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A B S T R A C T   

In both natural and man-made structures, symmetry provides a range of desirable properties such as uniform 
distributions of internal forces, concise transmission paths of forces, as well as rhythm and beauty. Most research 
on symmetry focus on natural objects to promote the developments in computer vision. However, countless 
engineering structures also contain symmetry elements since ancient times. In fact, many scholars have inves-
tigated symmetry in engineering structures, but most of them are based on analytical methods which require 
tedious calculations. Inspired by the application of deep learning in image identification, in this paper, we use 
two Convolutional Neural Networks (CNNs) to respectively identify the symmetry group and symmetry order of 
planar engineering structures. To this end, two different datasets with labels for symmetric structures are created. 
Then, the datasets are used to train and test the constructed network models. For symmetry classification, it 
achieves 86.69% accuracy, which takes about 0.006 s to predict one picture. On the other hand, for symmetry 
order recognition, it reaches 92% accuracy, which expends about 0.005 s to identify an image. This method 
provides an efficient approach to the exploration of structural symmetry, which can be expanded and developed 
further toward the identification of symmetry in three-dimensional structures.   

1. Introduction 

Symmetry refers to the regular repetition of certain elements in a 
figure, object, or structure. The exploration of symmetry and exploita-
tion of its rules have been of attraction to many scholars and practi-
tioners in various fields such as computer vision [1–3], structural 
mechanics and engineering [4–6][43,46] and mathematics [7–11] 
[45,47]. Countless natural and man-made structures [12] contain sym-
metry properties, which provide them with plenty of advantages in 
terms of both structural mechanics and aesthetics [13]. Relatively uni-
form distributions of internal forces, concise transmission paths of forces 
[14], as well as rhythm and beauty, are some generally desirable char-
acteristics of symmetric structures. 

Over the past few decades, many studies have been conducted on 
symmetry detection and recognition, especially for two-dimensional 
(2D) symmetric objects. Cicconet et al. [1] established a framework 

based on complex-valued wavelet convolutions to discern the lines of 2D 
reflective symmetry. They observed that the accuracy of this process was 
affected by three parameters α, β, and d of symmetric wavelet orbit pairs. 
To compensate for this defect, a mirror symmetry coefficient was 
introduced. Funk and Liu [15] built a supervised deep neural network to 
discover reflective axes and rotational centers in images which con-
tained multiple out-of-plane symmetries. The artificial symmetry label 
was replaced by the symmetry heatmap as the output. Kondra et al. [16] 
improved their method, studied the correlation measurements of the 
symmetry detection algorithm, and demonstrated its applicability to a 
range of texture patterns. Dalitz et al. [17] employed a symmetry score 
to evaluate the symmetry properties of grayscale images. In order to 
recognize the reflective symmetry plane of three-dimensional (3D) ob-
jects, Nagar and Raman [3] translated this matter into an optimization 
problem, while Gao et al. [18] proposed an unsupervised 3D Convolu-
tional Neural Network (CNN) to address the issue of poor time- 

* Corresponding author. 
E-mail address: chenyao@seu.edu.cn (Y. Chen).   

1 The authors Zhang and Fan contribute equally to this paper. 

Contents lists available at ScienceDirect 

Engineering Structures 

journal homepage: www.elsevier.com/locate/engstruct 

https://doi.org/10.1016/j.engstruct.2022.114227 
Received 27 December 2021; Received in revised form 2 March 2022; Accepted 31 March 2022   

1

 Authors' Accepted Manuscript

Volume 260, 1 June 2022, 114227

Journal: Engineering Structures

https://doi.org/10.1016/j.engstruct.2022.114227

mailto:chenyao@seu.edu.cn
www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2022.114227
https://doi.org/10.1016/j.engstruct.2022.114227
https://doi.org/10.1016/j.engstruct.2022.114227
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2022.114227&domain=pdf


Engineering Structures 260 (2022) 114227

2

efficiency. Furthermore, Sun and Sherrah [2] exploited Extended 
Gaussian Image to explore the symmetries of images from a diverse 
range of formats. This approach not only identified reflection symme-
tries, but also determined the principal axes and orders of rotational 
symmetries. In addition, Aguilar and Bribiesca [19] introduced four 
theorems based on the orthogonal direction change chain code to detect 
the reflective and rotational symmetries of 3D curves and trees. It was 
able to acquire the number of symmetry axes and detect local symme-
tries. Since the process of symmetry detection can be influenced by 
noise, Chang et al. [20] proposed an Artificial Neural Network (ANN) for 
black and white pictures to weaken this impact; however, only simple 
pictures were trained and tested in that network. 

