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Abstract

A health outcome is a measurement or an ob-
servation used to capture and assess the effect
of a treatment. Automatic detection of health
outcomes from text would undoubtedly speed
up access to evidence necessary in healthcare
decision making. Prior work on outcome de-
tection has modelled this task as either (a) a
sequence labelling task, where the goal is to
detect which text spans describe health out-
comes, or (b) a classification task, where the
goal is to classify a text into a pre-defined set
of categories depending on an outcome that is
mentioned somewhere in that text. However,
this decoupling of span detection and classi-
fication is problematic from a modelling per-
spective and ignores global structural corre-
spondences between sentence-level and word-
level information present in a given text. To ad-
dress this, we propose a method that uses both
word-level and sentence-level information to
simultaneously perform outcome span detec-
tion and outcome type classification. In addi-
tion to injecting contextual information to hid-
den vectors, we use label attention to appro-
priately weight both word and sentence level
information. Experimental results on several
benchmark datasets for health outcome detec-
tion show that our proposed method consis-
tently outperforms decoupled methods, report-
ing competitive results.

1 Introduction

Access to the best available evidence in context
of patient’s individual conditions enables health-
care professionals to administer optimal patient
care (Demner-Fushman et al., 2006). Healthcare
professionals identify outcomes as a fundamen-
tal part of the evidence they require to make de-
cisions (van Aken et al., 2021). Williamson et al.
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sentence
There were no significance between-
group differences in the incidence of
wheezing or shortness of breath

OSD
Outcomes: wheezing,
shortness of Breath

OC Outcome type: Physiological

Joint OSD
& OC

Outcomes-Outcome type
wheezing- Physiological
Shortness of Breath- Physiological

sentence

Cumulative incidence and relative
risks with 95% confidence intervals
for death from any cause, death from
prostate cancer, and metastasis
were estimated in intention-to-treat
and per-protocol analyses.

OSD
Outcomes: death from any cause,
death from prostate cancer

OC Outcome type: Mortality

Joint OSD
& OC

Outcomes-Outcome type
death from any cause- Mortality
death from prostate cancer- Mortality

Table 1: Comparing the output of the three separate
HOD tasks given two sample sentences. OSD retrieves
the outcome spans, OC classifies the text span into a
set of outcome types, and Joint OSD & OC retrieves
outcomes and classifies them into outcome types.

(2017) define an outcome as a measurement or an
observation used to capture and assess the effect of
treatment such as assessment of side effects (risk)
or effectiveness (benefits). With the rapid growth
of literature that reports outcomes, researchers have
acknowledged and addressed the need to automate
the extraction of outcomes from systematic reviews
(Jonnalagadda et al., 2015; Nye et al., 2018) and
answering clinical questions (Demner-Fushman
and Lin, 2007). Jin and Szolovits (2018) mention
that automated Health Outcomes Detection (HOD)
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could speed up the process of analysing and as-
sessing the effectiveness of clinical interventions
in Evidence Based Medicine (EBM; Sackett et al.,
1996).

HOD has been conducted in the past as either
an Outcome Span Detection (OSD) task, where we
must detect a continuous span of tokens indicating
a health outcome (Nye et al., 2018; Brockmeier
et al., 2019) or as an Outcome Classification (OC)
task, where the goal is to classify the text spans into
a pre-defined set of categories (Wallace et al., 2016;
Jin and Szolovits, 2018; Kiritchenko et al., 2010).
However, the two tasks are highly correlated and
local token-level information enables us to make
accurate global sentence-level outcome predictions,
and vice versa. An outcome type predicted for a
text span in a sentence must be consistent with the
other outcome spans detected from the same sen-
tence, while the outcome spans detected from a
sentence must be compatible with their outcome
types. These mutual compatibility constraints be-
tween outcome spans and their classes will be lost
in a decoupled approach, resulting in poor perfor-
mance for both OSD and OC tasks.

Two illustrative examples in Table 1 show the
distinction between the OSD, OC and Joint OSD &
OC tasks. Specifically, in the first sentence, OSD
extracts all outcomes i.e. wheezing and shortness
of breath, OC classifies the text into an outcome
type, Physiological, and then Joint OSD & OC ex-
tracts an outcome span and classifies it concurrently
i.e. it extracts wheezing and also classifies it as a
Physiological outcome. Motivated by the recent
success in joint modelling of tasks such as aspect
extraction (AE) and aspect sentiment classification
(ASC), which together make a customer sentiment
analysis task called Aspect Based Sentiment Anal-
ysis (ABSA; Xu et al., 2019), we model HOD as a
joint task involving both OSD and OC. HOD can
be formally defined as follows:

Health Outcome Detection (HOD): Given a
sentence s = w1, . . . , wM extracted from a clinical
trial abstract, the goal of HOD is to identify an out-
come span od = bi, . . . , bN (i.e OSD), and subse-
quently predict a plausible outcome type t(od) ∈ Y
for od (i.e. OC), where 1 ≤ i ≤ N ≤M , and Y is
a predefined set of outcome types.

We propose Label Context-aware Attention
Model (LCAM), a sequence-to-sequence-to-set
(SEQ2SEQ2SET) model, which uses a single en-
coder to represent an input sentence and two de-

coders – one for predicting the label for each word
in OSD and another for predicting the outcome
type in OC. LCAM is designed to jointly learn
contextualised label attention-based distributions at
word- and sentence-levels in order to capture which
label/s a word or a sentence is more semantically re-
lated to. We call them contextualised because they
are enriched by global contextual representations
of the abstracts to which the sentences belongs.
Label attention incorporates label sparsity infor-
mation and hence semantic correlation between
documents and labels.

