correlation matrix). It is
also different from the “weight orthogonality” in [6,49,65]:
while the weight correlation matrix is a statistical property
of weight matrices treated as random variables, orthogonal-
ity treats weight matrices as deterministic variables.

2. Preliminaries
Basic Notation. Let S = {s1, ..., sm} be a training set

with m samples drawn from the input distribution D. As an
adversarial sample s′ is slightly different from a clean sam-
ple s, we let S ′ and D′ be an adversarial set and distribution
for a specific model, respectively, such that ||s′ − s|| ≤ ϵ
(using by default the ℓ2-norm). We omit the label y of sam-
ple s, as it is clear from the context. Let W, Wl be the

weight matrix, the weight matrix of the l-th layer, respec-
tively. The loss function L(·) and learning function fW(·)
are parameterized over W. We consider fW(·) as the n-
layer neural networks with h hidden units per layer and ac-
tivation functions act(·). We can now express each fW(s)
as fW(s) = Wnact(Wn−1...act(W1s)...). Note that we
omit bias for convenience. At the l-th layer (l = 1, . . . , n),
the latent representation before and after the activation func-
tion is denoted as hl = Wlal−1 and al = actl(hl), respec-
tively. We use ||Wl||2 to denote the spectral norm of Wl,
defined as the largest singular value of Wl, and ||Wl||F ,
to denote the Frobenius norm of Wl. We denote the Kro-
necker product by ⊗ and the Hadamard product by ⊙.

Margin Loss. For any margin γ > 0, we define the
expected margin loss as

Lγ,D(fW) = Ps∼D

[
fW(s)[y] ≤ γ +max

j ̸=y
fW(s)[j]

]
,

and let Lγ,S(fW) be the empirical margin loss. Note that,
setting γ = 0 corresponds to the normal theoretical classi-
fication loss or empirical classification loss, which will be
written as LD(fW) or LS(fW).

3. Adversarial Generalization Bound
Adversarial training is supposed to improve the robust-

ness against adversarial attacks not just on training samples,
but also on unseen samples. Thus, the generalization per-
formance of adversarial training (namely adversarial gener-
alization, also known as robust generalization) may differ
from that of non-adversarial natural training.

For natural training, PAC-Bayes [22,48] provides an up-
per bound on the generalization error with respect to the
Kullback-Leibler divergence (KL) between the posterior
distribution Q and the prior distribution P of weights. Let
fW be any predictor learned from the training data and
parametrized by W. We consider the distribution Q in the
form of fW+U over learned weights W, and denote by
u = vec(U) (vectorization of U) the multivariate random
variable whose distribution may also depend on the training
data. Then, for any δ, γ > 0, the following bound holds for



the margin loss of any fW with probability 1− δ [53, 54],

LD(fW) ≤ Lγ,S(fW)

+ 4

√
KL(Qvec(W)+u||P ) + ln 6m

δ

m− 1
.

(1)

In the above expression, the KL term is evaluated, for a
fixed W, with respect to the only random variable u. That
is, the distribution of vec(W) + u can be obtained from u
with the mean shifted by vec(W) and the same covariance
matrix (and therefore the same weight correlation matrix).

Notably, such a bound is so general that the inequality
holds for any potential prior P and posterior Q. Thus, spec-
ifying particular priors and posteriors does not violate the
bound but only affects the tightness. Furthermore, [48, 53]
present a general framework to construct the posterior for
a wide variety of models, including deterministic ones, to
calculate the PAC-Bayesian bound.

Given a learning setting, it is a common practice in the
literature, e.g., [25, 53, 54], to assume that the prior P to
be a spherical Gaussian N (0, σ2I), and that the random
variable u also follows N (0, σ2I) (there is a slight dif-
ference between [25] and [54], Appendix A). Under such
assumption in the adversarial setting with attack methods
(e.g., FGM [27], PGM [37], WRM [69]), by letting the
clean input domain be norm-bounded as ||s|| ≤ B, ∀s ∈ D,
where B > 0 is a constant perturbation budget, and for any
γ, δ > 0, any u s.t. PU(maxs ||fW+U(s) − fW(s)|| <
γ
4 ) ≥ 1

2 [25, 54], [25] gives the following margin-based
PAC-Bayesian adversarial generalization bound,

LD′(fW) ≤ Lγ,S′(fW)

+O

(√
(B + ϵ)2n2h ln(nh)Φadv + ln m

δ

γ2m

)
,

(2)

where Φadv depends on the attack method (and we omit the
coefficient for ln m

δ in Eq. (2)). E.g., for an FGM attack, let
κ ≤ ||∇s′′L(fW(s′′))|| hold for every s′′ ∈ {D ∪D′} with
constant κ > 0, we have

Φadv =

n∏
l=1

||Wl||22
{
1 +

ϵ

κ
(

n∏
l=1

||Wl||2)

·
n∑

l=1

l∏
j=1

||Wj ||2
}2 n∑

l=1

||Wl||2F
||Wl||22

.

(3)

Details of other Φadv are given in Appendix A, and a proof
is given in [25]. Note that we simplify Eq. (3) to Φadv,
because our new terms of second-order statistics of weights
in our bound are unrelated with it.

3.1. Second-Order Statistics in Adversarial Bound

The assumption of a spherical Gaussian distributed u has
greatly simplified the theoretical derivation of the bound

in [25, 53, 54]. Based on the same assumption, [25] devel-
ops an adversarial PAC-Bayesian bound by considering the
impact of attack methods. However, given the complexity
of neural networks, this assumption is unrealistic.

In this work, we relax this assumption by letting u be
a non-spherical Gaussian with the correlation matrix R,
where R ̸= I in general, and consider the impact of R
on the above adversarial bound. Specifically, we assume
the correlations of weights from the same layer are not
0, whereas those from different layers are 0. Therefore,
we develop the adversarial bound with the consideration of
second-order statistics of weights. Before turning to the the-
oretical part, we first give the definition of R.

Definition 3.1 Given the clean sample s and the adversar-
ial sample s′, let us and us′ be Gaussian distributed ran-
dom vectors with each element being identically distributed
as N (0, σ2) but not independent one another. Then over the
entire datasets S and S ′, uS ≜ Es(us) and uS′ ≜ Es′(us′)
obey multivariate Gaussian mixture distributions, respec-
tively, with corresponding correlation matrices as follows:

RS ≜
1

σ2
Es[Eu(usu

⊺
s )], (4)

RS′ ≜
1

σ2
Es′ [Eu(us′u

⊺
s′)]. (5)

To get a more general adversarial bound, it is reasonable
to consider that the true correlation matrix R under adver-
sarial training is over both S and S ′, rather than only over
S ′, as most adversarial training methods may utilize both
clean data and adversarial data [16,18,24,33,41,70,78,85–
87]. Therefore, we assume that the true u of an adversar-
ial trained model is a combination of two random variables,
u = quS +(1− q)uS′ and R = qRS +(1− q)RS′ , where
q ∈ [0, 1] is an unknown parameter (as we are not clear how
much clean data or adversarial data affects the model).

