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Tracking multiple spawning targets using Poisson
multi-Bernoulli mixtures on sets of tree trajectories

Ángel F. García-Fernández, Lennart Svensson

Abstract—This paper proposes a Poisson multi-Bernoulli mix-
ture (PMBM) filter on the space of sets of tree trajectories for
multiple target tracking with spawning targets. A tree trajectory
contains all trajectory information of a target and its descendants,
which appear due to the spawning process. Each tree contains a
set of branches, where each branch has trajectory information
of a target or one of the descendants and its genealogy. For
the standard dynamic and measurement models with multi-
Bernoulli spawning, the posterior is a PMBM density, with each
Bernoulli having information on a potential tree trajectory. To
enable a computationally efficient implementation, we derive
an approximate PMBM filter in which each Bernoulli tree
trajectory has multi-Bernoulli branches, obtained by minimising
the Kullback-Leibler divergence. The resulting filter improves
tracking performance of state-of-the-art algorithms in a simu-
lated scenario.

Index Terms—Multiple target tracking, spawning, Poisson
multi-Bernoulli mixture, sets of tree trajectories.

I. INTRODUCTION

The main goal of multiple target tracking (MTT) is to
estimate the trajectories of an unknown number of targets that
may appear, move and disappear using noisy and clutter mea-
surements [1]. Applications can be found in sensor networks
[2], autonomous vehicles [3], and cell biology [4], [5].

In Bayesian MTT, the standard multi-target dynamic model
considers probabilistic models for new born targets, single
target dynamics and death events [6], [7]. In this setting, all
information about the target trajectories is encapsulated in
the density of the set of trajectories given past and current
measurements, which is referred to as the posterior density
[8], [9]. For the standard measurement model, if the birth
process is a Poisson point process (PPP), the posterior density
on the set of trajectories, and also on the current set of
targets, is a Poisson multi-Bernoulli mixture (PMBM) [10]–
[12]. The PMBM density models information on undetected
targets/trajectories with a PPP, and information on detected
targets/trajectories with a multi-Bernoulli mixture (MBM).
The PMBM posterior becomes an MBM if the birth process
is multi-Bernoulli [13].

In some applications, there may be targets that are spawned
from other targets [14], for instance, a cell may undergo
mitosis (cell division) [15], a skydiver may jump from an
airplane, or a spacecraft may break up [16]. This possibility
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Figure 1: Diagram of the proposed PMBM recursion for sets of tree
trajectories with multi-Bernoulli branches in each Bernoulli tree trajec-
tory. After the prediction step, we perform a KLD minimisation on each
Bernoulli tree trajectory density to obtain multi-Bernoulli branches.

can be included in the dynamic model by adding a spawning
model [6], [17]. Several filters have been developed to estimate
the current set of targets with spawning, for example, the prob-
ability hypothesis density (PHD) filter [6], [18], the cardinality
PHD (CPHD) filter [19], [20], the PMBM filter [21] and the
generalised labelled multi-Bernoulli (GLMB) filter [22]–[24],
which provides genealogy information on the targets.

In this work, we show how to compute and approximate
a posterior distribution that contains full trajectory and ge-
nealogy information for all targets, which none of the above
methods provide. We consider a PPP birth model and a multi-
Bernoulli spawning model, in which each alive target can
spawn a finite number of targets. We first define the space
of tree trajectories, which enables us to represent all the
information related to a target trajectory and its different
branches arising from spawning. Trees have been used to
model the genealogy of branching processes [25], [26]. Here,
we define a tree trajectory by a start time and a set of branches,
each with its genealogy and sequence of states (trajectory).
A set of tree trajectories can therefore represent all target
trajectories and their genealogies.

In this paper, we show that the posterior density on the set
of tree trajectories is a PMBM, making use of the PMBM
update for generalised measurements [27]. The resulting filter
is referred to as the tree PMBM (TrPMBM) filter, and the
tree MBM (TrMBM) filter for multi-Bernoulli birth. In this
setting, each Bernoulli density in the TrPMBM has infor-
mation on a potential tree trajectory. We also provide an
efficient implementation of the TrPMBM filter by making a
multi-Bernoulli branch approximation in each Bernoulli tree
trajectory, and redefining the global hypothesis at a branch
level, instead of at a tree level. The multi-Bernoulli branch
approximation is obtained by minimising the Kullback-Leibler
divergence (KLD) after each prediction step, see Figure 1
for a diagram. Finally, we propose an implementation of the
TrPMBM filter for linear/Gaussian models and evaluate the
results via numerical simulations.

The rest of the paper is organised as follows. The problem
formulation is presented in Section II. The dynamic and mea-



Table I: Notation

• xk: set of targets at time step k, x ∈ xk is a target state.
• Xk: set of all tree trajectories up to time step k.
• X = (t,B) ∈ Xk: a tree trajectory with start time t and set B of

branches.
• B =

(
ω, x1:ℓ(ω)

)
: a branch with genealogy variable ω, length ℓ (ω)

and states x1:ℓ(ω).
• ω =

(
ω1, ..., ων

)
: genealogy variable of a branch in a tree with at

most ν generations.
• ω(ν,j,l): genealogy variable of the j-th branch in a tree with at most ν

generations, and branch length l.
• Bj : set with the j-th branch in a tree.
• pi,j,α

k|k′
(
Bj

)
: Bernoulli density of the j-th branch in tree i under global

branch hypothesis α, at time step k given measurements up to time step
k′ with

– Single branch density pi,j,α
k|k′ (B) and probability ri,j,α

k|k′ of exis-
tence.

– βi,j,α
k|k′ (κ): probability that the branch ends at time step κ.

– ωi,j
k,κ: genealogy variable with the branch ending at time step κ.

– xi,j,α
k|k′ (κ): mean given that the branch ends at time step κ.

– P i,j,α
k|k′ (κ): covariance given that the branch ends at time step κ.

• wi,j,α
k|k′ : weight of the j-th branch in the i-th tree in global branch

hypothesis α at time step k given measurements up to time step k′.
• 1ℓ: sequence of length ℓ with all ones.

surement models for tree trajectories are provided in Section
III. The TrPMBM posterior and its approximation with multi-
Bernoulli branches are explained in Section IV. The TrPMBM
filter recursion is given in Section V and its Gaussian imple-
mentation in Section VI. Simulation results and conclusions
are provided in Sections VII and VIII, respectively.

II. PROBLEM FORMULATION

We aim to obtain the posterior density of the set of all
tree trajectories. This density contains all information on
target trajectories that have ever entered the surveillance area
and their genealogies arising from spawning processes. The
dynamic and measurement models for targets is described in
Section II-A. The space of sets of tree trajectories is defined
in Section II-B. Integration for sets of tree trajectories is
explained in Section II-C. The main notation of this paper
is summarised in Table I.

A. Dynamic and measurements models for targets

We denote a target state as x ∈ Rnx and a measurement
state as z ∈ Rnz . Let xk and zk be the sets of targets and
measurements at time step k, respectively. The dynamic model
is characterised as follows. At each time step:

• Each target x ∈ xk may survive to the next time step with
survival probability pS1 (x) and transition density g1 (·|x).

• Each target x ∈ xk may spawn with ϱ − 1 independent
modes with spawning probability pSm (x) and transition
density gm (·|x) for m ∈ {2, ..., ϱ}.

• The birth model is a PPP with intensity λB (·).
The standard measurement model is:

• Each target x ∈ xk is detected with probability pD (x)
and generates a measurement with density l (·|x).

• Clutter is a PPP with intensity λC (·).
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Figure 2: Illustration of a set of tree trajectories, with three tree
trajectories, X = {X1, X2, X3}. The main branch (surviving mode) is
represented as a continuous line. The dashed lines represent descendant
branches from a main branch and the dashed dotted line a descendant
branch from a secondary branch. At the end of each branch, it is written
its genealogy variable ω up to time step 6, its ID ϖ and its length ℓ.

The measurement set zk is the union of target-generated
measurements and clutter at time step k.

It should be noted that, given a target state x, the distribution
of the set of targets that survive or spawn at the next time
step is multi-Bernoulli with existence probabilities and single
target densities

{(
pS1 (x) , g1 (·|x)

)
, ...,

(
pSϱ (x) , gϱ (·|x)

)}
. As

targets usually survive with high probability and spawn with
low probability, pS1 (x) is high and pSm (x) for m ≥ 2 is low.

B. Space of tree trajectories

With target spawning, each target born at a given time
initiates a genealogy of surviving/spawned targets at the fol-
lowing time steps. All information regarding the genealogies
and the trajectories of a target and its descendants is included
in a tree trajectory. A tree trajectory has a main branch,
corresponding to the survival of the target that originated from
the birth process. New branches appear for each spawning
from this target or one of its descendants. The information
on all targets that have been present in the surveillance area,
their trajectories and genealogies can then be represented by
a set of tree trajectories, see Figure 2 for an illustration. We
proceed to describe the spaces of single tree trajectories and
of sets of tree trajectories.

Let t denote the time step when a target is born. At each of
the following time steps t + i − 1, i > 1, this target and
its descendants may generate new targets according to the
spawning process. We refer to the time index i as the i-th
generation of the tree. The maximum number of generations
in a tree is denoted by ν. For example, if the current time step
is k, ν = k − t + 1. Each spawning process from this target
or its descendants generates a new branch.

Definition 1. Given a branch that spawned at generation i in a
tree with at most ν generations, its genealogy ω =

(
ω1, ..., ων

)
is defined as follows. Variable ωi ∈ {2, ..., ϱ} contains its



spawning mode. For subsequent generations j > i, ωj = 1 or
ωj = 0 if the branch is present or not present at generation j,
respectively. For generations previous to the branch spawning,
j < i, the branch inherits the genealogy variable ωj of the
parent branch. In particular, ω1 = 1 by convention indicating
that the main branch of a tree is created by target birth.

The space of the genealogy variables is denoted by I(ν) so
that ω ∈ I(ν).