Considerable progress has been recently made in the area of sym-
metry detection and utilization of civil engineering structures . Zingoni 
[23] first proposed an automatic procedure for the systematic search 
and identification of the symmetric structures. Inspired by the pio-
neering work of Zingoni [21], Chen et al. [22,23] proposed a group- 
theoretical method to identify cyclie and cubic symmetries for both 
2D and 3D structures. Chen et al. [24] demonstrated that the mobility 
and geometric stability of the skeleton structures are enhanced by 
symmetry. Origami structures with rotational symmetry were used to 
cushion the collision of lightweight robotic rotorcraft [25]. Isomorphic 
and non-isomorphic symmetric descendants were designed based on the 
Miura origami pattern [9,10,26,27], where certain derivatives were 
proved to be geometrically impossible [44]. A combination of symmetry 
analysis and particle swarm optimization was used for the form-finding 
of tensegrity structures [14]. Vibration mode calculations for layered 
space grids were simplified based on their symmetries [28]. The key 
quest of these group-theoretic methods was to determine whether the 
structure has certain symmetry properties, followed by determining the 
highest-order symmetry group to which it belong. During this process, 
many iterative calculations were required to determine whether a 
structure remained invariant under each symmetry operation. Although 
many approaches to symmetry detection have been developed by 
various scholars, most of them are based on analytical methods applied 
to image features used to locate the reflective symmetry axes or the 
rotational symmetry centers. However, being time-consuming is an 
inevitable disadvantage of such analytical methods, especially when 
applied to structures with a lot of nodes and components. 

Given these challenges, this study is devoted to identifying symmetry 
properties where a deep learning method will be adapted to improve the 
computational efficiency of analytical methods. So far, the popularity of 
deep learning, especially Convolutional Neural Network (CNN), in 
image recognition provides a new clue for symmetry detection. A 
trained CNN model is able to accurately identify the category of pictures 
in less than 0.1 s. For example, De Luca et al. [29] proposed a machine 
learning algorithm to classify artificial pictures into rotational, trans-
lational, and reflective symmetries with 99% accuracy. In addition, the 
maturity of the third-party library makes the construction and applica-
tion of the CNN model convenient, so that people with basic machine 
learning knowledge could master it. 

In this paper, two CNN models are proposed to detect the symmetry 
group and order of planar structures. Considering that there is no 
existing dataset to use, two datasets will be created autonomously. 
Subsequently, the datasets are employed to train and test the con-
structed network model. Three different optimizers are used to control 
the training process. The performances of the CNN models driven by 
different optimizers were compared and analyzed. 

2. Theory and evaluation criteria 

2.1. Symmetry operations and cyclic symmetries 

This section introduces the characteristics of various symmetry op-
erations and the properties of cyclic symmetries. For a symmetric 
structure, performing several independent linear transformations (i.e., 

symmetry operations) results in a transformed structure that perfectly 
overlaps the original one. This study mainly focuses on the recognition 
of the symmetry group and symmetry order of finite planar structures. 
For convenience, a three-dimensional (3D) Cartesian coordinate system 
x-y-z is established, supposing that two-dimensional (2D) structures are 
planar figures on the x-y plane. Then symmetry operations of a finite 
planar structure can be divided into the following three categories 
[12,30]: 

(a) The identity,E, which is found in all structures and can be 
expressed as follows 

E =

[
1 0
0 1

]

(1) 

(b) The reflection,σv, which denotes reflection about the vertical 
plane containing the principle axis (z axis), expressed as 

σv =

[
cos(2αr) sin(2αr)

sin(2αr) − cos(2αr)

]

(2)  

where αr is the angle between the symmetry plane and the x-z plane. 
(c) The rotation, Ci

n, which is a rotational transformation by angle 
2πi/n around the axis of symmetry, where n⩾2 and i ∈ [1, n − 1] are both 
integers. It can be mathematically represented as [31] 

Ci
n =

[
cos(2πi/n) - sin(2πi/n)
sin(2πi/n) cos(2πi/n)

]

(3) 

