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Abstract

We consider the optimal impulse control of a dynamical system defined by a fixed uncontrolled
flow. This problem is associated with two pairs of linear programs for which we prove the solvability
and the absence of the duality gaps. Finally, we show how to retrieve the optimal control strategy
from the solutions of those linear programs. The theoretical issues are illustrated by the meaningful
example on the controlled epidemic model.
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1 Introduction

Optimal impulse control of dynamical systems (sometimes called singular control [23] or control with
concentrations [5, 10]) attracts attention of many researchers. Note also that optimal stopping [9] is
also an example of impulse control. The underlying system can be described in terms of ordinary
differential equations, see [4, 5, 10, 13, 14, 16, 17, 23], or by a fixed flow in an Euclidean space or in
an abstract Borel space, see [9, 18, 19, 20]. An impulse or an intervention means an instantaneous
change of the state of the system. The target is to optimize an objective functional, typically having
the shape of the sum of the impulse costs and the integral with respect to time of the running cost
rate. The popular methods of attack to such problems include dynamic programming, see [9, 17, 18],
and Pontryagin maximum principle, see [14, 16]. When the total number of impulses is fixed over a
finite horizon, the impulse control problem can be treated as a parameter optimization problem, see
[13]. The linear programming approach appeared in [4, 5, 10, 19, 20].

Similarly to [9, 13, 14, 17, 18, 19, 20], we consider the uncontrolled flow, that is, the purely
impulsive control. Such a problem can be reformulated as a specific discrete-time control problem,
where one step corresponds to the choice of the interval until the next impulse, along with the impulse
itself. After that, one can use the dynamic programming method, see [18, 19], leading to the Bellman
equation similar to the optimality equation for a Markov decision process [2, Prop.9.8], [11, §4.2], and
[12, §9.5]. We call such equation ‘integral’ (see (7)). Due to its special form, this equation, under mild
conditions, is equivalent to the ‘differential’ Bellman equation [9, 18] (see (21)).

In the framework of Markov decision processes, it is known that the (integral) Bellman equation
gives rise to the so called dual linear program in the space of functions [11, (6.3.27)], [12, (12.3.22)]. The
corresponding primal linear program is in the space of what is called occupation measures [8, 11, 12].
The similar dual pair of linear programs can be introduced for the differential Bellman equation. The
target of the current article is to define and study the two above mentioned pairs of linear programs.
Note that the dynamic programming approach (and the associated dual linear programs) is widely
used in the standard optimal control problems [9, 11, 12, 17, 18], while the primal linear programs are
effective in the case of constrained control problems [8, 19, 20].
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The present article, although self-contained, is the last part of the project started in [9, 18, 19, 20].
In the articles [9, 18], the dynamic programming approach to the optimal impulse control was developed
without investigating any linear programs. The so called primal linear programs in the spaces of
occupation measures and of aggregated occupation measures (see (10) and (27)) were formulated
and investigated in [19] and in [20] correspondingly for the constrained version of the optimal impulse
control. In the special cases, the primal linear program (27) can be transformed to the linear programs
introduced in [4, 5, 10]: this relationship was discussed in depth in [20]. The dual linear programs
were not introduced in [4, 5, 9, 10, 18, 19, 20].

The novelty of the present article is in the following.
(a) Based on the abstract theory of linear programs [21], we formulate the primal linear programs

as in [19, 20] and the corresponding dual linear programs (for the standard, unconstrained optimal
impulse control) in terms of the Lagrangian L. Duality in such a general aspect was not studied in
the above mentioned works.

(b) We prove the solvability of the dual programs and show that the Bellman function as in [9, 18]
provides those solutions.

(c) We show that there is no duality gap in the both pairs of linear programs.
(d) We explain how to build the optimal control strategy based on the solutions to the investigated

linear programs. As for the second primal linear program, here the reasoning is different and simpler
than that presented in [20, §7]. Note also that in [20] the more challenging constrained version of the
optimal impulse control was considered.

The rest of this article is organized as follows. The problem statement is described in Section 2.
The main conditions and preliminary observations are presented in Section 3. Section 4 provides the
background on the abstract dual pairs. The first and second pairs of linear programs are investigated
in Sections 5 and 6 correspondingly. In Section 7, we explain how to retrieve the optimal strategy
from the solutions to the investigated linear programs. Brief comments about possible numerical
methods are given in Section 8. Example in Section 9 illustrates the presented results. In Section 10,
we formulate the conclusion and mention several related open problems. The proofs of lemmas are
postponed to the Appendix.

Throughout this paper, we use the following notations. := means the equality by definition.
R̄0

+ := [0,∞], R0
+ := [0,∞), R+ := (0,∞). The term ‘measure’ will always refer to a countably

additive R̄0
+-valued set function, equal to zero on the empty set. P(E) is the space of all probability

measures on a measurable space (E,B(E)). On the time axis R0
+ the expression ‘for almost all u’ is

understood in the sense of the Lebesgue measure. By default, the σ-algebra on R0
+ is just the Borel

one. If (E,B(E)) is a measurable space then, for Y ∈ B(E), B(Y ) := {X ∩ Y, X ∈ B(E)} is the
restriction (trace) of the σ-algebra B(E). If it is obvious which σ-algebra is fixed on the space Y , we
say that µ is a measure on Y (rather than on B(Y )), for brevity. If b =∞ then the Lebesgue integrals∫

[a,b]
f(u)du are taken over the open interval (a,∞). Expressions like ‘positive, negative, increasing,

decreasing’ are understood in the non-strict sense, like ‘nonnegative’ etc. I{·} is the indicator function;
δy(dx) is the Dirac measure at the point y. For b, c ∈ [−∞,+∞], b+ := max{b, 0}, b− := −min{b, 0},
b ∧ c := min{b, c}, b ∨ c := max{b, c}. inf ∅ := +∞. The integrals like

∫
E f(e)µ(de) are calculated

separately for the positive and negative parts f+ and f−, with the convention +∞ − ∞ := +∞;
0×∞ := 0.

2 Impulse Control Problem

We will deal with a control model defined through the following elements.

• X is the state space, which is a topological Borel space.
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• φ(·, ·) : X × R0
+ → X is the measurable flow possessing the semigroup property φ(x, t + s) =

φ(φ(x, s), t) for all x ∈ X and (t, s) ∈ (R0
+)2; φ(x, 0) = x for all x ∈ X. Between the impulses,

the state changes according to the flow.

• A is the action space, again a topological Borel space.

• l(·, ·) : X × A → X is the mapping describing the new state after the corresponding ac-
tion/impulse is applied.

• Cg(·) : X→ R is the (gradual) cost rate.

• CI(· , ·) : X ×A → R is the cost function associated with the actions/impulses applied in the
corresponding states.

All the mappings φ, l, Cg and CI are assumed to be measurable. The initial state x0 ∈ X is fixed.
We are going to formulate the optimal impulse control problem as a Markov decision process.
Let X∆ := X∪ {∆}, where ∆ is an isolated artificial point describing the case that the controlled

process is over and no future costs appear: Cg(∆) = CI(∆, a) := 0. The dynamics (trajectory) of the
system can be represented as one of the following sequences

x0 → (θ1, a1)→ x1 → (θ2, a2)→ . . . ; θi < +∞ for all i ∈ {1, 2, . . .},
or (1)

x0 → (θ1, a1)→ . . .→ xn → (+∞, an+1)→ ∆→ (θn+2, an+2)→ ∆→ . . . ,

where x0 ∈ X is the initial state of the controlled process and θi < +∞ for all i = 1, 2, . . . , n. For the
state xi−1 ∈ X, i ∈ {1, 2, . . .}, the pair (θi, ai) ∈ R̄0

+ × A is the control at the step i: after θi time
units, the impulsive action ai ∈ A will be applied leading to the new state

xi =

{
l(φ(xi−1, θi), ai), if θi < +∞;
∆, if θi = +∞.

After θn+1 = +∞ appears for the first time, the values of an+1, θn+2, an+2, . . . play no role. The state
∆ will appear forever, after it appeared for the first time, i.e., it is absorbing, and φ(∆, t) ≡ ∆. Thus,
the transition probability is defined as

Q(dy|x, (θ, a)) :=

{
δl(φ(x,θ),a)(dy), if x 6= ∆, θ 6= +∞;

δ∆(dy) otherwise,
x, y ∈ X∆; (θ, a) ∈ R̄0

+ ×A. (2)

After each impulsive action ai−1, if θ1, θ2, . . . , θi−1 < +∞, the decision maker has in hand the
complete information about the history, that is, the sequence

x0, (θ1, a1), x1, . . . , (θi−1, ai−1), xi−1.

The selection of the next control (θi, ai) is based on this information, and we also allow the selection
of the pair (θi, ai) to be randomized.

For xi−1 6= ∆, the cost accumulated on the coming interval of the length θi ∈ [0,∞] equals

C(xi−1, (θi, ai)) :=

∫
[0,θi)

Cg(φ(xi−1, u))du+ I{θi < +∞}CI(φ(xi−1, θi), ai). (3)

The next state xi has the distribution Q(dy|xi−1, (θi, ai)) given by (2).
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In the space of all the trajectories

Ω := ∪∞n=1[X× ((R0
+ ×A)×X)n × ({+∞}×A)× {∆} × ((R̄0

+ ×A)× {∆})∞]

∪[X× ((R0
+ ×A)×X)∞],

we fix the natural σ-algebra F . Finite sequences hi = (x0, (θ1, a1), x1, (θ2, a2), . . . , xi) will be called
(finite) histories; i = 0, 1, 2, . . ., and the space of all such histories will be denoted as Hi; Fi := B(Hi)
is the restriction of F to Hi. Capital letters Xi, Ti,Θi, Ai and Hi denote the corresponding functions
of ω ∈ Ω, i.e., random elements.

Definition 2.1 A control strategy π = {πi}∞i=1 is a sequence of stochastic kernels πi on R̄0
+×A given

Hi−1. The set of all strategies is denoted as Π. A Markov strategy is defined by stochastic kernels
{πi(dθ × da|xi−1)}∞i=1. A strategy is called stationary if it is Markov and i-independent, defined by
the single stochastic kernel π(dθ × da|x). Every measurable mapping f : X∆ → R̄0

+ × A defines a
deterministic stationary strategy, which is given by πi(dθ×da|hi−1) := δf(xi−1)(dθ×da), and identified
with f . The values of a strategy on the histories of the form (x0, (θ1, a1), . . . ,∆) are of no importance.

For a given initial state x0 ∈ X and a strategy π, there is a unique probability measure P πx0
(·) on

Ω constructed using the Ionescu-Tulcea Theorem [2, Prop.7.28] and satisfying the following relations
for all i ∈ {1, 2, . . .}, Γ ∈ B(R̄0

+ ×A), ΓX ∈ B(X∆):

P πx0
(X0 ∈ ΓX) = δx0(ΓX); P πx0

((Θi, Ai) ∈ Γ|Hi−1) = πi(Γ|Hi−1);

P πx0
(Xi ∈ ΓX |Hi−1, (Θi, Ai)) =

{
δl(φ(Xi−1,Θi),Ai)(ΓX), if Xi−1 ∈ X, Θi < +∞;

δ∆(ΓX) otherwise.