Denote by Rl,S and Rl,S′ the weight correlation matri-
ces of l-th layer for clean and adversarial datasets, respec-
tively, following Definition 3.1. In the following, for nota-
tional convenience, we let

Λl,max = max
(
λmax(Rl,S), λmax(Rl,S′)

)
,

Λl,min = min
(
λmin(Rl,S), λmin(Rl,S′)

)
,

(6)

where λmax(·) and λmin(·) are the largest and the smallest
singular value of the matrix, respectively. Note that Rl,S
and Rl,S′ are symmetric positive semi-definite matrices,
thus their eigenvalues and singular values coincide.

Next, by relaxing the spherical Gaussian assumption in
Eq. (2) to consider the non-spherical Gaussian distributed
u with the correlation matrix R, we have the following
lemma, as non-spherical Gaussian u makes an obvious dif-
ference during the derivation of the KL term in Eq. (1) (Ap-
pendix B).



Lemma 3.2 Let the posteriori Q be over the predictors of
the form fW+U, where u is a non-spherical Gaussian with
the correlation matrix R. We can get

LD′(fW) ≤ Lγ,S′(fW) +O

((−
∑

l ln detRl + ln m
δ

γ2m

+
Ψadv

(∑
l

(
c1||R′

l||
1
2
2 + c2||R′′

l ||
1
2
2

))2
γ2m

) 1
2

)
,

where c1, c2 > 0 are universal constants and

Ψadv = (B + ϵ)2Φadv,

R′
l = E(U⊺

l Ul)/σ
2
l

= (Ih×h ⊗ 11×h)
(
Rl ⊙ (1h×h ⊗ Ih×h)

)
(Ih×h ⊗ 11×h)⊺,

R′′
l = E(UlU

⊺
l )/σ

2
l

= (Ih×h ⊗ 11×h)
(
Rl ⊙ (Ih×h ⊗ 1h×h)

)
(Ih×h ⊗ 11×h)⊺.

We defer the proof to Appendix B. As mentioned in Def.
3.1, Rl is a combination of Rl,S and Rl,S′ with an un-
known coefficient q. We can use the following two lemmas
to refine the bound in Lem. 3.2 through the terms of Rl,S
and Rl,S′ .

Lemma 3.3 ||R′
l||

1
2
2 and ||R′′

l ||
1
2
2 can be upper bounded by

Λ′
l,max and Λ′′

l,max, i.e.,

||R′
l||

1
2
2 ≤ Λ′

l,max, ||R′′
l ||

1
2
2 ≤ Λ′′

l,max,

Λ′
l,max = max

(
||R′

l,S ||
1
2
2 , ||R′

l,S′ ||
1
2
2

)
,

Λ′′
l,max = max

(
||R′′

l,S ||
1
2
2 , ||R′′

l,S′ ||
1
2
2

)
.

(7)

Proof 3.3 According to [35], we have

λmax(R
′
l) ≤ qλmax(R

′
l,S) + (1− q)λmax(R

′
l,S′) ≤ (Λ′

l,max)
2,

and similarly λmax(R
′′
l ) ≤ (Λ′′

l,max)
2.

Lemma 3.4 The determinant of Rl can be lower bounded
by the term of Λl,min and Λl,max, i.e.,

detRl ≥ Λkl

l,minΛ
h2−kl

l,max , (8)

where kl = (h2Λl,max − h2)/(Λl,max − Λl,min).

Proof 3.4 For any vector x, we have

⟨x,Rlx⟩ = ⟨x, (qRl,S + (1− q)Rl,S′)x⟩
≥ (qλmin(Rl,S) + (1− q)λmin(Rl,S′))||x||2

≥ Λl,min||x||2.
(9)

Hence, we can get λmin(Rl) ≥ Λl,min. According to [35],
we have λmax(Rl) ≤ Λl,max. Finally, with the determinant
lower bound in [32], we can get Lem. 3.4 directly.

Lems. 3.2, 3.3 and 3.4 lead to the following corollary.

Corollary 3.5 Let u be a non-spherical Gaussian with the
correlation matrix R over S and S ′. Then we get

LD′ (fW) ≤ LS′,γ(fW) +O
((

Ψadv
(∑

l(c1Λ
′
l,max + c2Λ′′

l,max)
)2

γ2m

+
+ ln m

δ
−
∑

l ln(Λ
kl
l,minΛ

h2−kl
l,max )

γ2m

) 1
2

)
.

(10)

Remark 1 Cor. 3.5 demonstrates an updated adversarial
generalization bound with consideration of non-spherical
Gaussian u over clean and adversarial data. It also in-
dicates that, assume other coefficients are constant, mini-
mizing Λ′

l,max, Λ′′
l,max and maximizing Λkl

l,minΛ
h2−kl

l,max can
effectively tighten the adversarial generalization bound.

4. Estimation and Optimization
According to Cor. 3.5, we need to monitor and control

the weight correlation matrix and some of its norms – such
as the singular value, the spectral norm, and the determi-
nant – during training. To this end, we need to be able
to efficiently estimate weight correlation matrix and have
a corresponding effective optimization scheme for training.

4.1. Estimation of the Weight Correlation Matrix

We employ two different methods to estimate the weight
correlation matrix and, through an inter-comparison be-
tween their estimations, to ensure that our empirical conclu-
sions are not compromised by the estimation errors. One is
a sampling method, and the other is Laplace approximation
of neural networks [9, 61]. Note that, though we only use
Laplace approximation to optimize the second-order statis-
tics terms (S2O) during training due to time complexity of
sampling (Sec. 4.2), our empirical results in Sec. 5.1 indi-
cate that S2O is applicable with both methods.

Sampling method obtains a set of weight samples (W+
η) by a sharpness-like method [29, 34] s.t. |L(fW+η) −
L(fW)| ≤ ϵ′ (e.g., ϵ′ = 0.05 for CIFAR-10 and ϵ′ = 0.1
for CIFAR-100), where vec(η) is a 0 mean Gaussian noise.
These samples are then used to estimate the correlation ma-
trix of uS and uS′ . More details are given in Appendix C.

