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ABSTRACT 1

This contribution proposes a strategy for performing fuzzy analysis of linear static systems applying α-level 2

optimization. In order to decrease numerical costs, full system analyses are replaced by a reduced order model that 3

projects the equilibrium equations to a small-dimensional space. The basis associated with the reduced order model 4

is constructed by means of a single analysis of the system plus a sensitivity analysis. This reduced basis is enriched 5

as the α-level optimization strategy progresses in order to protect the quality of the approximations provided by 6

the reduced order model. A numerical example shows that with the proposed strategy, it is possible to produce an 7

accurate estimate of the membership function of the response of the system with a limited number of full system 8

analyses. 9

1 Introduction 10

The performance of complex engineering systems can be predicted by means of appropriate numerical models [1]. A 11

crucial step for the correct setup of such models is the characterization of input parameters such as material properties, 12

loads, etc. Nonetheless, precise identification of such parameters may not be straightforward in view of uncertainties, which 13

may arise due to randomness (aleatory uncertainty) or due to issues such as lack of knowledge, vagueness and imprecision 14

(epistemic uncertainty). For the latter case, uncertainties can be best described in terms of the so-called non traditional 15

approaches for uncertainty quantification [2]. Among these, interval and fuzzy analysis have shown their usefulness in many 16

applications, see e.g. [2–8]. 17

Characterization of uncertainty by means of intervals consists of associating lower and upper bounds to the input parameters 18

of a model, without assigning any relative likelihood to the values in between. As the input parameters are intervals, the 19

response of the numerical model normally becomes an interval as well. Nonetheless, the interval associated with the response 20

can be seldom determined explicitly, as the response of the model is calculated point-wise for crisp values of the input 21

parameters. Therefore, determination of the interval of the response is usually carried out applying either interval arithmetic 22

or optimization [9]. Interval arithmetic propagates the uncertainty from the input parameters to the structural responses by 23

applying interval arithmetic operations, as discussed in e.g. [6,10–12]. The major challenge when implementing approaches 24

based on interval arithmetic is keeping track of dependencies between parameters (that is, the dependency problem, see 25

e.g. [10,13]). Optimization computes the interval of the response by identifying the minimum and maximum of the structural 26

response for crisp values of the input parameters within their respective intervals by means of an appropriate numerical search 27

algorithm, see e.g. [14–17]. While the implementation of optimization approaches for interval analysis is straightforward, 28

numerical costs may grow rapidly due to the necessity of carrying out repeated system analyses for locating the extrema of 29

the response. 30

Fuzzy analysis can be interpreted as a collection of intervals that are indexed by a membership function [2]. In this way, it is 31

possible to assess the sensitivity of the response with respect to the magnitude of imprecision of the input parameters [18]. 32

Although fuzzy analysis offers valuable information, its practical implementation is extremely demanding from a numerical 33

viewpoint, as it adds an additional analysis loop (associated with the membership function) when compared to interval 34

analysis. Hence, practical fuzzy analysis must be carried out in combination with specialized strategies that involve, for 35

example, approximation concepts [12,19,20], substructuring [21], surrogate models [22–24], multi-fidelity approaches [25], 36

nonlinear programming formulations [26], etc. 37

This contribution proposes a strategy for performing fuzzy analysis of a type of problem, namely linear systems subject to 38

static load. Uncertainties are propagated from the input parameters to the response by α-level optimization [2]. In order 39

to reduce the numerical costs associated with the optimization step, the response of the system is approximated by means 40

of a reduced order model (see, e.g. [27]) which projects the equilibrium equations of the full model onto a reduced order 41

basis in a Galerkin sense. The reduced basis associated with this reduced order model is constructed by taking advantage 42

of the structure of the problem, by performing a single system analysis followed by a sensitivity analysis. The quality of 43

approximation of the reduced order model is constantly monitored throughout the execution of α-level optimization and, 44

whenever required, the reduced basis is enriched with additional system analyses. In this way, it is possible to produce 45

