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Yanda Meng, Joshua Bridge, Meng Wei, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Xiaowei Huang, and

Yalin Zheng*

Abstract—This paper proposes an adaptive auxiliary task
learning based approach for object counting problems. Unlike
existing auxiliary task learning based methods, we develop
an attention-enhanced adaptively shared backbone network to
enable both task-shared and task-tailored features learning in an
end-to-end manner. The network seamlessly combines standard
Convolution Neural Network (CNN) and Graph Convolution
Network (GCN) for feature extraction and feature reasoning
among different domains of tasks. Our approach gains enriched
contextual information by iteratively and hierarchically fusing the
features across different task branches of the adaptive CNN back-
bone. The whole framework pays special attention to the objects’
spatial locations and varied density levels, informed by object (or
crowd) segmentation and density level segmentation auxiliary
tasks. In particular, thanks to the proposed dilated contrastive
density loss function, our network benefits from individual
and regional context supervision in terms of pixel-independent
and pixel-dependent feature learning mechanisms, along with
strengthened robustness. Experiments on seven challenging multi-
domain datasets demonstrate that our method achieves superior
performance to the state-of-the-art auxiliary task learning based
counting methods. Our code is made publicly available at: https:
//github.com/smallmax00/Counting With Adaptive Auxiliary

Index Terms—Objects Counting, GCN, Dilated Contrastive
Density Loss, Adaptive Auxiliary Task

I. INTRODUCTION

OBJECT counting by inferring the number of objects in
images or video contents is a crucial yet challenging

computer vision task. This paper is primarily motivated to
address crowd counting problems while it can be applied to
other counting problems such as cell and vehicle counting.
Due to the need for crowd gathering in many scenarios such
as parades, concerts, and stadiums, a robust and accurate
crowd counting model plays an essential role in multimedia
applications for security alerts, public space design, crowd
management, etc. [1].

Benefits from Convolutional Neural Network (CNN)’s ex-
cellent feature learning ability, the performance of crowd
counting approaches has consistently been improved. Recent
state-of-the-art approaches, such as [2], [3], [4], [5], [6],
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Fig. 1. Overview of the proposed network structure in the scene of crowd
counting. An attention-enhanced adaptively shared backbone network is pro-
posed to enable both task-shared and task-tailored features learning. A novel
Graph Convolution Network (GCN) reasoning module is introduced to tackle
issues of cross-domain features reasoning among three different tasks. A novel
loss function LDCD is proposed to take into account more adjacent pixels for
regional density difference, which strengthens the network’s generalizability.

showed that a density map regression paradigm gains satis-
fying results. In these methods, given an input image, a CNN-
based network is used to regress the corresponding density
map; the summed pixel value of the density map gives the total
counting numbers in that image. However, there is still much
room to improve the counting performance due to challenging
issues [1], such as significant scale changes, wide variations
of density levels, and complex scene backgrounds. To solve
these problems, some previous methods [7], [8], [9], [10], [11]
relied on different types of information granularity in terms
of ‘auxiliary task learning’. These methods applied a single
shared backbone network structure to extract generalized fea-
tures for all the tasks. Unfortunately, this strategy may lead to
under-fitting as the generalizable representation often cannot
effectively describe the comprehensive cross-domain features
across different tasks at the same time [12], [13]. Intuitively,
our motivation is that the backbone network should be able to
yield both generic (or universal) representations shareable for
all the tasks and specialized features tailored for individual
tasks. To this end, we designed an attention-based adaptive
shareable backbone network to enable task-shared and task-
customized features learning in an end-to-end manner (Fig.
1 shows an overview of the network architecture). Note that,
the term ‘auxiliary task learning’ is referred to as the feature
learning of different density information granularity levels.
Specifically, the crowd segmentation task and the density level
segmentation task in Fig. 1 are the auxiliary tasks, and the
density map regression task is the main task. We generated
the ground truth of crowd segmentation and density level
segmentation tasks from the density map regression task’s
ground truth. Intuitively, the information from the ground truth
of auxiliary tasks is not increased; however, the information
is enhanced and specified through auxiliary tasks in terms of
different density information granularity.

Instead of aiming to achieve the best performance for all
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the tasks, our adaptive shareable backbone network primarily
focused on optimizing the primary density map regression
task, along with the multi-granularity information enhance-
ment from the other auxiliary tasks. Our backbone network
contained a multi-level information aggregation mechanism to
iteratively and hierarchically fuse features learned from differ-
ent stages and auxiliary branches to tackle large scale changes
problems. We also applied two attention-based auxiliary task
learning branches: 1.) crowd segmentation task to indicate
spatial regions of interest to tackle complex background issues;
and 2.) density level segmentation task to be aware of the
varied density levels across the image, which can tackle the
significant variations of density problems. An ablation study
demonstrates that our adaptive auxiliary branches improve
performance over a single-shared backbone based auxiliary
task learning network with comparable model size.

Apart from the aforementioned components, we also studied
how to reason and fuse features from different tasks for
density map regression. The features extracted from crowd
segmentation and density level segmentation branches belong
to different feature domains with various granularity rep-
resentations. Direct fusion (e.g. element-wise multiplication
or channel-wise concatenation) among three task branches’
outputs can result in domain conflicts [14]. Thus, further
reasoning is necessary to improve the counting performance.
To this end, we exploited the information reasoning nature
of Graph Convolutional Networks (GCN). GCN has recently
shown promising reasoning ability on many computer vision
tasks, such as scene understanding [15], image segmentation
[16], [17], etc., but has been rarely studied in the crowd
counting task domain. Our model projects a collection of
spatial-aware density feature map’s pixels with similar density
levels to each graph vertex and exploits a GCN to reason
about the relations among graph vertices. This is different
from a recent work [14], which directly treated cross-domain
feature maps as graph vertices and utilized a cascaded Graph
Neural Network (GNN) to reason the cross-scale relationships.
Our experiment results have proved that the proposed GCN
reasoning module helps to improve the counting accuracy.

