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Abstract

High performance induction motors (IM) require a robust and reliable

speed controller to maintain the speed tracking performance under various

uncertainties and disturbances. This paper presents a sensorless speed con-

troller for IM based on speed and perturbation estimation and compensation.

By defining a lumped perturbation term to include all unmodeled nonlinear

dynamics and external disturbances, two state and perturbation observers

are designed with combining the model reference adaptive system (MRAS)

based speed observer to estimate the flux and speed states and the flux- and

speed-loop related lumped perturbation terms. The estimated flux, speed
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and perturbation terms are used to design an output feedback, speed sen-

sorless nonlinear adaptive controller (SSNAC) for IM. The stability of the

closed-loop system is addressed in Lyapunov theory. Effectiveness of the

SSNAC is verified via simulation and experiment tests. Comparing with the

standard vector control plus MRAS speed observer (VC-MRAS), the pro-

posed SSNAC reduces the speed tracking error by 20% to 30% on average

under model uncertainties and unknown load disturbance due to the estima-

tion and compensation of perturbation terms. The combined observer can

estimate the real rotor speed under speed varying and load changes and thus

makes SSNAC achieve high performance robust speed drive without using

speed sensors.

Keywords: Perturbation estimation and compensation, nonlinear adaptive

control, speed sensorless control, combined speed and perturbation

observer, induction motor

1. Introduction

Induction motors (IM) have been widely used as the main power force

in industry such as various household products and industrial applications,

and also for the developed electric vehicle such as Tesla, due to their sim-

plistic construction and reliable performance in harsh environment (Hu et al.

(2014)). However, control of IM is a challenge task due to its highly coupled

nonlinear nature, the unmeasurable rotor side variables and flux linkage and

uncertainties from the parameters and the load (Finch and Giaouris (2008)).

At present, the most widely applied control approaches for IM are the vector

control (VC) and direct torque control (DTC) (Rehman and Xu (2011)). The
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DTC is a lookup table based control approach that directly adjusts the sta-

tor voltage using space vector technology to avoid the complex coordination

transformation on stator current and therefore results in a rapid response of

torque (Rind et al. (2017); Costa et al. (2019)). The VC, also called field-

oriented control, can successively regulate the magnetic flux amplitude and

the rotor mechanical speed to track their references (Bhowate et al. (2019)).

However, the traditional VC method can only realize the asymptotic input-

output linearisation of the IM system and cannot fully linearise the nonlinear

dynamic of the IM system and the neglected nonlinear coupling can seriously

affect the dynamics of the magnetic flux loop and the speed loop under ex-

ternal disturbances (Marino et al. (1993); Liu et al. (2013)).

IM traction drives require high-performance controllers for fast transient

response as well as energy optimisation. One of the most used control meth-

ods for nonlinear systems is the input-output linearisation control (IOLC) to

achieve complete decoupling of rotor speed and flux linkage. This method

can simultaneously adjust the speed and magnetic flux without ignoring the

coupling nonlinear dynamics between them. Based on this method, some

approaches for IM speed drive have been proposed, such as the adaptive

input-output linearisation control (Marino et al. (1993)), nonlinear precision

feedback linearisation control (Boukas and Habetler (2004)) that can fully

linearise the flux linkage and speed to decouple their dynamics, and nonlinear

model predictive control to solve the optimal control problem (Englert and

Graichen (2020)). The main drawback of IOLC method is that it requires

detailed system models and accurate model parameters. In practical appli-

cations, the system parameters are difficult to obtain accurately, such as the
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time-varying rotor/stator resistance (Guzinski and Abu-Rub (2013)). In this

way, the robustness and reliability of the IOLC method are greatly reduced.

In response to this problem, researchers have developed disturbance estima-

tion and compensation methods based nonlinear adaptive control (Jiang et al.

(2004); Chen et al. (2019b,a)). These methods use online estimation and com-

pensation the lumped perturbation term that including the nonlinear parts,

external disturbances, and parameter changes. Thus, its performance does

not depend on the accuracy of the IM model. In addition, there are online

parameter estimation techniques (Proca and Keyhani (2007); Ravi Teja et al.

(2012); Kivanc and Ozturk (2018); Yang et al. (2018); Pyrkin et al. (2019);

Perin et al. (2021)), estimating the rotor resistance via stator temperature to

compensate temperature variation (Sung et al. (2012)), sliding mode control

(Wu et al. (2013); Wang et al. (2018a)), combined sliding mode techniques

with MRAS-type estimator (Tarcha la and Or lowska-Kowalska (2018); Ho-

lakooie et al. (2019)), fuzzy control (Suetake et al. (2011); Grabowski et al.

(2000)), and auto-disturbance rejection control (Feng et al. (2004); Li et al.

(2012, 2015)), etc.

On the other hand, the traditional IM speed control is based on speed

feedback from encoder or position sensors. However, due to the reliability of

the sensors as well as the electrical noise of the sensor itself, if the speed is

only obtained from the sensors, the overall reliability of the system will be

reduced, such as the impact of sensor fault (Verrelli et al. (2018)). Therefore,

in addition to installing a speed encoder, it is also considered to use sensorless

control that estimates the rotor speed in high-performance IM and EV ap-

plications (Holtz (2005)). Due to the rapid development of power electronics
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technology and digital signal processor performance, the sensorless control

method of IM becomes increasing more feasible. There have been a lot of re-

search results on the speed estimation of sensorless control, such as estimated

rotor position and velocity calculated from stationary frame (Nasiri (2007)),

rotor flux observer based algorithm (Marchesoni et al. (2020)), optimization-

based position sensorless control (Callegaro et al. (2018)), model reference

adaptive system (MRAS) speed observer (Schauder (1992); Ohyama et al.

(2005)), MRAS-fuzzy logic observer (Gadoue et al. (2010)), easy implement

PLL-like sensorless observer (Tilli and Conficoni (2016)), sliding mode tech-

niques based speed observer (Li et al. (2005); Zhang (2013); Zaky et al.

(2018)), extended Kalman filter for speed estimation (Habibullah and Lu

(2015)), artificial neural network speed observer (Sun et al. (2013)), and ap-

proximate high gain observer (Wang et al. (2018b)), etc. The MRAS speed

observer based on rotor flux equations is the most preferable scheme due

to its easy implementation and clear physical meaning (Yang et al. (2018)).

Most MRAS speed observer is using the rated parameters of the IM and

assuming the parameters are constant. To solve this issue, some parameter

estimation approaches have been proposed to deal with unknown constant

or slow-varying parameters (Marino et al. (2005, 2008); Tilli and Conficoni

(2016)). But these algorithms work under the constant or slow-varying speed

conditions which is not quite suitable in EV application. Moreover, the

disturbance observer based control algorithm uses a state observer to esti-

mate the lumped nonlinear terms and disturbances, while the speed observer

estimates the rotor speed. Then it will raise a question that, if the distur-

bance observer based control algorithm is combined with the speed sensorless
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method, whether the speed estimator affects the robustness and control per-

formance of the control algorithm. Another question is whether they can be

combined in some way to estimate speed and disturbance at the same time,

thereby reducing the amount of calculation.

In this paper, a speed sensorless nonlinear adaptive controller (SSNAC)

has been proposed to integrate the nonlinear control techniques and tradi-

tional speed estimation techniques to provide a nonlinear sensorless drive

of an IM. The SSNAC is designed using the MRAS speed observer to es-

timate the rotor speed and two state and perturbation observers (SPO) to

estimate the perturbation terms of the flux and speed loop. Moreover, a

combined speed and perturbation observer (CSPO) is proposed to estimate

the speed and perturbation terms simultaneously. It reduced the usage of

a PI regulator in the traditional MRAS speed estimator for the reduction

of computational load. The estimated perturbation term from the CSPO is

used to compensate the real value of speed perturbation in order to reduce

the dependency of accurate model and parameters for improved robustness

of the control method. The stability of closed-loop system that integrates

the nonlinear control techniques and speed estimation with a combined speed

and perturbation observer is proved using Lyapunov theory.

