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Abstract

A formula for energy flux due to vibrations in a thin plate modelled by Kirchhoff theory
is derived by considering a Mindlin plate and taking the low frequency (or low thickness)
limit. It is shown that a term which is usually neglected in Kirchhoff theory persists close
to free edges. This term does not affect the transverse displacement, but it does affect the
energy flux. The new flux formula conserves energy and evaluates to zero along fixed, free
and simply supported edges. An example problem, in which edge waves are excited by a
point source located in a semi-infinite plate, is considered. Numerical calculations show
that the energy radiated into the far field matches the energy introduced by the source.

1 Introduction
Energy flux has numerous applications in linear wave problems. It can be used to derive
conservation of energy conditions [1, 2], to determine the proportion of incident wave energy
converted into different phenomena in the scattered field [3] and to derive a radiation condition
for Bloch waves [4, 5]. In a time-harmonic problem, the general form for energy flux across a
contour C (surface in three dimensions) in one period is

〈E〉 = −β Im

∫
C
u
∂u

∂n
ds. (1.1)

Here, β is a positive constant that depends on the physical context, the overbar represents a
complex conjugate (as it does throughout), and the differentiation is in a direction orthogonal
to C, i.e.

∂u

∂n
= n̂ · ∇u, (1.2)

where n̂ is a unit normal vector. The complex wavefunction u depends only on position r and
satisfies the Helmholtz equation (

∇2 + k2
)
u = 0. (1.3)

It is related to the physical wave field via

U(r; t) = Re[u(r)e−iωt], (1.4)

where ω represents frequency. The relationship between the positive wavenumber k and the
frequency again depends on the physical context; often this is simply k = ω/c, where c is the
phase speed. The convention that a function represented by an upper case letter depends on
both position and time, and is related to a function represented by the corresponding lower case
letter via (1.4) will be used throughout this paper. Homogeneous linear equations often apply
to u and U interchangeably; for example the fact that u satisfies (1.3) automatically means that
U is a solution. This does not apply to (1.1), since the integrand is nonlinear in u.
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If C is a closed contour containing no sources, then 〈E〉 = 0, and (1.1) can be obtained by
substituting u and u into Green’s second identity. In this way, we find that∫

A

(
u∇2u − u∇2u

)
dA =

∫
C

(
u
∂u

∂n
− u ∂u

∂n

)
ds, (1.5)

where A is the region enclosed by C. The Laplacian operators can be eliminated using (1.3),
immediately showing that the left-hand side is zero. More generally, (1.1) can be derived directly
from the physics of the problem (see [6, appendix B] for several examples), and a positive value
for 〈E〉 means that the net flow of energy across C is in the direction of n̂. Note that there is no
contribution to the energy flux from any section of C that coincides with a boundary on which
a homogeneous Neumann or Dirichlet condition applies, because there the integrand in (1.1)
vanishes. Similarly, a Robin condition of the form

∂u

∂n
+ pu = 0, p ∈ R, (1.6)

allows us to write u ∂u/∂n = −p|u|2. Consequently, the integrand in (1.1) is real on sections of
C where (1.6) applies, again meaning there is no contribution to energy flux.

In contrast to the cases discussed above, no satisfactory formula for energy flux in a thin
plate modelled by Kirchhoff theory seems to have appeared in the literature to date. A number
of relevant results are given in a paper by Norris & Vemula [7] but, shortly after this was
published, Bobrovnitskii pointed out that certain equations have terms missing [8]. We will see
later (sections 4 and 10) that the absence of these terms causes Norris & Vemula’s formula to
violate conservation of energy in certain cases. However, the inclusion of Bobrovnitskii’s terms
leads to a formula that predicts nonzero flux across free edges. Therefore both formulas can
produce results that are not physically plausible. In their reply to Bobrovnitskii [9], Norris &
Vemula refer to this situation as a ‘recurring dilemma.’ It was also noted in both [8] and [9]
that Bobrovnitskii’s correction terms disappear if the flux across a closed contour is calculated,
and that Norris & Vemula’s final results are correct, even though certain intermediate formulae
are not. However, both Norris & Vemula and Bobrovnitskii make the implicit assumption that
the contour is smooth. If the contour is closed but not smooth (an important case because
rectangles are often used for conservation of energy calculations) then Bobrovnitskii’s correction
terms do not disappear in general.

The mains goal of this paper are to derive a formula which predicts zero net flux across closed
contours containing no sources and also across fixed, free and simply supported edges, and to
investigate its relationship to the formulae proposed by Norris & Vemula and Bobrovnitskii. We
obtain the new flux formula by taking the limit as frequency or plate thickness tend to zero in the
equations for Mindlin plate theory [10], retaining only leading-order terms. Since the dilemma
noted by Norris & Vemula does not occur in Mindlin theory, we can expect this procedure to
produce physically correct results. Indeed, we find that Kirchhoff theory is retrieved, with an
extra term which corrects the energy flux but has no effect on the transverse displacement.
We then consider a simple boundary value problem in which a point source is placed in a
semi-infinite plate with a free edge. The source excites edge waves, which propagate without
loss along the free edge, but decay exponentially in the orthogonal direction. Numerical results
confirm that Norris & Vemula’s formula violates conservation of energy, whereas including
Bobrovnitskii’s correction terms leads to energy appearing to ‘leak’ across the free edge. The
extra term from Mindlin theory corrects both of these flaws.

2 Note concerning line integrals
Integral representations for energy flux generally involve a line integral of a scalar field, which
does not depend on contour orientation. Specifically, if C is parametrised by r(v), with a ≤ v ≤ b
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Figure 1: The region A and contour C. The outgoing normal n̂ and tangent ŝ are such that (n, s, z)
forms a right-handed coordinate system, with ẑ directed out of the page. The orientation of C is
determined by the direction of ŝ.

then ∫
C
f(r) ds =

∫ b

a

f(r(v))

∣∣∣∣dr

dv

∣∣∣∣ dv. (2.1)

Note that this requires the existence of r′(v), and in this case we will say that C is smooth. A
piecewise smooth contour can be separated into smooth parts and (2.1) applied to each.

If a tangential derivative appears in the integrand (as is the case in many subsequent
equations), this generates a line integral that does depend on contour orientation. Let A be a
simply connected region of the plane z = 0, and let C be part of the boundary of A, traversed
anticlockwise. Suppose further that C begins and ends at the points with position vectors c0

and c1, respectively. Let n̂ represent a unit outgoing normal that begins on C and let ŝ represent
the unit tangent, starting at the same point. Finally, let ẑ be chosen so that (n, s, z) forms a
local right-handed coordinate system, as in figure 1. A line integral of the form

J =

∫
C

∂

∂s
f(r) ds (2.2)

can be evaluated using the gradient theorem [11, section 6.2, theorem 3]. Thus,

J =

∫
C
ŝ · ∇f(r) ds =

∫
C
∇f(r) · ds = ∆C

[
f(r)

]
, (2.3)

where we have introduced the notation

∆C
[
f(r)

]
= f(c1)− f(c0), (2.4)

which we will use throughout. Note that we have implicitly adopted the convention that there
is no conjugation of the first operand in a scalar product in (2.3). Integration by parts can be
applied to line integrals in the usual way, but only if the contour is smooth. This can be proved
by writing f(r) = g1(r)g2(r) in (2.2), and then deriving equivalent expressions by using the
product rule and via (2.3).
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3 Classical plate theory and Green’s identity
For a plate modelled by Kirchhoff theory [12, chapter 4] [13, chapter 4], also known as classical
theory, the transverse displacement W satisfies fourth order equation

∇4W +
ρh

D

∂2W

∂t2
= 0. (3.1)

Here, ρ, h and D are the the plate density, thickness and bending stiffness, respectively. The
latter is related to the Young modulus E and Poisson ratio ν via

D =
Eh3

12(1− ν2)
. (3.2)