Laplace approximation is an estimation method widely
used in Bayesian framework to approximate posterior den-
sities or posterior moments [61, 63, 74]. Technically, it ap-
proximates the posterior (e.g., vec(W) + u) by a Gaussian
distribution with the second-order Taylor expansion of the
ln posterior around its MAP estimate. Specifically, given
weights for layer l with an MAP estimate W∗

l on S (we
omit the estimation on S ′ as it is the same with S), we have

ln p(vec(Wl) + ul|S) ≈ ln p
(
vec(W∗

l )|S
)

− 1

2

(
vec(Wl −W∗

l ) + ul

)⊺
Es[Hl]

(
vec(Wl −W∗

l ) + ul

)
,

(11)



where Es[Hl] is the expectation of the Hessian matrix over
input data sample s, and the Hessian matrix Hl is given by
Hl =

∂2L(fW(s))
∂vec(Wl)∂vec(Wl)

.
It should be noted that, in Eq. (11), the first-order Taylor

polynomial has been dropped because the gradient around
the MAP estimate W∗

l is zero. Then, taking a closer look at
Eq. (11), we find that its second line is exactly the logarithm
of the probability density function of a Gaussian distributed
multivariate random variable with mean W∗

l and covariance
Σl = Es[Hl]

−1, i.e., vec(Wl) + ul ∼ N (vec(W∗
l ),Σl),

where Σl can be viewed as the covariance matrix of ul and
learned weights Wl can be seen as the MAP estimate W∗

l .
Laplace approximation indicates that efficiently estimat-

ing Σl is achievable through the inverse of the Hessian ma-
trix, because Σ−1

l = Es[Hl]. Note that we omit Σ−1
l,S′ =

Es′ [Hl] as it is similar to Σ−1
l,S = Es[Hl]. Moreover,

[9,61] developed a Kronecker factored Laplace approxima-
tion based on insights from second-order optimization of
neural networks. That is, in contrast to the classical second-
order methods [7, 66] with high computational costs for
deep neural networks, they suggest that Hessian matrices
of l-th layer can be Kronecker factored, i.e.,

Hl = al−1a
⊺
l−1︸ ︷︷ ︸

Al−1

⊗ ∂2ℓ(fW(s))

∂hl∂hl︸ ︷︷ ︸
Hl

= Al−1 ⊗Hl, (12)

where Al−1 ∈ Rh×h is the covariance of the post-activation
of the previous layer, and Hl ∈ Rh×h is the Hessian matrix
of the loss with respect to the pre-activation of the current
layer, and h is the number of neurons for each layer. With
the assumption that Al−1 and Hl are independent [9, 61],
we can approximate Es[Hl] with

Es[Hl] = Es[Al−1 ⊗Hl] ≈ Es[Al−1]⊗ Es[Hl]. (13)

4.2. A Novel Optimization Scheme S2O for Training

The adversarial training of a neural network is seen as
a process of optimizing over an adversarial objective func-
tion Jadv. To tighten the adversarial bound in Cor. 3.5, we
add the second-order statistics penalty terms Λ′

l,max, Λ′′
l,max

and − ln Λkl

l,minΛ
h2−kl

l,max to the objective function Jadv, and
denote the new objective function as J̃adv. To reduce
the complexity, we approximate ∇wl

(Λ′
l,max + Λ′′

l,max −
ln Λkl

l,minΛ
h2−kl

l,max ) through

∇wl
(g(Rl)) =

∂
(
||Rl,S ||2F + ||Rl,S′ ||2F

)
∂vec(Wl)

. (14)

Although it is impractical to find the exact relation between
Rl and above penalty terms (e.g., perfect positive or nega-
tive), they are clearly related. In particular, when Rl,S and
Rl,S′ have the same off-diagonal elements as rs and rs′ ,
respectively, and rsrs′ ≥ 0, we have the following lemmas.

Lemma 4.1 Decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to a
decline in |rs| and |rs′ |, and further causes reduced Λ′

l,max

and Λ′′
l,max.

Lemma 4.2 Decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to
an increase in Λkl

l,minΛ
h2−kl

l,max .

Proofs are given in Appendix D. We also provide more gen-
eral case simulations of the relationship between ||Rl,S ||2F ,
||Rl,S′ ||2F and the above penalty terms in Appendix E.

Remark 2 Lems. 4.1, 4.2 and simulations in Appendix E
indicate that we can decrease Λ′

l,max, Λ′′
l,max and increase

Λkl

l,minΛ
h2−kl

l,max by decreasing ||Rl,S ||2F and ||Rl,S′ ||2F .

It is noted that a direct optimization over Eq. (14) is
also computationally prohibitive. Fortunately, Laplace ap-
proximation can greatly reduce the complexity of Eq. (14).
Specifically, according to Eq. (13) and Σl = E[Hl]

−1, the
following term

∇wl−1
(g(Al−1)) =

∂
(
||Al−1,S ||2F + ||Al−1,S′ ||2F

)
∂vec(Wl−1)

,

(15)
can be used to approximate ∇wl

(g(Rl)), where Al−1,S is
the normalization of Es[Al−1]

−1, i.e., ∀ 0 < i, j ≤ h and
for i, j ∈ N,

(Al−1,S)[ij] =
(Es[Al−1]

−1)[ij]√
(Es[Al−1]−1)[ii](Es[Al−1]−1)[jj]

.

(16)
Finally, we add the regularizer g(A) to the adversarial

training objective function Jadv, obtaining the new objec-
tive function J̃adv with

∇wJ̃adv = ∇wJadv + α∇wg(A). (17)

Here, α ∈ [0,∞) is a hyper-parameter to balance the rel-
ative contributions of the second-order statistics penalty
term g(A) and the original objective function Jadv (Ap-
pendix F).

5. Empirical Results
In this section, we first provide a comprehensive under-

standing of our S2O training method, and then evaluate its
robustness on benchmark data sets against various white-
box and black-box attacks.

Experimental Setup. We train PreAct ResNet-18 [28]
for ℓ∞ and ℓ2 threat models on CIFAR-10/100 [36] and
SVHN [52] (Tab. 1). In addition, we also train WideResNet-
34-10 [83] for CIFAR-10 with an ℓ∞ threat model (Tabs. 2
and 3). We follow the settings of [60]: for the ℓ∞ threat
model, ϵ = 8/255 and step size 2/255; for the ℓ2 threat
model, ϵ = 128/255 and step size 15/255 for all data



Figure 2. We train PreAct ResNet18 with AT and AT+S2O, and show the results of partial weights. (a) shows the normalized spectral
norm of R′

S′ , R′′
S′ , and the determinant of RS′ , with sampling estimation (S) and Laplace approximation (L) respectively. (b) and (c)

demonstrate the absolute correlation matrix of partial weights, for AT and AT+S2O respectively.

Table 1. Adversarial training across data sets on PreAct ResNet18 (%).