The remainder of this paper is organised as follows. Section 2 presents

the IM dynamic model in the d-q frame. Section 3 presents the design of the

proposed SSNAC controller. The stability proof of the closed-loop system

is presented in Section 4. The effective application of NAC is validated in

simulation and presented in Section 5 and validated experimentally in Section

6. Finally, the paper concludes in Section 7.
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2. Model of Induction Motor

A three-phase would-rotor IM can be transformed into rotating frame in

d-q axis via Park transform with the d-axis synchronize with the angle of

rotor flux θr. Then the dynamic model of an IM can be presented as follows

(Bimal (2002)):
·
x = f(x) +Gu (1)

where

x =
[
isd isq ψrd ψrq ωm

]T
f(x) =

−
(
Rs

σLs

+
RrL

2
m

σLsL2
r

)
isd + ωeisq +

RrLm

σLsL2
r

ψrd +
ωrLm

σLsLr

ψrq

−
(
Rs

σLs

+
RrL

2
m

σLsL2
r

)
isq − ωeisd −

ωrLm

σLsLr

ψrd +
RrLm

σLsL2
r

ψrq

−Rr

Lr

ψrd + (ωe − ωr)ψrq +
RrLm

Lr

isd

−Rr

Lr

ψrq − (ωe − ωr)ψrd +
RrLm

Lr

isq

3PLm

2JLr

(ψrdisq − ψrqisd)− TL
J



G =

 1

σLs

0 0 0 0

0
1

σLs

0 0 0


T

u =
[
u1 u2

]T
=
[
vsd vsq

]T
where x is the states vector of IM system with five state variables, isd and

isq are the stator current in d-q frame, ψrd and ψrq are the rotor flux linkage,
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ωm is the mechanical rotor speed. f(x) is the nonlinear function of state

dynamics. Rs, Rr, Ls and Lr are the resistances and inductances of stator and

rotor; Lm is the mutual inductance between stator and rotor phase winding;

σ = 1 − L2
m/LsLr is the parameter that indicates the leakage factor. ωe is

the synchronous speed of stator current; ωr is the rotor speed in electrical

that satisfies ωr = Pωm, P is the pole pairs of IM. J is the rotor inertia and

TL is the load torque which is seen as a disturbance. G is the matrix gain of

system inputs. u is the control inputs of IM system with two input variables,

vsd and vsq, the stator voltage inputs. The system output is defined in a

vector y, which is presented as

y = [ |ψr| ωm ]T (2)

where

|ψr| =
√
ψ2
rd + ψ2

rq (3)

and the rotor currents ird and irq can be expressed as
ird =

1

Ls

ψrd −
Lm

Lr

isd

irq =
1

Ls

ψrq −
Lm

Lr

isq

(4)

3. Speed sensorless nonlinear adaptive controller

This section introduces the design steps of the perturbation observer

based nonlinear adaptive controller (NAC) and combines it with the rotor-

flux based MRAS speed observer to become a speed sensorless control system

for IM. The NAC design uses the input-output linearisation to fully decou-

ple the interaction between the flux linkage and speed subsystems. Then
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the system nonlinearities, disturbances, and parameter uncertainties are de-

fined as perturbation terms (Ren et al. (2016)). After that, two state and

perturbation observers (SPOs), one for the flux linkage loop and the other

for the speed loop, are designed to estimate their perturbation terms. The

speed sensorless feedback controller is fed by the speed estimation from the

MRAS speed observer, which uses a PI regulator to eliminate the estimation

error. Moreover, the speed SPO and MRAS speed observer are combined

to a speed and perturbation observer that is able to estimate both the rotor

speed and its perturbation term simultaneously and the usage of PI regulator

in traditional MRAS is then removed.

3.1. Input-output linearisation

In the d − q frame dynamic model of IM in (1), the d-axis is aligned

with the direction of rotor flux. Then it can be assumed that ψrd = ψr, and

ψrq = 0 in steady state (Bimal (2002)).

Differentiate the system output y until the system inputs is separated

with other states, the input-output relationship of the IM system is obtained

as Chen et al. (2014): ÿ1

ÿ2

 =

 Lf1(x)

Lf2(x)

+B(x)

 u1

u2

 (5)

Lf1(x) =
R2

r

σL2
r

ψr(x)− LmRr

σLr

(
Rr

Lr

+
Rs

Ls

)
isd(x) +

LmRr

Lr

ωeisq(x) (6)

Lf2(x) =
3PLm

2JLr

[
−
(
Rs

σLs

+
Rr

σLr

)
ψr(x)isq(x)− ωeψr(x)isd(x)

+
LmRr

Lr

isd(x)isq(x)− Lm

σLsLr

ωr(x)ψr(x)2
]
− 1

J
ṪL(x) (7)
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B(x) =

 B1(x)

B2(x)

 =


LmRr

σLsLr

0

0
3PLmψr(x)

2JσLsLr

 (8)

where Lf1(x) and Lf2(x) represent the system nonlinearities which are func-

tion of system states and parameters. As during the normal operation ψr 6= 0,

|B(x)| 6= 0 and B(x) is a non-singular matrix, thus the feedback linearising

control can be obtained as u1

u2

 = B−1(x)

 −Lf1(x)

−Lf2(x)

+

 υ1

υ2

 , (9)

where υ1 and υ2 are the control inputs of the linear system ÿ1

ÿ2

 =

 υ1

υ2

 . (10)

3.2. Design of state and perturbation observer design

The first step of design the state and perturbation observer (SPO) is to

define the perturbation terms. The value of B(x) is time varying due to

the changes of states and parameter uncertainties, such as J and τr. De-

fine B(x) = B0 + ∆B, B0 is the nominal value of B(x) and calculated by

using the nominal value of rotor flux ψr0 and all parameters, and ∆B rep-

resents uncertainties of the control gain matrix caused from the parameter

uncertainties and operation point changes. For example, the rotor resistance

can be described as the rated resistance plus the varying of rotor resistance

as Rr = Rr0 + ∆Rr. Moreover, to simplify the controller design, it is as-

sumed that all system dynamic Lf1(x) and Lf2(x) are unknown as well. The

perturbation terms Ψ1 and Ψ2 are defined as Ψ1(x)

Ψ2(x)

 =

 Lf1(x)

Lf2(x)

+ (B(x)−B0)

 u1

u2

 (11)
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Thus, the perturbation terms include the system nonlinearities, external

disturbances TL and parameter uncertainties.

Then (5) can be rewritten as: ÿ1

ÿ2

 =

 Ψ1(x)

Ψ2(x)

+B0

 u1

u2

 (12)

Define new state variables as zi1 = yi, zi2 = ẏi, and a fictitious state to

represent the perturbation terms as zi3 = Ψi for flux subsystem and speed

subsystem, system (12) can be represented as two subsystems as:
żi1 = zi2

żi2 = zi3 +B0iui

żi3 = Ψ̇i

, i = 1, 2 (13)

Several types of SPO have been proposed for estimating the perturbation

terms, such as linear and high-gain observers (Chen et al. (2014)), sliding

mode observer (Jiang and Wu (2002)) and nonlinear observer (Han (2009)).

In order to achieve the simplest structure and applicability, in this paper

SPOs are designed via linear Luenberger observer. The SPO can be designed

as: 
˙̂zi1 = ẑi2 + li1z̃i1

˙̂zi2 = ẑi3 +B0iui + li2z̃i1

˙̂zi3 = li3z̃i1

, i = 1, 2 (14)

where ẑij are the estimation of zij, and z̃i1 = zi1− ẑi1 are defined as the state

estimation error. The observer gains li1, li2, li3 can be parametrised following

method (Yoo et al. (2007)):[
li1 li2 li3

]
=
⌊

3α0 3α2
0 α3

0

⌋
(15)

11



where α0 is the observer bandwidth and a tuning parameter. The tuning of

α0 should ensure that the observer response is faster than the controlled plant

(Yoo et al. (2007)). This leads the observer with larger bandwidth than the

bandwidth of the controller plant. On the other hand, the observer should

be applied with a lower bandwidth to filter out the measurement sensor noise

(Ellis (2002)). Therefore, the observer bandwidth setting should compromise

the requirement considering the actual bandwidth of both controller and

sensor noise.