Assuming time-harmonic motion, with w and W related as in (1.4), the displacement may be
separated into two components; thus

w = w1 + w2, (3.3)

where the two fields w1 and w2 satisfy the Helmholtz equations(
∇2 + k2

)
w1 = 0 and

(
∇2 − k2

)
w2 = 0. (3.4)

The wavenumber k is given by

k =

(
ρhω2

D

)1/4

=

(
12(1− ν2)ρω2

Eh2

)1/4

. (3.5)

Strictly, the equation for w2 is a modified Helmholtz equation, but we can also consider this to
be a Helmholtz equation with an imaginary wavenumber. There are three common types of
boundary condition for Kirchhoff plates. These are the fixed edge, on which

W =
∂W

∂n
= 0, (3.6)

the simply supported edge, where
W = Mn = 0 (3.7)

and the free edge, on which
Mn = Vn = 0. (3.8)

In the above conditions, Mn is the bending moment and Vn is the Kirchhoff shear force. These
may be expressed in terms of the displacement via

Mn = −D
(
∂2W

∂n2
+ ν

∂W

∂s2

)
(3.9)

and

Vn = −D ∂

∂n

(
∂2W

∂n2
+ (2− ν)

∂W

∂s2

)
. (3.10)

Various boundary integral formulae for waves in thin plates can be derived using Green’s
second identity. For example, substituting wj and wj as in (1.5) yields

Im

∫
C
wj
∂wj
∂n

ds = 0, (3.11)
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for a closed contour C containing no sources. However, the boundary conditions apply to w
rather than w1 and w2 individually, so there is no obvious way to simplify this expression if C
runs along a free or simply supported edge. For a fixed edge, taking the difference between the
j = 1 and j = 2 cases in (3.11) produces an integrand that vanishes on the boundary, since there
w1 = −w2 and ∂w1/∂n = −∂w2/∂n. To generate an integral that simplifies on any boundary,
we substitute w and ∇2w into Green’s identity, and in this way we find that∫

A

(
w∇4w −∇2w∇2w

)
dA =

∫
C

(
w
∂

∂n
∇2w − ∂w

∂n
∇2w

)
ds, (3.12)

where A is the region bounded by C. After using (3.3) and (3.4) to eliminate the Laplacian
operators (noting that ∇4w = k4w), the left-hand side simplifies to

k4

∫
A

(
ww − (w1 − w2)(w1 − w2)

)
dA = 4k4 Re

∫
A

w1w2 dA. (3.13)

Consequently, taking the imaginary part of (3.12) yields K = 0 for a closed contour containing
no sources, where

K = Im

∫
C

(
w
∂

∂n
∇2w − ∂w

∂n
∇2w

)
ds (3.14)

= 2k2 Im

∫
C

(
w1
∂w1

∂n
− w2

∂w2

∂n

)
ds, (3.15)

having used (3.3) and (3.4) in the last line. Let us now consider the situation in which C is a
smooth (but not necessarily closed) contour that coincides with an edge. If this edge is fixed,
then we have w = ∂w/∂n = 0 on C, so it follows immediately that K = 0. For other types of
edge, we observe that the condition Mn = 0 can be rewritten as

∇2w = (1− ν)
∂2w

∂s2
. (3.16)

Since w = 0 on a simply supported edge its tangential derivatives must also vanish. Therefore
both terms in (3.14) vanish, and K = 0 for a simply supported edge as well. The case of a free
edge is more complicated. First, we rewrite the condition Vn = 0 as

∂

∂n
∇2w = (ν − 1)

∂3w

∂n∂s2
. (3.17)

Then,

K = (ν − 1) Im

∫
C

(
w
∂3w

∂n∂s2
+
∂w

∂n

∂w

∂s2

)
ds, (3.18)

and integrating by parts yields

K = (ν − 1) Im

{
∆C

[
w
∂2w

∂n∂s
+
∂w

∂n

∂w

∂s

]
−
∫
C

(
∂w

∂s

∂2w

∂n∂s
+

∂2w

∂n∂s

∂w

∂s

)
ds

}
. (3.19)

Evidently the imaginary part of the remaining integral is zero. Therefore if C is a free edge, then

K = (ν − 1) Im ∆C

[
∂

∂n

(
w
∂w

∂s

)]
. (3.20)

In summary, the integral (3.14) (or equivalently (3.15)) evaluates to zero if C is a closed contour
containing no sources, or if C coincides with a fixed or simply supported edge. However, if C
coincides with a free edge then the value of the integral is given by (3.20), which is not zero in
general. Consequently, (3.14) cannot be a conservation of energy condition because there can
be no flux across a free edge.
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4 Review of existing flux formulae for Kirchhoff plates
In this section, we examine the properties of the energy flux formulae for Kirchhoff plates, due
to Norris & Vemula [7] and Bobrovnitskii [8]. For the component of flux in the n direction,
Norris & Vemula give the (incomplete) formula

Fn = −Vn
∂W

∂t
+Mn

∂2W

∂n∂t
. (4.1)

Evidently, Fn vanishes on a fixed, free or simply supported edge. Writing the bending moment
and Kirchhoff shear force in terms of the displacement using (3.9) and (3.10) yields

Fn
D

=
∂W

∂t

∂

∂n
∇2W − ∂2W

∂n∂t
∇2W + (1− ν)

[
∂2W

∂n∂t

∂2W

∂s2
+
∂W

∂t

∂3W

∂n∂s2

]
. (4.2)

Next, Norris & Vemula integrate over a smooth, closed contour C, and then integrate by parts
twice in the last term. We follow the same process, but drop the assumption that C is closed.
Thus, defining

E =

∫
C
Fn ds, (4.3)

we find that

E = D

∫
C

(
∂W

∂t

∂

∂n
∇2W − ∂2W

∂n∂t
∇2W + (1− ν)

∂

∂t

[
∂W

∂n

∂2W

∂s2

])
ds

+D(1− ν)∆C

[
∂W

∂t

∂2W

∂n∂s
− ∂2W

∂s∂t

∂W

∂n

]
. (4.4)

Finally, we take a time-average using the definition

〈E〉 =
ω

2π

∫ 2π/ω

0

E dt. (4.5)

The last term in the integral in (4.4) is eliminated by this operation, because W has period
2π/ω. For the remaining terms we use the standard result for products of time-harmonic fields,
that is

ω

2π

∫ 2π/ω

0

Re[f(r)e−iωt] Re[g(r)e−iωt] dt =
1

2
Re
[
f(r)g(r)

]
, (4.6)

to obtain

〈E〉 =
ωD

2
Im

{∫
C

(
w
∂

∂n
∇2w − ∂w

∂n
∇2w

)
ds+ (1− ν)∆C

[
∂

∂n

(
w
∂w

∂s

)]}
. (4.7)

If C coincides with a fixed or simply supported edge, then the integral in (4.7) evaluates to zero
as in section 3, and the end-point term disappears because w = ∂w/∂s = 0. If C coincides with
a free edge, then the integral is given by (3.20), and this cancels the end-point term. On the
other hand, if C is a closed contour containing no sources then the integral evaluates to zero
according to Green’s theorem (see (3.13) and (3.14)) but the end-point term does not disappear
unless C is also smooth. For a piecewise smooth closed contour, it is necessary to apply (4.7)
separately on each section. Green’s theorem still applies, but there is no reason to suppose that
the end-point contribution from the terminus of one section will cancel the contribution from the
beginning of the next, because the directions of the derivatives will be different. Consequently,
(4.7) may violate conservation of energy, and is not a valid formula for energy flux.
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Bobrovnitskii [8] introduced a correction to (4.1) by including the additional term

− ∂

∂s

(
MK

ns

∂W

∂t

)
= −D(1− ν)