Threat Method CIFAR-10 CIFAR-100 SVHN
Model Clean PGD-20 Time/epoch Clean PGD-20 Time/epoch Clean PGD-20 Time/epoch

ℓ∞
AT 82.41 52.77 309s 58.02 28.02 307s 93.17 60.91 509s
AT+S2O 83.65 55.11 368s 58.45 30.58 371s 93.39 64.83 595s

ℓ2
AT 88.83 68.83 292s 64.21 42.20 290s 94.02 66.76 477s
AT+S2O 89.57 69.42 364s 65.32 44.07 366s 94.93 76.19 586s

Table 2. TRADES (1/λ = 6) and AWP on CIFAR-10 with ℓ∞ threat model (%).

Method ResNet18 WideResNet
Clean FGSM PGD-20 PGD-100 CW-20 AA Clean FGSM PGD-20 PGD-100 CW-20 AA

TRADES 82.89 58.72 53.81 53.69 51.83 48.6 83.98 61.08 56.82 56.53 54.54 52.7
TRADES+AWP 82.30 59.48 56.18 55.90 53.12 51.7 84.99 63.11 59.67 59.42 57.41 56.2
TRADES+S2O 84.15 60.19 55.20 54.73 52.47 49.5 85.67 62.73 58.34 57.69 55.36 54.1
TRADES+AWP+S2O 83.79 60.27 57.29 56.51 53.84 52.4 86.01 64.16 61.12 60.46 57.93 55.9

sets. In all experiments, the training/test attacks are PGD-
10/(PGD-20 and others) respectively. All models (except
SVHN) are trained for 200 epochs using SGD with momen-
tum 0.9, batch size 128, weight decay 5× 10−4, and an ini-
tial learning rate of 0.1 that is divided by 10 at the 100th
and 150th epochs. For SVHN, we use the same parameters
except for setting the starting learning rate to 0.01. Simple
data augmentations, such as 32 × 32 random crop with 4-
pixel padding and random horizontal flip, are applied. We
implement each PreAct ResNet18 on single GTX 1080 Ti
and each WideResnet on single NVIDIA A100.

White-box attack. We conduct white-box attacks, in-
cluding FGSM [27], PGD-20/100 [45], and CW-20 [10]
(the ℓ∞ version of CW loss optimized by PGD-20), on
the models trained with baseline methods and our S2O-
enhanced variants.

Black-box attack. Black-box attacks are created from
the clean test data by attacking a surrogate model with an
architecture that is either a copy of the defense model or
a more complex model [56]. After constructing adversar-
ial examples from each of the trained models, we apply

Table 3. AVMixup and MART on CIFAR-10 with ℓ∞ threat
model for WideResNet (%).

Method Clean FGSM PGD-20 PGD-100 CW-20 AA
AVMixup 92.56 80.46 59.75 49.51 54.53 39.7
AVMixup+S2O 93.72 84.57 60.43 50.49 56.16 39.3
MART 83.51 61.53 58.31 57.55 54.33 51.2
MART+S2O 83.91 62.56 59.29 58.33 55.14 54.1

these adversarial examples to the other models and evalu-
ate the performances. The attacking methods we have used
are FGSM and PGD-20.

Auto Attack. We consider Auto Attack (AA) [13], a
powerful and reliable attack, which attacks through an en-
semble of different parameter-free attacks that include three
white-box attacks (APGD-CE [13], APGD-DLR [13], and
FAB [12]) and a black-box attack (Square Attack [2]).

By default, we use the setting α = 0.3 for S2O, with the
exception of α = 0.1 for AT+S2O (CIFAR-10) in Tab. 1.
Following [85], we set epsilon=0.031and step size=0.003
for PGD and CW evaluation. And we use standard version
auto attack evaluation.



Table 4. TRADES (1/λ = 6) and AWP on CIFAR-100 with ℓ∞
threat model for WideResNet (%).

Method Clean FGSM PGD-20 CW-20 AA
TRADES 60.38 35.01 32.11 28.93 26.9
TRADES+LBGAT 60.43 - 35.50 31.50 29.3
TRADES+AWP 60.27 36.12 34.04 30.64 28.5
TRADES+S2O 63.40 35.96 33.06 29.57 27.6
TRADES+AWP+S2O 64.17 37.98 35.95 31.26 29.9

Table 5. VGG16 and MobileNetV2 on CIFAR-10 with ℓ∞ threat
model (%).

Method Clean FGSM PGD-20 CW-20 AA
VGG16 AT 81.63 53.23 49.21 48.01 43.1
VGG16 AT+S2O 82.57 54.03 50.53 48.15 44.6
MNV2 AT 81.97 55.52 50.76 49.53 44.9
MNV2 AT+S2O 82.48 57.51 52.93 49.92 45.7

5.1. Empirical Understanding of S2O
In this part, we explore how the second-order statistics

of weights (e.g., weight correlation matrix) change when
we apply S2O on it. The results in Fig. 2 indicate that S2O
effectively decreases the spectral norm of R′

S′ , R′′
S′ and

increases the determinant of RS′ . We also provide the re-
sults of clean data in Appendix E.

5.2. Robustness Under White-Box Attacks and Auto
Attack

Applying S2O on vanilla adversarial training (Tab. 1).
We employ PreAct ResNet-18 to explore the power of
our proposed S2O method embedded with normal PGD-10
training (with ℓ∞ and ℓ2 threat models), across a number of
data sets including CIFAR-10, CIFAR-100, and SVHN.

Tab. 1 suggests that S2O-enhanced variants can improve
both, the accuracy (over clean data) and the robust accu-
racy (over PGD-20 attack), across the three datasets. For
example, the accuracy on PGD-20 of the AT+S2O model
is 2%-3% higher than that of the standard adversarial train-
ing model with an ℓ∞ threat model on CIFAR-10. There
is also an increase of 1%-1.5% in accuracy on clean data
when compared to the standard adversarial training model.
Generally, the improvement is very consistent across data
sets and attacks.

Applying S2O on TRADES and AWP (Tab. 2). We em-
ploy PreAct ResNet-18 and WideResNet to explore the per-
formance of our S2O method when it works with two state-
of-the-art methods, TRADES and TRADES+AWP, on the
CIFAR-10 (under an ℓ∞ threat model). The robustness
of all defense models are tested against white-box FGSM,
PGD-20, PGD-100, CW-20 attacks, and auto attack.

Tab. 2 shows that S2O-enhanced variants perform con-
sistently and significantly better than the existing ones (with
only one exception). While AWP improves over TRADES,
S2O can further enhance it. For example, the accuracy
on PGD-20 of the S2O-enhanced TRADES+AWP model
is 1.45% higher than that of the TRADES+AWP model
on WideResNet, and the accuracy on PGD-20 of the S2O-

Table 6. Sensitivity analysis on CIFAR-10 with ℓ∞ threat model
for ResNet18 (%).