3.3. Design of speed observer

3.3.1. Conventional MRAS based speed observer

In the MRAS based speed observer (SO) based on rotor flux equations, the

reference model is the rotor flux from the real model calculated by the current

feedback, while the adaptive model tracks the rotor flux of the reference

model via adjusting the rotor speed (Gadoue et al. (2010)). When the rotor

flux difference between adaptive model and reference model eliminated to

zero, it is known that the speed estimation is the same with the real speed.

The rotor flux dynamics of the reference model can be presented as:

dψrα

dt
=

Lr

Lm

vsα −
LrRs

Lm

isα −
σLsLr

Lm

disα
dt

(16)

dψrβ

dt
=

Lr

Lm

vsβ −
LrRs

Lm

isβ −
σLsLr

Lm

disβ
dt

(17)

where the variables vsα, vsβ, isα and isβ are the voltage control inputs and

current feedback of real IM.

The rotor flux dynamics of adaptive model is designed to estimate the
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rotor flux variables using rotor circuit equations as (Gadoue et al. (2010)):

dψ̂rα

dt
=
Lm

τr
isα −

1

τr
ψ̂rα − Pω̂mψ̂rβ (18)

dψ̂rβ

dt
=
Lm

τr
isβ + Pω̂mψ̂rα −

1

τr
ψ̂rβ (19)

where ψ̂rα, ψ̂rβ and ω̂m are the estimation of rotor flux ψrα and ψrβ and

mechanical rotor speed ωm, respectively.

The speed tuning signal ε is defined as the difference between the rotor

fluxes imaginary components from the reference model and adaptive model

as Gadoue et al. (2010):

ε = ψrβψ̂rα − ψrαψ̂rβ (20)

Then the adaptation mechanism uses a PI regulator to adjust the esti-

mated rotor speed as:

ω̂m = kPε+ kI

∫
ε dt (21)

In the MRAS-SO, as shown in the left side of Figure 1(a), when the error

ε convergences to zero, the estimated rotor speed ω̂m reaches the real speed.

Then the estimated rotor speed and rotor flux is used to feed the two SPOs

in (14) for perturbation estimation. In the whole controller design, two SPOs

are used for state and perturbation estimation of rotor speed and rotor flux

in different loops.

3.3.2. Combined speed and perturbation observer

In previous section, a MRAS-SO is designed to estimate the rotor speed

and a speed SPO is designed to estimate the speed loop perturbation by

using the estimated rotor speed, as shown in the Figure 1 (a). From the

13



(a)

(b)

Figure 1: Block diagrams of (a) a traditional MRAS based speed observer and speed

perturbation observer, (b) a combined speed and perturbation observer (CSPO).

block diagram, the rotor speed needs to be estimated twice, ω̂m and ω̂′m, in

different observers. This undoubtedly increases the computational load.

This section combines the MRAS-SO and speed SPO and proposes a

combined speed and perturbation observer (CSPO) that estimates the speed

and its perturbation term at the same time, as shown in Figure 1 (b). The

motivation of combining the MRAS-SO and speed SPO into a CSPO aims to

simplify the work in speed estimation and its perturbation estimation into a

simpler define, that when ε→ 0, the estimated speed from CSPO tends to the
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real rotor speed as ω̂′m → ωm, and its estimated perturbation Ψ̂ tends to its

real value at the same time. But in the CSPO, the actual speed signal z21 is

assuming unknown, and the standard observation error z̃21 is not achievable.

Thus, it is required to find another driving signal to replace the z̃21 in original

speed SPO.

In the original speed SPO, the observer output is driven by the observa-

tion error z̃21 = z21− ẑ21, where z21 comes from the output of PI regulator in

the MRAS-SO. In order to simplify the proof, the output of PI is simplified

with the product of proportional gain and tuning signal as z21 = kPε. Then

speed SPO from equation (14) with i = 2 can be rewritten as
˙̂z21 = ẑ22 + l21 (kPε− ẑ21)

˙̂z22 = ẑ23 +B02u2 + l22 (kPε− ẑ21)

˙̂z23 = l23 (kPε− ẑ21)

(22)

The above equation can be represented in matrix form as
˙̂z21

˙̂z22

˙̂z23

 =


−l21 1 0

−l22 0 1

−l23 0 0



ẑ21

ẑ22

ẑ23

 +


kPl21

kPl22

kPl23

 ε+


0

B02u2

0

 (23)

Thus, it proves that the tuning signal ε can be used as the driving signal

when z̃21 is not available. If using Eq. (23) as the CSPO, it will achieve

the same performance with MRAS-SO and speed SPO. But this paper aims

to reduce the complexity of the direct combination of MRAS-SO and speed

SPO. In order to simplify the CSPO design, the proposed CSPO substituted

the observation error z̃21 with the speed tuning signal ε from (20). Then the
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CSPO can be represented as
˙̂z21 = ẑ22 + l21ε

˙̂z22 = ẑ23 +B02u2 + l22ε

˙̂z23 = l23ε

(24)

Comparing among (14), (23) and (24), the CSPO maintains the simplicity

of the original SPO, utilizes the tuning signal ε to drive the estimation of rotor

speed, and replaces the PI regulator in the original MRAS system. In order

to verify whether this change is stable, the stability analysis of its closed-loop

system will be carried out in later sections.

In the separated approach, the parameters of MRAS-SO and speed SPO

are calculated separately. But the parameterisation of CSPO should take into

account the stability of both speed estimation and perturbation observation,

which is more difficult than the separate MRAS-SO and speed SPO approach.

In order to add more degree of freedom in the tuning of system parameters,

an additional proportional gain is added to the estimation of rotor speed as

ω̂m = ẑ21 + l20ε (25)

The final transfer function of the rotor speed estimation can be presented as

ω̂m =
B02u2
s2

+

(
l23
s3

+
l22
s2

+
l21
s

+ l20

)
ε (26)

The gains of l20, l21, l22 and l23 can be achieved by pole placement of the

closed-loop system by substituting (25) into system (16) to (19).

Then the CSPO consists of equation (24) and (25) to estimate the rotor

speed as well as its perturbation term simultaneously. After the speed tuning
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signal ε converges to zero, the estimation state ω̂m tracks the mechanical

rotor speed and ẑ23 tracks the rotor speed perturbation for speed control and

linearising the IM system.

3.4. Speed sensorless nonlinear adaptive controller

In the flux subsystem, the original SPO (14) is used to estimate its pertur-

bation term ẑ13. In the speed subsystem, the CSPO (24) is used to estimate

both the rotor speed ω̂m and its perturbation term ẑ23. Note that the speed

can be estimated by a conventional MRAS-SO defined in (16) to (21) and the

speed loop perturbation be estimated by a speed SPO defined in (14). Then

the control law of the speed sensorless nonlinear adaptive control (SSNAC)

can be obtained as: u1

u2

 = B−10

 υ1

υ2

−
 ẑ13

ẑ23

 (27)

Substituting (27) into (12), the system can be linearised as ÿ1

ÿ2

 =

 Ψ1(x)

Ψ2(x)

−
 ẑ13

ẑ23

+

 υ1

υ2


=

 υ1

υ2

+

 z̃13

z̃23

 (28)

where z̃i3 indicates the SPO estimation error of perturbation term zi3 as

z̃i3 = Ψi(·)− ẑi3.

By compensating the system nonlinear dynamics, parameter uncertainties

and external disturbances by the estimated lumped perturbation terms, the

linearised system can be easily controlled by lots of developed linear control

17



law. The linear control law υ1 and υ2 can be designed as υ1 = z̈∗11 + k11(z
∗
11 − z11) + k12(ż

∗
11 − ẑ12)

υ2 = z̈∗21 + k21(z
∗
21 − z21) + k22(ż

∗
21 − ẑ22)

(29)

where z∗i1 and ż∗i1 are the reference and its derivative of system outputs;

ki1 and ki2 are the gains of linear control law that are determined by pole

placement defined as ki1 = n2 and ki2 = 2n for a given pole location n. The

location of poles can be determined for a second-order linear system with a

given transient dynamic requirement.