∂

∂s

(
∂2W

∂n∂s

∂W

∂t

)
, (4.8)

where MK
ns is the twisting moment for Kirchhoff theory. We have included the superscript ‘K’

because the twisting moment for Mindlin theory (which we will need later) is defined in a slightly
different way. The leading-order expression for the twisting moment in Mindlin theory at low
frequency (or low thickness) is −MK

ns. See equations (4.2.20) and (8.3.9) with (8.3.3) in [13]. No
such discrepancy occurs in the definition of the bending moment. It should be also noted that
Bobrovnitskii’s notation for bending and twisting moments is somewhat different to Norris &
Vemula’s notation. We have used the latter for consistency. Evidently (4.8) can be integrated
using the gradient theorem, so its inclusion affects only the end-point term in (4.7). Integrating
over C and taking a time-average using (4.5) and (4.6), we find that

−D(1− ν)

〈∫
C

∂

∂s

(
∂2W

∂n∂s

∂W

∂t

)
ds

〉
=
ωD

2
(1− ν) Im ∆C

[
∂2w

∂n∂s
w

]
, (4.9)

and with this included, (4.7) becomes

〈E〉 =
ωD

2
Im

{∫
C

(
w
∂

∂n
∇2w − ∂w

∂n
∇2w

)
ds+ (1− ν)∆C

[
∂w

∂n

∂w

∂s

]}
. (4.10)

In general, this formula does not predict zero flux across a free edge, because the integral given
by (3.20) no longer cancels the end-point terms. However, it does evaluate to zero for a piecewise
smooth closed contour containing no sources. In this case, the integral vanishes due to Green’s
theorem, exactly as before. To prove the result for the second term, set n̂ = [cos Θ, sin Θ] for an
arbitrary angle Θ, so that ŝ = [− sin Θ, cos Θ]. Then

∂w

∂n

∂w

∂s
= n̂ · ∇w ŝ · ∇w (4.11)

=

(
cos Θ

∂w

∂x
+ sin Θ

∂w

∂y

)(
− sin Θ

∂w

∂x
+ cos Θ

∂w

∂y

)
. (4.12)

The imaginary part of this expression is

Im

[
∂w

∂n

∂w

∂s

]
=
∂w

∂x

∂w

∂y
, (4.13)

which does not depend on Θ. Consequently, the end-point contribution from the terminus of
one section of a piecewise contour will always cancel the contribution from the beginning of
the next section; the change in the orientation of the derivatives has no effect. Note that this
calculation does not depend on the absence of sources inside C. This is only needed so that
Green’s theorem yields zero for the integral.

5 Mindlin plate theory
Consider a plate plate modelled by Mindlin theory [10], [13, §8.3], with the undisturbed midplane
occupying z = 0. The deformation is given by [14]

U = zΨ(r, t) +W (r, t)ẑ, (5.1)

where r is a position vector in the plane z = 0, Ψ is the in-plane vector of rotations and W is the
transverse displacement (note that the corresponding equation in [15] contains a typographical
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error). As before, we will assume time-harmonic motion and use the convention that a function
represented by an upper case letter depends on position and time, whereas the corresponding
lower case letter represents a function defined from the former via (1.4), and dependent on
position alone. Then the deformation can be further decomposed by writing

w = w1 + w2 and ψ = A1∇w1 + A2∇w2 − ẑ×∇φ, (5.2)

where wj and φ are solutions to the Helmholtz equations(
∇2 + k2

j

)
wj = 0, j = 1, 2 and

(
∇2 + k2

3

)
φ = 0. (5.3)

The three wavenumbers and the constants Aj can be expressed in terms of the physical parameters
of the plate by first writing

cs = κ

(
µ

ρ

)1/2

, cp =

[
E

ρ(1− ν2)

]1/2

, ks =
ω

cs
and kp =

ω

cp
. (5.4)

Here, µ is a Lamé constant defined via

µ =
E

2(1 + ν)
, (5.5)

and E, ρ and ν are as defined in section 3. The constant κ, required for Mindlin theory, may be
chosen to optimise the approximation of shear forces [13, pp. 484, 492–3]. We then have

k2
j =

k2
p + k2

s

2
+ (−1)j+1

√
k4 +

(k2
p − k2

s)
2

4
, j = 1, 2, (5.6)

k2
3 =

κ2k2
1k

2
2

k2
p

=
2k2

1k
2
2

(1− ν)k2
s

(5.7)

and

Aj = −1 +
k2
s

k2
j

, (5.8)

where k is the wavenumber for Kirchhoff plate theory, as in (3.5). Clearly, k2
1 > 0, but for the

parameter regime in which Mindlin theory is valid, k2
2 < 0 [15], which also means that k2

3 < 0.
We take k2 and k3 to be positive imaginary.

The boundary conditions at the edge of a Mindlin plate require that one term in each of the
three pairs (

∂Ψn

∂t
,Mn

)
,

(
∂Ψs

∂t
,Mns

)
and

(
∂W

∂t
,Qn

)
, (5.9)

must vanish [10]. For time-harmonic waves, the condition ∂W/∂t = 0 is equivalent to W = 0,
and likewise for the conditions on Ψs and Ψn. As before Mn and Mns represent the bending
and twisting moments, respectively, and Qn is the shear force. For Mindlin theory, these may
be expressed in terms of the displacements as

Mn = D

(
∂Ψn

∂n
+ ν

∂Ψs

∂s

)
, (5.10)

Mns =
D(1− ν)

2

(
∂Ψs

∂n
+
∂Ψn

∂s

)
(5.11)

and

Qn = κ2µh

(
∂W

∂n
+ Ψn

)
. (5.12)
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k ks kp kj (j = 1, 2) k3 Aj 1 + Aj
ω → 0 O(ω1/2) O(ω) O(ω) O(ω1/2) O(1) O(1) O(ω)
h→ 0 O(h−1/2) O(1) O(1) O(h−1/2) O(h−1) O(1) O(h)

Table 1: Asymptotic orders for various constants in the limits ω → 0 and h→ 0.

To obtain expressions in terms of Wj and Φ, we must first evaluate the vector product in (5.2).
Using the basic properties of the vector product, and the right-handed nature of the local
coordinate system (n, s, z), we find that

ẑ×∇Φ = ẑ×
(

n̂
∂Φ

∂n
+ ŝ

∂Φ

∂s

)
= ŝ

∂Φ

∂n
− n̂

∂Φ

∂s
, (5.13)

It then follows that

Ψn =
∂

∂n

(
A1w1 + A2w2

)
+
∂Φ

∂s
and Ψs =

∂

∂s

(
A1w1 + A2w2

)
− ∂Φ

∂n
, (5.14)

meaning that

Mn = D

(
∂2

∂n2
+ ν

∂2

∂s2

)
(A1W1 + A2W2

)
+D(1− ν)

∂2Φ

∂n∂s
, (5.15)

Mns = D(1− ν)

(
∂2

∂n∂s

(
A1W1 + A2W2

)
+
∂2Φ

∂s2
+
k2

3

2
Φ

)
(5.16)

and

Qn = κ2µh

(
k2
s

k2
1

∂W1

∂n
+
k2
s

k2
2

∂W2

∂n
+
∂Φ

∂s

)
, (5.17)

having used the Helmholtz equation for Φ in (5.16). The shear force Qn can be expressed in a
more convenient manner by observing that

k2
sκ

2µh = ρhω2 = Dk4, (5.18)

which follows from (3.5) and (5.4). Using this identity, we obtain

Qn = Dk4

(
1

k2
1

∂W1

∂n
+

1

k2
2

∂W2

∂n
+

1

k2
s

∂Φ

∂s

)
. (5.19)

Of the eight possible combinations in (5.9), three have particular physical importance. These are a
fixed edge, on whichW = Ψn = Ψs = 0, a simply supported edge, where [16]W = Mn = Ψs = 0,
and a free edge, on which Mn = Mns = Qn = 0.

