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A B S T R A C T

When designing multisensorial experiences, robustly predicting the crossmodal perception of olfactory stimuli is a
critical factor. We investigate the possibility of predicting olfactory crossmodal correspondences using the un-
derlying physicochemical features. An electronic nose was tuned to the crossmodal perceptual axis of olfaction
and was used to foretell people's crossmodal correspondences between odors and the angularity of shapes,
smoothness of texture, perceived pleasantness, pitch, and colors. We found that the underlying physicochemical
features of odors could be used to predict people's crossmodal correspondences. The human-machine perceptual
dimensions that correlated well are the angularity of shapes (r ¼ 0.71), the smoothness of texture (r ¼ 0.82), pitch
(r ¼ 0.70), and the lightness of color (r ¼ 0.59). The human-machine perceptual dimensions that did not correlate
well (r < 0.50) are the perceived pleasantness (r ¼ 0.20) and the hue of the color (r ¼ 0.42 & 0.44). All perceptual
dimensions except for the perceived pleasantness could be robustly predicted (p-values < 0.0001) including the
hue of color. While it is recognized that olfactory perception is strongly shaped by learning and experience, our
findings suggest that there is a systematic and predictable link between the physicochemical features of odorous
stimuli and crossmodal correspondences. These findings may provide a crucial building block towards the digital
transmission of smell and enhancing multisensorial experiences with better designs as well as more engaging, and
enriched experiences.
1. Introduction

Our brain constantly combines information from different sensory
modalities to better comprehend our surrounding environment [1]. The
integration process influences a person's interpretation and the subjective
experience that goes with it [2]. Crossmodal correspondences are the
consistent and non-arbitrary associations that occur between stimulus
features in different sensory modalities (see [3] for a review). For
example, people consistently associate a fruity odor to pink/red colors
and a musty smell with brown/orange colors [4]. The main mediation
factor behind crossmodal correspondences is presumed to be hedonics;
that is these correspondences mainly occur based on how pleasant the
inducing stimuli is perceived [5]. These associations can be considered as
a sensory expectation; inconsistency with the expected and actual attri-
butes of an experience results in the experience being perceived as less
pleasant [6]. Furthermore, tailoring the characteristics of an experience,
be it consistent or otherwise, can modulate the user's experience towards
the desired outcome. For example, it has been shown that odorless col-
oring of white wine, so it appears red, can bias the decision of expert wine
Ward).
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tasters and the olfactory expert descriptions of the dyed white wine
matched those of the red wine [2]. However, when designing multi-
sensorial experiences, the designers often have an incomplete set of
known sensory cues, even more so with novel odorants. Generally, de-
signers want to stimulate the sensory modalities harmoniously and
consistently to increase the psychological impact [7]. Extensive psycho-
logical tests are usually conducted to uncover the sensory expectations of
the consumers for a particular experience; these expectations are then
often reflected in the experience.

When volatile molecules enter our nasal cavity, our olfactory re-
ceptors detect these molecules and the olfactory information is projected
via the olfactory bulb to the olfactory cortex [8]. A physical, perceptual,
and semantic representation of the odor is formed via a neural signal
transmitted in the olfactory pathway [9, 10]. This pathway shares a
common neural substrate called the limbic system [11], which deals with
mood and emotional processes. Our nasal cavity contains thousands of
olfactory receptors [12] that are believed to recognize specific chemical
features [13], and olfactory perception is rooted in the chemical prop-
erties of volatile molecules [14]. Psychophysical evidence suggests that
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Table 1. Gas sensors used in the e-nose with their range (ppm) and detectable
gases. It is important to note that the sensors may also respond to gases not
included in this table.

Gas Sensor
Name

Detection
Range (ppm)

