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Wang-Landau simulations offer the possibility to integrate explicitly over a collective coordinate
and stochastically over the remainder of configuration space. We propose to choose the so-called
“slow mode”, which is responsible for large autocorrelation times and thus critical slowing down, for
collective integration. We study this proposal for the Ising model and the LLR method as simulation
algorithm. We firstly show that in a phase with spontaneously broken global symmetry, autocorre-
lation times grow exponentially with system size for the standard heatbath update. Identifying the
magnetisation as collective coordinate, we present evidence that critical slowing down is absent for
almost all observables.

I. INTRODUCTION

Stochastic simulations of lattice theories combined
with modern computer resources have rapidly evolved
to an exceptional theoretical framework enlightening re-
search areas such as Quantum Field Theory [1] and Sta-
tistical Physics [2]. Markov Chain Monte Carlo (MCMC)
simulations in conjunction with a local update of the de-
grees of freedom are ubiquitous in the quiver of possibil-
ities.

In MCMC simulations, a bunch of local updates - usu-
ally called MC sweep - result into a new configuration of
degrees of freedom on the lattice. The simulations gen-
erates sequentially a string of lattice configurations. Un-
der the Markov assumption, any configuration only de-
pends on its predecessor. Objects of interests are expec-
tation values. By virtue of the law of large numbers [3],
those can be estimated using the N configurations of the
Markov set:

〈A〉 ≈ 1

N

N∑
i=1

Ai .

The price to pay for a finite reach N is that the above
estimator is afflicted by a statistical error εA, which scales
like 1/

√
N under the Markov assumption.

In practical Monte-Carlo simulations, configurations
are correlated over a characteristic number of Monte-
Carlo updates t ≈ τ , which is called auto-correlation time
(we will give a proper definition below). An immediate

impact is that the statistical error now scales like
√
τ/N .

Large autocorrelations times severely limit the usefulness
of simulations at moderate computational costs, and a
good deal of algorithmic research has been devoted to
simulation methods with small auto-correlations.

The auto-correlation time depends on the simulation
algorithm, the parameters of the simulated theory and
the system size, say volume V , which could be the num-
ber of lattice sites. Of particular interest for many appli-

cations is a parameter regime that leaves the lattice de-
grees of freedom correlated over a typical spatial scale ξ
(correlation length). In Solid State Physics, ξ diverges at
a second order phase transition. In quantum physics sim-
ulations 1/ξ acts a regulator for the inherent divergencies
of the underpinning quantum field theory, and the limit
ξ → ∞ is of crucial importance to extract physics rele-
vant information from those computer simulations. For
the important class of local update algorithms , there is
a monotonically increasing function τ(ξ) which describes
the connection between correlation length ξ and the auto-
correlation time τ . On a finite lattice, say with an extent
L, spatial correlations are limited by L, leaving us with:
τ = τ(L). We will distinguish between a power-law and
an exponential relation, and refer to the later as critical
slowing down:

τ(L) ∝ Lz , τ(L) ∝ exp{mL}.

Because of the connection between autocorrelation time
τ and statistical error ε, theories in the parameter regime
afflicted by critical slowing down can only be simulated
for finite lattice sizes L, and extrapolation to large L
might or might not be possible.

Over many decades, research has been analysing the
combination of theories and algorithms studying auto-
correlations times for particular observables. For Markov
chain simulation that satisfy detailed balance, large au-
tocorrelations times are traced back to low eigenvalues of
the transition matrix [4]. The latter paper offers a de-
tailed study for lattice QCD and the important Hybrid
Monte Carlo approach [5]. In theories that admit a char-
acterisation of configurations by topology, such as QCD
and CP(N) models, critical slowing down is often related
to slowly-evolving topological modes [6, 7]. More gen-
erally, modes with slowest de-correlation typically corre-
spond to long-wavelength modes of physical fields.

To alleviate the “slow mode relaxation” issue, multi-
grid methods have been proposed already in the late
eighties [8]. So-called cluster update algorithms [9, 10]
are acclaimed as a solution to the critical slowing down
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issue. They are available only for certain models but per-
form with a small dynamical critical exponent z. Other
attempts are a based on a reformulation, and simulations
include non-local updates. An example is the so-called
worm algorithm [11]. For the CP(N-1) model, which is
plagued by the slow mode issue due to topological sectors,
a complete absence of critical slowing down was reported
in [12] for two dimensions.

Lattice theories that show spontaneous symmetry
breaking in the infinite volume limit are particularly
prone to large autocorrelation times when simulated with
local update algorithm in the broken phase. Let φx be
the fields of such a theory with partition function

Z(β) =

∫
Dφ exp{β S(φ)} ,

and M(φ) the order parameter. For any finite lattice size,
the symmetry implies that the expectation value of the
order parameter, i.e., 〈M〉 vanishes. In the broken phase,
stochastically “important” configurations cluster in do-
mains with M(φ) 6= 0, and 〈M〉 vanishes upon averaging
over these relevant domains. Local update algorithms
usually fail to induce transitions between these domains
leading to excessively large autocorrelation times.

In this paper, we propose a novel approach to over-
come the critical slowing down that is based on the LLR,
or density-of-states, approach. Rather than leaving the
essential domain average to the MCMC simulation, we
calculate the partition function by integrating explicitly
over the order parameter and stochastically over the re-
mainder of the configuration space. To this aim, we ex-
ploit the identity

Z(β) =

∫
dm ρ(m) ,

ρ(m) =

∫
Dφ δ

(
m−M(φ)

)
exp{β S(φ)} ,

where δ is the Dirac δ−function. Thereby, ρ is called the
density-of-states. Density-of-states techniques have seen
remarkable successes over the last decade ranging from
a study of the QCD phase diagram at significant baryon
chemical potentials [13], a recent study of the topological
density in pure Yang-Mills theories [14] and the first proof
of concept of solving a strong sign-problem using the Z3

theory [15].

