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Abstract

The life expectancy at birth in China has drastically improved over the last six

decades. Compared with 43.5 years in 1960, the life expectancy at birth in 2018

was 76.7 years. However, large differences in life expectancy continue to exist

within China, and age-specific mortality rates differ across provinces.

This study applies the standardised mortality ratio (SMR) to compare mortalities

in mainland China for the period 2000-2015. Showing that mortality is unbalanced

at the provincial level. It also explores the spatial relationship for Western and

Eastern China. Global and local Moran’s I indices are used to rigorously verify

spatial autocorrelation and identify spatial clusters of mortality. Given the pres-

ence of positive spatial autocorrelation at the provincial level in China, a spatial

panel data model is constructed with four independent variables across different di-

mensions: demographic, environmental, economic, and societal development. The

study makes important policy recommendations in terms of improving social secu-

rity and healthcare in less-developed provinces and making economic development

sustainable.
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Chapter 1

Introduction

Studies on mortality behaviour in China usually focus on the elderly. This study

focuses on mortality rates at the provincial level for all age groups and populations

between 2000 and 2015 to analyse China’s population distribution and highlight

provinces with high mortality. The study period reflects a dramatic boost to

China’s economy. For instance, GDP per capita increased eight-fold from 2000 to

2015, a change that had occurred over three decades (1970–2000) in the past. Par-

allelly, economic development across China was inconsistent, which enlarged the

gap between provinces. Studying the spatial mortality differences at the provincial

level along with its impact factor variables helps identify the geographic charac-

teristics of mortality in China.

A decline in mortality rates, coupled with an improvement in life expectancy,

is increasingly being observed worldwide. However, the differences in life ex-

pectancy between various countries and areas remain significant. Particularly,

life expectancy at birth exceeded 80 years in Europe, North America, Australia,

and New Zealand as of 2019. However, the life expectancy at birth in other parts

of the world, such as sub-Saharan Africa, was only around 61 years. The life

1



1. Introduction

expectancy at birth was 76.5 years in East and South-East Asia and 69.9 years

in Central and South Asia (Nations, 2019). Furthermore, although the world sex

ratio was close to 1, females outnumbered males in the older age groups, because

of longer average life expectancy. The life expectancy at birth for the total global

population was 72.6 years in 2019, wherein the male and female life expectancies at

birth were 70.2 and 75.0 years, respectively. (Nations, 2019). The life expectancy

at birth in China is also unbalanced between sexes. As an important index of pop-

ulation health, China’s life expectancy at birth increased from 43.72 years in 1960

to 75.92 years in 20151. Specifically, the life expectancies of males and females in

2015 were 73.79 and 78.29 years, respectively. However, there are differences in

life expectancy at the provincial level. For example, in 2015, the life expectancy

at birth in Beijing was 83.5 years, whereas that in Qinghai was 69.4 years (Zhou

et al., 2016). Several factors affect mortality rates and life expectancy directly and

indirectly at the provincial level in China. This thesis examine these factors from

the demographic, environmental, and economic points of view:

1) Demographically, the age distribution of population has changed in China,

both at the national and provincial levels. Since the implementation of the

Central Government’s one-child policy2 in the late 1970s, the fertility rate has

dropped sharply, and population growth has been controlled (Coale, 1981;

Bongaarts and Greenhalgh, 1985). Subsequently, the dominant age structure

of the population has shifted from working adults to the elderly. China was

recognised as an ageing society in 2000 when the proportion of the population

above 65 years of age exceeded 7% for the first time. At the provincial

level, domestic migration from less-developed provinces to more-developed

provinces changed the demographic distribution in different provinces (Shen,

1Data source: World Bank
2It was announced in late 2015 that the program would end in early 2016.
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2013). Over the last four decades, many people in China, including millions

of parents from small cities or rural areas, have migrated to larger cities for

jobs, leaving their children (termed ‘left-behind children’) with grandparents.

This phenomenon further diversifies the age-specific population distribution

between provinces as well as urban and rural areas.

2) In terms of environmental aspects, industrial activity leads to pollution, while

green spaces reduce pollution. Cao et al. (2012) stated that the growth of

the heavy and construction industries in China brought about a substan-

tial increase in energy consumption and polluting emissions. Construction

investment increased dramatically during China’s economic boom decades,

which led to a structural transformation from agriculture and consumption

manufacturing to construction, heavy industry, and export-related manufac-

turing. Inevitably, the transformation generated substantial air pollutants,

which damaged urban residents’ health. As industrialisation in China is

unbalanced, different provinces are differently affected by air pollution (Xu

and Lin, 2016, 2018; Xie et al., 2019; Zhang et al., 2020). Particulate Matter

(PM) 10 (PM10), nitrogen dioxide (NO2) and sulphur dioxide (SO2) are the

main air pollutants routinely measured by the Chinese government. Specifi-

cally, China is the third-largest SO2 emitting country in the world, because

the largest SO2 source is coal consumption, which continues to dominate

China’s energy consumption, accounting for 57.7% of the total energy con-

sumption in 20193. This has put the spotlight on the Yangtze River and

Beijing–Tianjin areas, as the provinces in these areas have comparatively

higher levels of SO2, which is associated with increased premature mortality

and morbidity (Cao et al., 2012). In addition, SO2 has several negative ef-

fects on human health, leading to respiratory issues, pulmonary oedema, eye

3Data source: The National Bureau of Statistics (NBS)
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irritation, asthma, and cardiopulmonary diseases (Lin et al., 2004; Khan and

Siddiqui, 2014; Goudarzi et al., 2016). To improve the residential environ-

ment and reduce air pollution, green spaces have been increased in several

provinces to benefit human health (Twohig-Bennett and Jones, 2018), espe-

cially in the urban areas (Alcock et al., 2014; Gascon et al., 2015; Kondo

et al., 2018), thus affecting mortality rates. Wang and Tassinary (2019)

proposed that the spatial distribution of green spaces in cities is obviously

correlated with the mortality risk. Zhang et al. (2020) found that although

China has been steadily working on urban greening, large inter-provincial

differences still exist.

3) Economic development and urbanisation levels differ from province to province.

Démurger et al. (2002) pointed out strong economic inequalities in countries

with vast geographies. China is the third-largest country by land area in

the world, and its landscapes vary significantly across its expansive territory.

Economic inequalities have been observed between China’s inland and coastal

provinces (Hao and Wei, 2010; Chen et al., 2017). Like many other coun-

tries, China initiated economic reforms in the coastal provinces, giving them

an early advantage in terms of economic development. Cutler et al. (2006)

found that it is easier to provide public health infrastructure in areas with

high income rather than in poorer areas. Zhao (2006) stated that mortal-

ity rates in China are considerable unbalanced between the more-developed

provinces and the less-developed provinces. Additionally, the former are usu-

ally more urbanised because of constructive government policies that were

implemented in the mid-1980s (Wan, 2008). Hence, urbanisation varies at

the provincial level in China (Lin et al., 2018) and influences regional mor-

tality rates (Luo et al., 2015; Li et al., 2016; Hou et al., 2019).
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Existing data analysis

Owing to limited data, most research on China’s mortality rates has been con-

ducted at the national level (Banister and Hill, 2004; Zhao, 2012; Zhao et al.,

2013; Huang and Browne, 2017; Li et al., 2019); fewer studies focus on mortal-

ity rates at the provincial level in China. Ren et al. (2004) analysed provincial

changes in mortality rates by building new life tables for different provinces. Lu

et al. (2019) designed a Bayesian hierarchical framework based on principal com-

ponents and a random walk process to estimate and forecast mortality rates in

China at the provincial level.

Some studies analyse the spatial autocorrelation of mortality in China. Wang

et al. (2015) analysed spatial autocorrelation of the human lifespan in China for

the years 1990, 2000 and 2010. Chen et al. (2019) showed the differences between

the regional ageing populations in China from temporal and spatial perspectives

over the period 1998–2014. Yang et al. (2020) found that the unbalanced spa-

tial distribution of socio-economic development leads to unequal health situations

among the elderly at the national level. Wu et al. (2020) analysed the spatial

clustering characteristics of life expectancy in China for the year 2010.

A spatial dependence model examines the relationship between mortality and im-

pact factors in China by explaining the behaviour of inter-related geographical

units. Xiang and Song (2016) focused on the spatial analysis of perinatal mortal-

ity at the provincial level in China between 1996 and 2013. Wu et al. (2019) found

spatial differences in China’s ageing population for the period 2000–2010 driven

by demographic factors. However, the spatial dependence model does not control

for spatial and temporal heterogeneity (Arellano, 2003). The spatial panel data

model is applied to control for spatial and temporal heterogeneity. Li (2017) used

5



1. Introduction

the spatial panel data model to conclude that China’s ageing population at the

provincial level is impacted by the gross regional product (GRP), medical treat-

ment, etc. Luo et al. (2018) analysed sanitation at the provincial level in China

between 2006 and 2015 using a spatial panel data model, because sanitation plays

an importation role in disease prevention.

This study identifies which factors affect mortality rates in China by looking into

differences in mortalities between different provinces. It is the first research project

that applies a spatial panel data model on mortality rates in China for all age

groups in different years. This study helps the government narrow the provincial

disparity in mortality rates and pay more attention to those provinces that have

high mortalities. In addition, the study interprets the causes of death from four

aspects and provides references for the improvement of life expectancy in each

province.

This study used data on all age groups to analyse mortality rates at the provincial

level for China between 2000 and 2015. The remainder of this thesis is organised

as follows. Chapter 2 presents a literature review on mortality standardisation and

the spatial panel data model. Chapter 3 introduces mortality standardisation and

spatial autocorrelation methods. Chapter 4 presents the spatial panel data model,

which is used to examine the factors that impact mortality in China. Chapter 5

presents the main results of the mortality cluster and spatial panel data methods.

Chapter 6 presents the conclusions. The appendix outlines all the data sources

and the ones that will be used in the thesis. Additionally, the mortality data,

accounting for the missing values, and the impact factor variables that explain

mortality behaviour are also described.
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Chapter 2

Literature review

This study is based on mortality standardisation methods, spatial econometrics,

and spatial panel data models. Mortality standardisation allows the comparison

of mortality across various age distributions, a technique that has been widely

applied in the past in many fields. The standardised mortality ratio (SMR) and

comparative mortality figure (CMF) are generally used for mortality analysis and

comparisons. In this study, the spatial panel data model was used to examine the

factors that impact mortality.

2.1 Mortality standardization

Most studies on standardisation have emphasised its applications in medical sci-

ence (Benjamin, 1968; Miettinen, 1972; Lilienfeld, 1978; Logan, 1982). As many

chemicals used in modern society have potential health hazards, Jarup (2004) as-

sessed the risk of chemically induced diseases. Woolf et al. (2004) analysed the

health impact of resolving racial disparities based on U.S. mortality data. Gächter

and Theurl (2011) examined health status at the local level in Austria for the

period 1969–2004.
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2. Literature review

The standardised calculation of death numbers in actuarial mathematics dates

to the 18th century (Dale, 1777; Tetens, 1786). Crude death rate comparisons

were not always accurate because they only described the proportion of deaths in

the population for a specific period in each geographical area, without considering

the age distribution for such numbers. William Farr, who had been working at

the Office of the Registrar General for England and Wales since 1839, introduced

age-specific death rates in 1841 to analyse changes in mortality rates for different

age groups in England and Wales (General, 1841a). Unfortunately, this method

was complicated when applied to a large number of age groups for deaths and the

population. Hence, several contemporaneous methods were developed to measure

mortality rates and make comparisons between the studied and standard popula-

tions. Such techniques were called standardisations. The concept of a standard

population was first introduced in the Registrar General’s report (General, 1853)

and defined in terms of a set of ‘healthy’ countries with crude death rates less than

1.7%. William Farr took the age structure of death rates into account and applied

the standard population’s age-specific death rates to other countries’ populations.

This was the first form of standardised death rates (General, 1857). Indirect stan-

dardisation, a unique age-specific method, was the most widely-applied index until

the SMR was introduced in 1883. As age-specific death numbers were not always

available for the study population, the Office of the Registrar General for England

and Wales proposed direct standardisation in 1883 (General, 1883). Subsequently,

the CMF, an index of direct standardisation, was proposed in 1884 (General,

1884). Indirect and direct standardisations are the most widely-applied methods

for analysing and comparing death numbers/rates. Other standardised measures

include standardised rates, such as the equivalent average death rate (Yule, 1934),

cumulative rate and comparative mortality rate, and standardised ratios, such as

8



2.1. Mortality standardization

the Yule’s index (Yule, 1934), comparative mortality index(General, 1841b) and

Fisher’s Ideal Index (Fisher, 1927).

Yule (1934) was the first to derive the standard error of standardised rates. Sam-

pling errors of mortality statistics were thoroughly discussed byWestergaard (1882).