Definition 2. A branch B =
(
ω, x1:ℓ(ω)

)
consists of the

genealogy variable ω and the sequence of states x1:ℓ(ω) =(
x1, ..., xℓ(ω)

)
, where x1 is the state at the time when the

branch is spawned or born and x2:ℓ(ω) is the sequence of states
at the following time steps. The length ℓ (ω) of the branch is
the number of time steps that the branch is present, which is
a deterministic function of ω, see Appendix A-A.

The single branch space in tree with at most ν generations
is then B(ν) = ⊎ω∈I(ν)

{ω} × Rℓ(ω)·nx , where ⊎ denotes the
union of disjoint sets [6]. That is, B(ν) contains all possible
genealogy variables ω, to which we append a sequence of
target states of suitable length.

Definition 3. A tree trajectory X is a variable formed by
the tree starting time t and its set B of branches, such that
X = (t,B) with B = {B1, ..., Bn}.

The space of single tree trajectories from time step 1 to k
is then

T(k) = ⊎k
t=1

[
{t} × F

(
B(k−t+1)

)]
(1)

where F
(
B(ν)

)
is the set of all finite subsets of B(ν). That

is, the starting time t belongs to {1, ..., k} and, for a given
t, the branches have at most ν = k − t + 1 generations.
Therefore, the set of branches belongs to F

(
B(k−t+1)

)
. In

addition, the genealogy variables of the branches in a tree
require several constraints, described in Appendix A-B, so
that an element of (1) corresponds to a tree. These constraints
are ensured by a suitable birth and dynamic model, as in
target labelling approaches, where label uniqueness is ensured
probabilistically [22].

We should note that, according to the spawning process
in Section II-A, the maximum number of branches in a tree
trajectory with at most ν generations is

nmax (ν) = ϱν−1. (2)

Definition 4. The ID ϖ of a branch in a tree X = (t,B) is
the branch genealogy variable ω up to the generation when
the branch was spawned or born.

The ID ϖ uniquely identifies each branch in a tree as
there cannot be more than one branch in a tree with the
same ϖ. Finally, a set of tree trajectories is denoted by
X ∈ F

(
T(k)

)
. We proceed to illustrate the previous concepts

via the following example.

Example 5. We consider the set X of tree trajectories in
Figure 2. The tree trajectory in the middle has start time t = 1,
ν = 6 and three branches, each with the genealogy variables,
branch ID and lengths shown in the figure. The branch with

ω = (1, 1, 2, 1, 1, 2) was spawned at ν = 6, and has length 1.
Its genealogy indicates that its parent branch spawned from
the main branch at generation 3, as there is a 2 in the third
entry in ω. The tree trajectory at the top has start time t = 2,
ν = 5 and only has the main branch. The last entry in its
genealogy is zero because it is not alive at time step 6.

C. Integration

The space of single tree trajectories is locally compact,
Hausdorff and second-countable (LCHS), see Appendix A-C.
Then, we can use finite set statistics to define probabilistic
models and integrals for sets of tree trajectories [6]. Given a
real-valued function π (·) on T(k), its single tree integral is∫

π (X) dX =

k∑
t=1

∫
B(k−t+1)

π (t,B) δB (3)

where we first sum over all possible start times, and the set
integral is on the space of the set of branches with start time t
and maximum end time k. The set integral in (3) can also
be written explicitly, see Appendix A-D. A function π (·)
represents a density of a tree trajectory if π (·) ≥ 0 and it
integrates to one. To be precise, this density should also ensure
that the genealogy variables are unique and meet the genealogy
constraints (parent/children relations), see Appendix A-B.

Given a function π (·) on F
(
T(k)

)
, its set integral is [6]∫

π (X) δX =

∞∑
n=0

1

n!

∫
π ({X1, ..., Xn}) dX1:n. (4)

A function π (·) represents a density of a set of tree trajectories
if π (·) ≥ 0, it integrates to one, and each tree meets the
genealogy constraints. It should be noted that (4) is a nested
set integral, as each single tree trajectory integral has a set
integral. Nested set integrals have previously been used for
group targets [28], [29] [6, Chap. 21].

1) Set of branches integration: The single tree trajectory
integral (3) requires the calculation of an integral over the set
of branches with ν = k− t+1 generations. In this section, we
explain a way to perform this set integral that will be useful
to derive the PMBM filter in Section IV.

The number of unique branch IDs, see Definition 4, in a set
of branches B ∈ F

(
B(ν)

)
is nmax (ν), see (2). We arrange

the branch IDs in a tree in lexicographical order (or any other
order) to refer to each branch, by an index j = 1, ..., nmax (ν).
In a tree with ν generations, the j-th branch can have lengths
from 1 to ℓmax (ν, j), which is used to denote the number
of generations since its birth/spawning to ν. Given ν and the
branch length l, we can obtain the genealogy variable of the
j-th branch, denoted by ω(ν,j,l).

We have that B(ν) = ⊎nmax(ν)
j=1 B(ν,j) where B(ν,j) is the

space of branch j in a tree with at most ν generations, which
can be written as B(ν,j) = ⊎ℓmax(ν,j)

ℓ=1

{
ω(ν,j,l)

}
×Rℓ·nx . That

is, the single branch space B(ν) is the union of the spaces for
each branch, which are disjoint sets as there cannot be two
branches in a tree with the same genealogy variable. Then,
we can decompose a given B as B1 ⊎ ... ⊎ Bnmax(ν) = B,
where Bj is the set representing the j-th branch, which meets



∣∣Bj
∣∣ ≤ 1. Due to this decomposition of the single branch

space into disjoint spaces, the set integral for a function π (·)
on F

(
B(ν)

)
can be written as [6, Sec. 3.5.3]∫

B(ν)

π (B) δB

=

∫
...

∫
π
(
B1 ⊎ ... ⊎Bnmax(ν)

)
δB1...δBnmax(ν). (5)

In addition, if π (·) is a density on a set of branches, which
implies π

(
Bj
)
= 0 for

∣∣Bj
∣∣ > 1, the set integral on Bj is∫

π
(
Bj
)
δBj

= π (∅) +
ℓmax(ν,j)∑

ℓ=1

∫
π
({(

ω(ν,j,ℓ), x
1:ℓ
)})

dx1:ℓ. (6)

That is, the set integral for the (uniquely identified) potential
j-th branch goes through the hypotheses that it does not exist
and that it exists with a length ℓ, where ℓ takes values from 1
to its maximum possible length ℓmax (ν, j). The corresponding
genealogy variable is ω(ν,j,ℓ).

III. DYNAMIC/MEASUREMENT MODELS FOR TREE
TRAJECTORIES

In this section, we write the single tree trajectory dynamic
and measurement models that arise from the single target
models in Section II-A for computing the posterior density
on the set of all tree trajectories.

A. Dynamic model for all tree trajectories

A tree trajectory up to time step k − 1 can be writ-
ten as Xk−1 = (tk−1,Bk−1), with the set of branches
Bk−1 = B1

k−1 ⊎ ... ⊎ B
nmax(k−tk−1+1)
k−1 , where Bj

k−1 is the
set representing the j-th branch, see Section II-C1. Each tree
trajectory evolves independently of the rest and the dynamic
model is characterised by the probability of survival of a tree
trajectory pS(Xk−1), single tree trajectory dynamic model
g (Xk|Xk−1) and PPP birth intensity λB

k (Xk).
We consider the dynamic model for all tree trajectories,

which implies that pS(Xk−1) = 1, as all trajectories remain
in the set of interest even if a tree trajectory is no longer
present at the current time step [10], [30]. We denote the
m-th branch spawned from Bj

k−1 by Bj,m
k , being Bj,1

k the
surviving branch. As branches spawn independently, the single
tree transition density is

g
(
tk,⊎j,mBj,m

k |tk−1,Bk−1

)
= δtk−1

[tk]

nmax(k−tk−1)∏
j=1

ϱ∏
m=1

gm

(
Bj,m

k

∣∣∣tk−1,B
j
k−1

)
(7)

where δt [·] is a Kronecker delta at t. It should be noted that,
in general, the density of a set that is the union of independent
sets contains a convolution sum [6], [12]. In (7), there is no
convolution sum as the unique identifiers in the genealogy
variables provide the right association between the branches
at time step k and their parent at time step k − 1.

If branch Bj
k−1 = ∅, we have

gm

(
Bj,m

k |tk−1, ∅
)
= δ∅

(
Bj,m

k

)
(8)

for all m, where δ∅ (·) is a multi-object Dirac delta evaluated
at ∅ [6]. That is, if branch j does not exist, its descendants do
not exist.

If branch Bj
k−1 =

{(
ω, x1:ℓ

)}
is not present at time step

k − 1 (the last element of ω is zero), then

g1

(
Bj,1

k

∣∣tk−1,
{(

ω, x1:ℓ
)})

=

{
δx1:ℓ

(
y1:ℓ
)

Bj,1
k =

{(
(ω, 0) , y1:ℓ

)}
0 otherwise

(9)

where δx (·) denotes a Dirac delta at x and

gm

(
Bj,m

k

∣∣∣tk−1,B
j
k−1

)
= δ∅

(
Bj,m

k

)
(10)

for m > 1. That is, we append a zero entry to ω and keep the
past trajectories information in the main branch, and there are
no spawning branches.

If branch Bj
k−1 =

{(
ω, x1:ℓ

)}
is present at time step k− 1

(the last element of ω is higher than zero), then, for m = 1,

g1

(
Bj,1

k

∣∣tk−1,
{(

ω, x1:ℓ
)})

=


pS1
(
xℓ
)
g1
(
yℓ+1|xℓ

)
×δx1:ℓ

(
y1:ℓ
)

Bj,1
k =

{(
(ω, 1) , y1:ℓ+1

)}(
1− pS1

(
xℓ
))

δx1:ℓ

(
y1:ℓ
)

Bj,1
k =

{(
(ω, 0) , y1:ℓ

)}
0 otherwise

(11)

and, for m > 1,

gm

(
Bj,m

k

∣∣tk−1,
{(

ω, x1:ℓ
)})

=


pSm
(
xℓ
)
gm
(
y|xℓ

)
Bj,m

k = {((ω,m) , y)}
1− pSm

(
xℓ
)

Bj,m
k = ∅

0 otherwise.