A baseline BiLSTM and or clinically informed
BERTbase (Devlin et al., 2019) models are used
at the encoding stage of our model and later for
decoding with sigmoid prediction layers. We also
use a multi-label prediction (MLP) layer for the
two tasks (i.e. OSD and OC), with a relaxed con-
straint at token-level that ensures only the top (most
relevant) prediction is retained, whereas all pre-
dicted (relevant) outcome types are retained at the
sentence-level during OC. We use an MLP layer be-
cause some annotated outcomes belong to multiple
outcome types. For example, depression belongs to
both “Physiological” and “Life-Impact” outcome
types.

HOD remains a challenging task due to the lack
of a consensus on how outcomes should be reported
and classified (Kahan et al., 2017). Dodd et al.
(2018) recently built a taxonomy to standardise out-
come classifications in clinical records, which has
been used to annotate the EBM-COMET (Abaho
et al., 2020) dataset. Following these recent devel-
opments, we use EBM-COMET to align outcome
annotations in the evaluation dataset we use in our
experiments (Dodd et al., 2018). Our main contri-
butions in this work are summarised as follows1:

1. We propose the Label Context-aware Atten-
tion Model to simultaneously learn label-
attention weighted representations at word-
and sentence-level. These representations are
then evaluated on a biomedical text mining
task that extracts and classifies health out-
comes (HOD).

2. We introduce a flexible, re-usable unsuper-
vised text alignment approach that extracts
parallel annotations from comparable datasets.

1Our Code and datasets are located at
https://github.com/MichealAbaho/
Label-Context-Aware-Attention-Model.git

https://github.com/MichealAbaho/Label-Context-Aware-Attention-Model.git
https://github.com/MichealAbaho/Label-Context-Aware-Attention-Model.git


We use this alignment for data augmentation
in a low-resource setting.

3. We investigate the document-level contribu-
tions by a piece of text (e.g. an abstract) for
predictions made at the token-level.

2 Related work

Joint training to achieve a dichotomy of tasks
has previously been attempted, particularly for se-
quence labelling and sentence classification. Tar-
geting Named Entity Recognition (NER) and Re-
lation Extraction (RE), Chen et al. (2020) transfer
BERT representations via a joint learning strategy
to extract clinically relevant entities and their syn-
tactic relationships. In their work, the joint learn-
ing models exhibit dramatic performance improve-
ments over disjoint (standalone) models for the RE
task. Our work differs from (Chen et al., 2020) in
that we use attention layers prior to the first and
second classification layers. Ma et al. (2017) train
a sparse attention-based LSTM to learn context
features extracted from a convolution neural net-
work (CNN). The resulting hidden representations
are used for label prediction at each time step for
sequence labelling, and subsequently aggregated
via average pooling to obtain a representation for
sentence classification. The sparse constraint is
strategically biased during weights assignment (i.e.
important words are assigned larger weights com-
pared to less important words).

Karimi et al. (2020) perform ABSA (Xu et al.,
2019) by feeding a BERT architecture with a sen-
tence s = ([CLS], x1:j , [SEP ], xj+1:n, [SEP ]),
where x1:j is a sentence containing an aspect of a
product, xj+1:n is a customer review sentence di-
rected to the aspect and [CLS] is a token not only
indicating the beginning of a sequence, but also
a sentiment polarity in the customer review about
the aspect. They fine-tune a BERT model to con-
duct both aspect extraction and aspect sentiment
classification. The above mentioned works tend to
generate attention-based sentence-level representa-
tions that encapsulate the contribution each word
would make in predicting sentence categories. We
however generate label-inclined attention represen-
tations at word-level that can be used to effectively
deduce word categories/labels. To the best of our
knowledge, we are the first to perform a joint learn-
ing task that achieves MLP at two classification
stages, token- and sentence-levels, while using only
the top predictions at token level.

EBM-COMET EBM-NLP
EBM-COMET +

EBM-NLP

# of Abstracts 300 5000 5300
# of sentences 5193 40092 45285
# of outcome labels 5 6 5
avg sentence length 21.0 26.0 25.0
# of Training sentences 4155 32074 36229
# of Testing sentences 1038 8018 9056

Table 2: Datasets statistics rounded off to zero decimal

3 Data

The absence of a standardised outcome classifica-
tion systems prompted Nye et al. (2018) to annotate
outcomes with an arbitrary selection of outcome
type labels aligned to Medical Subject Headings
(MeSH) vocabulary.2 Moreover their outcome an-
notations have been discovered with flaws in re-
cent work (Abaho et al., 2019), such as statistical
metrics and measurement tools annotated as part
of clinical outcomes e.g. “mean arterial blood
pressure” instead of “arterial blood pressure”,

“Quality of life Questionnaire” instead of “Qual-
ity of life”, “Work-related stress scores” instead of

“Work-related stress”.