Method Clean AA PGD-20train PGD-20test Gap
AT 82.41 47.1 62.33 52.77 9.56
AT+S2O (0.05) 83.22 48.5 61.99 53.82 8.17
AT+S2O (0.1) 83.65 48.3 61.50 55.11 6.39
AT+S2O (0.2) 83.43 47.8 60.27 54.59 5.68
AT+S2O (0.3) 82.89 46.5 59.36 54.24 5.12
AT+S2O (0.4) 82.54 46.7 58.41 52.92 5.49

Table 7. Adversarial training across data sets on PreAct ResNet18
with black-box attacks under ℓ∞ threat model (%).

Data Method FGSM PGD-20

CIFAR-10 AT 64.32 62.63
AT+S2O 65.63 63.87

CIFAR-100 AT 38.55 37.36
AT+S2O 39.68 38.60

SVHN AT 71.77 63.76
AT+S2O 72.20 64.31

enhanced TRADES model is 1.39% higher than that of
the TRADES model on PreAct ResNet-18. For addi-
tional experiments on CIFAR-100 in Tab. 4, compared with
TRADES+LBGAT [14], S2O can also improve robustness
under most attacks.

Applying S2O on AVMixup and MART (Tab. 3). We
employ WideResNet to study the performance of our S2O
method when it works with some other state-of-the-art
methods, such as AVMixup and MART, on the CIFAR-10
data set (under ℓ∞ threat model). The robustness of all de-
fense models is tested against white-box FGSM, PGD-20,
PGD-100, CW-20 attacks, and auto attack.

Tab. 3 also shows that S2O enhanced models perform
better than normal AVMixup and MART under most attacks
(and clean data). Note that we mark the results of AVMixup
with the color cyan under PGD-100 attack and auto attack
(AA), as AVMixup (including AVMixup+S2O) is not a ro-
bust method across all attacks – it performs not so well un-
der PGD-100 and Auto attacks.

Remark on our Baselines in Tabs. 1 to 4. We have
checked that our baselines are close to, or slightly better
than, the baselines in the recent paper [81], with which we
have very similar experimental settings. We omit the stan-
dard deviations of 3 runs as they are very small (< 0.40%).

Supplement. We provide hyper-parameter (α) sensitivity
analysis in Tab. 6 with PreAct ResNet-18 and CIFAR-10.
We also apply S2O to other structures (VGG16 [67] and
MobileNetV2 [64]) with normal adversarial training; Tab. 5
shows that S2O also works on these two structures. In ad-
dition, we notice that SOAR [43] can get 56.06% accuracy
on ResNet-10, CIFAR-10 under PGD-20 attack; it is inter-
esting to combine S2O with SOAR in the future work.
5.3. Robustness Under Black-Box Attacks

We also employ PreAct ResNet-18 to explore the power
of our proposed S2O method embedded with normal PGD-
10 training under black-box attacks (with an ℓ∞ threat



model), across a number of data sets, including CIFAR-
10/100, and SVHN. For the same data set, all black-box at-
tacks are generated by the same adversarial training model.

Tab. 7 suggests that S2O enhanced models also can get
some improvements under black box attacks.

6. Related Work
Adversarial training updates the minimization objective

of the training scheme from the usual one to

Jadv = E
s∼D

[
max

||s′−s||≤ϵ
ℓ(fW(s′))

]
, (18)

where s′ is an adversarial example causing the greatest loss
within an ϵ-ball centered at a clean example s with respect to
a norm distance (by default ℓ2). Adversarial training meth-
ods roughly fall within three categories, and in the follow-
ing, we highlight four state-of-the-art methods, which are
combined with our S2O method in the experiments.

The first category is to reduce Eq. (18) to an equivalent,
or approximate, expression, which includes measuring the
distance between s and s′. For example, ALP [24, 33] en-
forces the similarity between fW(s) and fW(s′), the log-
its activations on unperturbed and adversarial versions of
the same image s. MMA [16] encourages every correctly
classified instance s to leave sufficiently large margin, i.e.,
the distance to the boundary, by maximizing the size of the
shortest successful perturbation. MART [78] observes the
difference of misclassified and correctly classified examples
in adversarial training, and suggests different loss functions
for them. TRADES [85] analyzes the robustness error and
the clean error, and shows an upper bound and lower bound
on the gap between robust error and clean error, which mo-
tivates adversarial training networks to optimize Jtr with

E
s∼D

[
ℓ(fW(s)) + max

||s′−s||≤ϵ
KL
(
fW(s)||fW(s′)

)
/λ
]
, (19)

where λ is the hyper-parameter to control the trade-off be-
tween clean accuracy and robust accuracy. It considers the
KL-divergence of the activations of the output layer, i.e.,
KL(fW(s)||fW(s′)), for every instance s. The measure-
ment over s and s′ can be extended to consider a local dis-
tributional distance, i.e., the distance between the distribu-
tions within a norm ball of s and within a norm ball of s′.
For example, [87] forces the similarity between local distri-
butions of an image and its adversarial example, [70] uses
Wasserstein distance to measure the similarity of local dis-
tributions, and [17–19, 46, 55] optimize over distributions
over a set of adversarial perturbations for a single image.

The second category is to pre-process the generated ad-
versarial examples before training instead of directly using
the adversarial examples generated by attack algorithms.
Notable examples include label smoothing [11, 71], which,
instead of considering the adversarial instances (s′, y) for
the “hard” label y, it considers (s′, ỹ), where ỹ is a “soft”
label represented as a weighted sum of the hard label and
the uniform distribution. This idea is further exploited in

[51], which empirically studies how label smoothing works.
Based on these, AVMixup [41, 86] defines a virtual sample
in the adversarial direction and extends the training distri-
bution with soft labels via linear interpolation of the virtual
sample and the clean sample. Specifically, it optimizes

Javm = E
s∼D

[
ℓ(fθ(ŝ), ŷ)

]
, (20)

where ŝ = βs + (1 − β)γ(s′ − s), ŷ = βϕ(y, λ1) + (1 −
β)ϕ(y, λ2), β is drawn from the Beta distribution for each
single si, γ is the hyper-parameter to control the scale of ad-
versarial virtual vector, y is the one-hot vector of y, ϕ(·) is
the label smoothing function [71], and λ1 and λ2 are hyper-
parameters to control the smoothing degree. Other than la-
bel smoothing, [84] generates adversarial examples by per-
turbing the local neighborhoods in an unsupervised fashion.

These two categories follow the min-max formalism and
only adapt its components. AWP [81] adapts the inner
maximization to take one additional maximization to find a
weight perturbation based on the generated adversarial ex-
amples. The outer minimization is then based on the per-
turbed weights [15] to minimize the loss induced by the
adversarial examples. Specifically, it is to optimize the
double-perturbation adversarial training problem

Jawp = max
V∈V

E
s∼D

max
||s′−s||≤ϵ

ℓ(fW+V(s′)), (21)

where V is a feasible region for the parameter perturba-
tion V.

