
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353659358

popRF: Random Forest-informed Disaggregative Population Modelling and

Mapping

Preprint · August 2021

DOI: 10.13140/RG.2.2.24822.93763

CITATIONS

0
READS

420

8 authors, including:

Some of the authors of this publication are also working on these related projects:

WorldPop View project

Built-Settlement Growth Model (BSGM) View project

M. Bondarenko

University of Southampton

21 PUBLICATIONS 188 CITATIONS

SEE PROFILE

Jeremiah J. Nieves

University of Liverpool

30 PUBLICATIONS 331 CITATIONS

SEE PROFILE

Forrest Robert Stevens

University of Louisville

92 PUBLICATIONS 3,529 CITATIONS

SEE PROFILE

Andrea E. Gaughan

University of Louisville

90 PUBLICATIONS 3,711 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jeremiah J. Nieves on 03 August 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353659358_popRF_Random_Forest-informed_Disaggregative_Population_Modelling_and_Mapping?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353659358_popRF_Random_Forest-informed_Disaggregative_Population_Modelling_and_Mapping?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/WorldPop?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Built-Settlement-Growth-Model-BSGM?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/M-Bondarenko?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/M-Bondarenko?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Southampton?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/M-Bondarenko?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremiah-Nieves?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremiah-Nieves?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Liverpool?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremiah-Nieves?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Forrest-Stevens?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Forrest-Stevens?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Louisville?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Forrest-Stevens?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Gaughan?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Gaughan?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Louisville?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Gaughan?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremiah-Nieves?enrichId=rgreq-7aaa9df3dc4a350edbe35c21811917f0-XXX&enrichSource=Y292ZXJQYWdlOzM1MzY1OTM1ODtBUzoxMDUyNjQyMTM0NDc0NzUyQDE2Mjc5ODA4NTAwOTU%3D&el=1_x_10&_esc=publicationCoverPdf

popRF: Random Forest-informed Disaggregative Population
Modelling and Mapping

Jeremiah J. Nieves, Geographic Data Science Lab - University of Liverpool
Maksym Bondarenko, WorldPop - University of Southampton

Forrest R. Stevens, University of Louisville
Andrea E. Gaughan, University of Louisville

Warren C. Jochem, WorldPop - University of Southampton
David Kerr, WorldPop - University of Southampton

Andrew J. Tatem, WorldPop - University of Southampton
Alessandro Sorichetta, WorldPop- University of Southampton

August 2, 2021

Contents

1 Introduction 2

1.1 Disaggregative population mapping . 4

1.1.1 Areal reweighting . 4

1.1.2 Dasymetric disaggregation . 5

1.2 Random forest-informed population disaggregation 5

2 Using popRF 7

2.1 General data requirements . 9

2.2 Minimum data requirements . 9

2.3 User settings and parameters . 10

2.3.1 Typical covariates and their sources . 13

2.3.2 Population and subnational boundary data 13

2.4 Internal optimisation . 13

2.4.1 Random forest predictions . 13

2.4.2 Zonal statistics . 15

1

3 Exemplified test cases 15

3.1 Single country, general run . 15

3.1.1 Investigating the model and outputs . 17

3.2 Single country, hybrid-parameterised model run . 21

3.3 Single country, fully-parameterised run . 23

3.4 Multi-country model scenario . 27

4 Conclusions 29

4.1 Acknowledgements . 31

4.2 Appendix A . 32

4.3 Appendix B . 33

References 37

1 Introduction

Methods of disaggregating census-based areal population counts to finer gridded population surfaces
have become more prevalent since the 1990s with advances in computation and digitisation of
data (Martin and Bracken 1991; Balk and Yetman 2004; Bhaduri, Bright, and Coleman 2007;
CIESIN 2011; Doxsey-Whitfield et al. 2015; European Commission and Columbia University 2015;
Friere et al. 2016; Esch et al. 2018; Palacios-Lopez et al. 2019; Kugler et al. 2019; Leyk et
al. 2019). However, disaggregation, the process of distributing values in a “top-down” manner
from a larger source area to a series of smaller target areas contained within the source area, has
been utilised for population mapping since at least 1936 (Wright 1936). Mennis (2009) presents a
short history of dasymetric disaggregation in its introduction. Within dasymetric disaggregations
of populations, grids with uniform spatial resolution have become common target areas (Leyk et al.
2019), albeit these are still aggregate representation of population from, say, household data. These
disaggregated gridded population data have the potential to better represent the true underlying
spatial distribution of population densities (Eicher and Brewer 2001; J. Mennis 2003; J. Mennis and
Hultgren 2006; Leyk et al. 2019) as compared to the areal census-based counts. While these census-
based counts are often available at high resolution, i.e. small areas such as enumeration districts,
within government, publicly released versions are often much coarser. These coarser areal, census-
based counts, lacking any other information, can only imply a homogeneous population density
within a given area. Further, gridded population data obtained from disaggregation allow for the
ready incorporation of other gridded data, e.g. access to health facilities, for further analyses as
well as the ability to aggregate up to non-census-based areas for further interpretation.

Given these characteristics, disaggregated gridded population data have been increasingly been
used for a broad number of applications in sustainability (Dunnett et al. 2020), public health and
surveys (James et al. 2018; Ruktanonchai et al. 2020; Thomson et al. 2020), and urban expansion
projections (Nieves, Sorichetta, et al. 2020; Nieves, Bondarenko, et al. 2020), to name a few.
While the specifics of the disaggregative method can vary, in general, dasymetric disaggregation
has become the most prevalent means of top-down gridded population modelling (Balk and Yetman

2

2004; Bhaduri, Bright, and Coleman 2007; CIESIN 2011; Doxsey-Whitfield et al. 2015; European
Commission and Columbia University 2015; Friere et al. 2016; Esch et al. 2018; Leyk et al. 2019;
Palacios-Lopez et al. 2019). Dasymetric disaggregation being the redistribution of counts using
the relationships between population counts and spatially-coincident ancillary geographic data (J.
Mennis 2003; J. Mennis and Hultgren 2006; Jeremy Mennis 2009). In particular, the WorldPop
dasymetrically mapped gridded population products (https://worldpop.org) have become widely
used by researchers, government and non-governmental organisations, and international organisa-
tions, particularly within low- and middle-income contexts. Their dasymetric mapping procedure
utilises a random forest model and environmental covariates to generate the weights used to disag-
gregate population counts to the final, gridded surface (Gaughan et al. 2013, 2014; Sorichetta et
al. 2015; F. R. Stevens et al. 2015).

There have been some packages and code-based tools for the express purpose of disaggregative
mapping, both past and current. The USGS has an ArcGIS-based tool (Sleeter 2008; Gould
and Sleeter 2014). Within Python, there is a subpackage to pySAL (Rey and Anselin 2010; Rey
2019; Rey et al. 2021) called tobler which provides a library of tools for areal interpolation and
dasymetric mapping (Knaap et al. 2021). Within R, there is the disaggregation package which
takes an INLA (Nandi et al. 2020) Bayesian approach to disaggregative mapping. There is also the
web-based, yet written with a R back-end, peanutbutter (Leasure et al. 2021) that disaggregates
population counts into building footprints based upon manually defined average household densities
and estimated proportion of buildings that are residential. A similar field to disaggregative count
mapping, small area estimation, have packages in R as well, such as emdi (Kreutzmann et al.
2019). However, none of these disaggregative mapping methods utilise a random forest approach
which provides great flexibility, automability, and parallelisation across different data landscapes
(Gaughan et al. 2014; F. R. Stevens et al. 2015; Reed et al. 2018; Leyk et al. 2019). Further, with
the exception of disaggregation (Nandi et al. 2020), these disaggregative mapping approaches
are relatively naive and can rely on manually defined weights and or weighting parameters.

While the code for this random forest-informed disaggregative mapping procedure has been made
openly available via GitHub since 2014 (Forrest R. Stevens 2014), its accessibility, utility and
efficiency have noted limitations for practitioners and end users. Because it was a multi-script
procedure written in a combination of R and Python (Forrest R. Stevens 2014), a high barrier of
programming skill was required for its utilisation. The multi-script format made workflows and gen-
eral folder structures largely static and difficult to customise. Further, the Python portions, which
flexibly handled the geoprocessing of covariates, was dependent upon an ArcGIS license to utilise
the arcpy library. This limited the running of the scripts to Windows-based environments and,
more importantly, the license cost served as another access barrier. While capable of application
across large spatial extents, given its time of development and reliance on arcpy for processing, the
multi-script workflow was not optimised for efficiency or parallelisation outside of the RF portions.
Lastly, because of the relatively high programming requirements for usage of this multi-script pro-
cedure, requests for disaggregative population data produced using end-user specified covariate sets
was often done when the WorldPop group had spare time. Other times data security and license
concerns precluded end-users from sharing data that would have led to improved disaggregative
population data.

Here we introduce the popRF package in R that largely addresses these issues. This is done by
functionalising the RF-informed dasymetric population modelling procedure (F. R. Stevens et al.
2015) in a single language that is completely free, open source, and environment agnostic. Further,
the package has been parallelised where possible to achieve efficient prediction and geoprocessing

3

https://worldpop.org

over large extents, providing functions that have applied utility outside of simply performing disag-
gregative population modelling. This package was utilised already to predict population and inform
the mapping of modelled human settlement (Nieves, Sorichetta, et al. 2020; Nieves, Bondarenko, et
al. 2020; Nieves et al. 2021) at 100m resolution across 249 countries from 2000-2020, ingesting over
10TB of covariates (Lloyd et al. 2019) and producing another 70 TB of population and population
related datasets.

1.1 Disaggregative population mapping

There are multiple means to disaggregate count type data, particularly population counts (Leyk
et al. 2019; Palacios-Lopez et al. 2019; Martin and Bracken 1991; J. Mennis 2003; J. Mennis and
Hultgren 2006; Jeremy Mennis 2009). In general however, the idea is to produce weights, whether
by expert opinion, a function of the source and target area geometries, or statistical relationships
between ancillary data and the counts or densities, that are used to inform the disaggregation of
counts (J. Mennis 2003; J. Mennis and Hultgren 2006; Jeremy Mennis 2009). Areal reweighting
is one of the simplest disaggregative processes which uses the relationship of the geometries of the
source and target areas. While the popRF package does not perform simple areal reweighting, under-
standing areal reweighting in comparison to the, slightly, more involved dasymetric disaggregation
is useful. We briefly cover area reweighting as a primer for dasymetric disaggregation.We then
move to dasymetric disaggregation, specifically “intelligent” dasymetric disaggregation which uses
a statistical or machine learning approach to generate the weights based upon spatially coincident
ancillary data, such as land cover (J. Mennis and Hultgren 2006). We finally cover a specific case
of dasymetric disaggregation of population counts using a random forest to generate the weights
(F. R. Stevens et al. 2015), which is the focus of the popRF package.

1.1.1 Areal reweighting

Given some source area which is comprised of smaller target areas, areal reweighting is where the
value of the source area is redistributed to the smaller constituent target areas in proportion to
the targets’ areas (Figure 1). That is a larger target area will receive a larger disaggregated value,
compared to a smaller target area, because its area is proportionally larger relative to their common
source area. The sum of all weights adds up to 1.

Figure 1: Basic diagram of areal reweighting with the original source area and its value; the target
areas; the target area weights, as calculated by their proportional area of the source area; and the
final disaggregated values of the target areas.

4

1.1.2 Dasymetric disaggregation

Dasymetric disaggregation is similar to areal reweighting in that the target areas have an assigned
weight, which is relative to their larger common source area (Eicher and Brewer 2001). However,
dasymetric weights are not determined by proportional area, but based upon ancillary or supporting
data that is at the target area scale, such as classified landcover (J. Mennis 2003). These weights
can be determined a priori, by expert opinion, or by statistical means, i.e. models (J. Mennis 2003;
J. Mennis and Hultgren 2006). This last scenario has been referred to as “intelligent” dasymetric
mapping (J. Mennis and Hultgren 2006). In this case, a modelling or algorithmic procedure de-
termines a weighting value for each target area based upon the ancillary covariates provided (J.
Mennis and Hultgren 2006). These weights are normalised within each source area, to ensure they
add up to 1, before being used to disaggregate the value from the source area (J. Mennis and
Hultgren 2006) (Figure 2).

Figure 2: Basic diagram of dasymetric reweighting with the source area; the target areas; the
ancillary information, in this case classified land cover; the source area normalised weights; and the
final disaggregated values.