6 Kirchhoff theory as a limit of Mindlin theory
In this section, we retrieve the equations for classical plate theory by letting ω or h tend to zero,
and retaining only leading-order terms. In what follows, the symbol ‘∼’ indicates an expression
that is correct at leading order in either limit, and the notation O(·) may refer to a power of ω
or of h, as appropriate. We begin by establishing the asymptotic order of the various parameters
that appear in Mindlin theory. These results can be obtained from (3.5), (5.4) and (5.6)–(5.8),
and are shown in table 1. Now, from (5.4) and (5.6), it is clear that k1 ∼ k and k2 ∼ ik, so that
the equations for w1 and w2 reduce to (3.4) at leading order. Using the limiting forms of k1 and
k2 in (5.7), we find that the leading-order behaviour of k3 is given by

k2
3 ∼ −12κ2/h2. (6.1)
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However, this does not appear to yield any significant simplifications, so we leave the symbol k3

‘as is’. We must also consider the boundary conditions. We make the assumption that the field
incoming toward any boundary consists of modes with wavenumbers k1 and k2 only. Modes with
wavenumbers k2 and k3 are exponentially damped, but table 1 shows that |k2| � |k3|, so that
the rate of decay in the latter is much stronger. In this way, we allow for the possibility that Φ
may persist in a thin strip close to a boundary but is negligible elsewhere. If the geometry is
such that modes with wavenumber k3 excited at one boundary can have a significant effect at
another boundary then Φ cannot be neglected, and Kirchhoff theory is invalid.

Our next objective is to find means of satisfying all three Mindlin boundary conditions at
leading order, by making appropriate choices for Φ for fixed, free and simply supported edges.
If W = 0 on the boundary then the tangential derivative ∂W/∂s must also vanish, so that

Ψ ∼ −n̂
∂W

∂n
− ẑ×∇Φ. (6.2)

We can then eliminate Ψs on the boundary by setting Φ = 0, thus satisfying a second boundary
condition from (5.9) at leading order. For a fixed edge, we then require that ∂W/∂n = 0,
which is the second condition for Kirchhoff theory. The choice Φ = 0 also works for the simply
supported edge, because we then have

Mn ∼ −D
(
∂2W

∂n2
+ ν

∂2W

∂s2

)
, (6.3)

and if this vanishes on the boundary then the conditions for Kirchhoff theory are satisfied. In
contrast, it is not possible to satisfy all three free edge boundary conditions at leading order
with the choice Φ = 0. To resolve this issue, we begin by observing that the fields must vary on
different length scales, in the low frequency limit because

(∇2Wj)/Wj = O(ω) and (∇2Φ)/Φ = O(1) as ω → 0. (6.4)

However, the length scales for Wj and Φ in the direction tangential to the edge must be the
same, or else the boundary conditions cannot be satisfied. Similarly,

(∇2Wj)/Wj = O(h−1) and (∇2Φ)/Φ = O(h−2) as h→ 0, (6.5)

but again, the scales parallel to the edge must be the same. In view of this, we introduce
dimensionless spatial variables n∗ and s∗ via

Wj(n, s; t) = Wj(k
−1
1 n∗, k

−1
1 s∗; t) and Φ(n, s; t) = Φ(|k3|−1n∗, k

−1
1 s∗; t). (6.6)

Retaining only the leading-order contributions to Aj, we then find that

Mn ∼ −Dk2
1

(
∂2W

∂n2
∗

+ ν
∂2W

∂s2
∗

)
+D(1− ν)k1|k3|

∂2Φ

∂n∗∂s∗
(6.7)

and

Mns ∼ −D(1− ν)

(
k2

1

∂2W

∂n∗∂s∗
− k2

1

∂2Φ

∂s2
∗
− k2

3

2
Φ

)
. (6.8)

No terms are discarded from the shear force at this stage, so

Qn = Dk4

(
1

k1

∂W1

∂n∗
+
k1

k2
2

∂W2

∂n∗
+
k1

k2
s

∂Φ

∂s∗

)
. (6.9)

Assume without loss of generality that Wj = O(1). Then, if Φ = O(ω1/2) as ω → 0, the terms
in (6.7) are of equal magnitude, but Φ dominates in (6.8) and (6.9). Therefore we reject this
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possibility. On the other hand, if Φ = O(ω) then it disappears from (6.7) at leading order, but
contributes to both (6.8) and (6.9). Similar reasoning leads to the conclusion that Φ = O(h)
near the free edge in the limit h→ 0. Returning to dimensional variables, we again have (6.3),
but now also

Mns ∼ D(1− ν)

(
k2

3

2
Φ− ∂2W

∂n∂s

)
. (6.10)

For Qn, we eliminate ks from (5.19) using (5.7) and then take the low frequency (or low thickness)
limit to obtain

Qn ∼ −D
(
− k2∂W1

∂n
+ k2∂W2

∂n
+

1− ν
2

k2
3

∂Φ

∂s

)
(6.11)

∼ −D
(
∂

∂n
∇2W +

1− ν
2

k2
3

∂Φ

∂s

)
, (6.12)

having used the Helmholtz equations for W1 and W2 in the last line. Eliminating Φ from (6.10)
and (6.12), we find that

Qn +
∂Mns

∂s
∼ −D ∂

∂n

(
∇2W + (1− ν)

∂2W

∂s2

)
. (6.13)

The right-hand side is now the Kirchhoff shear force (3.10). Thus, if we require that this must
vanish on a free edge along with the leading-order contribution to Mn (6.3), then we have two
boundary conditions for W without reference to Φ. However, we did not set Φ = 0. In fact,
Φ should be chosen to satisfy (6.10) or (6.12) on the free edge. Since (6.13) is obtained by
combining these, the two possibilities are equivalent, but (6.10) is more convenient because this
determines Φ itself, rather than a derivative. Therefore, to satisfy all three boundary conditions
at leading order, we set

k2
3Φ = 2

∂2W

∂n∂s
(6.14)

on the free edge. The consequences of this are that Φ is partially decoupled, and W may be
calculated according to the usual governing equations and boundary conditions for Kirchhoff
theory. However, if the energy flux is to be calculated then Φ must be included in the vicinity
of free edges. It can be determined as an outgoing solution to the Helmholtz equation with
wavenumber k3, satisfying (6.14) as a boundary condition. An example is given in section 8.

7 Energy flux derived from Mindlin theory
For a plate modelled by Mindlin theory, the component of the energy flux vector in the n
direction is given by [15]

Fn = −
(
Qn

∂W

∂t
+Mn

∂Ψn

∂t
+Mns

∂Ψs

∂t

)
. (7.1)

Now we already have leading-order expressions for Qn, Mn and Mns in (6.12), (6.3) and (6.10),
and the leading-order contributions to Ψs and Ψn are clearly −∂W/∂s and −∂W/∂n, respectively.
Using these, we reach the crucial result

Fn
D
∼ ∂W

∂t

∂

∂n
∇2W−∇2W

∂2W

∂n∂t
+(1−ν)

[(
∂2W

∂s2

∂2W

∂n∂t
− ∂

2W

∂s∂n

∂2W

∂s∂t

)
+
k2

3

2

∂

∂s

(
Φ
∂W

∂t

)]
. (7.2)

This expression includes Norris & Vemula’s original formula (4.2) with Bobrovnitskii’s correction
(4.8), but the last term on the right-hand side is new. This arises because we have not set Φ = 0
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Figure 2: The source and image point, along with the three contours used for the conservation of energy
calculation. The plate occupies the region y > 0, and has a free edge along y = 0.

throughout the plate. The result of integrating along a smooth contour C and taking a time
average can be deduced by noting that we need only add the contribution due to the new term
to (4.10). After applying the gradient theorem and using (4.6), we find that

〈E〉 ∼ ωD

2
Im

{∫
C

(
w
∂

∂n
∇2w − ∂w

∂n
∇2w

)
ds+ (1− ν)∆C

[
w
k2

3

2
φ− ∂w

∂s

∂w

∂n

]}
. (7.3)

Finally, we eliminate the Laplacian operators from (7.3) using (3.4) to obtain

〈E〉 ∼ ωD

2
Im

{
2k2

∫
C

(
w1
∂w1

∂n
− w2

∂w2

∂n

)
ds+ (1− ν)∆C

[
w
k2

3

2
φ− ∂w

∂s

∂w

∂n

]}
. (7.4)

Both terms on the right-hand side of (7.4), or equivalently (7.3), vanish if C coincides with
a fixed or simply supported edge (see section 3). For a free edge, the value of the integral
is given by (3.20), and φ is related to w by (6.14). The two terms cancel each other. For a
piecewise smooth closed contour containing no sources the integral vanishes, as does the last
term, according to the proof in section 4. Since the term involving φ has no derivatives this
vanishes in a similar way — the contribution from the final point of each section cancels the
contribution from the first point of the next section. Consequently, if the flux across a piecewise
smooth closed contour is calculated with φ omitted, then the contributions to the flux from
individual sections may be incorrect but the total will be correct. Since (7.3) and (7.4) give the
correct leading-order (low frequency or low thickness) contribution to the time-averaged energy
flux over the contour C, they may be treated as exact results for Kirchhoff theory.