Another thread of related work is on the PAC-Bayesian
framework, a well-known theoretical tool to bound the gen-
eralization error of machine learning models [26,38–40,47,
48, 58, 79]. Recently, it is also widely developed in various
aspects for both traditional machine learning models and
deep neural networks [1, 8, 20, 21, 23, 30, 31, 42, 59, 62, 73].

7. Conclusion
This work addresses an oversight in the adversarial train-

ing literature by arguing that the second-order statistics of
weights need to be systematically considered. Through the-
oretical study (updating the PAC-Bayesian framework), al-
gorithmic development (efficient estimation of weight cor-
relation matrix, effective training with S2O), and extensive
experiments, we show that the consideration of second-
order statistics of weights can improve the robustness and
generalization over not only the vanilla adversarial training
but also the state-of-the-art adversarial training methods.

Acknowledgment. This project has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 956123,
and from UK Dstl under project SOLITUDE. GJ and
XH are also partially supported by the UK EPSRC under
projects [EP/R026173/1, EP/T026995/1].



References
[1] Pierre Alquier, James Ridgway, and Nicolas Chopin. On the

properties of variational approximations of gibbs posteriors.
The Journal of Machine Learning Research, 17(1):8374–
8414, 2016. 8

[2] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-
marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In European
Conference on Computer Vision, pages 484–501. Springer,
2020. 6

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Confer-
ence on Machine Learning, pages 274–283. PMLR, 2018.
1

[4] Yang Bai, Yan Feng, Yisen Wang, Tao Dai, Shu-Tao Xia, and
Yong Jiang. Hilbert-based generative defense for adversarial
examples. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4784–4793, 2019. 1

[5] Afonso S Bandeira and March T Boedihardjo. The spec-
tral norm of gaussian matrices with correlated entries. arXiv
preprint arXiv:2104.02662, 2021. 12

[6] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can
we gain more from orthogonality regularizations in training
deep networks? Advances in Neural Information Processing
Systems, 31:4261–4271, 2018. 2

[7] Roberto Battiti. First-and second-order methods for learn-
ing: between steepest descent and newton’s method. Neural
computation, 4(2):141–166, 1992. 5

[8] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In International Conference on Machine Learning, pages
1613–1622. PMLR, 2015. 8

[9] Aleksandar Botev, Hippolyt Ritter, and David Barber. Prac-
tical gauss-newton optimisation for deep learning. Interna-
tional Conference on Machine Learning, 2017. 2, 4, 5

[10] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. IEEE, 2017. 6

[11] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and
Zhangyang Wang. Robust overfitting may be mitigated by
properly learned smoothening. In International Conference
on Learning Representations, 2020. 8

[12] Francesco Croce and Matthias Hein. Minimally distorted
adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning, pages
2196–2205. PMLR, 2020. 6

[13] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Ma-
chine Learning, pages 2206–2216. PMLR, 2020. 6

[14] Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learn-
able boundary guided adversarial training. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 15721–15730, 2021. 7

[15] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 8

[16] Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and
Ruitong Huang. Mma training: Direct input space margin
maximization through adversarial training. arXiv preprint
arXiv:1812.02637, 2018. 3, 8

[17] Yinpeng Dong, Zhijie Deng, Tianyu Pang, Hang Su, and
Jun Zhu. Adversarial distributional training for robust deep
learning. arXiv preprint arXiv:2002.05999, 2020. 8

[18] Yinpeng Dong, Zhijie Deng, Tianyu Pang, Jun Zhu, and
Hang Su. Adversarial distributional training for robust deep
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 8270–8283. Curran
Associates, Inc., 2020. 3, 8

[19] Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang
Su, Zihao Xiao, and Jun Zhu. Benchmarking adversar-
ial robustness on image classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 321–331, 2020. 8

[20] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann
Pitassi, Omer Reingold, and Aaron Roth. Generalization
in adaptive data analysis and holdout reuse. arXiv preprint
arXiv:1506.02629, 2015. 8

[21] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann
Pitassi, Omer Reingold, and Aaron Leon Roth. Preserving
statistical validity in adaptive data analysis. In Proceedings
of the forty-seventh annual ACM symposium on Theory of
computing, pages 117–126, 2015. 8

[22] Gintare Karolina Dziugaite and Daniel M Roy. Computing
nonvacuous generalization bounds for deep (stochastic) neu-
ral networks with many more parameters than training data.
arXiv preprint arXiv:1703.11008, 2017. 1, 2

[23] Gintare Karolina Dziugaite and Daniel M Roy. Data-
dependent pac-bayes priors via differential privacy. arXiv
preprint arXiv:1802.09583, 2018. 8

[24] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Eval-
uating and understanding the robustness of adversarial logit
pairing. arXiv preprint arXiv:1807.10272, 2018. 3, 8

[25] Farzan Farnia, Jesse M Zhang, and David Tse. Generaliz-
able adversarial training via spectral normalization. In ICLR,
2019. 1, 3, 12, 13

[26] Pascal Germain, Alexandre Lacasse, François Laviolette,
and Mario Marchand. Pac-bayesian learning of linear classi-
fiers. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 353–360, 2009. 8

[27] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 3, 6

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[29] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip
Krishnan, and Samy Bengio. Fantastic generalization mea-
sures and where to find them. International Conference on
Learning Representations, 2020. 4



[30] Gaojie Jin, Xinping Yi, Pengfei Yang, Lijun Zhang, Sven
Schewe, and Xiaowei Huang. Weight expansion: A new
perspective on dropout and generalization. arXiv preprint
arXiv:2201.09209, 2022. 8

[31] Gaojie Jin, Xinping Yi, Liang Zhang, Lijun Zhang, Sven
Schewe, and Xiaowei Huang. How does weight correlation
affect generalisation ability of deep neural networks? Ad-
vances in Neural Information Processing Systems, 33, 2020.
8

[32] Bahman Kalantari and Thomas H Pate. A determinantal
lower bound. Linear Algebra and Its Applications, 326(1-
3):151–159, 2001. 4

[33] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373, 2018.
3, 8

[34] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. International Conference on Learning Rep-
resentations, 2017. 4, 13

[35] Allen Knutson and Terence Tao. Honeycombs and sums of
hermitian matrices. Notices Amer. Math. Soc, 48(2), 2001. 4

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[37] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Ad-
versarial examples in the physical world, 2016. 3

[38] John Langford and Rich Caruana. (not) bounding the true
error. Advances in Neural Information Processing Systems,
2:809–816, 2002. 8

[39] John Langford and Matthias Seeger. Bounds for averaging
classifiers. 2001. 8

[40] John Langford and John Shawe-Taylor. Pac-bayes & mar-
gins. Advances in neural information processing systems,
pages 439–446, 2003. 8

[41] Saehyung Lee, Hyungyu Lee, and Sungroh Yoon. Adversar-
ial vertex mixup: Toward better adversarially robust gener-
alization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 272–281,
2020. 2, 3, 8
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A. Details of σl and other Φadv

Assumption of σl in [25]. To prove Eq. (2) according to
Theorem 1.5 in [76], [25] considers f

W̃
such that

∣∣∣||Wl||2−

||W̃l||2
∣∣∣ ≤ 1

n ||W̃l||2, then they assume σl = ||W̃l||2
β
W̃l

σ,

where β
W̃l

:=
(∏n

l=1 ||W̃l||2
) 1

n

.