accurate estimates of the membership function associated with the response at reduced numerical costs. The novelty of the 46

paper comes into the integration of a reduced order model [28] with an adaptive strategy for basis enrichment [29] within the 47

context of fuzzy analysis. 48

The rest of this paper is organized as follows. The specific problem considered in this contribution as well as its solution 49

by means of α-level optimization are discussed in Section 2. The proposed strategy for conducting α-level optimization is 50

discussed in Section 3, while its application is illustrated by means of an example in Section 4. Section 5 closes this work 51

with conclusions and an outlook for future research challenges. 52



2 Formulation of the Problem53

2.1 Uncertain Linear System Under Static Load54

This contribution focuses on the analysis of steady-state linear systems subject to static load. This type of systems55

can represent a number of practical problems in structural mechanics, confined seepage, steady-state heat transfer, etc. [1].56

The associated numerical model is formulated within the framework of the finite element method, where some of the input57

parameters are uncertain. These parameters are collected in a vector θθθ = [θ1, . . . ,θnθ
]T of dimension nθ× 1, where (·)T

58

denotes transpose of the argument. Under such assumptions, the behavior of the system is described in terms of the following59

set of equations:60

KKK (θθθ)uuu(θθθ) = fff (θθθ) (1)

where KKK (θθθ) is a nd ×nd matrix associated with the system’s properties; fff (θθθ) is a nd ×1 vector representing external load;61

and uuu(θθθ) is a nd×1 vector that describes the system’s response. As noted from eq. (1), the uncertainty affecting the system’s62

matrix KKK(θθθ) and the external load fff (θθθ) propagates to the response uuu(θθθ) of the system. It is considered that both KKK(θθθ) and63

fff (θθθ) are continuous for all values that θθθ may assume; moreover, it is also considered that KKK(θθθ) is positive-definite and that64

fff (θθθ) 6= 000.65

As an additional assumption, it is considered that matrix KKK (θθθ) admits the following parametric representation [30, 31]:66

KKK (θθθ) = KKK0 +
nK

∑
k=1

KKKk pk (θθθ) (2)

where KKKk, k = 0, . . . ,nK are matrices of dimension nd × nd that are not affected by the uncertain input parameters θθθ; and67

pk (θθθ) , k = 1, . . . ,nK are scalar functions that depend on the uncertain input parameter vector θθθ.68

Due to design or decision-making purposes, it is of interest monitoring a certain response r(θθθ) of the system. It is assumed69

that such response of interest can be calculated in terms of the response vector of the system, that is:70

r(θθθ) = γγγ
T uuu(θθθ) (3)

where γγγ is a vector of constant coefficients of dimension nd×1. In addition, it should be noted that for practical applications,71

it is expected that the number of degrees-of-freedom nd of the numerical model is large and thus, repeated solution of eq. (1)72

can become demanding from a numerical viewpoint due to the necessity of factorizing KKK(θθθ) (that is, calculating the inverse73

of the matrix) .74

2.2 Characterization of Uncertainty by means of Fuzzy Sets75

It is assumed that the sources of uncertainty affecting each of the parameters θi, i = 1, . . . ,nθ stem out of issues such76

as lack of knowledge, imprecision, vagueness, etc. A possible way to characterize this epistemic uncertainty is by means of77

fuzzy sets. Thus, the fuzzy set θ̃i associated with the i-th input parameter is:78

θ̃i =
{(

θi,µθ̃i
(θi)
)

: (θi ∈Θi)∧
(

µ
θ̃i
(θi) ∈ [0,1]

)}
,

i = 1, . . . ,nθ (4)

where Θi denotes the fundamental set that contains all physical values that the input parameter θi may assume; and µ
θ̃i
(θi)79

is the membership function. Note that the role of the µ
θ̃i
(θi) is allowing a gradual assessment of the membership of θi in80

the set θ̃i. Thus, µ
θ̃i
(θi) = 0 indicates that θi is not included in θ̃i while µ