Key to the success of the density-of-states techniques
is a robust method to estimate the density-of-states ρ
including control over its stochastic errors. In 2012, an
efficient approach was proposed to estimate the marginal
distribution ρ(m) called density-of-states [16–18]. The
so-called LLR-algorithm falls into the class of Wang-
Landau methods [19, 20]. Our proof of concept the-
ory will be the 2-dimensional Ising model. We will
demonstrate an autocorrelation time that exponentially
increases with the system size for the standard heat-bath

algorithm, and then present numerical evidence that au-
tocorrelation times for LLR algorithm only increase by a
power-law in size. We cannot offer a rigorous proof that
critical slowing down is strictly absent, but our numerical
findings suggest that the autocorrelation time is strongly
reduced for phenomenologically relevant parameters and
system sizes.

II. UNDERSTANDING CRITICAL SLOWING
DOWN

A. Accessing autocorrelations

The well-studied Ising model also serves here to il-
lustrate the breakdown of importance sampling due to
failure of ergodicity. The purpose of this section is to
quantify this breakdown for the popular Markov-Chain
Monte-Carlo (MCMC) approach. We are particularly in-
terested in the parameter dependence of failure, foremost
its dependence on the system size. All numerical illus-
trations of this section are carried out using shockingly
small lattice sizes. This illustrates the severeness of the
issue: These small sizes are mandatory because of the
rapid breakdown of ergodicity at even moderate lattice
sizes.

Protagonists are the Ising spins sx = ±1 associated
with each lattice site x of the lattice of size V = L × L.
We use periodic boundary conditions [21] throughout the
paper. Partition function Z and action S are given by

Z =
∑
{sx}

exp{βS} , S =
∑
〈xy〉

sxsy , (1)

where the sum in the action extends over all nearest
neighbours x and y. Results for autocorrelations will
depend on the algorithm. We therefore present details
of the simulation here. We are employing the standard
heatbath algorithm as benchmark:

1. Choose a site x of the lattice at random, and cal-
culate the sum over the neighbouring spins:

bx =
∑
y∈〈xy〉

sy .

2. Define

px =
1

1 + exp{−2β bx}
,

and choose sx = 1 with probability px and set sx =
−1 otherwise.

3. Repeat both steps 1-2 above V time to complete
one lattice sweep.

4. The spin configuration {sx}k after k sweeps is con-
sidered as part of a chain of configurations labeled
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FIG. 1. Auto-correlation functions for a 12× 12 Ising model
at β = 0.35 as a function of the MC time difference (right).

by the Monte-Carlo time k = 1 . . . N . Define
a sequence of random numbers for an observable
f({sx}) by

f1 → f2 → . . . fN , fi = f
(
{sx}i

)
.

5. Obtain estimators for observables by

f :=
1

N

N∑
i=1

fi .

6. Repeating steps 1-5 many times defines a random
process for f itself. We denote the corresponding
average by [f ]. Note that [f ] is hence independent
of, e.g., the random numbers used for a particular
run, but does depend on N . Approximate

〈f〉 ≈ [f ] .

A variable of particular interest is the magnetisation
per spin

〈m〉 =

〈
1

V

V∑
x

sx

〉
= 〈sx〉 ,

which does not depend on the site x due to translation
invariance. The corresponding elements of the chain of
random variables are given by

mi =
1

V

V∑
x=1

s(i)x , (2)

where s
(i)
x is the spin at site x of the configuration {sx}i.

By the law of large numbers, we find

〈m〉 = lim
N→∞

[m](N) .

Any stochastic simulation, however, resorts to a finite
length N of the chain, and the central question is to
what extent is the approximation

〈m〉 ≈ [m] (3)

valid?

To avoid a cluttering of notation, we preemptively use
a result of the next subsection. By virtue of a symmetry
argument, we have

〈sx〉 = 0 , [m](N) = 0 , ∀N .

As usual, the error for the approximation (3) is given by
the standard deviation

ε2 =
[
m2
]
− [m]2 =

[
m2
]
. (4)

We find

ε2 =

[(
N∑
i=1

N∑
k=1

mi

)]
=

1

N2

N∑
i=1

N∑
k=1

[mimk] . (5)

Apparently, the latter equation depends how the random
variable mi is correlated to the variable mk, and the av-
erage mimk is called auto-correlation. A key assumption
here is that this correlation decreases exponentially with
the distance |i− k| between the positions in the chain:

[mimk] = m2
0 exp

{
−|i− k|

τ

}
, (6)

m2
0 :=

[
m2
i

]
,

where τ is called auto-correlation time. Inserting (6)
into (5), the double sum can be performed analytically:

ε2 =
m2

0

N2

N∑
k=1

N∑
i=1

a|i−k|

=
m2

0

N

1 + a

1− a
− 2am2

0

N2(1− a)2
(
1− aN

)
, (7)

a = exp{−1/τ} . (8)

For a moderately sized autocorrelation time, we might
find us in a situation where we have 1 � τ � N . Ex-
panding (7) yields for this case:

ε2 =
2m2

0 τ

N
+ O

(
τ2

N2

)
. (9)

This the famous 1/
√
N law of MCMC simulations taking

into account an auto-correlation time τ � 1.



4

I case that the autocorrelation time is exceedingly
large, we might face the ordering 1 � N � τ . Ex-
panding (7) for this scenario yields an entirely different
picture:

ε2 = m2
0

[
1 − N

3τ
+ O

(
1

Nτ
,
N2

τ2

)]
. (10)

In this case, the error is of order one, and we cannot ex-
pect that (3) yields a meaningful approximation. Note,
however, that equation (10) still can provide information
on the (large) autocorrelation time by virtue of the cor-
rection to the leading term.