This is a standard definition of a strategic measure in Markov decision processes; Eπx0
is the corre-

sponding mathematical expectation.
The optimal control problem under study is the following one:

Minimize with respect to π V(x0, π) (4)

:= Eπx0

[ ∞∑
i=1

I{Xi−1 6= ∆}

{∫
[0,Θi]

Cg(φ(Xi−1, u))du + I{Θi < +∞} CI(φ(Xi−1,Θi), Ai)

}]
.

Under Condition 3.1 below, this expression is well defined. In what follows, V∗(x0) := infπ∈Π V(x0, π).

3 Conditions and Preliminaries

We have formulated the problem as the Markov decision process

(X∆ := X ∪ {∆}, R̄0
+ ×A, Q, C). (5)

Below, we briefly present the dynamic programming approach.

Condition 3.1 The functions Cg(·) and CI(·) are R0
+-valued.

One can introduce the following set

V c := {x ∈ X :

∫
[0,∞)

Cg(φ(x, u)) du = 0} ∪ {∆},

which is obviously measurable. Clearly, under Condition 3.1, as soon as Xi−1 ∈ V c, it is reasonable
not to apply any impulses in the future, i.e., to apply the control (∞, â) with the immaterial value
of â ∈ A being arbitrarily fixed. All other actions cannot improve the objective. As the result, all
the further reasoning, conditions and equations can be for the state space having been reduced to
V := X∆ \ V c.
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Condition 3.2 (a) The space A is compact.

(b) The mapping (x, a) ∈ X×A→ l(x, a) is continuous.

(c) The mapping (x, θ) ∈ X× R0
+ → φ(x, θ) is continuous.

(d) The function (x, a) ∈ X×A→ CI(x, a) is lower semicontinuous.

(e) The function x ∈ X→ Cg(x) is lower semicontinuous.

Remark 3.1 Since the function Cg(·) appears only in the integrals of the type
∫

[0,t]C
g(φ(x, u))du, all

the statements in this article remain valid if Cg(·) is such that, for all x ∈ X, for almost all u ∈ R0
+,

Cg(φ(x, u)) = Ĉg(φ(x, u)), where the function Ĉg(·) satisfies the formulated conditions.

Condition 3.3 (a) supx∈X
∫

[0,∞) |C
g(φ(x, u))|du <∞.

(b) CI(·) ≥ δ > 0.

For example, Condition 3.3(a) is satisfied in the discounted model, when X = X̃× R0
+,

φ((x̃, u), t) = (φ̃(x̃, t), u+ t); l((x̃, u), a) = (l̃(x̃, a), u); Cg((x̃, u)) = e−αuC̃g(x̃), (6)

and supx∈X |C̃g(x̃)| <∞. Here φ̃, l̃ and C̃g are similar to φ, l and Cg, but defined on the Borel space
X̃; α > 0 is the discount factor.

If Conditions 3.1 and 3.3(a) are satisfied, then the positive function V∗(·) is bounded because
V(x0, ϕ) ≤ supx∈X

∫
(0,∞)C

g(φ(x, u))du < ∞ for the deterministic stationary strategy ϕ(x) ≡ (∞, â)
with an arbitrarily fixed â ∈ A.

Condition 3.3(b) means, the impulses are expensive.
If Condition 3.3(a) is satisfied, then, for each cycle such that φ(x, τ) = x for some x ∈ X and

τ ∈ R+, necessarily Cg(φ(x, u)) = 0 for almost all u ∈ R0
+.

Proposition 3.1 If Conditions 3.1, 3.2 and 3.3 are satisfied, then the Bellman function V∗(·) is the
unique bounded measurable solution to the following (integral) Bellman equation

W (∆) = 0,

W (x) = inf
(θ,a)∈R̄0

+×A

{
C(x, (θ, a)) +

∫
X∆

W (y)Q(dy|x, (θ, a))

}
∀ x ∈ X, (7)

and there is a measurable mapping f∗ : X → R̄0
+ ×A providing here the infimum, which defines the

optimal strategy in problem (4): V∗(x0) = V(x0, f
∗) for all x0 ∈ X . This solution to equation (7) is

necessarily nonnegative and lower semicontinuous.

The proof follows from [18, Thm.1] and from the proof of Proposition 1 of [18].
Along with the above dynamic programming approach, another method based on the linear pro-

gramming, is useful. For each π ∈ Π, let

µπ(dx× dθ × da) := Eπx0

[ ∞∑
i=0

I{Xi ∈ dx,Θi+1 ∈ dθ,Ai+1 ∈ da}

]

be the occupation measure on X× R̄0
+ ×A: see [12, §9.4]. Then, under Condition 3.1,

V(x0, π) =

∫
X×R̄0

+×A
C(x, (θ, a))µπ(dx× dθ × da). (8)
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If Conditions 3.1 and 3.3 are satisfied, then we can ignore the strategies with µπ(X× R̄0
+ ×A) = ∞

because, for such strategies, with positive P πx0
probability, there are infinite number of real-valued

Θi < ∞ which leads to V(x0, π) = ∞, while infπ∈Π V(x0, π) = V∗(x0) < ∞. As a result of this
observation, the key properties of the occupation measures of our interest can be written down as
follows:  µ(dx× R̄0

+ ×A) = δx0(dx) +

∫
X×R0

+×A
I{l(φ(y, θ), a) ∈ dx}µ(dy × dθ × da);

µ(X× R̄0
+ ×A) <∞.

(9)

See [12, Lemma 9.4.3].
Assuming that Conditions 3.1, 3.2 and 3.3 are satisfied, the first linear program of our interest,

traditionally called ‘primal’, has the form∫
X×R̄0

+×A
C(x, (θ, a))µ(dx× dθ × da)→ inf

µ
(10)

subject to (9).

The similar linear program, for the case of the constrained impulse control, was investigated in [19].
Any finite measure µ on X× R̄0

+ ×A can be written in the form

µ(dx× dθ × da) = pT (dθ|x, a)pA(da|x)µ(dx× R̄0
+ ×A), (11)

where pT (·) and pA(·) are stochastic kernels on R̄0
+ and A correspondingly: see [2, Prop.7.27]. The

dependence of pT and pA on µ is not explicitly indicated here. Hence, using the Tonelli Theorem (see
[1, Thm.11.28]), straightforward calculations imply that∫

X×R̄0
+×A

{∫
[0,θ]

Cg(φ(x, u))du

}
µ(dx× dθ × da)

=

∫
X

∫
A

∫
R̄0

+

∫
[0,θ]

Cg(φ(x, u))du pT (dθ|x, a)pA(da|x)µ(dx× R̄0
+ ×A)

=

∫
X

∫
A

∫
R0

+

Cg(φ(x, u))pT ([u,∞]|x, a) du pA(da|x)µ(dx× R̄0
+ ×A).

After we introduce the following measure on X

η(dy ×2) :=

∫
X

∫
R0

+

δφ(x,u)(dy)

(∫
A
pT ([u,∞]|x, a)pA(da|x)

)
du µ(dx× R̄0

+ ×A)

=

∫
R0

+

∫
X
δφ(x,u)(dy)µ(dx× [u,∞]×A)du, (12)

we may write ∫
X×R̄0

+×A

{∫
[0,θ]

Cg(φ(x, u))du

}
µ(dx× dθ × da) =

∫
X
Cg(y)η(dy ×2).

Here 2 is the artificial isolated point to be added to the space A for notational convenience. Roughly
speaking, if the measure η(dy ×2) comes from the occupation measure µπ, then η(Γ×2) equals the
total time the process spends in the set Γ ∈ B(X) under the control strategy π.
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Similarly to the above, we have that∫
X×R̄0

+×A
I{θ <∞}CI(φ(x, θ), a)µ(dx× dθ × da) =

∫
X×A

CI(y, a)η(dy × da),

where

η(dy × da) :=

∫
X

∫
R0

+

δφ(x,θ)(dy)µ(dx× dθ × da) (13)

is a finite measure on X×A, since the measure µ is finite.
Now ∫

X×R̄0
+×A

C(x, (θ, a))µ(dx× dθ × da) =

∫
X×A2

C(x, a)η(dx× da). (14)

Here and below

A2 := A ∪ {2}; C(x, a) :=

{
Cg(x), if a = 2;
CI(x, a), if a ∈ A,

(15)

and the measure η on X×A2 is as in the following definition.

Definition 3.1 For a measure µ on X× R̄0
+×A satisfying (9), the measure η on X×A2 defined by

η(ΓX × ΓA) := η(ΓX × (ΓA ∩A)) + η(ΓX ×2)I{2 ∈ ΓA}, ΓX ∈ B(X), ΓA ∈ (A2), (16)

where the measures η(dy × 2) on X and η(dy × da) on X ×A were introduced in (12) and (13), is
called the aggregated occupation measure (induced by µ).

The primal linear program (10) now can be rewritten as∫
X×A2

C(x, a)η(dx× da)→ inf
µ

subject to (9), (12), (13).

In what follows, we will characterize the aggregated measures η without references to the measures
µ: see (26).

Remark 3.2 As was explained, for a strategy π with the finite objective (4), we have V(x0, π) =∫
X×A2

C(x, a)ηπ(dx× da), where ηπ is the aggregated occupation measure induced by µπ: see (8) and
(14).

4 Abstract Linear Programs

There are different ways for defining abstract primal/dual linear programs. In the current article, we
follow [21], see problems (1.5) and (1.6) therein. Namely, suppose M and W are two linear spaces,
M+ is a convex cone inM, and L(µ,W ) is a well defined bilinear form onM+×W, taking values in
(−∞,+∞] (or in [−∞,+∞)). This means that

∀W ∈ W ∀µ1, µ2 ∈M+ ∀a, b ∈ R0
+ L(aµ1 + bµ2,W ) = aL(µ1,W ) + bL(µ2,W )

and

∀µ ∈M+ ∀W1,W2 ∈ W ∀a, b ∈ R L(µ, aW1 + bW2) = aL(µ,W1) + bL(µ,W2).

Now the primal and dual linear programs look as follows:

sup
W∈W

L(µ,W )→ inf
µ∈M+

; inf
µ∈M+

L(µ,W )→ sup
W∈W

.
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Note that the value of the primal program cannot be smaller than the value of the dual program:

inf
µ∈M+

sup
W∈W

L(µ,W ) ≥ sup
w∈W

inf
µ∈M+

L(µ,W ),

see [21, p.3]. If the last inequality is strict, then we say that there is a duality gap in the pair of linear
programs. Sometimes, the functional L is called ‘lagrangian’ [15, Ch.8].