8 A point source in a semi-infinite Kirchhoff plate
As an example of the theory developed in the preceding sections, we now consider a boundary
value problem in which a thin Kirchhoff plate occupies the region x ∈ R, y > 0 with a free
edge on the line y = 0. A point source is placed at the point (x, y) = (0, a); see figure 2 for an
illustration. The field incident on the free edge is given by the Green’s function for the plate
[17], that is

wi =
ib

8

[
H

(1)
0

(
k
√
x2 + (y − a)2

)
− H

(1)
0

(
ik
√
x2 + (y − a)2

)]
, (8.1)

where H
(1)
0 (·) represents a Hankel function of the first kind. The value of the constant b is often

given as k−2D−1, which does not have the correct dimensions, since w is a displacement. This
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n̂

Re[α]

Im[α]

ik

−ik

k

−k

Γ αe

−αe

Figure 3: The complex plane, with the integration contour, poles at α = ±αe and branch points at
α = ±k and α = ±ik. The additional poles at α = ±iαe are not shown, since these play no role in the
analysis.

apparent discrepancy occurs when the force per unit area is equated to a Dirac delta function
whose argument has dimensions of length in the derivation of the Green’s function (see e.g. [18]).
Here we leave b as an arbitrary constant, but note that it has dimensions of length, and this
gives the correct dimensions in all subsequent equations. The Green’s function also has the
integral representation

wi =
b

8π

∫
Γ

(
e−γ(α)|y−a|

γ(α)
− e−λ(α)|y−a|

λ(α)

)
e−iαx dα, (8.2)

where
γ(α) = (α2 − k2)1/2 and λ(α) = (α2 + k2)1/2, (8.3)

and the contour Γ is the real line traversed from left to right, with an indentation above α = −k
and below α = k; see figure 3. The branches of the functions λ and γ are such that when α is
real,

λ(α) > 0 and γ(α) =

{√
α2 − k2 if |α| ≥ k,

−i
√
k2 − α2 if |α| < k.

(8.4)

In both representations for the Green’s function, the first term is a solution to the Helmholtz
equation with wavenumber k (except at the source point), whereas the second has wavenumber ik.

The scattered field may be expressed in the form

ws =
b

8π

∫
Γ

(
B(α)e−γ(α)(y+a) + C(α)e−λ(α)(y+a)

)
e−iαx dα, (8.5)

which introduces an image point at (0,−a). The functions B and C are to be determined using
the fact that the total field (i.e. wi + ws) must satisfy Mn = Vn = 0 on y = 0, where Mn and
Vn are the bending moment and Kirchhoff shear force, given by (3.9) and (3.10), respectively.
The unit outgoing normal on the boundary is n̂ = −ŷ and the tangent is ŝ = x̂. Resolving the
modulus sign in (8.2) by noting that −|y − a| = y − a in the vicinity of the y = 0, we find that
the boundary conditions yield

(1 + γB)(G− 2k2)λe−γa = (1− λC)Gγe−λa (8.6)
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and
(1− γB)Ge−γa = (1 + λC)(G− 2k2)e−λa. (8.7)

Here,
G(α) = α2(1− ν) + k2, (8.8)

and we have omitted the argument α from the functions B, C, G, γ and λ for brevity. Solving
for B and C now yields

B =
(G− 2k2)[2γGe(γ−λ)a − (G− 2k2)λ]− γG2

(G− 2k2)2λγ − γ2G2
(8.9)

and

C =
(G− 2k2)λ

[
2Ge(λ−γ)a − (G− 2k2)

]
− γG2

(G− 2k2)2λ2 − γλG2
. (8.10)

Note that both B and C have a factor (G− 2k2)2λ− γG2 in the denominator. Equating the
two terms and squaring leads to the polynomial

(ν + 3)(ν − 1)3α8 + (6ν − 2)(ν − 1)α4k4 + k8 = 0. (8.11)

This is the dispersion relation for edge waves [19, 20]. Since −1 < ν < 0.5, the leading and
constant coefficients have opposite signs, so there is one solution for α4 < 0 and one for α4 > 0.
The former is a spurious solution generated by squaring (it is not possible to have arg γ = arg λ
if α2 is imaginary). The positive root is given by

α4
e =

1− 3ν + 2
√
ν2 + (1− ν)2

(ν + 3)(1− ν)2
k4, (8.12)

and we take αe > 0. Since the left-hand side of (8.11) evaluates to k8 if α = 0 and k8ν4 if
α = k, it follows that αe > k. The contour of integration in (8.5) must be indented to avoid the
poles on the real line. To ensure outgoing waves in the far field, it must pass above the pole
at α = −αe, and below the pole at α = αe, as in figure 3. Setting y = 0 in (8.5) and applying
Jordan’s lemma [21, theorem 5.6] to close the contour shows that an edge wave propagating to
the right or to the left is included for x > 0 or x < 0, respectively. See section 9 for further
details.

The additional mode φ, predicted to exist near the free edge in section 6, can easily be
calculated. It may be represented by the Fourier integral

φ =
b

8π

∫
Γ

P (α)e−(α2−k23)1/2ye−iαx dα, (8.13)

where (α2−k2
3)1/2 > 0 for real α. Clearly this satisfies the Helmholtz equation with wavenumber

k3, and decays exponentially as y is increased. The function P (α) may be determined by using
(6.14) on the free edge. Thus, from (8.2) and (8.5), We find that

P (α) =
2iα

k2
3

(
[1− γ(α)B(α)]e−γ(α)a − [1 + λ(α)C(α)]e−λ(α)a

)
. (8.14)

Note that the substitution α = kη applied to (8.14), (8.2) and (8.5) shows that if w is O(1) in
the low frequency or low thickness limit, then φ is O(ω) or O(h), respectively. This is consistent
with the general analysis in section 6.
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9 Far field due to a source in a semi-infinite Kirchhoff plate
To approximate (8.5) in the far field, we employ the method of steepest descents [22, chapter 3].
We begin by introducing polar coordinates x = r cos θ and y = r sin θ. Then, for the term with
γ in the exponent, which is the scattered component of w1, we write

χ1(α) = γ(α) sin θ + iα cos θ, (9.1)

so that
ws

1 =
b

8π

∫
Γ

B(α)e−aγ(α)e−rχ1(α) dα. (9.2)

Here, the factor e−aγ(α) has been separated from the rest of the exponent to avoid the necessity
of working with shifted coordinates. A simple saddle point is located at

αs = −k cos θ, (9.3)

and here we have χ1(αs) = −ik. The contribution from the saddle point therefore represents an
outgoing circular wave, with no exponential decay. We denote the contribution by wc

1. To find
the leading-order term in wc

1 for large r, we may use the standard saddle point formula, or write

ws
1 =

b

8π

∫
Γ

(
f(α)− f(αs)

)e−rχ1(α)

γ(α)
dα +

bf(αs)

8π

∫
Γ

e−rχ1(α)