B. Symmetry breaking and ergodicity

Partition function and action are invariant under a Z2

transformation of the spins:

sx −→ (−1) sx for ∀x . (11)

This means that the configurations {sx} and {−sx} have
the same probabilistic weight implying for any finite lat-
tice size V :

〈m〉 = 〈sx〉 = −〈sx〉 = −〈m〉, ⇒ 〈m〉 = 0.

It also implies that, during the generation of the MCMC
chain, the sequence

m1 → m2 → . . .mN and −m1 → −m2 → . . .−mN

occur with equal probability , meaning the average over
chains vanishes as well, i.e.,

[m](N) = 0 .

The above symmetry enables us to cast each configu-
ration of the MCMC chain into Z2 classes. To this aim,
we define

mi = zi |mi| , zi = ±1 . (12)

Thus, the mapping

{s}i −→ zi

assigns a Z2 sector (by virtue of the value of zi) to each
configuration. The symmetry transformation (11) maps
each configuration onto a configuration with equal statis-
tical weight of the other Z2 sector.

The above conclusions are not necessarily true in the
infinite volume limit V → ∞. For infinite systems, the
Z2 symmetry can be spontaneously broken. In fact, the
Ising model is a prototype to explore this phenomenon.
For β > βc, the statistical system “freezes” in one of
the Z2 sectors with 〈m〉 6= 0. For β < βc, we still find

〈m〉 = 0 and the symmetry is realised. The critical value
βc can be calculated analytically [22], and one finds:

βc =
1

2
ln
(

1 +
√

2
)
≈ 0.440686 . . . . (13)

This phenomenon is called spontaneous symmetry break-
ing and only applies to infinite volume systems.

Why should we be concerned with this phenomenon
since we are only dealing with cases where V is finite?
The answer is that most importance sampling algorithms
(if not all) for large enough β|βx and system size L, an-
ticipate this phenomenon leading to the wrong result

[m](N < Nc) 6= 0

even at finite size V . The theorem of large numbers only
guarantees [m] = 0 for N → ∞, and on some practical
applications Nc can be unfeasibly large.

Let us study this statement in the context of an actual
numerical simulation. We generate a chain for the mag-
netisation mi and for the Z2 element zi as a function of
the Monte-Carlo time k for β = 0.35 and L = 12. We ob-
serve that system changes between Z2 sectors during the
run, which is expected since the Z2 symmetry is unbro-
ken at such small values of β. However, we realise that
regions of positive (negative) mi cluster for some time.
This indicate that we observe a significant autocorrela-
tion time τ even at this small β. In order to quantify this,
we present estimators for the auto-correlation functions
for

mk, zk and |mk| .

Note that averages for [mk] and [zk] vanish but that for
[|mk|] is non-zero due to the (semi-)positive nature of the
observable. The simulation is carried out for a 12 × 12
lattice at β = 0.35, which is well placed in the symmet-
ric phase with a moderate auto-correlation time. The
simulation starts with a random spin configuration (hot-
start) and initially discards 1000 configurations for ther-
malisation. The result for the auto-correlation functions
is shown in figure 1, right panel. Our findings suggest
that the auto-correlation functions of m and z are pro-
portional (at least for sufficiently large a MC-time differ-
ence), i.e.,

[mimk] ≈ m2
z [zizk] , (14)

where m2
z is a parameter, which can be obtained compar-

ing the fits in figure 1, right panel, and which is about
0.149. This finding signals that the autocorrelation of
the centre sector drives the overall autocorrelation of the
magnetisation.

We have systematically studied the error ε (as given by
the equation (4)) for a L = 12 lattice size and the three
β values 0.3, 0.35 and 0.44. We fitted the theoretical
expression for ε from (7) (the square root of (7) to be
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FIG. 2. Left panel Solid lines are estimates (see (17)) for the statistical error ε as a function of the length N of the MCMC
time series. Open symbols are the theoretical prediction (7).

precise) to the numerical data. This yields an estimate
for m2

0 and the desirable autocorrelation time τ . Our
findings are summarised in figure 2, left panel. For β
0.3 and 0.35 the observed autocorrelation time is small
enough so that we can observe the characteristic 1/

√
N

behaviour at large N . Note, however, that close to β ≈
βc, we observe a large autocorrelation time, which does
not allow for the characteristic falloff for the range of N
explored. Note, however, that we still can get an estimate
for τ by virtue of (7), which does not assume N � τ .

The same Figure 2, right panel, shows the autocorre-
lation time as a function of β for the three lattice size
12, 14 and 32. We observe that the autocorrelation time
increases exponentially in all cases. Note, however, that
the slope of the increase changes around β ≈ βc and is
“steeper” for the symmetry broken phase.

Equation (14) suggests that tunneling between Z2 sec-
tor is suppressed and that this suppression is at the heart
of the practical ergodicity issue. For each step in of the
MCMC chain, we can assign a probability p that the
configuration changes the Z2 sector during this step. We
then can calculate the autocorrelation [zizk] analytically.

In a time series of k + 1 samples zi, i = 1 . . . k + 1
assume that ` transitions occur at k possible locations
(links between i and i+1). The probability for this event
is given by (

k
`

)
p` (1− p)k−` .

The contribution of this event to the auto-correlation

function 〈z1zk+1〉 is (−1)`. Hence, we find

〈z1zk+1〉 =

k∑
`

(
k
`

)
p` (1− p)k−` (−1)`

= (1− 2p)k . (15)

Using the latter result in (14) and exploiting the con-
nection to the auto-correlation time in (6), we find the
connection between auto-correlation time τ and sector
tunneling probability p:

p =
1

2

(
1− e−1/τ

)
≈ 1

2τ
. (16)

The latter approximation holds for τ � 1. For the ex-
ample of the previous subsection, i.e., the heat-bath al-
gorithm, a 12× 12 lattice and β = 0.35, we found τ ≈ 28
leaving us with a tunneling probability of just p ≈ 1.8 %.