Motivated by the taxonomy proposed by Dodd
et al. (2018) to standardise outcome classifications
in electronic databases and inspired the annotation
of EBM-COMET dataset (Abaho et al., 2020), we
attempt to align EBM-NLP’s arbitrary outcome
classifications to standard outcome classifications
that are proposed by Dodd et al. (2018). These
standard classifications were found (after extensive
analysis and testing) to provide sufficient granu-
larity and scope of trial outcomes. We propose
an unsupervised label alignment method to iden-
tify and align parallel annotations across the EBM-
NLP and EBM-COMET. Additionally, we use the
discovered semantic similarity between the two
datasets and merge them in order to create a larger
dataset for evaluating our joint learning approach.
The merged dataset contains labels that follow the
taxonomy proposed by Dodd et al. (2018). All
three datasets are used during evaluation, with each
one being randomly split into two, where 80% is
retained for training and 20% for testing as shown
in Table 2. We hypothesise that the merged dataset
would improve performance we obtain on the orig-
inal independent datasets.

2https://www.nlm.nih.gov/mesh

https://www.nlm.nih.gov/mesh


Physiological Mortality Life-Impact Resource-use Adverse-effects

P 0 P 1 P 25 P 26 P 27 P 28 P 29 P 30 P 31 P 32 P 33 P 34 P 35 P 36 P 38

Adverse-effects 0.0615 0.1532 0.1226 0.1893 0.2001 0.1348 0.1169 0.2555 0.2320 0.0897 0.1936 0.2561 0.1768 0.1043 0.0562
Mental 0.0387 0.1829 0.0444 0.0928 0.1529 0.0623 0.0419 0.2214 0.1624 0.0624 0.1063 0.2537 0.1955 0.1041 0.1904
Mortality 01330 0.0187 0.1722 0.2562 0.2563 0.2171 0.1821 0.2594 0.2956 0.1559 0.2349 0.2855 0.1976 0.1905 0.2082
Pain 0.0947 0.2310 0.1266 0.2181 0.1906 0.1316 0.1634 0.2662 0.2089 0.1290 0.2209 0.2770 0.2269 0.1422 0.2096
Physical 0.0114 0.1582 0.0698 0.1494 0.1878 0.1126 0.0788 0.2363 0.2059 0.0639 0.1461 0.2539 0.1758 0.0761 0.1803

Table 3: Cosine distance between representations of EBM-NLP labels (first column) and EBM-COMET labels (top
and second row). EBM-COMET outcome type labels were drawn from the outcome domains defined in (Dodd
et al., 2018) taxonomy. Due to space limitations, we denote these domains as P X such as P 0, P 1 etc. The
taxonomy hierarchically categorised them into 5 outcome types which are accordingly included in the top row.
Outcome domains definitions are, P 0-Physiological/clinical, P 1-Mortality/survival, P 25-Physical functioning, P
26-Social functioning, P 27-Role functioning, P 28-Emotional functioning/wellbeing, P 29-Cognitive functioning,
P 30-Global quality of life, P 31-Perceived health status, P 32-Delivery of care, P 33-Personal circumstances,
P 34-Economic, P 35-Hospital, P 36-Need for further intervention, P 37-Societal/carer burden, P 38-Adverse
events/effects

3.1 Label alignment (LA) for Comparable
Datasets

Given two datasets S and T with comparable
content, with S containing x labels such that
Ls = {l1s , . . . , lxs} and T containing y labels
Lt = {l1t , . . . , l

y
t }, we design LA to measure the

similarity between each pair of labels (ls, lt).
For this purpose, we first create an embedding

for each label ls in a sentence s(∈ S) by apply-
ing mean pooling over the span of embeddings
(extracted using pre-trained BioBERT (Lee et al.,
2020)) for the tokens corresponding to an outcome
annotated with ls as shown in (1). Next, we aver-
age the embeddings of all outcome spans that are
annotated with ls in all sentences in S to generate
an outcome type label embedding ls. Likewise,
we create an outcome type label embedding, lt for
each outcome type in the target dataset T . After
generating label embeddings for all outcome types
in both S and T , we compute the cosine similarity
between each pair of ls and lt as the alignment
score between each pair of labels ls and lt respec-
tively.

Ols =
1

d

i+(d−1)∑
i

Biobert(wi) (1)

where Ols , is an outcome span annotated with out-
come type label ls, i and i+(d−1) are the locations
of the first and last words of the outcome span.

ls =
1

|ls|

|ls|∑
1

Ols (2)

where |ls| is the number of outcome spans anno-
tated with label ls and ls is label ls embedding.

Table 3 shows the similarity scores for label pairs
(ls, lt) across S (EBM-COMET) and T (EBM-
NLP) respectively. For each label (which is an
outcome domain) in EBM-COMET, we identify
the EBM-NLP label which is most similar to it
by searching for the least cosine distance across
the entire column. After identifying those pairs
that are most similar, we automatically replace out-
come type labels in EBM-NLP with EBM-COMET
outcome type labels as informed by the similarity
measure.

Results show that Physiological outcomes (con-
taining domain P 0) are similar to Physical out-
comes and therefore the latter outcomes are la-
belled Physiological, Life-Impact outcomes are
similar to Mental outcomes and therefore the latter
outcomes are labelled Life-Impact. Mortality and
Adverse-effects outcomes both remain unchanged
because both categories exists in source and target
datasets, and their respective outcomes are discov-
ered to be similar. We evaluate the LCAM architec-
ture on the resulting merged dataset, and addition-
ally, evaluate the alignment approach by comparing
the performances before and after merging.