The stator voltages, known as the system control inputs, are calculated

from the proposed controller using variables with physical meaning as
vsd =

σLsτr
Lm

[
k11(ψ

∗
r − ẑ11) + k12(ψ̇

∗
r − ẑ12)− ẑ13

]
vsq =

2JσLsLr

3PLmψr0

[
k21

(
ω∗m − ẑ21 − l20

(
ψrβψ̂rα − ψrαψ̂rβ

))
+k22(ω̇

∗
m − ẑ22)− ẑ23]

(30)

The final control scheme of the SSNAC for IM are shown in Figure 2.

The SSNAC include two control schemes, the first one is a MRAS-SO/SPOs

based SSNAC that includes a conventional MRAS-SO, two SPOs and two

control loops for flux and speed subsystem, respectively. The second control

scheme is a CSPO based SSNAC that includes the flux SPO, the speed CSPO

for and two control loops for flux and speed tracking.

4. Closed-loop Stability Analysis

The previous section proposed two control approaches, the MRAS/SPO

based SSNAC and the CSPO based SSNAC. In this section, the stability
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Figure 2: The control scheme of the SSNAC for IM.

analysis of two control schemes has been provided. Section 4.1 and Section

4.2 present the closed-loop stability proof of both control schemes of SSNAC

using Lyapunov theory.

4.1. Closed-loop stability of the MRAS/SPO based SSNAC

The closed-loop system includes five subsystems: the MRAS speed ob-

server defined in (16) to (21), the flux and speed perturbation observers

defined in (14), and their tracking errors in the IM system.

First, the error dynamic of the MRAS speed observer is obtained with

the rotor flux-based speed tuning signal ε defined in (20), whose derivative

is calculated from the rotor circuit equations as

ε̇ = −a1ε+ a2(ωm − ω̂m) + a3 (31)
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where

a1 =
2

τr
,

a2 = P (ψrαψ̂rα + ψrβψ̂rβ),

a3 =
Lm

τr
(ψrβ − ψ̂rβ)isα −

Lm

τr
(ψrα − ψ̂rα)isβ

(32)

Combining the adaptation mechanism in (21), the dynamic of speed tun-

ing signal can be rewritten as

ε̇ = −h1ε+ λ (33)

where

h1 = a1 + kPa2 (34)

λ = a2ωm + a3 − kI
∫
ε dt (35)

where h1 is a positive value as a1 > 0 and a2 > 0 (as proved in the Appendix

A) and kP > 0 defined in (21).

Second, define the estimation error of the flux SPO and the speed SPO

as z̃i1 = zi1− ẑi1, z̃i2 = zi2− ẑi2, and z̃i3 = Ψi(·)− ẑi3, where i = 1 indicating

the flux SPO and i = 2 indicating the speed SPO. The error dynamic of flux

SPO and speed SPO are obtained from (13) and (14) as
˙̃zi1

˙̃zi2

˙̃zi3

 =


−li1 1 0

−li2 0 1

−li3 0 0



z̃i1

z̃i2

z̃i3

 +


0

0

Ψ̇1(·)

 (36)

Then (36) can be rewritten in matrix format as

[ ˙̃zi] = [Ai][z̃i] + [ηi] (37)
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where [Ai] is the non-singular observer parameter matrix for both SPOs

and [z̃i] = [z̃i1 z̃i2 z̃i3]
T is the vector of estimation error with and [ηi] =

[0 0 Ψ̇i]
T indicate the vector of derivatives of perturbation terms.

The perturbation terms Ψi depend on the system parameters and varia-

tions, system input and external disturbance. In the IM, the system parame-

ters and their variations have to be bounded. The system inputs are given by

the control outputs which are designed to be bounded. The external torque

disturbance cannot be guaranteed to be bounded, but infinite external torque

disturbance is out of the scope of the controller design. Due to these, the

derivatives of the perturbation terms Ψ̇i are considered as bounded in this

paper as a precondition.

Third, define the system output tracking error as ei1 = y∗i − zi1 and

ei2 = ẏ∗i−zi2, where i = 1 indicating the flux control loop and i = 2 indicating

the speed control loop. The control law in (29) can then be represented as:

υi = ki1(y
∗
i − zi1 + zi1 − ẑi1) + ki2(ẏ

∗
i − zi2 + zi2 − ẑi2)

= ki1(ei1 + z̃i1) + ki2(ei2 + z̃i2) (38)

From (12) and (38), the closed-loop tracking error dynamics are obtained

as  ėi1

ėi2

 =

 0 1

−ki1 −ki2

 ei1

ei2

 +

 0

−ξi

 (39)

where

ξi =
[
ki1 ki2 1

]
×


z̃i1

z̃i2

z̃i3

 (40)

which indicates the lumped estimation error from (36).
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Similarly, rewrite system (39) in the matrix format as

[ėi] = [Mi][ei] + [Ki][z̃i] (41)

where [ei] = [ei1 ei2]
T indicates the tracking error of the closed-loop sys-

tem; [Mi] is the non-singular controller parameter matrix of flux and speed

subsystems; [Ki] is the matrix depending on control gains.

For the stability proof, assuming that the system input gain B(x) and

its derivative are bounded and B(x) is non-singular when ψr 6= 0; and the

perturbation terms Ψi(x, t) and their derivatives Ψ̇i(x, t) are bounded. This

assumption is reasonable based on the fact that the target system is a physical

system containing mechanical and electrical processes, so its variables will be

within a suitable range instead of infinite values. Then the closed-loop error

system can be proved to be globally uniformly ultimately bounded (GUUB)

as the following theorem.

Theorem 1. Consider the IM system (1) equipped the proposed SSNAC (30)

with the MRAS-SO in (16) to (21) and two SPOs in (14). If the perturbation

terms Ψi(x, t) defined in (11) satisfying ‖Ψ̇1(x, t)‖ ≤ γ1

‖Ψ̇2(x, t)‖ ≤ γ2
(42)

then the estimation error in (33) and (36) and the tracking error in (41) are
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GUUB, i.e., 

|ε(t)| ≤ P1|λ|

‖[z̃1](t)‖ ≤ 2γ1‖[P21]‖

‖[z̃2](t)‖ ≤ 2γ2‖[P22]‖

‖[e1](t)‖ ≤ 4γ1‖[K1]‖‖[P21]‖‖[P31]‖

‖[e2](t)‖ ≤ 4γ2‖[K2]‖‖[P22]‖‖[P32]‖

, ∀t ≥ T (43)

Proof. For the error variable ε in (33), choose a Lyapunov function as

Vso(ε) =
1

2
P1ε

2. The h1 defined in (34) is a positive value, the P1 can be set

as a positive value of P1 = h−11 .

For the SPOs estimation error [z̃i] in (37), choose the Lyapunov function

as Vspo,i([z̃i]) = [z̃i]
T[P2i][z̃i]. The gains of SPOs (14) are determined by (15),

which means [Ai] is Hurwitz. Then a feasible positive solution [P2i] can be

found from the Riccati equation [Ai]
T[P2i] + [P2i][Ai] = −I.

For the tracking error [ei] in (41), define a Lyapunov function Vt,i([ei]) =

[ei]
T[P3i][ei] and a [P3i] as a feasible positive solution from the Riccati equa-

tion [Mi]
T[P3i] + [P3i][Mi] = −I.