C. Computational resources and precision

The strategy of comparing the performance of two dif-
ferent algorithms is as follows: we will agree at certain
level of error ε2 and then ask the question how many
“lattice sweeps” N do we need to achieve this.

We already worked out a connection between ε2 and N
(see (7)), and it depends on only two parameters, i.e., m0

and τ . It is time to put this equation to the test. We have
generated a time series of 6, 000, 000 magnetisations mk,
which we divide into subsequences of length N . For each
subsequence, we calculate the average magnetisation

m(α) =
1

N

N∑
k=1

m
(α)
k ,
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where α numbers the subsequences from 1 to nα, which
fit into the series of 6, 000, 000 magnetisations. The error
for the magnetisation estimator (4) is then estimated by

ε2(N) ≈ 1

nα

nα∑
α=1

[
m(α)

]2
. (17)

Our numerical findings for N = 10 . . . 1500 appear in
figure 2, left panel, as solid lines. We show results for
β = 0.3, β = 0.35, β = 0.44. Each curve is fitted by
the theoretical prediction (7) with respect to only two fit
parameters: m0 and τ . The agreement is excellent.

We can now ask the question: al least how many
MCMC configurations do we need to achieve ε < 0.01.
For an answer, we use (7) with the readily obtained fit
parameter m0 and τ . The agreement between theory and
numerical data is that good that we can extrapolate to
N values bigger than 1500. We find that for our lattice
size L = 12 N has at least to be:

β = 0.30 : N = 10, 800 (18)

β = 0.35 : N = 58, 300

β = 0.44 : N = 10, 460, 000 .

Note that the above N values are vastly outside the fit-
ting range of N = 10 . . . 1500 and the application of (7)
is an extrapolation. It is therefore in order to check the
predictions (18). To this aim, we have created, for each
β, an MCMC time series of length N and have calcu-
lated the corresponding average magnetisation. We have
repeated this 10 times. Since 〈m〉 = 0, we expect these
m values to be scattered around zero with an error band
ε = 0.01 (one standard deviation). Our result is shown

in figure 3. We observed the expected behaviour even for
β = 0.44, for which N = 10, 460, 000.

It appears that fitting ε-data with (7) is an economical
way to calculate the auto-correlation time. We have done
this for a range of β values and show the result in figure 2,
right panel. We observe that the auto-correlation time τ
exponentially increases with β. In the “symmetric phase”
β � 0.44, the slope seems to be independent of the lat-
tice size L. In the “broken phase” β > 0.44, the picture
changes: the slope of the exponential increase depends on
the volume and is significantly bigger than in the sym-
metric phase. This signals a breakdown of validity of the
heat-bath simulation for reasonable sized sample sizes N .

D. Volume dependence and Critical Slowing Down

Of particular interest is to study the volume depen-
dence of the autocorrelation time at give value of β. For
subcritical values, i.e., β < βc, we expect a power-law
increase with the system size. This is simply because
of that we operate with a local update algorithm, for
which it is increasingly difficult to disorder a lattice con-
figuration with increasing size. In the broken phase, i.e.,
β > βc, the picture is entirely different: the tunneling
between centre-sectors is exponentially suppressed and a
changing a Z2 sector needs resources with exponentially
increase with volume. In this subsection, we will verify
this picture with unprecedented numerical evidence.

For extracting the autocorrelation time τ for given size
L and β, we calculate the autocorrelation function as a
function of the Monte-Carlo time t. We fit the asymptotic
tail to a the exponential form:

C(t) = [m0mt] ∝ exp{−t/τ} .

For small t, we expect power-law corrections to the above
functional form and, for large t, the signal might be
drowning in the statistical noise of the estimator. Let
E(t) be the estimated error of the function C(t) at time
t. For the parameters L, β explored in this section, we
only take data into with

t > 200, t < tmax, ,

where

tmax : largest t with: C(t) > 5E(t)

or tmax = 2000 whatever is smaller. This is necessary to
keep memory usage under control during the simulation.
One of our many results is shown in figure 4, top panel.
Parameters have been L = 16, 32 and β = 0.43. Not
all data are shown since the figure would become too
crowded. The numerical data is well fitted by exponential
form. Throughout, we monitor the χ2 of the fit. Errors
for the fit parameter and hence the autocorrelation time
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is obtained by bootstrap. For the fits shown in figure 4,
we obtained specifically

τ(L = 16) = 808.5(6) , τ(L = 32) = 1794(1) .

We have repeated this analysis for L ∈ [8, 39] and β =
0.43, 0.44, 0.45, 0.46, 0.48. The results for the autocorre-
lation time τ is shown in the same figure 4, bottom panel.
We observe that τ rapidly grows for β values instigating
spontaneous symmetry breaking. We observe that the
numerical data for τ are well fitted by the formula

τ(L) = b0 L
b1 exp{b2 L} . (19)

In the absence of the exponential (b2 = 0), the formula
describes a power-law growth of τ with size L while, for

b2 > 0, the formula suggests an dominating exponential
growth. The fits are also shown in the bottom panel of
figure 4. They well describe the data. In particular, we
find:

ln(b0) b1 b2
β = 0.43 1.727(8) 1.991(4) −0.0035(2)
β = 0.44 1.213(7) 2.303(3) −0.0087(1)
β = 0.45 1.26(3) 2.26(2) 0.047(1)
β = 0.46 1.5(1) 2.00(7) 0.130(4)
β = 0.48 1.5(10) 1.8(7) 0.28(6)

TABLE I. Results of the fitting of the lattice size dependence
of the autocorrelation time in Monte-Carlo simulations with
heatbath updates with a product of power law and exponen-
tial functions (19).