4 Label Context-aware Attention Model

Figure 1 illustrates an end-to-end SEQ2SEQ2SET

architecture of the LCAM model. It depicts a two-
phased process to achieve classification at token
and sentence level. In phase 1, input tokens are
encoded into representations which are sent to a
decoder (i.e. a sigmoid layer) to predict a label for
each word, hence OSD. Subsequently, in phase 2,
the token-level representations are used to gener-
ate individual outcome span representations, which
are sent to another decoder (sigmoid layer) that is



Figure 1: Illustration of the LCAM Architecture. It encodes a sequence of tokens of a sentence within an abstract,
generates contextualised representations by adding a global representation of the abstract at word- and sentence-
level. Two attention layers are used to aid generation of label-aware representations used to decode labels at
word-level for OSD and sentence-level for OC.

used to predict the label/s for each outcome span,
hence OC. We use MLP for the OC task because
some outcomes are annotated with multiple out-
come types. The pseudo code for LCAM is shown
in the Supplementary.

4.1 Outcome Span Detection (OSD)

Given a set of sentences S = {si}|S|i=1 within
an abstract a, each si having N words, si =
w1, . . . , wN , with each word tagged to a label lw
and use BIO tagging scheme (Sang and Veenstra,
1999). OSD aims to extract one or more outcome
spans within si. For example, in Figure 1, OSD ex-
tracts the outcome span “incisional hernia” given
the input sentence.

Encoder: In our OSD task setting, we initially
implement a baseline LCAM using a BiLSTM
to encode input tokens (that are represented by
d-dimensional word embeddings we obtain using
GloVe (Pennington et al., 2014)3) into hidden repre-
sentations for every word within an input sentence.
We then consider generating each input words hid-
den representation using a pre-trained clinically
informed BERTbase model called BioBERT (Lee
et al., 2020). The LCAM model learns (3),

hn = BiLSTM(wn),

hn = BioBERT(wn)
(3)

3https://github.com/stanfordnlp/GloVe

where wn ∈ si, hn ∈ Rk×1 and k is the dimen-
sionality of the hidden state. The upper equation
under 3 is used for a BiLSTM Text encoder and the
lower for a BioBERT one.

4.2 Abstract Hidden State Context
To make the hidden state representation context-
aware, we add a compound representation of the
abstract in which the sentence containing wn be-
longs.

hcn = hn + f(AbsEncoder(a)) (4)

where f is a function computing the aver-
age pooled representation of the encoded ab-
stract, AbsEncoder ∈ {BiLSTM,BioBERT},
AbsEncoder(a) ∈ Rk×|a|, |a| is the length of the
abstract (measured by the number of tokens con-
tained in it) and f(AbsEncoder(a)) ∈ Rk×1.

4.3 Label-word attention
We compute two different attention scores, the first
is to enable the model pay appropriate attention to
each word when generating the overall outcome
span representation. Then the second attention
score, is to allow the words interact with the labels
in order to capture the semantic relation between
them, hence making the representations more label-
aware. To obtain the first attention vector A(1), we
use a self-attention mechanism (Al-Sabahi et al.,
2018; Lin et al., 2017) that uses two weight pa-
rameters and a hyper parameter b that can be set

https://github.com/stanfordnlp/GloVe


arbitrary,

A(1)
n = softmax(W tanh(Vhcn)) (5)

where W ∈ R|lw|×b, V ∈ Rb×k and A(1) ∈
R|lw|×1. |lw| is the number of token-level labels.
Furthermore, we obtain a label-word attention vec-
tor A(2) using a trainable matrix U ∈ R|lw|×k. Sim-
ilar to the interaction function Du et al. (2019) use,
this attention is computed in (6) as the dot product
between the hc

n and U,

A(2)
n = Uhcn (6)

where A
(2)
n ∈ R|lw|×1.

Label-word representation The overall repre-
sentation used by the decoder for classification of
each token is obtained by merging the two atten-
tion distributions from the previous paragraphs as
shown by (7),

Etl
n = A(1)

n hc
>
n +A(2)

n hc
>
n (7)

where Etl
n ∈ R|lw|×k, denotes the token-level (tl)

representation. The training objective is to max-
imise the probability of a singular ground truth
label and minimise a cross-entropy loss,

Losd = −
N∑
n=1

|lw|∑
i=1

yn,i log(ŷn,i). (8)

where N is number of tokens in a sentence, lw is
the number of labels.

4.4 Outcome Classification (OC)

OC predicts outcome types for the outcome spans
extracted during OSD. Similar to what is done
at token-level, we add an abstract representation
(which is a mean pool of its token’s representations)
to add context to each tokens representation. An
outcome span is represented by concatenating the
vectors of its constituent words,

Os =

m⊕
i=1

(Etl
i + f(AbsEncoder(a))) (9)

where m is the number of tokens contained in
outcome span Os. We adopt the aforementioned
self-attention and label-word attention methods
at sentence-level to aid extraction of an attention

based sentence-level representation of an outcome
as follows:

Esl
s = A(1)Os +A(2)Os (10)

where [A(1),A(2)] ∈ R|ls|×m, Os ∈ Rm×k and
s ≥ 0. Given an outcome span representation Esl ,
the training objective at sentence-level (sl) is to
maximize the probability of the set of terms,

argmax
θ

P (y = (l1s , l
2
s , ..., l

6
s) ∈ ls|Esl ; θ) (11)

Loc = −
|ls|∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (12)

where yi ∈ {0, 1}, ŷi ∈ [0, 1] ls ∈ {Physiological,
Mortality, Life-Impact, Resource-use, Adverse-
effects}. The overall joint model loss is:

L = Losd + Loc (13)

5 Experiments

The joint learning LCAM framework is evalu-
ated on the three datasets discussed in section 3:
the expertly annotated EBM-COMET, the EBM-
NLP (Nye et al., 2018) and the merged dataset
created by aligning (covered in section section 3)
parallel annotations between EBM-NLP and EBM-
COMET.