Detectable gases Sensor Output Name

MP503 10–1000 Alcohol & Smoke Air Quality & Pollution
Level

BME680 0–500 IAQ Temperature, Humidity,
Pressure, & Gas

MQ3 0.05–10 Alcohol, Benzine, CH4,
Hexane, LPG, & CO

MQ3

MQ5 200–10000 LPG, Natural Gas, Town
Gas, Alcohol, & Smoke

MQ5

MQ9 10-1000 CO
100-10000 Gas

Carbon Monoxide, Coal
Gas, & Liquefied Gas

MQ9

WSP2110 1–50 HCHO, Toluene,
Methanol, Benzene, &
Alcohol

HCHO
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the pleasantness of odors is encoded in the physicochemical structure of
odorous molecules [15]. Like the human olfactory stimulus, electronic
noses (e-noses) consist of an array of sensors. Each of the sensors in the
e-nose has a limited detection capability, and the specificity comes from
the number of sensors. An e-nose can detect specific smells more effi-
ciently than the human nose due to its higher sensitivity and specificity.
The basic principle behind e-noses is to convert odors' "chemical foot-
print" into a series of electrical signals; these signals are often indicated
by a change in resistance. E-noses consist of three major components – a
sample delivery system, an array of sensors (predominantly gas), and a
pattern recognition system for the classification and characterization of
an odor source rather than the output of a specific sensor [16, 17].
E-noses are primarily used to discriminate, classify, and occasionally
quantify different odorous compounds in the vapor phase [18], such as
fungal identification and classification [19], assessing beer quality [20],
and assessing the aroma profile of coffee [21]. The first conceptualization
of this device came from Persaud and Dodd [22] and was designed to
mimic human olfaction.

A few studies have attempted to link the physicochemical features of
odors to human perception. Haddad et al. showed that it was possible to
connect the series of electrical signals produced by the MOSES II e-nose
to the perceived pleasantness of odors. A neural network with a singular
hidden layer and five neurons was used to extract the pleasantness of
odorants. The input consisted of manually extracted features (i.e., signal
max) [23]. Wu et al. improved upon the model initially presented by
Haddad et al., by incorporating a non-uniform sampling algorithm as the
feature extraction method, adding additional odorants to the dataset, and
developing a convolutional neural network for the classification of the
perceived pleasantness [24]. Schiffman et al. showed the perceived in-
tensity of odors could be linked to the two different e-noses (NST 3320
and Cyranose® 320) [25]. Burl et al. used an e-nose to predict the
perceptual descriptors of odors, for example, "Minty" and "Sour". Their
results also revealed that several regression models needed to be devel-
oped, as each model was only capable of reliably predicting a few of the
descriptors [18]. Overall, these results show the physicochemical fea-
tures of odors transduced by an e-nose can be linked to different aspects
of perception. However, it is still unknown if the physicochemical fea-
tures of odors can predict crossmodal correspondences.

The focus of this study was to investigate if the physicochemical
features of odors could be used to predict crossmodal correspondences.
Two different brands of essential oils were used to present chemical di-
versity to the underlying physicochemical features. Data on the cross-
modal perception of odors (the angularity of shapes, smoothness of
texture, perceived pleasantness, pitch, and colors) for various essential
oils were collected in prior work [5]. E-nose responses were collected for
the different odorants using the same brand and volume as the perceptual
data. The odors used in the confines of these experiments were chosen as
they are commonly used in perfumes and olfaction enhanced multi-
media. Robust predictions of the human perception of odors are crucial
for constructing an artificial olfactory system, industrial quality control
applications, and designing multisensorial experiences where assess-
ments must be made in accordance with human perception.

2. Methodology and materials

2.1. Electronic nose

We used the e-nose initially presented in [16] and modified in [26] to
record the different odors. The gas sensors used in the e-nose are as
follows: MP503, BME680, MQ3, MQ5, MQ9, and a WSP2110. All sensors
were connected to an Arduino MKR1000 microcontroller chosen for its
integrated Wi-Fi capabilities. The e-nose was designed and built in the
Immersive Reality Laboratory, University of Liverpool. These sensors
were selected to detect a wide variety of different odors and not just
essential oils; however, emphasis was given towards the detection of
essential oils. The e-nose deals with several types of gases by employing
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cross-reactivity into the design of the sensory array, whereby different
gaseous mixtures will produce variable responses. The differentiation of
gaseous mixtures is determined by the intensity of all of the features
provided by the respective sensors. The e-nose was controlled using
custom software. A schematic representation of the e-nose is shown in
Figure S1 (Supplementary materials). The sensor data was sent to a
nearby computer in real-time using UDP (user datagram protocol). A
packet was received every �250 ms, resulting in �4 packets every sec-
ond. Any out-of-order packets were placed back in order after being
received. Each odor recording consists of 11 features: time, air quality,
pollution level, temperature, pressure, humidity, gas, MQ3, MQ5, MQ9,
and HCHO; for more information on the sensors, see Table 1. A photo of
the e-nose/experimental setup is shown in Figure S2 and a diagram of the
e-nose circuit is shown in Figure S3 (Supplementary materials).