We thus find evidence that b2 starts growing to non-
zero values around the critical values β ≈ βc for the phase
transition. In the symmetric phase at β = 0.43, we find
that the autocorrelation time τ approximately grows with
the volume L2.

III. REDUCED CRITICAL SLOWING DOWN
WITH THE LLR METHOD

A. Brief introduction to the LLR approach

We are aiming to estimate the magnetisation M with
reliable errors over a wide spectrum of β-values stretching
from the symmetric phase deep into the symmetry broken
phase for β � 0.44. We start by defining the density-of-
states ρ(M) for the magnetisation:

ρ(M) =
1

Z

∑
{sx}

δ
(
M,
∑
x

sx

)
exp{βS} (20)

with the action S in (1). The Kronecker delta is defined
in the usual way:

δ(i, k) = 1 for i = k , 0 else.

The magnetisation is then given by

〈m〉 =

∑
M M ρ(M)∑
M ρ(M)

,

M = −V,−V + 2, . . . , V − 2, V. (21)

With the normalisation∑
M

ρ(M) = 1 (22)

because of the definition (14) and that of the partition
function Z in (1), ρ(M) can be interpreted as the proba-
bility with which magnetisations M contribute to expec-
tation values such as the one in (21). By virtue of the Z2
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FIG. 5. Left: The error in the LLR coefficient a as a function of the number of Robbins-Monroe iterations n (29). The
fits correspond to a 1/

√
n power law. Right: Dependence of the LLR coefficient a on δ for a 64 × 64 lattice near criticality

(β = 0.44).

symmetry transformation (11), the density is symmetric,
i.e.,

ρ(−M) = ρ(M) ,

leading to 〈m〉 = 0 as expected. In our numerical study
we will not exploit the above symmetry relation but
rather will study the stochastic errors for our estimate
for 〈m〉.

At the heart of the LLR approach is the expectation
value

〈〈f〉〉(a) =
1

N
∑
{s}

f(s) eβS+ am(s) Wδ

(
m0,m(s)

)
,(23)

m(s) =
∑
x

sx ,

where we here use a Heaviside function for the window
function:

Wδ

(
m0,m(s)

)
=

{
1 for m0 − δ ≤ m(s) ≤ m0 + δ .
0 else.

(24)
Note that 〈〈f〉〉(a) depends also on the parameters δ and
m0, and a is also called the LLR coefficient. You can
obtain the density-of-states ρ(m0) by carrying out the
following steps:

1. For a given δ and m0, solve the stochastic equation

〈〈m(s)−m0〉〉(a∗) = 0 (25)

for a (solution a∗), which depends smoothly on m0

and δ for m0 ∈ [−V, V ].

2. Use

d

dm0
ln ρ(m0) = lim

δ→0
a(δ,m0) (26)

and evaluate (or estimate) ρ(m0) up to a multi-
plicative factor by integrating the above equation.

3. Determine the multiplicative factor by normalising
ρ (see (22)).

The last step might be optional since a normalisation
constant drop out of expectation values such as the one
in (20).

As for the heat-bath MCMC approach, we are inter-
ested in the question: what type of precision can we
achieve as a function of the invested computational re-
sources. We therefore will critically investigate the pa-
rameter dependence of the numerical error.

Let us first comment on solving the stochastic equation
of the type (25). This task has been extensively studied
firstly by Robbins and Monroe [23] and then taken up by
number of authors (see [24] for a review). If F (a) is a
noisy estimator for

f(a) := 〈〈m(s)−m0〉〉(a) (27)

Robbins and Monroe propose an under-relaxed iterative
approach. Starting with some a1, consider the recursion

an+1 = an − αn F (an) (28)

with a sequence of positive weights αn, n = 1, 2, 3 . . .
satisfying

∞∑
n=1

αn →∞ ,

∞∑
n=1

α2
n → finite .



9

The sequence converges with probability one to the solu-
tion a∗ := a∞ [25]. A particular sequence was suggested
by Robbins and Monro:

αn =
κ

n
.

The algorithm reaches asymptotically the optimal con-
vergence rate of 1/

√
n, but the initial (low n) perfor-

mance crucially depends on the sequence. Chung [26] and
Fabian [27] showed that optimal convergence is reached
with the choice:

αn =
1

f ′(a∗) n
.

This choice, however, hinges on the solution a∗. For the
specific problem at hand, i.e., (25), we can, however, find
a good value κ. For small enough δ, the marginal for the
magnetisation m in the window [m0−δ,m0+δ] is Poisson
distributed, i.e., ∝ exp{−a∗m}. Together with the ’re-
weighting’ factor exp{am} in (23), the m distribution
becomes flat for values m inside the window. We then
find with (27), the definition (23) and the solution (25):

f ′(a∗) = 〈〈(m(s)−m0)m(s)〉〉(a∗)

= 〈〈(m(s)−m0)2〉〉(a∗) =
1

2δ + 1

δ∑
m=−δ

m2

=
δ (δ + 1)

3
≈ δ2

3
.

The latter hold for δ � 1, which would also be the result
if the degrees of freedoms have a continuous domain of
support. Note that by the nature of the task at hand
(25,23), f ′(a∗) does not depend on the solution a∗. We
arrive at the iteration that we will study in the remainder
of the paper:

an+1 = an −
3

δ2 n
F (an) . (29)

We put the above iteration to the test for a V = 12× 12
lattice, β = 0.3, m0 = INT (0.8V ) and several δ values.
The estimator F (a) is obtained by 20 successive lattice
sweeps. Our findings for the error εa in the LLR coeffi-
cient a as a function of the Robbins Monro iteration time
n is shown in figure 5. We performed 1, 000 independent
Robbins Monro runs to estimate the error for εa. We
find optimal convergence behaviour already for n > 200.
The error for small δ are smaller than those for large δ.
This is expected since for larger δ the window function
is wider and hence includes more spin in the averaging.