θ̃i
(θi) = 1 indicates that θi is fully included in θ̃i.81

Furthermore, 0 < µ
θ̃i
(θi) < 1 indicates that θi is partially included in θ̃i. In addition, it is assumed that there is only one82

element for which µ
θ̃i
(θi) = 1 and that the membership function µ

θ̃i
(θi) is quasiconcave [9, 18], that is:83

µ
θ̃i

(
θ
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i
)
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µ
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i
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R
i ∈Θi (5)



such that θL
i ≤ θC

i ≤ θR
i , i = 1, . . . ,nθ. Figure 1 provides a schematic representation of a membership function under the 84

assumptions described above. 85
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Fig. 1. Convex fuzzy set – schematic representation

As the input parameters of the model are characterized as fuzzy, it is clear from eqs. (1) and (3) that the response of 86

interest becomes fuzzy as well, that is r̃. Nonetheless, for situations of practical interest, the membership function associated 87

with r̃ cannot be expressed in closed form, as the solution of eq. (1) is known point-wise only for crisp values θθθ. Hence, the 88

membership function must be calculated by means of specialized numerical procedures [9,32], such as α-level optimization 89

(see, e.g. [18]), as described in the following. 90

2.3 α-Level Optimization 91

A feasible means for determining the membership function of the response of interest in a discrete manner is applying
α-level optimization [9, 18]. α-level optimization consists of constructing crisp sets of the input parameters by selecting
subsets of the support of the associated fuzzy set that possess a membership value equal or larger than a certain threshold
α ∈ (0,1], where α denotes the membership level under consideration. The crisp set associated with the i-th input parameter
is:

θi,α j
=
{

θi ∈Θi : µ
θ̃i
(θi)≥ α j

}
, i = 1, . . . ,nθ, α j ∈ (0,1] (6)

where α j, j = 1, . . . ,nc denotes the α-cut value under consideration and nc is the number of discrete cuts considered in the 92

analysis; θi,α j
denotes the set of possible values that θi may assume for the membership value α j. It should be noted that 93

θi,α j
is actually the interval associated with θi for α = α j. Hence, it becomes evident that the representation of uncertainty 94

by means of fuzzy sets can be interpreted as a collection of intervals indexed by the membership function. A schematic 95

representation of the interval θi,α j
is shown on the left hand side of Figure 2. 96

The above discussion highlights that for a given membership value α j, the uncertainty associated with the input param- 97

eters is actually represented in terms of an interval (or crisp set). Hence, for that membership value, it is also possible to 98

identify an interval associated with the response of interest, which is denoted as rα j
and is mathematically defined as follows. 99

rα j
=
{

r :
(

θi ∈ θi,α j
, i = 1, . . . ,nθ

)
∧

r = r(θθθ) = γγγ
T KKK(θθθ)−1 fff (θθθ)

} (7)

The interval rα j
is represented schematically on the right hand side of Figure 2. As the sets θi,α j

, i = 1, . . . ,nθ are 100

compact and convex (due to the assumption on quasiconcavity of the membership function), these sets are fully characterized 101

by their respective lower and upper bounds, which are denoted with superscripts (·)L and (·)R, respectively, as shown in 102

Figure 2. Furthermore, as there is a continuous mapping between the input parameters and the response of interest (that is, 103

r(θθθ) = γγγT KKK(θθθ)−1 fff (θθθ)), the interval rα j
is also fully described by its lower and upper bounds, as shown schematically in 104

Figure 2 with superscripts (·)L and (·)R, respectively. The bounds of the response can be determined by solving the following 105

two optimization problems [9]. 106

rL
α j

=min
θθθ

(r(θθθ)) , θi ∈ θi,α j
, i = 1, . . . ,nθ (8)

rR
α j

=max
θθθ

(r(θθθ)) , θi ∈ θi,α j
, i = 1, . . . ,nθ (9)



Fig. 2. Schematic representation of α-level optimization strategy

The above discussion described an interval analysis for a given membership value α j. By repeating this interval analysis107

for a total of nc α-cut levels, it is then possible to establish the intervals of the response for different membership levels and108

construct a discrete approximation of the membership function of the response of interest µr̃ (r).109