The Lyapunov function of closed-loop system can be defined as the sum of

MRAS speed observer, two SPOs, and two control loops as V (ε, [z̃1], [z̃2], [e1], [e2]) =

Vso(ε) + Vspo,1([z̃1]) + Vspo,2([z̃2]) + Vt,1([e1]) + Vt,2([e2]). Then the derivative
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of V can be obtained as

V̇ = P1ε(−h1ε+ λ) + [z̃1]
T([A1]

T[P21] + [P21][A1])[z̃1]

+[z̃2]
T([A2]

T[P22] + [P22][A2])[z̃2]

+[e1]
T([M1]

T[P31] + [P31][M1])[e1]

+[e2]
T([M2]

T[P32] + [P32][M2])[e2]

≤ −ε2 + P1|ε||λ| − ‖[z̃1]‖2 + 2‖[z̃1]‖‖[η1]‖‖[P21]‖ − ‖[z̃2]‖2

+2‖[z̃2]‖‖[η2]‖‖[P22]‖ − ‖[e1]‖2 + 2‖[e1]‖‖[K1]‖‖[z̃1]‖‖[P31]‖

−‖[e2]‖2 + 2‖[e2]‖‖[K2]‖‖[z̃2]‖‖[P32]‖

≤ −|ε| (|ε| − P1|λ|)− ‖[z̃1]‖ (‖[z̃1]‖ − 2γ1‖[P21]‖)

−‖[z̃2]‖ (‖[z̃2]‖ − 2γ2‖[P22]‖)

−‖[e1]‖ (‖[e1]‖ − 2‖[K1]‖‖[z̃1]‖‖[P31]‖)

−‖[e2]‖ (‖[e2]‖ − 2‖[K2]‖‖[z̃2]‖‖[P32]‖)

(44)

Each Lyapunov function in (44) has its own close-loop. In the first section,

as λ defined in (35) is bounded (as proved in Appendix B), when |ε| > P1|λ|,

the −|ε| (|ε| − P1|λ|) ≤ 0 can be obtained. Thus, there exists a time T1 > 0

to satisfy

|ε(t)| ≤ P1|λ|, ∀t ≥ T1 (45)

Similarly, there exists T2 and T3 to satisfy

‖[z̃1](t)‖ ≤ 2γ1‖P21‖, ∀t ≥ T2 (46)

‖[z̃2](t)‖ ≤ 2γ2‖P22‖, ∀t ≥ T3 (47)

and T3 and T4 to satisfy

‖[e1](t)‖ ≤ 4γ1‖K1‖‖P21‖‖P31‖, ∀t ≥ T4 (48)

‖[e2](t)‖ ≤ 4γ2‖K2‖‖P22‖‖P32‖, ∀t ≥ T5 (49)
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Considering (45) to (49) to give T = max (T1, T2, T3, T4, T5) to lead (43).

It proved that the closed-loop system of using the separate SO and speed

SPO is stable and the speed estimation error, the flux and speed perturbation

estimation error and tracking error are bounded.

4.2. Closed-loop stability of the CSPO based SSNAC

In another SSNAC approach that uses the CSPO, its dynamics is obtained

from the MRAS error defined in (33) to (35) and speed SPO in (36) into a

single matrix as
ε̇

˙̃z21

˙̃z22

˙̃z23

 =


−a1 − l20a2 a2 0 0

−l21 0 1 0

−l22 0 0 1

−l23 0 0 0




ε

z̃21

z̃22

z̃23

 +


a3

0

0

Ψ̇2(·)

 (50)

where a1 and a2 are positive values defined in (32) and −a1 − l20a2 can be

adjusted by gain l20.

The error system (50) can be rewritten into matrix form as

[ ˙̃z3] = [Λ][z̃3] + [δ] (51)

With the new estimation error (51), the (41) of speed subsystem can be

rewritten as

[ė2] = [M2][e2] + [K3][z̃3] (52)

where

[K3] =
[

0 k21 k22 1
]

(53)

The following theorem is summarised.
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Theorem 2. Consider the IM system (1) equipped the proposed SSNAC

(30) with a flux SPO in (14) and a CSPO in (24). If the perturbation terms

Ψi(x, t) defined in (11) is bounded as in (42), then the estimation error in

(50) and the tracking error in (41) are GUUB, i.e.,

‖[z̃1](t)‖ ≤ 2γ1‖[P21]‖

‖[z̃3](t)‖ ≤ 2γ2‖[P4]‖

‖[e1](t)‖ ≤ 4γ1‖[K1]‖‖[P21]‖‖[P31]‖

‖[e2](t)‖ ≤ 4γ3‖[K3]‖‖[P4]‖‖[P32]‖

, ∀t ≥ T̄ (54)

where γ3 = max {a3, γ2}.

Proof. Define the Lyapunov function for (51) as Vcspo([z̃3]) = [z̃3]
T[P4][z̃3],

where [P4] is a feasible positive solution from the Riccati equation [Λ]T[P4] +

[P4][Λ] = −I.

The Lyapunov function of closed-loop system can be defined as the sum

of the flux SPO, CSPO and two control loops as V̄ ([z̃1], [z̃3], [e1], [e2]) =

Vspo,1 + Vcspo([z̃3]) + Vt,1([e1]) + Vt,2([e2]). Then the derivative of V̄ can be
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obtained as

˙̄V = [z̃1]
T([A1]

T[P21] + [P21][A1])[z̃1]

+[z̃3]
T([Λ]T[P4] + [P4][Λ])[z̃3]

+[e1]
T([M1]

T[P31] + [P31][M1])[e1]

+[e2]
T([M2]

T[P32] + [P32][M2])[e2]

≤ −‖[z̃1]‖2 + 2‖[z̃1]‖‖[η]‖‖[P21]‖

−‖[z̃3]‖2 + 2‖[z̃3]‖‖[δ]‖‖[P4]‖

−‖[e1]‖2 + 2‖[e1]‖‖[K1]‖‖[z̃1]‖‖[P31]‖

−‖[e2]‖2 + 2‖[e2]‖‖[K3]‖‖[z̃3]‖‖[P32]‖

≤ −‖[z̃1]‖ (‖[z̃1]‖ − 2γ1‖[P21]‖)

−‖[z̃3]‖ (‖[z̃3]‖ − 2γ3‖[P4]‖)

−‖[e1]‖ (‖[e1]‖ − 2‖[K1]‖‖[z̃1]‖‖[P31]‖)

−‖[e2]‖ (‖[e2]‖ − 2‖[K3]‖‖[z̃3]‖‖[P32]‖)

(55)

Similarly, there exists T̄3 to satisfy

‖[z̃3](t)‖ ≤ 2γ3‖P4‖, ∀t ≥ T̄3 (56)

and T̄5 to satisfy

‖[e2](t)‖ ≤ 4γ3‖K3‖‖P4‖‖P32‖, ∀t ≥ T̄5 (57)

Considering (46), (48), (56) and (57) to give T̄ = max
(
T2, T̄3, T4, T̄5

)
to

lead (54).

This verifies that the closed-loop system is stable and the estimation

error of flux SPO and speed CSPO and tracking error of flux and speed are

bounded.
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Besides, if [δ] is locally Lipschitz, the observation error and tracking error

can be guaranteed the exponential convergence (Jiang and Wu (2002)) and

finally to give

lim
t→∞

ε(t) = 0, lim
t→∞

z̃ij(t) = 0 and lim
t→∞

eik(t) = 0 (58)

where i = 1, 2 indicates different subsystems, j = 1, 2, 3 indicates the state

orders in estimation and k = 1, 2 indicates the state orders in controller.

This guarantees that the estimation error from both the MRAS speed

estimator and SPOs and the close-loop error produced by the unknown dis-

turbance are finally converged to zero to make the IM system stable.

The internal dynamic of the IM system is anlysed uding a zero-dynamic

technique. In zero-dynamic, the estimated speed and rotor flux as well as

their derivatives are well controlled, i.e. [e] + [z̃] = 0 and ˙[e] + ˙[z̃] = 0 in

(38), the estimated states tracks their real value as ẑij = zij and system

outputs track their reference as zi1 = y∗i . Thus, the system outputs can be

represented as ωm = ω∗m, ψr = ψ∗r , ω̇m = 0, ψ̇r = 0, ẑi1 = y∗i and ẑi3 = Ψi.