Lemma 4.1 A pair (µ∗,W ∗) is a saddle point of the function L(·), i.e.,

L(µ∗,W ) ≤ L(µ∗,W ∗) ≤ L(µ,W ∗) ∀µ ∈M+, W ∈ W, (17)

if and only if µ∗ is a solution to the primal linear program, W ∗ is a solution to the dual linear program,
there is no duality gap, and the common (optimal) value of the primal and dual programs equals

L(µ∗,W ∗) = sup
W∈W

L(µ∗,W ) = inf
µ∈M+

L(µ,W ∗).

For the proof, see [21, Thm.2].

Remark 4.1 Sometimes, it is problematic to embed the cone M+ in a linear space, but M+ is a
projection of a convex cone M̃+ in a linear space M̃, like in Subsection 6.2. Note also that the
presented above assertions are valid for an arbitrary [−∞,+∞]-valued function L(·) on arbitrary sets,
M+, W.

5 First Pair of Linear Programs

In this section, we assume that Conditions 3.1, 3.2 and 3.3 are satisfied.
Let M+

1 be the space of finite measures µ on X× R̄0
+ ×A (the positive cone in the space M1 of

finite signed measures µ on X× R̄0
+×A), W1 be the space of bounded measurable functions W (·) on

X, and

L1(µ,W ) :=

∫
X×R̄0

+×A
C(x, (θ, a))µ(dx× dθ × da)

+W (x0) +

∫
X×R̄0

+×A
W (y)Q(dy|x, (θ, a))µ(dx× dθ × da)−

∫
X
W (x)µ(dx× R̄0

+ ×A)

be the (−∞,+∞]-valued bilinear function on M+
1 × W1, where the R0

+-valued function C(·) was
defined in (3) and the substochastic kernel Q on X was introduced in (2). The function L1(·) can take
value +∞ if the function CI(·) is unbounded. Now the primal program (10) can be rewritten as

sup
W∈W1

L1(µ,W ) −→ inf
µ∈M+

1

.

Indeed, for each measure µ ∈M+
1 , if it does not satisfy equality (9), then supW∈W1

L1(µ,W ) = +∞,
and for finite measures µ satisfying (9), L1(µ,W ) =

∫
X×R̄0

+×A
C(x, (θ, a))µ(dx× dθ × da).

The dual program
inf

µ∈M+
1

L1(µ,W ) −→ sup
W∈W1

can be rewritten as

Maximize W (x0) over W ∈ W1 (18)

subject to C(x, (θ, a)) +

∫
X
W (y)Q(dy|x, (θ, a))−W (x) ≥ 0 ∀(x, θ, a) ∈ X× R̄0

+ ×A.

Indeed, for the functions W ∈ W1 satisfying (not satisfying) the presented inequality in program (18),
infµ∈M+

1
L1(µ,W ) = L1(0,W ) = W (x0) (infµ∈M+

1
L1(µ,W ) = −∞). Here 0 is the zero measure.
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Theorem 5.1 Suppose Conditions 3.1, 3.2 and 3.3 are satisfied. Then the following statements hold.

(a) The solution to the dual program (18) is provided by the Bellman function V∗(·) ∈ W1, which is
the unique bounded solution to the integral Bellman equation (7).

(b) There exists a deterministic stationary strategy f∗ (optimal in problem (4)), and µ∗, the occu-
pation measure corresponding to f∗, solves the primal program (10).

(c) The optimal values of the primal program (10) and the dual program (18) coincide (i.e., there is
no duality gap) and equal L1(µ∗,V∗) = V∗(x0), and (µ∗,V∗) is a saddle-point of L1(·):

L1(µ∗,W ) ≤ L1(µ∗,V∗) ≤ L1(µ,V∗) for all µ ∈M+
1 , W ∈ W1.

Proof. According to Propositon 3.1, V∗(·) is the unique bounded nonnegative lower semicontinuous
solution to equation (7), and there is a measurable mapping f∗ : X→ R̄0

+×A providing the infimum,
which defines the optimal strategy in problem (4). The corresponding occupation measure µ∗, satisfies
conditions (9).

Let us denote the optimal values of linear programs (10) and (18) as V al(10) and V al(18) corre-
spondingly.

For the measure µ∗ we have

V al(10) ≤
∫
X×R̄0

+×A
C(x, (θ, a))µ∗(dx× dθ × da),

and for the function V∗(·) we have
V al(18) ≥ V∗(x0).

But

V∗(x0) = V(x0, f
∗) =

∫
X×R̄0

+×A
C(x, (θ, a))µ∗(dx× dθ × da).

Since, in any case, V al(10) ≥ V al(18), we conclude that V al(10) = V al(18) = V∗(x0), the measure
µ∗ solves the linear program (10), and the function V∗(·) solves the linear program (18).

Items (a) and (b) are proved.
To prove Item (c), note that we already showed that

V al(10) = sup
W∈W1

L1(µ∗,W ) = V al(18) = inf
µ∈M+

1

L1(µ,V∗) = V∗(x0).

Since
sup
W∈W1

L1(µ∗,W ) ≥ L1(µ∗,V∗) ≥ inf
µ∈M+

1

L1(µ,V∗),

we conclude that

V al(10) = V al(18) = L1(µ∗,V∗) = sup
W∈W1

L1(µ∗,W ) = inf
µ∈M+

1

L1(µ,V∗).

Finally, for all µ ∈M+
1 and W ∈ W1,

L1(µ∗,W ) ≤ sup
W∈W1

L1(µ∗,W ) = L1(µ∗,V∗) = inf
µ∈M+

1

L1(µ,V∗) ≤ L1(µ,V∗).

The proof is completed. 2
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Remark 5.1 The linear programs (10) and (18) can have many solutions, for example in the case
when, under an optimal strategy, a subset X̂ ⊂ X is not reachable from the initial point x0. In such
situation, the function W (·) may be arbitrary enough on X̂: the only requirement is that W ∈ W1

and the constraint-inequality in (18) is satisfied. Similarly, the measure µ may be arbitrary enough on
the set {(x, θ, a) ∈ X̂ × R̄0

+ ×A : C(x, (θ, a)) = 0}: only condition (9) must be satisfied. Therefore,
even if the control problem (4) has a unique optimal control strategy π, there can exist many different
solutions to the linear programs (10) and (18).

6 Second Pair of Linear Programs

6.1 Additional Conditions and Preliminaries

In this subsection, we show that, under appropriate conditions, the integral Bellman equation (7) is
equivalent to another equation (see (21)) which can be called ‘differential Bellman equation’.

Recall that a function w : X → R is said to be absolutely continuous along the flow φ if, for
all x ∈ X, the function t 7→ w(φ(x, t)), t ∈ R0

+ is absolutely continuous. It is called increasing
(decreasing), or measurable along the flow if so is the function t→ w(φ(x, t)), t ∈ R0

+ for all x ∈ X.
If, for each x ∈ X, there is a constant G(x) such that

|w(φ(x, τ1))− w(φ(x, τ2))| ≤ G(x)(τ2 − τ1), ∀0 ≤ τ1 < τ2 <∞, (19)

then the function w(·) is absolutely continuous along the flow φ.
Lemma 6.1 and its proof are similar to Lemma 2.2 in [6], where the authors assumed that X was

a subset of an Euclidean space. For the general case, see [20, Lemma A.1].

Lemma 6.1 Let X be an arbitrary set and φ : X × R0
+ → X be a flow in X possessing the semi-

group property. Suppose function w(·) is absolutely continuous along the flow φ. Then the following
assertions are valid.

(a) There exists a function χw : X → R such that, for any x ∈ X, the function χw(φ(x, s)) is
Lebesgue integrable with respect to s on any finite interval [0, t] ⊂ R0

+ and

w(φ(x, t))− w(x) =

∫
[0,t]

χw(φ(x, s)) ds (20)

for all x ∈ X and t ≥ 0.
(b) If, additionally, X is a measurable space (that is, equipped with a σ-algebra of subsets), the

function w(·) is measurable, and the functions φ(·, t) : X → X are measurable for all t ≥ 0, then the
function χw satisfying (a) can be chosen measurable.

Note that the function χw(·) in (a) is not unique, but if χw1(·) and χw2(·) are two functions
satisfying assertion (a) of Lemma 6.1, then, for each x ∈ X, the functions χw1(φ(x, s)) and χw2(φ(x, s))
coincide for almost all s ∈ R0

+. We call χw1(·) and χw2(·) ‘versions’ of the function χw(·).

Condition 6.1 (a) The Bellman function V∗(·) is continuous on X and absolutely continuous along
the flow φ.

(b) The function χV∗(φ(x, ·)) is integrable over [0,∞) for each x ∈ X, and
supx∈X |

∫
[0,∞) χV

∗(φ(x, u))du| <∞.

Below, we provide sufficient conditions for this.

Condition 6.2 (a) The functions Cg(·) and CI(·) are continuous.

10



(b) The function Cg(·) is bounded, and, for each ε > 0, there is T ∈ R0
+ such that

sup
x∈X

∫
(T,∞)

|Cg(φ(x, u))|du < ε.

(c) The mapping l : X×A→ X does not depend on the component x ∈ X.

(d) The function CI(·, a) is absolutely continuous along the flow φ for each fixed value of a ∈ A.
Moreover, for each a ∈ A and x ∈ X,

CI(φ(x, t), a)− CI(x, a) =

∫
[0,t]

g(x, φ(x, u), a)du, ∀t > 0,

where g(·) is a fixed measurable function on {(x, y, a) : x ∈ X, y = φ(x, u) for some u ≥ 0, a ∈
A} ⊂ X2 ×A, bounded for each fixed x ∈ X.

(e) The function G(x) := supy=φ(x,u):u≥0C
g(y) ∨ supy=φ(x,u):u≥0 supa∈A |g(x, y, a)| on X is measur-

able and such that supx∈X
∫

[0,∞)G(φ(x, u))du <∞.

Note that Condition 6.2(b) is satisfied, e.g., in the discounted model (6) with the bounded function
C̃g(·). Conditions 6.2(d,e) are fulfilled if, for example, the function Cg(·) satisfies Condition 3.3(a)
and decreases along the flow φ, and the function CI(·) does not depend on x.

Lemma 6.2 Suppose Conditions 3.1, 3.2, 3.3 and 6.2(a,b) are satisfied. Then the Bellman function
V∗(·) is bounded and continuous.

The proofs of this and subsequent lemmas are presented in the Appendix.

Lemma 6.3 Suppose Conditions 3.1, 3.2, 3.3 and 6.2(a-d) are satisfied. Then the Bellman function
V∗(·) is absolutely continuous along the flow φ. If additionally Condition 6.2(e) is satisfied, then
Condition 6.1(b) is satisfied for any version of the function χV∗(·).