We also proposed a novel loss function to supervise the
main task learning processes. Notably, for the supervision of
density map regression, the widely adopted Least Absolute
Error (L1) or Least Square Error (L2) loss in previous counting
methods [18], [7], [19], [20] assumes pixel-wise independence,
which supervises the predicted density map based on the
individual pixels. However, it has two significant weaknesses.
Firstly, the predicted density map tends to be over-smooth [8];
specifically, it may underestimate high-density level regions
and overestimate low-density level regions. As a result, the
model may primarily focus on achieving lower count errors
rather than regressing high-quality density maps; thus, it
cannot reflect the actual density levels. Secondly, without
a large receptive field, individual pixel-wise loss functions
may ignore the regional density level information during the
training process [21]. Unbalanced low and high-level density
distributions may introduce significant bias in the training
process, thus weakening the network’s robustness. To address
these issues, we proposed a novel loss function for density map

regression, called Dilated Contrastive Density Loss (LDCD),
where the density difference among dilated adjacent pixels is
utilized to provide additional regional supervision. Ablation
studies demonstrate that our proposed regional loss function
can improve the counting performance of the pixel-wise loss
supervised methods.

In summary, this work makes the following contributions:
1.) We addressed the feature learning issues of the backbone
network of the auxiliary task in crowd counting challenges,
by enabling task-shareable and task-specified feature learning
simultaneously with a primary focus on the main task. 2.) We
proposed crowd segmentation and density level segmentation
as auxiliary tasks in crowd counting with additional spatial
crowd location and density level information enhancement.
Moreover, a GCN model was proposed to reason about the
cross-domain feature relations between density map regression
and other auxiliary tasks. 3.) We proposed a novel loss function
tailored for density map regression, strengthening the net-
work’s generalizability and improving the counting accuracy.
4.) We conducted extensive experiments on seven well-known
challenging counting benchmarks. Quantitative and qualitative
results demonstrated that our model achieves state-of-the-art
performance. Especially, to the best of our knowledge, we
achieved the best counting performance among auxiliary tasks
based counting methods on NWPU-Crowd [22] benchmark
1, which is currently the largest crowd counting benchmark.
Our model is robust and generalizable to indicate the wrong
labeled or miss labeled object in the test datasets. Please refer
to Section V-D for more details.

II. RELATED WORK

In recent years density map regression-based counting meth-
ods with CNN achieved good performance. For example,
Boominathan et al. [23] proposed a dual-column network to
combine low-level and high-level features in different layers
to estimate the count. However, because of the conflicts from
optimization among different columns [24], these types of
network structures have difficulty in attaining global minimiza-
tion. Other works employed single column network structures
and handled different scale challenges [25], [26], [27], [28],
[29], [30] with adaptive modules, such as scaled spatial
pyramid pooling [19], [31], [32] or Dilated kernels of filters
[33], [34], [35], [36], [37]. They achieved promising counting
performance along with architectural simplicity and training
efficiency.

A. Attention-Based Counting

The visual attention mechanism was applied among several
works [38], [21], [39], [40], [41], [42], [36] in the crowd
counting task, which helped the network focus on valuable
information and addressed several challenges. For example,
Miao et al. [38] utilized a shallow feature based attention
module to highlight the regions of crowd interest and filter
out the noise in the background clutter. To tackle various
density levels issues, Jiang et al. [21] employed an attention

1https://www.crowdbenchmark.com/nwpucrowd.html
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mask to refine the density map for adapting to different
density levels. Furthermore, Zhang et al. [39] proposed the
Attention Neural Field that incorporated non-local attention
modules and conditional random fields to maintain multi-
scale features and long-range dependencies, to handle large
scale changes problems of the input crowd images. Wan et al.
[43], [36] exploited the self-attention mechanism to adaptively
generate density maps with different Gaussian kernel sizes,
which is used as the ground truth to supervise the model.
The aforementioned methods adopted the attention mechanism
as a feature enhancement module to implicitly address the
crowd counting task’s challenges, such as significant scale
changes, wide variations of density levels, and complex scene
backgrounds. Our model explicitly addressed those challenges
through auxiliary tasks. On the other hand, our model adopted
the attention mechanism to construct an adaptively shared
backbone network, enabling the task-shared and task-specific
features learning simultaneously.

B. Auxiliary Tasks Based Counting

Recently, auxiliary task learning based counting methods
[44], [45], [46], [47], [48], [49], [50], [51], [9], [52], [53]
attracted researchers’ attention because of its ability to capture
extra granularity information and contextual dependencies for
the density map regression. Most of the methods utilized the
potential of a model itself with auxiliary tasks, such as object
detection, crowd segmentation, density level classification,
etc., to enhance the feature tuning for density map regression.
For example, the task of patch-based density level classifica-
tion [7], [54], [55], [9], [56], [57], [58] can enhance patch-
level density level information, which helped to address the
underestimation and the overestimation problems of density
map regressions. However, it may be difficult to guide the
pixel-wise density map regression via patch-wise density level
classification because of the gap between pixel-level and
patch-level feature learning. In contrast, our model proposed
a density level segmentation auxiliary task, which can be
regarded as the dense pixel-wise density level classification
task. In this way, our model can enhance the pixel-wise density
level information to the pixel-wise density map regression task,
aiming to address the challenges of wide variations of density
levels.

Moreover, because the background regions in complex
scenes contain confusing objects or similar appearance, the
crowd segmentation task, adopted by previous methods [59],
[7], [14], [10], [60], can provide spatial location information
for the crowd, which highlighted the foreground over the back-
ground and guided the network focus on the region of interest.
Our model also adopted the crowd segmentation task because
of its superiority in spatial location information enhancement.
Similarly, the task of object (crowd) detection [8], [61], [62],
[63], [64], [65] can enhance location information and alleviate
local spatial inconsistency issues in the density map.