(12)

The main branch can either die (we append 0 to ω) or survive
(we append 1 to ω and the new state yℓ+1 to previous branch
state). Potential spawning branches may spawn or not. If they
spawn they have a single state and we append its spawning
mode m to ω.

Finally, the birth model for tree trajectories at time step k
is a PPP with intensity

λB
k (t,B) =

{
δk[t]λ

B (x) B = {(1, x)}
0 otherwise.

(13)

It should be noted that all new born trajectories have a single
branch with genealogy variable 1, as they only consist of the
root node of the tree.

B. Measurement model for tree trajectories

We can write the measurement model in Section II-A in
terms of tree trajectories. To this end, we only need to write
the density of the target generated measurements as a function
of tree trajectories, the clutter model remains a PPP with



intensity λC (·). Each tree trajectory X ∈ Xk generates a
multi-Bernoulli set of measurements with density

f (z|X) =
∑

z1⊎...⊎z|τk(X)|=z

|τk(X)|∏
i=1

f (zi|xi) (14)

where τk (X) =
{
x1, ..., xτk(X)

}
is the set of targets in X at

time step k, f (·|x) is the Bernoulli density of the measurement
set generated by target x,

f (z|x) =


1− pD (x) z = ∅
pD (x) l (z|x) z = {z}
0 |z| > 1.

IV. TREE POISSON MULTI-BERNOULLI MIXTURE DENSITY

In this section we explain the structure of the TrPMBM
posterior density. In Section IV-A, we explain the exact
PMBM posterior for sets of all tree trajectories, with data
associations at a tree level. In Section IV-B, we explain the
proposed PMBM posterior with multi-Bernoulli branches in
each Bernoulli tree and data associations at a branch level.
Section IV-C explains the form of the single branch densities
in the proposed PMBM filter.

A. Exact PMBM posterior for sets of tree trajectories

Tree trajectories are born independently following a PPP
(13), and each tree trajectory moves independently of the
rest following a Markovian process with single tree transition
density (7) and probability of survival pS(X) = 1. The
measurement model has a multi-Bernoulli form (14) with PPP
clutter. These models correspond to a standard multi-object
dynamic model [6] and a measurement model of the type
in [27], being the underlying single object space the tree
trajectory space.

Therefore, the posterior and predicted densities are PMBMs
and are obtained via the recursion in [27] with the single tree
trajectory space and integrals (see Section II) instead of the
single target ones. That is, the density of the set of all tree
trajectories at time step k given the sequence of measurements
up to time step k′ = {k, k − 1} is a PMBM of the form [27]

fk|k′ (Xk) =
∑

Y⊎W=Xk

fp
k|k′ (Y) fmbm

k|k′ (W) (15)

fp
k|k′ (Xk) = e−

∫
λk|k′ (X)dX

∏
X∈Xk

λk|k′ (X) (16)

where fp
k|k′ (·) is the PPP density, which has intensity λk|k′ (·)

and represents undetected tree trajectories, and fmbm
k|k′ (·) is

an MBM representing potential tree trajectories detected at
some point up to time step k′. The summation in (15) is taken
over all mutually disjoint (and possibly empty) sets Y and W
whose union is Xk. The MBM density is

fmbm
k|k′ (Xk) =

∑
a∈Ak|k′

wa
k|k′

∑
⊎

n
k|k′

i=1 Xi
k=Xk

nk|k′∏
i=1

f i,ai

k|k′

(
Xi

k

)
(17)

where nk|k′ is the number of potentially detected trees, Ak|k′

is the set of global tree hypotheses, wa
k|k′ is the weight of

global tree hypothesis a =
(
a1, ..., ank|k′

)
, which contains

indices to local tree hypotheses for each potentially detected
tree and f i,ai

k|k′ (·) is the Bernoulli density of the tree trajectory
with local tree hypothesis ai. At each time step in each local
hypothesis, we can associate more than one measurement
to each Bernoulli tree, as each of its alive branches can
generate one measurement, see (14). A global tree hypothesis
a therefore indicates the subset of measurements that are
associated to each Bernoulli tree at each time step. All details
regarding (15)-(17) can be found in [27, Sec. II.B].

B. Approximate PMBM posterior for sets of tree trajectories

A drawback of the above PMBM recursion is that it is
difficult to handle the resulting Bernoulli tree densities be-
cause of the dependencies between branches that arise in the
prediction step, and the global hypotheses defined at a tree
level, i.e., associating measurements to Bernoulli trees instead
of branches. To obtain a computationally efficient recursion (to
be explained in Section V), with global hypotheses defined at
a branch level, we introduce the following approximations:

• A1 The PPP represents alive branches without spawning.
• A2 Each Bernoulli tree trajectory has a deterministic start

time.
• A3 After each prediction step, the set of branches in each

Bernoulli tree trajectory is multi-Bernoulli.
As spawning is a low probability event, we use A1 to simplify
implementation by discarding spawning events of potential
targets we have never observed. The absence of spawning
transforms the trees into single branch trees. A single branch
tree can at most generate one measurement, and therefore,
A1 implies that each measurement generates a new Bernoulli,
similar to the PMBM recursion for point targets/trajectories
[10], [11]. A newly created Bernoulli single branch tree may
have multiple possible start times, which give rise to a mixture
in each Bernoulli single tree density [10, Eq. (28)]. After
the Bernoulli tree initialisation, all the mixture components in
each Bernoulli tree are predicted and updated with the same
equations. To simplify the filter implementation, we use A2
and take the most likely start time when a new Bernoulli is
created. Approximation A2 is also used in the trajectory filters
in [30].

Approximations A1 and A2 imply that Bernoulli tree densi-
ties have a single branch with a unique genealogy at the time
step they are created. In addition, we know the genealogies
of these potential branches for all Bernoulli trees. Approxi-
mation A3 is performed to simplify the filtering recursion by
discarding the dependencies among branches within the same
Bernoulli tree. It is performed at each prediction step using
the KLD minimisation that will be explained in Section V-B.

1) Global branch hypotheses: In (17), global hypotheses
are defined at a tree level, in which, at each step, we can
associate more than one measurement to each Bernoulli tree.
Using A1-A3, we can also define global hypotheses at a branch
level (global branch hypotheses), in which we can associate at
most one measurement to each potential branch in a Bernoulli



tree. The number of potential branches in the i-th tree is
denoted by ni

k|k′ (see (2)). Then, the total number of potential
branches is Nk|k′ =

∑nk|k′

i=1 ni
k|k′ . A local hypothesis for tree

i and branch j is denoted by an index αi,j ∈
{
1, ..., hi,j

k|k′

}
,

where hi,j
k|k′ is the number of local hypotheses.

A global branch hypothesis α is then a sequence of length
Nk|k′ containing the local hypothesis for each branch such
that α =

(
αi,j

)
with i = 1, .., nk|k′ , j = 1, .., ni

k|k′ . The
set of global branch hypotheses is denoted by Dk|k′ and is
defined as follows. We refer to measurement zjk using the pair
(k, j) and the set of all such pairs (k, j) up to (and including)
time step k is denoted by Mk. Then, the set of measurement
indices up to time step k that correspond to local hypothesis
αi,j is Mi,j,αi,j

k ⊆ Mk, with at most one measurement per
time step. The set Mi,j,αi,j

k is built recursively as will be
explained in Section V-C. In a global hypothesis α ∈ Dk|k′ ,
all measurements must be associated to a local hypothesis,
there can only be at most one measurement associated to a
local hypothesis per time step and, there cannot be more than
one local hypothesis associated with the same measurement.

2) Approximate MBM with global branch hypotheses:
Under A1-A3 and using global branch hypotheses, the MBM
density (17) can be written as

fmbm
k|k′ (Xk) =

∑
α∈Dk|k′

wα
k|k′

∑
⊎

n
k|k′

i=1 Xi
k=Xk

nk|k′∏
i=1

f i,α
k|k′

(
Xi

k

)
(18)

wα
k|k′ ∝

nk|k∏
i=1

ni
k|k′∏
j=1

wi,j,α
k|k′ (19)

where f i,α
k|k′ (·) is the Bernoulli density of the i-th tree for a

global branch hypothesis α, and wi,j,α
k|k′ is the weight of the

j-th branch in the i-th tree in global branch hypothesis α.
Due to A1-A3, f i,α

k|k′ (·) has a deterministic start time t
i and

its branches are multi-Bernoulli, which means that f i,α
k|k′ (·) is

characterised by t
i and

{(
ri,j,αk|k′ , p

i,j,α
k|k′ (·)

)}ni
k|k′

j=1
where ri,j,αk|k′

and pi,j,αk|k′ (·) are the probability of existence and single branch
density of the j-th branch of tree i under global hypothesis α,
respectively. The set of branches in a tree thus follows a multi-
Bernoulli distribution [6], in which the event with no branches
is mapped to a no tree event, as a tree with no branches does
not really exist. With this mapping, we can write f i,α

k|k′ (·) as

f i,α
k|k′ (X)

=


δti [t]

∏ni
k|k′

j=1 pi,j,αk|k′

(
Bj
)

X = {(t,B)} , |B| > 0∏ni
k|k′

j=1

(
1− ri,j,αk|k′

)
X = ∅

0 otherwise

(20)

pi,j,αk|k′

(
Bj
)
=


ri,j,αk|k′ p

i,j,α
k|k′ (B) Bj = {B}

1− ri,j,αk|k′ Bj = ∅
0 otherwise

(21)

where t
i is the deterministic start time of the tree, pi,j,αk|k′ (·) is

the Bernoulli density of the j-th branch of tree i under global
hypothesis α. Given a set of branches B, Bj is the set for the
j-th branch, which can have at most one element, see Section
II-C1, and, as it is uniquely determined, there is no sum over
the subsets of B in (20) (see the contrast w.r.t. (17), where
there is a sum over the subsets of Xk). It should be noted that
ri,j,αk|k′ , pi,j,αk|k′ (·) and wi,j,α

k|k′ only depend on element αi,j of α
but this is kept implicit for notational simplicity.