The α-level optimization scheme described above provides a means for approximating the membership function of the110

response of interest. Nonetheless, its practical application can be quite demanding from a numerical viewpoint, as it is111

necessary to solve 2nc optimization problems involving the response of interest, which is calculated by means of eqs. (1)112

and (3). Therefore, the remaining part of this work formulates a strategy for reducing the numerical efforts associated with113

α-level optimization by means of an approximate representation of the response of interest.114

3 Proposed Strategy115

3.1 General Remarks116

The strategy for solving the α-level optimization problem consists of replacing the response of interest r(θθθ) with an117

approximate response rA(θθθ) whose calculation is straightforward from a numerical viewpoint. The approximate response118

rA(θθθ) is formulated resorting to a reduced order model, as described in detail in Section 3.2. Naturally, the use of an119

approximate response induces errors, whose quantification is discussed in Section 3.3. Moreover, as the α-level optimization120

process progresses through the different α-cut levels α j, j = 1, . . . ,nc, it is possible that the estimation errors grow beyond121

an acceptable threshold. In that case, it is necessary to improve the quality of the reduced order model by means of a basis122

enrichment, as examined in Section 3.4. The integration of the reduced order model, error estimation and basis enrichment123

for performing α-level optimization is discussed in Section 3.5.124

3.2 Reduced Order Model125

A reduced order model (ROM) allows approximating the system’s response uuu(θθθ) with decreased numerical efforts126

[27, 33]. Thus, the response vector is approximated as:127

uuu(θθθ)≈ uuuA(θθθ) = ΦΦΦβββ(θθθ) (10)

where ΦΦΦ is a nd × nr matrix whose columns contain the vectors φφφi, i = 1, . . . ,nr that conform the reduced basis; and128

βββ(θθθ) is a nr×1 vector whose components depend on the uncertain input parameters θθθ. Taking into account the approximate129

representation of the response vector, the equilibrium equation (that is, eq. (1)) is projected onto the reduced basis following130

a Galerkin approach [27, 33], leading to the following reduced order model:131



KKKR(θθθ)βββ(θθθ) = fff R(θθθ) (11)

where KKKR(θθθ) = ΦΦΦ
T KKK0ΦΦΦ+∑

nK
k=1 ΦΦΦ

T KKK jΦΦΦpk(θθθ) is the system’s reduced matrix; and fff R(θθθ) = ΦΦΦ
T fff (θθθ) is the reduced load 132

vector. Thus, the response of interest is approximated as: 133

r(θθθ)≈ rA(θθθ) = γγγ
T

ΦΦΦβββ(θθθ) (12)

In case that nr� nd , the numerical solution of the reduced order model as shown in eq. (11) is considerably less demanding 134

than the solution of the original equilibrium equation (see eq. (1)). The selection of the reduced basis ΦΦΦ is of paramount 135

importance for ensuring that rA(θθθ) approximates r(θθθ) with sufficient accuracy. Hence, different approaches have been 136

proposed for its construction, see e.g. [33, 34]. In this contribution, the reduced basis ΦΦΦ is selected following the concepts 137

proposed in [28], where the basis is constructed by taking the response vector plus its first- (and possibly second-) order 138

derivatives evaluated at a nominal point θθθ
0. The advantage of such an approach is that all those quantities are derived from a 139

single matrix factorization (that is, system analysis) at the aforementioned nominal point θθθ
0, as discussed in detail Appendix 140

A. Thus, the basis is constructed as: 141

ΦΦΦ = orth

uuu
(

θθθ
0
)
,

∂uuu
(

θθθ
0
)

∂θ1
, . . . ,

∂2uuu
(

θθθ
0
)

∂θ2
nθ

 (13)

where orth(XXX) denotes that orthogonalization over the column space of XXX and where ∂uuu
(