γ(α)
dα, (9.4)

where f(α) = B(α)γ(α)e−aγ(α). The first integral does not contribute to the far field at
leading order, because the integrand vanishes at the saddle point. The second is a standard
representation for a Hankel function; it may be evaluated by equating the first term in (8.1) to
the first term in (8.2). Then, using [23, eqn. 10.17.5], we obtain

wc
1 = d(θ)

beiπ/4eikr

4
√

2πkr
+O(r−3/2), where d(θ) = B(αs)γ(αs)e

ika sin θ. (9.5)

Note that the factor γ(αs) cancels with a corresponding factor in the denominator of B(α) (see
(8.9)). We must also consider the possibility that singularities of B(α) may contribute to the far
field. To this end, we begin by observing that the steepest descents path may be parametrised
by writing χ1(α) = v2 − ik for v ∈ R. After some rearrangement, this leads to the formula

α = −(k + iv2) cos θ + v(v2 − 2ik)1/2 sin θ. (9.6)

Here, we take the principal value for the square root, so that v < 0 and v > 0 correspond to the
branches of the path that lie predominantly in the left and right half planes, respectively. The
steepest descents path crosses the imaginary axis at the point α = −ik cot θ, and so requires a
diversion around a branch cut on the imaginary axis if θ < π/4 or θ > 3π/4. On the faces of
the cut, γ is pure imaginary, so

Re[χ1(α)] = |α cos θ| > k cot θ cos θ > k/
√

2, (9.7)

so the contribution from this diversion is exponentially small. Finally, we account for the poles
at α = ±αe by observing that the steepest descents path crosses the real axis twice: at the
saddle and at the point α = −k sec θ. If cos θ > kα−1

e then the pole at α = −αe contributes to
the far field. Similarly, if cos θ < −kα−1

e then the pole at α = αe must be taken into account.
The residues are calculated at the end of this section.

Next consider the term in (8.5) with λ in its exponent. Denote this by ws
2. Writing

χ2(α) = λ(α) sin θ + iα cos θ, (9.8)
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we find that
ws

2 =
b

8π

∫
Γ

C(α)e−aλ(α)e−rχ2(α) dα. (9.9)

In this case the saddle point is located at α = iαs, and here we have χ2(iαs) = k. The contribution
from this point is therefore exponentially small, and need not be calculated further. However,
we must still consider the possibility of singularity contributions. Writing χ2(α) = k + v2 for
v ∈ R and rearranging, we find that the steepest descents path is parametrised by the formula

α = −i cos θ(k + v2) + v sin θ
√
v2 + 2k. (9.10)

This path lies entirely in the upper half plane if θ > π/2 and in the lower half plane if θ < π/2.
Consequently, the residues from the poles at ±αe must be taken into account, along with
diversions around the branch cuts emanating from α = ±k. Since α = ±k are not branch points
of the exponent, they are (from the perspective of the steepest descents method) end-points,
which have a lower order contribution than the saddle. To see this, consider the situation
in which θ = π, so that Re[χ2(k)] = 0, meaning there is no exponential decay in the branch
point contribution. Closing the contour in the upper half plane and making the substitution
α = k + ikη, we find that the branch point contribution is

wb
2 =

ibkeikr

8π

∫ ∞
0

[
Cr(k + ikη)− C`(k + ikη)

]
e−aλ(k+ikη)e−rkη dη, (9.11)

where the function C is defined in (8.10) and the subscripts ‘r’ and ‘`’ refer to evaluation on the
left and right faces of the cut, respectively. Now C(k+ ikη) remains bounded as η → 0, because
this limit corresponds to α → k in (8.10). The difference Cr(k + ikη) − C`(k + ikη) switches
sign if η winds once around the branch point at the origin. Therefore the function

g(η) =
k√
η

[
Cr(k + ikη)− C`(k + ikη)

]
e−aλ(k+ikη) (9.12)

has a convergent Taylor series about the point η = 0. Hence,

wb
2 =

ibg(0)eikr

16
√
π(kr)3/2

+O(r−5/2), (9.13)

having used the fact that ∫ ∞
0

√
ηe−krη dη =

√
π

2
(kr)−3/2. (9.14)

Consequently, only the poles at ±αe can make significant contributions to the far field in this
case. Recalling that k3 is imaginary, the integral representation for φ (8.13) can be analysed in
much the same way, and again, only the poles need to be considered.

Finally, we calculate the residue terms which give rise to edge waves in the scattered field.
Consider the pole at α = −αe, and denote its contribution to (8.5) by we

+. This must be included
near the edge for x > 0. Since γ, λ and G are even functions, We find that

we
+ = − ibL

4

[
B̂(αe)e

−γ(αe)(y+a) + Ĉ(αe)e
−λ(αe)(y+a)

]
eiαex, (9.15)

where
L = Res

α=−αe

1

(G− 2k2)2λ−G2γ
(9.16)

and the functions B̂ and Ĉ are given by

B̂(α) = (G− 2k2)[2Ge(γ−λ)a − (λ/γ)(G− 2k2)]−G2 (9.17)
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and
Ĉ(α) = (G− 2k2)

[
2Ge(λ−γ)a − (G− 2k2)

]
− (γ/λ)G2. (9.18)

Notably, λ(αe), γ(αe) and G(αe) are all real, so B̂(αe), Ĉ(αe) and L are also real. The value of
L can be determined using L’Hôpital’s rule. Thus,

L = lim
α→−αe

α− αe

(G− 2k2)2λ− γG2
(9.19)

=
1

(G− 2k2)2λ′ + 2(G− 2k2)λG′ − 2γGG′ − γ′G2

∣∣∣∣
α=−αe

, (9.20)

where γ′ = α/γ and λ′ = α/λ from (8.3) and G′ = 2α(1− ν) from (8.8). The contribution to
(8.5) from the pole at α = αe, which is required for x < 0, can be deduced by symmetry. It
is the same as (9.15) except that eiαex is replaced by e−iαex. In a similar way, the edge wave
contribution to (8.13) for x > 0 is found to be

φ+
e =

αebL
2k2

3

[
γ(αe)B̂(αe)e

−γ(αe)a + λ(αe)Ĉ(αe)e
−λ(αe)a

]
e−(α2

e−k23)yeiαex. (9.21)

It is easy to verify that (9.15) and (9.21) satisfy (6.14). The contribution for x < 0 is the same
as (9.21), but with eiαex replaced by e−iαex. Since k3 is imaginary, and |k3| � k in the low
frequency limit, this mode is very strongly localised to the vicinity of the free edge.

10 Conservation of energy for a source in a semi-infinite
Kirchhoff plate

To perform a conservation of energy calculation for the problem discussed in sections 8–9, we
must first determine the amount of energy radiating from the source. Since the resulting quantity
is the total energy present in the system, we denote it by 〈Et〉. To calculate this, we apply
equation (7.4) on the circular contour C1 shown in figure 2. The end-point terms disappear
because C1 is smooth and closed. Therefore, after separating the incident and scattered waves,
we have

〈Et〉 = k2ωD Im

∫
C1

(
(wi

1 + ws
1)

∂

∂r0

(wi
1 + ws

1)− (wi
2 + ws

2)
∂

∂r0

(wi
2 + ws

2)

)
ds, (10.1)

where
r0 =

√
x2 + (y − a)2. (10.2)

Writing the incident components explicitly in terms of Hankel functions, and using [23,
eqn. 10.6.3], we find that

wi
1 =

ib

8
H

(1)
0 (kr0), wi

2 = − ib

8
H

(1)
0 (ikr0),

∂wi
1

∂r0

= − ikb

8
H

(1)
1 (kr0) and

∂wi
2

∂r0

= − kb

8
H

(1)
1 (ikr0).