Theorem 6.1 Suppose Conditions 3.1, 3.2, 3.3 and 6.1(a) are satisfied and the function CI(·) is con-
tinuous. Then, for a bounded measurable function W (·) on X, the following statements are equivalent.

(a) The function W (·) satisfies equation (7).

(b) The function W (·) is continuous on X, absolutely continuous along the flow φ, satisfies equation

min

{
χW (φ(x, t)) + Cg(φ(x, t));

inf
a∈A
{CI(φ(x, t), a) +W (l(φ(x, t), a))−W (φ(x, t))}

}
= 0 (21)

for all x ∈ X, for almost all t ≥ 0,

and limt→∞W (φ(x, t)) = 0 for all x ∈ X.

(c) W (x) = V∗(x) for all x ∈ X.

Expression (21) is equivalent to the so-called ‘quasi-variational inequalities’ [7, 22]; we call it
‘differential’ Bellman equation.

Before proceeding to the proof, we formulate the following proposition justified in Subsection 3.1
of [9].

11



Proposition 6.1 Suppose the integral
∫

[0,∞)C
g(φ(x, u))du is finite for all x ∈ X and W (·) is a

function, absolutely continuous along the flow φ, such that limt→∞W (φ(x, t)) ≥ 0 for all x ∈ X.
Then the following statements are equivalent.

1. The function W (·) satisfies equation (7) and the infimum with respect to θ in equation

W (x) = inf
θ∈R̄0

+

{∫
[0,θ]

Cg(φ(x, u)) du+ I{θ < +∞} inf
a∈A
{CI(φ(x, θ), a) +W (l(φ(x, θ), a))}

}
, x ∈ X

(22)
is attained on a nonempty set Θ(x) ⊂ R̄0

+, and Θ(x) contains its infimum for each x ∈ X.
2. The function W (·) is such that assertions (a), (b) and (c) below are valid.
(a) For each y ∈ X,

either (i)

{
FW+ (y) = 0 and
infa∈A

{
CI(y, a) +W (l(y, a))−W (y)

}
> 0

or, if the Assertion (i) fails to hold (e.g., FW+ (y) does not exist), then (23)

(ii)

{
FW− (y) ⊂ [0,∞] and
infa∈A

{
CI(y, a) +W (l(y, a))−W (y)

}
= 0.

Here

FW+ (y) := lim
t→0+

[W (φ(y, t))−W (y)

t
+

1

t

∫
[0,t]

Cg(φ(y, u)) du
]
,

provided that this limit exists;

FW− (y) :=

{
limt→0+

[W (y)−W (φ(ỹ, s− t))
t

+
1

t

∫
[−t,0]

Cg(φ(ỹ, s+ u)) du
]

: (ỹ, s) ∈ X× R+, φ(ỹ, s) = y

}
⊂ R ∪ {±∞}.

If {(ỹ, s) ∈ X× R+ : φ(ỹ, s) = y} = ∅, that is, if the point y ∈ X is ‘singular’, we put FW− (y) = ∅.
(b) For the set L, defined as

L := {x ∈ X : inf
a∈A

[
CI(x, a) +W (l(x, a))−W (x)

]
= 0}, (24)

the set {t ∈ R0
+ : φ(x, t) ∈ L}, for each x ∈ X, if not empty, contains its infimum.

(c) For each x ∈ X, limt→∞W (φ(x, t)) = 0.

This proposition also appeared in [18], where a slightly stronger condition on the function W (·)
was imposed.

Proof of Theorem 6.1. Equivalence of the statements (a) and (c) under Conditions 3.1, 3.2 and 3.3
was justified in Section 3.

Suppose a bounded measurable function W (·) satisfies equation (7). Then W (·) = V∗(·) and hence
the function W (·) is continuous on X and absolutely continuous along the flow φ by Condition 6.1(a).
Moreover, the infimum with respect to θ in equation (22) is attained on a nonempty set Θ(x) ⊂ R̄0

+,
and Θ(x) contains its infimum by Corollary 2 of [18]. Finally, W (·) = V∗(·) ≥ 0, so that we have
Statement 1 of Proposition 6.1 leading to Statement 2: limt→∞W (φ(x, t)) = 0 and, for each y ∈ X,
(23) is valid.

Since the function W (·) is absolutely continuous along the flow φ, for each x ∈ X, for almost all
t ≥ 0,

dW (φ(x, t))

dt
= χW (φ(x, t)) and

d

dt

∫
[0,t]

Cg(φ(x, u))du = Cg(φ(x, t)).
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Now (23) implies the following statement:
for each x ∈ X, for almost all t ≥ 0, (for y = φ(x, t)),

either (i)

{
χW (φ(x, t)) + Cg(φ(x, t)) = 0 and
infa∈A

{
Ci(φ(x, t), a) +W (l(φ(x, t), a))−W (φ(x, t))

}
> 0

or, if the Assertion (i) fails to hold, then

(ii)

{
χW (φ(x, t)) + Cg(φ(x, t)) ≥ 0 and
infa∈A

{
Ci(φ(x, t), a) +W (l(φ(x, t), a))−W (φ(x, t))

}
= 0.

Therefore, statement (b) of Theorem 6.1 is valid.
Suppose statement (b) is valid and prove statement (a).
Under the imposed conditions, for the continuous on X functionW (·), the function infa∈A

[
CI(x, a)+

W (l(x, a))−W (x)
]

is continuous by [2, Prop.7.32]. Hence the set (24) is closed. Therefore, for each
x ∈ X, the set {t ∈ R0

+ : φ(x, t) ∈ L}, if not empty, is closed and hence contains its infimum, because
the flow φ is continuous.

Let us show that, for each y ∈ X, expression (23) holds. According to (21), there is a sequence
ti ↓ 0 such that

F1(ti) := inf
a∈A
{CI(φ(y, ti), a) +W (l(φ(y, ti), a)−W (φ(y, ti))} ≥ 0.

The function F1(·) is continuous by [2, Prop.7.32]. Thus,

F1(0) = inf
a∈A
{CI(y, a) +W (l(y, a))−W (y)} ≥ 0.

(i) Suppose
F2(y) := inf

a∈A
{CI(y, a) +W (l(y, a))−W (y)} > 0.

Since again the function F2(·) is continuous, there exists ε > 0 such that F2(φ(y, t)) > 0 for all
t ∈ [0, ε], and hence

χW (φ(y, u)) + Cg(φ(y, u)) = 0

for almost all u ∈ [0, ε]. Therefore, for all t ∈ [0, ε],

W (φ(y, t)) = W (y)−
∫

[0,t]
Cg(φ(y, u))du,

and FW+ (y) = 0.
(ii) Suppose F2(y) = 0 and the point y is not singular: y = φ(ỹ, s) for some ỹ ∈ X, s > 0. For an

arbitrarily fixed t ∈ [0, s], we integrate the inequality

χW (φ(ỹ, r)) + Cg(φ(ỹ, r)) ≥ 0,

valid for almost all r ∈ [s− t, s]:

W (φ(ỹ, s))−W (φ(ỹ, s−t))+
∫

[s−t,s]
Cg(φ(ỹ, r))dr = W (y)−W (φ(ỹ, s−t))+

∫
[−t,0]

Cg(φ(ỹ, s+u))du ≥ 0.

Hence, FW− (y) ≥ 0, and equation (23) is proved.
According to Proposition 6.1, since Statement 2 is valid, the function W (·) satisfies equation (7).

2

Corollary 6.1 If Conditions 3.1, 3.2, 3.3 and 6.1(a) are satisfied and the function CI(·) is continu-
ous, then limt→∞ V∗(φ(x, t)) = 0 for all x ∈ X.

For the proof, note that the Bellman function V∗(·) is the unique bounded measurable solution to
equation (7) by Proposition 3.1.
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6.2 Linear Programs

Definition 6.1 W2 is the linear space of measurable bounded functions W (·) on X, absolutely con-
tinuous along the flow φ, such that limt→∞W (φ(x, t)) = 0 for all x ∈ X, the function χW (φ(x, ·)) is
integrable over [0,∞) for each x ∈ X and supx∈X |

∫
[0,∞) χW (φ(x, u))du| <∞.

Under appropriate conditions, the Bellman function V∗(·) belongs to W2 by Lemmas 6.2, 6.3 and
Theorem 6.1.

Definition 6.2 A measure η̂ on X is called normal if

η̂(ΓX) =

∫
X

∫
R0

+

δφ(x,u)(ΓX)ψ(x, u)du m(dx), ΓX ∈ B(X),

where ψ(·) ≥ 0 is a measurable function on X × R0
+, m is a probability measure on X, and, for the

measure m̄(dx× du) := m(dx)× du on X× R0
+, the following assertion holds true:

∃S ∈ R+ : m̄({(x, u) : |ψ(x, u)| > S}) = 0. (25)

A measure η on X × A2, where A2 = A ∪ {2} is as introduced in (15), is called normal if
η(X×A) <∞ and the measure η(dx×2) is normal.

The set of all normal measures on X×A2 is denoted as M+
2 .

Remark 6.1 Let φx(u) := φ(x, u) : R0
+ → X be a measurable mapping (for each fixed x ∈ X).

Then η̆(Γx|x) :=
∫
R0

+
δφx(u)(ΓX)ψ(x, u)du is the measurable kernel on X given X, which, for each

x ∈ X, coincides with the image of the measure ψ(x, u)du on R0
+ with respect to the mapping φx(·),

and η̂(ΓX) =
∫
X η̆(ΓX |x)m(dx).

For example, every aggregated occupation measure η, induced by a finite measure µ as in Definition
3.1, is normal. A normal measure can equal +∞ at a stationary point x, where φ(x, t) ≡ x.

Note that, for every function W (·) ∈ W2 and every normal measure η̂ on X, the integral∫
X χW (x)η̂(dx) is well defined, independent of the version of the function χW (·), and finite.

The normal measures on X are not finite, and it is problematic to embed the spaceM+
2 in a linear

space. But we will show that M+
2 is a convex cone, equal to a projection of a (positive) cone M̃+ in

some linear space M̃. See Corollary 6.2 and Remark 4.1.

Lemma 6.4 Suppose m1 and m2 are two probability measures on X and ψ1(·), ψ2(·) are two real-
valued measurable functions on X × R0

+ such that, for j = 1, 2, for the measure m̄j(dx × du) :=
mj(dx)× du on X× R0

+ and the function ψj(·), the requirement (25) is satisfied.
Then, for arbitrarily fixed a1, a2 ∈ R, there exist a probability measure m on X and a measurable

function ψ(·) on X× R0
+ such that the following assertions are valid.

(a) For the measure m̄(dx× du) := m(dx)× du on X× R0
+ and the function ψ(·), the requirement

(25) is satisfied.