θθθ
0
)
/∂θi1 , i1 = 1, . . . ,nθ and 142

∂2uuu
(

θθθ
0
)
/∂θni1

∂θni2
, i1 = i2 = 1, . . . ,nθ denote first and second order partial derivatives of the system’s response. The or- 143

thogonalization is carried out by means of a singular value decomposition. Eventually, the number of vectors associated 144

with the reduced basis can be decreased by discarding those with associated singular value below a certain threshold [34]. 145

Numerical results as reported in [28] indicate that the procedure for calculating the basis as presented in eq. (13) leads to 146

accurate approximations of the system’s response. 147

The expansion point θθθ
0 can be selected according to different criteria, e.g. midpoint of a representative interval associ- 148

ated with a certain α-cut, etc. In this contribution, the expansion point is selected such that µ
θ̃i
(θ0

i ) = 1, i = 1, . . . ,nθ. 149

3.3 Error Estimation 150

The approximate response rA(θθθ) calculated by means of the reduced order model described previously may strongly 151

decrease the numerical effort associated with α-level optimization. However, this decrease in numerical effort comes at a 152

price, as the system’s response is calculated only approximately. Therefore, it is necessary to monitor the error associated 153

with the proposed approximation. 154

The error introduced by the approximation for a given value θθθ of the input parameters is equal to the difference between 155

the exact and approximate response, that is e(θθθ) = r(θθθ)− rA(θθθ). Naturally, it is not practical to calculate such error within 156

α-level optimization, as it demands performing a full system analysis (see eq. (1)). Hence, an alternative error measure must 157

be applied. 158

Following the ideas proposed in [29], the error measure ε is selected as the Euclidean norm of the residual associated 159

with eq. (1), considering the approximate response of the system, normalized by the Euclidean norm of the external load. 160

Mathematically, the error measure ε is defined as: 161

ε(θθθ) =

∥∥KKK(θθθ)uuuA(θθθ)− fff (θθθ)
∥∥

‖ fff (θθθ)‖

=
‖KKK(θθθ)ΦΦΦβββ(θθθ)− fff (θθθ)‖

‖ fff (θθθ)‖
(14)

where ‖·‖ denotes Euclidean norm. This error measure does not involve a matrix factorization and hence, it can be computed 162

with reduced numerical effort. 163



Note that the error measure in eq. (14) does not directly control the error associated with the approximation rA(θθθ). However,164

numerical experience as reported in [29] indicates that the normalized error norm associated with the residual exhibits a good165

correlation with the error associated with the response. Hence, it serves the purposes of the current work.166

3.4 Basis Enrichment167

The practical implementation of α-level optimization consists of replacing the exact response r(θθθ) with its approxima-168

tion rA(θθθ). For this purpose, the approximate response is calculated considering a reduced basis constructed from a single169

system analysis plus a sensitivity analysis, as already described in Section 3.2. Figure 3 provides an schematic representation170

of the α-level optimization process, where nc = 2 for illustration purposes. In this Figure, Initial Step denotes the stage where171

a single system analysis is carried out for the value θθθ
0 for constructing the reduced order model. After this step is completed,172

α-level optimization is carried out for membership values α1 and α2, in Step 1 and Step 2, respectively. As Step 1 possesses173

a membership value close to 1, it is expected that the approximate response is quite close to the exact one. This is due to the174

fact that all values contained within the intervals θi,α1
, i = 1, . . . ,nθ are expected to lie relatively close to the expansion point175

θ0
i , i = 1, . . . ,nθ. However, for Step 2, it is expected that the approximation quality decreases, as the support of the intervals176

θi,α2
, i = 1, . . . ,nθ may contain values which lie far away from the expansion point. While the situation illustrated in Figure177

3 has been examined in qualitative terms, it evidences the fact that it is expected that the quality of the approximate response178

deteriorates as the values of the α-cuts under analysis decrease.179

Fig. 3. Steps of α-level optimization – schematic representation

In order to protect the quality of the approximate response rA(θθθ), the following strategy is adopted, which has been180

adapted from [29]. As discussed in Section 3.3, the error measure ε(θθθ) is monitored for every single value θθθ explored at181

the optimization stage of any α-cut value under analysis. Whenever this error exceeds a prescribed threshold value εt for a182

given value θθθ
∗ of the input parameters, the following two actions are taken. First, an exact system analysis is carried out.183