1.2 Random forest-informed population disaggregation

Building upon the dasymetric disaggregation concept, (F. R. Stevens et al. 2015) selected a random
forest (RF) to be the algorithm to determine the target area weights. RFs are a non-parametric
ensemble modelling method that are capable of handling continuous and categorical data and
capture highly non-linear phenomena and complex interactions (Breiman 2001). A RF was selected
due to these attributes and for: their robustness to noise and overfitting, their ability to handle
small and large samples, their lack of user input, and their ability to be run in parallel (Breiman
2001; Liaw and Wiener 2002; F. R. Stevens et al. 2015).

RFs are an ensemble modelling method composed of numerous, typically hundreds, classification
and regression trees (CARTs), hence the “forest” in RF (Breiman 2001). In the popRF package,
we utilise the basic RF version given in the randomForest (Liaw and Wiener 2002) package as
a regression model, although many alternative implementations exist. Given a set of data, each
CART is independently constructed by first performing bagging, or sampling of the entire dataset

5

with replacement, typically with each observation being included in 2/3 of all samples (Breiman
2001). The unsampled data is set aside as the out-of-bag (OOB) sample (Breiman 2001). The
bagged sample is then used to construct the CART in an iterative fashion where, at each node
(Figure 3), a random subsample of the input covariates are tested to determine a splitting value
that maximises an information criterion and by which the data is split into two smaller subsets
(Breiman 2001). This is repeated until some stopping criteria are met or there is a single observation
in each “leaf” node (Breiman 2001). The OOB data is then run through the CART to determine
its error and, when combined with the OOB error of other CARTS in the RF, serve as an internal
cross-validation estimate of the RFs general error (Breiman 2001). After the total number of CARTs
to be in the RF are constructed, predictions are made by giving the data to each CART and then
their individual predictions are aggregated into a single prediction by taking the average (Breiman
2001).

Figure 3: Generalised RF process diagram.

In this dasymetric mapping scenario, the source areas were subnational areal units with associated
census-based population counts (Figure 4). The target areas were pixels representing approximately
100m at the equator (0.0008333◦) (Figure 4). Population counts were first log transformed at the

6

source area scale (F. R. Stevens et al. 2015). Ancillary data regarding land cover, topography,
climate, and the built environment are aggregated to the source area scale and given to the RF as
covariates to be trained against source area population density (Gaughan et al. 2014; F. R. Stevens
et al. 2015) (Figure 4). Given the input covariates, a conservative covariate selection procedure is
conducted. An initial RF is fit using all input covariates and each variables’ importance recorded
(F. R. Stevens et al. 2015). When using a RF as a regression, the variable importance is measured
by the percent increase in the mean square error (Per.Inc.MSE) when a given covariate’s values are
randomly permutated, i.e. shuffled, effectively breaking its relationship with the outcome of interest
(Breiman 2001). The larger the Per.Inc.MSE of the covariate, the more important the covariate
within the RF (Breiman 2001). Covariates with Per.Inc.MSE values less than zero are removed, the
RF refit on the reduced covariate set, and covariate importance rechecked (Figure 4) (F. R. Stevens
et al. 2015). This is repeated until only non-zero, positive importance covariates remain. The final
RF model is then fit and used to predict back-transformed population density at the pixel level for
use as dasymetric weights (F. R. Stevens et al. 2015). These pixel level population density weights
are then normalised by their sum within each source area, to have all normalised weights within a
source area add up to one (Figure 4). The normalised weights are then used to disaggregate the
source area population counts, with the disaggregated target counts always summing back up to
the source area total (F. R. Stevens et al. 2015).

Because RFs are an ensemble modelling method, this means that multiple RFs can naturally be
combined [Breiman (2001)}. This is particularly useful in scenarios where one country has poor
quality areal population data, i.e. few and large areal units, or too few subnational units to train
an RF model (Gaughan et al. 2014). In this case, the RF model trained on a similar country
can be used in conjunction with poor quality data, or by itself to predict the density weights
(Gaughan et al. 2014). This regional parameterisation scenario is detailed more in Gaughan et al.
(2014) and Sinha et al. (2019). The popRF package follows the described RF-informed dasymetric
disaggregation procedure and allows for the regional parameterisation scenarios.

2 Using popRF

The popRF package contains one primary function: popRF(). popRF() provides a single function call
to produce RF-informed dasymetric disaggregations of population count data in a gridded format,
following the process in Figure 4. The input data can either be from local paths, from the online
geospatial library provided by WorldPop (Lloyd et al. 2019), other network/internet locations,
or a mix of all of these. It is assumed that all of the input data is raster-based, unprojected,
e.g. WGS84 coordinate system, and already spatially aligned. Models using the popRF() function
can be run specifically for a single country, multiple countries, for a single country using the RF
from a previously run country/countries, or for a single country combining the given country’s RF
with another previously run country/countries RF(s). In the remainder of this section, we’ll cover
the specifications of the input data, the types of model specifications that can be run using the
popRF() function, as well as the how the internal helper functions carry out the modelling.

popRF utilises the following packages: Rcpp (Eddelbuettel et al. 2021; Eddelbuettel and François
2011; Eddelbuettel and Balamuta 2018), doParallel (Corporation et al. 2020), foreach (Rev-
olution Analytics and Weston, n.d.), gdalUtils (Greenberg and Mattiuzzi 2020), plyr (Wick-
ham 2011, 2020), quantregForest (Meinshausen 2017), randomForest (Liaw and Wiener 2002),
raster(Hijmans 2021), rgdal (R. Bivand, Keitt, and Rowlingson 2021), and sp (Pebesma and Bi-
vand 2021; R. S. Bivand, Pebesma, and Gomez-Rubio 2013). Additionally, throughout the rest of

7

Figure 4: Generalised process diagram of a RF-informed dasymetric disaggregation of census-based
population counts as described in Stevens et al. (2015) and implemented in the popRF package.

8

the article, we also utilise: ggplot2 (Wickham 2016), ggspatial (Dunnington 2021), and viridis
(Garnier et al. 2021). All operations were run using R 4.0.5 “Shake and Throw” (R Core Team
2021).

2.1 General data requirements

All input data should be of a raster format and is assumed to be unprojected but with a common,
defined coordinate system, e.g. WGS84. This is why, as one of the parameters input to the popRF()
function, we require a raster for “pixel area” whose values should contain the precalculated area
of each output pixel. This unprojected approach to modelling was chosen to avoid the need for
manual specification of projections, of which there are many for a given country, as well as facilitate
the creation of models that incorporate multiple countries of data at once (Gaughan et al. 2014;
Sinha et al. 2019). Further, all input raster data should be spatially aligned and harmonised,
i.e. each raster layer should have the same extents, a common origin, and a common, uniform
resolution. The popRF() function is focused on the modelling and disaggregation and as such, the
geoprocessing that must occur prior to the use of the function is left to the user to facilitate.

2.2 Minimum data requirements

Data requirements for carrying out the popRF() function workflow will vary based upon the specific
type of model being run, e.g. “single country general” versus “single country hybrid” (Table 1).
Though, at a minimum, zonal data representing subnational areas, corresponding tabular popula-
tion count data for those areas, a binary water mask indicating pixels of water (1) and no water
(0), a raster containing the area of each pixel as its pixel values, and at least one ancillary covariate
dataset must be provided. The areal zonal data must have a unique ID for each zone and these
IDs must correspond to the tabular population count data. Common ways the popRF() function
can be run and their data requirements are given below in Table 1.

#>
#> Attaching package: ’dplyr’
#> The following object is masked from ’package:randomForest’:
#>
#> combine
#> The following objects are masked from ’package:raster’:
#>
#> intersect, select, union
#> The following objects are masked from ’package:stats’:
#>
#> filter, lag
#> The following objects are masked from ’package:base’:
#>
#> intersect, setdiff, setequal, union
#>
#> Attaching package: ’kableExtra’
#> The following object is masked from ’package:dplyr’:
#>
#> group_rows

9

Table 1: Common popRF model run types and corresponding data requirements. For all model
runs, zonal data, corresponding tabular population count data, and at least one ancillary dataset
must be provided in addition to the below specified data. Each of these models can be run for
either a single or multiple country scenario.

Model Type Designation Input Data

General Zonal Data (Raster)
Population Counts (Tabular)
Water Mask (Raster)
Pixel Area (Raster)
Ancillary Datasets (Rasters)

Hybrid-parameterised Zonal Data (Raster)
Population Counts (Tabular)
Water Mask (Raster)
Pixel Area (Raster)
Ancillary Datasets (Rasters)

RF Model Object from Other Country(ies) (.RData)
Fully-parameterised Zonal Data (Raster)

Population Counts (Tabular)
Water Mask (Raster)
Pixel Area (Raster)

Ancillary Datasets (Rasters)
RF Model Object from Other Country(ies) (.RData)

In the case of the hybrid- and fully-parameterised model types, the full path(s) of the directories
containing one or more RF model objects from one or more countries must be provided to the
parameters of the popRF() function by properly defining the relevant fixed set parameters. It is
important that the names of the ancillary datasets match those of the previously run RF model
otherwise an error will occur.

2.3 User settings and parameters

The popRF() function has five required parameters and 12 optional parameters related to the overall
process (Table 2), as well as an additional five optional parameters that are passed to the internally
called randomForest() function (Table 3). The required parameters involve the paths to the input
files containing: the areal, population count data (pop); the “mastergrid” raster containing the areas
with unique IDs corresponding to the population data (mastergrid); the covariates for the RF (cov);
the raster indicating water extents to be used as a mask (watermask); and the raster containing the
area of each unprojected pixel (px_area). All optional parameters involve: the location for writing
outputs (output_dir), options for parallel processing (cores* and minblocks), running a quantile
RF regression options (quant), model type options (fset, fset_incl, and fset_cutoff), covariate
alignment options (fix_cov), output checking (check), and processing messaging options (verbose
and log). We give a brief description of all parameters, but refer the reader to the popRF package
documentation for additional detail not included here.

10

Table 2: Parameters of the popRF() function with brief descrip-
tions.

Parameter Name Type Description

pop Character Contains the name of the file from which the unique area ID and
corresponding population values are to be read from.

cov List of named lists The name of each named list corresponds to the 3-letter ISO code (ISO
3166-1 alpha-3) of a specified country. The elements within each named list
define the specified input covariates to be used in the RF model, i.e. the name
of the covariates and the corresponding, if applicable and local, path to them.

mastergrid Named list Each element of the list defines the path to the input mastergrid(s), i.e. the
template gridded raster(s) that contains the unique area IDs as their value.
The name(s) corresponds to the 3-letter ISO code(s) of a specified
country(ies). Each corresponding element defines the path to the
mastergrid(s).

watermask Named list Each element of the list defines the path to the input country-specific water
mask. The name corresponds to the 3-letter ISO code of a specified country.
Each corresponding element defines the path to the water mask, i.e. the
binary raster that delineates the presence of water (1) and non-water (0), that
is used to mask out areas from modelling.

px_area Named list Each element of the list defines the path to the input raster(s) containing the
pixel area. The name corresponds to the 3-letter ISO code of a specified
country. Each corresponding element defines the path to the raster whose
values indicate the area of each unprojected (WGS84) pixel.

output_dir Character Optional. Contains the path to the directory for writing output files.
cores Integer Optional. Indicates the number of cores to use in parallel when executing the

function.
quant Logical Optional. Indicates whether to produce the quantile regression forests

(TRUE) to generate prediction intervals.
set_seed Integer Optional. Value to be used to set the random seed. Value is 2010 by default.
fset Named list Optional. Each element of the list defines the path to the directory(ies)

containing the RF model objects (.RData) with which we are using as a ’fixed
set’ in this modeling, i.e. are we parameterising, in part or in full, this RF
model run upon another country’s(ies’) RF model object. The name of each
element corresponds to the 3-letter ISO code of a specified country.

11

Table 2: Parameters of the popRF() function with brief descrip-
tions. (continued)

Parameter Name Type Description

fset_incl Logical Optional. Indicates whether the RF model object will or will not be combined
with another RF model run upon another country’s(ies’) RF model object,
i.e. “Hybrid Parameterised”.

fset_cutoff Integer Optional. This parameter is only used if fset_incl is TRUE. If the country has
less than fset_cutoff admin units, then RF popfit will not be combined with
the RF model run upon another country’s(ies’) RF model object. This is to
avoid trying to run a RF on countries with more covariates than admin units.

fix_cov Logical Optional. Indicates whether the raster extent of the covariates will be
corrected if the extent does not match the mastergrid(s).

check_results Logical Optional. Indicates whether the results will be compared with input data, i.e.
makes sure the sum of disaggregated pixel values equals the total of each
source subnational unit the values were disaggregated from

verbose Logical Optional. Indicates whether to print intermediate output from the function
to the console.

log Logical Optional. Indicates whether to print intermediate output from the function
to the log.txt file.