(b) For each i ∈ {1, 2, . . .}, the finite signed measures on X× [i− 1, i)

M i
j(dx× du) := I{u ∈ [i− 1, i)}ψj(x, u)m̄j(dx× du), j = 1, 2,

and
M i(dx× du) := I{u ∈ [i− 1, i)}ψ(x, u)m̄(dx× du)

are such that
M i = a1M

i
1 + a2M

i
2

set-wise.
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(c) The function ψ(·) is positive if so are the functions ψ1(·), ψ2(·) and the numbers a1, a2.

The sequences {M i}∞i=1 of finite signed measures as in Lemma 6.4, associated with the probability
m and the function ψ(·), form the linear space M̃1, and one can introduce the linear space M̃ :=
M̃1 × M̃2, where M̃2 is the linear space of finite signed measures on X ×A. The natural positive
cone in M̃ is denoted as M̃+; it contains the corresponding positive measures. Now one can see that
M+

2 is just a (linear) projection of the convex cone M̃+.

Corollary 6.2 from Lemma 6.4. If η1 and η2 are two normal measures on X×A2, then a1η1+a2η2

is again a normal measure on X×A2 for all a1, a2 ∈ R0
+, that is, the space M+

2 is a convex cone.

The proof is obvious.

Theorem 6.2 Suppose Conditions 3.1, 3.2 and 3.3 are satisfied and a (finite) measure µ on X ×
R̄0

+ × A satisfies requirements (9). Then the aggregated occupation measure η as in Definition 3.1,
induced by µ, satisfies equation

0 = W (x0) +

∫
X
χW (x)η(dx×2)−

∫
X
W (x)η(dx×A) +

∫
X×A

W (l(x, a))η(dx× da) (26)

for all functions W (·) ∈ W2. This equation is valid for any version of the function χW (·).

Proof. According to Lemma 6.1, for each fixed x ∈ X, θ ∈ R0
+,

W (φ(x, θ)) = W (x) +

∫
[0,θ]

χW (φ(x, s))ds.

After we integrate this equation over X × R0
+ with respect to the measure µ, represented as in (11),

we obtain the following equality, according to the definition (13):∫
X
W (y)η(dy ×A) =

∫
X
W (x)p̂(R̄0

+|x)µ(dx× R̄0
+ ×A)−

∫
X
W (x)p̂({∞}|x)µ(dx× R̄0

+ ×A)

+

∫
X

∫
R0

+

∫
[0,θ]

χW (φ(x, s))ds p̂(dθ|x)µ(dx× R̄0
+ ×A),

where p̂(dθ|x) :=
∫
A pT (dθ|x, a)pA(da|x). All the integrals here and below are finite.

After we apply the Fubini Theorem to the last integral, we obtain:∫
X
W (y)η(dy ×A) =

∫
X
W (x)µ(dx× R̄0

+ ×A)−
∫
X
W (x)p̂({∞}|x)µ(dx× R̄0

+ ×A)

+

∫
X

∫
R0

+

∫
[s,∞)

χW (φ(x, s))p̂(dθ|x) ds µ(dx× R̄0
+ ×A)

=

∫
X
W (x)µ(dx× R̄0

+ ×A)−
∫
X
W (x)p̂({∞}|x)µ(dx× R̄0

+ ×A)

+

∫
X

∫
R0

+

χW (φ(x, s))p̂([s,∞)|x) ds µ(dx× R̄0
+ ×A)

=

∫
X
W (x)µ(dx× R̄0

+ ×A)−
∫
X
W (x)p̂({∞}|x)µ(dx× R̄0

+ ×A)

+

∫
X
χW (y)η(dy ×2)−

∫
X

∫
R0

+

χW (φ(x, s))p̂({∞}|x) ds µ(dx× R̄0
+ ×A).
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The last equality is by the definition (12) of the measure η(dy ×2).
Since

lim
t→∞

W (φ(x, t)) = W (x) +

∫
R0

+

χW (φ(x, s))ds ≡ 0,

we conclude that∫
X
W (x)p̂({∞}|x)µ(dx× R̄0

+ ×A) +

∫
X

∫
R0

+

χW (φ(x, s))p̂({∞}|x) ds µ(dx× R̄0
+ ×A) = 0.

Finally,∫
X
W (y)η(dy ×A) =

∫
X
W (x)µ(dx× R̄0

+ ×A) +

∫
X
χW (y)η(dy ×2)

= W (x0) +

∫
X×R0

+×A
W (l(φ(y, θ), a))µ(dy × dθ × da) +

∫
X
χW (y)η(dy ×2)

by (9), and the required formula (26) follows from the definition (13). 2

If φ(x, τ) = x for some x ∈ X and τ ∈ R+, then, on the cycle {φ(x, t) : 0 ≤ t ≤ τ}, any function
W (·) ∈ W is identical zero. Hence equation (26) does not provide any information about the measure
η on that cycle.

Below, we assume that Conditions 3.1, 3.2, 3.3 and 6.1 are satisfied and the function CI(·) is
continuous. Let

L2(η,W ) :=

∫
X×A

CI(x, a)η(dx× da) +

∫
X
Cg(x)η(dx×2) +W (x0)

+

∫
X
χW (x)η(dx×2)−

∫
X
W (x)η(dx×A) +

∫
X×A

W (l(x, a))η(dx× da)

be the (−∞,+∞]-valued bilinear function on M+
2 × W2. This function can take value +∞ if the

function CI(·) is unbounded; all the other terms are finite.
The primal linear program supW∈W2

L2(η,W )→ infη∈M+
2

can be rewritten as follows:
∫
X×A

CI(x, a)η(dx× da) +

∫
X
Cg(x)η(dx×2) =

∫
X×A2

C(x, a)η(dx× da)→ inf
η∈M+

2

subject to (26).

(27)

(The function C(·) was introduced in (15).) Indeed, if the equality (26) is not satisfied, then, for
some function W ∈ W2, the righthand side of (26) is positive (one can change the sign of W (·) if
needed) and, hence can be made arbitrarily large if we multiply W (·) by a large constant. Therefore,
supW∈W2

L2(η,W ) = +∞. In case the equality (26) is valid, L2(η,W ) =
∫
X×AC

I(x, a)η(dx× da) +∫
XC

g(x)η(dx×2). The similar to (27) linear program, for the case of the constrained optimal impulse
control, was investigated in [20].

The dual linear program infη∈M+
2
L2(η,W )→ supW∈W2

can be rewritten as follows:

W (x0)→ sup
W∈W2

(28)

subject to χW (φ(x, t)) + Cg(φ(x, t)) ≥ 0 for all x ∈ X and for almost all t ≥ 0;

CI(x, a) +W (l(x, a))−W (x) ≥ 0 ∀(x, a) ∈ X×A.

Indeed, suppose there is y ∈ X such that the measurable set

I := {t ≥ 0 : χW (φ(y, t)) + Cg(φ(y, t)) < 0}
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has the positive Lebesgue measure. Then, after we take the normal measure η(dx × 2) associated
with m(dz) := δy(dz) and ψ(z, u) := KI{u ∈ I} with large K > 0, we see that the expression∫

X
Cg(x)η(dx×2) +

∫
X
χW (x)η(dx×2)

can be made arbitrarily big negative. Similarly, if CI(y, b) +W (l(y, b))−W (y) < 0 for some (y, b) ∈
X×A, then one can take η(dx× da) := Kδ(y,b)(dx× da) leading to the arbitrarily big negative value
of the expression∫

X×A
CI(x, a)η(dx× da) +

∫
X×A

W (l(x, a))η(dx× da)−
∫
X
W (x)η(dx×A)

when the constant K > 0 increases. Therefore, if the constraints in (28) are not satisfied, then
infη∈M+

2
L2(η,W ) = −∞. If they are satisfied, then infη∈M+

2
L2(η,W ) = W (x0), and this infimum is

attained at η = 0.

Theorem 6.3 Suppose Conditions 3.1, 3.2, 3.3 and 6.1 are satisfied and the function CI(·) is con-
tinuous. Then the following statements hold.

(a) The solution to the dual program (28) is provided by the Bellman function V∗(·) ∈ W2.

(b) There exists a deterministic stationary strategy f∗ (optimal in problem (4)), and the aggregated
occupation measure η∗, induced by the occupation measure µ∗ corresponding to f∗, solves the
primal program (27).

(c) The optimal values of the primal program (27) and the dual program (28) coincide (i.e., there is
no duality gap) and equal L2(η∗,V∗) = V∗(x0), and (η∗,V∗) is a saddle-point of L2(·):

L2(η∗,W ) ≤ L2(η∗,V∗) ≤ L2(η,V∗) for all η ∈M+
2 , W ∈ W2.

Proof. We denote the optimal values of linear programs (27) and (28) as V al(27) and V al(28)
correspondingly. The Bellman function V∗(·) is bounded by Proposition 3.1; limt→∞ V∗(φ(x, t)) = 0
for all x ∈ X by Theorem 6.1. Hence, V∗(·) ∈ W2 according to Condition 6.1. All the inequalities in
(28) are valid for the function V∗(·) by Theorem 6.1. For the last inequality, note that equation (21)
implies inequality

CI(φ(x, ti), a) + V∗(l(φ(x, ti), a)− V∗(φ(x, ti)) ≥ 0, i = 1, 2, . . . ,

valid for all (x, a) ∈ X ×A and for some sequence ti ↓ 0. It remains to pass here to the limit using
the continuity of the functions CI(·), V∗(·) and the mappings l(·), φ(·). Therefore,

V al(28) ≥ V∗(x0).

The existence of the strategy f∗ follows from Proposition 3.1. The aggregated occupation measure
η∗, induced by the measure µ∗ = µf

∗
(which satisfies requirements (9)), is normal and satisfies equation

(26) by Theorem 6.2. Therefore,

V al(27) ≤
∫
X×A2

C(x, a)η∗(dx× da).

But, according to (8) and (14)

V∗(x0) = V(x0, f
∗) =

∫
X×A2

C(x, a)η∗(dx× da).
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Since, in any case, V al(27) ≥ V al(28), we conclude that V al(27) = V al(28) = V∗(x0), the measure
η∗ solves the linear program (27), and the function V∗(·) solves the linear program (28).

Items (a) and (b) are proved.
The proof of Item (c) coincides with the end of the proof of Theorem 5.1. 2

Similarly to Remark 5.1, the linear programs (27) and (28) can have many solutions.

7 Construction of the Optimal Strategy

The dual linear programs (18) and (28) can help to obtain the Bellman function V∗(·): see Theorems
5.1 and 6.3. After that, the optimal strategy comes from Proposition 3.1. At the same time, the
straightforward dynamic programming approach is more widely used, and it immediately leads to the
optimal strategy in problem (4): see Proposition 3.1.

Below, we concentrate at the primal programs (10) and (27). They are most popular in the
constrained problems of the form

V0(x0, π)→ inf
π∈Π

subject to Vj(x0, π) ≤ dj , j = 1, 2, . . . , , J, (29)

where the objectives Vj(·) are associated with different cost functions Cgj (·) and CIj (·), and dj are fixed
numbers. See, e.g., [8, 19].