Then combining with (5) to (8), the control inputs defined in (30) can be

represented as
vsd0 =

(
Rs +

RrLs

Lr

)
isd − σLsωeisq −

Ls

Lmτr
ψ∗r

vsq0 =

(
Rs +

RrLs

Lr

)
isq + σLsωeisd +

PωmLm

Lr

ψ∗r −
σLsLmRr

Lrψ∗r
isdisq

(59)

Substitute (59) into the original IM system (1), one can derive that i̇sd = 0

and i̇sd = 0 and the steady state currents can be obtained as

lim
t→∞

isd(t) =
ψ∗r
Lm

(60)
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lim
t→∞

isq(t) =
2TLLr

3PLmψ∗r
(61)

After the states ωm and ψr and their derivatives are stable, the corre-

sponding states, such as the stator currents isd and isq, are also stable. The

zero-dynamic of the internal system of IM is stable and, therefore, the closed-

loop system error dynamics is stable as well.

5. Simulation Results

The control performance of SSNAC for IM is verified in simulation using

MATLAB/Simulink and in hardware implementation on dSPACE hardware

platform. The simulation tests are carried out in the time-continuous do-

main for both the observer and controllers. At first, in order to validate

the effectiveness of the CSPO, the speed estimation performance of NAC

with separated traditional MRAS speed observer and SSNAC with CSPO

are compared in simulation study. As the MRAS speed estimator is parame-

ter sensitive, the variation of IM parameters has been tested of both the rotor

resistance and load torque in order to test the performance reduction of the

speed sensorless approach affected by parameter variation. After that, the

case studies of forward and reverse motoring and time-varying load torque

disturbance have been given in both the software simulation and hardware

implementation. The parameters of target IM system have been given in

Table 1. The controller parameters of SSNAC as well as two SPOs are listed

in Table 2.
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Table 1: System parameters of IM

Parameter Value Unit

Rs 0.1607 Ω

Rr 0.1690 Ω

Ls 6.017 mH

Lr 5.403 mH

Lm 5.325 mH

J 0.000145 kg

P 2

Table 2: Controller parameters of SSNAC

Name Parameter & Value

Flux SPO

l11 = 9× 103

l12 = 2.7× 107

l13 = 2.7× 109

Speed SPO

l20 = 2× 103

l21 = 6× 103

l22 = 1.2× 107

l23 = 8× 109

Flux Controller
k11 = 1.5× 104

k12 = 2.5× 102

Speed Controller
k21 = 1× 104

k22 = 2× 102

5.1. Sensorless speed tracking performance test

This test aims to verify the effectiveness of using CSPO to replace the

PI based adaptation mechanism in conventional MRAS speed observer. The

comparison between separated MRAS-SO plus speed SPO and CSPO in sim-

ulation result is shown in Figure 3. The result demonstrates that both the
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Figure 3: Speed tracking performance comparison between seperated SPO and combined

SPO.

separated SO plus speed SPO and CSPO has good performance in estimat-

ing the rotor speed from 0 to 150 rad/s. In Figure 3 (b), the comparison of

estimation error shows that the speed estimation performs better in higher

speed than lower speed in both method. As the separated MRAS-SPO and

CSPO has similar performance in speed estimation, only the results of CSPO

based SSNAC are presented in all the following case studies.

5.2. Sensitivity test to parameter variation

In IM systems, the rotor resistances are typically uncertain since they

are possible varied during operations due to rotor heating, especially in the

wound-rotor IMs (Marino et al. (2005); Li et al. (2015)). The SSNAC un-

der varied rotor resistance have been validated in simulation. The result of

SSNAC under different constant rotor resistance variation and a rated con-
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Figure 4: Simulation result of SSNAC under (a) rated load torque and different rotor

resistance variation, and (b) 10% mismatch of rated rotor resistance and different load

torque.

stant load torque has been shown in Figure 4 (a), and that of a constant

10% rotor resistance variation and different load torque has been shown in

Figure 4 (b). When the rotor resistance varies with a constant mismatch to

its normal value, the speed controller performs the same dynamic response.

Up to 20% mismatching of Rr have been tested, with the estimation perfor-

mance degraded and steady-state shift with less than 4% estimation error,

which is acceptable. Thus, under a constant uncertain load torque and rotor

resistance, the dynamic response and stability of an IM controlled by SSNAC

will not be affected.
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5.3. Speed tracking under constant load disturbance

In the IM application, the speed tracking under constant load is the most

common condition. Figure 5 shows the result of different control methods for

speed tracking under constant load, which can be either positive or negative

load torque. In the test case, from t=1.0 s to t=2.0 s, the load torque rises

from 0 to 0.4 Nm and keep constant. The rotor speed rises from 0 to 80 rad/s

and stays at this speed. After the speed reached the steady state, the load

torque reduced from positive to negative 0.4 Nm. During this period, the IM

should also be able to keep the speed. At last, from t=6.0 s, the IM start to

decelerate from 80 rad/s to 0 under the negative load applied on the rotor.

The load torque is shown as in Figure 5(a) and the rotor speed is shown as

in Figure 5(b). As the rotor speed is under the limit of the rated value, the

IM is not using in the field weakening area. Thus, the flux reference is set

to constant in its rated value at 0.0265 Wb during the speed tracking. The

rotor flux is shown in Figure 5(c).

In the control performance of rotor speed and rotor flux, it can be obvi-

ously found that the SSNAC tracks reference better than that of traditional

speed sensorless method of VC with MRAS speed observer. In order to com-

pare their relative tracking error, Figure 5(d) and 5(e) show the tracking error

of rotor speed and rotor flux in percentage. In the comparison, the maxi-

mum speed error of SSNAC is less than 1% at t=4.5 s while the maximum

speed error of VC plus MRAS is around 8% caused by the load disturbance

changed from positive to negative. When rotor speed is rising or decreasing,

the control performance of SSNAC is also better than the traditional control

method with faster error elimination. The result of rotor flux tracking error
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Simulation results of IM speed tracking under constant load disturbance. (a)

Load disturbance, (b) rotor speed, (c) rotor flux, (d) speed tracking error, (e) flux tracking

error, and (f) stator voltage control input of SSNAC.

also shows that the SSNAC obviously reduced the flux tracking error caused

by varying of speed and load disturbance. In order to compare the control

performance numerically, the detailed indices are given in Table 3. The con-

trol input of stator voltage of SSNAC is given in Figure 5(f), which shows

that even the SSNAC performs much better in speed and flux tracking, the

control actuator is not over used as the stator voltage is within its limit.

As the indices summarised in Table 3, the maximum flux error of SSNAC
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is 98% less than that of the traditional VC plus MRAS method while the

flux integral-absolute-error (IAE) of SSNAC has reduced 99%. In the speed

tracking indices, the maximum speed error and IAE of speed regulation are

reduced by 79% and 81%, respectively.

Even though the control performance has been validated as improved a

lot, the estimation performance of the CSPO will need to be tested. Figure

6(a) shows the speed estimation result in rotor speed tracking. The absolute

speed estimation error is shown in Figure 6(b). The result of speed esti-

mation shows that the maximum estimation error is less than 0.01 rad/s in

speed acceleration and deceleration. When the load changes from positive

to negative, the maximum estimation error is less than 0.004 rad/s at the

speed of 80rad/s. The reason of which is the absolute accuracy of model

and parameters between reference and adaptive model. But in practice, it is

difficult to obtain the exact model as well as its accurate parameters.

The effectiveness of perturbation estimating and compensating also needs

to be verified. Figure 6(c) and 6(e) show the estimation performance of

perturbation terms of flux and speed, where the real value of perturbation

terms in the nonlinear IM system is presented by the solid green lines and

the estimated perturbation terms from SPOs are presented by the dashed red

line. Their estimation errors are given in Figure 6(d) and 6(f). The result

shows that the average estimation error of flux perturbation term of around

2% and that of speed perturbation term is around 0.3%.