Rubin and Westergaard (1886) introduced occupational mortality, which is an

early application of standardisation as an analytical statistical methodology. Bres-

low and Day (1975), Breslow (1975), Breslow and Day (1985) and Hoem (1987)

considered the SMR as a maximum likelihood (ML) estimator in a proportional

hazards model.

As statistical methods, indirect and direct standardisation (Fleiss et al., 2013;

Inskip, 2014; Inskip et al., 1983) are widely used in many fields, including medical

studies. Doll and Cook (1967) illustrated how the standard population influences

age-standardised incidence rates of cancer, and Day (1976) used direct standardis-

ation to analyse cancer incidence rates. The relationship between moderate arsenic

levels and 23 specific diseases was analysed for South-eastern Michigan by using

the SMR (Meliker et al., 2007). Tseng et al. (2011) used the SMR in a study

of inpatient suicides at a general hospital; Mok et al. (2013) studied the effect

of renal disease on the SMR and life expectancy of patients with systemic lupus

erythematosus. Kashyap et al. (2019) described the association between septic

shock definitions and standardised mortality ratios for a contemporary cohort of

critically ill patients. There are many related studies for China, mostly in the

epidemiological and medical fields (Lai et al., 2000; Ding et al., 2006; Mok et al.,

2011; Zhu et al., 2012; Du et al., 2012; Zhang et al., 2018; Liu et al., 2018). Apart

from their applications in the medical field, Tripepi et al. (2010) used both direct

and indirect standardizations to compare drinkers’ death rates. Sugawara et al.
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2. Literature review

(2013) found the relationship between lithium in tap water and suicide mortality

in Japan using the SMR. Carracedo and Debón (2016) applied the SMR to com-

pare mortality levels in Europe from 1990 to 2009. Kim et al. (2020) analysed

mortality rates in Korea using the SMR, CMF, and life expectancy.

2.2 The spatial panel data model

This study also applies the spatial panel data model in spatial econometrics. Spa-

tial econometrics analyses spatial interaction effects between geographical loca-

tions, such as countries, provinces, or regions, and is usually applied to explain

economic behaviour (Elhorst, 2014). In the past, researchers interested in spatial

interactions between geographical locations considered a spatial weights matrix W

to describe such spatial arrangements. Haining (1993); Anselin and Bera (1998);

Arbia (2006); LeSage and Pace (2009); Cressie (2015) made key contributions in

this field. Spatial dependence models can be estimated by ML estimation (Ord,

1975), Bayesian methods (LeSage, 1997), generalised method of moments (GMM)

(Kelejian and Prucha, 1998), and quasi-maximum likelihood (QML) (Lee, 2004).

The most popular spatial dependence models are the spatial lag and spatial er-

ror models. Both include only one type of interaction effect1. Models with more

than one interaction effect have attracted more interest since 2007. Harry Kelejian

(Kelejian and Prucha, 1998) introduced a model (renamed as the Kelejian–Prucha

model by Elhorst (2010)) with both endogenous interaction effects and interac-

tion effects among the error terms at the first World Conference of the Spatial

Econometrics Association. In the 54th North American Meeting of the Regional

Science Association International in 2010, James Le Sage advocated for a model

1For details of the interaction effects, see Section 4.1
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2.2. The spatial panel data model

with endogenous interaction effects.

Over the last two decades, more studies have focused on spatial panel data models,

which extend the cross-sectional spatial dependence model by using panel data.

Panel data is the combination of time series and cross-sectional data. Baltagi

et al. (2003) were the first to consider the testing of spatial interaction effects in

a spatial panel data model. Anselin (2013) also discussed the spatial dependence

panel model in detail. The spatial dependence panel model has advantages such

as more degrees of freedom and increased efficiency of estimation. More impor-

tantly, it performs well for more complicated cases. Lagrange multiplier (LM) tests

(Burridge, 1980; Anselin, 2013) and robust LM tests (Anselin et al., 1996) were

introduced to estimate spatial panel data models. Baltagi et al. (2003) considered

several LM tests in panel data models with spatial error correlation. Additionally,

Anselin and Hudak (1992) focused on ML estimation of the spatial lag model.

Driscoll and Kraay (1998) and Bell and Bockstael (2000) estimated the spatial

panel data set using the GMM. Lee and Yu (2012) introduced QML estimation of

spatial dynamic panel data models with a time-varying spatial weights matrix.

There are several studies on the applications of spatial panel data models. Using

these models, Gwatkins et al. (2007), Preston (1975) and Preston (1980) found

that people with higher incomes have better health status and lower mortality.

Elhorst (2003) estimated a spatial panel data model for both fixed and random

effects. Druska and Horrace (2004) and Baylis et al. (2011) applied spatial ap-

proaches to panel data in agricultural economics. Mutl and Pfaffermayr (2011)

considered a Cliff–Ord-type spatial lag model and estimated instrumental vari-

ables with fixed and random effects. Pfaffermayr (2009) and Wang and Lee (2013)

estimated spatial panel data models with missing data. Barufi et al. (2012) ap-

11



2. Literature review

plied the spatial panel data model to analyse infant mortality in Brazil. A spatial

Durbin model was used to study U.S. mortality rates (Yang et al., 2015). Similar

analysis has been performed for Europe by Carracedo and Debón (2016). Wang

and Luo (2018) showed how heating energy utilisation impacts life expectancy in

China. Furthermore, the spatial panel data model can also be used in transport

research (Frazier and Kockelman, 2005), social economics (Egger et al., 2005) and

products analysis (Baltagi and Li, 2006).
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Chapter 3

The spatial autocorrelation of

mortality

Standardised methods of mortality include the SMR, CMF, indirectly standard-

ised rate (ISR), and directly standardised rate (DSR). This chapter provides a

comprehensive comparison between the most two commonly-used models, SMR

and CMF. The CMF was found to be more sensitive to numerical instabilities

than the SMR for one or two of the age-specific rates. After quantifying mortality,

the global and the local Moran indices were used to assess the spatial autocorrela-

tion of mortality between provinces. Furthermore, the local Moran index was also

applied to analyse mortality spatial clusters and spatial outliers.

3.1 Mortality standardisation

It is difficult to compare provinces with dissimilar age distributions of populations

and deaths. Mortality standardisation helps resolve this problem. Quantifying

mortality also enables spatial autocorrelation analysis. This section introduces

the SMR, CMF, ISR, and DSR, which are widely used in practice owing to their

13



3. The spatial autocorrelation of mortality

good performance in comparing groups with varying population sizes. The SMR

and CMF are also compared. Table 3.1 provides a list of notations that have been

subsequently used in the equations for standardised rates and ratios.

Description
Study population

(province i year t)

Standard population

(year t)

Population in age group g ni,g(t) Ng(t)

Total population ni(t) =
∑
g

ni,g(t) N(t) =
∑
g

Ng(t)

Deaths in age group g di,g(t) Dg(t)

Total deaths di(t) =
∑
g

di,g(t) D(t) =
∑
g

Dg(t)

Crude death rate ri(t) =
di(t)
ni(t)

R(t) = D(t)
N(t)

Age-specific death rate in age group g ri,g(t) =
di,g(t)

ni,g(t)
Rg(t) =

Dg(t)

Ng(t)

Table 3.1: Notations for standardised mortality measures

3.1.1 Indirect and direct mortality standardisation

The standardized mortality ratio (SMR) is expressed as the ratio of the number

of actual deaths in the study population to the number of expected deaths:

SMR =
Actual deaths (in study population)

Expected deaths (in study population)
. (3.1)

The expected number of deaths is measured by the standard age-specific death rate

times the study population. The standard population implies China’s national

population in the present study. Hence, the standard age-specific death rate is

defined as the ratio of the number of national age-specific deaths to the national

age-specific population (see Table 3.1). In addition, the expected deaths in each

14



3.1. Mortality standardisation

age group depend on the age-specific study population ni,g(t). For province i in

year t, the SMR is represented as:

SMRit =

k∑
g=1

ni,g(t)
di,g(t)

ni,g(t)

k∑
g=1

ni,g(t)
Dg(t)

Ng(t)

=

k∑
g=1

di,g(t)

k∑
g=1

ni,g(t)
Dg(t)

Ng(t)

=
di(t)

k∑
g=1

ni,g(t)Rg(t)

. (3.2)

The standard error (SE) of the SMR is (Breslow et al., 1980; Armitage et al.,

2008),

SE(SMRit) =

√
di(t)

k∑
g=1

ni,g(t)
Dg(t)

Ng(t)

. (3.3)

Logarithmic transformation when constructing test statistics or confidence inter-

vals helps reduce the skewness in the SMR and improves the approximation to

normality of the test statistic distribution. Hence,

SE(logSMRit) =
SE(SMRit)

SMRit

=
1√
di(t)

. (3.4)

The comparative mortality figure (CMF) is defined as the ratio of the expected

number of deaths in the standard population to those observed.

CMF =
Expected deaths (in standard population)

Actual deaths (in standard population)
. (3.5)

The CMF is also called the standardised rate ratio (SRR), which is as follows:

CMFit = SRRit =

k∑
g=1

Ng(t)
di,g(t)

ni,g(t)

k∑
g=1

Ng(t)
Dg(t)

Ng(t)

=

k∑
g=1

Ng(t)
di,g(t)

ni,g(t)

D(t)
. (3.6)

The standard error (SE) of the CMF is (Breslow et al., 1980; Armitage et al.,

2008),

SE(CMFit) =

√
k∑

g=1

N2
g (t)

di,g(t)

n2
i,g(t)

D(t)
. (3.7)

15



3. The spatial autocorrelation of mortality

Similarly, the CMF should be logarithmically transformed:

SE(logCMFit) =
SE(CMFit)

CMFit

=

√
k∑

g=1

N2
g (t)

di,g(t)

n2
i,g(t)

k∑
g=1

Ng(t)
di,g(t)

ni,g(t)

. (3.8)

If the value of the SMR (or the CMF) is greater than one, it represents a dis-

advantageous mortality experience, as the mortality rate of the study population

exceeds that of the standard population, that is, more deaths are observed than

expected. Conversely, an advantageous mortality experience is represented by an

SMR (or CMF) value of less than one.

Besides the SMR and CMF, there are two kinds of standardised rates that can be

expressed in terms of the SMR and CMF. The ISR is the expected mortality rate

in the study population under the assumption of age-specific mortality rates in a

standard population. It is calculated as

ISRit =
di(t)R(t)

k∑
g=1

ni,g(t)Rg(t)

= SMRit ·R(t). (3.9)

The directly standardized rate (DSR) is defined in a symmetric way, wherein

the age-specific death rates in the study population are applied to the standard

population.

DSRit =
k∑

g=1

Ng(t)

N(t)

di,g(t)

ni,g(t)
= CMFit ·R(t). (3.10)

Yule (1934) introduced the weight concept in the mortality standardisation system,

wherein a weight wi,g(t) is allocated to age group g in year t in province i through

various standardisation methods. Using different forms of weights, the SMR and

CMF can be expressed as
∑

wi,g(t)ri,g(t)/Rg(t)∑
wi,g(t)

(Inskip et al., 1983). The ISR and
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3.1. Mortality standardisation

DSR can be rewritten as
∑

wi,g(t)ri,g(t). The different forms of wi,g(t) and the

corresponding death rates are outlined in Table 3.2.

Ratio and rates wi,g(t) Formula

Indirectly standardized death rate (ISRi(t))
R(t)ni,g(t)∑
Rg(t)ni,g(t)

∑
R(t)ni,g(t)ri,g(t)∑

ni,g(t)Rg(t)

Directly standardized death rate (DSRi(t))
Ng(t)

N(t)

∑ Ng(t)

N(t)

di,g(t)

ni,g(t)

Standardized mortality ratio (SMRi(t)) Rg(t)ni,g(t)
∑

ri,g(t)ni,g(t)∑
Rg(t)ni,g(t)

Comparative mortality figure (CMFi(t)) Dg(t)
∑ Dg(t)ri,g(t)

D(t)Rg(t)

Table 3.2: Different standardised ratios and rates in terms of weight

3.1.2 Comparison of the SMR and CMF

Both the SMR and CMF are popular measures and have pros and cons that make

them suitable for specific cases. The CMF ensures consistency between all study

populations, because every study population is standardised using the same pop-

ulation. There is no need for every age-specific death rate to be larger in region

A compared to region B. If they are equivalent for all age groups but one (where

the value in that age group is higher in A than in B for example), the value of

CMF in A will be higher than in B. In contrast, the SMR does not involve a direct

comparison because it is not based on the same standard population. The SMR

comparison is based on expected deaths, which considers age-specific death rates

in standard population Rg(t) (Julious et al., 2001). The CMF is only applicable

when all age-specific death numbers are known for the study population. If any

value in the study population di,g(t) is unavailable, it leads to a large error in

estimation (Inskip, 2014). However, the SMR has an advantage in this situation
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3. The spatial autocorrelation of mortality

as its calculation only requires the total number of deaths in the study population

di(t), rather than the age-specific deaths di,g(t).