2.2. Chemical data

The prepared solutions consisted of 4 mL of the respective essential
oil. Five were fromMystic Moments™ (caramel, cherry, coffee, freshly cut
grass, and pine) and five fromMiaroma™ (black pepper, lavender, lemon,
orange, and peppermint). Each solution was placed in the same position
for all the recordings to negate distance-based sensor bias. The lid of the
e-nose was closed while recording the odors and the e-nose was flushed
with ambient air for a minimum of 30 min between recordings. Each
recording was 10 min in duration, with one hundred prepared for the
experiments; ten recordings were prepared for each of the odors. Before
any of the recordings were used in the analysis, they first underwent pre-
processing to reduce the dimensionality and to remove noise from the
generated signals. The pre-processing involved taking the mean over 1-s
intervals creating a 600 � 10 matrix. The signal for each sensor response
was then smoothed using a three-point moving average filter. The me-
dian value from each sensor for each recording was then used for the
analysis; This resulted in a final dataset of 100 � 10. One row for each
recording and one column for each of the features from the e-nose,
excluding the time component. Figure 1 shows the sensor signal pro-
cessing pipeline for the air quality feature, albeit this was conducted on
all features excluding time.

2.3. Perceptual data

The perceptual data collection is described in [5]; here, we analyzed a
series of olfactory crossmodal correspondences and explored the nature
and origin of these associations. We found consistent crossmodal corre-
spondences between odors and the angularity of shapes, smoothness of
texture, perceived pleasantness, pitch, colors, emotional, and musical
dimensions. Sixty-eight participants were presented with ten unlabeled



Figure 1. Sensor signal processing pipeline for the air quality feature of one of the lemon essential oil recordings.
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odors and were asked to associate ratings to the respective perceptual
dimensions. Two essential oil brands were used to provide chemical di-
versity in the underlying data, consequently demonstrating the robust-
ness of the developed models. All odors were presented to the e-nose in
the same manner and volume as presented to the participants. Partici-
pants were placed in a lightproof anechoic chamber with an overhead
luminaire (GLE-M5/32; GTI Graphic Technology Inc., Newburgh, NY).
The lighting in the room was kept consistent by using the daylight
simulator on the overhead luminaire. All participants provided informed
consent before taking part in any experiments. This study had ethical
approval from the University of Liverpool and was conducted under the
standards set in the Declaration of Helsinki for Medical Research
involving Human Subjects. For more information on the presented
stimuli, see Sections 2.3.1–2.3.5.

2.3.1. Shape stimuli
A nine-point scale was used to measure the association between a

particular odor and the angularity of the visually presented shapes. The
endpoint of the scale was an angular shape and a rounded shape on scales
right and left side, respectively. The middle of the nine-point scale (5)
was neutral (no opinion).

2.3.2. Texture stimuli
Similarly, to measure the association with the smoothness of the

odors a nine-point scale was used with the words "rough" and "smooth" on
the scales on the right and left side, respectively. Participants were also
presented with physical representative textures to help them decide, with
silk representing smoothness and sandpaper being a representative for
roughness. Participants had to feel the textures at least once during the
question's first appearance. The middle of the nine-point scale (5) was
neutral (no opinion).

2.3.3. Pleasantness stimuli
A nine-point scale was used to measure the perceived pleasantness of

the odors with the words "very unpleasant" and "very pleasant" on the left
and right sides, respectively. The middle of the nine-point scale (5) was
neutral (no opinion).

2.3.4. Pitch stimuli
The full range of audible frequencies was implemented using a slider,

with the left side being 20 Hz and the right side being 20 kHz. Each time
the slider was adjusted, the respective frequency was played, producing a
sinusoidal tone lasting 1-s in length. Participants were first played sam-
ples from either end of the scale and then a sample approximately
halfway between the two points. Participants answered higher or lower
until they felt like the pitch matched the odor, the slider was adjusted
accordingly. A binary search approach was implemented to reduce the
time required to complete the question.

2.3.5. Color stimuli
The CIELAB color space, more commonly known as the L*a*b* color

space, was created to be a perceptually uniform color space where the
Euclidian distance reflects an approximately perceptual difference. The
3

L*a*b* color space is expressed in three channels: L* (lightness), a* (red-
green) and b* (blue-yellow). See [27] for more information about the
L*a*b* color space. Participants could freely select a color from the
L*a*b* color space that they believed best matched the current odor. A
color patch was displayed to the participant after they selected a color.
Participants could slide through the L*a*b* color space by adjusting the
lightness (L*). Only the final color selection was saved.