That is, eq. (1) is solved in order to calculate uuu(θθθ∗). This allows in turn to calculate the response of interest r(θθθ∗). In the184

second place, the reduced basis ΦΦΦ is enriched with uuu(θθθ∗). In other words, this exact system’s response is included in the185

basis as an additional vector by means of the Gram-Schmidt process. In this context, recall that the Gram-Schmidt process186

allows orthonormalizing a set of vectors in an inner Euclidean product space (see, e.g. [35]), favoring numerical stability of187

the reduced order model.188

The strategy described above ensures that the error measure is always kept below a threshold. Numerical experience as189

reported in Section 4 indicates that such strategy is indeed effective for protecting the quality of the approximations. Based190

on the recommendations in [29], the error threshold is chosen as εt ∈ [10−4,10−3].191

3.5 Summary of the Proposed Strategy192

The strategy for performing fuzzy analysis via α-level optimization as described above can be summarized in the fol-193

lowing steps.194

1. Set up the numerical model in terms of its equilibrium equation (eq. (1)) and the response of interest (eq. (3)).195

2. Identify the uncertain input parameters of the model and describe their uncertainty by means of fuzzy sets (eq. (4))196

whose membership function is quasiconcave and that possess a single element for which the membership value is equal197

to one (Section 2.2). Select a number of nc α-cuts and define the membership values α1 > α2 > .. . > αnc to be analyzed198

within the α-level optimization process. Select an error threshold εt .199

3. Identify the expansion point θθθ
0. Solve the equilibrium equation for this expansion point in order to calculate uuu(θθθ0) and200

perform a sensitivity analysis (eq. (1) and Appendix A). Construct the reduced basis ΦΦΦ with those results (eq. (13)). Set201

j = 1.202

4. Solve the optimization problems in eqs. (8) and (9) considering α = α j by means of any suitable algorithm. For203

evaluating the response for a given θθθ, follow these steps.204



(a) Calculate the approximate response rA(θθθ) by means of eqs. (11) and (12). 205

(b) Compute the error measure ε(θθθ) by means of eq. (14). In case ε(θθθ)≤ εt , return to the optimizer the response value 206

rA(θθθ). Otherwise, solve eqs. (1) and (3) in order to calculate uuu(θθθ) and r(θθθ). Enrich the reduced basis ΦΦΦ with uuu(θθθ) 207

via Gram-Schmidt process and return to the optimizer the response value r(θθθ). 208

5. In case j = nc, stop the process. Otherwise, return to step 4 with j = j+1. 209

Regarding step 4 described above, any suitable optimization algorithm can be applied for solving the optimization problems 210

in eqs. (8) and (9). As it is usually not known whether or not the response of interest is a convex function, algorithms with 211

global search capabilities should be preferred. For the particular case of this contribution, global search is conducted via 212

Particle Swarm, which is an evolutionary algorithm that is well documented in the literature, see e.g. [36]. 213

4 Example 214

4.1 Description 215

This example is partially based on an example presented in [20, 37]. It comprises a reinforced concrete slab simply 216

supported on its edges, resting over an elastic soil modeled using a Winkler foundation. The slab supports a uniformly 217

distributed load. Figure (4) depicts a schematic representation of the slab. 218

h

w

Slab (E)

5 [m]

5 [m]
Winkler foundation (Cw)