... Optional. Additional parameters passed directly to the ‘randomForest()‘
function or influence the efficiency of parallel processing.

12

There are some additional optional parameters that are passed directly to the randomForest()
function that is called internally which we detail in Table 3. Further details on the parameters of
the randomForest() function are given in (Liaw and Wiener 2002).

2.3.1 Typical covariates and their sources

Covariates derived from remote sensing imagery, such as land cover, urban and settlement presence
and density, nighttime lights, and vegetation, and other covariates derived from spatial environ-
mental data, such as roads, health and education services, points of interest, water bodies, and
protected land, are commonly used as “ancillary” data to produce the dasymetric weights used
in disaggregating population (Martin and Bracken 1991; Balk and Yetman 2004; J. Mennis and
Hultgren 2006; Bhaduri, Bright, and Coleman 2007; Gaughan et al. 2014; Sorichetta et al. 2015;
F. R. Stevens et al. 2015; European Commission and Columbia University 2015; Friere et al. 2016;
Reed et al. 2018; Palacios-Lopez et al. 2019; Nieves et al. 2021). Such covariate data can be
locally developed, e.g. manual digitisation, or be derived from openly available sources as long as
they are processed into raster format with a consistent resolution, are spatially aligned, and are
unprojected in a common coordinate system (e.g. WGS84). The covariates can have any name, but
will require consistency in the naming, between models, for model fitting and predictions to work
when running wither a hybrid-parameterised or fully-parameterised model (Table 1).

2.3.2 Population and subnational boundary data

The population data that is input to the popRF() function is tabular in nature and should be
in a comma separated value (CSV) file format. The data should consist of two columns: the first
column containing rows of unique Geographic ID (GID), which correspond to the subnational areas
defined by the raster provided to the mastergrid parameter, and the second column containing rows
of values of population counts for each subnational area. The CSV file should not contain a header
with column names.

2.4 Internal optimisation

One of the additional benefits of the popRF() function is that several portions of the process have
been optimised for parallel processing, namely the RF predictions at the pixel/grid level and a zonal
statistics function that calculates aggregate summaries of pixels within a given raster of zones. Both
of these are carried out within internal functions that estimate the number of optimal number of
blocks based upon the covariate and spatial contexts. These are written in R using the dependencies
of the parallel (R Core Team 2021) and doParallel (Corporation et al. 2020) packages.

2.4.1 Random forest predictions

The RF prediction of the pixel level weights, used in the dasymetric redistribution of the population
counts (Figure 2), has been parallelised since F. R. Stevens et al. (2015) and the corresponding
code at (Forrest R. Stevens 2014). This portion of the process divides the study area covered by the
covariates into subareas, referred to as “blocks,” and then independently predicts for these areas
using the same trained RF. The predicted values are then written out to a single raster, block by
block. Much of the logic and code from F. R. Stevens et al. (2015) and Forrest R. Stevens (2014)

13

Table 3: Table of additional, optional parameters within the popfit() function that are passed
internally to the randomForest() function.

Parameter Name Type Description

binc Numeric A constant value to increase the
calculated number of blocks by. This
can be used to set a larger ’safety’
margin for the calculated allocation of
computational resources.

boptimise Logical Indicates whether the calculation of
blocksize should be ’optimised’ to use
65 percent of available memory in the
estimation.

bsoft Logical Indicates the ’softness’ (or hardness)
of the specification of cores to use in
the modelling. If ‘TRUE‘ and the task
can be processed in a number of
blocks less than the specified value of
‘cores‘, then the smaller number of
blocks will be used.

proximity Logical Indicates whether proximity measures
among the rows should be computed.

nodesize Integer Declares a fixed value for the number
of observations to be in each terminal
node of the RF. Is passed to the
nodesize parameter of the
‘randomForest()‘ function. If ‘NULL‘,
defaults to 1/20th the number of
observations.

maxnodes Integer Declares a fixed value for the
maximum number of terminal nodes in
a tree within the RF. Is passed to the
maxnodes parameter of the
‘randomForest()‘ function. Default, of
‘NULL‘, is no limit.

ntree Integer Declares a fixed value for the number
of trees to grow within the RF. Is
passed to the *ntree* parameter of the
‘randomForest()‘ function. Default, if
‘NULL‘, is 500 trees.

mtry Integer Declares a fixed value for the number
of covariates to try at each split within
a tree. Is passed to the *mtry*
parameter of the ‘randomForest()‘
function. If ‘NULL‘, the value fit from
the ‘tuneRF()‘ function is used
instead.

const Character Contains the path to the binary raster
file that will be used as a mask, where
masked areas have value equal to zero.
This mask is used to constrain the
population modelling layers.

14

persists, however, we have provided an internal logic for determining the block size (see minblocks
parameter) in relation to the overall study area size and the computational resources at hand. This
is detailed in the internal get_blocks_need() function presented in Appendix A. This removes
the need for hardcoding of the block size or number of blocks and allows for more standardised and
efficient means, as compared to the previous trial and error, of subdividing the modelling task into
subtasks for parallel processing.

2.4.2 Zonal statistics

The basic zonal() function in the raster package has long been known to be less than efficient
when given large rasters and or many zonal features (Horning et al. 2013; Forrest R. Stevens
2014; Marrotte 2016; Lovelace, Nowosad, and Muenchow 2021). As a solution, we have created an
internal function, calculate_zs_parallel(), that breaks the zonal statistic calculation task into
many independent tasks that can be calculated in parallel. Again, using the concept of blocks, the
function extracts the values from the value raster and the zonal raster into data.frames, carries
out tabular summary calculations, and outputs the zonal statistics to a final data.frame. This
all allows for more efficient calculation of zonal statistics. This function is called internally when
summaries of the specified input covariates (see the cov parameter) do not already exist.

3 Exemplified test cases

For the remainder of this paper, and to focus more on the popRF() function modelling rather
than geoprocessing, we will be using the geospatial library of data (Lloyd et al. 2019), created
and hosted by the WorldPop research group (ftp://ftp.worldpop.org/GIS/). These data include
spatially harmonised covariates pertaining to the environment as well as rasterised subnational areas
that correspond to tabular, comma separated population data (.csv format). We give example R
code in Appendix B on the programmatic downloading of these data, but they can be downloaded
via a browser or FTP client. For the following examples we will use the countries of Guyana (ISO
3166-1 alpha-3: “GUY”), Suriname (ISO 3166-1 alpha-3: “SUR”), and French Guiana (ISO 3166-1
alpha-3: “GUF”). We download the data to the project root path of “B:/Research/tmp_popRF/,”
which we refer to simply as “./” hereafter for conciseness, but, of course, in replication the user
may wish to change this directory location for their own file setup.

3.1 Single country, general run

For our “single country, general” model run, we will use Guyana (GUY). We have already down-
loaded all the data using the code in Appendix B and the “GUY” ISO tag. GUY consists of a
number of subnational units (n = 117) and will serve as a reference model when running the later
hybrid- and fully-parameterised model runs. Note, that for all of these countries, the number of
subnational units that “exist” may be higher in the official public releases or in non-public datasets,
but here, and for all other examples, we are using the boundary matched population data from
Lloyd et al. Lloyd et al. (2019) based upon Doxsey-Whitfield et al.(Doxsey-Whitfield et al. 2015).

First, we need to make sure our folder structure is defined.

15

ftp://ftp.worldpop.org/GIS/

country <- "GUY"
project_root_path <- "B:/Research/tmp_poprf/"
input_dir <- paste0(project_root_path, country, "/covariates/")
input_population <- paste0(input_dir,"guy_population.csv")
output_directory <- paste0(project_root_path,country,"/output")
if (!dir.exists(output_directory)) {

dir.create(output_directory)
}

And we then define our input covariates in a nested list.

input_covariates <- list(
country = list(

"dst011_2015" = file.path(input_dir,"esaccilc_dst011_100m_2015.tif"),
"dst040_2015" = file.path(input_dir,"esaccilc_dst040_100m_2015.tif"),
"dst130_2015" = file.path(input_dir,"esaccilc_dst130_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst160_2015" = file.path(input_dir,"esaccilc_dst160_100m_2015.tif"),
"dst190_2015" = file.path(input_dir,"esaccilc_dst190_100m_2015.tif"),
"dst200_2015" = file.path(input_dir,"esaccilc_dst200_100m_2015.tif"),
"dst_water" = file.path(input_dir,"esaccilc_dst_water_100m_2000_2012.tif"),
"dst_bsgme_2020" = file.path(input_dir,"dst_bsgme_100m_2020.tif"),
"dst_ghsl_2000" = file.path(input_dir,"dst_ghslesaccilc_100m_2000.tif"),
"dst_intersec_2016" = file.path(input_dir,"osm_dst_roadintersec_100m_2016.tif"),
"dst_waterway_2016" = file.path(input_dir,"osm_dst_waterway_100m_2016.tif"),
"dst_road_2016" = file.path(input_dir,"osm_dst_road_100m_2016.tif"),
"slope" = file.path(input_dir,"srtm_slope_100m.tif"),
"topo" = file.path(input_dir,"srtm_topo_100m.tif"),
"dst_coast" = file.path(input_dir,"dst_coastline_100m_2000_2020.tif"),
"viirs_2016" = file.path(input_dir,"viirs_100m_2016.tif"),
"wdpa_dst_2017" = file.path(input_dir,"wdpa_dst_cat1_100m_2017.tif")

)
)

names(input_covariates) <- c(country)
input_mastergrid <- list(

country = file.path(input_dir,"subnational_admin_2000_2020.tif")
)
names(input_mastergrid) <- c(country)
input_watermask <- input_watermask <- list(

country = file.path(input_dir,"esaccilc_water_100m_2000_2012.tif")
)
names(input_watermask) <- c(country)
input_px_area <- list(

country = file.path(input_dir,"px_area_100m.tif")
)
names(input_px_area) <- c(country)
input_poptables <- list(

country = input_population
)
names(input_poptables) <- c(country)

We can then call the popRF() function using these inputs. We will use the default blocks parameter
of NULL to allow it to automatically determine the number of blocks to divide the modelling into,
but this can be alternately specified by the user. We also set the log parameter to TRUE to write
the intermediate messages to a text file and disable the calculation of proximity measures in the
RF; the proximity measures are not of interest to us currently and this increases the computational
load (particularly for large numbers of subnational units or large geographic extent).

require(popRF)
guy <- popRF(pop = input_poptables,

cov = input_covariates,

16

mastergrid = input_mastergrid,
watermask = input_watermask,
px_area = input_px_area,
output_dir = output_directory,
cores = 8,
quant = TRUE,
proximity = FALSE,
set_seed = 1964L,
fix_cov = FALSE,
check_result = TRUE,
log = TRUE)

The popRF() function returns a named, two-item list with the first item, pop, being the raster
containing the disaggregated and gridded population counts and the second item, popfit, which
is the final RF model object. If the option check_results = TRUE, then a three-item list is
returned with the addition of an item error which provides the average absolute difference
in the modeled population versus the input subnational population counts. These output
data/objects, and more, are written to the “./*<ISO_CODE>*/output/” folder. Of specific
interest for the hybrid- and fully-parameterised model runs is that the final RF model object
(filename pattern of “popfit_final_*<ISO_CODE>*.RData”) and the quantile regression RF
model object (filename pattern of “popfit_quant_*<ISO_CODE>*.RData”) are written to the
“./*<ISO_CODE>*/output/tmp/” folder. These model object files will need to be manually copied
to the proper folders prior to any parameterised model run (Table 1).