C. Learn to Count with Different Supervisions

Instead of tackling the counting task through different
learning frameworks or strategies, recent methods [66], [67],

[68], [69], [70], [71], [72], [73], [74], [75] payed attention
at the way of supervisions. For example, Sravya et al. pro-
posed a bin loss [68] to enable the data-distribution aware
optimization, which helped to address the domain variation
challenges from different crowd data source. Song et al. [69]
studied the counting problem in a different way, where a
combination of Euclidean loss and Cross Entropy loss was
used for point locations learning, instead of density map
regression. Along the same line, Bayesian loss was proposed
by [71] to provide more reliable supervisions at each annotated
point. Differently, Wan et al. [70] studied the combination of
pixel-wise loss and point-wise loss, which investigated the
density map representation through an unbalanced optimal
transport problem. [72] proposed a novel loss function to
address the spatial annotation noise during training, where a
weighted MSE term and a pixel-wise correlation term were
involved. Recently, [73] proposed distribution matching loss to
tackle the weakened generalizability of the Gaussian smoothed
density map. Moreover, Wang et al. [74] treated the counting
with density map as a classification problem, where a Cross-
Entropy loss was used to classify each patch into certain
intervals.

The aforementioned methods introduced different loss func-
tions to supervise the model, such as points location, bounding
box, matching, ranking, classification, etc.. However, the main-
stream counting methods still relies on pixel-wise supervision
with the density map ground truth [1], such as L1 or L2 loss
functions. In this work, we proposed a Dilated Contrastive
Density Loss (LDCD) to improve the pixel-wise loss’s recep-
tive field and increase the regional supervision.

III. METHODOLOGY

A. Ground Truth Generation

Following [76], given a set of N images {Ii}Ni=1 with
corresponding point annotations {Pi}Ni=1, the ground truth of
the density map {Di}Ni=1 is generated by filtering the points
with a normalized Gaussian kernel. The total object count
number Ti of image Ii can be attained by summing all pixel
values of the density map Di.

The ground truth mask of the crowd segmentation task is
generated from the density map ground truth. Given a set of
N density maps {Di}Ni=1, the value for each pixel in the mask
{Bi}Ni=1 is set to 1 if the pixel valve in the density map is
larger than the zero and 0 otherwise.

The ground truth mask used by the density level segmenta-
tion task is also generated from the density map. For pixel p
in input image i, its density level class Sp,i is given as:

Sp,i = min
i=1,..,N

(
b Di(p)−min(Di)

max(Di)−min(Di)
× L+ 1c, L+ 1

)
,

(1)
where L represents the overall levels of density; following

previous patch-based density level classification methods [7],
[9], we set L equal to 4 in our work. Di is the pixel value in
the ith density map ground truth.
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Fig. 2. Illustration of our proposed network. The adaptively shared backbone network has three outputs of fCS , fDS , fDM , representing crowd segmentation,
density level segmentation, and density map regression branches’ output feature map, respectively. The order of their involvements indicates that the density
map regression branch can benefit from the extra density level and crowd spatial supervision from the other two branches gradually.

B. Task Adaptive Backbone Network

Instead of using a shared backbone network to extract gener-
alizable features for different tasks, we proposed an attention-
based task-adaptive shared backbone network to allow the
model to extract discriminative features for the auxiliary tasks,
thus helping to improve the performance of the main task. Fig.
2 shows the detailed structure of the proposed network, which
consists of a shared backbone and three attention-based task-
adaptive branches. To make a fair comparison with previous
auxiliary task-based methods, such as [54], [14], [61], [9],
etc., the truncated VGG-16 [77] is used as the backbone
network. However, it can be replaced by any other robust
network structure; we have reported the counting performance
with other powerful network backbones in TABLE. II. The
shared backbone adopts the first 13 layers of the VGG-16 to
extract multi-level features. To exploit the global contextual
dependencies, we proposed a Feature Fuse Block (FFB),
which aggregated and fused the outputs from posterior layers
back to the preceding layers hierarchically and iteratively,
with up-sampling, concatenation and convolution operations.
This provides improvements in extracting the full spectrum of
semantic and spatial information across different stages and
resolutions. The up-sampling is performed by using a bilinear
interpolation algorithm. The convolution operation aims to
reduce and match the corresponding feature map channel size
between different stages.

With the aggregating process from low-level features to
high-level features, the task-adaptive attention module is ap-
plied in three different task branches; details of the attention
module are shown in the bottom left of Fig. 2. Each attention
module consists of a global average pooling (GAP) layer to
capture global context through different feature map channels,
conducting an attention tensor to lead the emphasis of feature
learning. Then, two blocks with a convolutional layer followed
by a Batch Normalization (BN) [78] layer with ReLu and
sigmoid as the activation functions are added. For the convo-
lutional layer filter, the kernel size is 1× 1. The element-wise
multiplication is then performed between the outputs of the
particular layer of the shared backbone and the task-specific
attention module, which filters out the unrelated and redundant
features from the backbone with respect to different auxiliary
tasks and the main task. Therefore, the shared backbone can
learn a generalizable representation, while the attention-based
branches can extract task-specific features simultaneously in
an end-to-end manner. The ablation study experiments proved
that the attention-based adaptive backbone could boost the
counting performance.

Apart from the aforementioned network structure com-
ponent in three attention-based task-adaptive branches, we
also introduced a cross-domain feature fusing operator in a
particular order to focus on optimizing the primary density
map regression task primarily. Specifically, the crowd seg-
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mentation branch is applied to the shared backbone first to
select the corresponding discriminative spatial features. Then,
we applied the density level segmentation branch on the shared
backbone and crowd segmentation branch, which can enhance
the additional contextual density level information into the
main task. At last, the main task of the density map regression
branch is applied.

C. Auxiliary Tasks

With three outputs from the task adaptive backbone net-
work, we built two auxiliary tasks and a main task: crowd
segmentation task, density level segmentation task, and density
map regression task. We detail each of them subsequently.
Crowd Segmentation. We introduced crowd segmentation
as one of the auxiliary tasks for two reasons. Firstly, the
density map’s pixel value should be zero at non-crowd re-
gions. However, the predicted density map can be noisy and
inaccurate when the background is cluttered and complex.
The crowd segmentation task provides a spatial focus to the
density map regression process through zero out the non-crowd
regions’ pixel values. Secondly, given the standard set-up of
single density map regression, the pixels within a particular
range of the point annotations should contribute more to the
final counting results; however, the loss is dominated by the
majority of less relevant pixels. To overcome this limitation,
the crowd segmentation can provide additional information
enhancement in terms of the spatial indicator with a standalone
loss function.