B. Precision versus resource

The following study is done for the 2D Ising model on a
32×32 lattice. The objective is to find the amount of ‘lat-
tice sweeps’ is needed to calculate the magnetisation 〈m〉
to a given accuracy. In the last section, we saw that the

heat bath algorithm needs a rapidly increasing amount
of resource if β approaches the regime of a spontaneously
broken symmetry.

Our simulations parameters are “ball park” figures and
are not fine tuned.

1. We use a step function as window function m ∈
[m0 − δ,m0 + δ] with δ = 8, 16, 24, 32.

2. We perform 10, 000 Robbins Monro iterations for
each m0 and for each δ leaving us with an esti-
mate for the LLR parameter a(δ). We perform a
quadratic fit for extrapolating to δ → 0 and set:
a = a(0).

3. Each double expectation value is estimated with 20
lattice sweeps.

4. We generate LLR parameters a for 63 values of m0,
i.e., (m0)k = −322 + k × 32, k = 1 . . . 63.

5. For each m0, we generate 80 potential LLR param-
eters ai for the subsequent statistical analysis.

We will measure resource in units of ’lattice sweeps’ (ls),
i.e., one resource unit corresponds to V spin updates.
This choice allows to measure resource independent of
hardware employed for the calculations. All algorithms
studied here - heat bath update, cluster algorithms, LLR
method - uses ’lattice sweeps’ at low level of the calcula-
tion. Although Ising spin updates are low cost, the ’lat-
tice sweep’ might be the most expensive computational
element for other systems such as gauge theories with
fermions (QCD) where a lattice sweep could be defined
by a Hybrid Monte-Carlo trajectory.

To generate the above data set for the LLR coefficients
(steps 1-4), the resources needed are

4 × 20 × 10, 000× 63 ls = 5.04 · 107 ls . (30)

From this data set, we can already estimate expectations
values of functions of the magnetisation, and the objec-
tive here is to estimate the precision with which we can
calculate 〈m〉 (which equals zero for a simulation with
infinite resources). To this aim, we will repeat the calcu-
lation 80 times. This, the analysis uses the resources of
5.04 · 107 × 80 ls = 4.032 · 109 ls, which must not be con-
fused with resource (30) needed to produce one sample
result.

The density of states ρ for the magnetisation m is ob-
tained by integration of the LLR- coefficient:

ρ(m) = exp

{∫ m

0

a(m′) dm′
}
. (31)

The normalisation is arbitrarily chosen to be ρ(0) = 1.
Expectations values are then obtained by a second inte-
gration, e.g.,

〈m〉 =

∫
m ρ(m) dm /

∫
ρ(m) dm . (32)
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FIG. 6. Left: Log of the density of states ρ(m) as a function of the (intensive) magnetisation m for four β values. Right:
Error of the magnetisation (32) as a function of β.

Early studies [15–17] used a trapezium rule and summa-
tion, which leads to an accumulation of error for increas-
ing m. Representing the function a(m) by high degree
polynomial and performing the integrations (semi-) an-
alytically has proven very successful [18, 28–30]. One
can prove that the density of states for Ising model is an
even function in m by virtue of its Z2 symmetry. Corre-
spondingly, the LLR coefficient a(m) is an odd function.
A numerical approach exploiting this observation would
approximate a(m ≥ 0) by polynomial of odd powers of
m. This would lead to the exact result 〈m〉 = 0.

The prime objectives here is to avoid any assumptions
on symmetry and to observe to what extent the exact
result 〈m〉 = 0 is obtained. For this purpose, we approxi-
mate a(m) over the full domain by polynomial containing
even and odd powers of m. We find that a polynomial of
degree 16 represents the numerical data for a very well.

The result for ρ(m) (on a logarithmic scale) is shown
in figure 6. Error bars are obtained by the bootstrap
method:

1. For each m0, calculate a set of nB LLR coefficients
from independent runs. We have chosen here nB =
60.

2. For each of the (discrete) m0 choose an LLR coef-
ficient out of the nB possibilities.

3. Fit a polynomial of degree 16 to the data.

4. Perform the integration (31) analytically and ob-
tain one sample for ρ(m).

5a. Repeat this procedure many times and calculate
the average for ρ(m) and the standard deviation
(error bar).

Step 5a gives rise to the graphs in figure 6, left panel. We
find that for β = 0.25, 0.30, 0.40 the density-of states is
maximal at m = 0 making m = 0 the most likely mag-
netisation. We also observe that, for a finite L = 32 lat-
tice, the curve for β = 0.44 develops a double peak struc-
ture, which is characteristic for the spontaneous break-
down of symmetry. We expect that for increasing lattice
size, the β for which the double peak structure occurs
will approach βc in (13).

We are here not primarily interested in the density of
states ρ but the expectation value of the magnetisation

m = M/V =
1

V

∑
x

zx .

In this case, we replace step 5a by:

5b. For the sample ρ(m), calculate the two integrals in
(31) analytical and, thus, obtain a sample value for
〈m〉. Repeat this procedure many times and calcu-
late the average for 〈m〉 and the standard deviation
(error bar).

Figure 6, left panel, shows the (log of the) density of
states as a function of the intrinsic magnetisation m =
M/L2. For the finite volume L = 32, we see that the
most likely magnetisations m are at m 6= 0 for β = 0.44.
This is a precursor of spontaneous symmetry breaking.
Increasing the volume, it is expected that this bifurcation
moves up in β to approach βc (13) in the infinite volume
limit.
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FIG. 7. Autocorrelation time for the LLR double expectation
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of m0.

Having calculated the density of states, we estimated
the magnetisation m using (32). The precision with
which the exact result 〈m〉 = 0 is recovered depends on
the quality of the symmetry ρ(m) = ρ(−m). Our result
for the error of m is shown in figure 6, right panel, as
a function of β, where we have kept fixed the number
of Robbins Monro iterations and the bootstrap copies.
We find a moderate increase with increasing β, which
can be explained by the larger variation of ρ(m) with m
due its peak structure, which makes it harder to control
the numerical precision of the integration over m in the
integrals of (23).