As for the first primal linear program (10), the optimal measure µ∗ gives rise to the stationary
strategy π∗:

µ∗(dx× dθ × da) = µ∗(dx× R̄0
+ ×A)π∗(dθ × da|x),

which is optimal in problem (4). This is a standard reasoning for Markov decision processes with
nonnegative costs [8], see also [19, Prop.3.2].

The case of the second primal linear program (27) is more tricky. Below, we look at it more
attentively and impose some reasonable additional conditions and definitions. At the same time, some
conditions, required in Subsection 6.2, are not needed. The flow φ is assumed to be continuous.

Definition 7.1 For a fixed z ∈ X, the set

zX := {φ(z, t) : t ∈ R0
+}

can be called the (partial) orbit of the point z.

Condition 7.1 For arbitrarily fixed z1, z2 ∈ X,

• either z1X ∩ z2X = ∅,

• or z1X ⊂ z2X ,

• or z2X ⊂ z1X .

Definition 7.2 If Condition 7.1 is satisfied, then the set

zX̄ := zX ∪ { yX : y ∈ X, zX ⊂ yX}

is called the full orbit of the point z ∈ X.
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Clearly, zX̄ = yX̄ for each point y ∈ zX̄ , and the set of all full orbits is just a stratification of the
space X.

If the flow φ is continuous, then one can easily show that each full orbit is measurable. We assume
below that Condition 7.1 is satisfied, which is the usual case if the flow comes from an ordinary
differential equation. But it seems that all the proofs can be adjusted for a more general case.

At the end of a full orbit zX̄ , there may be a cycle, i.e., ‘cyclic’ points x such that φ(x, t) = x for
some t > 0. In this case zX̄ c is the part of zX̄ excluding that cycle. Each set zX̄ c is measurable
(and certainly may be empty).

Definition 7.3 Suppose Condition 7.1 is satisfied and consider a particular full orbit zX̄ .

(a) A point x ∈ zX̄ c is called a predecessor of a point y ∈ zX̄ , if there is t > 0 such that
y = φ(x, t). In this case, a (closed) arc [x, y] is defined as {φ(x, u) : 0 ≤ u ≤ t}. Here
t = inf{θ > 0 : y = φ(x, θ} in case the point y is cyclic. A particular point x ∈ zX̄ c
is also an arc denoted as [x, x]. Open arcs, for the points x and y as above, are denoted as
(x, y) := {φ(x, u) : 0 < u < t}, including the case (x, ”∞”) := {φ(x, u) : 0 < u < ∞};
[x, ”∞”] := {φ(x, u) : 0 ≤ u <∞}. An arc [x, y] is called finite if y 6= ”∞”.

(b) If x is a predecessor of y = φ(x, t) on the full orbit zX̄ c, then D(x, y) := t will be called the ‘time-
distance’ between x and y (and also between y and x). The time-distance between x ∈ zX̄ c and
x equals zero.

(c) The ‘basic’ measure ηb(dx) on zX̄ c is defined by its values on the finite arcs [x, y] ⊂ zX̄ c:

ηb([x, y]) := D(x, y) = t, where t is such that y = φ(x, t).

In other words, the basic measure on zX̄ c is the image of the Lebesgue measure subject to the
transformation t→ φ(z, t). Here t can take negative values: φ(z,−t) = z̃, if φ(z̃, t) = z for t > 0 and
for some z̃ ∈ X. Now for any arc (x, y) ⊂ zX̄ (open or not), for a basic measure ηb(dx), for any
positive measurable function f ∫

(x,y)
f(s)ηb(ds) =

∫
[0,t)

f(φ(x, u))du, (30)

where t is such that y = φ(x, t). In case the flow φ is continuous, for a sequence xi ∈ zX̄ c, xi →
x ∈ zX̄ c if and only if ti, the time-distance between xi and x, approaches zero. The measure ηb is
well defined on each set zX̄ c and is non-atomic.

Assume that Conditions 3.1, 3.2 and 3.3 are satisfied. According to Proposition 3.1, there exists
an optimal deterministic stationary strategy f∗ in problem (4). The occupation measure µf

∗
(under

the fixed initial state x0 ∈ X) gives rise to the aggregated occupation measure ηf
∗

which is normal
and exhibits the following obvious property: the measure ηf

∗
(dx × da) on X ×A is a finite sum of

Dirac measures concentrated at the points {(yi, ai)}Ii=1, I ≥ 0.
Note that I ≤ supx∈X

∫
[0,∞)C

g(φ(x, u))du/δ, where δ comes from Condition 3.3(b), and yi cannot
belong to a cycle because, as explained below Condition 3.3, staying in that cycle provides no future
cost, while any impulse results in the positive cost.

Following this observation, without loss of generality, we supplement the primal linear program
(27) with the following requirement:

the measure η(dx× da) on X×A is a finite sum of Dirac measures, (31)

concentrated on the finite set Y = {(yi, ai)}Ii=1, I ≥ 0.
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Now∫
X×A2

C(x, a)η(dx×da) =

∫
X
Cg(x)η(dx×2)+

I∑
i=1

CI(yi, ai) =

∫
X
Cg(x)η(dx×2)+

∑
(y,a)∈Y

CI(y, a).

Roughly speaking, the optimal measure η∗(dx×da) in the program (27), (31), being decomposed as
η∗(dy×A)π∗(da|y), will define the optimal feedback which will be deterministic: π∗(da|y) = δf̂a(y)(da).

As soon as an ‘active’ point y is reached, the impulse f̂a(y) should be applied. (a is not an argument,
just the notation of the function f̂a(·).) The set of active points Ŷ ∗ is finite and also comes from the
measure η∗(dx× da). The rigorous statement is as follows.

Theorem 7.1 Suppose Conditions 3.1, 3.2, 3.3 and 7.1 are satisfied. Then the following statements
are valid.

(a) The modified primal linear program (27), (31) is solvable.

(b) For any solution η∗ with the measure η∗(dx×da) being concentrated on the set Y∗ := {(yi, ai)}Ii=1,
denote Ŷ ∗ := {yi}Ii=1. Then all the points yi are non-cyclic, and the deterministic stationary
strategy g∗, defined by

g∗θ(x) := inf{θ : φ(x, θ) ∈ Ŷ ∗} ∈ R̄0
+ (the infimum, if smaller than ∞, is attained!);

g∗a(x) is such that (φ(x, g∗θ(x)), g∗a(x)) ∈ Y∗,
(or, in case g∗θ(x) =∞, g∗a(x) = â with the immaterial value of â ∈ A),

is optimal in problem (4).

(c) The optimal values of the modified primal linear program (27), (31) and of the initial problem
(4) coincide.

Before proceeding to the proof, we need some definitions and preliminary observations.
Let us explain why the mappings g∗θ and g∗a are measurable, if the flow φ is continuous and the

sets Y∗, Ŷ ∗ are finite. It is sufficient to consider a particular full orbit zX̄ c. If Y := Ŷ ∗ ∩ zX̄ c, then
g∗θ(·) equals the minimum over all y ∈ Y of the following functions (if Y = ∅, then g∗θ(x) ≡ +∞):

gy(x) :=


D(x, y) if x is a predecessor of y (see Definition 7.3);
0, if x = y;
∞ otherwise,

which exhibit the following properties:

(i) if xi → x and x is a predecessor of y, then gy(xi)→ gy(x);

(ii) if xi → y, then gy(y) = 0 ≤ limi→∞ gy(xi);

(iii) if xi → x and y is a predecessor of x, then gy(x) = limi→∞ gy(xi) =∞.

Thus, each function gy(·) and hence g∗θ(·) is lower semicontinuous. For each ai, the set {x ∈ zX̄ c :
g∗a(x) = ai} is the finite union of measurable parts of the full orbit zX̄ c of the form

{y′} ∪ {x : x is a predecessor of y′}

and of the form

{y′} ∪ {x : x if a predecessor of y′ and y” is a predecessor of x}
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with y′, y” ∈ Ŷ ∗.
Suppose a normal measure η on X ×A2 is admissible in the modified linear program (27), (31).

Then Ŷ := {y1, y2, . . . , yI} is the set of active points; the corresponding actions (impulses) ai are
also known. We calculate xi := l(yi, ai), i = 1, 2, . . . , I and denote X̂ := {x0} ∪ {xi}Ii=1. Below,
X̂c (Ŷc) is the collection of all the points from X̂ (Ŷ ), which do not belong to any cycles; similarly,
Yc := {(yi, ai) : yi ∈ Ŷc}. Note, there may be several identical points in X̂ and in X̂c, but all points
in Ŷ are different.

Lemma 7.1 Suppose the flow φ is continuous, Condition 7.1 is satisfied, a normal measure η satisfies
conditions (26) and (31), and the sets X̂c, Ŷc are as described above. Then, on any one full orbit zX̄ c,
the measure η(dx×2) exhibits the following properties.

(a) If zX̄ c ∩ X̂c = ∅, then η(zX̄ c ×2) = 0 and zX̄ c ∩ Ŷc = ∅.

(b) For any finite arc [x, y] in the sense of Definition 7.3(a) with x 6= y, the set [x, y] ∩ zX̄ c will
be called the ‘elementary’ arc, if it does not contain points from X̂c ∪ Ŷc. Now, the value of the
measure η(dx×2) of each elementary arc coincides with the value of the measure k̄ηb(dx), where
the basic measure ηb is as in Definition 7.3(c) and k̄ := kX − kY ; kX (kY ) is the number of
points from X̂c (from Ŷc) which are the predecessors of x. The case k̄ < 0 contradicts equation
(26).

Of course, the value of k̄ depends on the elementary arc, but we do not indicate that dependence
for brevity. Remember, k̄ is bounded by the total number of points in X̂c. Roughly speaking, each
predecessor of a point x, belonging to X̂c (to Ŷc) increases (decreases) the measure η(dx×2).

Definition 7.4 Suppose Condition 7.1 is satisfied and Y = {(yi, ai)}Ii=1 ⊂ X × A is such that all
points yi are different. Denote Ŷ := {yi}Ii=1, X̂ := {x0} ∪ {l(yi, ai)}Ii=1 and let X̂c (Ŷc) be the set of
all the points from X̂ (Ŷ ) which are not cyclic. If k̄ is positive for each elementary arc in any full
orbit zX̄ c with z ∈ X̂c, then we say that the system Y is consistent and a non-atomic measure η̃(dx)
on XYc :=

⋃
z∈X̂c zX̄ c is induced by Y if it coincides with k̄ηb(dx) on all elementary arcs. The induced

measure is always complemented by the zero measure on each full orbit zX̄ c which does not contain
points from X̂c.

Note that any non-atomic measure on zX̄ c is uniquely defined by its values on the elementary
arcs.