Given an input image Ii ∈ R3×H×W , we can get the
output of the crowd segmentation branch in the backbone
network, fCS ∈ RC×H×W , where H and W represent the
height and width of the feature map; C is the channel size.
Then, we apply a convolution layer with filter parameters
θCS ∈ R1×1×1, followed by a sigmoid as the activation
function. Through this operation, we can generate a probability
map to calculate the crowd and background probability. The
single channel crowd segmentation probability map MCS is
defined as: MCS = Sigmoid(θCS , fCS) ∈ R1×H×W .
Density Level Segmentation. Density map regression is a
pixel-wise task, which focuses on low-level features learning
but may ignore high-level contextual information during the
training [31]. To address this issue, we perform density level
segmentation as another auxiliary task. Compared with previ-
ous patch-based density level classification methods [7], [54],
[55], [9], our proposed pixel-based density level segmentation
can provide pixel-wise level density information and high-
level semantic features at the same time. Upon the output
of the density level segmentation branch of the backbone
network fDS ∈ RC×H×W , a convolution layer with filter
parameters θDS ∈ RL×1×1 and a softmax as activation func-
tion are applied. The prediction of density level segmentation
branch MDS is defined as: MDS = softmax(θDS , fDS) ∈
RL×H×W , where L is the number of density levels.

D. Density Map Regression

Intuitively, the different granularity features of density levels
and spatial crowd locations need to be further reasoned to
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Fig. 3. Architecture of the proposed GCN reasoning module. fDM ∈
RC×H×W is the feature map of the density map regression branch, C = 32
is the channel size; MCS ∈ R1×H×W is the prediction of the crowd
segmentation branch; MDS ∈ RL×H×W is the prediction of density level
segmentation branch, L = 4 is the number of density levels; DD ∈
RHW×HW is the density level dependency matrix; VD ∈ RK×HW is the
constructed vertex features and VD′ ∈ RK×HW is the output vertex features
after GCN, K = 16 is the number of vertices. fDM′ ∈ RC×H×W is the
output feature map after GCN reasoning.

fuse into the density map regression branch. To this end, with
the predicted crowd segmentation output MCS and density
level segmentation output MDS as the auxiliary information
granularity, we input them along with the density map branch’s
feature map fDM ∈ RC×H×W into the GCN reasoning
module to reason the relationship among themselves. Subse-
quently, the output feature map fDM ′ ∈ RC×H×W of the
GCN reasoning module is reduced into one-channel through
1× 1 convolution layer with a ReLU activation function.

E. GCN Reasoning Module

The proposed GCN reasoning module structure is shown in
Fig. 3. In detail, there are three primary modules: Spatial Lo-
cation Aware module, Density Level Aware Projection module,
Graph Convolution on Vertices module. Because of the nature
of the crowd images, the density level varies across the image
[19], which indicates that the pixel values of the density map
should not just rely on their own pixel-wise features but also
on different density level regions. To this end, our GCN reason
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model projected a collection of spatial-aware density feature
map’s pixels with similar density levels to each graph vertex
and exploited a GCN to reason about the relations among
graph vertices.
Spatial Location Aware Module. Before projecting the den-
sity map feature map fDM into the graph vertices, we directly
applied the broadcasting Hadamard Product operation between
the crowd segmentation output MCS and the density map
regression branch’s feature map fDM . There are two under-
lying reasons: (1) MCS is a one-channel crowd segmentation
map, with encoding the probability of the non-crowd regions’
pixel values approaching zero and crowd regions’ pixel values
approaching one; one can serve as a filter to zero out the
non-crowd region’s pixel value of the density map. (2) Direct
broadcasting Hadamard Product can achieve crowd spatial
awareness for every channel of the fDM through zero out the
non-crowd region’s pixel value. This can address the challenge
of the complex scene backgrounds in the crowd images.
Density Level Aware Projection Module. As mentioned
above, the pixel-wise density level information can help to
address the challenges of the large variations of density levels
in crowd images. However, direct broadcasting Hadamard
product between the density map branch’s feature map fDM

and the density level output MDS may result in domain
conflicts [14]. We exploited the nature of GCN and projected
the density level information into the graph vertices for further
reasoning; one benefits the long-range relationship reasoning
ability of GCN and the multi-granularity information enhance-
ment from density level. Inspired by the non-local module
[79], we encoded the long-range density level dependency
among every pixel. Give the feature map MDS , the density
level dependency matrix DD ∈ RHW×HW is defined as:

DD = softmax
(
ε(MDS)⊗ βT(MDS)

)
, (2)

where Conv β and Conv ε are two convolution layers with
1 × 1 kernel size, respectively. The dependency matrix DD

can be regarded as a pixel-wise attention map, where pixels
with similar density levels are assigned with larger weights.
The dependency matrix itself can reflect the pixel-wise density
level dependency. Besides, we projected it as a prior to
the graph domain through matrix multiplication, which can
enhance high-level contextual dependency simultaneously.
Graph Convolution on Vertices. In this module, we learnt
how to reason the region-based relationship in density map
through GCN in graph domain. Firstly, we projected the spatial
aware feature map of fDM into graph domain with K vertices,
and each vertex was represented by an embedding of shape
H × W . This is achieved by Conv (µ), which is a 1 × 1
convolution layer. Furthermore, we projected the dependency
matrix DD to the graph domain through matrix multiplication,
resulting in the vertex features VD ∈ RK×HW . The projection
aggregated pixels with similar density levels to graph vertices,
where each vertex represents a region in the crowd image.
Formally, VD is defined as:

VD = DD ⊗ µ(fDM �MCS), (3)

where ⊗ is matrix multiplication; � is broadcasting Hadamard
product. With the constructed vertices, the long-range region-

Regressed Density Map

Ground Truth Density Map

(MD)

(DG)