C. Autocorrelations and density-of-states

The so-called double expectation values such as in
(17) are at the heart of the LLR approach since they
ultimately give rise to a and hence the density of states
(see (25). These expectation values can be viewed as
ordinary Monte-Carlo expectation values, and, as such,
they are susceptible to autocorrelations of the Markov
chain.

We already established that there is a close link be-
tween spontaneous symmetry breaking and the explod-
ing autocorrelation time for local update algorithms op-
erating close to criticality. We expect that the double
expectation values are much less affected by this phe-
nomenon simply because they are not operating a close
to criticality “most of the time”.

We first note that the double expectation values de-
pend on a number of parameters, which are not present
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FIG. 8. Autocorrelation function for the observable M1 (34)
as a function of the autocorrelation time for four values of β.

in a standard heat bath simulation. There is the LLR pa-
rameter a which adds a term a

∑
x sx to the action. For

a 6= 0 this parameter acts like a magnetic field, which
breaks the Z2 symmetry sx → −sx. Secondly, the win-
dow function W (m0,m(s) (18) is part of the probabilistic
measure. It restricts spin configurations to values of the
magnetisationm(s) closem0. This means that this factor
also breaks the Z2 symmetry as long as m0 6= 0. Note,
however, that for m0 = 0, the solution of the stochastic
equation is a = 0 precisely because of the Z2 symmetry.
We thus expect that the calculation of ρ(m ≈ 0) might
be affected by long autocorrelations.

Note that for most of the observables in the broken
phase, ρ(m ≈ 0) might be an entirely suppressed domain
of integration for the integrals in e.g. (32). In this case,
these autocorrelations have little impact on the precision
of the calculation.

In a first step, we studied the autocorrelation time for
the action and the spin-spin correlation function for dif-
ferent values of m0, the centre of the window function:

action:
∑
〈xy〉

sxsy , spin-spin: sx sx+L/2 .

Our findings are summarised in figure 7, left panel. In-
deed, we observe that those auto-correlations are highest
close to m0 = 0 where the system can have critical be-
haviour.

Since the magnetisation is constrained to a region
around m0 in the LLR simulation, autocorrelations of
the magnetisation are indeed very small. In search of
an observable susceptible to longest autocorrelations, we
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introduce the Fourier transform of the magnetisation:

M̄(px, py) =
∑
x

sx,y cos

(
2π

L
(x px + y py)

)
, (33)

For px = 0, py = 0, this quantity becomes the magneti-
sation, i.e., M = M̄(0). Another “infrared” observable,
similarly prone to autocorrelations but unconstrained by
the LLR approach, is M̄ for the lowest momenta with
either px = 1, py = 0 or px = 0, py = 1. The choice of
these observables is motivated by the common observa-
tion that low-momentum modes typically have the slow-
est relaxation/decorrelation rate in local, translationally
invariant quantum field theories. We thus study the au-
tocorrelation time for the observable

M1 ≡ M̄(1, 0) =
∑
x,y

sx,y cos

(
2π

L
x

)
(34)

and the analogous quantities with the sin function, and
with y as the Fourier variable. To this end, we firstly esti-
mate the autocorrelation function C(t) of M1 and extract
the autocorrelation time by analysing the exponential de-
crease at large values of t. If t is too large, statistical noise
drowns the signal. If σ(t) is the standard deviation of the
estimator for C(t), we only use data with

C(t) > 5σ(t) .

At small values of t, C(t) is not well represented by an ex-
ponential function, which only hold asymptotically. We
proceed as follows: starting at t = t0 = 0, we fit an expo-
nential function to the data and obtain the χ2/dof. We
then systematically increase t0 until χ2/dof falls below
0.8 for the first time. We thus extract the autocorrela-
tion time τ from the fit:

a0 exp{−t/τ} .

Figure 8 shows the correlations function C(t) for a 322

lattice and for four values of β within the dynamically
generated domain of support. Repeating this procedure
for lattice sizes between L = 8 and 48, we find the result
shown in figure 9. We indeed observe that the autocor-
relation times for M1 increase with increasing lattice size
L, but not nearly to the extent as we have seen those for
the heatbath simulation and the magnetisation M .

The central question is whether or not these autocor-
relations times increase exponentially with L. In search
of an answer, we have employed the same fit (19) of the
data as in the case of the heatbath result. Of particular
interest is the coefficient b2, which indicates critical slow-
ing down for b2 > 0. our findings are summarised in the
table below:

We observe a very small coefficient b2 when com-
pared to the heatbath simulation where b2 ≈ 0.28 at
β = 0.48. The quality are less convincing especially for
β = 0.5. Here, figure 9 shows two fits: the exp-powerlaw

0 10 20 30 40 50
size L

0

1000

2000

3000

4000

5000

6000

7000

au
to

co
rr

el
at

io
n
 t

im
e:

 z
 c

o
s(

)

beta=0.44
beta=0.46
beta=0.48
beta=0.5
exp+powerlaw  fit

powerlaw

FIG. 9. Autocorrelation time for the observable M1 (34) as
a function of the system size L for four values of β and for
the worst case scenario m0 = 0.

ln(b0) b1 b2
β = 0.44 −1.28(1) 1.965(4) 0.0038(2)
β = 0.46 −1.26(3) 1.942(3) 0.025(1)
β = 0.48 −1.495(6) 2.080(3) 0.036(1)
β = 0.50 −2.194(7) 2.484(4) 0.029(2)

TABLE II. Results of the fitting of the lattice size dependence
of the autocorrelation time in LLR simulations with a product
of power law and exponential functions (19).
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FIG. 10. A comparison of the dependence of autocorrela-
tion time for the observable M1 on lattice size L for the LLR
approach for m0 = 0.8 for several values of β.
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fit (19)and a power-law fit b2 = 0. Both fits reasonable
well present the data. We are carefully optimistic that
any exponential growth is a quite small rate implying
that auto-correlation times are manageable for realistic
lattice sizes. Higher precision data and perhaps larger
lattice sizes are needed to evidence this at a quantitative
level.