3.1.1 Investigating the model and outputs

We can examine some of the outputs from the model run now. First, we’ll look at the overall model
fit of the RF.

require(randomForest)
guy$popfit

#> Call:
#> randomForest(x = x_data y = y_data ntree = rf_ntree mtry = rf_mtry
#> nodesize = rf_nodesize maxnodes = rf_maxnodes importance = TRUE
#> proximity = proximity do.trace = F)
#> Type of random forest: regression
#> Number of trees: 500
#> No. of variables tried at each split: 6
#>
#> Mean of squared residuals: 1.25317
#> % Var explained: 85.51

This gives us the standard summary output for RF model objects from the randomForest package
(Liaw and Wiener 2002). We can see the original, internal randomForest() function call, that we
grew 500 trees overall, and the auto-adjusted parameters that resulted in six variables tried at each
split. Additionally, we can see that 85 percent of the data variance are explained in this model, as
estimated from the out-of-bag sample validations. We can also look at the variable importances
within the RF model.

require(randomForest)
randomForest::varImpPlot(guy$popfit,

main = "GUY Variable Importances",
cex = 0.8)

17

dst160_2015
slope
dst140_2015
dst200_2015
dst130_2015
dst_road_2016
dst_intersec_2016
dst_waterway_2016
dst040_2015
wdpa_dst_2017
dst_coast
dst190_2015
dst011_2015
dst_water
dst_ghsl_2000
topo
viirs_2016
dst_bsgme_2020

4 6 8 10 12
%IncMSE

dst160_2015
wdpa_dst_2017
dst_waterway_2016
dst130_2015
dst200_2015
dst140_2015
dst_intersec_2016
dst_water
slope
dst040_2015
dst_road_2016
topo
dst_coast
dst190_2015
dst011_2015
viirs_2016
dst_ghsl_2000
dst_bsgme_2020

0 50 100 200
IncNodePurity

GUY Variable Importances

Further explorations of the RF model object are possible as with any standard RF model object from
the randomForest package, such as partial dependency plots (Liaw and Wiener 2002), Accumulated
Local Effect plots (Apley and Zhu 2016), and others.

We can also plot the final population raster to get an idea of the overall output modelled population
surface.

require(raster)
require(ggplot2)
require(ggspatial)
require(viridis)
ggplot() +

layer_spatial(guy$pop) +
scale_fill_viridis(limits = c(0,5), na.value = NA) +
ggtitle("Guyana, Modelled Population, 2020") +
labs(fill = "Population\nPer Pixel") +
theme(panel.background = element_rect(fill = "gray20"),

panel.grid = element_line(color = "gray60"))

There are other output files, written to the “./*<ISO_CODE>*/output/” folder, that may be of
interest that are not returned by the popRF() function. The complete list of output files, their
format, and their description are given in Table 3.

\begin{table}
\caption{Files written to the ‘/output/’ folder by the popRF() function, their format, and a

description of what they include. This includes all files produced when popRF() function defaults
are used. The names associated with the ‘ZONAL’ files (last row) will vary based upon user input

18

Figure 5: Population surface for Guyana using estimated 2020 population subnational counts and
modelled using a RF-informed dasymetric disaggregation. Note, the population legend uses a
maximum of 5 people per pixel for visualisation purposes; the people per pixel in the modelled
data has a maximum of 91.

19

and naming conventions, but in general will follow the pattern of ’_ZS.csv’. Optional files, such as
those produced when log is TRUE, are not included here.}

File Format Folder Description

*\<ISO\>*_census_data .CSV ‘./<ISO>/output/zonal_stats/‘Subnational population
count data with columns
representing the zonal
statistics summaries of all
input covariates.

check_result_prj_*\<ISO\>* .CSV ‘./<ISO>/output/tmp/‘ CSV file containing the
difference between the input
subnational population
counts and the sum of the
modelled population counts
per pixel in each
subnational unit.

init_popfit_*\<ISO\>* .RData ‘./<ISO>/output/tmp/‘ Initial RF model that tunes
in the parameters for
number of covariates to use
at each split.

pop_census_mask_*\<ISO\> .TIF ‘./<ISO>/output/tmp/‘ Binary mask of where
predictions should or should
not be made based upon
where the input mastergrid
has coverage.

popfit_*\<ISO\>* .RData ‘./<ISO>/output/tmp/‘ Random forest model that
has the final set of
covariates that resulted
from the selection
procedure.

popfit_final_*\<ISO\>* .RData ‘./<ISO>/output/tmp/‘ Final RF model that is used
to produce the dasymetric
weights.

popfit_quant_*\<ISO\>* .RData ‘./<ISO>/output/tmp/‘ Quantile regression forest
model object.

ppp_*\<ISO\>* .TIF ‘./<ISO>/output/tmp/‘ Population Per Pixel (PPP)
where pixel values are
counts of people in the
pixel.

predict_density_rf_pred_*\<ISO\>*.TIF ‘./<ISO>/output/tmp/‘ Values to be used as
dasymetric weights where
pixel value is predicted
population from the
popfit_final model.

predict_density_rf_pred_*\<ISO\>*_ZS_sum.TIF ‘./<ISO>/output/tmp/‘ Sum of values from pre-
dict_density_rf_pred_\<ISO\>
by subnational unit; used to
produce the dasymetric
weights.

predict_density_rf_pred_05_*\<ISO\>*.TIF ‘./<ISO>/output/tmp/‘ 5th percentile of RF
predictions.

predict_density_rf_pred_50_*\<ISO\>*.TIF ‘./<ISO>/output/tmp/‘ 50th percentile of RF
predictions.

predict_density_rf_pred_90_*\<ISO\>*.TIF ‘./<ISO>/output/tmp/‘ 90th percentile of RF
predictions.

predict_density_rf_sd_*\<ISO\>*.TIF ‘./<ISO>/output/tmp/‘ Standard deviation of RF
predictions.

ZONAL .CSV ‘./<ISO>/output/zonal_stats/‘Zonal statistic summaries
by subnational unit.

\end{table}

20

3.2 Single country, hybrid-parameterised model run

Now we’ll look at the example of Suriname (SUR), which has a relatively small number of subnational units (n = 80). Let’s
say we assume that while we can create a model using only SUR, that we believe it might be beneficial to include information
from the GUY model we previously ran (see Section Single Country). In this case, we want to combine the RF model object

trained on the GUY data with the RF we train on only the SUR data. We refer to this as a “hybrid” parametrised model
since we are combining two independent random forests from two different study areas, e.g. countries. This method builds

from F. R. Stevens et al. (2015) and was put forth in Gaughan et al. (2014).

To facilitate the hybrid model that will incorporate information from the GUY model in conjunction with the SUR trained
model, we created a folder “/final/” and a folder “/quant/”} within country specific folder within the project root path, in

this case “B:/Research/tmp_poprf/SUR/”}. From the “./output/” folder, where our GUY model and intermediaries were
output, we have copied the “final” RF model for GUY into the “/final/”} folder as well as the quantile regression model
object for GUY into the “/quant/”} folder. Both of these model objects are saved in .RData format. Note, if the quantile

regression was not run for GUY and it is desired for SUR, then the GUY model would need to be rerun to include a quantile
regression. Alternatively, if the quantile regression was run for GUY but was not desired for SUR, then there is no need to

copy over the quantile regression model object (.RData) to the “/quant/” folder.

After copying the necessary model objects to the correct folders, we first download the data for SUR using the code in
Appendix B and then define our parameters that we will pass to the popRF() function.

country <- "SUR"
project_root_path <- "B:/Research/tmp_poprf/"
input_dir <- paste0(project_root_path, country, "/covariates/")
input_population <- paste0(input_dir, tolower(country), "_population.csv")

output_directory <- paste0(project_root_path,country,"/output/")
If the directory does not exist, create it:
if (!dir.exists(output_directory)) {

dir.create(output_directory)
}

Take note that since we are parameterising the model on a previously run RF, we will need to
make sure we have the same covariates and covariates names, otherwise conflicts will occur when

trying to provide the data to the RF.

input_covariates <- list(
country = list(

"dst011_2015" = file.path(input_dir,"esaccilc_dst011_100m_2015.tif"),
"dst040_2015" = file.path(input_dir,"esaccilc_dst040_100m_2015.tif"),
"dst130_2015" = file.path(input_dir,"esaccilc_dst130_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst160_2015" = file.path(input_dir,"esaccilc_dst160_100m_2015.tif"),
"dst190_2015" = file.path(input_dir,"esaccilc_dst190_100m_2015.tif"),
"dst200_2015" = file.path(input_dir,"esaccilc_dst200_100m_2015.tif"),
"dst_water" = file.path(input_dir,"esaccilc_dst_water_100m_2000_2012.tif"),
"dst_bsgme_2020" = file.path(input_dir,"dst_bsgme_100m_2020.tif"),
"dst_ghsl_2000" = file.path(input_dir,"dst_ghslesaccilc_100m_2000.tif"),
"dst_intersec_2016" = file.path(input_dir,"osm_dst_roadintersec_100m_2016.tif"),
"dst_waterway_2016" = file.path(input_dir,"osm_dst_waterway_100m_2016.tif"),
"dst_road_2016" = file.path(input_dir,"osm_dst_road_100m_2016.tif"),
"slope" = file.path(input_dir,"srtm_slope_100m.tif"),
"topo" = file.path(input_dir,"srtm_topo_100m.tif"),
"dst_coast" = file.path(input_dir,"dst_coastline_100m_2000_2020.tif"),
"viirs_2016" = file.path(input_dir,"viirs_100m_2016.tif"),
"wdpa_dst_2017" = file.path(input_dir,"wdpa_dst_cat1_100m_2017.tif")

)
)

names(input_covariates) <- c(country)
input_mastergrid <- list(

country = file.path(input_dir,"subnational_admin_2000_2020.tif")
)
names(input_mastergrid) <- c(country)
input_watermask <- input_watermask <- list(

21

country = file.path(input_dir,"esaccilc_water_100m_2000_2012.tif")
)
names(input_watermask) <- c(country)
input_px_area <- list(

country = file.path(input_dir,"px_area_100m.tif")
)
names(input_px_area) <- c(country)
input_poptables <- list(

country = input_population
)
names(input_poptables) <- c(country)

We can now pass these arguments to the popRF() function, taking care to set our “fixed set”
parameters (e.g. fset, fset_incl) for a hybrid model run such that a RF is created based solely

on the SUR data and then merged with the GUY RF, i.e. fset_incl = TRUE.

require(popRF)
sur <- popRF(pop = input_poptables,

cov = input_covariates,
mastergrid = input_mastergrid,
watermask = input_watermask,
px_area = input_px_area,
output_dir = output_directory,
cores = cores,
fset = list("final " = paste0(project_root_path, country,

"/final/"),
"quant" = paste0(project_root_path, country,

"/quant/")),
fset_incl = TRUE,
quant = FALSE,
set_seed = 1964L,
proximity = FALSE,
fix_cov = FALSE,
check_result = TRUE,
log = TRUE)

This gives us the following model summary and population map. Note that the summary does
not have an estimate of the variance explained since we merged two independent models together.

require(raster)
require(randomForest)
sur$popfit

#> Call:
#> randomForest(x = x_data y = y_data ntree = rf_ntree mtry = rf_mtry
#> nodesize = rf_nodesize maxnodes = rf_maxnodes importance = TRUE
#> proximity = proximity do.trace = F)
#> Type of random forest: regression
#> Number of trees: 500
#> No. of variables tried at each split: 6
#>
#> Mean of squared residuals: 1.347637
#> % Var explained: 86.94

require(raster)
require(ggplot2)
require(ggspatial)
require(viridis)
ggplot()+

layer_spatial(sur$pop)+
scale_fill_viridis(limits = c(0,5), na.value = NA)+

22

ggtitle("Suriname, Modelled Population, 2020")+
labs(fill = "Population\nPer Pixel")+
theme(panel.background=element_rect(fill="gray20"),

panel.grid = element_line(color = "gray60"))

Figure 6: Population surface for Suriname using estimated 2020 population subnational counts and
modelled using a RF-informed dasymetric disaggregation that combined the Suriname RF with the
previously run Guyana RF. Note, the population legend uses a maximum of 5 people per pixel for
visualisation purposes; the people per pixel in the modelled data has a maximum of 78.

The outputs can be viewed as described. However, because the RF model for SUR was merged
with GUY, and the covariate importance values being calculated from the respective out-of-bag
samples, the varImpPlot() function will not produce meaningful results. This example can be

extended to situations where you may want to parametrise a country on multiple other countries
by simply placing as many countries model objects as desired within the “/final/” and

“/quant/” folders.