[        ] 2

Dilated Convolution Kernel　(KDCD)

(LDCD)
Dilated Contrastive Density Loss 

Fig. 4. Dilated Contrastive Density Loss (LDCD). There are eight dilated
contrastive kernels with green, white, yellow blocks representing 1, 0, -1,
respectively. The least-square error of two outputs from regression and ground
truth is treated as the final LDCD .

wise relationship is further reasoned in the graph domain
through GCN. In detail, we reasoned over the region-wise
relations by propagating information across vertices with a
single layer GCN. Specifically, we fed the constructed ver-
tex features VD into a first-order approximation of spectral
graph convolution [80], resulting the output vertex features
VD′ ∈ RK×HW . The VD′ is calculated as:

VD′ = ReLU
(
(I −A)⊗ VD ⊗WD

)
, (4)

where I is the identity matrix; A ∈ RHW×HW denotes the
adjacent matrix that encodes the graph connectivity to learn;
WD ∈ RK×K is the weights of the GCN. The adjacent
matrix A is randomly initialized but can learn and update
the edge weights from vertex features by gradient along the
training process. The identity matrix I serves as a residual
connection that alleviates the optimization difficulties. Based
on the learned graph, the information propagation across all
vertices leads to the finally reasoned relations between regions.
After graph reasoning, a collection of pixels embedded within
one vertex share the same context of features modeled by
graph convolution. Then, we re-projected the vertex features
in the graph domain to the original pixel grids. Given the
reasoned vertices VD′ , we applied Conv (σ), which is a 1× 1
convolution layer. Finally, we summed up the re-projected
refined and the original density feature maps as the final
feature map. The final pixel-wise density feature map fDM ′

is thus computed by

fDM ′ = fDM + σ(VD′). (5)

F. Loss Function

The whole network is end-to-end trainable, which includes
four loss functions; the total loss function is defined as:

Ltotal = LCS + LDS + γ · (LDp + LDCD), (6)

where γ is empirically set as 2, which is a hyper-parameter
to trade-off between auxiliary losses and main loss. Please
note that, extensive experiments have been done to determine
the weights of the losses for two auxiliary tasks, respectively.
We found that there is no significant difference of counting
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performance with respect to different weight values; thus,
we set them both equal to 1 in the loss function. Binary
cross-entropy (LCS) is used for crowd segmentation auxiliary
task; categorical cross-entropy (LDS) is used for density level
segmentation auxiliary task; L2 loss is used for pixel-wise
density map regression supervision (LDp). However, pixel-
wise L2 loss assumes pixel-wise independence, which results
in over-smooth density map prediction [8] and the underlying
bias from unbalanced low- and high-level density distributions
of crowd images. To address the issue, we proposed Dilated
Contrastive Density Loss (LDCD), where we take into account
more adjacent pixels for regional density difference. In detail,
we applied single layer convolution on the regressed density
map MD and the ground truth density map DG respectively.
The single layer convolution has eight filters; each filter
contains dilated kernel with a fixed value (e.g. 1, 0, and -
1). The least-square error of the calculated regional dilated
contrastive values from the regressed and ground truth density
map is the output of LDCD. To this end, we define LDCD as
below:

LDCD =
∑
i

||KDCD
i ⊗MD −KDCD

i ⊗DG||22, (7)

where KDCD
i is the ith dilated contrastive convolution kernel,

i ∈ [1, 8]. Details of the kernel are shown in Fig. 4, where a
3 × 3 convolution layer with the dilated rate of 2 is applied;
one gives a larger receptive field as 5 × 5. We perform
extensive experiments to evaluate the effectiveness of the
proposed LDCD loss; quantitative results in Ablation Study
(Section V-C) demonstrates that the proposed LDCD loss can
improve the counting accuracy not only for our model but also
for previous single L2 loss based methods.

IV. EXPERIMENTS

A. Datasets

ShanghaiTech [18] consists of 1,198 images, containing
a total amount of 330,165 people with head centre point
annotations. This dataset is divided into two parts: SHA
includes 482 images, in which crowds are mostly dense (33
to 3139 people); SHB includes 716 images, where crowds are
sparser (9 to 578 people). Each part is divided into training and
testing subset as specified in [18]. UCF-QNRF [82] is a large
crowd dataset, consisting of 1,535 images with about 1.25
million annotations in total. The number of people in these
images varies largely with a wide range from 49 to 12,865.
As indicated by [82], For training, 1,201 images are used, the
remaining 334 images form the test set. JHU-Crowd [83] is
a recent challenging large-scale dataset that containing 4,372
images with 1.51 million annotations. The dataset includes
several challenging scenes such as weather-based degradation
and illumination variations etc.. This dataset is divided into
2,272 images for training, 500 images for validation, and
1,600 images for testing. NWPU-Crowd [22] is up to date the
largest public crowd counting dataset, containing 5,109 im-
ages with over 2.13 million annotations. The dataset includes
3,109 training images, 500 validation images and 1,500 test
images. Moreover, inspired by the potential of crowd counting,

we conducted experiments on commonly used cell counting
dataset: DCC [84] with 100 images for training and 77 images
for testing, and vehicle counting dataset: Trancos [85] with
403 images for training, 420 images for validation and 421
images for testing. These experiments further demonstrated
our model’s robustness and applicability for different real-
world applications.

Note that, for ShanghaiTech (SHA, SHB), UCF-QNRF, and
DCC dataset, we use 10% of the given training images as the
validation dataset.

B. Implementation Details

To augment the dataset, we randomly cropped the input
images, density maps, crowd segmentation masks, and density
level segmentation masks with fixed size 128×128 at a random
location, then randomly horizontally flipped the image patches
with the probability of 0.3. We trained our model for 400
epochs for all experiments, with a start learning rate of 1e−4
and a cosine decay schedule [86]. The batch size is set to 96.
All the training processes are performed on a server with 8
TESLA V100 and 4 TESLA P100, and all the test experiments
are conducted on a local workstation with a Geforce RTX
2080Ti. Five-fold cross-validation is used for fair comparison
and hyper-parameters tuning in all settings.