Assumption of σl in [54]. To prove the PAC-Bayesian
bound in [54] according to Theorem 1.5 in [76], [54] as-
sumes all variances are same across layers, that is, σl = σ.

Our assumption of σl. We can prove Lem. 3.2 under both
of above assumptions. To make the main paper more clear,
we assume that σl = σ in the main paper. And we provide
the proofs of Lem. 3.2 for σl = σ and σl = ||W̃l||2

β
W̃l

σ in

Appendix B (the assumption of σl =
||W̃l||2
β
W̃l

σ includes the

assumption of σl = σ).

PGM attack for Φadv. For a PGM attack with noise
power ϵ given Euclidean norm || · ||, r iterations for attack
and step size Z , let κ ≤ ||∇s′′L(fW(s′′))|| hold for every
s′′ ∈ {D ∪ D′} with constant κ > 0, then we get [25]

Φadv =
{ n∏

l=1

||Wl||2
(
1 +

Z
κ

1− (2Z/κ)rlip(∇L ◦ fW)r

1− (2Z/κ)lip(∇L ◦ fW)

(

n∏
l=1

||Wl||2)
n∑

l=1

l∏
j=1

||Wj ||2
)}2 n∑

l=1

||Wl||2F
||Wl||22

,

(22)
where

lip(∇L ◦ fW) := (

n∏
l=1

||Wl||2)
n∑

l=1

l∏
j=1

||Wj ||2

gives an upper bound on the Lipschitz constant of
∇sL(fW(s)).

B. Proof of Lem. 3.2

We provide our proofs based on the proofs in [25], to be
clearer about the proofs, we suggest readers go through
Appendix C.2 in [25] firstly. To prove Eq. (2), [25] con-
siders f

W̃
such that

∣∣∣||Wl||2 − ||W̃l||2
∣∣∣ ≤ 1

n ||W̃l||2, since

(1 + 1
n )

n ≤ e and 1
e ≤ (1− 1

n )
n−1, we get

(1
e

) n
n−1

n∏
l=1

||W̃l||2 ≤
n∏

l=1

||Wl||2 ≤ e

n∏
l=1

||W̃l||2, (23)

and for each j, we get

1

||Wj ||2

n∏
l=1

||Wl||2 ≤ e

||W̃j ||2

n∏
l=1

||W̃l||2 (24)

and

1

||W̃j ||2

n∏
l=1

||W̃l||2 ≤ (1− 1

n
)−(n−1) 1

||Wj ||2

n∏
l=1

||Wl||2

≤ e

||Wj ||2

n∏
l=1

||Wl||2.

(25)
Then let σl = σ ( ||W̃l||2

β
W̃l

= 1) or σl = ||W̃l||2
β
W̃l

σ and let

FGM perturbs vector be

δfgmW (s) := argmax
||δ||≤ϵ

δ⊺∇sL(fW(s)). (26)

According to Appendix C.2 Eq. (22) in [25], we get the
following inequation

||fW+U

(
s+ δfgmW+U(s)

)
− fW

(
s+ δfgmW (s)

)
||

≤ e(B + ϵ)

n∏
l=1

||Wl||2
n∑

l=1

||Ul||2
||Wl||2

+ 2e2
ϵ

κ

n∏
l=1

||Wl||22
n∑

l=1

[ ||Ul||2
||Wl||2

+B(

l∏
j=1

||Wj ||2)
l∑

j=1

||Uj ||2
||Wj ||2

]
.

(27)

According to Section 1.1 in [5], we have

E||Ul||2 ≲ (1 +
√
lnh)||E(U⊺

l Ul)||
1
2
2 + ||E(UlU

⊺
l )||

1
2
2

≤ c
(
(1 +

√
lnh)||E(U⊺

l Ul)||
1
2
2 + ||E(UlU

⊺
l )||

1
2
2

)
,

P
(∣∣∣||Ul||2 − E||Ul||2

∣∣∣ ≥ t
)
≤ 2e−t2/2σ∗(Ul)

2

,

σ∗(Ul) ≤ ||E(U⊺
l Ul)||

1
2
2 ,

where c > 0 is a universal constant. Taking a union
bond over the layers, we get that, with probability > 1

2 ,
the spectral norm of Ul is bounded by (

√
2 ln(4n) +

c + c
√
lnh)||E(U⊺

l Ul)||
1
2
2 + c||E(UlU

⊺
l )||

1
2
2 , let c1 =√

2 ln(4n) + c+ c
√
lnh and c2 = c, we have

||Ul||2 ≤
(
c1||R′

l||
1
2
2 + c2||R′′

l ||
1
2
2

)
σl. (28)

Thus,
β
W̃l

||W̃l||2
||Ul||2 is bounded by

(
c1||R′

l||
1
2
2 +

c2||R′′
l ||

1
2
2

)
σ. Then, according to Appendix C.2 Eq.



(22) in [25], Eqs. (24) and (27), we can get

||fW+U

(
s+ δfgmW+U(s)

)
− fW

(
s+ δfgmW (s)

)
||

≤ e2(B + ϵ)

n∏
l=1

||W̃l||2
n∑

l=1

||Ul||2
||W̃l||2

+ 2e5
ϵ

κ

n∏
l=1

||W̃l||22
n∑

l=1

[ ||Ul||2
||W̃l||2

+B(

l∏
j=1

||W̃j ||2)
l∑

j=1

||Uj ||2
||W̃j ||2

]
≤ 2e5(B + ϵ)σ

( n∑
l=1

(c1||R′
l||

1
2
2 + c2||R′′

l ||
1
2
2 )
)

{ n∏
l=1

||W̃l||
n−1
n

2 +
ϵ

κ

( n∏
l=1

||W̃l||
2n−1

n
2

)( 1

B
+

n∑
l=1

l∏
j=1

||W̃j ||2
)}

≤ γ

4
,

hence we choose

σ =
γ

8e5(B + ϵ)(
∑n

l=1(c1||R′
l||

1
2
2 + c2||R′′

l ||
1
2
2 ))