Additionally, the CMF is unstable when the age-specific death rates
di,g(t)

ni,g(t)
are

based on small age-specific number of deaths di,g(t). Assume that there are three

age groups whose standard populations are 500, 6000, and 300, and the total stan-

dard number of deaths is 300. The study populations are 100, 600, and 1, and the

number of deaths are 2, 5, and 1, respectively, in the study population. According

to Equation (3.6),

CMF =
500× (2/100) + 6000× (5/600) + 300× (1/1)

300
= 1.2

However, if the individual in the last age group is alive, the same calculation yields

a large difference compared with 1.2.

CMF =
500× (2/100) + 6000× (5/600) + 300× (0/1)

300
= 0.2

In addition, the CMF values rely to a large extent, on the age structure of the

standard population. When the older age groups in the standard population Ng(t)

have heavy weights, the CMF value is large because the age-specific rate
di,g(t)

ni,g(t)
is

higher than the others. For example, their population is changed such that the

standard age-specific populations are 500, 6000 and 400, we obtain

CMF =
500× (2/100) + 6000× (5/600) + 400× (1/1)

300
= 1.53

Thus, practically, the CMF is more sensitive than the SMR to numerical insta-

bilities in one or two of the age-specific rates. The SMR can be considered as

a weighted average of the ratios of age-specific mortality rates for the study and

standard populations, wherein the weights (see Table 3.2) minimise the variance

of the weighted average (Breslow, 1987). The SE also demonstrates the numerical

stability of the SMR. Equations (3.4) and (3.8) also show that the SE of the SMR
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3.2. Spatial autocorrelation

only depends on the changes in the number of total death di(t), but that of the

CMF depends on the age-specific number of deaths di,g(t). In general, the SMR

has a smaller SE than the CMF. Moreover, if the study population and standard

population distributions are different, the SMR and CMF differ, as the SMR is

the ML estimate (Armitage et al., 2008).

3.2 Spatial autocorrelation

Once the appropriate method of mortality standardisation is chosen, global and

local Moran indices are used to assess the spatial autocorrelation of mortality be-

tween a province and its neighbourhoods (Anselin, 1995). The existence of spatial

autocorrelation establishes that a spatial panel data model should be used to anal-

yse mortality.

The global Moran’s I is applied to confirm the presence of spatial autocorrelation

and measure the global autocorrelation across all provinces (Moran, 1950a,b). The

null hypothesis in this case is that there is no spatial autocorrelation. The local

Moran’s I is used to assess the influence of individual provinces and identify cluster

and outlier values. Similar to that in the global Moran’s I, the null hypothesis in

the local Moran’s I is that there is no local spatial association (Cliff and Ord, 1981).

There are three types of possible results for the global Moran’s I—spatially positive

correlation, spatially negative correlation, and spatial independence. A positive

global Moran’s I value shows positive autocorrelation, whereas a negative value

indicates negative autocorrelation. Positive autocorrelation implies that when the

standardised mortality value (SMR or CMF) of a province increases or decreases,

the SMR values for its neighbours also increase or decrease, respectively. In the
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3. The spatial autocorrelation of mortality

negative case, a province’s standardised mortality value (SMR or CMF) is inversely

related to its neighbours’ values. When the value of Moran’s I equals zero, there

is no spatial autocorrelation. Global Moran’s I is defined as:

GMt =

I
∑
i

∑
j

wij(yit − ȳt)(yjt − ȳt)∑
i

∑
j

wij(yit − ȳt)2
,

ȳt =
1

I

I∑
i=1

yit,

for i ∈ {1, ..., I}, j ∈ {1, ..., I} and i ̸= j

(3.11)

where I is the total number of provinces in mainland China, yit is the value of

standardised mortality (the SMR or CMF in the study) of province i in year t. ȳt

is the average of yit in all provinces in year t, and wij is the ijth element of the

spatial weight matrix W .

The spatial weight matrix W used to measure spatial relations between differ-

ent provinces, is an I × I matrix with positive and deterministic elements wij.

The values of wij aare usually based on distance functions (such as Euclidean met-

rics) or the spatial distance/neighbour. The spatial weight matrix in the study

is chosen as a first-order binary contiguity matrix (Anselin, 1995), which means

that provinces are assumed be influenced only by their neighbours. Hence, the

elements of the spatial weight matrix W take the following values:

wij =


0, if j /∈ L(i),

1

L
, if j ∈ L(i),

0, i = j = 1, ..., I

(3.12)

where L is the total number of neighbours of province I and L(i) is the set of

neighbours of province i. The spatial weight matrix is row-standardised, which

means that each row totals to unity.
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3.2. Spatial autocorrelation

The local Moran’s I measures the local spatial correlation between a given province

and its surrounding provinces (Anselin, 1995). Apart from the local Moran’s I,

the Moran scatter plot is also used to measure the local spatial autocorrelation

between a given province and its neighbours (Anselin, 1996). The local Moran

index LMit is defined as

LMit =
(yit − ȳt)

S2(yt)

∑
j

wij(yjt − ȳt),

S2(yt) =
1

I

∑
j

(yjt − ȳt)
2,

for i ∈ {1, ..., I}, j ∈ {1, ..., I} and i ̸= j,

(3.13)

where S2(yt) is the variance of yt at time t.

The local Moran’s I provides a statistic for each province with an assessment of

significance. Meanwhile, it shows that the sum of the local Moran’s I is propor-

tional to the global Moran’s I (Anselin, 1995).

Different values of the local Moran’s I divide all provinces into four classes: HH,

HL, LH, and LL, as summarised in Table 3.3.

Class
Standardised mortality

for province i
Standardised mortality for
the neighbour of province i

HH Above mean Above mean
HL Above mean Below mean
LH Below mean Above mean
LL Below mean Below mean

Table 3.3: Classification of provinces based on the local Moran’s I

Classes HH and HL represent provinces with high values of standardised mor-

tality (the SMR or CMF) surrounded by neighbours with high or low values, re-

spectively. Conversely, classes LH and LL represent provinces with low values (of

the SMR or CMF) surrounded by neighbours with high or low values, respectively.
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3. The spatial autocorrelation of mortality

For significant values of standardised mortality, it can be concluded that a spatial

cluster and spatial outliers exist. The spatial cluster has a positive local Moran’s I,

which means its standardised mortality and that of its neighbours are either both

above or both below the mean (classes HH or LL). Conversely, the spatial outlier

has a negative local Moran’s I, and the province belongs to the classes HL or LH.
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Chapter 4

The spatial panel data model

When spatial autocorrelation of mortality exists at the provincial level in China,

the spatial panel data model allows the analysis of mortality differences from vari-

ous perspectives, such as demographic, environmental, and economic. The spatial

panel data model can involve spatial effects, as well as provide information on the

spatial relationship between variables, allowing further understanding of mortal-

ity differences within China. This chapter gives an overview of the linear spatial

dependence models and their interrelationships. When the cross-sectional spatial

dependence model is extended to panel data, it is called a spatial panel data model.

This chapter also outlines the two types of spatial panel data models.

4.1 The spatial dependence model

The spatial dependence model exhibits three types of interaction effects—endogenous

interaction effects within the dependent variable, interaction effects among the er-

ror terms, and exogenous interaction effects among the independent variables.

The spatial lag model, also called the spatial autoregressive (SAR), contains the

endogenous interaction effects within the dependent variable. The spatial error
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4. The spatial panel data model

model (SEM) includes the interaction effects among the error terms. In addition,

the exogenous interaction effects among the independent variables are shown in

the spatially lagged X model (SLX). In practice, the SAR and SEM are used in

spatial dependence analysis.

To understand the spatial dependence model, we begin with the non-spatial linear

regression model,

yi = α + xT
i β + εi where i = 1, ..., I, (4.1)

where yi is the dependent variable for province i, and α is a constant parameter

to be estimated. xi is K × 1 vector of exogenous explanatory variables for the ith

province, β is a K×1 coefficient vector to be estimated, the disturbance term εi is

independently and identically distributed for all i with zero mean and σ2 variance1.

An endogenous interaction effect implies that a change in the dependent vari-

able of one province relies on the change in the dependent variables of the other

provinces. In other words, the value of the province’s dependent variable is jointly

determined with those of the neighbouring provinces’ dependent variables (El-

horst, 2014). The spatial lag model capturing the endogenous interaction effects

thus takes the form

yi = λ

I∑
j

wijyj + α + xT
i β + εi (4.2)

where
I∑
j

wijyj is the endogenous interaction effect among dependent variables,

and λ is the spatial autoregressive coefficient.

The exogenous interaction effect indicates that the change in the dependent vari-

able of one province relies on the change in the independent explanatory variables

1Another specification for the disturbances is considered in Kapoor et al. (2007).
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4.1. The spatial dependence model

of the other provinces. Similarly, the SLX model takes the form

yi = θ
I∑
j

wijxj + α + xT
i β + εi (4.3)

where
I∑
j

wijxj represents the exogenous interaction effects among independent

variables, and θ represents a fixed but unknown parameter to be estimated.

In the SEM, the error term for one province is assumed to depend on the error

terms for other provinces:

yi = α + xT
i β + ξi

ξi = ρ
I∑
j

wijξj + εi,
(4.4)

where
I∑
j

wijξj represents the interaction effects among the disturbance terms and

ρ is the spatial autocorrelation coefficient.

Each of the above models contains only one type of interaction effect. Some other

models have more than one interaction effect, such as the spatial Durbin model,

which includes endogenous interaction effects among the dependent variables and

exogenous interaction effects among the independent variables. Figure 4.1 sum-

marises the relationships between all the spatial dependence models (a similar

figure in the matrix form is found in Elhorst (2014))
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4. The spatial panel data model

Figure 4.1: Relationships between the different spatial dependence models

4.2 The panel data model

The spatial dependence model is only applied to cross-sectional data. When both

time and spatial variables are included in the model, panel data methodology must

be introduced. Panel data comprises cross-sectional observations (countries, areas,

companies, households, etc.) involving measurements over time. Time series and

cross-sectional data are viewed as special cases of panel data. Generally, there are

three types of panels: micro, macro, and random field panels. In micro panels,

there are more cross-sectional observations than time periods. Conversely, macro

panels have fewer cross-sectional observations than time periods. Random field

panels have a wide temporal and transverse dimension.

Hsiao (2014), Klevmarken (1989) and Baltagi (2008) demonstrated the advan-

tages of using panel data over time-series or cross-sectional data. Compared with

time-series data, panel data reduces collinearity among variables and provides
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4.2. The panel data model

more informative data as variability is added by a cross-sectional dimension. In

contrast, panel data has an advantage over cross-sectional data as it captures how

variables evolve in a process (Deaton, 1995). It is useful to assess intertemporal

relations and lifecycle models. Besides, individuals, provinces, or countries are

assumed to be heterogeneous in panel data, unlike in time-series or cross-sectional

data. Generally, independent variables vary across time and geographical units.

However, some independent variables are time- and/or space-invariant, which also

affects the dependent variable, a possibility not considered in time series and cross-

sectional data.

A panel data model is a regression model with double subscripts on its variables,

for province i in year t,

yit = α + xT
itβ + uit, i = 1, ..., I and t = 1, ...T (4.5)

where yit is the independent variable, α is a constant, β is a K × 1 vector and

xit denotes a K × 1 vector of independent variables, K is the total number of

independent variables, and uit is the disturbance term.

Two models can be used to describe the disturbance term. The one-way error

component regression model is defined as follows:

uit = µi + εit. (4.6)

The two-way error component regression model is represented as

uit = µi + νt + εit, (4.7)

where µi is the unobservable space-specific effect, νt denotes the unobservable

time effect and εit is the remainder disturbance term. Notably, µi and νt are time-

invariant and space-invariant, respectively, and they explain any corresponding

space-specific effect (for the former) and time-specific effect (for the latter) that is
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4. The spatial panel data model

not included in the regression. If µi and νt are assumed to be fixed parameters to be

estimated, and εit is independent and identically distributed, then a fixed effects

model applies. If µi, νt and εit are all independent and identically distributed

respectively and independent of each other, a random effects model applies.

4.3 The spatial panel data model

The cross-sectional spatial dependence model can be extended using panel data

into the spatial panel data model.