3.3 Single country, fully-parameterised run

Lastly, we’ll look at the example of French Guiana (GUF), which has very few subnational units
(n = 29). While you could still run a RF with this few subnational units, only if the number of

23

covariates were less than n, we’ll simply predict for GUF using the GUY RF model relationships.
That is, we are inputting the gridded covariates for GUF and predicting for GUF, but it is based

upon the relationships stored in the RF model object trained on GUY with no model training
input from GUF, which you would have in a hybrid parameterised run (i.e. fset = TRUE).

country <- "GUF"
project_root_path <- "B:/Research/tmp_poprf/"
input_dir <- paste0(project_root_path, country, "/covariates/")
input_population <- paste0(input_dir, tolower(country), "_population.csv")

output_directory <- paste0(project_root_path,country,"/output/")
if (!dir.exists(output_directory)) {

dir.create(output_directory)
}

We now declare the covariates being used. Note that the names of these must agree with the
covariate names within the GUY RF or an error will occur.

input_covariates <- list(
country = list(

"dst011_2015" = file.path(input_dir,"esaccilc_dst011_100m_2015.tif"),
"dst040_2015" = file.path(input_dir,"esaccilc_dst040_100m_2015.tif"),
"dst130_2015" = file.path(input_dir,"esaccilc_dst130_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst160_2015" = file.path(input_dir,"esaccilc_dst160_100m_2015.tif"),
"dst190_2015" = file.path(input_dir,"esaccilc_dst190_100m_2015.tif"),
"dst200_2015" = file.path(input_dir,"esaccilc_dst200_100m_2015.tif"),
"dst_water" = file.path(input_dir,

"esaccilc_dst_water_100m_2000_2012.tif"),
"dst_bsgme_2020" = file.path(input_dir,"dst_bsgme_100m_2020.tif"),
"dst_ghsl_2000" = file.path(input_dir,

"dst_ghslesaccilc_100m_2000.tif"),
"dst_intersec_2016" = file.path(input_dir,

"osm_dst_roadintersec_100m_2016.tif"),
"dst_waterway_2016" = file.path(input_dir,

"osm_dst_waterway_100m_2016.tif"),
"dst_road_2016" = file.path(input_dir,"osm_dst_road_100m_2016.tif"),
"slope" = file.path(input_dir,"srtm_slope_100m.tif"),
"topo" = file.path(input_dir,"srtm_topo_100m.tif"),
"dst_coast" = file.path(input_dir,"dst_coastline_100m_2000_2020.tif"),
"viirs_2016" = file.path(input_dir,"viirs_100m_2016.tif"),
"wdpa_dst_2017" = file.path(input_dir,"wdpa_dst_cat1_100m_2017.tif")

)
)

names(input_covariates) <- c(country)
input_mastergrid <- list(

country = file.path(input_dir,"subnational_admin_2000_2020.tif")
)
names(input_mastergrid) <- c(country)
input_watermask <- input_watermask <- list(

country = file.path(input_dir,"esaccilc_water_100m_2000_2012.tif")
)
names(input_watermask) <- c(country)
input_px_area <- list(

country = file.path(input_dir,"px_area_100m.tif")
)
names(input_px_area) <- c(country)
input_poptables <- list(

country = input_population
)
names(input_poptables) <- c(country)

To run the fully-parameterised we created a folder “/final/” and a folder “/quant/” within the
country specific folder within the country’s project path, “B:/Research/tmp_poprf/GUF/.” From

24

the “/output/”} folder, where our GUY model and intermediaries were output, we have copied
the “final” RF model for GUY into the “/final/” folder as well as the quantile regression model

object for GUY into the “/quant/” folder. Both of these model objects are saved in .RData
format.

We can then run the model, making sure to set fset_incl = FALSE to indicate that we do not
want to train a RF on our input country of GUF and only create predictions using the existing

RF model trained on GUY data.

require(popRF)
guf <- popRF(pop = input_poptables,

cov = input_covariates,
mastergrid = input_mastergrid,
watermask = input_watermask,
px_area = input_px_area,
output_dir = output_directory,
cores = 8,
fset = list("final " = paste0(project_root_path, country, "/final/"),

"quant" = paste0(project_root_path, country, "/quant/")),
fset_incl = TRUE,
quant = FALSE,
set_seed = 1964L,
proximity = FALSE,
fix_cov = FALSE,
check_result = TRUE,
log = TRUE)

This gives us the following output RF model, which is really the GUY model, and population
surface. Note that when calling the RF model object that a variance and pseudo r squared will be

given, but this is for the model that was parameterised on (GUY in this case) and not the
country being predicted for (GUF in this case).

require(raster)
require(randomForest)
guf$popfit

#> Call:
#> randomForest(x = x_data y = y_data ntree = popfit_final_old$ntree
#> mtry = popfit_final_old$mtry nodesize = length(y_data)/1000
#> importance = TRUE proximity = proximity)
#> Type of random forest: regression
#> Number of trees: 500
#> No. of variables tried at each split: 6
#>
#> Mean of squared residuals: 2.873791
#> % Var explained: 63.29

We can plot the modelled results.

require(raster)
require(ggplot2)
require(ggspatial)
require(viridis)
ggplot()+

layer_spatial(guf$pop)+
scale_fill_viridis(limits = c(0,5), na.value = NA)+
ggtitle("French Guiana, Modelled Population, 2020")+
labs(fill = "Population\nPer Pixel")+
theme(panel.background=element_rect(fill="gray20"),

panel.grid = element_line(color = "gray60"))

25

Figure 7: Population surface for French Guiana using estimated 2020 population subnational counts
and modelled using a RF-informed dasymetric disaggregation that utilised the relationships from
the previously run Guyana RF. Note, the population legend uses a maximum of 5 people per pixel
for visualisation purposes; the people per pixel in the modelled data has a maximum of 78.

26

As alluded to above, because we are making the predictions completely from the GUY model,
varImpPlot() could be called on the “output” model object, but it would only show the variable
importances for the GUY model we are parameterising on. This example can be also extended to

situations where you may want to parametrise a country on multiple other countries by simply
placing as many countries model objects as desired within the “/final/” and “/quant/” folders.

In this case, any summaries and variable importance measures and functions would be
meaningless due to the merging of multiple independent RF models.

3.4 Multi-country model scenario

There can arise scenarios where it may be desirable to run multiple countries at once as a single
model. There is the more philosophically cogent situation when it is believed that multiple

countries have the same underlying population processes at work. Alternatively, there could be
the more practically necessary situation where several adjacent (or proximate in the case of

islands) countries lack sufficient numbers of subnational units themselves to create independent
RF models. Regardless, the popRF() function allows for the specification of multiple countries of
input at once. We’ll now walk through a case where we input GUY, SUR, and GUF and run a

single RF model trained on all three countries.

Again, all data was downloaded in advance by using the code in Appendix B. We then carefully
define our inputs, expanding upon the example in Section “Single Country” and referring to the

parameters in Table 2.

project_root_path <- "B:/Research/tmp_poprf/"
countries <- c("GUY","SUR","GUF")
country_tag <- paste0(countries, collapse = "_")

output_directory <- paste0(project_root_path, country_tag,"/output/")
if (!dir.exists(output_directory)) {

dir.create(output_directory, recursive = TRUE)
}

We now define the parameters, covariates and their corresponding data in a programmatic way
that allows for accessing data in different locations for our single run.

input_poptables <- vector(mode = "list", length = length(countries))
names(input_poptables) <- countries

input_mastergrid <- vector(mode = "list", length = length(countries))
names(input_mastergrid) <- countries

input_watermask <- vector(mode = "list", length = length(countries))
names(input_watermask) <- countries

input_px_area <- vector(mode = "list", length = length(countries))
names(input_px_area) <- countries

input_covariates <- vector(mode = "list", length = length(countries))
names(input_covariates) <- countries
input_covariates <- list()
for (country in countries) {

input_dir <- paste0(project_root_path, country, "/covariates/")
input_population <- paste0(input_dir, tolower(country), "_population.csv")
input_poptables[[eval(country)]] <- input_population
input_covariates[[eval(country)]] <- list(

"dst011_2015" = file.path(input_dir,"esaccilc_dst011_100m_2015.tif"),
"dst040_2015" = file.path(input_dir,"esaccilc_dst040_100m_2015.tif"),

27

"dst130_2015" = file.path(input_dir,"esaccilc_dst130_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst140_2015" = file.path(input_dir,"esaccilc_dst140_100m_2015.tif"),
"dst160_2015" = file.path(input_dir,"esaccilc_dst160_100m_2015.tif"),
"dst190_2015" = file.path(input_dir,"esaccilc_dst190_100m_2015.tif"),
"dst200_2015" = file.path(input_dir,"esaccilc_dst200_100m_2015.tif"),
"dst_water" = file.path(input_dir,"esaccilc_dst_water_100m_2000_2012.tif"),
"dst_bsgme_2020" = file.path(input_dir,"dst_bsgme_100m_2020.tif"),
"dst_ghsl_2000" = file.path(input_dir,"dst_ghslesaccilc_100m_2000.tif"),
"dst_intersec_2016" = file.path(input_dir,

"osm_dst_roadintersec_100m_2016.tif"),
"dst_waterway_2016" = file.path(input_dir,

"osm_dst_waterway_100m_2016.tif"),
"dst_road_2016" = file.path(input_dir,"osm_dst_road_100m_2016.tif"),
"slope" = file.path(input_dir,"srtm_slope_100m.tif"),
"topo" = file.path(input_dir,"srtm_topo_100m.tif"),
"dst_coast" = file.path(input_dir,"dst_coastline_100m_2000_2020.tif"),
"viirs_2016" = file.path(input_dir,"viirs_100m_2016.tif"),
"wdpa_dst_2017" = file.path(input_dir,"wdpa_dst_cat1_100m_2017.tif"))

input_mastergrid[[country]] <- file.path(input_dir,
"subnational_admin_2000_2020.tif")

input_watermask[[country]] <- file.path(input_dir,
"esaccilc_water_100m_2000_2012.tif")

input_px_area[[country]] <- file.path(input_dir,"px_area_100m.tif")
}

We can then make the function call that creates the multi-country model.

require(popRF)
guy_sur_guf <- popRF(pop = input_poptables,

cov = input_covariates,
mastergrid = input_mastergrid,
watermask = input_watermask,
px_area = input_px_area,
output_dir = output_directory,
cores = 8,
fset = NULL,
quant = FALSE,
set_seed = 1964L,
proximity = FALSE,
fix_cov = TRUE,
check_result = TRUE,
log = TRUE)

Unlike the parameterised models, we can call the full model summary and look at the variable
importance plots as it was run as a single model and thus has a single, common out-of-bag sample.

require(randomForest)
guy_sur_guf$popfit

#> Call:
#> randomForest(x = x_data y = y_data ntree = rf_ntree mtry = rf_mtry
#> nodesize = rf_nodesize maxnodes = rf_maxnodes importance = TRUE
#> proximity = proximity do.trace = F)
#> Type of random forest: regression
#> Number of trees: 500
#> No. of variables tried at each split: 5
#>
#> Mean of squared residuals: 1.349348
#> % Var explained: 85.6

We can examine the variable importance plot as well.

28

varImpPlot(guy_sur_guf$popfit,
main = "GUY-SUR-GUF Variable Importances",
cex = 0.8)

dst160_2015
dst200_2015
slope
dst_waterway_2016
dst140_2015
dst_road_2016
topo
dst040_2015
wdpa_dst_2017
dst_coast
dst_water
dst_intersec_2016
dst130_2015
dst190_2015
dst011_2015
dst_ghsl_2000
dst_bsgme_2020
viirs_2016

4 8 12 16
%IncMSE

dst200_2015
dst160_2015
slope
wdpa_dst_2017
dst_waterway_2016
dst140_2015
dst130_2015
dst_water
topo
dst_coast
dst_intersec_2016
dst040_2015
dst_road_2016
dst190_2015
viirs_2016
dst011_2015
dst_ghsl_2000
dst_bsgme_2020

0 100 200 300
IncNodePurity

GUY−SUR−GUF Variable Importances

And, lastly, we can plot the entire modelled population surface of all three countries.

require(raster)
require(ggplot2)
require(ggspatial)
require(viridis)
ggplot() +

layer_spatial(guy_sur_guf$pop) +
scale_fill_viridis(limits = c(0,5), na.value = NA) +
ggtitle("Guyana, Suriname, and French Guiana\nModelled Population, 2020") +
labs(fill = "Population\nPer Pixel") +
theme(panel.background = element_rect(fill = "gray20"),

panel.grid = element_line(color = "gray60"))

4 Conclusions

Here, we have developed and demonstrated a new package in the R statistical programming
language for creating RF-informed dasymetrically modelled gridded populations. This single

language package and function makes a transparent, peer-reviewed method (Gaughan et al. 2014;
Sorichetta et al. 2015; F. R. Stevens et al. 2015; Leyk et al. 2019) more accessible in a replicable

29

Figure 8: Population surface for Guyana (GUY), Suriname (SUR), and French Guiana (GUF) using
estimated 2020 population subnational counts. This was modelled using a RF-informed dasymetric
disaggregation that was trained on the pooled data of all three countries. Note, the population
legend uses a maximum of 5 people per pixel for visualisation purposes; the people per pixel in the
modelled data has a maximum of 88.