Fig. 4. Reinforced concrete slab resting on a Winkler foundation

The fuzzy variables of the model are the Young’s modulus of the concrete (E), the thickness of the slab (h), the modulus 219

of the Winkler foundation model (Cw) and the uniformly distributed load (w). The membership functions associated with 220

these input parameters are shown in fig. (5). The objective is to determine the membership function associated with the 221

vertical displacement of the slab at its center point. This displacement is determined by means of a finite element model 222

comprising 900 quadrilateral Melosh-Zienkiewicz-Cheung plate elements [38] and 2763 degrees-of-freedom. The Winkler 223

foundation model is included by means of equivalent springs located in the nodes of the elements, which are deduced based 224

on the underlying weak formulation of the equations of equilibrium [38]. 225

Fig. 5. Membership function associated with fuzzy input parameters



4.2 Solution Considering εt → ∞226

The membership function associated with the displacement at the center of the slab (which is denoted as r) is calculated227

by means of the strategy described in Section 3 by selecting nc = 10 α-cut values for analysis and a threshold level for the228

error such that εt →∞. The latter selection is made in order to examine the application of the strategy when no enrichment of229

the reduced basis is considered. Two different cases are studied: in the first one, the reduced basis is constructed considering230

only the nominal response plus its first order derivatives. The results associated with such basis are denoted in the following231

as RB1. In addition, a second case (denoted as RB2) is considered, where the reduced basis is constructed considering the232

nominal solution plus its first- and second-order derivatives. The results produced by means of these two cases are compared233

to the exact results, where the system’s response is calculated by means of the equilibrium equation (eq. (1)).234

Figure 6 presents the results of the estimation of the membership function associated with the response. It can be readily seen235

that the results produced with the reduced basis RB1 and RB2 provide a good match with the reference result (denoted as236

exact). Nonetheless, it can be seen that for the case of the membership function estimated using the reduced basis RB1, some237

differences can be noted for low values of the membership. Such issue can be attributed to the fact that for those membership238

values, the support of the associated intervals of the input parameters covers a wide range of values which are far away from239

the expansion point.240

Fig. 6. Membership function associated with the response for εt → ∞

Figure 7 shows the maximum value of the error measure ε registered when assessing the bounds of the interval of the241

response for a given α-cut value for the two reduced bases RB1 and RB2 considered in the analysis. Two observations can242

be readily seen from the figure. First, the error measure associated with RB1 is always larger than the one associated with243

RB2. This was expected, as RB2 should provide a better approximation given that its reduced basis involves more basis244

terms. Second, as the α-cut under analysis progresses, the error increases. This was also expected: recall that the α-cut245

values under analysis are sorted such that α1 > α2 > .. . > αnc . Hence, for larger values of j in Figure 7, the support of the246

intervals is larger than for smaller values of j.247

4.3 Solution Considering εt = 10−4
248

This Section repeats the analysis performed in Section 4.2, except that the threshold for the error measure is set as249

ε = 10−4. This implies that the error measure associated with the approximation of the response is constantly monitored250

along α-level optimization and the reduced basis is enriched in case it is necessary.251

The analysis is conducted considering again the exact response (eqs. (1) and (3)) and reduced bases RB1 and RB2. The252

results obtained for the estimate of the membership function are shown in Figure 8. As noted from the Figure, there is a253

perfect match between the reference results and those produced by RB1 and RB2. This is clearly a consequence of the basis254

enrichment conducted when applying α-level optimization.255

The evolution of the error measure across the different steps of α-level optimization is shown in Figure 9. It is seen that256

the curves associated with RB1 and RB2 present a sawtooth pattern. That is, the error grows as the steps progress, but it257

presents a sudden decrease whenever it approaches the threshold level εt . Such sudden decrease is explained as an additional258

term has been included in the reduced basis, in order to protect the quality of the approximations.259



Fig. 7. Error measure ε associated with response calculated at different α-cut levels for εt → ∞

Fig. 8. Membership function associated with the response for εt = 10−4

Figure 10 presents the number of accumulated additional system analyses required for basis enrichment as a function 260

of the α-cut level number j. It can be observed that whenever there is an increase in the number of additional analyses in 261

Figure 10, there is a sharp decrease of the error measure in Figure 9. Such behavior was expected due to basis enrichment. 262