For the SAR model, by modifying the subscripts from i to it in Equation (4.2), we

obtain

yit = λ
I∑
j

wijyjt + α + xT
itβ + εit. (4.8)

The SEM model can be extended in the same way using Equation (4.4).

yit = α + xT
itβ + ξit

ξit = ρ
I∑
j

wijξjt + εit,
(4.9)

Compared with time-series and cross-sectional data, panel data can control for

spatial and temporal heterogeneity, which is not reflected in Equations (4.8) and

(4.9). Thus, the two-way error component structure is applied to address this is-

sue. To do so, the space-specific effect µi and the time-specific effect νt are added

to measure all time-invariant and space-invariant variables that may influence the

estimation. Therefore, an extension of the SAR model is considered as follows:

yit = α + λ

I∑
j=1

wijyjt + xT
itβ + µi + νt + εit, (4.10)
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An extension of the SEM model is also considered:

yit = α + xT
itβ + µi + νt + ξit

ξit = ρ
I∑
j

wijξjt + εit,
(4.11)

where,

i is the province and t represents the year;

yit is the dependent variable;

xit is the K × 1 vector of explanatory variables;

K is the total number of independent variables;

wij is the element of the spatial weight matrix W for province i and j;

α is a constant parameter to be estimated;

β is a K × 1 vector of unknown parameters to be estimated;

εit is the disturbance term and is assumed to independently and identically dis-

tributed with zero mean and constant variance;

µi and νt are the unobservable space-specific effects and time-specific effects, re-

spectively ( either fixed or random effects) defined in Equation (4.7);

λ is the spatial autoregressive coefficient;

ρ is the spatial autocorrelation coefficient.

4.4 Multicollinearity in the regression model

The regression model analyses the relationship between the dependent variable Y

and independent variables X1,X2, ...Xk. Multicollinearity is the occurrence of

high intercorrelations among two or more independent variables in a multiple re-

gression model. This naturally means that the chance of having multicollinearity is

relatively high when too many independent variables are involved in the regression

model. The existence of multicollinearity will affect the estimation of the model
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4. The spatial panel data model

and the explanation of the results. In the meantime, multicollinearity will lead

to skewed or even incorrect interpretation (Silvey, 1969). The spatial panel data

model is one particular regression model, which means multicollinearity analysis

is necessary in the study.

In the first step, it is necessary to measure the presence of multicollinearity in

the model. The red indicator (Kovács et al., 2005) can be used to measure average

multicollinearity in the database,

Red =

√√√√√ I∑
j=1

I∑
j=1;i ̸=j

r2ij

I(I − 1)
,

where rij is the correlation coefficient of the Xi and Xj. In particular, a zero

red indicator implies no multicollinearity and the multicollinearity is at maximum

when the red indicator equals one.

Apart from the red indicator, the condition number also measures the presence of

multicollinearity through the eigenvalues of the correlation matrix of the regressors

(Belsley et al., 2005). The condition number (CN) is

CN =

(
λmax

λmin

) 1
2

where λmax is the largest eigenvalue and λmin is the smallest eigenvalue. Theoret-

ically, a zero eigenvalue indicates exact collinearity and the closer it is to zero the

higher degree the multicollinearity has. In practice, the moderate multicollinearity

is believed to exist if the condition number is larger than 10 and the multicollinear-

ity is strong if CN is over 30. (Belsley, 1982; Kim, 2019).

Besides, the determinant of the correlation matrix (Cooley and Lohnes, 1971),

Farrar test of chi-square (Farrar and Glauber, 1967) and Theil’s indicator (Theil,

1971) can be used to measure the presence of multicollinearity.
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When there exist multicollinearity is in a regression model, the next step is to

find multicollinearity for each independent variable in the model. The most fre-

quently used method is the variance inflation factor (Marquaridt, 1970). For the

kth independent variable, the VIF is defined as

VIF =
1

(1−R2
k)
,

where R2
k is the multiple R2 for the regression of Xk on the other covariates. If

all variables are uncorrelated with each other, their VIFs should be equal to one.

The higher the value of VIF, the higher the correlation between the variables.

Conventionally, when the VIF is larger than 10, the variable should be removed

from the regression model because of multicollinearity. A VIF value between 5 and

10 represents a high correlation that may lead to inaccurate estimation (Belsley,

1991; Gareth et al., 2013; Akinwande et al., 2015).

The Leamer’s method (Greene, 2002) can also be used to check multicollinearity.

Leamer proposed the method based on the variance of estimated coefficients,

ck =
{

(
∑

i(Xik−X̄k)
2)−1

(X′X)−1
kk

} 1
2

,

where (X ′X)−1
kk is the kkth element of the matrix (X ′X)−1. If ck is equal to one,

the variable is uncorrelated with other variables. When ck is close to zero, a high

multicollinearity exists.

Meanwhile, Farrar and Glauber (Farrar and Glauber, 1967) used the F-test to

determine the collinear regressors, where the null hypothesis is R2
i = 0. Then we

have

Γi =
R2

i

1−R2
i

(
M −K

K − 1

)
where K is the number of independent variables, M is the sample size, R2

i is the

multiple correlation coefficient between Xi and the other independent variables.

The random variable Γi follows the F-distribution with M −K and K − 1 degrees
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of freedom, which is interpreted as the ratio of explained to unexplained variance.

In the case that Γi > F , the variable Xi has multicollinearity.

Theoretically, it is ideal that there does not exist multicollinearity among indepen-

dent variables in a regression model. However, it is not easy to realise in practice.

How to reduce multicollinearity to a reasonable level and make sure there is no

influence in the model is very important. Table 4.1 shows the summary of the

above methods.

Method Range Multicollinearity
The presence of multicollinearity

Red indicator [0, 1] The larger, the stronger multicollinearity

Condition number ≥ 0
≥ 10 there is moderate multicollinearity
≥ 30, there is significant multicollinearity

Multicollinearity in independent variable

VIF ≥ 1
The larger, the stronger multicollinearity
≥ 5, there is multicollinearity
≥ 10, there is strong multicollinearity

Leamer’s method [0, 1] The smaller, the stronger multicollinearity

Farrar&Glauber test ≥ 1
the value Γi > F ,
then the independent variable has multicollinearity

Table 4.1: Summary of multicollinearity methods
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Chapter 5

Results

This chapter presents the results of this study, including heat maps, Moran scatter

plots, and local indicators of spatial association (LISA) maps for the SMR at the

provincial level for China in 2000, 2005, 2010, and 2015. The table of local Moran’s

I values for 2000 is also presented here. The tables and figures for the other years

are available but have not been shown in this thesis. The spatial analysis is based

on R programming. The R-packages splm (Millo et al., 2012), plm (Croissant and

Millo, 2008), spdep (Bivand et al., 2005), car (Fox et al., 2007) and mctest (Ullah

et al., 2019)were used in this study.

5.1 The spatial autocorrelation of mortality

The SMR was chosen to analyse all age-specific mortality rates at the provincial

level for China. Figure 5.1 shows the heat maps of the SMR in 2000, 2005, 2010,

and 2015. The provinces with the darker red colour have higher SMR values.

A significant difference can be observed between the coastal eastern and west-

ern provinces between 2000 and 2015. Specifically, the eastern coastal provinces

centred around Shanghai (marked 9 in the map), such as Jiangsu (10) and Zhe-
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jiang (11), have low SMR values. The unbalanced structure between eastern and

western China has existed for many years. Geographically, western China com-

prises mountains, plateaus, and deserts, whereas eastern China comprises plains

and low hills. Western provinces, such as Tibet (26) and Qinghai (29), experience

adverse terrain and climate, which make it difficult to build roads or carry out

agriculture. The low-oxygen environment in high-altitude regions simultaneously

increases mortality and reduces life expectancy (Niermeyer et al., 2009). Eastern

China has a better climate and more suitable topography for farming. In the

modern era, south-eastern China, which is coastal, has had more opportunities

to develop external networks and trade (Wan, 2008). These provinces have thus

developed more rapidly, offering better healthcare and leading to lower mortality

rates. In contrast, western China has relatively poorer healthcare and educational

infrastructure, which affects the SMR significantly (Gyaltsen et al., 2014). No-

tably, the SMRs for provinces in north-eastern China have reduced since 2010.
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5.1. The spatial autocorrelation of mortality

(a) 2000 (b) 2005

(c) 2010 (d) 2015

Figure 5.1: SMR maps for China

Figure 5.1 shows an evident spatial cluster characteristic, especially in eastern

and western China. Therefore, the Global Moran’s I was applied to confirm the

presence of spatial autocorrelation. Table 5.1 presents the values of the global

Moran’s I and their respective p-values. Between 2000 and 2015, the values were

positive for China, with p-values less than 0.05. When the SMR in a province

increased/decreased, its neighbours’ SMR also increased/decreased. Apart from

a slight increase in 2001 and 2006, the global Moran’s I continuously decreased,

from 0.401 to 0.242, in the 2001–2015 period. Thus, the spatial autocorrelation of

the SMR has become weaker at the provincial level in China.
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Year 2000 2001 2002 2003 2004 2005 2006 2007
Moran’s I 0.395 0.401 0.399 0.392 0.379 0.363 0.365 0.365
P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Year 2008 2009 2010 2011 2012 2013 2014 2015

Moran’s I 0.361 0.353 0.342 0.331 0.314 0.292 0.267 0.242
P-value 0.000 0.000 0.001 0.001 0.001 0.002 0.005 0.008

Table 5.1: Global Moran’s I values of the SMR at the provincial level in China

As spatial autocorrelation was present, the local Moran’s I was applied to as-

sess the influence of individual locations and to identify cluster and outlier values.

Table 5.2 shows the values of the local Moran’s I at the provincial level in China

and their respective p-values for the year 2000. A province with a positive local

Moran’s I belongs to either HH or LL, but further information (stated below) is

required to determine which of the two it belongs to. Such a province is said to

be a spatial cluster if its p-value is smaller than the significant level. In contrast,

a province with a negative local Moran’s I belongs to either HL or LH, and it is

called spatial outlier if it is significant.

Figure 5.2 shows the Moran scatter plots and LISA maps of the SMR from

2000 to 2015. The Moran scatter plot can be considered a linear regression with

the slope representing the global Moran’s I value (Anselin, 1996). The abscissa

represents the SMR, and the ordinate is the spatially lagged SMR (W·SMR). This

graph reflects the relationship between the SMR in one province and the aver-

age SMR of its neighbours. The vertical and horizontal dotted lines indicate the

average of the SMR and W·SMR respectively, dividing all provinces into four quad-

rants. A province located in the upper right (HH) or the lower left (LL) has spatial

association with similar SMRs, implying that the province is surrounded by neigh-

bours with similar SMRs. In contrast, the upper left (LH) and lower right (HL)

quadrant provinces have spatial association with dissimilar SMRs, implying that
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Province Local Moran’s I P-value
1 Beijing 0.358 0.278
2 Tianjin 0.410 0.252
3 Hebei -0.067 0.541
4 Shanxi 0.109 0.377
5 Inner Mongolia 0.137 0.284
6 Liaoning -0.126 0.569
7 Jilin 0.000 0.475
8 Heilongjiang -0.108 0.545
9 Shanghai 1.722 0.004
10 Jiangsu 0.895 0.021
11 Zhejiang 0.583 0.062
12 Anhui 0.140 0.314
13 Fujian 0.306 0.262
14 Jiangxi -0.220 0.699
15 Shandong 0.144 0.348
16 Henan -0.009 0.473
17 Hubei 0.003 0.460
18 Hunan -0.023 0.488
19 Guangdong 0.459 0.109
20 Guangxi -0.240 0.698
21 Hainan 1.077 0.047
22 Chongqing 0.051 0.417
23 Sichuan 0.146 0.290
24 Guizhou 0.428 0.124
25 Yunnan 1.875 0.000
26 Tibet 2.312 0.000
27 Shaanxi 0.153 0.266
28 Gansu 0.530 0.058
29 Qinghai 1.407 0.001
30 Ningxia 0.059 0.431
31 Xinjiang -0.259 0.664

Table 5.2: Local Moran’s I values of the SMR at the provincial level in China in 2000
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their SMRs differ considerably with their neighbours’. Using the scatter plots, it

can be determined whether a province belongs to HH or LL. This coincides with

the local Moran’s I results.

The LISA map shows the provinces with significant values using local Moran’s

I values. There were two kinds of spatial clusters, HH and LL, in 2000 and 2005.