From (20), we note that the probability of existence and
single tree density of f i,α

k|k′ (·) are

ri,αk|k′ = 1−
ni
k|k′∏
j=1

(
1− ri,j,αk|k′

)
. (22)

pi,αk|k′ (t,B) =
δti [t]

∏ni
k|k′

j=1 pi,j,αk|k′

(
Bj
)

ri,αk|k′

, |B| > 0. (23)

In addition, A3 relaxes the genealogy constraints of the
branches, see Section II-C, as sampled trees from (20) do not
necessarily meet the constraints.

C. Single branch densities

In general, the single branch density pi,j,αk|k′ (·) for the i-th
Bernoulli tree, j-th branch and local hypothesis αi,j , see (21),
can be written as

pi,j,αk|k′

(
ω, x1:ℓ

)
=

k∑
κ=t

i,j

βi,j,α
k|k′ (κ) δωi,j

k,κ
[ω] δℓ(ωi,j

k,κ)
[ℓ] pi,j,αk|k′

(
x1:ℓ;κ

)
(24)

where t
i,j is the start time of the branch, ωi,j

k,κ is the genealogy

variable if the branch ends at time step κ, ℓ
(
ωi,j
k,κ

)
is the

length of the branch (see (69)), βi,j,α
k|k′ (κ) is the probability

that this branch ends at time step κ, and pi,j,αk|k′ (·;κ) is the
density of the states assuming the branch ends at time step κ.
Note that βi,j,α

k|k′ (κ) sums to one over κ.
Due to A1, the intensity of the PPP only considers a single,

alive branch in each tree. Therefore„ λk|k′ (X) is non-zero
only for trees X =

(
t,
{
ω, x1:ℓ

})
with its main branch alive

λk|k′
(
t,
{
ω, x1:ℓ

})
=

k∑
t=1

δt [t] δ1k−t+1
[ω] δk−t+1 [ℓ]λk|k′

(
x1:ℓ; t

)
(25)

where 1ℓ is a sequence of length ℓ with all ones.

V. TRPMBM FILTER RECURSION

This section explains the filtering recursion for the proposed
TrPMBM filter, whose posterior density was explained in
Section IV-B. The prediction step for the PPP is explained
in Section V-A. We derive the Bernoulli tree prediction with
independent branches via KLD minimisation in Section V-B.
The PMBM update is explained in Section V-C.



A. PPP prediction

Given λk−1|k−1 (·) of the form (25), we apply the transition
density of the surviving branch, as we use Approximation A1,
and the PMBM prediction [10]–[12] to obtain

λk|k−1

(
t,
{
ω, x1:ℓ

})
= λB

k

(
t,
{
ω, x1:ℓ

})
+

k−1∑
t=1

δt [t] δ1k−t+1
[ω] δk−t+1 [ℓ]λk|k−1

(
x1:ℓ; t

)
(26)

where λB
k (·) is given by (13) and

λk|k−1

(
x1:ℓ+1; t

)
= g1

(
xℓ+1|xℓ

)
pS1
(
xℓ
)
λk−1|k−1

(
x1:ℓ; t

)
.

B. Bernoulli tree prediction via KLD minimisation

In the prediction step, the number of Bernoulli trees does
not change nk|k−1 = nk−1|k−1 and we perform prediction
for each tree, independently of the other trees. After the
prediction, the set of branches in each tree is no longer multi-
Bernoulli due to dependencies introduced by the spawning
process. Therefore, we perform a KLD minimisation in each
Bernoulli tree to approximate the set of branches as multi-
Bernoulli, see Approximation A3.

Specifically, given f i,α
k−1|k−1 (·) of the form (20), the true

predicted Bernoulli f̃ i,α
k|k−1 (·) can be calculated with the

transition density (7) and probability of survival, pS(X) = 1,
to produce [11]

f̃ i,α
k|k−1 (X) =

{
r̃i,αk|k−1δti [t] p̃

i,α
k|k−1 (B) X = {(t,B)}

1− r̃i,αk|k−1 X = ∅
(27)

where r̃i,αk|k−1 = ri,αk−1|k−1 and

p̃i,αk|k−1 (Bk)

=

∫
g (Bk |Xk−1 ) p

i,α
k−1|k−1 (Xk−1) dXk−1 (28)

=
1

r̃i,αk|k−1

∫
|Bk−1|>0

ni
k−1|k−1∏
j=1

[
ϱ∏

m=1

gm

(
Bj,m

k

∣∣∣ti,Bj
k−1

)
×pi,j,αk−1|k−1

(
Bj

k−1

)]
δB

1:ni
k−1|k−1

k−1 (29)

where pi,αk−1|k−1 (Xk−1) is given by (23), which requires
|Bk−1| > 0. We should note that p̃i,αk|k−1 (∅) = 0, as there is
always at least one branch if the tree exists, and g (Bk |Xk−1 )
corresponds to (7) without the tree start time.

Our aim is to find an approximation to f̃ i,α
k|k−1 (·) with multi-

Bernoulli branches of the form (20). We obtain this approxima-
tion via KLD minimisation resulting in the next propositions,
which are proved in Appendix B and C, respectively.

Proposition 6. Given the posterior tree Bernoulli density
f i,α
k−1|k−1 (·) of the form (20), the predicted tree Bernoulli

density f i,α
k|k−1 (·) of the form (20) that minimises the KLD

D
(
f̃ i,α
k|k−1||f

i,α
k|k−1

)
, where f̃ i,α

k|k−1 (·) is the true predicted
density, see (27), has a Bernoulli density for the m-th branch
spawned from previous branch j given by

p
i,(j,m),α
k|k−1

(
Bj,m

k

)
=

∫
gm

(
Bj,m

k

∣∣∣ti,Bj
k−1

)
× pi,j,αk−1|k−1

(
Bj

k−1

)
δBj

k−1. (30)

Applying Proposition 6 to the single branch densities in
(24), we obtain the following prediction step.

Proposition 7. Given the Bernoulli tree density f i,α
k−1|k−1 (·)

of the form (20) with single branch density (24), the pre-
dicted Bernoulli tree density f i,α

k|k−1 (·) of the form (20)
with single branch density (24) that minimises the KLD
D
(
f̃ i,α
k|k−1||f

i,α
k|k−1

)
has ni

k|k−1 = ϱ · ni
k−1|k−1 potential

branches and the following parameters. For the surviving
branch, m = 1, the parameters are: ri,j,αk|k−1 = ri,j,αk−1|k−1 and

ωi,j
k,κ =


(
ωi,j
k−1,k−1, 1

)
κ = k(

ωi,j
k,κ, 0

)
κ ∈ {ti,j , ..., k − 1}

(31)

pi,j,αk|k−1

(
x1:ℓ;κ

)

=


pi,j,αk−1|k−1

(
x1:ℓ;κ

)
κ ∈

{
t
i,j
, ..., k − 2

}
pi,j,αk−1|k−1

(
x1:ℓ;κ

) (
1− pS1

(
xℓ
))

κ = k − 1

pi,j,αk−1|k−1

(
x1:ℓ−1; k − 1

)
×pS1

(
xℓ−1

)
g1
(
xℓ|xℓ−1

)
κ = k

(32)

βi,j,α
k|k−1(κ) =


βi,j,α
k−1|k−1(κ) κ ∈

{
t
i,j
, ..., k − 2

}
(
1− pS

)
βi,j,α
k−1|k−1(κ) κ = k − 1

pSβi,j,α
k−1|k−1(k − 1) κ = k

(33)

where

pS =

∫
pi,j,αk−1|k−1

(
xℓ; k − 1

)
pS1
(
xℓ
)
dxℓ (34)

and pi,j,αk−1|k−1

(
xℓ; k − 1

)
denotes the marginal density at the

last state of the branch.
For the m-th branch spawning from previous branch j, the

branch index is j∗ = j+(m−1)ni
k−1|k−1 and the parameters

are: hi,j∗ = hi,j , Mi,j∗,αi,j∗

k−1 = ∅, βi,j∗,α
k|k−1(κ) = δk[κ], t

i,j∗
=

k, and

ωi,j∗

k,k =
(
ωi,j
k−1,k−1,m

)
(35)

pi,j
∗,α

k|k−1 (y; k) =

∫
gm
(
y|xℓ

)
pSm
(
xℓ
)
pi,j,αk−1|k−1

(
xℓ; k − 1

)
dx〈

pSm (xℓ) , pi,j,αk−1|k−1 (x
ℓ; k − 1)

〉
(36)

ri,j
∗,α

k|k−1 = ri,j,αk−1|k−1

〈
pSm
(
xℓ
)
, pi,j,αk−1|k−1

(
xℓ; k − 1

)〉
× βi,j,α

k−1|k−1(k − 1). (37)

Due to the KLD minimisation, we propagate each branch in
each local hypothesis independently of the rest. The surviving
branch density contains information on past states of the
branch, and its predicted density is similar to the standard



trajectory case [30]. The spawned branches only have one
state, corresponding to the current time step.

Proposition 6 makes the TrPMBM filter implementation
considerably easier. If the spawning probability is zero, the
TrPMBM filter computes the posterior density. Therefore, the
posterior and the TrPMBM approximation are expected to
be similar unless there is a high probability of a spawning
event. Nevertheless, if the spawning event happens at a time
step k1, the difference between the posterior over the set
of tree trajectories in a time interval [k1 +∆k, k] and its
approximation should vanish for a sufficiently large ∆k, due
to the forgetting property of Markov systems [31].

C. Update

Given a global hypothesis, the branches in a predicted
PMBM density with MBM of the form (18), are multi-
Bernoulli. This implies that the updated density can be cal-
culated similarly to the PMBM update on point targets and
trajectories [10], [11], by performing the data associations for
the Bernoulli branches. The resulting update is given in the
following proposition.