2.4. Data analysis

The analysis was conducted using MATLAB™ 2018b. The odor re-
cordings initially contained eleven features. The time component was not
used after the pre-processing stage and was not used in training or testing
the regression models. Outliers were removed from the perceptual data,
any values outside the range of �1.5 std of the mean value were replaced
with the mean value. Any detected outliers were excluded from the
second mean calculation. Before performing a principal component
analysis, the underlying data was first standardized using z-score
normalization.

3. Results

Ten odors were recorded using the e-nose; each odor was measured
ten times at the same volume (4 mL). The brand of essential oil was
selected to align the chemical data to the perceptual data. Example e-nose
recordings are shown in Figure 2, which shows how the e-nose signals
change over time with no odor Figure 2A and with an odor Figure 2B.
Additionally, z-score normalization was conducted on the same data to
visualize the trend of the sensor responses with a lesser response over
time, for example, temperature. The z-score normalization was con-
ducted on all the sensor values for each sensor separately using the
sample standard deviation; four linearly spaced points were then taken
and displayed in Figure 2C for no odor and with an odor (Figure 2D).
Four points per sensor were displayed to enhance the clarity and inter-
pretation of the data.

Principal component analysis was then conducted on the physico-
chemical and perceptual data to visualize the similarity between the two.
The distance between two points indicates how similar the odors are in
their respective space, with closer points indicating a higher degree of
similarity. To construct the perceptual dataset, all the ratings were scaled
between the range of one to nine. Z-score normalization was then con-
ducted using the sample standard deviation and the grand mean on the
perceptual and chemical datasets separately. The chemical dataset's first
two principal components explain 75.56% of the total variance, 51.06%,
24.49%, respectively, and is shown in Figure 3A. The perceptual dataset's
first two principal components explain 84.39% of the total variance,
46.55%, and 37.83%, respectively, shown in Figure 3B.

To determine the clusters that achieved similar scores in the chemical
and perceptual spaces k-means cluster analysis was conducted on all the
principal components. This allowed for the comparison of the similarity
of the two spaces on uncompressed versions of the underlying data. We
opted for three clusters as the inclusion of four or more would result in an
outlier (a singular odor in its own cluster) in at least one of the two



Figure 2. Example e-nose recordings over time for (A) no odor and (B) lemon. Z-score normalized sensor responses over time (C) no odor and (D) lemon. Each line
represents a different sensor response over time in the e-nose.

Figure 3. Score plots for (A) odors in the chemical space and (B) odors in the perceptual space.
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spaces. For the chemical space, this revealed that (peppermint and
lemon), (coffee and caramel), and (freshly cut grass, lavender, pine,
cherry, orange, and black pepper) were chemically similar. In the
perceptual space, this revealed that (orange and lemon), (caramel, coffee,
and cherry), (freshly cut grass, pine, lavender, peppermint, and black
pepper) were perceptually similar. Considering Figure 3A and Figure 3B
together, we can see a moderate overlap between the odors in the
physicochemical and perceptual space, with coffee, caramel, freshly cut
grass, lavender, pine, and black pepper being grouped into similar clus-
ters in either case. This tells us that there is a degree of consistency be-
tween these two spaces, and therefore it should be possible to predict
people's crossmodal correspondences using the underlying physico-
chemical features.

To determine which features would contribute to the final models, a
multivariate analysis of variance (MANOVA) was first conducted with
the e-nose features as the dependent variable and the identity of the odor
as the independent variable. This revealed that there is a statistically
significant difference in the features (e-nose sensor responses) based on
4

the presented odor (F(81, 538.9) ¼ 37.74, p < 0.0001, R2 ¼ 0.85). To
determine which features differ for the presented odor one-way univar-
iate ANOVAs were conducted. This revealed that all features significantly
differ (Bonferroni corrected) depending on the odors (all p-values <

0.005): air quality (F(9, 90) ¼ 91.98), pollution level (F(9, 90) ¼ 22.70),
temperature (F(9, 90) ¼ 26.90), pressure (F(9, 90) ¼ 65.83), humidity
(F(9, 90)¼ 22.84), gas (F(9, 90)¼ 29.91), MQ3 (F(9, 90)¼ 51.93), MQ5
(F(9, 90) ¼ 42.35), MQ9 (F(9,90) ¼ 20.79), and HCHO (F(9,90) ¼
54.30). These results indicate that all the sensors respond to one or more
of the gases in the essential oils and that these responses for each of the
features is different depending on the presented essential oil. Therefore,
we decided to use all the features when training the regression models.