5.4. Time-varying load torque disturbance test

After the speed tracking under constant load disturbance has been tested,

another most common case is the constant speed regulation under time-
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Estimation performance of the CSPO under constant load disturbance speed

tracking.

varying load torque as unknown external disturbance. In this case, both the

speed and flux are expected to be kept constant, but the load disturbance is

time-varying and fast changes. This is to verify the stability of the control

system under continuous disturbances. From the start, the rotor speed is

rising and stays at 100 rad/s. Then at t=4 s, the load torque applied on IM

with a sharp vibration in sinewave with amplitude of 0.3 Nm and frequency

of 0.5 Hz, as shown in Figure 7(a).
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The control performance of rotor speed and rotor flux regulation are

shown in Figure 7(b) and 7(c). Both the SSNAC and traditional VC plus

MRAS are affected by the load disturbance with speed sharply reduced. Then

the SSNAC responses fast to regulate the rotor speed back to its reference

while the traditional VC plus MRAS method has larger regulation error.

The flux regulation performance is more obvious that the time-varying load

has less impact to the SSNAC as it fully decoupled the interaction between

speed and flux. The relative regulation errors of rotor flux and rotor speed

are shown in Figure 7(d) and 7(e). And Figure 7(f) shows the stator voltage

of SSNAC as its control inputs. In the speed tracking error, an interesting

finding is the phase leading of SSNAC to VC plus MRAS due to the esti-

mation and compensation of perturbation terms that includes the prediction

of load torque. The performance indices are also summarised in Table 3, in

which it shows that the SSNAC reduced the maximum regulation error of

flux and speed by 99% and 87% and reduced the IAE of flux and speed by

99% and 88%, respectively.

The speed estimation performance of the CSPO is shown in Figure 8(a)

and its estimation error is shown in Figure 8(b). The result shows that the

maximum estimation error is less than 0.009 rad/s under the speed of 100

rad/s. That is also because of the accurate model and parameters used. The

two lumped perturbation terms of flux and rotor speed are estimated and

compared with their real value in Figure 8(c) and 8(e) while their estimation

error are given in Figure 8(d) and 8(f). The average estimation error of

perturbation term of flux is around 2% and that of speed is around 0.8%.

Thus, the perturbation terms are well estimated to compensate their real
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Simulation results of IM constant speed regulation under time-varying load

torque disturbance. (a) Load disturbance, (b) rotor speed, (c) rotor flux, (d) speed tracking

error, (e) flux tracking error, and (f) stator voltage control input.

value for fully linearise the coupled states in the nonlinear IM system.

6. Experiment Results

6.1. Experimental platform

The experimental setup of SSNAC for IM hardware implementation is

shown in Figure 9. The target motor is a 200 W, 2 pole pairs, three phase

wound-rotor IM from Motorsolver. Other devices include a 42 V power elec-

tronics (PE) converter unit and current transducers, two power supplies to
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Estimation performance of the CSPO under time-varying load torque distur-

bance.

provide power to both the motor and PE board in different voltage level,

and a DS1104 dSPACE controller with breakout box. In the motor bench,

the target IM is coupled with a DC motor that produces the expected load

torque. In the practical implementation, the first-order Euler discretization

method is used for compiling the simulation model into C programming code

in the dSPACE DS1104 controller board, whose CPU clock is 250 MHz.

Considering both the sampling rate and computational capability of the con-

troller hardware, the sampling time adopted for practical implementation is
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Table 3: Simulation performance indices and reductions of VC plus MRAS and SSNAC
PPPPPPPPPPP

Indices

Method
VC+MRAS SSNAC Reduc.

Case 1

Max. Flux Error 6.9% 0.13% 98.1%

Flux IAE (×10−3) 8.2 0.1 99%

Max. Speed Error 7.8% 1.6% 79.5%

Speed IAE 20.4 3.8 81%

Case 2

Max. Flux Error 3.7% 0.052% 99%

Flux IAE (×10−3) 3.0 0.0042 99%

Max. Speed Error 2.2% 0.29% 87%

Speed IAE 6.3 0.77 88%

set to 0.0001 s. The observer and controller are operating under the same

implementation environment and sampling time. Thus, the whole control

system with proposed algorithm takes less than 25,000 computational clock

cycles in total. If the proposed algorithm is implemented in a computational

unit with lower clock frequency, the sampling time should be increased cor-

respondingly to allow the computational unit to have enough time to run

out the algorithm. In the experiment, the nominal value of motor parame-

ters has been used. The unmeasured parameter varying during operations is

considered as the uncertainty and external disturbance.

6.2. Speed tracking under constant load disturbance

The control parameters of experiments are the same with that in simu-

lation. The load torque disturbance and the speed references use the same

profiles as in simulation, as shown in Figure 10(a) and 10(b). In the hard-

ware implementation, the speed estimation performance and its estimation

error are given in Figure 10(c) and 10(d). From the speed estimation result,
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Figure 9: Experimental setup of IM speed sensorless control.

the maximum speed estimation error are around 2 rad/s during speed rising

and less than 0.7 rad/s in steady state. As the real perturbation of the IM

system is difficult to be obtained in experimental test, the performance of

perturbation estimation cannot be given.

In the rotor flux and speed tracking, the rotor flux is controlled to stay at

0.0265 Wb while rotor speed increases from 0 to 80 rad/s and stays at this

speed. Their performance is shown in Figure 11(a) and 11(b). During the

period of speed rising, the flux and speed tracking error of VC plus MRAS

can reach 18.2% and 8.6rad/s, respectively. As shown in Figure 11(c) and

11(d), the SSNAC can reduce the flux regulation error to 13.2% and speed

tracking error to 3.1 rad/s. More than half of the speed tracking error has

been reduced.
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(a) (b)

(c) (d)

Figure 10: Experimental results of speed tracking under constant load disturbance. (a)

Load disturbance, (b) speed reference, (c) speed estimation, (d) estimation error.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Experimental results of speed tracking under constant load disturbance. (a)

rotor flux performance, (b) rotor speed performance, (c) flux error, (d) speed error, (e)

stator voltage control input of VC plus MRAS, and (f) stator voltage control input of

SSNAC.
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In addition, after the rotor speed reaches the steady state, the change of

load torque disturbance from positive 0.4 Nm to negative 0.4 Nm causes the

speed varying at t=6 s. The regulation performance of flux and speed under

the change of load torque using VC plus MRAS method is about 3.9% and

2.8 rad/s, respectively. While the SSNAC reduces the flux regulation error

to 0.8% and speed tracking error to 0.5 rad/s. It verifies that the SSNAC has

obvious improvement in the sensorless tracking of both flux and rotor speed.

Figure 11(e) and 11(f) show the control inputs of stator voltage of VC plus

MRAS and SSNAC. From which it can be found that the SSNAC has less

voltage input in average and its peak value is less than 6V while that of VC

plus MRAS is close to 8 V.

The numerical comparison of performance indices are summarised in Ta-

ble 4 case 1. The results show that, in speed tracking under constant load

torque, the SSNAC performs better than that of VC plus MRAS method

with the reduction of maximum and IAE of flux regulation error by 21% and

77%, respectively. And the reduction of that on speed tracking error by 33%

and 75%. The reduction of SSNAC in experiments is less than that in simu-

lation. The reason of that is caused by the uncertainty of IM parameters in

rotor-flux model. In experiments, the effective parameters of IM system can

be varying with ambient temperature and the delay of current feedback from

transducers, which is assumed ideal in simulation test. In order to compare

the reduction of flux and speed tracking error in an obvious way, the bar

chart of performance indices is given for this case in Figure 14(a).
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(a) (b)

(c) (d)

Figure 12: Experimental results of constant speed regulation under time-varying load

torque disturbance. (a) Load disturbance, (b) speed reference, (c) speed estimation, (d)

estimation error.