Group theory has been used to describe the symmetric properties of 
engineering structures [32–34]. The symmetry group of a structure is 
the group of all transformations under which the structure remains 
unchanged [35,36]. In this study, we focus on planar structures from 
four cyclic groups: (1) asymmetric structures of group C1, (2) reflectively 
symmetric structures of group Cs, (3) rotationally symmetric structures 
of group Cn, and (4) rotationally-and-reflectively symmetric structures 
of group Cnv. Knowing that the order, nr, of a symmetry group is deter-
mined by the number of its symmetry operations, the symmetry orders 
of groups C1, Cs, Cn, and Cnv are 1, 2, n, and 2n, respectively. If a structure 
belongs to any one of the two symmetry groups C1 and Cs, its symmetry 
order would be known. For structures of groups Cn and Cnv, the sym-
metry order depends on n, which is to be determined in this research. 

2.2. Evaluation principle of classification 

Classification principles attempt to associate input variables with 
discrete categories. According to this definition, the study presented 
here can be a classification task. In order to evaluate the proposed deep 
learning model, three general classification criteria, namely, (1) accu-
racy Acc, (2) precision P, and (3) recall R, were selected. These variables 
can be expressed as 

Acc =
TP + TN

TP + TN + FP + FN
(4)  

P =
TP

TP + FP
(5)  

R =
TP

TP + FN
(6)  

where TP, TN, FP, and FN denote the number of positive classes pre-
dicted as positive classes, the number of negative classes predicted as 
negative classes, the number of negative classes predicted as positive 
classes, and the number of positive classes predicted as negative classes, 
respectively. 

3. Methodology 

A classic CNN model consists of an input layer, hidden layers 
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(including convolutional, pooling, and fully-connected layers), and an 
output layer. With the help of convolutional and pooling layers, a CNN 
can capture the features of images after multiple iterations. Because the 
information associated with a typical symmetric structure could be 
presented in the form of pictures, here we employ the CNN model to 
replace conventional theoretical approaches to structural symmetry 
recognition. It aims to detect the symmetry group of two-dimensional 
structures and identify the nr of Cn and Cnv (n ∈ [2, 10]), where two 
datasets, namely, Dataset 1 and Dataset 2, are required. The details of 
this procedure are presented in Fig. 1. 

3.1. Building datasets 

The objects discussed before were mostly continuous rather than 
discrete. However, the elements of structures in civil engineering are 
generally discrete due to functional requirements and economic goals. 
There is no existing database that can be used to optimize the parame-
ters of CNN in this work. Therefore, many structural forms are inde-
pendently generated to serve the symmetry recognition of the deep 
learning models. 

Supervised deep learning models are adapted here, so that the data 
sets need to be classified and labeled in advance. In the process of 
generating pictures, we put pictures belonging to the same category in 
the same folder. Dataset 1 is prepared to perform the classification of 
symmetry group (i.e., groups C1, Cs, Cn, and Cnv). The number of pictures 
in each category is the same, with a total of 6800 pictures. Then, Dataset 
2 is employed to identify the order of symmetry, which is a fourteen- 
classification task (nr ∈ [2, 3,4, 5, 6, 7, 8, 9, 10,12,14,16,18,20]). Data-
set 2 contains a total of 18,000 pictures. When a category contains both 
Cn and Cnv, the number of pictures in this category is twice that of others. 
In short, there are 1000 pictures for which of nr ∈ [2,3,5,7,9,12,14,16,
18,20], while there are 2000 structures for other symmetry orders. For 
the division of a dataset, 60% of the samples are selected as the training 
set, 20% as the validation set, and the rest as the test set. Since there are 
no available datasets for symmetric structures, it brings a great chal-
lenge for the application of this method. To solve this problem, many 
pictures are created through Python. The general principles followed by 
all the pictures are as follows. The picture is a black figure on a white 
background with a pixel size of 1000× 1000, bit depth of 8, and format 
of ‘.png’. Each picture consists of solid dots and lines, in which lines 

represent structural components, and dots denote the connection mode 
between components. On the one hand, each dot is connected to at least 
2 adjacent dots. On the other hand, the periphery of the structure is 
closed. After preprocessing, the picture pixels are changed to 200 × 200 
and then transmitted to the CNN model. The following presents the 
details of the generation process for different groups of pictures. 