C. Evaluation Metrics

To evaluate the counting performance, we adopted Mean
Absolute Error (MAE) and Root Mean Squared Error
(RMSE). Since Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) cannot measure the counted ob-
jects’ locations, Grid Average Mean absolute Error (GAME)
is used to indicate counting accuracy over local regions.
GAME is defined as:

GAME(L) =
1

N

N∑
n=1

(

4L∑
l=1

|yln − ŷln|), (8)

where N is the total number of images, yln and ŷln are the
ground truth and estimated counts in the local region l of
nth image. 4L denotes the number of non-overlapping regions
which cover the full image. When L equals to 0, the GAME
is equivalent to MAE.

V. RESULTS

A. Counting Results

In this section, we present our experimental results on
the crowd, cell, and vehicle counting tasks in comparison
to other auxiliary-task based state-of-the-art crowd counting
methods. These experiments further demonstrate our model’s
robustness and applicability in multiple domain datasets. In
the Discussion (Section V-D), we showed that our model could
indicate some mislabeled or wrongly labeled point annotations
from the ground truth of the test dataset. This highlights our
approach’s generalizability and the potential issue of imperfect
ground truth in object counting datasets.
Crowd Counting Results. We performed experiments to
validate our model’s performance in five challenging crowd
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Image
 

Location Map
Ours                  GT

Density Level Map
Ours                  GT

Density Map
Ours                  GT

Fig. 5. Qualitative results of the density, crowd location and density level map in SHA test dataset. Our model can produce accurate density maps compared
to the ground truth (GT), along with accurate auxiliary crowd segmentation and density level segmentation results.

TABLE I
RESULTS ON FIVE CHALLENGING DATASETS FOR CROWD COUNTING, COMPARED WITH OTHER AUXILIARY TASK LEARNING BASED METHODS. OUR

MODEL ACHIEVES A NEW STATE-OF-THE-ART WITHIN AUXILIARY LEARNING BASED COUNTING METHODS IN TERMS OF MAE.

Methods SHA SHB QNRF JHU-Crowd NWPU-Crowd
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CP-CNN [54] 73.6 106.4 20.1 30.1 - - - - - -
DecideNet [8] - - 21.53 31.98 - - - - - -

CFF [7] 65.2 109.4 7.2 12.2 93.8 146.5 83.6 400.7 80.8 364.1
AT-CSRNet [59] - - 8.11 13.53 - - - - - -
SHRGBD [63] 70.3 111.0 8.8 15.3 113.3 177.6 107.9 446.7 103.0 478.1
HA-CCN [55] 62.9 94.9 8.1 12.7 118.1 180.4 - - - -
RAZ-Net [62] 65.1 106.7 8.4 14.1 116 195 - - 151.5 634.6
HYGNN [14] 60.2 94.5 7.5 12.7 100.8 185.3 - - - -

LSC-CNN [61] 66.4 117.0 8.1 12.7 120.5 218.2 112.7 454.4 90.4 388.8
ASCC [21] 57.8 90.1 7.5 13.1 91.6 159.7 84.6 355.1 95.7 398.0

UMRNet [10] 62.6 103.3 7.2 11.5 86.3 153.1 - - - -
DAMNet [9] 63.1 106.3 9.1 16.3 101.5 186.9 - - - -
MATT [50] 59.5 97.3 6.9 10.3 - - - - - -

Ours 57.0 98.6 7.1 12.3 85.3 129.4 66.6 254.9 76.4 327.1

counting datasets. Fig. 5 shows qualitative results; specifically,
we presented the predictions from auxiliary task branches
(crowd segmentation and density level segmentation masks)
to demonstrate our model’s cohesion, along with the spatial
location and density level variation’s contribution of auxiliary
branches. To make a fair comparison, we only compared our
model with previous auxiliary task learning based counting
methods. TABLE. I shows that our method outperforms other
methods in terms of MAE on all five datasets. In particular, our
model outperforms the patch-based density level classification
based method HA-CCN [55] by 14.7% via average MAE.
Notably, the JHU-Crowd dataset [83] and NWPU-Crowd
dataset [22] are recent public available datasets, which are
more challenging due to large variations in scale, occlusion,
and complex weather scenes. Specifically, NWPU-Crowd is
current the largest crowd counting benchmark 2. To the best
of our knowledge, we achieved the best performance among
other auxiliary task based methods. Except the auxiliary based

2https://www.crowdbenchmark.com/nwpucrowd.html

methods shown in TABLE. I, our method gains a superior
reduction than single-task learning based methods as well,
for example, scale-variation enhanced method CACC (100.1
MAE) [19] by 18.3% and dilated kernel-based method CSR-
Net (85.9 MAE) [33] by 4.8% via MAE.
Cell & Vehicle Counting Results. We conducted experiments
on cell (DCC [84]) and vehicle (Trancos [85]) counting
datasets to show our model’s broad applicability and robust-
ness. Fig. 7 shows the qualitative results, and Fig. III shows the
quantitative results compared with the previous state-of-the-
art methods. Due to the different scenes in the cell counting
dataset, such as less occlusion, no scale variation, no complex
background etc., the contribution of some components of our
model will be lessened because we design our model espe-
cially for crowd counting tasks; still, our model achieves com-
parable performance with previous methods. Furthermore, we
presented local comparison performance through the GAME
metric to indicate the model’s ability to recognize the objects’
locations. Fig. 6 shows the comparison results in terms of the
GAME on the Trancos dataset. As illustrated, our method

https://www.crowdbenchmark.com/nwpucrowd.html
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TABLE II
RESULTS OF USING DIFFERENT BACKBONE NETWORKS ON FIVE CROWD COUNTING DATASETS.