To determine the optimal regression algorithm to predict people's
crossmodal correspondences, we initially trained and tested four
different algorithms: linear regression, support vector machine, random
forest, and Gaussian process regression (GPR) using fifty-fold cross-
validation. We chose these algorithms because they are commonly used
in conjunction with the sensor data from e-noses [28, 29, 30, 31]. GPR
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had the lowest root squared mean error in all cases (see Table S1, Sup-
plementary materials). Therefore, we decided to optimize the kernel
function for each of our models by selecting the kernel function that best
represented the underlying data (see Table S2, Supplementary mate-
rials). We believe that GPR has the lowest error in all cases because it
works well with noisy data [29] and small datasets. Pearson correlations
were used to calculate the within and between odor correlations. The
human-human correlation between the participant's responses and the
median ratings was calculated. This revealed correlations of (r ¼ 0.55, p
< 0.0001) for the angularity of shapes, (r ¼ 0.35, p < 0.0001) for the
smoothness of texture, (r ¼ 0.43, p < 0.0001) for the perceived pleas-
antness, (r ¼ 0.39, p < 0.0001) for pitch, (r ¼ 0.56, p < 0.0001) for the
color dimension L*, (r ¼ 0.57, p < 0.0001) for the color dimension a*,
and (r ¼ 0.60, p < 0.0001) for the color dimension b*. To test the quality
of our models on unseen odors, we opted for a leave one odor out
approach. The models were trained ten times using all the recordings for
nine of the odors and all the recordings for one odor for testing. This
resulted in a 90 � 10 matrix for training and a 10 � 10 matrix for testing
for every iteration; this was repeated ten times until all the odors had
been tested in an unseen state. The human-machine correlations were
then calculated using the median ratings and machine regression ratings
from when the odors were in an unseen state; a slope of one indicates
perfect machine performance, and a slope of zero indicates that a rela-
tionship does not exist between the predicted v. actual ratings. This
revealed significant correlations for the angularity of shapes (r ¼ 0.71, p
< 0.0001), the smoothness texture (r ¼ 0.82, p < 0.0001), the perceived
pleasantness (r¼ 0.2, p¼ 0.0484), pitch (r¼ 0.70, p< 0.0001), the color
dimension L* (r ¼ 0.59, p < 0.0001), the color dimension a* (r ¼ 0.44, p
< 0.0001), and the color dimension b* (r ¼ 0.42, p < 0.0001), see
Figure 4.

From Figure 4, we can see that for some of the sensory modalities, the
machine predictions correlated well with the human ratings (r > 0.50).
Figure 4. Predicted v. actual plots for (A) the angularity of shapes, (B) the smoothnes
(F) the color dimension a*, and (G) the color dimension b*.
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The sensory modalities that correlated well are the angularity of shapes,
the smoothness of texture, pitch, and the lightness of color. The sensory
modalities that did not correlate well are the perceived pleasantness and
the color dimensions (a* and b*). These findings indicate that the cor-
respondences people have towards odors can be robustly predicted (all p-
values < 0.0001 except for the perceived pleasantness) using the un-
derlying physicochemical features, albeit the amount of variance
captured for the a* and b* dimensions is not overwhelming.

To further investigate the statistical robustness of our findings, we
randomly shuffled the perceptual data associated with a given odor one
hundred times for each perceptual dimension and repeated the regres-
sion analysis. For example, the response values for lemon now might be
the response values for black pepper. The average prediction rates
dropped for all perceptual dimensions to r ¼ -0.16, p ¼ 0.11 for the an-
gularity of shapes, r ¼ -0.04, p ¼ 0.15 for the smoothness of texture, r ¼
-0.18, p ¼ 0.15 for the perceived pleasantness, r ¼ -0.14, p ¼ 0.14 for
pitch, r ¼ -0.04, p ¼ 0.23 for the color dimension L*, r ¼ -0.12, p ¼ 0.20
for a*, and r ¼ -0.19, p ¼ 0.14 for b*. These findings reflect the model's
ability to predict the crossmodal correspondences of odors rather than
the reported correlations being obtained due to internal structure.