30

coding framework. However, the user still needs to have some skill in data management and
geoprocessing to to preprocess the the covariates. Further, optimised functions with a parallel

coding approach allow for a more efficient modelling process. Additionally, while country-level or
multiple country-level model runs were demonstrated here, in practice subnational models can
also be generated due to the flexibility of popRF(). For instance, if a user had data for a city

composed of sub-city units and wanted to run the model only for the city the popRF() function
could run this scenario as long as a “dummy” 3 letter ISO code was defined if the parameters,

e.g. if modelling the city of Georgetown as opposed to all of Guyana, a dummy ISO code could be
“GEO.” The user would then simply supply input data for the desired study area, in this example

Georgetown.

It is important to note how these gridded data are best used. It is not recommended to use any
one pixel level predicted value, rather, the values are provided at a sufficiently fine resolution
(typically ~100m in practice, but this depends on the input data) to allow for aggregation to

coarser areas that are fit for the purpose of application (Leyk et al. 2019). Because of the
proportional redistribution using unit-relative weights (J. Mennis 2003; Jeremy Mennis 2009), the
uncertainty estimates that may be generated by the random forest are not propagated to the final

pixel level estimates (F. R. Stevens et al. 2015; Nagle et al. 2014). In general, the greater the
difference in spatial scale between the source area and target area resolutions, the greater the

spatial and modelling uncertainty that is introduced into the predicted estimates. Future work
may attempt to address this by means of another modelling method or through extensive

simulation.

Future developments of this package could target and are targeting a number of areas. First,
other methods for generating dasymetric weights, such as other implementations of random

forests (Strobl et al. 2007, 2008; Sinha et al. 2019) or other statistical/machine learning methods
(Nelder and Wedderburn 1972; Hastie and Tibshirani 1987; Hopfield 1988; Boser, Guyon, and

Vapnik 1992), could be incorporated. Second, alternative disaggregations involving pre-modelling
spatial constraints on the disaggregations, via masking, and or post-modelling spatial constraints
is possible and worth exploring. Such code for developing disaggregative “constrained” models is

already in development within popRF. There is also the potential to introduce alternative
covariate selection procedures other than the conservative procedure outlined in F. R. Stevens et

al. (2015) and implemented within this code. Further developments will include additional
functions to auto-generate common diagnostic and summary plots of the models as well as

provide functions to aid in the validation of model results against independent, input validation
data. Lastly, other utilities such as plotting functions for the outputs and generation of metadata

reports, summarising the model and its inputs, would likely be of use for end-users.

4.1 Acknowledgements

Listed in order of contribution.

Conceptualisation: MB, JJN, FRS. Data Curation: JJN, MB, FRS, AEG, DK, AS. Formal
Analysis: JJN, MB. Funding Acquisition: AS, AJT. Investigation: JJN, MB. Methodology: MB,
JJN, FRS, AEG. Project Administration: AS, AJT. Resources: MB, AS, AJT. Software: MB,

JJN, FRS, CJ, DK. Supervision: MB, JJN, AS, AJT. Validation: JJN, MB. Visualisation: JJN.

31

Writing - Original Draft Preparation: JJN. Writing - Review/Editing: JJN, MB, FRS, AEG, DK,
CJ, AS, AJT

4.2 Appendix A

#' Function will return a number of blocks
#' sugesting for processing raster file. It will take into consideration
#' number of layers, cells, cores and avalible memory on computer
#' (not maximum memory but avalible)
#' @param x raster
#' @param cores number of cores
#' @param n parameter to increase requrement of the raster
#' @param number_type Will be used to estimate requred memory
#' @importFrom raster nlayers ncell
#' @rdname get_blocks_need
#' @return integer
#' @examples
#' \dontrun{
#' get_blocks_need(x, cores=2, n=1)
#' }
#' @noRd
get_blocks_need <- function(x, cores, n=1, number_type = "numeric"){

#stopifnot(hasValues(x))

n <- n + nlayers(x) - 1
cells <- round(1.1 * ncell(x)) * n
#memneed <- cells * 8 * n / (1024 * 1024)

if(number_type == "integer") {

byte_per_number = 4

} else if(number_type == "numeric") {

byte_per_number = 8

} else {

#byte_per_number = .Machine$sizeof.pointer
stop(sprintf("Unknown number_type: %s", number_type))

}

blocks <- 1

memneed <- (cells * byte_per_number * n / (1024 * 1024 * 1024))/blocks

memavail <- get_aval_memory()/cores

while ((memneed > memavail)) {

memneed <- (cells * byte_per_number * n / (1024 * 1024 * 1024))/blocks
blocks <- blocks + 1

}

if (blocks < cores) blocks <- cores

return(blocks)

}

32

4.3 Appendix B

wpdata_download <- function(project_dir,
country="GUY",#”SUR” “GUF”
ftp=TRUE,
verbose=TRUE,
log=TRUE){

iso.list <- c('ABW','AFG','AGO','AIA','ALA','ALB','AND','ARE','ARG','ARM',
'ASM','ATG','AUS','AUT','AZE','BDI','BEL','BEN','BES','BFA',
'BGD','BGR','BHR','BHS','BIH','BLM','BLR','BLZ','BMU','BOL',
'BRA','BRB','BRN','BTN','GUF','CAF','CAN','CHE','CHL','CIV',
'CMR','COD','COG','COK','COL','COM','CPV','CRI','CUB','CUW',
'CYM','CZE','DEU','DJI','DMA','DNK','DOM','DZA','ECU','EGY',
'ERI','ESH','ESP','EST','ETH','FIN','FJI','FLK','FRA','FRO',
'FSM','GAB','GBR','GEO','GGY','GHA','GIB','GIN','GLP','GMB',
'GNB','GNQ','GRC','GRD','GRL','GTM','GUF','GUM','GUY','HKG',
'HND','HRV','HTI','IDN','IMN','IRL','IRN','IRQ','ISL','ITA',
'JAM','JOR','JPN','KAZ','KGZ','KHM','KIR','KNA','KOR','KOS',
'KWT','LAO','LBN','LBR','LBY','LCA','LIE','LKA','SUR','LTU',
'LUX','LVA','MAC','MAF','MAR','MCO','MDA','MDG','MDV','MHL',
'MKD','MLI','MLT','MMR','MNE','MNG','MNP','MOZ','MRT','MSR',
'MUS','MYS','MYT','NAM','NCL','NER','NFK','NGA','NIC','NIU',
'NLD','NOR','NPL','NRU','NZL','OMN','PAK','PAN','PCN','PER',
'PHL','PLW','PNG','PRI','PRK','PRT','PRY','PSE','PYF','QAT',
'REU','ROU','RWA','SAU','SDN','SEN','SGP','SHN','SJM','SLB',
'SLE','SLV','SMR','SOM','SPM','SPR','SSD','STP','SUR','SVN',
'SWE','SWZ','SXM','SYC','SYR','TCA','TCD','TGO','THA','TJK',
'TKL','TKM','TLS','TON','TTO','TUN','TUR','TUV','TWN','TZA',
'UGA','UKR','URY','UZB','VAT','VCT','VEN','VGB','VIR','VNM',
'VUT','WLF','WSM','YEM','GUY','ZMB','ZWE')

is.populated <- function(x, xlist) x %in% xlist

iso.s <- tolower(country)
country <- toupper(country)

if (!is.populated(country, iso.list)) {
cat(paste0("***\n"))
cat(paste0("Error: ",country," does not exist in this demo.\n"))
cat(paste0("***\n"))
cat(paste0("Please use the follwoing ISO \n"))
cat(paste0("--\n"))
cat(iso.list)
cat(paste0("\n--\n"))
stop()

}

quiet <- ifelse(verbose, FALSE, TRUE)

output_dir <- file.path(project_dir, country, "covariates")

if (!file.exists(output_dir)) {
message("Info :: Creating dir ", output_dir)
dir.create(output_dir, recursive = TRUE, showWarnings = FALSE)

}

url_prefix <- "https://data.worldpop.org"
if (ftp) {

url_prefix <- "ftp://ftp.worldpop.org"
}
ptcov <- paste0(url_prefix,

"/GIS/Covariates/Global_2000_2020/",
toupper(country))

33

input_covariates <- list(
country = list(

"dst011_2015" = file.path(output_dir,"esaccilc_dst011_100m_2015.tif"),
"dst040_2015" = file.path(output_dir,"esaccilc_dst040_100m_2015.tif"),
"dst130_2015" = file.path(output_dir,"esaccilc_dst130_100m_2015.tif"),
"dst140_2015" = file.path(output_dir,"esaccilc_dst140_100m_2015.tif"),
"dst140_2015" = file.path(output_dir,"esaccilc_dst140_100m_2015.tif"),
"dst160_2015" = file.path(output_dir,"esaccilc_dst160_100m_2015.tif"),
"dst190_2015" = file.path(output_dir,"esaccilc_dst190_100m_2015.tif"),
"dst200_2015" = file.path(output_dir,"esaccilc_dst200_100m_2015.tif"),
"dst_water" = file.path(output_dir,"esaccilc_dst_water_100m_2000_2012.tif"),
"dst_bsgme_2020" = file.path(output_dir,"dst_bsgme_100m_2020.tif"),
"dst_ghsl_2000" = file.path(output_dir,"dst_ghslesaccilc_100m_2000.tif"),
"dst_intersec_2016" = file.path(output_dir,"osm_dst_roadintersec_100m_2016.tif"),
"dst_waterway_2016" = file.path(output_dir,"osm_dst_waterway_100m_2016.tif"),
"dst_road_2016" = file.path(output_dir,"osm_dst_road_100m_2016.tif"),
"slope" = file.path(output_dir,"srtm_slope_100m.tif"),
"topo" = file.path(output_dir,"srtm_topo_100m.tif"),
"dst_coast" = file.path(output_dir,"dst_coastline_100m_2000_2020.tif"),
"viirs_2016" = file.path(output_dir,"viirs_100m_2016.tif"),
"wdpa_dst_2017" = file.path(output_dir,"wdpa_dst_cat1_100m_2017.tif")

)
)
names(input_covariates) <- c(country)

ptcov <- paste0(url_prefix,
"/GIS/Mastergrid/Global_2000_2020/",
toupper(country))

input_mastergrid <- list(
country = paste0(ptcov,"/Subnational/",iso.s,

"_subnational_admin_2000_2020.tif")
)
names(input_mastergrid) <- c(country)

ptcov <- paste0(url_prefix,"/GIS/Covariates/Global_2000_2020/",
toupper(country))

input_watermask <- list(
country = paste0(ptcov,"/ESA_CCI_Water/Binary/",iso.s,

"_esaccilc_water_100m_2000_2012.tif")
)
names(input_watermask) <- c(country)

ptcov <- paste0(url_prefix,"/GIS/Pixel_area/Global_2000_2020/",
toupper(country))

input_px_area <- list(
country = paste0(ptcov,"/",iso.s,"_px_area_100m.tif")

)
names(input_px_area) <- c(country)

countries <- c()

for (i in names(input_covariates)) {
countries <- append(countries, i, 1)

}

for (i in countries) {

covariates <- sub("(.*)[.]tif",
"\\1",
basename(unlist(input_covariates[[i]],

use.names = FALSE)),
perl = TRUE)

cat("\n--\n")
cat("--\n")

34

cat(paste0("Following covariates will be downloaded to \n",
output_dir,"\n"))

cat("--\n")
cat(paste0("",covariates,"\n"))
cat("--\n")

for (c in covariates) {
file_remote <- input_covariates[[i]][[c]]

output_file <- file.path(output_dir, paste0(c,".tif"))
if (!file.exists(output_file)) {

cat(paste0("Downloading... ", c ,"\n"))
download.file(file_remote, output_file,

mode = "wb", quiet,
method = "auto")