Proposition 8. Under Approximations A1-A3, given a pre-
dicted PMBM of the form (15), (16) and (18), the updated
density with measurement set zk =

{
z1k, ..., z

mk

k

}
is a PMBM

of the same form. The PPP intensity for undetected trees is

λk|k
(
t,
{
ω, x1:ℓ

})
=
(
1− pD

(
xℓ
))

λk|k−1

(
t,
{
ω, x1:ℓ

})
(38)

where λk|k−1 (·) is given by (25).
The number of updated Bernoulli tree components is

nk|k = nk|k−1 + mk. For each previous Bernoulli branch

j ∈
{
1, ..., ni

k|k−1

}
in a previous Bernoulli tree i ∈{

1, ..., nk|k−1

}
, the update creates (mk + 1) new local hy-

potheses corresponding to a missed detection and an update
with one of the received measurements, which implies hi,j

k|k =

hi,j
k|k−1 (mk + 1). For missed detection hypotheses, αi,j ∈{
1, ..., hi,j

k|k−1

}
, the parameters are Mi,j,αi,j

k = Mi,j,αi,j

k−1

wi,j,α
k|k = wi,j,α

k|k−1

(
1− ri,j,αk|k−1β

i,j,α
k|k−1 (k) p

D,i,j,α
k

)
(39)

ri,j,αk|k =
ri,j,αk|k−1

(
1− βi,j,α

k|k−1 (k) p
D,i,j,α
k

)
1− ri,j,αk|k−1β

i,j,α
k|k−1 (k) p

D,i,j,α
k

(40)

βi,j,α
k|k (κ) ∝

βi,j,α
k|k−1 (κ) t

i,j ≤ κ < k(
1− pD,i,j,α

k

)
βi,j,α
k|k−1 (k) κ = k

(41)

pi,j,αk|k
(
x1:ℓ;κ

)
=

pi,j,αk|k−1

(
x1:ℓ;κ

)
t
i,j ≤ κ < k

pD(xℓ)pi,j,α
k|k−1(x

1:ℓ;k)
pD,i,j,α
k

κ = k
(42)

where

pD,i,j,α
k =

〈
pD, pi,j,αk|k−1 (·; k)

〉

=

∫
pD
(
xℓ
)
pi,j,αk|k−1

(
xℓ; k

)
dxℓ. (43)

For a previous Bernoulli branch j ∈
{
1, ..., ni

k|k−1

}
in

Bernoulli tree i ∈
{
1, ..., nk|k−1

}
with α̃i,j ∈

{
1, ..., hi,j

k|k−1

}
,

the new local hypothesis generated by measurement zmk has
αi,j = α̃i,j + hi,j

k|k−1m, ri,j,αk|k = 1, and

Mi,j,αi,j

k = Mi,j,α̃i,j

k−1 ∪ {(k,m)} (44)

wi,j,α
k|k = wi,j,α̃

k|k−1r
i,j,α̃
k|k−1β

i,j,α̃
k|k−1 (k) l (z

m
k ) (45)

βi,j,α
k|k (κ) =

{
0 t

i,j ≤ κ < k

1 κ = k
(46)

pi,j,αk|k
(
x1:ℓ; k

)
∝ l
(
zmk |xℓ

)
pD
(
xℓ
)
pi,j,α̃k|k−1

(
x1:ℓ; k

)
(47)

l (zmk ) =
〈
l (zmk |·) pD (·) , pi,j,αk|k−1 (·; k)

〉
. (48)

Finally, the Bernoulli tree initiated by measurement zmk , whose
index is i = nk|k−1 +m, has one branch (j = 1), hi,1

k|k = 2
local hypotheses, one with a non-existent Bernoulli

Mi,1,1
k = ∅, wi,1,1

k|k = 1, ri,1,1k|k = 0 (49)

and the other with Mi,1,2
k = {zmk }, and

wi,1,2
k|k = λC (zmk ) +

k∑
t=1

〈
l (zmk |·) pD, λk|k−1

(
·; t
)〉

(50)

ri,1,2k|k =

∑k
t=1

〈
l (zmk |·) pD, λk|k−1

(
·; t
)〉

wi,1,2
k|k

(51)

t
i
= argmax

t

〈
l (zmk |·) pD, λk|k−1

(
·; t
)〉

(52)

pi,1,2k|k
(
ω, x1:ℓ

)
∝ l
(
z|xℓ

)
pD
(
xℓ
)
λk|k−1

(
t
i
,
{
ω, x1:ℓ

})
.

(53)

As the predicted PPP is a mixture with different start times,
see (25), the newly created Bernoulli trees may have multiple
start times. Nevertheless, to have a tree with deterministic start
time and simplify filter implementation, see A2 and (23), we
take the most likely start time in (52) to obtain the single
branch density (53).

We would like to remark that, if targets are born according
to a multi-Bernoulli birth model instead of Poisson birth
model, the posterior is a multi-Bernoulli mixture (MBM),
which is a PMBM with PPP intensity set to zero. The MBM
posterior can be computed with the same prediction and update
as in the PMBM filter (with PPP intensity equal to zero) adding
the Bernoulli components of new born targets in the prediction
step [12], [13].

VI. GAUSSIAN TRPMBM FILTER RECURSION

In this section, we explain the Gaussian implementation of
the TrPMBM filter for the linear/Gaussian model:

• l (·|x) = N (·;Hx,R) and pD (x) = pD.
• gm (·|x) = N (·;Fmx+ dm, Qm) and pSm (x) = pSm for

m ∈ {1, ..., ϱ}.
• λB

k (x) =
∑nb

k
q=1 w

b,q
k N

(
x;xb,q

k , P b,q
k

)
.



If we set ϱ = 1, which implies there is no spawning, the
Gaussian TrPMBM filter implementation becomes the Gaus-
sian trajectory PMBM filter implementation for all trajectories
in [30], which also uses Approximations A1 and A2. The
single branch Gaussian densities are explained in Section IV-C.
The prediction step is explained in Sections VI-B and VI-C.
The update is addressed in Section VI-D. Practical aspects and
estimation are explained in Sections VI-E and VI-F.

A. Single branch Gaussian densities
We define a Gaussian density on a single branch space as

N
(
ω, x1:ℓ;ω, x, P

)
=

{
N
(
x1:ℓ;x, P

)
ω = ω, ℓ = ℓ (ω)

0 otherwise

(54)

where ω is the genealogy, ℓ (ω) is the length of the branch
(number of states in the branch), see (69), x is the nxℓ (ω)×1
mean vector and P the nxℓ (ω)× nxℓ (ω) covariance.

Then, the single branch density (24) on a branch B =(
ω, x1:ℓ

)
can be written as

pi,j,αk|k′ (B) =

k∑
κ=t

i,j

βi,j,α
k|k′ (κ)

×N
(
B;ωi,j

k,κ, x
i,j,α
k|k′ (κ) , P i,j,α

k|k′ (κ)
)

(55)

where ωi,j
k,κ, xi,j,α

k|k′ (κ) and P i,j,α
k|k′ (κ) are the genealogy, mean

and covariance of the j-th branch in the i-th tree, with end
time κ. The PPP intensity (25) is

λk|k′ (t, {B}) =
np

k|k′∑
q=1

wp,q
k|k′δtp,q

k|k′
[t]

×N
(
B; 1k−t

p,q

k|k′+1, x
p,q
k|k′ , P

p,q
k|k′

)
(56)

where np
k|k′ is the number of PPP terms, tp,qk|k′ , wp,q

k|k′ , x
p,q
k|k′

and P p,q
k|k′ are the start time, weight, mean and covariance of

the q-th term.
It should be noted that the single branch Gaussian (54) is

analogous to the single trajectory Gaussian for filters based
on sets of trajectories [30, Eq. (40)], with the aditional
information of the genealogy variable ω. A similar relation
holds for the single branch density (55) and PPP intensity
(56), see Eq. (64) and (43) in [30].

B. Gaussian PPP prediction
Given the birth intensity for targets, see Section VI-E, the

birth intensity for trees can be written as

λB
k (t, {B}) =

nb
k∑

q=1

wb,q
k δk[t]N

(
B; 1, xb,q

k , P b,q
k

)
where the tree start time is k and the genealogy variable for
new born branches is 1, see (13).

Let us consider the posterior PPP intensity at time step k−1
is of the form (56). The predicted PPP intensity is obtained
using (26) and the Kalman filter prediction step [32] to obtain

λk|k−1 (t, {B})

= λB
k (t, {B}) + pS1

np
k−1|k−1∑
q=1

wp,q
k−1|k−1

× δtp,q
k−1|k−1

[t]N
(
B; 1k−t

p,q
k−1|k−1

+1, x
p,q
k|k−1, P

p,q
k|k−1

)
(57)

where

xp,q
k|k−1 =

[(
xp,q
k−1|k−1

)T
,
(
F 1x

p,q
k−1|k−1 + d1

)T]T
(58)

P p,q
k|k−1 =

[
P p,q
k−1|k−1 P p,q

k−1|k−1F
T

1

F 1P
p,q
k−1|k−1 F 1P

p,q
k−1|k−1F

T

1 +Q1

]
(59)

F 1 =
[
01,k−t

p,q
k−1|k−1

−1, 1
]
⊗ F1 (60)

where 0n,m is a zero matrix of size n×m.