∏n
l=1 ||W̃l||

n−1
n

2

· 1(
1 + ϵ

κ

∏n
l=1 ||W̃l||2( 1

B
+
∑n

l=1

∏l
j=1 ||W̃j ||2)

)
(29)

Then we can get

KL(Qvec(W)+u||P ) =

n∑
l=1

( ||Wl||2F
2σ2

l

− ln detRl

)
≤ O

(
(B + ϵ)2

( n∑
l=1

(c1||R′
l||

1
2
2 + c2||R′′

l ||
1
2
2 )
)2 n∏

l=1

||W̃l||22(
1 + ϵ

κ

∏n
l=1 ||W̃l||2

∑n
l=1

∏l
j=1 ||W̃j ||2

)2
γ2

n∑
l=1

||Wl||2F
||W̃l||22

−
n∑

l=1

ln detRl

)

≤ O

(
(B + ϵ)2

( n∑
l=1

(c1||R′
l||

1
2
2 + c2||R′′

l ||
1
2
2 )
)2 n∏

l=1

||Wl||22(
1 + ϵ

κ

∏n
l=1 ||Wl||2

∑n
l=1

∏l
j=1 ||Wj ||2

)2
γ2

n∑
l=1

||Wl||2F
||Wl||22

−
n∑

l=1

ln detRl

)
.

(30)
Thus, we have

LD′(fW) ≤ Lγ,S′(fW) +O

((−
∑

l ln detRl + ln m
δ

γ2m

+
Ψadv

(∑
l

(
c1||R′

l||
1
2
2 + c2||R′′

l ||
1
2
2

))2
γ2m

) 1
2

)
,

where Ψadv = (B + ϵ)2Φadv. And

Φadv =

n∏
l=1

||Wl||22
{
1 +

ϵ

κ
(

n∏
l=1

||Wl||2)

·
n∑

l=1

l∏
j=1

||Wj ||2
}2 n∑

l=1

||Wl||2F
||Wl||22

(31)

for FGM attack.
Proofs for PGM attack are similar (combine Eqs. (28)
and (30) and Appendix C.3 in [25]).

C. Sampling Method

We use sharpness-like method [34] to get a set of weight
samples (W + η) such that |L(fW+η) − L(fW)| ≤ ϵ′

(e.g., ϵ′ = 0.05 for CIFAR-10/SVHN and ϵ′ = 0.1 for
CIFAR-100), where vec(η) is a 0 mean Gaussian noise.
To get the samples from the posteriori distribution steadily
and fastly, we train the convergent network with learn-
ing rate 0.0001, noise η and 50 epochs, then collect cor-
responding 50 samples. As the samples are stabilized at
(clean/adversarial) training loss and validation loss but with
different weights, we can treat them as the samples from
same (clean/adversarial) posteriori distribution and estimate
the correlation matrix through these samples.

D. Proofs of Lems. 4.1, 4.2

As we assume rsrs′ ≥ 0 (above Lem. 4.1), we give the
proofs with two cases (rs ≥ 0 and rs ≤ 0).

Proof for Lem. 4.1.
Let rs ≥ 0 and rs′ ≥ 0, we get

Λ′
l,max = max

(
||R′

l,S ||
1
2
2 , ||R′

l,S′ ||
1
2
2

)
=
√

h
(
1 + (h− 1)max(rs, rs′)

) (32)

and

Λ′′
l,max = max

(
||R′′

l,S ||
1
2
2 , ||R′′

l,S′ ||
1
2
2

)
=
√

h
(
1 + (h− 1)max(rs, rs′)

)
.

(33)

Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to a decline
in Λ′

l,max and Λ′′
l,max.

Let rs ≤ 0 and rs′ ≤ 0, we get

Λ′
l,max = max

(
||R′

l,S ||
1
2
2 , ||R′

l,S′ ||
1
2
2

)
=
√

h
(
1−min(rs, rs′)

) (34)



Figure 3. (a) We sample 10000 9-dimensional correlation matrices and demonstrate ||Rl||2F w.r.t Λ′
l,max or Λ′′

l,max. (b) We sample 10000

9-dimensional correlation matrices and demonstrate ||Rl||2F w.r.t Λkl
l,minΛ

h2−kl
l,max . (c) We sample 10000 16-dimensional correlation matrices

and demonstrate ||Rl||2F w.r.t Λ′
l,max or Λ′′

l,max. (d) We sample 10000 16-dimensional correlation matrices and demonstrate ||Rl||2F w.r.t

Λ
kl
l,minΛ

h2−kl
l,max .

Figure 4. (a) shows the normalized spectral norm of R′
S , R′′

S , and the determinant of RS , with sampling estimation (S) and Laplace
approximation (L) respectively. (b) and (c) demonstrate the absolute correlation matrix of partial weights (estimate under clean data), for
AT and AT+S2O respectively.

and
Λ′′
l,max = max

(
||R′′

l,S ||
1
2
2 , ||R′′

l,S′ ||
1
2
2

)
=
√
h
(
1−min(rs, rs′)

)
.

(35)

Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to a decline
in Λ′

l,max and Λ′′
l,max.

Proof for Lem. 4.2.
Let rs ≥ rs′ ≥ 0, we get

c(r) = Λkl

l,minΛ
h2−kl

l,max

= (1− rs)
h2−1(1 + (h2 − 1)rs)

(36)

and

∂c(r)

∂rs
= −h2(h2 − 1)rs(1− rs)

h2−2 ≤ 0, (37)

it is easy to get c(r) is negative correlated with rs. Similarly,
if rs′ ≥ rs ≥ 0, we can get c(r) is negative correlated with
rs′ . Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to an
increase in Λkl

l,minΛ
h2−kl

l,max .

Let rs ≤ rs′ ≤ 0, we get

c(r) = Λkl

l,minΛ
h2−kl

l,max

= (1 + (h2 − 1)rs)(1− rs)
h2−1

(38)

and

∂c(r)

∂rs
= −h2(h2 − 1)rs(1− rs)

h2−2 ≥ 0, (39)

it is also easy to get c(r) is positive correlated with rs. Sim-
ilarly, if rs′ ≤ rs ≤ 0, we can get c(r) is positive correlated
with rs′ . Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to
an increase in Λkl

l,minΛ
h2−kl

l,max .



E. Simulations of Lems. 4.1, 4.2 and Second-
Order Statistics of Weights under Clean
Data

As Fig. 3 shows, for 10000 random general 9-dimensional
correlation matrices and 16-dimensional correlation matri-
ces respectively, Lems. 4.1 and 4.2 also hold approximately.

The results in Fig. 4 also suggest that S2O can decrease the
spectral norm of R′

S , R′′
S and increases the determinant of

RS .

F. Approximate Optimization
We use a fast approximate method to update g(A), i.e.,

add a penalty term to the high correlated al,i and al,j to
reduce their correlation. Details are given in the code.
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