5.1 Implementation
For pre-processing the data, we first label each
word in the sentences contained in an abstract with
either one of {B, I,O}. Subsequently, to the end
of each sentence, we include a list of outcome types
corresponding to the outcome spans in the sentence.
However, it is important to note that, not all sen-
tences within an abstract had outcome spans. For
example, the annotated sentence below contains
outcome span “Incisional hernia” whose outcome
label (Physiological) is placed at the end of the
sentence.

“We/[O] observed/[O] a/[O] trend/[O] to-
ward/[O] decreased/[O] incisional/[B-outcome]
hernia/[I-outcome] rates/[O] in/[O] patients/[O]
treated/[O] with/[O] NPWT/[O] ./[O]”. [[Physio-
logical]]

We tuned hyper-parameters using 20% of
the training data of the merged dataset (EBM-
NLP+EBM-COMET) as a development set. The
optimal settings included, a batchsize of 64,



Task OSD OC

Dataset Model setup P R F P R F

EBM-COMET Baseline Joint 63.0 55.0 59.0 78.0 73.0 74.0
BioBERT Standalone 74.0 74.3 74.2 76.7 78.4 77.5
SCIBERT Standalone 72.3 72.9 72.6 76.3 78.1 77.2
LCAM-BioBERT Joint 73.0 64.0 68.0 83.0 76.0 83.0

EBM-NLP Baseline Joint 49.0 40.0 44.0 65.0 59.0 61.0
BioBERT Standalone 48.2 51.5 49.8 65.7 74.6 69.9
SCIBERT Standalone 48.5 49.7 49.1 64.2 66.5 65.3
LCAM-BioBERT Joint 57.0 49.0 51.0 67.0 65.0 66.0

EBM-COMET+EBM-NLP Baseline Joint 62.0 54.0 58.0 68.0 64.0 65.0
BioBERT Standalone 58.6 61.4 60.0 81.4 83.0 82.2
SCIBERT Standalone 56.2 62.3 59.1 73.4 75.7 74.5
LCAM-BioBERT Joint 61.0 61.0 61.0 78.0 72.0 75.0

Table 4: Outcome span detection (OSD) and Outcome classification (OC) results in terms of F1 on the three
datasets. Baseline, is a LCAM architecture with a BiLSTM sequence encoder.

dropout of 0.1, 10 epochs, hidden state dimension
for the BiLSTM and BioBERT encoders was set to
300 and 768 respectively. For the BioBERT model,
we used features from BioBERT’s ultimate layer, a
practice that has been endorsed in the past (Naseem
et al., 2020; Yoon et al., 2019; Hao et al., 2020).
We use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.001. Experiments were
performed using a Titan RTX 24GB GPU.

5.2 Setup

The Joint setup is concurrent sequence labelling
(OSD) and sequence classification (OC) whereas
the standalone setup, is OSD and OC performed
separately. The former is achieved using (a) a Base-
line model, LCAM-BiLSTM (using a BiLSTM en-
coder) (b) LCAM-BioBERT (using BioBERT en-
coder), whereas the latter is achieved by fine-tuning
the original (c) BioBERT and (d) SciBERT (Belt-
agy et al., 2019) models. Our datasets are novel
in the sense that the outcome type labels of the
outcomes are drawn from Dodd et al. (2018) tax-
onomy, which is not the basis of prior outcome
annotations such as the EBM-NLP dataset. The
models were evaluated on the tasks by reporting
the macro-averaged F1. For the standalone models,
we use token-classification and text-classification
fine-tuning scripts provided by Huggingface (Wolf
et al., 2020) for OSD and OC respectively. Inaddi-
tion to the macro-F1, we visualise ranking metrics
pertaining to MLP, in order to compare our model
to related work for MLP. The metrics of focus in-
clude precision at top n P@n (fraction of the top n

predictions that is present in the ground truth) and
Normalized Discounted Cumulated Gain at top n
(nDCG@n).

5.3 Results
The first set of results we report in Table 4 are
based on the independent test sets (Table 2) for
each of the datasets. The joint LCAM-BioBERT
and standalone BioBERT models are not only com-
petitive but they consistently outperform the base-
line model for both OSD and OC tasks. We observe
the LCAM-BioBERT model outperform the other
models in the OSD experiments for the last two
datasets in Table 4. On the other hand, the stan-
dalone BioBERT model achieves higher F1 scores
for the last two datasets in the OC task.

5.3.1 Impact of the abstract context injection
and Label attention

As shown in Table 6, the performance deteriorates
(with respect to the results reported in Table 4) with-
out the attention layers (“- Attention”) by averagely
10% for OSD and 11.3% for OC. Similarly, exclu-
sion of the abstract representation (“- Abstract”)
leads to an average performance decline of 4.3%
for OSD and 2.7% for OC. As observed the decline
resulting from “- Abstract” is less significant than
that resulting from “- Attention” for both OSD and
OC tasks.