For asymmetric structures (i.e., of group C1), as depicted in Fig. 2, 
the dots are evenly distributed on a ring, but the connections among 
them are arbitrary and have no symmetry properties. To improve the 
robustness of the CNN model, a structure that is highly similar, but not 
identical, to the reflectively symmetric one (i.e., of group Cs), is also 
created. For example, in such highly similar structures, except for one 
line, all other lines and dots satisfy the requirements of reflective 
symmetry. 

Fig. 3 illustrates some examples of the reflectively symmetric struc-
tures of group Cs. The generation of dots and lines for this kind of 
structures follow Eq. (2). The angles αr between the symmetry axis and 
the horizontal line are 0, π/6, π/4, π/3, π/2, 2π/3, and 3π/4. There is a 
total of 1,700 pictures for reflective symmetry. 

The positions of the dots and lines for structures of group Cn are 
determined by Eq. . To ensure the universality of the order of rotational 
symmetry, a rotationally symmetric structure with the order from 2 to 
10 is generated. The configurations of some structures of group Cn are 
represented in Fig. 4. 

Fig. 5 shows the structures with rotational and reflective symmetry 
properties. The initial dots and lines are transformed using Eq. (7) to 
generate new dots and lines. 

Ci
nv =

[
cos(2αr + 2πi/n) sin(2αr + 2πi/n)

sin(2αr + 2πi/n) − cos(2αr + 2πi/n)

]

(7)  

where αr, i, and n represent the same parameters as in Eqs. (1) to (3). 

3.2. The CNN model adopted for the experiment 

The Convolutional Neural Network (CNN) [37–41], a type of deep 
learning algorithm, has been popular in a wide range of fields including 
computer vision and natural language processing. Two individual CNN 
models are prepared here separately for Dataset 1 and Dataset 2. Fig. 6 
shows the CNN-I model adopted by Dataset 1. It is composed of one 
input layer, three 2D convolution layers (activation function = ReLU), 

Dataset 

nv

[2,10]

Dataset

 ( [2,10],  = )n rC n n n

 ( [2,10],  = 2 )nv rC n n n
0.0004 0.0112 0.9810 0.0073

Da at set 1:

C1 , Cs , Cn , vCn

( [2,10]n∈ )

Da at set 2:

∈

∈

Fig. 1. Procedure of planar symmetry detection using Convolutional Neural Network (CNN).  
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three 2D max-pooling layers, three fully-connected layers, and one 
output layer (activation function = Softmax). To prevent overfitting, the 
two fully-connected layers framed by the dashed line in Fig. 6 adopt 

dropout (dropout = 0.5). The difference between the two CNN models is 
that the output layer of the network model for Dataset 2 owns 14 
neurons. 

Fig. 2. Asymmetric planar structures (C1).  

Fig. 3. Planar structures with reflective symmetry (Cs).  

Fig. 4. Planar structures with rotational symmetry (Cn).  
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The ReLU and softmax activation functions are given by Eqs. (8) and 
(9) [38], respectively: 

f (x) = max(0, x) =

{
0, x⩽0

x, x > 0 (8)  

σ(xi) =
exi

∑n
j=1exj

(9)  

where x is the input variable, xi denotes the i-th element of x, where i is 
an integer from 1 to n, and n is the total number of elements of the input 
variable x. Taking Dataset 1 as an example, if the input is a picture, CNN 
will output four probability values and choose the category with the 
highest probability for the picture. Since these are multi-classification 
tasks, the sparse categorical cross-entropy function below is taken as a 
loss function: 

loss = −
∑n

i=1
ŷi1logyi1 + ŷi2logyi2 + ⋯ + ŷimlogyim (10)  

where n is the size of the sample; m indicates the number of classifica-
tions; and yi1 and ŷi1 denote true value and predicted value, 
respectively. 

‘Python’ builds up a strong platform to realize machine learning or 
deep learning with the help of various third-party libraries. The CNN 
models adopted in this work are created using the TensorFlow library 
supported by Python. 

3.3. Training the model 

This experiment is carried out on a computer with Intel (R) Core 
(TM) i5-9400 CPU, 2.90 GHz CPU frequency and 8 GB memory. The 
training set is used to fit the model. The validation set is prepared for 
adjusting the hyperparameters of the CNN model when one epoch is 
completed. For the black-and-white image input into the model, the 
pixel size is 200× 200, and it is normalized to avoid the influence of 
noise points. During training, the accuracy and loss are monitored, and 
the accuracy of the validation set is taken as the standard to save the 
network model. The model with a higher validation accuracy will be 
saved in time. If the accuracy of the validation set is no longer improved 
after five epochs, the model will stop training. 