C. Gaussian Bernoulli tree prediction

The prediction for each Bernoulli tree is given by Proposi-
tion 7. We consider that a single branch density in the PMBM
posterior at time k−1 is of the form (55). Then, for the linear
Gaussian models, the predicted density for the main branch is

pi,j,αk|k−1 (B) =

k∑
κ=t

i,j

βi,j,α
k|k−1 (κ)

×N
(
B;ωi,j

k,κ, x
i,j,α
k|k−1 (κ) , P

i,j,α
k|k−1 (κ)

)
(61)

where ωi,j
k,κ is given by (31), xi,j,α

k|k−1 (κ) = xi,j,α
k−1|k−1 (κ)

and P i,j,α
k|k−1 (κ) = P i,j,α

k−1|k−1 (κ) for κ < k, and xi,j,α
k|k−1 (k)

and P i,j,α
k|k−1 (k) are obtained using (58) and (59) with

xi,j,α
k−1|k−1 (k − 1) and P i,j,α

k−1|k−1 (k − 1) instead of xp,q
k−1|k−1

and P p,q
k−1|k−1. We also have that

βi,j,α
k|k−1 (κ) =


βi,j,α
k−1|k−1(κ) κ ∈

{
t
i,j
, ..., k − 2

}
(
1− pS1

)
βi,j,α
k−1|k−1(κ) κ = k − 1

pS1 β
i,j,α
k−1|k−1(k − 1) κ = k.

(62)

For the m-th branch spawning from previous branch j, we
obtain t

i,j∗

k = k, βi,j∗,α
k|k−1 (k) = 1, ωi,j∗

k,κ given by (35), and

xi,j∗,α
k|k−1 (k) = Fmxi,j,α

k−1|k−1 (k − 1) + dm (63)

P i,j∗,α
k|k−1 (k) = FmP i,j,α

k−1|k−1 (k − 1)FT
m +Qm (64)

ri,j
∗,α

k|k−1 = ri,j,αk−1|k−1p
S
mβi,j,α

k−1|k−1(k − 1) (65)

where j∗ is the index of the spawning branch, Fm is obtained
analogously to (60), but using Fm and ℓ(ωi,j

k−1|k−1) instead of
F1 and k − t

p,q
k−1|k−1 + 1.

D. Gaussian implementation update

Due to the multi-Bernoulli branches in (18) and the form
of the single branch densities (55) and PPP intensity (56), the
TrPMBM update in Proposition 8 with Gaussian models is
equivalent to the Gaussian TPMBM update used in [30], so
we do not provide further details. We would like to remark
that, in the Gaussian implementation, the Bernoulli density of



a new branch, see (52) and (53), uses the tree start time, mean
and covariance of the component with highest weight. The
analogous equations for trajectories are Eq. (60)-(63) in [30].

E. Practical aspects

To deal with covariance matrices of increasingly long
branches, we use the L-scan approximation [30], [33]. This
approximation sets the covariance matrices of the PPP and
Bernoulli branches as block diagonal

Pk|k ≈ diag
(
P̃ t
k|k, P̃

t+1
k|k , ..., P̃ k−L

k|k , P̃ k−L+1:k
k|k

)
(66)

where P̃ k−L+1:k
k|k ∈ RL·nx×L·nx is the joint covariance of

the last L time steps, P̃ k
k|k ∈ Rnx×nx is the covariance of

the branch state at time step k, and t is the branch start
time. That is, branch states before the last L time steps are
approximated as independent, and are not updated with new
measurements. The rationale behind this approximation is that,
due to the Markovian nature, a current measurement does not
have much effect on past branch states sufficiently far in the
past. The window size L acts as a trade-off between accuracy
and computational complexity. The higher L becomes, the
more accurate the approximation (L = k being the exact filter),
and the higher the computational burden.

As global and local hypotheses grow unboundedly with
time, we apply PMBM pruning techniques1 [34, Sec. V.D].
In PMBM pruning, global hypothesis weights, PPP weights
and probability of existences that are sufficiently low are
set to zero, and the corresponding global hypotheses, PPP
and Bernoulli components can be removed from the poste-
rior. In the proposed Gaussian TrPMBM implementation, we
perform pruning analogously to the pruning of the PMBM
posterior on the set of all trajectories in [30, Sec. V.C]. In
particular, in the update, we use ellipsoidal gating [35] to
discard unlikely measurement to Bernoulli associations. In
addition, for each previous global hypothesis, we use Murty’s
algorithm, in combination with the Hungarian algorithm, to
choose the k =

⌈
Nh · wα

k|k−1

⌉
new global hypotheses with

highest weights [12], [36]. After the update, we discard global
hypotheses whose weight is below a threshold Γmbm and only
keep the Nh global hypotheses with highest weights. We also
eliminate Bernoulli components whose existence is below a
threshold Γb and the PPP components whose weight is below
Γp. If βi,j,α

k|k (k) < Γa, we set βi,j,α
k|k (k) = 0, which implies

that the branch is no longer updated or predicted, but it is still
a component of the posterior.

Finally, we would like to point out that the Gaussian
implementation, presented for linear/Gaussian models, can be
generalised to non-linear/non-Gaussian models. To do so, one
can approximate pD (·) and pS (·) as constants with their value
at the current state mean and use a non-linear Kalman filter
[32], [37]–[39] for the single branch prediction and update
steps, see (32), (36), (47) and (53). It is also possible to use
importance Gaussian quadrature/sigma-points [40] to improve
the normalising constant approximation in the update, see

1More information on PMBM pruning can be found in the online multi-
target tracking course at https://www.youtube.com/watch?v=Q9fHowxNtN8.

(48) and (52). More information on these approaches in the
context of multi-object filtering can be found in [41]. Another
possibility is to implement the TrPMBM recursion via particle
filtering [42].

F. Estimation

We can apply several estimators to a PMBM posterior (15)
to estimate the set X̂k of tree trajectories [12, Sec. VI]. We
adapt Estimator 1 in [12, Sec. VI] for tree trajectories. That is,
we first take the global hypothesis α∗ with highest weight, and
then, we obtain the most likely end time for the j-th branch
of the i-th tree

κi,j
∗ = argmax

κ
βi,j,α∗
k|k (κ) . (67)

The estimated set of branches for the i-th tree is B̂i
k ={(

ωi,j

k,κi,j
∗
, xi,j,α∗

k|k

(
κi,j
∗

))
: ri,j,α∗

k|k > Γd

}
, which reports the

genealogy variables and means with most likely length
of the Bernoulli branches whose existence probability is
greater than Γd. Then, the estimated set of trees is X̂k ={(

t
i
, B̂i

k

)
: B̂i

k ̸= ∅
}

, which includes the trees that have at
least one estimated branch. A pseudocode of the Gaussian
TrPMBM filter is provided in Algorithm 1.

Algorithm 1 Gaussian TrPMBM filter pseudocode

- Set λ0|0 (·) = 0, n0|0 = 0.
for k = 1 to final time step do

- Prediction:
◦ Predict the PPP, see Sec. VI-B.
◦ Predict the Bernoulli branches, see Sec. VI-C.
◦Apply L-scan to all covariance matrices, see (66).
- Update:
◦Update single branch hypotheses with ellipsoidal gating, see

Prop. 8.
◦Go through previous global hypotheses, obtaining best ranked

updated global hypotheses with Murty’s algorithm, see Sec. VI-E.
- Estimate the set of all tree trajectories, see Sec. VI-F.
- Prune PPP components, global hypotheses, and Bernoulli

branches, see Sec. VI-E.
end for

VII. SIMULATIONS

In this section, we evaluate the proposed TrPMBM and
TrMBM filters2. These filters have been implemented with the
parameters (see Section VI-E): Nh = 100, Γmbm = 10−4,
Γp = 10−4, Γb = 10−4, Γa = 10−4, gating threshold 15,
Γd = 0.4, and L ∈ {1, 5}. We have also implemented the
PMBM filter with spawning (S-PMBM) in [21], which uses
recycling [43] to add the information on spawned targets into
the PPP. In addition, we have implemented two filters that do
not take into account spawning: the PMBM [11], [12] and the
trajectory PMBM (TPMBM) filter [10], [30]. The TPMBM
provides information on the trajectory of each branch, but
not on the genealogy. The PMBM and S-PMBM filter do
not provide genealogy information either and estimate the
trajectory of each branch sequentially by linking estimates
with the same auxiliary variable [30]. All filters have been

2Matlab code available at https://github.com/Agarciafernandez/MTT.



implemented with the same parameters as the TrPMBM filter
(where applicable). We have also tested the GLMB filter with
spawning, with a maximum of 1000 global hypotheses3 [22].
All the units in this section are in the international system.

The single target state is x = [px, ṗx, py, ṗy]
T , which

contains position and velocity in a two-dimensional plane.
Targets move with pS1 = 0.99 and the nearly constant velocity
model with d1 a zero vector,

F1 = I2 ⊗
(

1 τ
0 1

)
, Q1 = qI2 ⊗

(
τ3/3 τ2/2
τ2/2 τ

)
,

where τ = 1 and q = 0.01. Targets can spawn with two
modes (ϱ = 3) perpendicular to the current target direction,
one in each direction. A unit vector perpendicular to the target
direction is u⊥ = [−ṗy, 0, ṗx, 0]

T
/
√

ṗ2x + ṗ2y . Then, d2 =

5 · u⊥, d3 = −5 · u⊥, and

F2 =


1 0 0 −τ
0 0 0 −1
0 τ 1 0
0 1 0 0

 , F3 =


1 0 0 τ
0 0 0 1
0 −τ 1 0
0 −1 0 0


also, Q1 = Q2 = Q3. The spawning probabilities of the
two modes are pS2 = pS3 = 0.01. In the prediction step,
we approximate the value of u⊥ at the predicted mean to
perform the prediction for the linear/Gaussian models, see
Section VI-E.

We measure target position with

H =

(
1 0 0 0
0 0 1 0

)
, R = σ2I2,

where σ2 = 4, and pD = 0.9. The clutter intensity is
λC (z) = λ

C
uA (z) where uA (z) is a uniform density in

A = [0, 600] × [0, 400] and λ
C

= 10. The birth intensity
is characterised by nb

k = 1, xb,1
k = [300, 3, 170, 1]

T and
P b,1
k = diag

([
1602, 1, 1002, 1

])
, and wb,1

k = 0.08. The
TrMBM and GLMB filters use a multi-Bernoulli birth model
with one Bernoulli with existence probability 0.08 and the
same mean and covariance matrix to match the PHD of the
PPP birth model [6].