Methods SHA SHB QNRF JHU-Crowd NWPU-Crowd
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VGG-16 [77] 57.0 98.6 7.1 12.3 85.3 129.4 66.6 254.9 76.4 327.4
VGG-19 [77] 59.7 99.8 8.4 13.2 87.8 144.0 73.7 320.1 79.9 360.0

ResNet-50 [81] 57.8 96.6 7.0 11.7 85.5 128.7 77.9 318.1 79.3 344.4
ResNet-101 [81] 61.1 100.8 9.1 14.5 93.3 147.9 69.7 253.3 81.4 361.5
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Onoro-Rubio et al. 2016
Li et al. 2018
Chen et al. 2019a
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Fig. 6. Comparison of GAME performance on the Trancos dataset among
the proposed approach and the state-of-the-arts, such as Onoro-Rubio et al.
[2], Li et al. [33], Chen et al. [32]. Note that, a small range of increase
among different GAME values indicates that our method counts and localizes
overlapping vehicles more accurately.

Fig. 7. Qualitative results on the Trancos (top) and DCC (bottom) dataset. Our
model adapts well with scale variations and weather degradation challenges
on the Trancos dataset. Further improvement is required for the cell dataset
where individual cell locations are hard to distinguish, though the density
levels and spatial distributions are clearly indicated.

localizes and counts overlapping vehicles more accurately.

B. Auxiliary Task Results

In this section, we reported the performance of two auxiliary
tasks. The commonly used segmentation metric Intersection
over Union (IoU) is used to evaluate the auxiliary tasks’
performance. In detail, we achieved average 88.7 % IoU for
the crowd segmentation task and 81.0 % IoU for the density
level segmentation task on the five crowd counting datasets.

TABLE III
RESULTS ON CELL (DCC) COUNTING AND VEHICLE (Trancos) COUNTING

DATASET. OUR MODEL ACHIEVES SUPERIOR PERFORMANCE TO THE
PREVIOUS STATE-OF-THE-ART METHODS.

Methods DCC Trancos
MAE MAE RMSE

PPPD [84] 8.4 9.7 -
SAU-Net [3] 3.0 - -
CSRNet [33] - 3.5 5.1

CCF [7] 3.2 2.0 -
Ours 2.9 2.3 4.8

Fig. 5 shows examples of those tasks’ predictions from our
model.

C. Ablation Study

We investigated the effect of each component in our pro-
posed model. All ablation experiments were performed with
the same settings detailed in the Implementation Details (Sec-
tion IV-B).
Ablation on Different Network Backbones We evaluated
the effectiveness of different backbone networks on the five
crowd counting datasets. The counting performance is shown
in TABLE. II with several different backbone networks. In
general, VGG-based backbone networks achieved comparable
counting performance, compared with the one of ResNet-based
backbone networks in relatively large-scale datasets, such as
QNRF, JHU-Crowd and NWPU-Crowd. While, ResNet-based
backbone works better on small-scale counting datasets, such
as SHA and SHB. We reported our model’s performance with
VGG-16 backbone network in TABLE. I for a fair comparison
with previous methods.
Ablation on Auxiliary Tasks and Model Components. In
this section, we evaluated the effectiveness of the auxiliary
tasks, adaptively shared backbone network, and GCN-enabled
reasoning module, respectively. Please note that, in order to
eliminate the performance improvement from a bigger model,
we add feed-forward CNN blocks (3 × 3 convolution with
Batch Normalization) into other ablation study models in TA-
BLE. IV to maintain a similar model size as ours (18.8 million
parameters). Firstly, we compared the single task density map
regression network, in which we removed the GCN reasoning
module, the auxiliary learning branches, and the adaptively
shared backbone branches, to form a single column network
structure (Single Column). Then we added two auxiliary
branches separately and simultaneously after the single shared
backbone’s output to form an auxiliary learning mechanism
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TABLE IV
ABLATION STUDY RESULTS ON NETWORK STRUCTURE COMPONENTS.
EACH COMPONENT OF OUR NETWORK CONTRIBUTES TO THE FINAL

PREDICTION.

Methds SHA JHU-Crowd
MAE RMSE MAE RMSE

Single Column 71.3 122.3 99.3 391.0
w/ Crowd Seg 67.4 117.0 81.6 343.6
w/ Density Seg 68.1 119.9 86.1 360.0

w/ Both Auxiliary 65.2 115.2 77.3 311.7
w/ Adaptive Crowd Seg 61.3 104.6 75.7 300.9
w/ Adaptive Density Seg 63.8 108.1 76.9 307.8

w/ Both Adaptive Auxiliary 60.8 100.3 71.9 278.9
Ours 57.0 98.6 66.6 254.9

(w/ Crowd Seg, w/ Density Seg, w/ Both Auxiliary). To further
improve the performance, we designed and added an adaptive
backbone network to enable the task-shared and task-specific
features being learned simultaneously (w/ Adaptive Crowd
Seg, w/ Adaptive Density Seg, w/ Both Adaptive Auxiliary).
Furthermore, we evaluated the proposed GCN reasoning mod-
ule’s effectiveness, which can propagate region-based density
level information across the image (Ours). The effect of each
structural component is presented in Fig. IV. As illustrated,
the proposed auxiliary task learning mechanism (w/ Both
Auxiliary) is reduced by 14.3% over the single-task learning
method (Single Column) via average MAE on two datasets, the
task adaptive backbone (w/ Both Adaptive Auxiliary) reduces
6.8% over the single shared backbone (w/ Both Auxiliary), and
the GCN reasoning module further reduces 6.7%. Qualitative
comparison results of different modules’ effectiveness in terms
of predicted density maps are shown in the Fig. 8, where
the crowd segmentation auxiliary (w/ Adaptive Crowd Seg)
can help the model to focus on the features in the region of
interest and filter out the background (first and second rows).
On the other hand, the density level segmentation auxiliary
(w/ Adaptive Density Seg) can help to estimate more accurate
density levels across the whole density map (second and third
rows). We highlighted the different areas among those ablated
models’ density map predictions with red bounding boxes for
better visualization and comparison.