According to Lemma 7.1, for any normal measure η on X × A2, satisfying conditions (26) and
(31), the system Y is consistent, and the measure η(dx×2) on X is induced by Y.

If Y is a consistent system, then the induced measure η̃ is undefined on the set of cyclic points
(which may be non-measurable). But the integrals

∫
XC

g(x)η̃(dx) and
∫
X χW (x)η̃(dx) for W ∈ W2

are well defined because there is a version of χW (·) such that χW (x) = 0 and Cg(x) = 0 if the
point x is cyclic. That is why, with some abuse of notation, we say that each consistent system Y
defines the induced measure η̃ on X. In particular, for any normal measure η on X×A2, satisfying
conditions (26) and (31), the measure η(dx×2) is induced by the corresponding system Y. Similarly,
the expression ‘the induced by Y1 measure η̃1 is set-wise smaller/equal/bigger than the induced by Y2

measure η̃2’ only corresponds to the measurable subsets of the set X \ {cyclic points}.

Remark 7.1 One can define in the similar way the consistent system (X̂c, Ŷc), where X̂c and Ŷc are
the sets of non-cyclic points from X, and introduce the induced non-atomic measure on

⋃
z∈X̂c zX̄ c,

equal to k̄ηb(dx) on all the elementary arcs. In this connection, if (X̂1
c , Ŷ

1
c ) and (X̂2

c , Ŷ
2
c ) are two

consistent systems, then the system (X̂1
c ∪ X̂2

c , Ŷ
1
c ∪ Ŷ 2

c ) is consistent, and the measure, induced by it,
is set-wise bigger than the measure, induced by (X̂1

c , Ŷ
1
c ), and than the measure, induced by (X̂2

c , Ŷ
2
c ).
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Proof of Theorem 7.1. We assume that the point x0 is not cyclic. Otherwise, the situation is trivial:
the only optimal solution to the modified linear program (27), (31) corresponds to the case when I = 0
in (31), and the optimal values of the program (27), (31) and of the problem (4) equal zero.

According to Proposition 3.1, there exists an optimal deterministic stationary strategy f∗ in prob-
lem (4). It gives rise to the aggregated occupation measure ηf

∗
, which is normal and satisfies conditions

(26) and (31). Suppose a normal measure η satisfies conditions (26) and (31) and∫
X×A2

C(x, a)η(dx× da) ≤
∫
X×A2

C(x, a)ηf
∗
(dx× da). (32)

We will show that this inequality cannot be strict.
Let X̂, Ŷ , X̂c, Ŷc and Yc be as described above Lemma 7.1. According to Lemma 7.1, the system Y,

associated with η, is consistent, and the measure η(dx×2) is induced by Y. We construct consecutively
the new systems Yjc ⊂ Yc, j = 0, 1, . . ., according to the following algorithm.

(0) Y0
c := ∅, Ŷ 0

c := ∅, j := 0.

(1) θj+1 := inf{θ ∈ R0
+ : φ(xj , θ) ∈ Ŷc \ Ŷ j

c }.

(2) If θj+1 =∞, then stop.

(3) Otherwise, calculate yj+1 := φ(xj , θj+1).

(4) If the point yj+1 is cyclic, then stop.

(5) Otherwise, let aj+1 be the point associated with yj+1 in the system Yc; put Ŷ j+1
c := Ŷ j

c ∪{yj+1},
Yj+1
c := Yjc ∪ {(yj+1, aj+1)}, calculate xj+1 := l(yj+1, aj+1) and increase j by one.

(6) If the point xj is cyclic, then stop.

(7) Otherwise, go to step (1).

The final value of j, denoted as J , equals the number of points in the last sets Ŷ J
c and YJc . The

number of points in the set X̂J
c , coming from YJc and including x0, can equal J , if the algorithm

terminated at step (6), or J + 1, if the algorithm terminated at step (2) or (4). On each step
j = 0, 1, . . . , J , the system Yjc is consistent and all the points {yj}Jj=1 are non-cyclic.

The possible results of the presented algorithm look like on Fig.1, and it will be shown that the
algorithm cannot terminate on step (4).

Let us explain, why the induced by YJc (equivalently, induced by (Ŷ J
c , Ŷ

J
c )) measure η̃(dx) is set-

wise smaller than η(dx × 2). As mentioned above, the measure η(dx × 2) is induced by the system
Y which is consistent (equivalently, induced by the system (X̂c, Ŷc) which is consistent as well: see
Remark 7.1). Consider the system Ỹ := Y \ YJc , the corresponding sets X̃ := {l(y, a) : (y, a) ∈ Ỹ},
Ỹ := {y : (y, a) ∈ Ỹ} and X̃c, Ỹc (the sets of points in X̃, Ỹ , excluding all cyclic points). Clearly,
X̃c = X̂c \ X̂J

c , Ỹc = Ŷc \ Ŷ J
c .

Firstly, we show that the system (X̃c, Ỹc) is consistent. Assume for contradiction that there is an
elementary arc [x, y]∩ zX̄ c with k̄ < 0 for the system (X̃c, Ỹc). If X̂J

c ∩ zX̄ c = ∅, then Ŷ J
c ∩ zX̄ c = ∅ and

the original system (X̂c, Ŷc) is not consistent. Suppose X̂J
c ∩ zX̄ c 6= ∅ and let x1, y1, x2, y2, . . . , xL, yL

be the full ordered list of the points on zX̄ c generated by the algorithm. If the algorithm terminated
on step (2) or (4), then yL := ”∞” in case xL = xJ . Now we have the collection of arcs on zX̄ c

[x1, y1], [x2, y2], . . . , [xL, yL]. (33)

(We are not sure at the moment that these arcs are disjoint.) All the points from Ỹc ∩ zX̄ c can be
ordered: ỹi+1 = φ(ỹi, τi) with τi > 0. Suppose ỹ is the last one among the predecessors of x: ỹ exists

22



Figure 1: In case a, J = 4 and the algorithm terminated on step (2); here θ3 = 0. In case b, J = 2
and the algorithm terminated on step (6).

because k̄ < 0. The point ỹ cannot belong to any of the introduced arcs [xl, yl], l = 1, 2, . . . , L. Thus,
it belongs to one of the open arcs (yl, xl+1), 1 ≤ l < L, or to (yL, ”∞”) if yL 6= ”∞”. One can build a
(small enough) elementary arc [x̃ := φ(ỹ, ε1), φ(ỹ, ε1 + ε2)] ⊂ (yl, xl+1) with ε1, ε2 > 0, which does not
contain any points from Ỹc. (Recall that all points in Ỹc are different.) Let kX (kY ) be the number
of predecessors of x̃ from the set X̂J

c (Ŷ J
c ) and k̃X (k̃Y ) be the number of predecessors of x̃ from the

set X̃c (Ỹc). Since kX = kY and k̃X < k̃Y (because initially we assumed that k̄ < 0 for [x, y] ∩ zX̄ c),
the total value of k̄ for x̃, calculated using the full original system (X̂c, Ŷc), equals kX + k̃X − kY − k̃Y
and is negative, which contradicts the fact that (X̂c, Ŷc) is consistent.

According to Remark 7.1, the induced by YJc (equivalently, by (X̂J
c , Ŷ

J
c )) measure η̃(dx) is set-wise

smaller than η(dx×2), the measure induced by Y (equivalently, by (X̂c, Ŷc)). Therefore, if YJc is the
proper subset of Y, then∫
X
Cg(x)η̃(dx) +

∑
(y,a)∈YJc

CI(y, a) <

∫
X
Cg(x)η(dx×2) +

∑
(y,a)∈Y

CI(y, a) =

∫
X×A2

C(x, a)η(dx× da) :

(34)
recall that CI(y, a) ≥ δ > 0. Clearly, we have equality here, if YJc = Y.

Suppose the arcs (33) on a full orbit zX̄ c intersect: [xl1 , yl1 ] ∩ [xl2 , yl2 ] 6= ∅, where l1 < l2 and
yl2 6= ”∞”. According to the algorithm (0)–(7), yl1 is a predecessor of yl2 and

[xl1 , yl1 ] ∩ [xl2 , yl2 ] =

{
either [xl1 , yl1 ],
or [xl2 , yl1 ].

We have a loop in the algorithm: the point yl1 appeared again at a later step as the point on the arc
[xl2 , yl2 ]. Let j+1 be the number of the point yl1 , as it was enumerated on step (3) of the algorithm. We
eliminate the loop by deleting the points (yl1 = yj+1, aj+1), (yj+2, aj+2), . . . , (yj+K , aj+K), up to and
excluding the end of the loop yl2 , from the system Y. Simultaneously, the points xj+1, xj+2, . . . , xj+K =
xl2 also disappear. The algorithm will provide the shorter sequence of points (J decreases), and in
(33) we will have

[x1, y1], [x2, y2], . . . , [xl1 , yl2 ], . . .

instead ot
[x1, y1], [x2, y2], . . . , [xl1 , yl1 ], [xl2 , yl2 ] . . . .

In the case yl2 = ”∞”, we do the same and obtain the sequence

[x1, y1], [x2, y2], . . . , [xl1 , ”∞”].
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After we eliminate all the loops in this way, we finish with the new system Y ⊂ YJc , which is also
consistent. The measure Υ, induced by Y, is set-wise smaller than η̃ – the measure, induced by YJc .
Therefore, if at least two arcs as in (33) intersect, then∫

X
Cg(x)Υ(dx×2) +

∑
(y,a)∈Y

CI(y, a) <

∫
X
Cg(x)η̃(dx) +

∑
(y,a)∈YJc

CI(y, a). (35)

We have equality here if all arcs in (33) are disjoint (there are no loops) and Y = YJc .
Consider the deterministic stationary strategy g as in the statement (b) of Theorem 7.1, coming

from the system Y. The corresponding aggregated occupation measure ηg is such that

ηg(dx×2) = Υ(dx), ηg(dx× da) =
∑

(yi,ai)∈Y

δ(yi,ai)(dx× da).

Since the strategy f∗ is optimal in problem (4), we have the following relations, based on the inequal-
ities (35),(34) and (32):

V(x0, f
∗) ≤ V(x0, g) =

∫
X×A2

C(x, a)ηg(dx× da) ≤
∫
X×A2

C(x, a)η(dx× da) (36)

≤
∫
X×A2

C(x, a)ηf
∗
(dx× da) = V(x0, f

∗).

The equalities are valid according to Remark 3.2.
We have shown that strict inequalities in (34) and (35) are excluded, i.e., Y = YJc = Y. Moreover,

the strict inequality in (32) is also excluded, i.e., ηf
∗

is a solution to the modified primal linear program
(27), (31).

If η∗ is any solution to the program (27), (31), then it transforms (32) to equality and, for the
described in part (b) deterministic stationary strategy g∗, we have

V(x0, g
∗) =

∫
X×A2

C(x, a)η∗(dx× da) =

∫
X×A2

C(x, a)ηf
∗
(dx× da) = V(x0, f

∗).