The ground truth set of tree trajectories with Ns = 100 time
steps has been obtained sampling from the dynamic model
and is shown in Figure 3. We evaluate the filters via Monte
Carlo simulation with Nmc = 100 runs. To computes the
estimation error, we take the estimated set X̂k of trees and
discard tree and genealogy information to obtain an estimated
set of trajectories T̂k, where we have one trajectory per each
branch [8]. We measure the error between T̂k and the ground
truth set Tk of trajectories only considering the positional
elements. Error is computed with the linear programming
metric d (·, ·) for sets of trajectories in [44] with parameters
p = 2, c = 10 and γ = 1, see Appendix D for a review of
its main characteristics. That is, the root mean square (RMS)
error at a given time step k, normalised by k as in [30], is

d (k) =

√√√√ 1

Nmck

Nmc∑
i=1

d2
(
Tk, T̂i

k

)
, (68)

3Matlab code available at https://github.com/dsbryant/glmb-spawning.
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Figure 3: Scenario of the simulations. Each tree trajectory is shown in
blue. Target positions every 10 time steps are marked with a blue circle.
A spawning event is marked with a red square. The numbers next to
a target birth or spawning event indicate the corresponding time step.
There are 9 trees and 23 branches in total.

where T̂i
k is the estimated set of trajectories at time k in the

i-th Monte Carlo run.
We show the RMS trajectory metric error as a function

of time in Figure 4. We can see that the best performing
filter is the TrPMBM (L = 5) followed by the TrMBM
(L = 5) and the TPMBM (L = 5). This is reasonable as
the TrPMBM filter approximates the posterior density over
the set of tree trajectories, which contains full information on
the trees and, in principle, enables optimal estimation of the
sets of tree trajectories. Behind these filters, we can find these
filters implemented with L = 1, for which we expect lower
performance as they do not perform smoothing while filtering.

The filters with lowest performance are the GLMB, the
PMBM and the S-PMBM. These filters estimate trajectories by
linking target state estimates with the same label or auxiliary
variable. This approach is inherently sub-optimal as it does not
perform estimation of the trajectories directly from a posterior
density. The GLMB filter has the lowest performance as it
requires a higher number of global hypotheses than a PMBM
filter to represent the same information [12, Sec. IV] [30,
App.D]. The reason is that GLMB has global hypotheses with
deterministic target existence, while PMBM global hypotheses
have probabilistic target existence and undetected targets are
efficiently represented in the PMBM via a PPP. This results in
an exponential increase in the number of global hypotheses in
the GLMB filter compared to the PMBM filter [12, Sec. IV],
and usually implies lower performance and higher computa-
tional burden. The S-PMBM has better performance than the
PMBM filter as it accounts for target spawning.

The decomposition of the RMS trajectory metric error into
localisation, missed target, false target and track switch costs
is shown in Figure 5. The main difference between TrPMBM
and TrMBM is in the lower missed target cost of the TrPMBM.
This is a typical difference between PMBM and MBM filters
[45], due to the measurement-driven track initialisation in
PMBM filtering. Increasing L lowers the localisation error
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Figure 5: RMS trajectory metric decomposition into localisation cost,
missed target cost, false target cost and track switching cost at each time
step.

of the trajectory and tree trajectory filters. The reason is that
with a higher value of L, we can improve the estimation of
past states of each trajectory, improving localisation error. In
this setting, increasing L does not affect the rest of the costs.
TPMBM filters have quite similar performance to TrPMBM
up to time step 52, then performance worsens, mainly due to
localisation and missed target costs. This is expected as the
first target spawning is at time step 53, so trajectory and tree
trajectory filters work analogously up to this time step, and
then TrPMBM works better. GLMB, PMBM and S-PMBM
have higher costs, and the main difference in performance
w.r.t. the other filters is due to a higher number of false and
missed targets, and they also experience more track switches.
For example, these sequential track estimators may leave gaps
in the estimated trajectories, even though trajectories do have
gaps according to the dynamic model. Tree or trajectory filters
do not leave gaps in estimated trajectories, as the estimation
is performed directly from the trajectory/tree posterior.

Table II: Average computational times in seconds of the filters

L TrPMBM TrMBM TPMBM S-PMBM PMBM GLMB
1 9.8 6.0 2.6 2.5 1.5 25.9
5 10.3 6.2 2.6

The computational times of one Monte Carlo run of the
filters on an Intel core i5 laptop are provided in Table II. The
GLMB filter has the highest computational burden, due to its
higher number of global hypotheses, followed by TrPMBM
and TrMBM. The TPMBM filter is faster than TrPMBM and
TrMBM filters, as TPMBM does not take into account target
spawning or tree information. The filters with L = 1 are faster
than those with L = 5, due to the faster single branch updates.
As expected, the PMBM filter is the fastest filter, as it does
not account for spawning and only keeps information on the
current set of targets.

VIII. CONCLUSIONS

In this paper, we have shown that we can obtain all informa-
tion on the trajectories of multiple spawning targets and their
genealogies by computing the posterior density on the set of
all tree trajectories. We have also shown that this posterior
density is a PMBM, and we have proposed a computationally
efficient PMBM filter with independent branches, derived via
Kullback-Leibler divergence minimisation after the prediction.

It is possible to extend the TrPMBM recursion to extended
targets, and coexisting point and extended targets [27], [34] by
using the corresponding density for the set of measurements
generated by a single target. Further work includes the design
of other types of multi-target tracking algorithms for sets of
tree trajectories.
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Supplementary material: “Track-
ing multiple spawning targets using
Poisson multi-Bernoulli mixtures on
sets of tree trajectories”

APPENDIX A

This appendix provides more details on trees and branches.

A. Length of a branch

The mathematical formula that defines the length of a
branch with genealogy ω =

(
ω1, ..., ων

)
is

ℓ (ω) = e (ω)− i (ω) + 1 (69)

where

e (ω) =

{
ν ωi′ ̸= 0,∀i′

min
(
i′ : ωi′ = 0

)
− 1 otherwise

(70)

i (ω) =

{
1 ωi′ ≤ 1,∀i′

max
(
i′ : ωi′ > 1

)
otherwise.

(71)

We would like to remark that i (ω) is the generation when the
branch was spawned or born, and e (ω) is the last generation
when the branch is present.

B. Genealogy constraints

The genealogy variables in a tree trajectory are subject to
two constraints: uniqueness and consistent offspring. Let us
consider the tree trajectory

X =
(
t,
{(

ω1, x
1:ℓ1
1

)
, ...,

(
ωn, x

1:ℓn
n

)})
(72)

with ωi =
(
ω1
i , ..., ω

ν
i

)
. Given ωi, its unique identifier ϖi, see

Definition 4, is

ϖi =
(
ω1
i , ..., ω

i(ωi)
i

)
(73)

where i (ωi) is given by (71). Uniqueness means that there
cannot be more than one branch with a unique identifier: ∄ i, j,
i ̸= j, such that ϖi = ϖj . In addition, a tree must have a main
branch, with unique identifier 1, which also implies n > 0.

The property of consistent offspring is as follows. For each
i and k such that ωk

i > 1 (i.e., there is a spawning event in
branch i at generation k), there is a j ̸= i such that ω1:k−1

j =

ω1:k−1
i and ωk

j ∈ {0, 1}. That is, if there is branch i with
spawning at generation k, there must be a parent branch j,
which has the same genealogy up to generation k − 1, and
then either it survives (with its main mode) ωk

j = 1 or it
terminates ωk

j = 0 at generation k.

C. Tree trajectory space is LCHS

In this appendix, we explain why the space of single
tree trajectories is locally compact, Hausdorff and second-
countable (LCHS) [6], [8], [13]. The space of a branch
B(ν) = ⊎ω∈I(ν)

{ω}×Rℓ(ω)·nx is LCHS. The proof is similar
to the proof that the single trajectory space is LCHS [8,
App. A]. The space F

(
B(k−t+1)

)
is compact, Hausdorff and

second-countable, which implies that it is LCHS, see [46,
Thm. 1-2-1]. Finally, as T(k) is the disjoint union of LCHS
spaces, we can also follow [8, App. A] to show that T(k) is
LCHS.

D. Explicit single tree integral

By expanding the set integral inside the single tree integral
in (3), we can write (3) as [6]∫

π (X) dX

=

k∑
t=1

nmax(k−t+1)∑
n=0

1

n!

∑
ω1:n∈In

(k−t+1)

∫
π
(
t,
{(

ω1, x
1:ℓ1
1

)
, ...,

(
ωn, x

1:ℓn
n

)})
d
(
x1:ℓ1
1 ...x1:ℓn

n

)
(74)

where the branch length ℓi is determined by ωi, i.e., ℓi =
ℓ (ωi), see Appendix A-A, nmax (·) is given by (2), and In(ν)
denotes the n-th Cartesian power of I(ν).