Shanghai (9), Jiangsu (10), and Hainan (21) were found to be associated with the

LL spatial cluster in 2000 (marked in bold in Table 5.2). However, the LL spatial

cluster only appeared for Shanghai (9) in 2005 and disappeared after 2010. The

HH spatial cluster was mainly distributed across Yunnan (25), Tibet (26), and

Qinghai (29) between 2000 and 2015. These three provinces and their neighbours

had relatively high SMRs and slow improvements in healthcare conditions during

2000–2015.
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5.1. The spatial autocorrelation of mortality

(a) Moran Scatter plot 2000

(b) LISA 2000

(c) Moran Scatter plot 2005

(d) LISA 2005

(e) Moran Scatter plot 2010

(f) LISA 2010

(g) Moran Scatter plot 2015

(h) LISA 2015

Figure 5.2: Moran scatter plot and LISA map of the SMR
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5.2 Spatial lag model with fixed effects

Given the presence of spatial autocorrelation of mortality, the spatial panel data

model was then used in this study. As the dependent variable (the SMR) showed

a clear asymmetry (see Figure 5.3a), logarithmic transformation was used to con-

vert the regressor to its log scale (see Figure 5.3b). Specifically, the SMR had a

skewness of 0.871, whereas log(SMR) had a reduced skewness of 0.223.

(a) SMR (b) log(SMR)

Figure 5.3: Asymmetry of SMR and the log(SMR) representation

5.2.1 Multicollinearity analysis

This study considers nine factors (the details shown in Section A.2.2) as inde-

pendent variables, which across four aspects, including demography, environment,

economy, and societal development. Since multicollinearity is very common when

many variables are considered in the model, it is necessary to check whether there

exists multicollinearity among variables. One way to measure the presence of over-

all multicollinearity is to consider applying the condition number. The value of

the condition number in this study is 80.586 which is much larger than 30. This

indicates that there is a strong multicollinearity (Kim, 2019). Hence it is necessary

to reduce multicollinearity among variables before creating the spatial panel data

model. In this study, independent variables with VIF values less than 5 were se-

lected. Table 5.3 illustrates the choice of independent variables. Firstly, VIFs were
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calculated for all independent variables, and the crude birth rate was eliminated as

it has the largest VIF (larger than 5). Secondly, the GRP per capita was removed,

followed by urbanisation in the third step. Eventually, the remaining independent

variables have VIFs less than 5.

Value of VIF
1 GRP per capita 28.80 28.17 (Remove)
2 CrudeBirthRate 33.74 (Remove)
3 HouseholdConsumption 25.52 25.36 4.47 2.96
4 ParkGreen 1.71 1.71 1.64 1.64
5 SO2 2.03 2.02 2.00 1.99
6 DependencRatio 3.96 3.21 3.10 2.66
7 PopulationGrowth 25.57 2.33 2.19 2.02
8 ElectricalConsumption 3.59 3.57 3.56 3.53
9 Urbanisation 6.15 5.59 5.30 (Remove)

Table 5.3: The selection of independence variables when using log(SMR) as the dependent
variable using VIF

Although the Farrar & Glauber test and Leamer’s method only give a range

from low to high multicollinearity, they can reflect which independent variable

has the highest multicollinearity. Table 5.4 shows the independent variables with

the top three high multicollinearities using Farrar & Glauber test (F-G tests in

table) and Leamer’s method (Leamer in table). In the first method, the indepen-

dent variable with a higher value shows higher multicollinearity. On the contrary,

the independent variable with a higher value in Leamer’s method has lower mul-

ticollinearity. The result shows that the multicollinearity analysis with different

methods leads to the same result. To conclude, the independent variables with the

top three high multicollinearities are crude birth rate, GRP per capita and urban-

isation with regards to VIF, Farrar & Glauber test and Leamer’s method. After

these independent variables are removed, the condition number becomes 29.58,

which is lower than 30, indicating that multicollinearity is a reasonable level.
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F-G test Leamer
1 GRP per capita 1938 2214 0.19 0.19
2 CrudeBirthRate 2283 0.17
3 HouseholdConsumption 1709 1985 340 0.20 0.20 0.47
4 ParkGreen 50 58 63 0.76 0.77 0.78
5 SO2 72 83 98 0.70 0.70 0.71
6 DependencRatio 206 180 206 0.50 0.56 0.57
7 PopulationGrowth 1713 108 117 0.20 0.66 0.68
8 ElectricalConsumption 180 210 251 0.53 0.53 0.53
9 Urbanisation 359 374 421 0.40 0.42 0.43

Table 5.4: The independent variables with the top three high multicollinearities using Farrar
& Glauber test and Leamer’s method

5.2.2 Model selection

In Section 5.1, the SMR maps show that the SMR has a spatial correlation at

the provincial level of China. At the same time, the existence of SMR spatial

correlation in China has been proven by the global and local Moran index. The

SMR in China has the positive autocorrelation and the SMR clusters are located

in eastern and western China. According to Elhorst (2014), the spatial dependence

model can be used to explain the behaviour of SMR in provinces. However, there

are space and time-specific variables affecting the SMR since this study is based

on 31 provinces in 16 years. In order to control space and time-specific effects,

the panel data model is applied and then we considered the spatial panel data

model instead of the spatial dependence model. To determine which model best

fits the data, the statistic of panel data is introduced firstly. Table 5.5 reports

the statistic results when only the panel data model was considered. The table

includes the OLS model, fixed effect model, and random effects model. The fixed

effects model is a suitable specification when the research focus is on a specific set

of observations. If the set of observations is large, the fixed effects model leads to

a loss in the degrees of freedom. Therefore, the random effects model is considered
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5.2. Spatial lag model with fixed effects

to be more appropriate because it uses a subset of individuals to represent the

whole population (Baltagi, 2008). Meanwhile, the fixed effects model and random

effects model have included three types of effects: space-specific effects, time-

specific effects, and both (space-specific and time-specific) effects. It is found that

the time-specific model best fits our data, since the adjust R2 is the closest to one

among all three. At the same time, the Hausman test (Hausman, 1978) can be

used to determine whether the effect is fixed or random. The null hypothesis is

that the preferred model has random effects and the alternative hypothesis states

that the model has fixed effects. In this study, the degree of freedom is equal to 6

because there are six independent variables in the model. The Hausman statistic

was equal to 123.68, and its corresponding p-value is close to zero (much smaller

than 0.05); the null hypothesis is thus rejected, indicating that the model has fixed

effects.

Effect Model
Total Sum
of Squares

Residual Sum
of Squares

R2 Adjust R2

- OLS 3.1862 1.7876 0.4390 0.4321

Fixed
Space-specific 0.2092 0.2016 0.0360 -0.0396
Time-specific 3.1849 1.2313 0.6134 0.5963
Both 0.2079 0.1980 0.0477 -0.0616

Random
Space-specific 0.2479 0.2404 0.0302 0.0183
Time-specific 3.1862 1.7876 0.4390 0.4321
Both 0.2484 0.2409 0.0303 0.0184

Table 5.5: Statistic results of dependent variable log(SMR) using panel data models

To determine which type of spatial panel data model best fits the data, the

Lagrange Multiple (LM) test and robust LM test can be applied (Burridge, 1980;

Anselin, 2013). When the LM test is used for the spatial lag model, the null

hypothesis is that there is no spatially lagged dependent variable. Similarly, if

the LM test is used for the spatial error model, the null hypothesis assumes that

there are no spatially autocorrelated error terms. If the LM test is significant in
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the spatial lag model, but is not significant in the spatial error model, the spatial

lag model should be applied. In the converse case, the spatial error model will be

the choice. When the LM tests for both models are significant, robust LM tests

should be used to select the appropriate model. The robust LM test is a test for a

spatial lag dependent variable in the presence of spatial error dependence (when

it is a spatial lag model) and for spatial error dependence in the presence of a

spatial lag dependent variable (when it is a spatial error model) (Anselin et al.,

1996). If robust LM tests are significant in both models but one is magnitude

significant in the other, such as p <0.00001 compared with p <0.03, then the

model with more significance is selected (Anselin et al., 2008). If robust LM tests

are highly significant in both models, LeSage and Pace (2009) suggested that the

spatial Durbin model should be considered. Table 5.6 summarizes the selection

of models using LM and robust LM tests. LM(lag) and LM(error) are LM tests

for the spatial lag model and spatial error model. LMrob(lag) and LMrob(error)

are robust LM tests for spatial lag model and spatial error model. The result Y

indicates the test is significant, N means the test is not significant and Y(higher)

is magnitude significant.

Significant
LM(lag) Y N Y Y Y Y Y
LM(error) N Y Y Y Y Y Y
LMrob(lag) - - Y N Y(higher) Y Y
LMrob(error) - - N Y Y Y(higher) Y
Model selection lag error lag error lag error durbin

Table 5.6: Model selection in LM and robust LM test

Table 5.7 shows the results of spatial panel data model selection. It is used

LM test in both spatial lag model and spatial error model with log(SMR) and

log(CMF) as the dependent variable. Moreover, three kinds of fixed effects are

considered. The table shows that the null hypothesis was not rejected at the 5%

44



5.2. Spatial lag model with fixed effects

level of significance in all cases. The null hypothesis was rejected at the 10% level

of significance only for the spatial lag model with time-specific effects. Thus, the

spatial lag model with time-specific effects was applied in this study with log(SMR)

as the dependent variable.

Dependent
variable

Test
Space-specific

effect µi

Time-specific
effects νt

Spatial-specific and
time specific effects

Value p-value Value p-value Value p-value

log(SMR)
LM(lag) 0.229 0.633 3.275 0.070 0.124 0.725
LM(error) 0.241 0.624 0.673 0.412 0.049 0.826

log(CMF)
LM(lag) 0.193 0.661 1.158 0.282 0.139 0.709
LM(error) 0.141 0.708 1.337 0.248 0.045 0.832

Table 5.7: The selection of spatial panel data model

5.2.3 Model estimation

Finally, ML estimation was used to estimate all unknown parameters. The esti-

mation results are presented in Table 5.8. As shown in the table, the parameters

of the independent variables SO2 and dependency ratio are not significant. Hence,

these two variables were removed from the model.

Estimate Std.Error P-value
α 0.2142 0.0533 0.0000 ***
λ 0.102438 0.048222 0.033640 *
βHousehold consumption -0.021080 0.001398 0.000000 ***
βPark green -0.019262 0.002446 0.000000 ***
βSO2 0.000002 0.000585 0.997700
βDependency ratio 0.000521 0.001240 0.674200
βPopulation grown 0.018005 0.002461 0.000000 ***
βElectrial consumption 0.018275 0.004580 0.000066 ***
∗ ∗ ∗: p-value<0.000, ∗: p-value<0.05.

Table 5.8: Estimation results for the spatial lag model with fixed effects

ML estimation was applied once again after removing the two variables. Table

5.9 presents the updated estimation results of the spatial lag model with fixed
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effects. The mean intercept α was obtained from ȳ.. − βx̄.. (Baltagi, 2008), where

ȳ.. and x̄.. denoted the average values of yit and xit for all provinces i and year t,

respectively. The spatial autoregressive coefficient λ was 0.1022, which was signif-

icant in the model with p-value equal to 0.0339. Thus, neighbours influence each

province. The household consumption and park greenery level had a negative re-

lationship with the log(SMR). A 1 yuan increase in household consumption would

lead to a 0.0213 decrease in the log(SMR). These findings are similar to those of

Schultz (1984) and Kinge et al. (2019). Furthermore, a 1 m2 per capita increase in

park green area would result in a 0.0193 decrease in the log(SMR). This relation-

ship coincides with the results of Alcock et al. (2014), Twohig-Bennett and Jones

(2018), Kondo et al. (2018) and Wang and Tassinary (2019), who proved that

the improvement of green area in a residential environment can reduce mortality

directly or indirectly.

Estimate Std.Error P-value
α 0.2333 0.0279 0.0000 ***
λ 0.1022 0.0482 0.0339 *
βHousehold consumption -0.0213 0.0012 0.0000 ***
βPark green -0.0193 0.0024 0.0000 ***
βPopulation grown 0.0186 0.0019 0.0000 ***
βElectrial consumption 0.0179 0.0032 0.0000 ***
∗ ∗ ∗: p-value<0.000, ∗: p-value<0.05.

Table 5.9: Estimation results of the spatial lag model with fixed effects

This study also found that population growth and electrical consumption were

positively associated with the log(SMR). If the population growth rate increased

by 1, the log(SMR) would increase by 0.0186. Similarly, a 1,000 kwh per capita in-

crease in electrical consumption would lead to a 0.00179 increase in the log(SMR).

Notably, electrical consumption as used in this study is the combined industrial

and residual consumption. Although Mazur (2011) mentioned that an increase in

residual electricity consumption is essential for the improved well-being of poor
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5.2. Spatial lag model with fixed effects

areas and countries, industrial electrical consumption comprises the lion’s share

of electrical consumption (85.94% in 20181) in China and generates air pollution.

Therefore, electrical consumption has a positive relationship with the log(SMR)

for China. Gohlke et al. (2011) pointed out that while there is no significant

relationship between electrical consumption and life expectancy, the increase in

electrical consumption in China lead to the increase in infant deaths.