In this work, the convergence of loss and accuracy means that the 
model has achieved convergence. In order to ensure that the model 
converges at the end of the set number of epochs, a larger epoch is 
selected as much as possible. If the model fails to converge, the last 
model saved previously is applied, then epoch and record will be added. 
Considering that each sample is fully utilized, the batch size of Dataset 1 
is 34 and that of Dataset 2 is 32. In order to investigate the effect of 
optimizers on the convergence and performance of the CNN model, 
three different optimizers (SGD, Adam, RMSprop) are selected herein. 

To understand the working principle of CNN, Fig. 7 shows the in-
formation collected from the convolutional layer and pooling layer. 
Fig. 7 illustrates the feature maps in the convolutional layers and 
pooling layers for a set of pictures. The best models after training are 
selected here. The visualization of the 2D feature layer for the CNN-I 
model built by Dataset 1 is shown in Fig. 7(a), while the features 

Fig. 5. Planar structures with rotational and reflective symmetries (Cnv).  

Fig. 6. Convolutional Neural Network-I (CNN-I) model used for Dataset 1.  
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obtained by the CNN-II model of Dataset 2 are illustrated in Fig. 7(b). 
For the two classification tasks, the input pictures are exactly the same, 
and the structures of the constructed CNN models are almost identical. 
However, Fig. 7 shows that the extracted features are considerably 
different. Moreover, the extracted features are gradually reduced and 
become more abstract with the deepening of the convolution layer. The 
original content of the image is no longer visible. 

4. Results and discussion 

4.1. Detecting symmetry groups over Dataset 1 

The structures in Dataset 1 are artificially divided into four cate-
gories in advance, namely C1, Cs, Cn, and Cnv. The responsibility of the 
CNN-I model is to update the weight of the network through training 

until it can accurately distinguish the categories of pictures. 
The training results of CNN-I with three different optimizers are 

shown in Fig. 8, Fig. 9, and Table 1. Fig. 8 shows that the accuracy of the 
training set is lower than that of the validation set at the beginning, but 
it can approach or even exceed the latter with the development of the 
process. When epoch is equal to 20, the accuracy of the validation set is 
0.45 for the SGD optimizer, 0.75 for the Adam optimizer, and 0.85 for 
the RMSprop optimizer, which indicates that the convergence rate of the 
RMSprop optimizer is faster than that of the other optimizers. 

The change of loss during training is given in Fig. 9. Moreover, when 
the training is completed, the accuracy or loss of the validation set and 
training set tend to converge. Table 1 lists the key parameters and results 
of the constructed CNN-I model. 

Fig. 10 shows the confusion matrix of the test set. The data in this 
figure represents the number of samples that satisfy both the predicted 

Fig. 7. Visualization of feature maps for Convolutional Neural Network model: (a) Dataset 1; (b) Dataset 2.  
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label and the true label. The precision and recall presented in Table 2 can 
be determined from the corresponding data. No matter which optimizer 
is selected, the recall and precision of Cn and Cnv are relatively low. 
Besides, there are more samples of mutual confusion between Cn and 
Cnv. Therefore, it is necessary to divide the two categories further. 
Comparing the relative error between the accuracy of the test set, vali-
dation set, and training set of the three optimizers, RMSprop wins with 
errors of 4.375% and 7.333%. 

4.2. Identifying symmetry order nr over Dataset 2 

Dataset 2 is exploited to identify the symmetry orders of Cn and Cnv. 
It is divided into fourteen categories, so the output layer of the corre-
sponding CNN-II model has 14 neurons. The orders matching the labels 
of the samples are provided in Table 3. 

Table 4 states the performance of the CNN-II model on Dataset 2. It 
can be seen from Table 4 that the accuracy of the training set and 
validation set achieves 93%, and the accuracy of the test set exceeds 
91%. On the other hand, the generalization ability of the CNN-II driven 
by SGD optimizer is higher in terms of the accuracy of the test set. 
Comparing the relative error between the accuracy of the test set, vali-
dation set, and training set of the three optimizers for Dataset 2, the 
CNN-II driven by SGD wins with errors of 0.5214% and 2.085%. More 
importantly, the approach described here takes about 0.05 s per picture, 
which saves a lot of computing time and resources. 