As detailed above, only the double-expectation values
for m0 = 0 are afflicted by criticality since, for m0 6= 0,
the Z2 symmetry is explicitly broken by the window func-
tion and an LLR-coefficient a 6= 0. Nevertheless, it is
important how the autocorrelation times scale with the
lattice size L. In the broken phase, say for β > 0.45,
the marginal distribution for the magnetisations peak at
rather large values M/V ≈ ±0.9. For generic observables
with a broad domain of support from large portions of
the domain of magnetisation, the dominant contributions
from the LLR integration over the magnetisation raises
from the region around M/V ≈ ±0.9. Hence, we stud-
ied the volume dependence of the observable (34) as a
function of the lattice size L at m0 6= 0. The results for
m0 = 0.9 are shown in figure 10 in the double-log scale in
comparison with the m0 = 0 data. We observe that auto
correlation times are orders of magnitudes smaller than
in the m0 = 0 case. Most importantly however, we find
that the increase of the autocorrelation time with size
is at most polynomial in L and for β values away from
its critical value even sub-polynomial. Log-log scale plot
illustrates this in a particularly clear way, mapping any
power-law dependence to a straight line. Therefore plots
of functions that grow faster than a power of L appear
as bending upwards from a straight line, whereas plots of
functions with sub-polynomial growth are bending down
from a straight line.

This is an important finding since observables that re-
ceive their dominant contribution from the regions of
large magnetisation are not affected by critical slowing
down.

IV. DISCUSSION AND CONCLUSIONS

In this work we used a simple two-dimensional Ising
model to demonstrate the potential of LLR algorithm
to reduce critical slowing down of Monte-Carlo simula-
tions in a common situation when high potential barriers
between different parts of the configuration space make
Monte-Carlo updates non-ergodic. While for the Ising
model there are efficient model-specific cluster algorithms
that eliminate this problem, the advantage of the LLR
method is that it is applicable to any lattice field the-
ory. Correspondingly, our analysis is performed without
making any explicit assumptions on the symmetry of the
model.

Our basic idea is to identify the long-wavelength mode
or observable that exhibits the largest autocorrelation
time in a Monte-Carlo process. We then decompose the

configurations space into the mode and the hyperspace
orthogonal to this mode. The LLR methodology allows
to integrate the slow mode explicitly while the integration
over the hyperspace is done stochastically using MCMC
techniques.

For the Ising model, the mode that exhibits the longest
autocorrelation time is the global magnetisation, that is,
the sum of all spins. We expect that for all models that
are well described by the Landau theory of phase tran-
sitions the global order parameter will always have the
longest autocorrelation time. Our approach also resem-
bles, to some extent, lattice QCD simulations in fixed
topological sectors [7]. Indeed, global topological charge
is known to be the observable with longest autocorrela-
tion time in lattice QCD.

We also found that once we separate out the order
parameter and keep it within an interval of finite width
during Monte-Carlo updates, the autocorrelation time for
other modes with lowest nonzero momentum p = 2π

L ,
where L is the linear system size, becomes somewhat
larger. In unrestricted Monte-Carlo simulations the au-
tocorrelation time of these modes grows not faster than
a polynomial, and only the zero-momentum mode that
corresponds to the order parameter exhibits exponential
growth of autocorrelation time. In simulations with re-
stricted order parameter, however, the autocorrelation
time of these observables can still grow faster than poly-
nomially, as one can see from Fig. 11. The maximal
faster-than-polynomial growth is observed for magneti-
zation m ≈, whereas in the region of most probable m
values the growth is clearly sub-polynomial. Even for
simulations with m ≈ 0, the results of mixed power law
times exponential fits in Tables II and I suggest that the
coefficient b2 in front of the lattice size in the exponen-
tial factor exp (b2 L) is considerably smaller than for the
conventional Monte-Carlo simulations. We should stress
that the LLR algorithm essentially uses the same heat-
bath updates as the conventional Monte-Carlo simula-
tions. The only difference is the presence of the so-called
window function and the LLR-parameter a, which cou-
ples to the order parameter. Except for the case where
the window function restricts configuration to a narrow
window around M0 = 0, the window function and a 6= 0
implies that the Z2 symmetry is explicitly broken and
the criticality is absent. Indeed, we observe that critical
slowing down is absent for magnetisation M0 6= 0.

We conclude that the LLR algorithm has a potential
for solving the issue of critical slowing down for most
observables. Only observables that are sensitive to the
marginal distribution around M ≈ 0, no matter how
small it is, might be affected by critical slowing down.
We only know one such observable: the order-disorder
interface tension.

As a next step, it would be interesting to check whether
explicit integration over more than one observable using
higher-dimensional generalisation of the LLR algorithm
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FIG. 11. A comparison of the dependence of autocorrelation time on lattice size L for the conventional heatbath algorithm,
where total magnetisation has the longest autocorrelation time, and for the LLR algorithm with magnetisation in the vicinity
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could result in further reduction of computational time.
It is also worth exploring whether the application of LLR
method to fermionic systems could reduce ergodicity is-
sues related to zeroes of fermionic determinant. Finally,
in a recent paper [31] it was suggested that normalis-
ing flows can eliminate the need to integrate the density
of states over m altogether, thus yielding an even larger
speed-up for Monte-Carlo simulations. It would be inter-
esting to see to what extent normalizing flows can further
reduce the critical slowing down in our situation.
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