6.3. Time-varying load torque disturbance test

In constant speed regulation, the IM rotor speed is expected to be main-

tained at 100 rad/s, as in Figure 12(b). A sinewave shape time varying load

torque disturbance is then applied to the IM as shown in Figure 12(a). Under

this case, the rotor speed estimation performance of the CSPO is shown in

Figure 12(c) and its estimation error is shown in Figure 12(d). The result

shows that the designed observer can estimate the rotor speed of the target

IM system under time-varying load torque disturbance with its estimation

error less than 1.7% in any time and 0.8% in average.

The flux and speed regulation performance and their relative regulation

error are shown in Figure 13(a) and 13(b) and their relative regulation error
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Table 4: Experiment performance indices and reductions of VC plus MRAS and SSNAC
PPPPPPPPPPP

Indices

Method
VC+MRAS SSNAC Reduc.

Case 1

Maximum Flux Error 18.3% 13% 21%

Flux IAE (×10−3) 9.3 2.1 77%

Maximum Speed Error 4.2% 2.8% 33%

Speed IAE 31.0 7.7 75%

Case 2

Maximum Flux Error 3.7% 0.78% 79%

Flux IAE (×10−3) 2.3 0.46 80%

Maximum Speed Error 3.2% 1.6% 52%

Speed IAE 8.9 6.4 28%

are shown in Figure 13(c) and 13(d). The peak regulation error of flux and

speed in VC plus MRAS method are 3.7% and 3.2%, while that of the SSNAC

are reduced to 0.8% and 1.6%. The control input of SSNAC does not have

any increment to achieve the improvement of control performance in flux and

speed regulation as shown in Figure 13(e) and 13(f)

The performance indices are summarised and compared between SSNAC

and traditional VC plus MRAS method in Table 4 case 2 and Figure 14(b).

The results show that the SSNAC reduced the flux regulation error and its

IAE by 79% and 80% while the reduction of rotor speed regulation error is

52% in peak and 28% in IAE. The effectiveness of the speed sensorless control

using SSNAC to fully decouple the interaction of flux and rotor speed has

been verified with obvious better performance.
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Experimental results of constant speed regulation under time-varying load

torque disturbance. (a) rotor flux performance, (b) rotor speed performance, (c) flux

error, (d) speed error, (e) stator voltage control input of VC plus MRAS, and (f) stator

voltage control input of SSNAC.
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(a)

(b)

Figure 14: Comparison of performance indices of experimental results in (a) speed tracking

under constant load disturbance, (b) constant speed regulation under time-varying load

disturbance.
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7. Conclusion

This paper proposed a speed sensorless nonlinear adaptive control to

achieve the fully decoupling control of the flux and speed of IM without the

usage of speed sensor. The proposed nonlinear adaptive controller has been

used together with the traditional rotor-flux MRAS speed estimator. Then

a combined speed and perturbation observer (CSPO) is designed to estimate

the rotor speed and its perturbation term simultaneously. The estimated

speed is used as feedback in the speed loop and the estimated lumped per-

turbation terms is used to compensate the real perturbation that contains the

nonlinear dynamics, external load disturbance and parameter uncertainties.

Moreover, the CSPO replaced the PI regulator in the MRAS speed observer

and thus reduced the complexity of SSNAC controller. With the estimated

speed and perturbation terms from the CSPO, the IM system can be fully

decoupled and controlled without speed sensor. The stability of SSNAC with

CSPO has been proved using Lyapunov theory. The effectiveness of SSNAC

has been verified in both simulation and experiment studies. The results

show that the SSNAC performs better in speed tracking and under unknown

load disturbance without speed sensors comparing with traditional VC plus

MRAS method. It validated that the estimation of speed and its perturba-

tion term using the CSPO can provide speed sensorless control as well as the

fully decoupling of interactions in the nonlinear IM system.

In summary, the main advantages of the proposed control approach are

given as below:

� The proposed control approach integrates nonlinear control technology

and speed estimation technology, so it not only reduces the use of PI
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regulator in the traditional MRAS speed estimator, but also enables

overall stability analysis.

� The proposed control method can estimate the rotor speed and its dis-

turbance term simultaneously, thus, it reduces the dependence of speed

sensors, accurate models and parameters to improve the robustness of

the control system.

� The proposed control approach can perform much better speed tracking

performance under model uncertainty and unknown load disturbance.

The limitations of this work are listed as follows. First, the proposed

approach requires a high-gain observer in the SPO design. Therefore, when

speed estimation and perturbation estimation are combined, the selection of

the optimal gains becomes difficult. The best way to adjust the observer gain

will be considered in future studies. Secondly, the speed sensorless technology

in this article uses the MRAS method, which requires accurate models and

parameters. Although the perturbation estimation approach reduces the

dependency of accurate model and parameters, more other speed estimation

methods will be studied in the future to choose the most robust way to

combine the speed sensorless techniques with the perturbation estimation

approach.

In future work, the authors will study the method of finding the optimal

gains for the observer and the controller in both theoretical and practical

aspects. And compare the combination of different types of speed sensorless

methods and perturbation estimation-based control methods under different

conditions and application scenarios. In addition, the authors will continue
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to study the sensitivity of this method to system parameter uncertainty and

fault detection methods in hardware implementation.

Appendix A. Proof of a2 >0

Since the ψrα and ψrβ are in stationary frame, assuming that the angle

of rotor flux is θr. Then it can be represented as ψrα = |ψr| sin θr and ψrβ =

|ψr| cos θr. Then assuming that the estimation error of rotor flux angle is θ̃r,

and one can get ψ̂rα =
∣∣∣ψ̂r

∣∣∣ sin(θr + θ̃r

)
and ψ̂rβ =

∣∣∣ψ̂r

∣∣∣ cos
(
θr + θ̃r

)
. On the

basis of these, it can be proved that

a2
P

= ψrαψ̂rα + ψrβψ̂rβ (A.1)

= |ψr| sin θr ·
∣∣∣ψ̂r

∣∣∣ sin(θr + θ̃r

)
+ |ψr| cos θr ·

∣∣∣ψ̂r

∣∣∣ cos
(
θr + θ̃r

)
= |ψr|

∣∣∣ψ̂r

∣∣∣ · sin θr · sin(θr + θ̃r

)
+ |ψr|

∣∣∣ψ̂r

∣∣∣ · cos θr · cos
(
θr + θ̃r

)
= |ψr|

∣∣∣ψ̂r

∣∣∣ (sin2 θr cos θ̃r + cos2 θr cos θ̃r

)
= |ψr|

∣∣∣ψ̂r

∣∣∣ cos θ̃r

Thus, if
∣∣∣θ̃r∣∣∣ < 90◦, a2 can be proved as a positive value. In normal condition

of IM control, the estimation error of rotor angle will be far less than 90

degree. Thus, in this paper, it assumes that a2 > 0 in all conditions.

Appendix B. Proof of λ is bounded

From equation (35), since a2ωm and a3 are calculated from the physical

variables, they can be assumed as bounded based on the fact that the target

system is a physical system containing mechanical and electrical processes,

and its variables will be within a suitable range instead of infinite values.
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Thus, this section will only prove the boundness of kI
∫
ε dt. From (20), ε

can be rewritten as

ε = ψrβψ̂rα − ψrαψ̂rβ (B.1)

=
∣∣∣ψ̂r

∣∣∣ sin(θr + θ̃r

)
· |ψr| cos θr −

∣∣∣ψ̂r

∣∣∣ cos
(
θr + θ̃r

)
· |ψr| sin θr

=
∣∣∣ψ̂r

∣∣∣ |ψr| ·
(

cos θr · sin
(
θr + θ̃r

)
− sin θr · cos

(
θr + θ̃r

))
=
∣∣∣ψ̂r

∣∣∣ |ψr| sin θ̃r

Then it is easy to find that∫
ε dt =

∣∣∣ψ̂r

∣∣∣ |ψr| cos θ̃r ≤
∣∣∣ψ̂r

∣∣∣ |ψr| (B.2)

Thus
∫
ε dt is proved as bounded since the rotor flux ψr has the upper limit

according to the design and manufacturing. And on the basis of this, λ can

be proved as bounded then.
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