Table 5.10 shows the results of the estimation of time-specific effects νt in the

spatial lag model with fixed effects, which includes the estimated values of νt, SEs

and the p-values. The term νt represents the deviation from α in year t and can be

obtained from ȳ.t − βx̄.t − α (Baltagi, 2008), where ȳ.t and x̄.t denote the average

of
∑

i yit and
∑

i xit for all years respectively. The negative sign of νt shows that

the average of the SMR for this year is lower than the overall average SMR.

1Data source: the NBS
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Estimate νt Std.Error P-value
2000 -0.1579 0.0296 0.0000 ***
2001 -0.1404 0.0299 0.0000 ***
2002 -0.1660 0.0275 0.0000 ***
2003 -0.1383 0.0281 0.0000 ***
2004 -0.1181 0.0293 0.0001 ***
2005 -0.1009 0.0302 0.0008 ***
2006 -0.0791 0.0313 0.0114 *
2007 -0.0523 0.0327 0.1102
2008 -0.0176 0.0338 0.6021
2009 0.0137 0.0356 0.7003
2010 0.0491 0.0370 0.1850
2011 0.1039 0.0390 0.0077 **
2012 0.1372 0.0404 0.0007 ***
2013 0.1799 0.0418 0.0000 ***
2014 0.2191 0.0437 0.0000 ***
2015 0.2679 0.0447 0.0000 ***
∗ ∗ ∗: p-value<0.000, ∗: p-value<0.05.

Table 5.10: Estimation results of the time-specific effects in the spatial lag model with fixed
effects

It is necessary to do the goodness-of-fit tests and residual analysis for the model.

The Akaike Information Criterion (AIC) (Akaike, 1998) is used to compare models

and evaluate which one has the best fitting. The lower AIC, the better the model

is. In the study, the spatial lag model with fixed effects has an AIC of -699.865

whereas the linear model with no lags has an AIC of -541.0281, which suggests

that the first model is better. Besides, the residual density plot is used to analyse

the behaviour of residuals. Figure 5.4 shows the residual density plots of OLS and

the spatial lag model with fixed effects (SLMFE). It is found that the residual

density plot of SLMFE is closer to bell-shape curve than the residual density plot

of OLS, which the (standard) normal density possesses. At the same time, the

Moran test is used in residuals of the spatial lag model with fixed effects and the

results are shown in Table 5.11. It is found that all Moran’s I values are closed to

zero, which indicates that there is almost no spatial autocorrelation. Moreover, the
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(a) The residual density plot of OLS (b) The residual density plot of SLMFE

Figure 5.4: The residual density plot of OLS and SLMFE

null hypothesis (no spatial autocorrelation) cannot be rejected since all p-values

are larger than 0.05. Therefore, both aspects can support the selection of the

proposed model.

Year 2000 2001 2002 2003 2004 2005 2006 2007
Moran’s I -0.096 -0.079 -0.028 -0.003 -0.001 -0.019 -0.051 -0.020
P-value 0.557 0.506 0.313 0.241 0.226 0.275 0.374 0.269
Year 2008 2009 2010 2011 2012 2013 2014 2015
Moran’s I -0.055 -0.087 -0.083 -0.049 -0.048 -0.061 -0.063 -0.047
P-value 0.390 0.524 0.520 0.391 0.388 0.425 0.433 0.349

Table 5.11: Global Moran’s I of the residuals of the spatial lag model with fixed effects
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Chapter 6

Conclusions

China has rapidly developed its economy alongside its population’s life expectancy.

However, unbalanced development across China has also created challenges. The

more-developed provinces attract younger cohorts, which increases economic dis-

parities and changes the age distribution of population at the provincial level.

This study used China’s census (2000, 2010) and micro census (2005, 2015) data,

including age-specific population and death figures at the provincial level, to cal-

culate the SMR. Additionally, other demographic, environmental, economic, and

social data for 2000–2015 were collected from the NBS. Interpolation methods were

used to account for missing data for one or more years. The application of mortal-

ity standardisation showed that mortality rates exhibit a spatial imbalance at the

provincial level in China. In general, provinces in south-eastern China have lower

mortality rates. This is because these provinces have well-developed economies,

trade opportunities, and a climate conducive to agriculture. South-eastern China

also has better living, healthcare, and educational infrastructure. In contrast,

provinces in western China showed higher mortality rates for 2000–2015, owing to

an adverse high-altitude, low-oxygen environment, and poor medical and educa-
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tional conditions.

To analyse mortality autocorrelation between provinces, the global and local Moran’s

indices were used to test spatial autocorrelation. The SMR had positive spatial

autocorrelation at the provincial level, implying that the change in SMR for one

province was usually in the same direction as that of its neighbours. The local

Moran’s I values indicated the presence of high–high (HH) and low–low (LL) spa-

tial clusters in 2000 and 2005. Only a high–high spatial cluster was observed in

2010 and 2015. A cluster of high SMR (HH spatial cluster) was formed in eastern

China, whereas a cluster of low SMR (LL spatial cluster) was formed in western

China.

The spatial lag model with fixed effects was then applied to model the detected

spatial dependence at the provincial level. The spatial autoregressive coefficient

λ was found to be 0.1022, indicating that the log(SMR) of a province changed

with the log(SMR) of its neighbours. Meanwhile, household consumption, park

green level, population growth, and electrical consumption were found to affect

the log(SMR) at the provincial level. The first and last two impact factors had

negative and positive relationships with the log(SMR), respectively.

This study provides a standardised method to analyse the differences in mor-

tality rates within China and identify the causes driving such differences between

provinces. The increase in population growth leads to an increase in mortality

rates. Medical treatment and healthcare systems should be improved in under-

developed provinces, especially those in western China. Furthermore, economic

development is negatively correlated with mortality rates at the national level.

However, many workers from less-developed provinces migrate to more-developed
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provinces (or cities) for jobs and contribute to the economies of the more-developed

provinces, thereby enlarging the gap between less- and more-developed provinces

in China. Pensions and other social security payments in less-developed provinces

as well for workers employed in different provinces should be improved. In ad-

dition, greater investments in social security, education, and healthcare in the

cities/provinces surrounding the more-developed cities can attract more migrant

workers to such regions, making the gap smaller. However, economic development

may inevitably lead to pollution. For example, the large industrial consumption

of electricity leads to air pollution. Hence, improving environmental conditions by

developing much-needed green spaces in urban areas can decrease mortality rates

in China. The government should consider environmental protection and pollution

in the context of sustainable development.

This study is subject to certain limitations. First, data from only four years were

included. Additionally, only the data for 2000 and 2010 were complete, whereas

the data for 2005 and 2015 were 1% sample data. This study can be extended in

future using more recent data. Second, as government plans and policies greatly

affect provincial development, future researchers can include such relevant impact

factors in their models, although it is difficult to quantify these plans and policies.
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Appendix A

Data

This study is based on 31 provinces situated in mainland China: Beijing (BJ),

Tianjin (TJ), Hebei (HB), Shanxi (SX), Inner Mongolia (IM), Liaoning (LN),

Jilin (JL), Heilongjiang (HLJ), Shanghai (SH), Jiangsu (JS), Zhejiang (ZJ), An-

hui (AH), Fujian (FJ), Jiangxi (JX), Shandong (SD), Henan (HA), Hubei(HB),

Hunan (HN), Guangdong (GD), Guangxi (GX), Hainan (HI)1, Sichuan (SC),

Guizhou (GZ), Yunnan (YN), Tibet (XZ), Shaanxi (SN), Gansu (GS), Qinghai

(QH), Ningxia (NX) and Xinjiang (XJ). The geographical distribution is shown in

Figure A.1.

1Hainan is an island and does not have any geographical neighbourhood. We have considered
it as a neighbour of Guangxi and Guangzhou, owing to their close economic, cultural and climatic
connections.
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Figure A.1: China’s mainland Provincial geography

A.1 Data sources

Data on China was accessed from the following sources:

The National Bureau of Statistics (NBS)2

The NBS is responsible for national statistics, national economic accounting and

the enactment of statistical regulations. It governs the Provincial Bureaus of

Statistics. The NBS provides total populations and crude death rates at the

provincial level.

The National Population Census of the People’s Republic of China

(Census)3

A census enumerates every individual in a population, recording information on

the national and provincial population and households. Census data collection

2http://www.stats.gov.cn/english/
3http://www.stats.gov.cn/english/Statisticaldata/CensusData/
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is organised by the NBS. Thus far, China has completed six censuses, in 1953,

1964, 1982, 1990, 2000 and 2010, respectively (the 2020 census data is yet to be

released). Future censuses will be conducted by the NBS in all years ending with

0. Censuses provide age-wise population and death figures at the provincial level,

which were required for this study.

The 1% Population Sample Survey (Micro Census)

Decadal micro censuses in China are also conducted by the NBS. Generally, the

NBS conducts a micro census in years ending with 5 (such as 2005 and 2015),

and approximately 1% of the population is surveyed. China conducted four micro

censuses, in 1987, 1995, 2005 and 2015. The 2005 and 2015 micro censuses provide

age-wise population and death figures at the provincial and national levels.

The World Bank4

The World Bank (WB) is an international financial institution, and its website

provides free global statistical data. It works to improve the quality, timeliness,

and relevance of national and international statistics. The WB databases apply

international standards and norms and are a consistent, reliable source of informa-

tion. The WB provides data on total population and population in the age groups

0–14 and 15–64 years for China. It also provides mortality rates for the age groups

0 and 0–5 years and the number of deaths in the age groups 5–9, 10–14, 15–19,

and 20–24 years at the national level.

China Population and Employment Statistics Yearbook (PE Yearbook)

It is an informative annual report published by the NBS. With a comprehensive

view of China’s population and employment situation, it provides the 1‰ popu-

lation and employment sample survey data for a specific year (except for census

and micro census years). It also covers key statistical data for the recent years

and some historically important years at the national and provincial level. PE

4https://data.worldbank.org/
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Yearbooks provide the crude death rates and population at the provincial level.

Moreover, they also provide population and death rates by age at the national

level.

China Statistical Yearbook (CS Yearbook)5

The CS Yearbook is an annual NBS statistical publication, which provides the

1‰ population sample survey results for a particular year (except for census and

micro census years). It comprehensively reflects China’s economic and social de-

velopment. CS Yearbooks provide age-wise population at the national level, total

population, and crude death rates at the national and provincial levels.

Table A.1 summarises the different data sources for total and age-specific deaths

and population at the provincial level. Table A.2 shows the different data sources

for total and age-specific deaths and population at the national level. Census

and micro census data were used in the study, as data on age-specific deaths and

population at the provincial level were available only from these two sources.

5http://www.stats.gov.cn/english/Statisticaldata/AnnualData/

77



A. Data

Provincial level
Age-specific Total

Number of
death/rate

Population
Number of
death/rate

Population

NBS × × (rate)
2000-2018

2000-2019

Census
(number)
2000, 2010

1990, 2000,
2010

(number)
2000, 2010

2000, 2010

Micro census
(number)
2005, 2015

2005, 2015
(number)
2005, 2015

2005, 2015

WB × × × ×

PE Yearbook × × (rate)
1990-2019

1990-2018

Yearbook × × (rate)
1999-2019

1999-2018

Note: ‘×’ means that the data is not available for this source.

Table A.1: Data sources for population and deaths at the provincial level

National level
Age-specific Total

Number of
death/rate

Population
Number of
death/rate

Population

NBS × × (rate)
1949-2019

1949-2019

Census
(both)1990,
2000, 2010

1990, 2000,
2010

(number)
2000, 2010

1990, 2000,
2010

Micro
Census

(both)
2005, 2015

2005, 2015
(number)
2005, 2015

2005, 2015

WB × × (rate )
1960-2019

1960-2019

PE Yearbook 1996-2018 1994-2018
(rate)

1949-2018
1949-2019

Yearbook × 1999-2018
(rate)

1949-2018
1949-2019

Note: ‘×’ means that the data is not available for this source.

Table A.2: Data sources for population and deaths at the national level

78



A.2. Data description

A.2 Data description

A.2.1 Mortality Data

The databases for population and number of deaths from censuses in 2000 and

2010 and micro censuses in 2005 and 2015 are summarised as follows:

Year 2000 2005 2010 2015
No. of provinces 31 31 31 31

Population Census Micro census Census Micro census (1.55%)
Deaths Census Micro census Census Micro census

Table A.3: Database sources

The age-specific number of death and population were available for 2000, 2005,

2010, and 2015. In this case, the interpolation function was used to construct new

data points. The linear interpolations for age-specific deaths and population are

expressed as follows:

ni,g(t) = ni,g(τ) +
t− τ

5
(ni,g(τ + 5)− ni,g(τ)), τ < t < τ + 5

di,g(t) = di,g(τ) +
t− τ

5
(di,g(τ + 5)− di,g(τ)), τ < t < τ + 5

where year τ may be 2000, 2005, or 2010, ni,g(t) is the population in age group g

in province i in year t, di,g(t) is the number of deaths in age group g in province i

in year t.