Moreover, in TABLE. V, we further indirectly evaluate
the auxiliary tasks’ effectiveness in this work. Specifically,
for other ablation study models except for Ours, we main-
tained the same network structure as Ours to keep the same
model size (18.8 million parameters) but switched off the
two auxiliary tasks’ loss functions. In TABLE. V, it proves
that the supervision from multi-granularity information of
auxiliary tasks contributes to the final counting performance
in this work. Without LCS and LDS losses, the counting error
increases by an average of 21.75 % on the SHA and the JHU-
Crowd datasets via MAE.
Ablation on Loss Function. We performed experiments to
evaluate the receptive field through different dilated rates in
the proposed dilated contrastive density loss function LDCD.
In detail, we changed the dilated rate of the 3×3 convolution
layer into 1, 2, 3, 4, which resulted in the receptive field of the
LDCD being like 3, 5, 7, 9. TABLE. VI shows the comparison
results; when the dilated rate is 2, our model achieves the best

TABLE V
ABLATION STUDY RESULTS ON AUXILIARY TASKS. MAINTAINING THE

SAME MODEL STRUCTURE (MODEL SIZE) AND TURNING OFF AUXILIARY
TASKS’ LOSS FUNCTIONS CAN IMPLICITLY PROVE THAT THE AUXILIARY

TASKS CONTRIBUTE TO THE FINAL COUNTING.

Methds SHA JHU-Crowd
MAE RMSE MAE RMSE

w/o LCS 64.4 107.7 78.7 310.5
w/o LDS 62.0 104.8 74.9 302.2

w/o LCS and LDS 67.1 115.2 93.0 377.5
Ours 57.0 98.6 66.6 254.9

TABLE VI
ABLATION STUDY RESULTS ON THE DILATED RATE OF THE PROPOSED

LOSS FUNCTION LDCD . WHEN THE DILATED RATE IS 2 AND THE
CORRESPONDING RECEPTIVE FIELD IS 5, OUR MODEL CAN ACHIEVE THE

BEST COUNTING PERFORMANCE ON THE SHA AND JHU-Crowd DATASETS.

Dilated Rate SHA JHU-Crowd
MAE RMSE MAE RMSE

1 60.1 103.5 70.1 299.0
3 58.7 101.7 68.7 288.4
4 59.2 101.3 68.0 287.6

2 (Ours) 57.0 98.6 66.6 254.9

performance on SHA and JHU-Crowd datasets.
Furthermore, we conducted experiments to evaluate the ef-

fectiveness of the proposed dilated contrastive loss function, in
which we removed the LDCD and kept the rest of the network
constant with the same trade-off hyper-parameters (Base in
TABLE. VII). Furthermore, we applied the proposed combined
loss function (w/ contrastive in TABLE. VII) into previous
single L2 based methods. We re-implemented their network
with their open-source code and used the same experimental
setting as our method. Fig. VII shows the comparison results
of our proposed combined loss function; as illustrated, with
regional density difference supervision of LDCD, our model
attains a 3.5% reduction compared with single L2 loss function
via average MAE on two datasets. Our proposed LDCD also
helps to reduce the original MCNN [18] by 6.4%, the CSRNet
[33] by 2.7%, and the CACC [19] by 2.3% over average
MAE on two datasets. Please note that, we did not compare
with other loss functions that were proposed in recent crowd
counting model [69], [71], [70], [73], [74], [72]. Because those
methods are not pure density map regression based methods,
it is unfair to compare.

TABLE VII
ABLATION STUDY RESULTS (MAE) ON OUR COMBINED LOSS

(CONTRASTIVE AND L2 LOSS), COMPARED WITH SINGLE L2 LOSS (base).
MOREOVER, WE APPLIED THE COMBINED LOSS FUNCTION TO OPTIMIZE

PREVIOUS SINGLE L2 LOSS BASED METHODS TO DEMONSTRATE THAT THE
COUNTING PERFORMANCE CAN BE IMPROVED WITH THE HELP OF
REGIONAL DENSITY DIFFERENCE BASED LOSS FUNCTION LDCD ).

Methods SHA JHU-Crowd
Base w/ contrastive Base w/ contrastive

MCNN [18] 110.2 108.1 188.9 168.3
CSRNet [33] 68.2 65.9 85.9 84.1
CACC [19] 62.3 60.8 100.1 97.9

Ours 59.5 57.0 70.8 66.6
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count: 567  
count:  
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Fig. 8. The qualitative results of ablation studies about auxiliary tasks. The red bounding boxes are used for better visualization and comparison. Ours and
w/ Adaptive Crowd Seg can know the crowd’s spatial regions (first and third rows), and filter out the background noise (second row). On the other hand, Ours
and w/ Adaptive Density Seg can estimate more accurate density levels across the whole density maps (second and third rows).

Input PredictionGround truth Input PredictionGround truth

Fig. 9. Comparison of our predictions and the ground truth. Our predictions are robust when there are mislabeled or wrongly labeled point annotations in
the ground truth of crowd counting, cell counting, and vehicle counting datasets, respectively. The red bounding boxes are used for better visualisation and
comparison.

D. Discussion: Comparison with Ground Truth

The underlying labeling errors (noisy ground truth) exist in
most datasets due to the human annotators’ errors. However, a
robust model can omit the noise ground truth during training
and produce a more accurate prediction. This section showed
that our model could indicate some mislabeled or wrongly
labelled point annotations of the ground truth in the test
dataset. This highlights the generalizability of our approach
and the potential issue of the imperfect ground truth in object
counting applications. Fig. 9 shows a wrongly labelled point
annotation (top left) case of the crowd counting test dataset,
and the other cases are mislabeled point annotation of vehicle

and cell counting test dataset. We highlighted the wrongly
labelled or mislabeled area with red bounding boxes for better
visualization and comparison.

VI. CONCLUSION

We proposed a novel framework for auxiliary task learning
based counting by employing an adaptively shared backbone,
a GCN reasoning module and a novel dilated contrastive
density loss function. Our model advocates task-shared and
task-specified features to be learned simultaneously. The pro-
posed method highlights that cross-domain reasoning in graph
through GCNs using crowd segmentation and density level
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segmentation can significantly improve feature learning in den-
sity map regression tasks. With our proposed loss function’s
regional density difference supervision, our model set a new
state-of-the-art among auxiliary task learning based counting
methods on seven challenging benchmarks.
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