To test if our results were significantly impacted by our removal of the
perceptual outliers, we repeated the prediction analysis with the inclu-
sion of the perceptual outliers. This resulted in moderate change in the
correlation coefficient in the perceived pleasantness from (r ¼ 0.20, p >

0.05) to (r ¼ 0.09, p > 0.05), L* from (r ¼ 0.59, p < 0.0001) to (r ¼ 0.46,
p< 0.0001), and a* from (r¼ 0.44, p< 0.0001) to (r¼ 0.35, p¼ 0.0003).
A small change was noticed in the angularity of shapes (r ¼ 0.71, p <

0.0001) to (r¼ 0.64, p< 0.0001), smoothness of texture from (r¼ 0.82, p
< 0.0001) to (r ¼ 0.79, p < 0.0001), pitch surprisingly increased from (r
¼ 0.70, p< 0.0001) to (r¼ 0.75, p< 0.0001), and b* did not change at all
(r ¼ 0.42, p < 0.0001) to (r ¼ 0.42, p < 0.0001). The correlations for the
angularity of shapes, the smoothness of texture, pitch, and our color
s of texture, (C) the perceived pleasantness, (D) pitch, (E) the color dimension L*,
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dimensions are still significant with inclusion of the outliers leading us to
conclude that the results were only slightly influenced by removal of the
outliers, hence suggesting that our analysis is robust.

4. Discussion

In vision, a predictive property of color is the wavelength of light. In
hearing, the frequency of sound is a predictive property of tone. How-
ever, in olfaction, it is not currently possible to predict the smell of a
molecule using its molecular structure [32]. This is presumably because
the dimensionality of olfactory perceptual space is unknown and olfac-
tory stimuli do not vary continuously in stimulus space [32, 33].
Comparatively to vision and audition, predicting olfactory percept re-
quires significantly more information rather than a particular attribute;
even then, there is still substantial room for improvement. Here we
transduced the physicochemical features of odors using an e-nose,
transmitted it to a receiver, and predicted people's crossmodal corre-
spondences towards that odor. This means we could predict the corre-
spondences a person would have towards an odor even if the odors were
unseen to the models. Our findings suggest that the crossmodal associ-
ations people have towards odors are, at least in part, encapsulated in the
physicochemical features and, therefore, can be captured by a machine.
Our findings show that it is possible to predict the crossmodal corre-
spondences of odors using the stimuli's physicochemical features.

The ability to predict crossmodal perceptual properties was a critical
aspect of this work. It will inevitably lead to more refined multi-sensorial
experiences in various disciplines, including product design and human-
machine interfaces. These results could be considered as a building block
for the digital transmission of smell. In theory, the transmission of odors
would require recording an odor to reproduce (e.g., intensity over time),
deciphering odor composition, transmitting, and reproducing it at the
other end. However, the synthesis of odors is currently technically
limited. Thus, deciphering the odor along the perceptual axis and
aligning different sensory modalities to match the user's sensory expec-
tations could generate a similar percept, even if the odor(s) or physical
configurations at either end of the transmission points are not identical.
Interestingly this idea could be used to fine-tune interactive and
immersive experiences to suit a particular desired outcome. For example,
changing the color of a drink affects our perception of the product,
shaping the aroma, taste, or flavor [34]. In other words, it is possible to
shape the multisensory perception of products and experiences towards a
more favorable or desired outcome, such as enhancing the perceived
pleasantness or creating perceptual illusions.

The main perceptual axis of olfactory perception is pleasantness [35]
which the e-nose signals could be partially encapsulating [23]. However,
the model that was created for the perceived pleasantness did not
correlate well, suggesting that if the perceived pleasantness were
partially encapsulated in the underlying signals, its contribution would
be minimal. It is also possible that the e-nose signals may encapsulate
aspects of intensity [25]. The perception of odors is a complex process
that involves both learnt and innately tuned components [15]. It is
important to emphasize the limitation of our findings; olfactory percep-
tion and successive neural representations are modulated or influenced
by several different factors, such as expectations [36], context [37],
multisensory convergence [38], and is a heavily learned process [39].
However, a portion of olfactory perception is suggested to be innate and
hard-wired [15, 23, 40, 41], which our results reflect, as the dominant
aspects of olfactory perception will not be reflected in the physico-
chemical features. For example, it has been shown that newborn babies
with no exposure to culture or learning are averse to unpleasant odors
[41], and rats are averse to the smell of predators even if they are bred for
several generations in a predator-free environment [40].