A.2.2 Variable selection

To explain mortality behaviour, some impact factor variables were considered in

the regression model. The data for the 31 Chinese provinces were mainly obtained

from the NBS. Table A.4 lists the other data sources:
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Table A.4: Missing data in NBS and its solutions
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The impact factor variables depend on four aspects: demography, environment,

economy, and societal development.

• Demography - China was recognised as an ageing society from 2000 when

the proportion of the population above 65 years of age exceeded 7%. The do-

mestic migration from less-developed provinces to more-developed provinces

changed the demographic distribution in different provinces (Shen, 2013).

Over the last four decades, many people in China, including millions of par-

ents from small cities or rural areas, have migrated to larger cities for jobs,

leaving their children (termed ‘left-behind children’) with grandparents. This

phenomenon further diversifies the age-specific population distribution be-

tween provinces as well as urban and rural areas. Hence the crude birth

rate and population growth are different at the provincial level of China.

Meanwhile, it makes dependency ratios to be different at the provincial level

of China. Crude birth rate, population growth and dependency ratio are

considered as impact factor variables for mortality in the study.

- Crude birth rate (‰): It is the total number of live births per 1,000 popula-

tion for a reference period.

- Population growth (‰): It is the increase in the number of individuals in a

population. Specifically, it refers to the change in population over unit time.

- Dependency ratio (%): It is the age-wise population ratio of those typically

not in the labour force (0–14 and 65+ years) to those typically in the labour

force (15–64 years). It is used to measure the pressure on the productive

population.

• Environment - The green area and air pollution are relevant to human

health. Wang and Tassinary (2019) pointed out that green spaces in cities

81



A. Data

and mortality risk have an obvious correlation and the level of the green area

has large differences among provinces in China (Zhang et al., 2020). Hence,

the green spaces impact mortality in the different level at the provincial level

of China. Besides, SO2 has several negative effects on human health (Lin

et al., 2004; Khan and Siddiqui, 2014; Goudarzi et al., 2016). China is the

third-largest SO2 emitting country in the world. Moreover, The levels of

SO2 show geographical diversity in China and it is associated with increased

premature mortality and morbidity (Cao et al., 2012). Hence, public green

area and SO2 emission are considered as impact factor variables for mortality

in the study.

- Public green area (m2 per capita): The per capita public green area is an

important indicator reflecting the living environment and quality of life of

the residents and which includes district and residential parks and botanical

gardens.

- Sulphur dioxide (SO2) emissions (kg per capita): It includes both industrial

and residential emissions. The former mainly result from the burning of

fossil fuels by power plants and other industrial facilities. The second latter

result from domestic consumption and human activities, such as heating and

kitchen ranges.

• Economy - The development of the economy impacts mortality rates and

its impacts on poor and rich regions are very different. The life expectancy

of poor areas is easier influenced by incomes than in rich areas (Linden

and Ray, 2017). The increase of incomes will improve life quality in poor

areas. Meanwhile, the high income areas are easier to provide the infras-

tructure for public health in order to maintain people’s health (Cutler et al.,

2006). In China, the mortality rates are disparity between more developed
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provinces and less developed provinces (Zhao, 2006). Hence, GDP per capita

and household consumption level as indexes to measure people’s life qual-

ity among countries (or areas, provinces) are considered as impact factor

variables for mortality in the study.

- Gross regional product per capita (1,000 yuan per capita): GRP is simply

the GDP for each province. It is a monetary measure of the market value of

all final goods and services produced by a particular province.

- Household consumption level (1000 yuan): Household consumption is the

total consumption expenditure by households on their everyday needs, such

as food, clothing, housing, energy, transport, and health costs.

• Societal development - Urbanization brings high quality of residential

environment, education resources and medical treatments, which indirectly

impacts mortality (Muller, 2002; Lleras-Muney, 2005). Similarly, urbaniza-

tion also influences mortality rates in China through other aspects (Luo

et al., 2015; Li et al., 2016; Hou et al., 2019). However, urbanization levels

at the provincial level of China are different (Lin et al., 2018), which means

mortality rates may have been influenced differently by urbanization level at

the provincial level of China. Besides, electricity consumption has a closed

relationship with economic growth in China (Shiu and Lam, 2004). Mazur

(2011) mentioned that the increase of electricity consumption is essential for

poor areas and countries to improve well-being. In China, all rural areas have

been electrified since 20186. Not surprisingly, the electricity consumption is

unbalanced at the provincial level in China, in the sense that provinces with

more rural areas particularly have less electricity consumption. Hence, ur-

6Report from NBS: http://www.stats.gov.cn
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banization and electrical consumption per capita are considered as impact

factor variables for mortality.

- Urbanisation (%): It is defined as the proportion of a population living in

urban areas.

- Electrical consumption (1,000 kwh per capita): Electrical consumption is

included in industrial and residential consumption. In the present study,

electrical consumption impacts the economy and daily life.

A.3 Missing population census data

Population censuses are aimed at deciphering a country’s demographic structure.

However, worldwide, errors and inconsistencies invariably occur during large pop-

ulation censuses. Generally, errors made during population censuses include omis-

sions, duplications, and erroneous inclusions (Secretariat, 2010). The first type

refers to missing housing units, households, or persons in census enumeration. The

second happens when housing units, households, or persons are recorded multiple

times. The last occurs if housing units, households, or persons are enumerated

but in incorrect locations. Gross coverage error is a combination of omissions,

duplications, and erroneous inclusions.

China’s population enumeration is a challenging task as it has the largest pop-

ulation. Omission of births and deaths is one of main problems in population

censuses in China. First, families may not report new-borns to escape the pun-

ishment for violating the one-child policy. They may also not report the deaths

of their family members because they would like to retain pension benefits. Sec-

ond, death, especially a new-born’s, is believed to be ominous in Chinese culture,

which makes families reluctant to announce such deaths. Finally, the enumera-
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tion of deaths uses the permanent residence rather than the household registration

(’Hukou’ in Chinese) location. For example, when a person living alone in Beijing,

with his hukou in Shanghai, passes away, the death will be counted in Beijing’s

data, and not Shanghai’s. However, as the deceased lived alone, this case may

not be reported to the Beijing government. Duplications occur when persons are

enumerated more than once. A person may have been counted in the province of

their permanent residence in the 2000 census, but simultaneously in their current

living location and hukou location in the 2010 census.

The evaluation of census data in China focuses on the population distribution

and the number of deaths. To evaluate the 2000 census, Zhai (2003) calculated

the omission of death rates in the 2000 population census. For the 2010 census,

Wang (2013) applied the cohort survival and brass logic life table methods to re-

estimate mortality rates, not only for 0–4 year olds but also for those over 60 years

of age. Wang and Ge (2013) introduced the forward survival method to evalu-

ate omission and duplication of population by gender and age in the 2010 census.

Hongyang Cui (2013) used demographic analysis to assess the 2010 census based

on the 2000 census. Chen and Zhang (2015) adjusted the population with aged

0-5 years in the 2010 population census and then evaluated the fertility rate.

Age-specific deaths across sexes for different provinces in 2005 and 2015 are pro-

vided in the 2005 and 2015 micro censuses, which contain data for 31 provinces.

However, some values were found missing in the data set. There may be two kinds

of missing data in one age group in a province. The first case is that the data

for only one sex (male or female) is missing, and the second is that the data for

both males and females is missing. Notably, the number of deaths of males and

females in the age group 1–4 was not available for Tianjin (TJ) in 2005, unlike the
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total death numbers for this age group. This may either be an error, or it may be

the case that the gender information was missing and only the sum was recorded.

Hence, we classify it as the second type of missing data. For the summary of

missing data, see tables A.7, A.8 ,A.5 and A.6; the shaded parts indicate that the

data for the age group are missing for the respective province.

BJ TJ HB IM XZ QH NX
T
M100+
F

Table A.5: Missing data of population in 2005

TJ XZ QH NX
T
M100+
F

Table A.6: Missing data of population in 2015
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Table A.7: Missing data of death number in 2005
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Table A.8: Missing data of death number in 2015
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A.4 Data imputation

Data collected from a large-scale survey often has missing values. For example,

some individuals are not willing to respond questions about personal life, especially

in death information. Missing values have a significant impact on descriptive

statistics and predictive analysis. Micro censuses in China also face challenges

from missing data. According to Rubin (1976) classification, missing data types

are classified as missing completely at random (MCAR), missing at random (MAR)

and not missing at random (NMAR). We denote U is our data set, where U =

{Uobs, Umis}, Uobs and Umis are the observed and missing data in U , respectively.

The MCAR indicates that the missing data are independent of the observed and

unobserved data. Hence we have

f(M |U, ϕ) = f(M,ϕ)

whereM is the missing data and ϕ is the unknown parameter which can completely

characterises the data U .

Similarly, the MAR shows that the missing data is related to the observed but not

unobserved data, it denotes as

f(M |U, ϕ) = f(M |Uobs, ϕ)

NMAR means the missing data depends only on the missing data themselves, and

not on any other observed data.

f(M |U, ϕ) = f(M |Umis, ϕ),

A.4.1 Imputation methods in general

The simplest way to handle missing values is to delete the missing value in order

to obtain complete data. However, it discards a lot of information in these missing
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data, which may lead to biased or wrong conclusions. There are quite a few

imputation algorithms proposed to solve missing data problems in the literature.

The most widely used ones can be found in the following.

• Mean imputation

It replaces missing values by the mean of the available observations. This

method keeps the data size. However, the variability in the data and the

standard deviations and the variance estimates may be underestimated.

• Regression imputation

It fills missing values with predicted values from a regression model by using

the information in the complete data. This method assumes that the im-

puted values rely on a regression line. As a result of imposing linearity, this

method will overestimate the correlation between independent and depen-

dent variables, and at the same time, their variances and covariances will be

underestimated (Enders, 2010).

• Multiple imputation

This method is a simulation-based procedure, which imputes multiple data

from the distribution of the observed data. There are mainly three steps

to implementing this method. Firstly, one needs to create multiple datasets

with the missing values being replaced by imputed values. In other words,

the missing values are filled in multiple times to create multiple complete

datasets. Secondly, the multiple complete datasets are analysed by standard

statistical methods to fit the model. Subsequently, the parameter estimates

from each imputed value are combined to obtain final results (Sterne et al.,

2009). Multiple imputation is essentially an iterative form of stochastic impu-

tation. Each imputed data includes a random component whose magnitude
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reflects the extent to which other variables in the imputation model cannot

predict its true value (Johnson and Young (2011),White et al. (2011)).

• Hot-deck method

The missing data is replaced with another value from other complete ob-

servations. The data set with missing values is called the recipient and the

one with complete observations is called the donor. This method is consti-

tuted by two steps. Firstly, the data set is divided into several clusters and

each component with a missing value is associated with one cluster. The

complete component in this cluster is applied in filling in the missing data.

This method does not depend on model fitting and thus is potentially less

sensitive to model misspecification (Andridge and Little, 2010). In addition,

when the donor in the hot-deck method is selected randomly from a set of

potential donors (called donor pool), this method is referred to as the random

hot-deck method (Andridge and Little, 2010).

The variance of a mean-imputed variable is always biased downward from the

variance of the un-imputed variable. Mean imputation reduces the variance of

the imputed variables, reduces standard errors, which invalidates most hypothesis

tests and the calculation of confidence interval and does not preserve relationships

between variables (Enders, 2010). On the other hand, the validity of the multi-

ple imputation results is questionable if there is an incompatibility between the

imputation model and the underlying model, or if the imputation model is less

general than the underlying model. This means that the imputed values in mul-

tiple imputation depends on how appropriate modelling is done, which makes it

challenging to successfully implement it in practice (Soley-Bori, 2013). Hence the

hot-deck method and regression imputation are considered in the study and they

will be discussed in detail in the following.
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A.4.2 Considered imputation methods

In this study, we applied the k nearest neighbours imputation, the linear trend of

age-specific death rate and gender ratio to estimate missing data.

A.4.2.1 k Nearest neighbours (kNN) imputation

Nearest neighbours (NN) imputation is a donor-based method in which the im-

puted value is either a data point that was actually measured from another record

in a database (1-NN) or the average of measured data from k records (kNN)

(Beretta and Santaniello, 2016). The kNN imputation is a kind of hot-deck method

with k donors being selected from the neighbours. The most notable characteris-

tics of NN imputation are the followings. Firstly, the imputed values are occurring

values and not constructed values. Secondly, this method makes use of auxiliary

information provided by the independent variables, thus preserving the original

structure of the data. In addition, it is fully non-parametric and does not require

explicit models to relate independent and dependent variables, thus being less

prone to model misspecification. The process of applying the kNN method is as

follows.