(10.3)

Two simplifications to (10.1) are immediate. First, [23, eqn. 10.27.8] shows that wi
2 and its

derivatives are real so that Im[wi
2∂w

i
2/∂r0] = 0. Second, the Wronskian relation [23, eqn. 10.5.5]

with ν = 0 shows that
Im

[
wi

1

∂w1

∂r0

]
=
|b|2

32πr0

, (10.4)
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which is constant on C1. To simplify the remaining terms, let the contour radius be ε and
consider the effect of taking the limit ε→ 0. Since the integration path length is 2πε, a factor
ε−1 is required to obtain a nonzero result. Such a term is present in the Hankel functions
of order one, but not those of order zero. No such term can be present in the components
of the scattered field or their derivatives since all of these are bounded throughout the plate.
Consequently,

〈Et〉 =
k2ωD

8

[ |b|2
2

+ k Im lim
ε→0

∫
C1
b
(

H
(1)
1 (ikε)ws

2 − i H
(1)
1 (kε)ws

1

)
ds

]
. (10.5)

Finally, we use [23, eqns. 10.7.7] to obtain

〈Et〉 =
k2ωD

2

[ |b|2
8

+ Im
(
bws(0, a)

)]
. (10.6)

Next consider the far field. Here we take advantage of the fact that (7.4) always yields
zero flux across the free edge, so we need not integrate along y = 0. Elsewhere, there are two
important contributions to include: the edge wave and the circular wave. These phenomena can
be considered separately, despite the nonlinearity in (7.4). A proof that ‘cross terms’, in which
a part of the circular wave is multiplied by a part of the edge wave, make no contribution to the
integral can be found in [3, section 6]. Note that the end-point terms in (7.4) disappear in the
limit r →∞ unless they contain only edge waves, since the amplitude of the circular wave is
proportional to r−1/2.

For the circular wave, we integrate along the semi-circular arc C2, which has radius R and
centre (x, y) = (0, 0) (see figure 2). The incident field (also a circular wave) must be included
in this calculation, so we express this in terms of polar coordinates centred at the origin. To
achieve this, we use [23, eqn. 10.17.5] in (8.1), to obtain

wi =
beiπ/4eikr0

4
√

2πkr0

+O(r
−3/2
0 ). (10.7)

Next, we observe that

r0 = r
√

1− 2(a/r) sin θ + (a/r)2 = r − a sin θ +O(r−1) (10.8)

and hence r−1/2
0 = r−1/2 +O(r−3/2), meaning that

wi =
beiπ/4eik(r−a sin θ)

4
√

2πkr
+O(r−3/2). (10.9)

Finally, we apply (7.4) to the sum of the incident field and the reflected circular wave, integrating
along C2. Since the path length is πR, all O(R−3/2) and smaller terms can be removed by taking
the limit R→∞. Hence, the contribution from the circular wave is given by

〈Ec〉 =
ωD|bk|2

32π
lim
R→∞

1

R

∫
C2

∣∣d(θ) + e−ika sin θ
∣∣2ds (10.10)

=
ωD|bk|2

32π

∫ π

0

∣∣d(θ) + e−ika sin θ
∣∣2 dθ, (10.11)

where d(θ) is defined in (9.5).
Now consider the energy radiated by the edge waves, which we denote by 〈Ee〉. For conve-

nience, we separate this into two components, writing

〈Ee〉 = 〈E1
e 〉+ 〈E2

e 〉, (10.12)
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where the first term on the right-hand side comes from the integral in (7.4) and the second is
due to the end-point terms. We will apply (7.4) on the contour C3, which consists of three edges,
joining the points (R1+δ, 0), (R1+δ, R), (−R1+δ, R) and (−R1+δ, 0) for a constant δ > 0, as
shown in figure 2. The exponential decay in the edge waves means there will be no contributions
to 〈Ee〉 from the upper edge of C3 in the limit R→∞. The contributions from the left and right
edges are the same by symmetry. Now on the right edge of C3, we have θ ≤ arctan(R−δ) so that
both the w1 and w2 components of the edge wave are present for sufficiently large R. Hence,
from (9.15),

〈E1
e 〉 =

ωD|bk|2
8

αeL2 lim
R→∞

∫ R

0

([
B̂(αe)

]2
e−2γ(αe)(y+a) −

[
Ĉ(αe)

]2
e−2λ(αe)(y+a)

)
dy (10.13)

=
ωD|bk|2

16
αeL2

([
B̂(αe)

]2 e−2aγ(αe)

γ(αe)
−
[
Ĉ(αe)

]2 e−2aλ(αe)

λ(αe)

)
. (10.14)

Crucially, we cannot neglect the end-point terms in this case. The edge wave propagates without
loss in the x direction, so there are nonzero contributions from the lower ends of the vertical
sides of C3. The extra mode φ must be included in these terms since this also has an edge wave
component, given by (9.21). However, it is not necessary to actually use (9.21) because we need
only find φ at the single point (x, y) = (R1+δ, 0). Some care is then needed with the directions
of the derivatives. The relationship (6.14) applies on the free edge, where the outgoing normal
is −ŷ and the unit tangent is x̂; hence

k2
3

2
φ(x, 0) = − ∂2w

∂x∂y

∣∣∣∣
y=0

. (10.15)

On the other hand, on the right edge of C3 the tangent is ŷ and the normal is x̂. The total
end-point term in (7.4) (accounting for contributions from both the left and right edges of C3

and the fact that (R1+δ, 0) is the first point on the right edge) is therefore given by

〈E2
e 〉 = ωD(1− ν) Im lim

R→∞

[
∂

∂y

(
w
∂w

∂x

)]
(x,y)=(R1+δ,0)

. (10.16)

Since only the edge wave persists in this limit, we may replace w by w+
e , which is given by

(9.15). The derivative in x reduces to multiplication by −iαe, and the factors e±iαex cancel each
other, so that

〈E2
e 〉 = −ωD(1− ν)αe

[
∂

∂y

∣∣w+
e

∣∣2]
y=0

. (10.17)

A straightforward calculation using (9.15) now yields

〈E2
e 〉 =

1− ν
8

ωD|b|2αeL2
(
B̂(αe)γ(αe)e

−aγ(αe) + Ĉ(αe)λ(αe)e
−aλ(αe)

)
×
(
B̂(αe)e

−aγ(αe) + Ĉ(αe)e
−aλ(αe)

)
. (10.18)

Some numerical results are shown in table 2. The values in the first column are computed
using (10.6). This necessitates the evaluation of the scattered field at the source point (0, a). To
achieve this, we move the contour of integration in (8.5) away from the singularities on the real
line and then apply the composite trapezium rule, which in this case converges exponentially
toward the correct value as the subinterval width decreases [24]. For w1, it is possible to use
the steepest descents path for quadrature, as in [25]. However, for w2 with x = 0 the steepest
descents path is the real line. For simplicity, we use the path on which α = e−iπ/4v, for v ∈ R.
This is the tangent to the steepest descents path for w1 at α = αs, and also gives adequate
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ka 〈Et〉/(|bk|2ωD) 〈Ec〉/〈Et〉 〈E1
e 〉/〈Et〉 〈E2

e 〉/〈Et〉 〈Ec + E1
e 〉/〈Et〉

0.5 0.1168895762 0.8964038598 0.1014680042 0.0021281360 0.9978718640
1.0 0.0582786783 0.8167996782 0.1794369075 0.0037634143 0.9962365857
1.5 0.0445877192 0.7803643590 0.2151237498 0.0045118912 0.9954881088
2.0 0.0569557876 0.8389613594 0.1577304853 0.0033081554 0.9966918446
2.5 0.0718820694 0.8791968419 0.1183215448 0.0024816132 0.9975183868
3.0 0.0737271824 0.8878782666 0.1098184594 0.0023032740 0.9976967260
3.5 0.0626687753 0.8740798424 0.1233334279 0.0025867298 0.9974132702
4.0 0.0507303923 0.8512972498 0.1456480064 0.0030547439 0.9969452561
4.5 0.0494347095 0.8540162035 0.1429849071 0.0029988895 0.9970011105
5.0 0.0596491678 0.8842190011 0.1134025540 0.0023784449 0.9976215551
5.5 0.0717410902 0.9078580969 0.0902490671 0.0018928360 0.9981071640
6.0 0.0749177794 0.9155376342 0.0827272876 0.0017350782 0.9982649218