This decline explains the significant impact of
both (1) the semantic relational information be-
tween both tokens and labels as well as outcome
spans and labels gathered by the attention mech-
anism, (2) information from the text surrounding



OSD OC

LCAM-BioBERT P R F P R F

EBM-COMET 73.0/83.0 64.0/64.0 68.0/71.0 83.0/90.0 76.0/80.0 83.0/84.0
EBM-NLP 57.0/60.0 49.0/47.0 51.0/53.0 65.0/76.0 65.0/72.0 64.0/74.0

Table 5: Effect of dataset merging via label alignment. For each dataset, we report the performance on its test
split obtained by LCAM-BioBERT trained on the corresponding train split (shown on the left side of /) vs. on the
merger of the train splits of EBM-COMET and EBM-NLP (shown on the right side of /).

Figure 2: P@n and nDCG@n for three datasets

LCAM OSD(F) OC(F)

EBM-COMET - Attention -10.0 -12.0
- Abstract -3.0 -5.0

EBM-NLP - Attention -9.0 -7.0
- Abstract -7.0 -2.0

EBM-COMET - Attention -11.0 -15.0
+EBM-NLP - Abstract -3.0 -1.0

Table 6: OSD and OC performance percentage decline
when either the attention mechanism or the abstract
representation are eliminated from the joint learning
model (LCAM-BioBERT).

a token or an outcome span embedded into an ab-
stract representation. This therefore justifies inclu-
sion of both these components.

To evaluate the proposed label alignment method
(subsection 3.1), we train a model using the aligned
dataset (EBM-COMET+EBM-NLP) and evaluate
it on the test sets of the original datasets in Table 5.
We see significant improvements in F-scores for
OSD in both EBM-COMET and EBM-NLP. Addi-
tionally, for OC, we see a significant improvement
in F-score on EBM-NLP dataset and a slight im-

provement in F-score on the EBM-COMET dataset.
Overall, this result shows that the proposed label
alignment method enables us to improve perfor-
mance for both OSD and OC tasks.

To further evaluate the LCAM-BioBERT model,
we focus on the OC task results alone where the
classifier returns the outcome types given an out-
come span, and compare MLP performance to the
baseline and another related MLP model, label-
specific attention network (LSAN) (Xiao et al.,
2019), that learns biLSTM representations for
multi-label classification of sentences. For com-
parison, we compute P@n and nDCG@n using for-
mulas similar to (Xiao et al., 2019). As illustrated
in Figure 2, the LCAM model outperforms its coun-
terparts for all datasets, and most notably for P@1.
Our joint BiLSTM baseline model performs com-
parably with LSAN, and indeed outperforms it on
the EBM-COMET dataset for P@1, nDCG@1 and
nDCG@3. We attribute LCAMs superior perfor-
mance to (1) Using a domain-specific (biomedical)
language representation model (BioBERT) at its
encoding layer, (2) Applying label-specific atten-
tion prior to classifying a token as well as before
classifying the mean pooled representation of an



Example Input sentence Predicted labels Predicted labels
P@1 P@2

Ground truth

The primary outcomes were hospitalised death1, severe disability2 at 15 months of age,
neonatal behavioural neurological3 assessment (nbna) score at 28 days of age, and Bayley
scales of infant development4 (BSID) score (including mental development5 index (mdi)
score and psychomotor development6 index (pdi) score) at 15 months of age at follow-up.

1. Mortality
2. Life-Impact
3. Life-Impact
4. Life-Impact
5. Life-Impact
6. Life-Impact

LCAM
Output

The primary outcomes were hospitalised death1, severe2 disability3 at 15 months of age,
neonatal behavioural neurological assessment (nbna) score at 28 days of age, and Bayley
scales of infant development (BSID) score (including mental development4 index (mdi)
score and psychomotor development5 index (pdi) score) at 15 months of age at follow-up.

1. Mortality
2. Physiological
3. Life-Impact
4. Life-Impact
5. Life-Impact

Ground truth
These results confirm retrospective studies and add that histopathology subtype is a strong
determinant of disease-free survival (DFS)1, in resected MAGE-A3-positive MSCLC.

1. Physiological 1. Mortality

LCAM
Output

These results confirm retrospective studies and add that histopathology subtype is a strong
determinant of disease-free survival1 (DFS), in resected MAGE-A3-positive MSCLC.

1. Physiological 1. Mortality

Ground truth
The duration of total hospital stay1, and postoperative hospital stay2 in the ag
(10.86 +/- 5.64, 5.69 +/- 4.55) d were significantly shorter than that in the cg (.10.86 +/- 5.64,
5.09 +/- 4.55) d (p=0.01, p=0.01))

1. Resource-use
2. Resource-use

LCAM
Output

The duration of total hospital1 stay2, and postoperative3 hospital stay4 in the ag
(10.86 +/- 5.64, 5.69 +/- 4.55) d were significantly shorter than that in the cg (.10.86 +/- 5.64,
5.09 +/- 4.55) d (p=0.01, p=0.01))

1. Resource-use
2. Physiological
3. Physiological
4. Resource-use

Table 7: Sample error predictions made by the joint learning model, with coloured words representing the outcome
phrase (both in ground truth and output) and the colours representing different outcome types which are output.
For multi-label predictions, we include P@1 and P@2 to indicate the top most predictions for the outcome phrase
in question such as in example 2.

outcome span and finally (3) injecting global con-
textual knowledge from the abstract into the token
and document (outcome-span) representations.