• We divide each province with missing values, it is divided into two parts Aobs

and Amis

A = Aobs + Amis

where Aobs is age-specific with observed data, Amis is age-specific groups with

missing values and A is the total age-specific groups.

• For each missing data point, the k nearest neighbours are chosen as donors

where the distance is in the Euclidean sense. Then, we use the median/mean

of these k nearest neighbours to impute the missing value, i.e.

Aknn = Aobs + Afill
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where Afill is age-specific groups of imputed values and Aknn is the total

age-specific groups without missing values.

It is important to find the value of k in kNN imputation. Duda et al. (1973) men-

tioned that the optimum k is chosen to be
√
N , where N in our case corresponds

to the number of provinces. Some other authors suggested that k should be low

(1 or 2). The imputation would be too sensitive when k is set to be 1 since the

replaced value is fully determined by the nearest neighbour. So, Cartwright et al.

(2004) suggested that k should be 2. In this study the idea of
√
N is chosen and

the resulting value of k is 5 ≈
√
31.

To determine k nearest neighbours, a distance function is applied. The most com-

mon choice is Euclidean distance function (Wilson and Martinez, 1997). Besides,

the Gower distance (Kowarik and Templ, 2016) and Mahalanobis distance func-

tions are other options in kNN imputation (Maltamo et al., 2003). In this study,

the Euclidean distance function can be defined as

d(a, b) =

√∑
g∈G

(xag − xbg)2

where d(a, b) is the distance between province a and b, xag and xbg are the death

numbers at g age group in province a and b, G is the set of age group with non-

missing values in both cases. In general, the kNN algorithm has several advantages.

It is simple to implement, intuitive to understand, and does not require any training

time compared with other more advanced algorithms. Because of this, as we keep

adding new data to the dataset, the prediction is adjusted without having to retrain

a new model. The choice of distance functions also brings some flexibility since

apparently different values will be used when the nearest neighbours are no longer

the same ones. In addition, the method can predict both discrete and continuous

data. Meanwhile, it does not create a predictive model for each component with

a missing value.
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A.4.2.2 Regression imputation

We assume that both the proportion of death number in each age-specific group

and the gender ratio across years have the linear trend.

Data interpolation for 2005

When only death (or population) numbers for one sex (male or female) are un-

known, it is assumed that the age-specific death (or population) ratio for this sex

in 2000, 2005, and 2010 has a linear trend. Hence, the missing male/female data

for 2005 for age group g in province i can be evaluated as follows:

Qi,g(2000) +Qi,g(2010)

2
=

Mi,g(2005)

Fi,g(2005)
, (A.1)

where Qi,g(2000) and Qi,g(2010) are the male to female ratios of death (or popula-

tion) numbers in age group g for province i in the years 2000 and 2010, respectively.

Mi,g(2005) and Fi,g(2005) are the death (or population) numbers for males and fe-

males in age group g in province i in 2005. For example, the male to female ratio

of deaths in the second age group for Beijing (BJ) in years 2000 and 2010 were

1.3 and 1.1, respectively. The number of male deaths in the second age group in

Beijing in 2005 was 300, and the number for female deaths was unknown. We then

have 1.3+1.1
2

= 300
Fi,g(2005)

and Fi,g(2005) = 250.

Once the missing data is calculated, the total number of deaths in these age

groups must be adjusted according to the ‘new’ data. The next step involves

the case that both genders have missing values, as the following method uses the

sum of all known deaths (including the ‘new’ data obtained using Equation A.1)

in a province.

The following method is used in the case wherein both female and male data
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values are missing. We assume that the proportion of deaths in each age group

has a linear trend. Suppose there are a total of G age groups and m (0 ≤ g ≤ G)

age groups have unknown number of deaths in a province i in year t , denoted as

xi,1(t), · · · , xi,g(t). Ai,G−m(t) is the sum of deaths apart from xi,1(t), · · · , xi,g(t) in

province i in year t, where

g∑
k=1

xi,k(t) + Ai,G−g(t) =
G∑

k=1

xi,k(t).

Bi,k(t) is the proportion of deaths for k age group for province i in year t.

Bi,k(t) =
xi,k(t)

Total values for all age-specific groups

=
xi,k(t)

g∑
k=1

xi,k(t) + Ai,G−g(t)

where k = 1, · · · , g.

We estimate these unknown deaths in 2005 by solving for the following system of

linear equations. For age group k, we have

Bi,k(2000) +Bi,k(2010)

2
=

xi,k(2005)

Ai,G−g(2005) +
g∑

k=1

xi,k(2005))

,

where k = 1, . . . , g.

Data interpolation for 2015

The 2005 interpolation method does not apply to 2015 because 2020 data are not

available currently. The life expectancy in China has continuously increased in re-

cent decades. Hence, for provinces that have missing values of age-specific deaths,

we use the smallest value of the age-specific death rate g for province i in 1990,

2000, and 2010 to approximate the age-specific missing values in 2015. Therefore,

age-specific death numbers can be obtained by the following equation,

di,g,s(2015) = ni,g,s(2015) ·min
{
ri,g(1990), ri,g(2000), ri,g(2010)

}
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where s = {female, male, female and male}. di,g is the g age-specific death number

in province i, ni,g is the g age-specific population in province i and ri,g is the g

age-specific death rate in province i.

A.4.3 Imputation evaluation

It is necessary to measure how the choice of imputation methods would affect

our analysis results and hence to select the most appropriate imputation in this

study. After dealing with missing data in micro censuses, mortality standardised

and spatial panel data model will be used in further analysis.

The SMR and CMF for all provinces are calculated with original data (missing val-

ues are filled in zero), kNN (from section A.4.2.1) and regression imputation (from

section A.4.2.2). Table A.9 and A.10 summarise minima, the first quartiles, medi-

ans, means, the third quartiles and maxima of SMR and CMF in 2005 and 2015

respectively. At the same time, it shows how values vary with different imputed

methods by calculating the variation ratio max−min
min

. These ratios are between 0

and 17.62% in SMR and are between 0.02% and 18.44% in CMF. After this the

boxplot is used to find which province is influenced the most by the choice of impu-

tation method. The boxplot is a standardised way of displaying the distribution

of data. It shows five basic statistics: minimum, first (or lower) quartile (Q1),

median, third (or upper) quartile (Q3), and maximum (details see Figure A.2).

The interquartile range is the length of the middle 50% of the interval of space.

The first and third quartiles are 25% and 75% of the data points respectively. The

data point that is located outside the whiskers of the box plot is called an outlier.

In Figure A.3, the red boxplot shows the values of SMR when the kNN imputation

is applied, the blue boxplot shows the values of SMR when the regression trend

is assumed, and the green boxplot shows the values of SMRs with original data,
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SMRlinear SMRknn SMRoriginal rate
Minimum 0.640 0.652 0.637 0.0234
First quartile 0.926 0.926 0.925 0.0006
Median 0.960 0.960 0.960 0.0000
Mean 1.029 1.034 1.028 0.0064
Third quartile 1.136 1.136 1.135 0.0010
Maximum 1.662 1.733 1.657 0.0456

CMFlinear CMFknn CMForiginal rate
Minimum 0.605 0.636 0.600 0.0600
First quartile 0.927 0.928 0.926 0.0012
Median 0.968 0.968 0.968 0.0002
Mean 1.017 1.026 1.016 0.0107
Third quartile 1.140 1.142 1.137 0.0044
Maximum 1.488 1.613 1.479 0.0906

Table A.9: SMR and CMF in 2005 with data using different imputation methods

SMRlinear SMRknn SMRoriginal rate
Minimum 0.648 0.670 0.640 0.0464
First quartile 0.892 0.893 0.889 0.0040
Median 1.021 1.028 1.023 0.0066
Mean 1.045 1.056 1.041 0.0152
Third quartile 1.169 1.169 1.169 0.0000
Maximum 1.630 1.900 1.615 0.1762

CMFlinear CMFknn CMForiginal rate
Minimum 0.640 0.677 0.630 0.0758
First quartile 0.889 0.891 0.887 0.0051
Median 1.016 1.018 1.015 0.0025
Mean 1.032 1.050 1.028 0.0205
Third quartile 1.171 1.184 1.171 0.0109
Maximum 1.552 1.838 1.552 0.1844

Table A.10: SMR and CMF in 2015 with data using different imputation methods
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Figure A.2: The boxplot structure

Figure A.3: SMRs with different miss data imputation method

which means the missing values are simply replaced by zeros. Figure A.4 shows a

similar boxplot when using CMF instead of SMR. It is found that values of SMR

and CMF are not influenced by the imputation method of missing values in almost

all provinces, except Tibet.

Here is one potential reason why Tibet is the special one. Table A.11 shows SMR,
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Figure A.4: CMFs with different miss data imputation method

CMF and imputed death numbers in Tibet in age groups 20-24, 30-34, 95-99 and

above 100 in the years 2005 and 2015 using kNN imputation and regression as-

sumption. It can be found that imputed values in age groups 20-24 in 2005 and age

group 20-24 in 2015 are very similar no matter what kinds of methods are used in

imputation. However, imputed values are totally different at ages above 95 years

in both 2005 and 2015. The imputed death numbers from kNN imputation are

much larger than deaths under the regression assumption. In specific, the imputed

death number at age 95-99 is 2129 with kNN imputation, but is 128 under the

regression assumption. It suggests that the kNN imputation at age above 95 in

Tibet may not be reasonable since the life expectancy at birth in Tibet is 68 years

in 2010 and 2029 is a large death number. In the next step, we compare death

numbers above age 95 in 2000 and 2010 with imputed death values above age 95

in 2005 and 2015 in Tibet, since death numbers in 2000 and 2010 are available.
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Imputed method 20-24 30-34 95-99 100+ SMR CMF

2005
Deathsknn 301 - 679 226 1.733 1.613
Deathslinear 302 - 45 13 1.662 1.488

2015
Deathsknn - 516 2129 452 1.900 1.838
Deathslinear - 516 128 10 1.630 1.552

Table A.11: Missing values imputation in Tibet

Table A.12 shows the death number at ages above 95 years from 2000 to 2015

in Tibet. The death number at age above 95 years in 2000 and 2010 from Census

2000 and 2010, the death number in 2005 and 2015 are imputed by regression

assumption and kNN method. It is found that the imputed values under the

linear assumption are reasonable compared with imputed values from the kNN

method. Hence, the assumption of linear trend is used to handle missing data in

the study.

Age group Death number 2000 2005 2010 2015

95-99

DeathskNN - 679 - 2129
Deathslinear - 45 - 128
Deathsoriginal 36 - 40 -

100+

DeathskNN - 226 - 452
Deathslinear - 13 - 10
Deathsoriginal 10 - 12 -

Table A.12: Deaths with ages above 95 in Tibet from 2000 to 2015

Similarly, imputation methods will not influence the spatial panel data model.

After using VIF to avoid multicollinearity, it is found that different imputation

algorithms do not change the result of VIF. Then same independent variables

with different dependent variables will be used in the spatial panel data model to

find which model fits the data best. Table A.13 shows the result of model selection.

The dependent variables are logarithms of SMR and CMF. Three sets of data are

used: the original one after filling missing values in zero, the complete ones using

kNN imputation and linear assumption respectively. The model is selected when
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the null hypothesis was rejected at the 10% level of the significance level. The

table shows that the spatial lag model with time-specific effect should be used in

the study, since the p-value is less than 0.10. It is found that log(SMR) is chosen

as the independent variable no matter which data set is considered. Hence, the

imputation methods for missing data do not really change the result in the spatial

panel data model.

Dependent
variable

Test
Space-specific effect µi Time-specific effects νt

Spatial-specific and
time specific effects

Value p-value Value p-value Value p-value

Linear
log(SMR)

LM(lag) 0.229 0.633 3.275 0.070 0.124 0.725
LM(error) 0.241 0.624 0.673 0.412 0.049 0.826

log(CMF)
LM(lag) 0.193 0.661 1.158 0.282 0.139 0.709
LM(error) 0.141 0.708 1.337 0.248 0.045 0.832

kNN
log(SMR)

LM(lag) 0.547 0.460 3.582 0.058 0.279 0.597
LM(error) 0.384 0.536 0.528 0.468 0.145 0.703

log(CMF)
LM(lag) 0.660 0.416 1.600 0.206 0.295 0.587
LM(error) 0.310 0.578 0.918 0.338 0.152 0.697

Original
log(SMR)

LM(lag) 0.322 0.570 3.529 0.060 0.243 0.622
LM(error) 0.397 0.529 0.534 0.465 0.176 0.675

log(CMF)
LM(lag) 0.259 0.610 1.345 0.246 0.225 0.635
LM(error) 0.267 0.605 1.101 0.294 0.137 0.711

Table A.13: Section of the spatial panel data model
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