Table 2: Numerical results showing the distribution of energy for ν = 0.3. The far field components are
divided by 〈Et〉 so that they sum to unity. The right-most column shows the effect of omitting 〈E2

e 〉.

results for w2. Taking into account the fact that the integrand is an even function, we apply
quadrature to the integral

ws(0, a) =
be−iπ/4

4π

∫ ∞
0

[
B(ve−iπ/4)e−2aγ(ve−iπ/4) + C(ve−iπ/4)e−2aλ(ve−iπ/4)

]
dv. (10.19)

The second column in table 2 shows the energy in the circular wave, as a proportion of the total.
This is calculated by applying quadrature to (10.11). The third and fourth columns give the
proportion of energy carried by the edge wave, calculated using (10.14) and (10.18). In each
case, the values in the second, third and fourth columns sum to unity, showing that energy is
conserved. Had we used (4.7) (i.e. Norris & Vemula’s formula, adjusted to allow for the fact
that the contour C3 is not smooth), we would obtain the incorrect result 〈E2

e 〉 = 0. To see this,
note that on the vertical edges of C3 we have n̂ = ±x̂, and ŝ = ±ŷ, but the product w+

e ∂w
+
e /∂y

does not depend on x. Consequently, the total for the far field would be 〈Ec + E1
e 〉. The final

column of table 2 shows that conservation of energy is then violated because a small proportion
of the incident wave energy (< 0.5%) appears to be lost. On the other hand, had we used (4.10)
(i.e. including Bobrovnitskii’s correction terms but omitting φ), then the total for the far field
would be correct, but the flux across the edge would not be zero. To determine the magnitude
of this spurious effect, we return to (10.16) and observe that applying the product rule produces
two terms, one from each of the end-point terms in (7.4). After simplification, these terms turn
out to be identical in (10.17). Thus, if φ is omitted, the end-point contribution 〈E2〉 is split into
two equal parts: half appears to be transmitted across the vertical edges of C3 by the edge wave,
but the other half appears to ‘leak’ across the free edge.

11 Concluding remarks
By carefully applying the low frequency (or low thickness) limit to Mindlin theory, we have
retrieved Kirchhoff plate theory, but with an extra term, which we denote by φ. This term
contributes to the in-plane vector of rotation in Mindlin theory, but is asymptotically smaller
than the transverse displacement w for small ω (or small h). The main features of Kirchhoff plate
theory are not affected by φ in any way — the governing equations and boundary conditions
remain the same, and φ can be calculated from w after the latter has been determined. However,
φ has a crucial effect on the energy flux in narrow regions adjacent to free edges; only by
including it can we achieve both conservation of energy and zero flux across free edges. Where
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φ appears in a line integral representing flux across a contour, its contributions are always in a
form that facilitates evaluation by the gradient theorem. Consequently, terms involving φ are
determined explicitly by evaluation at one or more discrete points, which in turn means that
limits (such as the expansion of an integration contour toward infinity) can be applied very
easily. If the flux across a piecewise smooth closed contour is calculated, the overall contribution
from φ is always zero, but its contribution on individual sections is not.

As an example application for the new flux formula, we have considered a simple boundary
value problem in which a point source is located in a semi-infinite thin plate, with a free edge on
y = 0. The scattered field includes edge waves, which propagate without loss along the edge, but
decay exponentially in the orthogonal direction. Calculating the energy radiated by the source
and comparing this with the energy radiated into the far field shows that Norris & Vemula’s
flux formula [7] does not conserve energy. On the other hand, if we include Bobrovnitskii’s
correction terms [8] then the far field energy is equal to the energy radiated by the source, but
the flux across the free edge is not zero. This physically implausible effect is cancelled when φ is
also included, and we find that the energy is in fact carried by the edge wave.

References
[1] V. Twersky. On the scattering of waves by an infinite grating. IRE Trans. on Antennas and

Propagation, 4:330–345, 1956.

[2] J. D. Achenbach, Y.-C. Lu, and M. Kitahara. 3-D reflection and transmission of sound by an array
of rods. J. Sound Vib., 125(3):463–476, 1988.

[3] I. Thompson and C. M. Linton. On the excitation of a closely spaced array by a line source. IMA
J. Appl. Math., 72(4):476–497, 2007.

[4] N. Tymis and I. Thompson. Low-frequency scattering by a semi-infinite lattice of cylinders. Q. J.
Mech. Appl. Math., 64(2):171–195, 2011.

[5] N. Tymis and I. Thompson. Scattering by a semi-infinite lattice of cylinders and the excitation of
Bloch waves. Q. J. Mech. Appl. Math., 67(3):469–503, 2014.

[6] R. I. Brougham and Thompson I. A direct method for Bloch wave excitation by scattering at the
edge of a lattice. Part II: Finite size effects. Q. J. Mech. Appl. Math., 72(3):387–414, 2019.

[7] A. N. Norris and C. Vemula. Scattering of flexural waves on thin plates. J. Sound Vib., 181(1):115–
125, 1995.

[8] Y. I. Bobrovnitskii. Calculation of the power flow in flexural waves on thin plates. J. Sound Vib.,
194(1), 1996.

[9] A. N. Norris and C. Vemula. Calculation of the power flow in flexural waves on thin plates – reply.
J. Sound Vib., 194(1):106, 1996.

[10] R. D. Mindlin. Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates.
J. Appl. Mech., 18:31–38, 1951. Does not have a DOI (last checked November 2020).

[11] J. E. Marsden and A. J. Tromba. Vector Calculus. W. H. Freeman, San Francisco, 1981.

[12] S. P. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw–Hill, 2nd
edition, 1959.

[13] K. F. Graff. Wave Motion in Elastic Solids. Dover, New York, 1991.

21



[14] A. N. Norris, V. V. Krylov, and I. D. Abrahams. Flexural edge waves and comments on “A new
bending wave solution for the classical plate equation” [J. Acoust. Soc. Am. 104, 2220–2222 (1998)].
J. Acoust. Soc. Am., 107(3):1781–1784, 2000.

[15] C. Vemula and A. N. Norris. Flexural wave propagation and scattering on thin plates using Mindlin
theory. Wave Motion, 26:1–12, 1997.

[16] H. Zhong and C. Gu. Buckling of simply supported rectangular Reissner–Mindlin plates subjected
to linearly varying in-plane loading. J. Engrg. Mech., 132(5):578–581, 2006.

[17] D. V. Evans and R. Porter. Flexural waves on a pinned semi-infinite thin elastic plate. Wave
Motion, 45:745–757, 2008.

[18] R. Gunda, S. M. Vijayakar, R. Singh, and Farstad J. E. Harmonic green’s functions of a semi-infinite
plate with clamped or free edges. J. Acoust. Soc. Am., 103(2):888–899, 1998.

[19] Y. K. Konenkov. A Rayleigh-type flexural wave. Sov. Phys. Acoust., 6:122–123, 1960.

[20] R. N. Thurston and J. McKenna. Flexural acoustic waves along the edge of a plate. IEEE Trans.
Son. Ultrason., 21(4):296–297, 1974.

[21] A. D. Osborne. Complex Variables and their Applications. Addison–Wesley, Harlow, UK, 1999.

[22] J. D. Murray. Asymptotic Analysis. Springer-Verlag, New York, 1984.

[23] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of Mathematical
Functions. Cambridge University Press, Cambridge, UK, 2010.

[24] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal rule. SIAM
Review, 56(3):385–458, 2014.

[25] C. M. Linton and I. Thompson. Oblique Rayleigh wave scattering by a cylindrical cavity. Q. J.
Mech. Appl. Math., 68(3):235–261, 2015.

22