}
}

}

cat(paste0("\n"))
output_px_area <- file.path(output_dir, paste0("px_area_100m.tif"))
file_remote_px_area <- input_px_area[[country]]
if (!file.exists(output_px_area)) {

cat(paste0("Downloading... px_area px_area_100m\n"))
download.file(file_remote_px_area, output_px_area, mode = "wb", quiet,

method = "auto")
}

output_watermask <- file.path(output_dir,
paste0("esaccilc_water_100m_2000_2012.tif"))

file_remote_watermask <- input_watermask[[country]]
if (!file.exists(output_watermask)) {

cat(paste0("Downloading... watermask esaccilc_water_100m_2000_2012\n"))
download.file(file_remote_watermask, output_watermask, mode = "wb", quiet,

method = "auto")
}

output_mastergrid <- file.path(output_dir,
paste0("subnational_admin_2000_2020.tif"))

file_remote_mastergrid <- input_mastergrid[[country]]
if (!file.exists(output_mastergrid)) {

cat(paste0("Downloading... mastergrid subnational_admin_2000_2020\n"))
download.file(file_remote_mastergrid, output_mastergrid, mode = "wb",

quiet, method = "auto")
}

input_covariates <- list(
country = list(

"dst011_2015" = file.path(output_dir,"esaccilc_dst011_100m_2015.tif"),
"dst040_2015" = file.path(output_dir,"esaccilc_dst040_100m_2015.tif"),
"dst130_2015" = file.path(output_dir,"esaccilc_dst130_100m_2015.tif"),
"dst140_2015" = file.path(output_dir,"esaccilc_dst140_100m_2015.tif"),
"dst140_2015" = file.path(output_dir,"esaccilc_dst140_100m_2015.tif"),
"dst160_2015" = file.path(output_dir,"esaccilc_dst160_100m_2015.tif"),
"dst190_2015" = file.path(output_dir,"esaccilc_dst190_100m_2015.tif"),
"dst200_2015" = file.path(output_dir,"esaccilc_dst200_100m_2015.tif"),
"dst_water" = file.path(output_dir,"esaccilc_dst_water_100m_2000_2012.tif"),
"dst_bsgme_2020" = file.path(output_dir,"dst_bsgme_100m_2020.tif"),
"dst_ghsl_2000" = file.path(output_dir,"dst_ghslesaccilc_100m_2000.tif"),
"dst_intersec_2016" = file.path(output_dir,"osm_dst_roadintersec_100m_2016.tif"),
"dst_waterway_2016" = file.path(output_dir,"osm_dst_waterway_100m_2016.tif"),
"dst_road_2016" = file.path(output_dir,"osm_dst_road_100m_2016.tif"),
"slope" = file.path(output_dir,"srtm_slope_100m.tif"),
"topo" = file.path(output_dir,"srtm_topo_100m.tif"),
"dst_coast" = file.path(output_dir,"dst_coastline_100m_2000_2020.tif"),

35

"viirs_2015" = file.path(output_dir,"viirs_100m_2016.tif"),
"wdpa_dst_2017" = file.path(output_dir,"wdpa_dst_cat1_100m_2017.tif")

)
)
names(input_covariates) <- c(country)

input_mastergrid <- list(
country = file.path(output_dir,"subnational_admin_2000_2020.tif")

)
names(input_mastergrid) <- c(country)

input_watermask <- list(
country = file.path(output_dir,"esaccilc_water_100m_2000_2012.tif")

)
names(input_watermask) <- c(country)

input_px_area <- list(
country = file.path(output_dir,"px_area_100m.tif")

)
names(input_px_area) <- c(country)

dpop_file <- file.path(output_dir, paste0(iso.s, "_population.csv"))

if (!file.exists(dpop_file)) {
cat(paste0("\nDownloading and saving population table for ",country))
cat(paste0(" in ", paste0(iso.s, "_population.csv"), "\n",

dpop_file,"\n"))

dpop <- read.csv(file.path(url_prefix,
"GIS/Population/Global_2000_2020/CensusTables",
paste0(iso.s,"_population_2000_2020.csv")

)
)

dpop <- dpop[,c("GID","P_2020")]

write.table(dpop, dpop_file, sep = ",", col.names = FALSE, row.names = FALSE)

}
}

options(timeout = max(530, getOption("timeout")))
project_directory <- "B:/Research/tmp_popRF"
wpdata_download(project_dir = project_directory,

country = "GUY",
ftp = TRUE,
verbose = TRUE,
log = TRUE)

wpdata_download(project_dir = project_directory,
country = "GUF",
ftp = TRUE,
verbose = TRUE,
log = TRUE)

wpdata_download(project_dir = project_directory,
country = "SUR",
ftp = TRUE,
verbose = TRUE,
log = TRUE)

36

References

Apley, Daniel W., and Jingyu Zhu. 2016. “Visualizing the Effects of Predictor Variables in Black
Box Supervised Learning Models,” December.

Balk, D, and G. Yetman. 2004. “The Global Distribution of Population: Evaluating the Gains in
Resolution Refinement.” Palisades, NY: Center for International Earth Science Information

Network.

Bhaduri, B, E Bright, and P Coleman. 2007. “Landscan USA: A High Resolution Geospatial and
Temporal Modeling Approach for Population Distribution and Dynamics.” GeoJournal 69:

103–77.

Bivand, Roger S, Edzer Pebesma, and Virgilio Gomez-Rubio. 2013. Applied Spatial Data Analysis
with R, Second edition. Springer, NY. https://asdar-book.org/.

Bivand, Roger, Tim Keitt, and Barry Rowlingson. 2021. rgdal: Bindings for the Geospatial Data
Abstraction Library. https://cran.r-project.org/package=rgdal.

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. “A Training Algorithm
for Optimal Margin Classifiers.” In Proceedings of the Fifth Annual Workshop on

Computational Learning Theory - COLT ’92, 144–52. New York: ACM Press.
https://doi.org/10.1145/130385.130401.

Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32.

CIESIN. 2011. “Global Rural Urban Mapping Project (GRUMP).” Palisades, NY: Center for
International Earth Science Information Network. sedac.ciesin.columbia.edu.

Corporation, Microsoft, Steve Weston, Microsoft Corporation, and Steve Weston. 2020.
“doParallel: Foreach Parallel Adaptor for the parallel Package.”

https://cran.r-project.org/package=doParallel.

Doxsey-Whitfield, E, K MacManus, S B Adamo, L Pistolesi, J Squires, O Borkovska, and S R
Baptista. 2015. “Taking Advantage of the Improved Availability of Census data: A First Look

at the Gridded Population of the World, Version 4.” Papers in Applied Geography 1 (3):
226–34. https://doi.org/10.1080/23754931.2015.1014272.

Dunnett, Sebastian, Alessandro Sorichetta, Gail Taylor, and Felix Eigenbrod. 2020. “Harmonised
Global Datasets of Wind and Solar Farm Locations and Power.” Scientific Data 7 (1): 130.

https://doi.org/10.1038/s41597-020-0469-8.

Dunnington, Dewey. 2021. “ggspatial: Spatial Data Framework for ggplot2.”
https://cran.r-project.org/package=ggspatial.

Eddelbuettel, Dirk, and James Joseph Balamuta. 2018. “Extending R with C++: A Brief
Introduction to Rcpp.” The American Statistician 72 (1): 28–36.

https://doi.org/10.1080/00031305.2017.1375990.

Eddelbuettel, Dirk, Romain Francois, J J Allaire, Kevin Ushey, Qiang Kou, Nathan Russell,
Douglas Bates, and John Chambers. 2021. Rcpp: Seamless R and C++ Integration.

https://cran.r-project.org/package=Rcpp.

Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integration.”
Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.

37

https://asdar-book.org/
https://cran.r-project.org/package=rgdal
https://doi.org/10.1145/130385.130401
https://sedac.ciesin.columbia.edu
https://cran.r-project.org/package=doParallel
https://doi.org/10.1080/23754931.2015.1014272
https://doi.org/10.1038/s41597-020-0469-8
https://cran.r-project.org/package=ggspatial
https://doi.org/10.1080/00031305.2017.1375990
https://cran.r-project.org/package=Rcpp
https://doi.org/10.18637/jss.v040.i08

Eicher, C L, and C A Brewer. 2001. “Dasymetric Mapping and Areal Interpolation:
Implementation and Evaluation.” Cartography and Geographic Information Science 28:

125–38.

Esch, T, Felix Bachofer, Wieke Heldens, Andreas Hirner, Mattia Marconcini, Daniela
Palacios-Lopez, Achim Roth, et al. 2018. “Where We Live—A Summary of the Achievements

and Planned Evolution of the Global Urban Footprint.” Remote Sensing 10 (6): 895.
https://doi.org/10.3390/rs10060895.

European Commission, Joint Research Centre, and Center for International Earth Science
Information Network - CIESIN Columbia University. 2015. “GHS Population Grid, Derived

from GPW4, multitemporal (1975, 1990, 2000, 2015).” European Commission, Joint Research
Centre. http://data.europa.eu/89h/jrc-ghsl-

ghs%7B/_%7Dpop%7B/_%7Dgpw4%7B/_%7Dglobe%7B/_%7Dr2015a.

Friere, S, K MacManus, M Pesaresi, E Doxsey-Whitfield, and J Mills. 2016. “Development of
New Open and Free Multi-temporal Global Population Grids at 250m Resolution.” In 19th

AGILE Conference on Geographic and Information Science. Helsinki.
https://agile-online.org/conference%7B/_%7Dpaper/cds/agile%7B/_%7D2016/shortpapers/

152%7B/_%7DPaper%7B/_%7Din%7B/_%7DPDF.pdf.

Garnier, Simon, Noam Ross, Robert Rudis, Antônio Pedro Camargo, Marco Sciaini, and Cédric
Scherer. 2021. “viridis - Colorblind-friendly Color Maps for R.”

https://doi.org/10.5281/zenodo.4679424.

Gaughan, A E, F R Stevens, C Linard, P Jia, and A J Tatem. 2013. “High Resolution Population
Distribution Maps for Southeast Asia in 2010 and 2015.” PLoS One 8 (2): e55882.

https://doi.org/10.1371/journal.pone.0055882.

Gaughan, A E, F R Stevens, C Linard, N G Patel, and A J Tatem. 2014. “Exploring Nationally
and Regionally Defined Models for Large Area Population Mapping.” International Journal of

Digital Earth. https://doi.org/10.1080/17538947.2014.965761.

Gould, Mike, and Rachel Sleeter. 2014. “No Title.” US Geological Survey.
https://www.usgs.gov/software/dasymetric-mapping-tool-arcgis10x-beta-version.

Greenberg, Jonathan Asher, and Matteo Mattiuzzi. 2020. gdalUtils: Wrappers for the Geospatial
Data Abstraction Library (GDAL) Utilities. https://cran.r-project.org/package=gdalUtils.

Hastie, Trevor, and Robert Tibshirani. 1987. “Generalized Additive Models: Some Applications.”
Journal of the American Statistical Association 82 (398): 371.

https://doi.org/10.2307/2289439.

Hijmans, Robert J. 2021. raster: Geographic Data Analysis and Modeling.
https://rspatial.org/raster.

Hopfield, J. J. 1988. “Artificial Neural Networks.” IEEE Circuits and Devices Magazine 4 (5):
3–10. https://doi.org/10.1109/101.8118.

Horning, Ned, Forrest R. Stevens, Matthew Landis, Etiennebr, Giuseppe Amatulli, Oscar
Perinan, and Robert J. Hijmans. 2013. “Alternative to Zonal for Large Images.”

James, W. H. M., N. Tejedor-Garavito, S. E. Hanspal, A. Campbell-Sutton, G. M. Hornby, C.
Pezzulo, K. Nilsen, et al. 2018. “Gridded Birth and Pregnancy Datasets for Africa, Latin

38

https://doi.org/10.3390/rs10060895
http://data.europa.eu/89h/jrc-ghsl-ghs%7B/_%7Dpop%7B/_%7Dgpw4%7B/_%7Dglobe%7B/_%7Dr2015a
http://data.europa.eu/89h/jrc-ghsl-ghs%7B/_%7Dpop%7B/_%7Dgpw4%7B/_%7Dglobe%7B/_%7Dr2015a
https://agile-online.org/conference%7B/_%7Dpaper/cds/agile%7B/_%7D2016/shortpapers/152%7B/_%7DPaper%7B/_%7Din%7B/_%7DPDF.pdf
https://agile-online.org/conference%7B/_%7Dpaper/cds/agile%7B/_%7D2016/shortpapers/152%7B/_%7DPaper%7B/_%7Din%7B/_%7DPDF.pdf
https://doi.org/10.5281/zenodo.4679424
https://doi.org/10.1371/journal.pone.0055882
https://doi.org/10.1080/17538947.2014.965761
https://www.usgs.gov/software/dasymetric-mapping-tool-arcgis10x-beta-version
https://cran.r-project.org/package=gdalUtils
https://doi.org/10.2307/2289439
https://rspatial.org/raster
https://doi.org/10.1109/101.8118

America and the Caribbean.” Scientific Data 5 (1): 180090.
https://doi.org/10.1038/sdata.2018.90.