5.3.2 Error Analysis
We review a few sample instances that exhibit the
mistakes the joint LCAM model makes in the OSD
and OC tasks in Table 7.

OSD errors: We observe the model partially de-
tecting outcome phrases e.g. In Example 1, it de-
tects death instead of hospitalised death, develop-
ment instead of mental development, and in Ex-
ample 2, it does not detect “(DFS)” as apart of
the outcome phrase. Additionally, it completely
misses some outcomes such as infant development
in Example 1.

OC errors: Incorrect token-level predictions
will most likely result into incorrect outcome classi-
fication. In Example 1, Instead of severe disability,
the model detects “severe” as an outcome and “dis-
ability” as a separate outcome and classifies them
as Physiological and Life-Impact respectively. Sim-
ilarly, in Example 3, both outcomes are misclassi-
fied because at token level multiple outcomes are
detected rather than one, hospital and stay rather
than hospital stay, postoperative and hospital stay

rather than postoperative hospital stay.

6 Conclusion

We proposed a method to jointly detect outcome
spans and types using a label attention approach.
Moreover, we proposed a method to align multi-
ple comparable datasets to train a reliable outcome
classifier. Given real-world scenarios where it is
often impractical or computationally demanding to
build a model for each and every single task, our ex-
perimental results demonstrate the effectiveness of
an approach that simultaneously (jointly) achieves
two different task without compromising the per-
formance of the individual tasks when decoupled.

7 Ethical Considerations

Joint learning can have multiple applications,
where multiple tasks are simultaneously achieved
whilst preserving (or even improving) standalone
performance when tasks are separately conducted.
In this particular work, we are motivated by the
need to jointly model a pair of tasks (Outcome
span detection and Outcome classification) in order
to enhance outcome information retrieval. Recent
developments in the domain such as emergence of
an outcome classification system that is aimed at



standardising outcome reporting and classification
motivated us to re-construct the datasets we use in
order to align them with this classification. The
datasets contain text from abstracts of clinical trials
published on PubMed. We cannot ascertain that all
these abstracts are unbiased assessments of effects
of interventions, especially with recurring articles
citing several biases including selection bias (trial
clinicians favour certain participating patients be-
cause of personal reasons), reporting/publishing
bias (only reporting statistically significant results)
and many more. Nevertheless, we provide more
details and reference these datasets both within the
article and the supplementary material.
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Appendices

A Joint learning using LCAM

To demonstrate the flow of our joint learning train-
ing, we use the pseudo code in algorithm 1 to show
how we arrive at the joint model loss. For each
token’s hidden state (line 8), we compute a con-
text aware hidden state by adding to it an encoded
abstract representation line 9 and then compute
two attention scores (line 10 - 14) that both cap-
ture the contribution the token makes to each label.
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These are then used to generate a label-word repre-
sentation (line 16), all label-word representations
forming a sentence (line 17) are used to compute
an outcome extraction(OE) loss using eqn 9 (line
19). Once again we add context to the newly gener-
ated toke-level representations (line 20). For every
outcome, we repeat steps in lines 10-14 to obtain
label attention scores., i.e. depicting the contribu-
tion the particular outcome phrase makes to each
label and these are used to obtain a label-document
representation for the outcome (line 30). This rep-
resentation is then used to compute the outcome
classification loss (line 32). The loss we minimise
in the joint learning is computed as shown by line
33.

B Hyperparameters and Run time

We perform a grid search through multiple com-
binations of hyperparameters included in Table 8
below. Using 20% of EBM-COMET+EBM-NLP
dataset as a dev set, we obtain the best F1 val-
ues. Table 8 shows the range of values (including
the lower and upper bound) for which the LCAM-
BioBert is tuned to obtain optimal configurations.
Using a shared TITAN RTX 24GB GPU, the base-
line joint model i.e. LCAM-BiLSTM runs for ap-
proximately 45 minutes when evaluating on the
EBM-COMET dataset, 190 minutes when evaluat-
ing on the EBM-NLP dataset and at-least 320 min-
utes on the merged dataset EBM-COMET+EBM-
NLP. For the LCAM-BioBERT model, the experi-
ments last at-least 14 hours on the EBM-COMET
dataset, 30 hours on the EBM-NLP and 42 hours
on the merged EBM-COMET+EBM-NLP.

Table 9 includes the tuned ranges for the Stan-
dalone models (BioBERT and SciBERT) which
we fine-tune for the outcome extraction (OE) and
outcome classification task. Similar to the joint
model, the best values are chosen based on the
EBM-COMET test set F1 values. Training and
evaluation on the EBM-COMET, EBM-NLP and
EBM-COMET+EBM-NLP consume 7, 34, and 45
GPU hours respectively.