APPENDIX B

In this appendix we prove Proposition 6. We use z to
denote constants whose values do not affect the minimisa-
tion. The products with indices j and m go through j ∈{
1, ..., ni

k−1|k−1

}
and m ∈ {1, ..., ϱ}. The KLD is [6]

D
(
f̃ i,α
k|k−1||f

i,α
k|k−1

)
=

∫
f̃ i,α
k|k−1 (Xk) log

f̃ i,α
k|k−1 (Xk)

f i,α
k|k−1 (Xk)

δXk

= z−
∏
j

(
1− ri,j,αk−1|k−1

)
log
∏
j,m

(
1− r

i,(j,m),α
k|k−1

)
−
∑
t

∫
f̃ i,α
k|k−1 ({(t,Bk)}) log f i,α

k|k−1 ({(t,Bk)}) δBk

= z−
∏
j

(
1− ri,j,αk−1|k−1

)
log
∏
j,m

(
1− r

i,(j,m),α
k|k−1

)
− r̃i,αk|k−1

∫
|Bk|>0

p̃i,αk|k−1 (Bk)

× log

∏
j,m

p
i,(j,m),α
k|k−1

(
Bj,m

k

) δBk

= z−
∏
j

(
1− ri,j,αk−1|k−1

)
log

∏
j,m

(
1− r

i,(j,m),α
k|k−1

)
−
∫
|Bk|>0

∫
|Bk−1|>0

∏
j,m

gm

(
Bj,m

k

∣∣∣ti,Bj
k−1

)



× pi,j,αk−1|k−1

(
Bj

k−1

)
δB

1:ni
k−1|k−1

k−1

× log

∏
j,m

p
i,(j,m),α
k|k−1

(
Bj,m

k

) δBk. (75)

According to the dynamic model and the posterior at time
k − 1, the following equalities hold

f̃ i,α
k|k−1 (∅) =

∏
j

(
1− ri,j,αk−1|k−1

)
=
∏
j,m

gm

(
∅
∣∣∣ti, ∅) pi,j,αk−1|k−1 (∅) . (76)

That is, the predicted tree is empty if there are no branches
at time step k − 1, which implies no branches at time step k.
Therefore, we can remove the domain of integration |Bk| > 0
and |Bk−1| > 0 by incorporating the previous term in (75)
into the integral to obtain

D
(
f̃ i,α
k|k−1||f

i,α
k|k−1

)
= z−

∫ ∫ ∏
j,m

gm

(
Bj,m

k

∣∣∣ti,Bj
k−1

)
pi,j,αk−1|k−1

(
Bj

k−1

)
× δB

1:ni
k−1|k−1

k−1

∑
j,m

log
[
p
i,(j,m),α
k|k−1

(
Bj,m

k

)]
δBk

= z−
∑
j,m

∫ ∫
gm

(
Bj,m

k

∣∣∣ti,Bj
k−1

)
pi,j,αk−1|k−1

(
Bj

k−1

)
× δBj

k−1 log
[
p
i,(j,m),α
k|k−1

(
B

(j,m)
k

)]
δBj,m

k .

By standard KLD minimisation we obtain (30), which proves
Proposition 6.

APPENDIX C

In this appendix we prove Proposition 7. We evaluate (30)
at Bj,m

k = {B}

p
i,(j,m),α
k|k−1 ({B}) =

∫
gm

(
{B}

∣∣∣ti, {B′}
)
pi,j,αk−1|k−1 (B

′) dB′.

(77)

We proceed to analyse the cases m = 1 and m > 1.

A. Case m = 1

The probability of existence of pi,(j,1),αk|k−1 (·) in (77) is

r
i,(j,1),α
k|k−1 =

∫
p
i,(j,1),α
k|k−1 ({B}) dB

= ri,j,αk−1|k−1 (78)

where we have used that g1 (·|·) in (11) does not change
cardinality. The predicted single branch density is

p
i,(j,1),α
k|k−1 (B) =

p
i,(j,1),α
k|k−1 ({B})

r
i,(j,1),α
k|k−1

(79)

=

∫
g1 ({B} |tk−1, {B′} ) pi,j,αk−1|k−1 (B

′) dB′.

(80)

We calculate (80) using (6), (9), (11), and (24) to obtain

p
i,(j,1),α
k|k−1 (B)

=

k−1∑
κ=t

i,j

∫
g1
(
{B}

∣∣tk−1,
{(

ω, y1:ℓ
)})

βi,j,α
k−1|k−1 (κ)

× δωi,j
k−1,κ

[ω] δℓ(ωi,j
k−1,κ)

[ℓ] pi,j,αk−1|k−1

(
y1:ℓ;κ

)
dy1:ℓ. (81)

If we evaluate (81) at B =
((

ωi,j
k−1,κ, 0

)
, x1:ℓ(ωi,j

k−1,κ)
)

with κ < k − 1, we obtain the first entries in (32) and (33).
If we evaluate (81) at B =

((
ωi,j
k−1,κ, 0

)
, x1:ℓ(ωi,j

k−1,κ)
)

with
κ = k − 1, we obtain the second entries in (32) and (33). If
we evaluate (81) at B =

((
ωi,j
k−1,κ, 1

)
, x1:ℓ(ωi,j

k−1,κ)+1
)

, we
obtain the third entries in (32) and (33). If we evaluate (81)
at any other B, the output is zero. This finishes the proof of
(32) and (33).

B. Case m > 1

The probability of existence of pi,(j,m),α
k|k−1 (·), m > 1, in (77)

is

r
i,(j,m),α
k|k−1 =

∫
p̃
i,(j,m),α
k|k−1 ({B}) dB

=

∫ ∫
gm ({B} |tk−1, {B′} )

× ri,j,αk−1|k−1p
i,j,α
k−1|k−1 (B

′) dB′dB. (82)

As gm (·|·) requires an existing branch at time step k− 1 and
only depends on the last state of the parent branch, we can
use (24) to obtain

r
i,(j,m),α
k|k−1 = ri,j,αk−1|k−1β

i,j,α
k−1|k−1 (k − 1)

×
〈
pSm
(
xℓ
)
, pi,j,αk−1|k−1

(
xℓ; k − 1

)〉
. (83)

The predicted single branch density evaluated at branch((
ωi,j
k−1,k−1,m

)
, y
)

is

p
i,(j,m),α
k|k−1

((
ωi,j
k−1,k−1,m

)
, y
)

=
p
i,(j,m),α
k|k−1

({(
ωi,j
k−1,k−1,m

)
, y
})

r
i,(j,m),α
k|k−1

(84)

=
1

r
i,(j,m),α
k|k−1

∫
gm

({(
ωi,j
k−1,k−1,m

)
, y
}
|tk−1, {B′}

)
× ri,j,αk−1|k−1p

i,j,α
k−1|k−1 (B

′) dB′

=
1〈

pSm (x) , pi,j,αk−1|k−1 (x; k − 1)
〉 ∫ pSm

(
xℓ
)

× gm
(
y|xℓ

)
pi,j,αk−1|k−1

(
xℓ; k − 1

)
dxℓ (85)

where pi,j,αk−1|k−1

(
xℓ; k − 1

)
denotes the marginal distribution

of pi,j,αk−1|k−1 (·; k − 1) at the last time step of the branch. Eq.
(85) corresponds to a density of the form (24) with one mixture
component, β

i,(j,m),1
k|k−1 (k) = 1 and p

i,(j,m),α
k|k−1 (y; k) given by

(36), completing the proof of Proposition 7.



APPENDIX D

For completeness, this appendix reviews the main aspects
of the linear programming (LP) metric for sets of trajectories.
Full details are provided in [44].

A. Preliminary concepts

We consider two sets of trajectories Tx =
{
T x
1 , ..., T

x
nx

}
and Ty =

{
T y
1 , ..., T

y
ny

}
, with trajectories up to a time step

kmax. Let xk
i and yk

j denote the sets of targets at time step k
corresponding to trajectories T x

i and T y
j . It is met that |xk

i | ≤ 1

and |yk
j | ≤ 1, i.e., a trajectory T x

i may not exist at time step
k (xk

i = ∅) or contain a single target (xk
i = {x}).

Let dG (·, ·) denote the generalised optimal subpattern as-
signment (GOSPA) metric (with its parameter α = 2) for sets
of targets [47]. For sets with at most one target, such as xk

i

and yk
j , the GOSPA metric becomes

dG
(
xk
i ,y

k
j

)
=


min (c, db (x, y)) xk

i = {x} ,yk
j = {y}

0 xk
i = yk

j = ∅
c

21/p
otherwise

(86)

where db (·, ·) is a base distance for single targets, p is a
scalar such that 1 ≤ p < ∞ and parameter c > 0 represents
the maximum localisation error to regard a target x as being
properly detected by an estimate y.

We define an (nx + 1) × (ny + 1) matrix Dk
Tx,Ty whose

(i, j) element is

Dk
Tx,Ty (i, j) = dG

(
xk
i ,y

k
j

)p
(87)

with xk
nx+1 = ∅ and yk

ny+1 = ∅. That is, Dk
Tx,Ty contains

all possible GOSPA errors (to the p-th power) between all
possible associations between xk

i and yk
j .

In the trajectory metric, at each time step, we assign
trajectories in Tx to trajectories in Ty , or leave the trajectories
unassigned. We represent these assignments using a binary
matrix W k that satisfies the following properties:

nx+1∑
i=1

W k(i, j) = 1, j = 1, . . . , ny (88)

ny+1∑
j=1

W k(i, j) = 1, i = 1, . . . , nx (89)

W k(nx + 1, ny + 1) = 0, (90)

W k(i, j) ∈ {0, 1},∀ i, j (91)

where W k(i, j) is the element in the row i and column j of
matrix W k. We have W k(i, j) = 1 if xk

i is associated to yk
j ,

W k(i, ny+1) = 1 if xk
i is unassigned, and W k(nx+1, j) = 1

if yk
j is unassigned.

B. LP trajectory metric

To enable a fast computation, in the LP trajectory metric,
we consider soft assignments between the sets of targets at
each time step. That is, we consider a matrix W k ∈ WTx,Ty

that meets (88)-(90) and W k(i, j) ∈ [0, 1].

Definition 9. For 1 ≤ p < ∞, cut-off c > 0, switching
penalty γ > 0, base metric db (·, ·), the LP metric for sets
of trajectories Tx and Ty is

d (Tx,Ty) = min
Wk∈WTx,Ty

k=1,...,kmax

(
kmax∑
k=1

tr
[(
Dk

Tx,Ty

)T
W k
]

+
γp

2

kmax−1∑
k=1

nx∑
i=1

ny∑
j=1

|W k(i, j)−W k+1(i, j)|

) 1
p

.

(92)

Namely, the LP trajectory metric uses the optimal soft-
assignment between trajectories in Tx and Ty at each time
step. The first term in (92) considers the costs for localisation
errors, missed and false targets. The second term in (92) is the
track switching cost. All details on the metric decomposition
into these costs are provided in [44, Sec. IV.C].