In our prior work, we predicted the color people associated with
odors [26]. Building upon this, we show that in addition to the ability to
predict the color associated with odors, it is also possible to predict a
variety of different crossmodal correspondences (the angularity of
6

shapes, the smoothness of texture and pitch) using the physicochemical
features of the presented stimuli. Thereby demonstrating the ability to
predict human percept with a e-nose extends beyond the bounds of
crossmodal odor-color correspondences. In this work, we also improved
on the models to predict the color associated with odors, by fine-tuning
the underlying hyperparameters that best expressed the underlying data.

Future research could include exploring how employing crossmodal
correspondences in human-machine interfaces could benefit multimodal
setups [42], which could be advantageous for people with disabilities
[43]. This would involve designing a human-machine interface that
considers multimodal interaction patterns, such as crossmodal corre-
spondences. Furthermore, the integration of color-sound correspon-
dences in a human-machine interface has been shown to enhance user
performance [44], thereby demonstrating the need for crossmodally
congruent interfaces and the need to limit the bottleneck of conducting
extensive human trials before the development of a compatible interface
can begin. The work reported in the paper could be improved upon by
including a larger sample size of odors along with their crossmodal
correspondences to enhance the reliability of the generated models.
Additionally, more robust and reliable models can be obtained by
developing the modals to suit singular nationalities and cultures, as they
are an influential factor towards explaining crossmodal correspondences
(i.e., [45, 46]). Finally, although we have shown it is possible to align an
e-nose to the crossmodal perceptual axis of olfaction for commonly
encountered odors it remains to be investigated if this is still the case with
novel odorants.

5. Conclusion

Using a multivariate analysis of variance coupled with post-hoc uni-
variate analysis of variance revealed that all the sensors in the e-nose
responded differently depending on the presented essential oil. Hence, it
indicates that there are no redundant sensors or features in the data
provided by the e-nose. Using principal component analysis coupled with
k-means cluster analysis the similarity between the odors used in our
experiments in the physicochemical and perceptual spaces was explored.
This revealed a �60% overlap between the two spaces in the physical
space, which tells us that there is a reasonable degree of consistency
between the two spaces, and that a relationship between the physico-
chemical features and the crossmodal perceptual ratings exists. Different
regression algorithms – linear regression, support vector machine,
random forest, and Gaussian process regression were trained and tested
using fifty-fold cross-validation. Gaussian process regression gave the
lowest error in all cases suggesting that out of the tested algorithms, a
Gaussian process best captured the relationship between the physico-
chemical features transduced by an e-nose and their crossmodal ratings.
An e-nose was then aligned to the crossmodal perceptual axis of olfaction,
revealing that it is possible to predict the crossmodal correspondences of
odors using their physicochemical features, even if the odor was unseen
to the generated models. The models for the perceived angularity of
shapes, smoothness of texture, pitch, and lightness of color achieved
good correlations (r� 0.50, p< 0.0001) and could be robustly predicted.
Although the hue of color (a* and b*) could be robustly predicted, their
correlations were not overwhelming (r < 0.50). The perceived pleas-
antness in our case could neither be robustly predicted (p ¼ 0.484) nor
captured a decent amount of variance (r ¼ 0.20); this shows that a larger
sample size of odors is needed to be able to predict the perceived
pleasantness [23, 24]. We then proceeded to investigate the statical
robustness of our findings by randomizing the perceptual data, revealing
that the obtained correlations were attributed to the model's ability to
predict the crossmodal correspondences of odors rather than the internal
structure of the underlying data. Finally, we tested if removing the out-
liers affected our findings by retraining the models without outlier
removal, leading us to conclude that the removal of the outliers did not
significantly influence the results. The novelty of this work is two-fold;
first, we have shown it is possible to align an e-nose to the crossmodal
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perceptual axis of olfaction, thereby demonstrating it is possible to pre-
dict the crossmodal correspondences of odors using their underlying
physicochemical features. Secondly, computational models for predict-
ing the crossmodal correspondences of odors have been developed,
which could enhance multisensorial experiences with more refined ca-
pabilities, leading to more engaging/immersive and enriched experi-
ences as well as better designs.
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