C Datasets

C.1 EBM-NLP
EBM-NLP corpus (Nye et al., 2018) is a crowd
sourced dataset in which ca.5,000 clinical trial ab-
stracts were annotated with elements in the health
literature searching PICO framework (Huang et al.,
2006). PICO stands for Participants, Interventions,

Algorithm 1 LCAM Training

1: Input: train data, Output: model weights
2: for abstract a in train data do
3: Obtain Abs = AbsEncoder(a)
4: for sent s in a do
5: Obtain H = Encoder(s)
6: where H ∈ Rk×n
7: Initialise: an empty tensor S
8: for hn in H do
9: hcn = hn + f(Abs)

10: Obtain A(1) = softmax(W tanhVhc
n)

11: where V ∈ Rb×k, W ∈ R|lw|×b,
12: and A(1) ∈ R|lw|×1
13: Obtain A(2) = Uhcn
14: where U ∈ R|lw|×k, A ∈ R|lw|×1
15: label-word representation:
16: Etl = A(1)hc

>
n +A(2)hc

>
n

17: S = S⊕Etl

18: end for
19: Compute Loss eqn 9 - Losd
20: ∀Etl ∈ S : Etl = Etl + f(Abs)
21: ∀Ox ∈ S, where x ≥ 0 & Ox ∈ Rm×k
22: i.e. outcome Ox has m tokens
23: for outcome O in S do
24: Obtain A(1) = softmax(W tanh(V O>))

25: where V ∈ Rb×k, W ∈ R|ls|×b
26: and A ∈ R|ls|×m
27: Obtain A(2) = UO>

28: where U ∈ R|ls|×k, A ∈ R|ls|×m
29: label-document representation of an

outcome:
30: Esl = A(1)O +A(2)O
31: end for
32: Compute Loss Loc eqn 13
33: minimise model loss L = Losd + Loc
34: end for
35: end for

Comparators and Outcomes. The dataset has sup-
ported clinicalNLP research tasks (Beltagy et al.,
2019; Brockmeier et al., 2019). The corpus has two
versions, (1) the “starting spans” in which text
spans are annotated with the literal “PIO” labels (I
and C merged into I) and (2) the “hierarchical la-
bels” in which the annotated outcome “PIO” spans
were annotated with more specific labels aligned
to the concepts codified by the Medical Subject
Headings (MeSH) 4, for instance the Outcomes
(O) spans are annotated with more granular (spe-

4https://www.nlm.nih.gov/mesh

https://www.nlm.nih.gov/mesh


Parameter Tuned-range Optimal

Batch size [16,32,64] 64
Drop out [0.1,0.2,0.3,0.4,0.5] 0.1
Embedding dim

-Baseline
-BERT models

300
768

b [150, 200, 250]
Optimizer [Adam, SGD] Adam
Epochs [5,10,15] 10

Learning rate
[5e-4, 1e-4, 5e-3, 1e-3,

5e-2, 1e-2]
1e-3

Table 8: Parameter settings for the joint models

Parameter Tuned-range Optimal

Train Batch size [8,16,32] 16,32
Eval Batch size [8,16,32] 8
Embedding dim 768
Optimizer [Adam, SGD] Adam
Epochs [5,10,15] 10
Learning rate [5e-5, 1e-4, 5e-3, 1e-3] 5e-5

Table 9: Parameter settings for the Standalone models

cific) labels which include Physical, Pain, Mental,
Mortality and Adverse effects. For the clinical
recognition task we attempt, we use the hierarchi-
cal version of the dataset. The dataset has however
been discovered to have flawed outcome annota-
tions (Abaho et al., 2019) such as (1) statistical
metrics and measurement tools annotated as part
of clinical outcomes e.g.“mean arterial blood pres-
sure” instead of “arterial blood-pressure”,“Quality
of life Questionnaire” instead of “Quality of life”
and (2) Multiple outcomes annotated as a single
outcome “Systolic and Diastolic blood- pressure”
instead of “Systolic blood-pressure” and “Diastolic
blood-pressure”.

C.2 EBM-COMET

A biomedical corpus containing 300 PubMed “Ran-
domised controlled Trial” abstracts manually anno-
tated with outcome classifications drawn from the
taxonomy proposed by (Dodd et al., 2018). The
abstracts were annotated by two experts with exten-
sive experience in annotating outcomes in system-
atic reviews of clinical trials (Abaho et al., 2020).
Dodd et al. (2018)’s taxonomy hierarchically cate-
gorised 38 outcome domains into 5 outcome core
areas and applied this classification system to 299
published core outcome sets (COS) in the Core
Outcomes Measures in Effectiveness (COMET)

database.

C.3 EBM-COMET+EBM-NLP
We merge the two datasets above for two main pur-
poses, (1) to align the annotations of the EBM-NLP
to a standard classification system (Dodd et al.,
2018) for outcomes and (2) create a larger dataset
to use in evaluating our joint learning approach.

C.4 Pre-processing
We create one single vocabulary using the merged
dataset and use it for all three datasets. Whilst gen-
erating the vocabulary, we simultaneously split the
abstracts into sentences using Stanford tokeniser.
This vocabulary is then used in creating tensors
representing sentences, where each tensor contains
id’s of the token/words in the sentence. The same
procedure is followed to create tensors contain-
ing id’s of the labels (“BIO”) corresponding to the
words in the sentences. Additionally, we create
tensors with id’s of outcome classification labels,
so for each sentence tensor, their is a corresponding
token-level label tensor and a sentence-level label
(outcome label) tensor. For the baseline where we
use a BiLSTM to learn GloVe representations, we
follow instructions to extract GloVe5 specific vec-
tors for words, token-level labels and sentence la-
bels in the dataset. All the files with d-dimensional
vectors are stored as .npy files. For the joint BERT-
based models, we use flair (Akbik et al., 2019) to
extract TransformerWord Embeddings from pre-
trained BioBERT for the tokens.

5https://github.com/stanfordnlp/GloVe

https://github.com/stanfordnlp/GloVe
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