Knaap, Eli, Renan Xavier Cortes, Sergio Rey, Dani Arribas-Bel, James Gaboardi, Martin
Fleischmann, and Patty Frontiera. 2021. “pySAL/tobler.” Zenodo.

https://doi.org/10.5281/zenodo.5047613.

Kreutzmann, Ann-Kristin, Sören Pannier, Natalia Rojas-Perilla, Timo Schmid, Matthias Templ,
and Nikos Tzavidis. 2019. “The R Package emdi for Estimating and Mapping Regionally

Disaggregated Indicators.” Journal of Statistical Software 91 (7).
https://doi.org/10.18637/jss.v091.i07.

Kugler, Tracy A., Kathryn Grace, David J. Wrathall, Alex de Sherbinin, David Van Riper,
Christoph Aubrecht, Douglas Comer, et al. 2019. “People and Pixels 20 Years Later: The

Current Data Landscape and Research Trends Blending Population and Environmental Data.”
Population and Environment 41 (2): 209–34. https://doi.org/10.1007/s11111-019-00326-5.

Leasure, Douglas R., Claire A. Dooley, Maksym Bondarenko, and Andrew J. Tatem. 2021.
“peanutButter: An R package to produce rapid-response gridded population estimates from

building footprints.” Southampton, UK: WorldPop, University of Southampton.
https://doi.org/10.5258/SOTON/WP00717.

Leyk, Stefan, Andrea E. Gaughan, Susana B. Adamo, Alex de Sherbinin, Deborah Balk, Sergio
Freire, Amy Rose, et al. 2019. “The Spatial Allocation of Population: A Review of Large-scale
Gridded Population Data Products and their Fitness for Use.” Earth System Science Data 11

(3): 1385–1409. https://doi.org/10.5194/essd-11-1385-2019.

Liaw, A, and M Wiener. 2002. “Classification and Regression by randomForest.” R News 3 (2):
18–22.

Lloyd, Christopher T., Heather Chamberlain, David Kerr, Greg Yetman, Linda Pistolesi, Forrest
R. Stevens, Andrea E. Gaughan, et al. 2019. “Global Spatio-temporally Harmonised Datasets
for Producing High-resolution Gridded Population Distribution Datasets.” Big Earth Data 3

(2): 108–39. https://doi.org/10.1080/20964471.2019.1625151.

Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2021. “Geometry Operations:
Raster-vector Interactions.” In Geocomputation with r, 111–20. London: CRC Press.

Marrotte, Robby R. 2016. “Faster Zonal Statistics?”

Martin, Dave, and Ian Bracken. 1991. “Techniques for Modelling Population-related Raster
Datasets.” Environment and Planning A 23: 1069–75.

Meinshausen, Nicolai. 2017. quantregForest: Quantile Regression Forests.
http://github.com/lorismichel/quantregForest.

Mennis, J. 2003. “Generating Surface Models of Population Using Dasymetric Mapping.”
Professional Geographer 55 (1): 31–42.

Mennis, Jeremy. 2009. “Dasymetric Mapping for Estimating Population in Small Areas.”
Geography Compass 3 (2): 727–45. https://doi.org/10.1111/j.1749-8198.2009.00220.x.

Mennis, J, and T Hultgren. 2006. “Intelligent Dasymetric Mapping and its Application to Areal
Interpolation.” Cartography and Geographic Information Science2 33: 179–94.

Nagle, Nicholas N., Barbara P. Buttenfield, Stefan Leyk, and S. Spielman. 2014. “Dasymetric
Modeling and Uncertainty.” Annals of the Association of American Geographers 104: 80–94.

39

https://doi.org/10.1038/sdata.2018.90
https://doi.org/10.5281/zenodo.5047613
https://doi.org/10.18637/jss.v091.i07
https://doi.org/10.1007/s11111-019-00326-5
https://doi.org/10.5258/SOTON/WP00717
https://doi.org/10.5194/essd-11-1385-2019
https://doi.org/10.1080/20964471.2019.1625151
http://github.com/lorismichel/quantregForest
https://doi.org/10.1111/j.1749-8198.2009.00220.x

Nandi, Anita K., Tim C. D. Lucas, Rohan Arambepola, Peter Gething, and Daniel J. Weiss.
2020. “disaggregation: An R Package for Bayesian Spatial Disaggregation Modelling,”

January. http://arxiv.org/abs/2001.04847.

Nelder, J. A., and R. W. M. Wedderburn. 1972. “Generalized Linear Models.” Journal of the
Royal Statistical Society Series A 135 (Part 3): 370–84.

Nieves, Jeremiah J., Maksym Bondarenko, David Kerr, Nikolas Ves, Greg Yetman, Parmanand
Sinha, Donna J. Clarke, et al. 2021. “Measuring the Contribution of Built-settlement Data to

Global Population Mapping.” Social Sciences & Humanities Open 3 (1): 100102.
https://doi.org/10.1016/j.ssaho.2020.100102.

Nieves, Jeremiah J., Maksym Bondarenko, Alessandro Sorichetta, Jessica E Steele, David Kerr,
Alessandra Carioli, Forrest R Stevens, Andrea Gaughan, and Andrew Tatem. 2020.

“Predicting Near-Future Built-Settlement Expansion Using Relative Changes in Small Area
Populations.” Remote Sensing, May. https://doi.org/10.3390/rs12101545.

Nieves, Jeremiah J., Alessandro Sorichetta, Catherine Linard, Maksym Bondarenko, Jessica E.
Steele, Forrest R. Stevens, Andrea E. Gaughan, et al. 2020. “Annually Modelling

Built-settlements between Remotely-sensed Observations Using Relative Changes in
Subnational Populations and Lights at Night.” Computers, Environment and Urban Systems

80 (March): 101444. https://doi.org/10.1016/j.compenvurbsys.2019.101444.

Palacios-Lopez, Daniela, Felix Bachofer, Thomas Esch, Wieke Heldens, Andreas Hirner, Mattia
Marconcini, Alessandro Sorichetta, et al. 2019. “New Perspectives for Mapping Global

Population Distribution Using World Settlement Footprint Products.” Sustainability 11 (21):
6056. https://doi.org/10.3390/su11216056.

Pebesma, Edzer J, and Roger S Bivand. 2021. “sp: Classes and Methods for Spatial Data.” R
News 5 (2): 9–13.

https://cran.r-project.org/package=sp%20https://cran.r-project.org/doc/Rnews/.

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing. https://www.r-project.org/.

Reed, Fennis, Andrea Gaughan, Forrest Stevens, Greg Yetman, Alessandro Sorichetta, and
Andrew Tatem. 2018. “Gridded Population Maps Informed by Different Built Settlement

Products.” Data 3 (3): 33. https://doi.org/10.3390/data3030033.

Revolution Analytics, and Steve Weston. n.d. foreach: Provides Foreach Looping Construct.

Rey, Sergio J. 2019. “PySAL: the first 10 years.” Spatial Economic Analysis 14 (3): 273–82.
https://doi.org/10.1080/17421772.2019.1593495.

Rey, Sergio J., and Luc Anselin. 2010. “PySAL: A Python Library of Spatial Analytical
Methods.” In Handbook of Applied Spatial Analysis, 175–93. Berlin, Heidelberg: Springer

Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03647-7_11.

Rey, Sergio J., Luc Anselin, Pedro Amaral, Dani Arribas-Bel, Renan Xavier Cortes, James David
Gaboardi, Wei Kang, et al. 2021. “The PySAL Ecosystem: Philosophy and Implementation.”

Geographical Analysis, June. https://doi.org/10.1111/gean.12276.

Ruktanonchai, Corrine Warren, Jeremiah J. Nieves, Nick W Ruktanonchai, Kristine Nilsen,
Jessica E Steele, Zoe Matthews, and Andrew J Tatem. 2020. “Estimating Uncertainty in

Geospatial Modelling at Multiple Spatial Resolutions: the Pattern of Delivery via Caesarean

40

http://arxiv.org/abs/2001.04847
https://doi.org/10.1016/j.ssaho.2020.100102
https://doi.org/10.3390/rs12101545
https://doi.org/10.1016/j.compenvurbsys.2019.101444
https://doi.org/10.3390/su11216056
https://cran.r-project.org/package=sp%20https://cran.r-project.org/doc/Rnews/
https://www.r-project.org/
https://doi.org/10.3390/data3030033
https://doi.org/10.1080/17421772.2019.1593495
https://doi.org/10.1007/978-3-642-03647-7_11
https://doi.org/10.1111/gean.12276

Section in Tanzania.” BMJ Global Health 4 (Suppl 5): e002092.
https://doi.org/10.1136/bmjgh-2019-002092.

Sinha, Parmanand, Andrea E. Gaughan, Forrest R. Stevens, Jeremiah J. Nieves, Alessandro
Sorichetta, and Andrew J. Tatem. 2019. “Assessing the Spatial Sensitivity of a Random

Forest Model: Application in Gridded Population Modeling.” Computers, Environment and
Urban Systems 75 (May): 132–45. https://doi.org/10.1016/j.compenvurbsys.2019.01.006.

Sleeter, Rachel. 2008. “No Title.” US Geological Survey.
https://pubs.usgs.gov/fs/2008/3010/fs2008-3010.pdf.

Sorichetta, A, G M Hornby, F R Stevens, A E Gaughan, C Linard, and A J Tatem. 2015.
“High-resolution Gridded Population Distribution Datasets of Latin America in 2010, 2015,

and 2020.” Scientific Data 2: 150045. https://doi.org/10.1038/sdata.2015.45.

Stevens, F R, A E Gaughan, C Linard, and A J Tatem. 2015. “Disaggregating Census Data for
Population Mapping Using Random Forests with Remotely-sensed Data and Ancillary Data.”

PLoS One 10 (2): e0107042. https://doi.org/10.1371/journal.pone.0107042.

Stevens, Forrest R. 2014. “WorldPop-RF.”

Strobl, Carolin, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis.
2008. “Conditional Variable Importance for Random Forests.” BMC Bioinformatics 9 (1):

307. https://doi.org/10.1186/1471-2105-9-307.

Strobl, Carolin, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. 2007. “Bias in
Random Forest Variable Importance Measures: Illustrations, Sources and a Solution.” BMC

Bioinformatics 8 (1): 25. https://doi.org/10.1186/1471-2105-8-25.

Thomson, Dana R., Dale A. Rhoda, Andrew J. Tatem, and Marcia C. Castro. 2020. “Gridded
Population Survey Sampling: A Systematic Scoping Review of the Field and Strategic

Research Agenda.” International Journal of Health Geographics 19 (1): 34.
https://doi.org/10.1186/s12942-020-00230-4.

Wickham, Hadley. 2011. “The Split-Apply-Combine Strategy for Data Analysis.” Journal of
Statistical Software 40 (1): 1–29. http://www.jstatsoft.org/v40/i01/.

———. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag New
York. 978-3-319-24277-4.

———. 2020. plyr: Tools for Splitting, Applying and Combining Data.
https://cran.r-project.org/package=plyr.

Wright, J K. 1936. “A Method of Mapping Densities of Population.” The Geographical Review 26:
103–110#.

41

View publication statsView publication stats

https://doi.org/10.1136/bmjgh-2019-002092
https://doi.org/10.1016/j.compenvurbsys.2019.01.006
https://pubs.usgs.gov/fs/2008/3010/fs2008-3010.pdf
https://doi.org/10.1038/sdata.2015.45
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/s12942-020-00230-4
http://www.jstatsoft.org/v40/i01/
https://978-3-319-24277-4
https://cran.r-project.org/package=plyr
https://www.researchgate.net/publication/353659358

	Introduction
	Disaggregative population mapping
	Areal reweighting
	Dasymetric disaggregation

	Random forest-informed population disaggregation

	Using popRF
	General data requirements
	Minimum data requirements
	User settings and parameters
	Typical covariates and their sources
	Population and subnational boundary data

	Internal optimisation
	Random forest predictions
	Zonal statistics

	Exemplified test cases
	Single country, general run
	Investigating the model and outputs

	Single country, hybrid-parameterised model run
	Single country, fully-parameterised run
	Multi-country model scenario

	Conclusions
	Acknowledgements
	Appendix A
	Appendix B

	References