Furthermore, it is noted from Figure 10 that the analysis conducted with RB1 required a total of three additional system 263

analyses, while RB2 required only two. Such difference is explained as at the initial stage, RB2 possesses more basis terms 264

than RB1. Hence, it is expected that RB2 requires less additional terms for keeping the error measure below a certain 265

threshold. 266

Finally, it is important to note that the proposed strategy for performing α-level optimization brings important benefits 267

from the point of view of computation time. Such benefit is measured in terms of the speedup factor, which is equal to the 268

execution time associated with the exact (reference) solution divided by the execution time associated with the proposed 269

strategy (considering either RB1 or RB2). It is found that the speedup factor associated with RB1 is equal to 12.2 while 270

the speedup factor associated with RB2 is 9.6. Note that these speedup factors include the time for constructing the reduced 271

basis. The difference between the two different cases can be attributed to the initial size of the reduced basis, which is larger 272

in the case of RB2 than that of RB1. 273



Fig. 9. Error measure ε associated with response calculated at different α-cut levels for εt = 10−4

Fig. 10. Number of additional system analyses conducted at different α-cut levels for εt = 10−4

5 Conclusions and Outlook274

This contribution has presented a strategy for performing fuzzy analysis of linear system under static load applying275

α-level optimization. The strategy is based on a reduced order model, which provides a means for approximating the276

response of interest with reduced numerical efforts. As the quality of the approximate model may decrease during α-level277

optimization, the basis associated with the reduced order model is enriched adaptively, based on an error measure which is278

monitored as different α-cut levels are explored.279

The results presented in the numerical example indicate that accurate estimates of the membership function associated with280

the response of interest can be obtained at reduced numerical efforts. This is quite remarkable, as the overall numerical281

efforts are brought down by one order of magnitude without sacrificing the quality of the final results.282

Future research efforts will aim at expanding the range of application of the strategy reported here. Possible specific paths of283

development include, for example, considering other types of responses (such as forces or stresses), large-scale applications284

and extensions towards analysis of dynamic loading. These issues are currently being investigated by the authors.285
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[20] Valdebenito, M., Pérez, C., Jensen, H., and Beer, M., 2016. “Approximate fuzzy analysis of linear structural systems 331

applying intervening variables”. Computers & Structures, 162(162), pp. 116–129. 332

[21] Giannini, O., and Hanss, M., 2008. “The component mode transformation method: A fast implementation of fuzzy 333

arithmetic for uncertainty management in structural dynamics”. Journal of Sound and Vibration, 311(3-5), pp. 1340– 334

1357. 335

[22] Beer, M., and Liebscher, M., 2008. “Designing robust structures – A nonlinear simulation based approach”. Computers 336

& Structures, 86(10), pp. 1102–1122. 337
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A First- and Second-Order Derivatives of the System’s Response375

The system’s response and its first and second order derivatives are given by the following expressions (see, e.g. [39]).376

uuu(θθθ) = KKK(θθθ)−1 fff (θθθ) (15)

∂uuu(θθθ)
∂θi1

= KKK(θθθ)−1

(
∂ fff (θθθ)
∂θi1

−
nK

∑
k=1

KKKk
∂pk(θθθ)

∂θi1
uuu(θθθ)

)
,

i1 = 1, . . . ,nθ (16)

∂2uuu(θθθ)
∂θi1∂θi2

= KKK(θθθ)−1

(
∂2 fff (θθθ)
∂θi1∂θi2

−
nK

∑
k=1

KKKk
∂pk(θθθ)

∂θi1

∂uuu(θθθ)
∂θi2

−
nK

∑
k=1

KKKl
∂pk(θθθ)

∂θi2

∂uuu(θθθ)
∂θi1

−
nK

∑
k=1

KKKk
∂2 pk(θθθ)

∂θi1∂θi2
uuu(θθθ)

)
,

i1, i2 = 1, . . . ,nθ (17)

The calculation of the above expressions demands performing a single system analysis (matrix factorization) [39]. These377

partial derivatives are calculated analytically following a direct method [39].378