Fig. 11 shows the changes of classification accuracy on Dataset 2 

during the training process. Specifically, the accuracy of the training set 
as well as the validation set are growing with the increase of the epoch, 
and finally, tend to converge about 90%. The CNN-II driven by Adam 
and RMSprop optimizers are becoming steady after 10 epochs. However, 
the CNN-II driven by SGD optimizers become steady after 40 epochs. So 
that the convergence rates of the Adam and RMSprop optimizers are 
better than that of SGD. 

The goal of training a CNN is to make the value of the loss function as 
small as possible. The smaller the loss value, the more accurate the 
classification of the CNN. Variations in the value of the loss function 
during training for CNN-II driven by different optimizers are presented 
in Fig. 12. In general, the value of the loss function decreases rapidly at 
the beginning, and it float around 0.25 after a certain epoch. Obviously, 
the loss on the validation set is smaller than the training set in the initial 
stage. Gradually, the classification effect of the validation set becomes 
worse, and the loss is greater than the training set. However, the losses 
on both training and validation sets tend to converge eventually. 

The specific results of the CNN-II model on the test set for Dataset 2 
are shown in Fig. 13. Dataset 2 has fourteen categories, and it is difficult 
to display the number of samples. Therefore, the confusion matrix is 
normalized. The sum of the probabilities of each row in Fig. 13 is equal 
to 1.00, and the diagonal entry represents the recall rate of each cate-
gory. Parts (a), (b), and (c) in Fig. 13 are similar. When nr is equal to 10 
(label = 0), the recall rates of different optimizers vary greatly. 

Comparing the optimal models selected for Dataset 1 and Dataset 2, 
it can be proved that the best optimizer varies from problem to problem. 

Fig. 8. The accuracy in symmetry group classification on dataset 1: (a) SGD; (b) Adam; (c) RMSprop.  
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Fig. 9. The loss in symmetry group classification on Dataset 1: (a) SGD; (b) Adam; (c) RMSprop.  

Table 1 
The performance of the CNN-I model on Dataset 1.  

Optimizer Learning rate Epoch Acc of training set Acc of validation set Acc of test set Running time (h) Prediction efficiency (s) 

SGD  0.001 420  0.9316  0.8831  0.8324  20.0300  0.0055 
Adam  0.0001 80  0.9417  0.8529  0.8529  2.6691  0.0068 
RMSprop  0.001 30  0.9355  0.8912  0.8669  0.8221  0.0059  

Fig. 10. The confusion matrix of the CNN-I model on Dataset 1: (a) SGD; (b) Adam; (c) RMSprop.  
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When the established model does not adapt to a conundrum, hyper-
parameters such as the learning rate, the number of neurons, the number 
of neural layers, and the choice of optimizer can be adjusted properly. 
Although the update of CNN weights also relies on multiple iterations, 

this is a one-time task. If the training is completed, the model is in a 
position like an implicit function. When the required pictures are 
inputted, the results are outputted efficiently. 

Table 2 
The precision and recall of the test set on Dataset 1.  

Optimizer SGD Adam RMSprop 

Label 0 1 2 3 0 1 2 3 0 1 2 3 

Group  C1  Cs  Cnv  Cn  C1  Cs  Cnv  Cn  C1  Cs  Cnv  Cn 

P  0.8615  0.8834  0.7626  0.8254  0.8935  0.9024  0.8142  0.8056  0.8475  0.9172  0.8511  0.8576 
R  0.9147  0.8471  0.7647  0.7647  0.8882  0.8706  0.8118  0.8412  0.9647  0.8471  0.8235  0.8324  

Table 3 
The label of the CNN-II model and the matching order on Dataset 2.  

Label 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

nr 10 12 14 16 18 20 2 3 4 5 6 7 8 9  

Table 4 
The performance of the CNN-II model on Dataset 2.  

Optimizer Learning rate Epoch Acc of training set Acc of validation set Acc of test set Running time (h) Prediction efficiency (s) 

SGD  0.001 200  0.9396  0.9347  0.9200  48.3195  0.0050 
Adam  0.001 45  0.9410  0.9403  0.9169  7.5989  0.0051 
PMSprop  0.001 45  0.9339  0.9302  0.9197  8.1878  0.0050  

Fig. 11. The accuracy in symmetry order classification on Dataset 2: (a) SGD; (b) Adam; (c) RMSprop.  
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4.3. Illustrative examples 

This section presents the results of CNNs for symmetry recognition of 
some engineering structures. We explore the symmetry identification of 
planar structures. Usually, the symmetry property of some three- 
dimensional structures can be seen from the plane projection. At this 
time, the symmetry property can be obtained by identifying the plane 
projection. Therefore, we choose some 2D and 3D structures to 
demonstrate the practicality of CNN-I and CNN-II. 

Fig. 14 shows a two-layer circulant structure [42]. It can be seen that 
the two-layer structure has 4 cycles. It is a rotationally symmetric 
structure with the symmetry order of 4. First, the picture in Fig. 14c is 
input into CNN-I and CNN-II directly. The output of the CNN-I is 3, 
indicating that the structure owns rotational symmetry property. The 
output of the CNN-II is 8. We can notice from Table 3 that the symmetry 
order of this two-layer structure is 4. It is consistent with the inherent 
symmetry of this structure. Therefore, this two-layer circulant structure 
belongs to C4 group. 

Moreover, a three-dimensional dome structure [22] is illustrated in 
Fig. 15. It is a symmetric structure with rotational and reflective sym-
metries. We can put the picture in Fig. 15c into CNN-I and CNN-II. The 
output of the CNN-I is 2, indicating that the structure has rotational and 
reflective symmetry properties. The output of the CNN-I is 3, indicating 
that the structure has rotational symmetry properties. The output of the 
CNN-II is 3, which is consistent with its symmetry order. Therefore, this 
three-dimensional dome structure belongs to C8v group. 

Fig. 16 illustrates two planar structures. The structure in Fig. 16a 

keeps reflective symmetry, which is computed by CNN-I. The output of 
the CNN-I is 1, indicating that the structure has reflective symmetry 
properties. The structure in Fig. 16b shows a similar symmetry. How-
ever, when the component indicated by the red dash line is removed, 
CNN-I for this modified structure is 0. Thus, the structure without the 
dashed component become asymmetric and belongs to the lowest 
symmetry group C1. 

In conclusion, CNN-I can accurately identify the symmetry classes of 
the structures in Figs. 14-16. Furthermore, the structure in Fig. 16b 
would induce symmetry breaking if one component was removed. 
However, CNN-I can accurately identify the exact symmetry for both 
symmetric and asymmetric configurations, showing its robustness. 

5. Conclusions and future work 

In this study, CNN models were employed to recognize the global 
symmetry of various planar structures, which revealed the potential of 
deep learning for symmetry detection purposes. The accuracy of the test 
set for symmetry group classification reached 86.69%, while for sym-
metry order recognition reached 92.00%. In comparison with analytical 
methods, it turned out that by using CNN the classification speed is 
greatly improved as it takes less than 0.01 s to predict the category of an 
image. 

This simulation verifies that a structure with a certain configuration 
can be classified accurately after a deep learning classification task. 
However, there is a diverse range of structural forms in civil engineer-
ing. This method can be used to identify symmetry properties of cable- 

Fig. 12. The loss in symmetry order classification on Dataset 2: (a) SGD; (b) Adam; (c) RMSprop.  
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Fig. 13. The confusion matrix of CNN-II model on Dataset 2: (a) SGD; (b) Adam; (c) RMSprop.  

Fig. 14. A two-layer circulant structure: (a) three-dimensional view, (b) lateral view, (c) plan view.  
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net structures, trusses, grids, reticulated shells, cable domes, chord 
domes, and so on. Through the symmetry of plane projections, the actual 
symmetry of the three-dimensional structures can be predicted. In 
addition, in the geometric model for each structure, different node 
symbols can be considered to represent different constraints or node 
masses, and different line types can be used to represent members with 
different axial stiffness or section shapes. Consequently, it is necessary to 
conduct further research to establish an accurate symmetry recognition 
system. In this study, we may encounter trouble when putting an actual 
structure in the RGB format into the CNN model, because we should not 
only consider the characteristics of the image itself (such as illumina-
tion, deformation, scale, and blur), but we need to also consider whether 
the CNN model is familiar with the structural system. It could be possible 
that with advances in various technologies, a comprehensive database, 
as well as a nearly perfect model will be established for the symmetry 
identification of structures. Furthermore, the framework reported in this 
paper could be expanded and further developed towards the recognition 
of symmetry in three-dimensional structures. 
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