All the statements (a),(b) and (c) are proved. 2

8 Computational Methods

Although numerical algorithms are beyond the scope of the present paper, we give some relevant
comments.

First of all, under Conditions 3.1, and 3.2 the integral Bellman equation (7) can be solved by
iterations

Wn+1(x) = inf
(θ,a)∈R̄0

+×A

{
C(x, (θ, a)) +

∫
X∆

Wn(y)Q(dy|x, (θ, a))

}
, ∀x ∈ X

starting from W0(x) ≡ 0: Wn(·) ↑ V∗(·). For details, see [18, Thm.1]. The optimal strategy is as in
Proposition 3.1. Note, this method gives the optimal strategy for all possible initial states x0 ∈ X.

In case the initial state x0 ∈ X is fixed, working with primal linear programs is computationally
advantageous. Assume that Conditions 3.1, 3.2, 3.3 and 7.1 are satisfied and the initial state x0 ∈ X
is fixed. Then the total number of finite intervals θi (i.e. the total number of impulses ai ∈ A) up to
the absorption at the state ∆ is not greater than

I :=

⌊∫
[0,∞)C

g(φ(x, u))du

δ

⌋
(integer part of the ratio) .
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Below we explain how the linear program (27),(31) can be solved numerically.
The reasonable measures η(dx× da) as in (31) can have I ≤ I unit atoms at points from

Y = {(y1 = φ(x0, θ1), a1), (y2 = φ(l(y1, a1), θ2), a2), . . . , (yI = φ(l(yI−1, aI−1), θI), aI)}.

Due to Theorem 7.1, one can require that all the points from Ŷ = {yi}Ii=1 are not cyclic. Accord-
ing to the notations introduced above Lemma 7.1, xi = l(yi, ai), i = 1, 2, . . . , I, and all the points
x0, x1, . . . , xI−1 are not cyclic, too.

After these observations, one can try I = 0, 1, . . . , I and minimize the objective (27) which has the
form

O({θi, ai}Ii=1) :=

I∑
i=1

CI(yi, ai) +

∫
X
Cg(x)η(dx×2) −→ inf

{θi,ai}Ii=1

. (37)

The sequence {θi, ai}Ii=1 defines the sets Ŷ = {yi}Ii=1 and Y = {(yi, ai)}Ii=1 as described above, and∫
X
Cg(x)η(dx×2) =

∫
(x0,y1)

Cg(η(dx×2) +

∫
(x1,y2)

Cg(η(dx×2) + . . .+

∫
(xI ,”∞”)

Cg(η(dx×2)

due to Lemma 7.1(a). Here (xi−1, yi) are arcs in the full orbits xi−1X̄ : see Definitions 7.1 and 7.2. One
can take open arcs because the measure η(dx×2) is normal, hence η({z} ×2) = 0 for all singletons
{z} with non-stationary z. Note that only xI can be stationary, but in this case Cg(xI) = 0 and the
last term in the formula above vanishes. According to Lemma 7.1(b), if, e.g., an arc (xi−1, yi) does
not overlap with all other arcs, then∫

(xi−1,yi)
Cg(η(dx×2) =

∫
[0,θi)

Cg(φ(xi−1, t))dt

because the measure η(dx × 2) = ηb(dx) is basic in the sense of Definition 7.3(c): see (30). Here
k̄ = 1. In general, the arcs can overlap leading to k̄ > 1 for some elementary arcs, but, in any case,∫

X
Cg(x)η(dx×2) =

I+1∑
i=1

∫
[0,θi)

Cg(φ(xi−1, t))dt,

where θI+1 =∞. Note that the measure

µ(dx× dθ × da) :=
I∑
i=1

δxi−1(dx)δθi(dθ)δai(da) + δXI (dx)δ∞(dθ)δaI+1(da)

satisfies equation (9). (The value of aI+1 is of no importance.) The objective (37) coincides with
the objective (10) meaning that, after solving the linear program (27), we also obtain the solution to
the linear program (10). Quite formally, the program (27) is less dimensional than (10) because the
component θ is absent.

Now, under the introduced conditions, the objective (37) is a continuous function of the controls
{(θi, ai)}Ii=1 and, e.g., in case A ⊂ Rk with the Euclidean topology, the problem (37) is a smooth
finite-dimensional minimization problem for which standard numerical methods can be applied. After
it is solved for all I = 0, 1, . . . , I, one has in hand the optimal I∗ and {θ∗i , a∗i }I

∗
i=1 providing the absolute

infimum
inf

I∈{0,1,...,I},{θi,ai}Ii=1

O({θi, ai}Ii=1).

The sequence {θ∗i , a∗i }I
∗
i=1 defines the set Y∗ = {(yi, ai)}I

∗
i=1, and the optimal control strategy can be

built as is shown in Theorem 7.1(b). The sequence

(θ∗1, a
∗
1), (θ∗2, a

∗
2), . . . , (θ∗I∗ , a

∗
I∗), (+∞, aI∗+1), . . .

defines the optimal dynamics as in (1). The values of aI∗+1, aI∗+2, . . . and θI∗+2, θI∗+3, . . . are of no
importance.
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9 Example

The main goal of this section is to illustrate the introduced concepts including the form of the measures
µ∗ and η∗ and the Bellman function V∗(·).

Consider the susceptible-infected-removed (SIR) model of epidemics described by the following
differential equations 

ẋ(t) = −β x(t)y(t)

x(t) + y(t)
;

ẏ(t) = β
x(t)y(t)

x(t) + y(t)
− γy(t).

(38)

Here x(t) > 0 and y(t) > 0 denote the numbers of susceptible and infective individuals in the closed
population of the size N at time t; the initial values x(0) = x0, y(0) = y0 are fixed; β, γ > 0. The
number of removed (dead or recovered with immunity) individuals at time t equals N − x(t) − y(t).
Similar models were considered in [3, 17, 18]. The flow φ on the space {(x, y) : x > 0, y > 0, x+y ≤ N}
comes from (38). At any moment, the decision maker can isolate all infectives, so that A = {1} is a
singleton. As the result, the epidemic terminates, that is, the system moves to the isolated absorbing
cemetery with no future cost. The state space is

X = {~x = (x, y) : x > 0, y > 0, x+ y ≤ N} ∪ { };

the topology in X ∩ R2 is just the trace of the standard Euclidean topology. The generic elements
of X are denoted as ~x; φ( , t) ≡ and l(~x, a) ≡ for all ~x ∈ X. The costless cemeteries ∆ and
have different meaning: means that the process was stopped at a finite time moment, and ∆ is the
fictitious state meaning that no impulses will be applied, and the process will never be stopped.

The gradual cost rate is the infection rate

Cg(x, y) = β
xy

x+ y
for (x, y) ∈ R2; Cg( ) = 0,

which, after integration along the flow, results in the total number of new infectives. Here and below
we omit one pair of brackets in the expressions like Cg(~x) = Cg((x, y)) for ~x ∈ R2. The cost function
associated with impulses, also called ‘interventions’, equals

CI(x, y, a) = δ + cy for ~x ∈ R2,

where δ > 0 is the cost of the initialization of the isolation process, and c > 0 is the cost of the
isolation of one unit of infectives. For consistency, we put CI( , a) = δ.

The complete solution to this optimal impulse control problem can be found in [17], where it
was allowed to isolate any number of existing infectives. But the optimal solution prescribes at any
moment either do nothing, or isolate ALL infectives immediately.

Below, we consider the most interesting case β < γ, c < β
γ−β . If there are no impulses, then

x(t) = x0

(
1 + y0

x0
e−(γ−β)t

) β
γ−β

(
1 + y0

x0

) β
γ−β

; y(t) = y0

(
1 + y0

x0
e−(γ−β)t

) β
γ−β

(
1 + y0

x0

) β
γ−β

e(γ−β)t

; (39)

lim
t→∞

y(t) = 0; lim
t→∞

x(t) = x0

(
x0

x0 + y0

)β/(γ−β)

; w(t) :=
y(t)

x(t)
=
y0

x0
e−(γ−β)t.
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Conditions 3.1, 3.2 and 3.3 are satisfied:

∫
[0,∞)

Cg(φ(~x, u))du =

 x

(
1−

(
x
x+y

)β/(γ−β)
)
, if ~x = (x, y) ∈ R2;

0, if ~x =
≤ N.

The optimal control strategy and the shape of the function V∗(·) are illustrated on Fig.2.
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Figure 2: Susceptible-Infective dynamics under optimal control with c = 0.05, δ = 0.1, β = 0.05 and
γ = 0.1. Dotted lines separate the areas I,II, and III; vertical dashed lines indicate the impulses.
According to the introduced notations, after each one impulse the state is , the unique stationary
point with no future cost.

The critical area L (denoted in the previous sections as L), where the impulses are optimal, is
defined as follows:

L :=
{

(x, y) : x > 0, y > 0, x+ y < N, x ≥ max
{
G(y),

y

w∗

}}
,
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where w∗ := β+cβ−cγ
cγ and G(y) is the solution to the equation

δ + cy = x

[
1−

(
1 +

y

x

)− β
γ−β
]

with respect to x. The points Ĥ(x̂, ŷ) and H∗(x∗, y∗) have coordinates

x̂ :=
δ

1−
(
c(γ−β)
β

)β
γ − c

[(
β

c(γ−β)

) γ−β
γ − 1

] ; ŷ := x̂

((
β

c(γ − β)

) γ−β
γ

− 1

)
;

x∗ =
δ

1− cw∗ − (1 + w∗)
− β
γ−β

; y∗ = w∗x∗.

The trajectory I∗ is defined in the parametric form by equalities (39), where x0 = x∗, y0 = y∗ and
t ∈ (−∞,+∞), x(t) + y(t) ≤ N . Cf. Definition 7.2: I∗ is the full orbit of the point H∗. By the way,
in this example, Condition 7.1 is satisfied. All the above presented expressions were justified in [17].

Now in the areas I, II and III, which form one open set, no impulses are needed, so that

V∗(x, y) =

∫
[0,∞)

Cg(φ(~x, u))du = x

(
1−

(
x

x+ y

)β/(γ−β)
)
.

Similarly, if ~x = , the process is over (stopped), no more impulses are needed, and V∗( ) = 0.
In the critical area L

V∗(x, y) = δ + cy.

In the area IV, which can be represented as

x > x∗; w∗x < y ≤ x
[
(1 + w∗)

( x
x∗

) γ−β
β − 1

]
; x+ y ≤ N,

one has to wait until the trajectory touches the critical area L, that is, the time interval up to the
impulse/intervention is

θ1 :=
1

γ − β
ln

(
y/x

w∗

)
. (40)

Further,

V∗(x, y) =

∫
[0,θ1)

Cg(x(t), y(t))dt+ δ + cy(θ1) = x+ (cw∗ − 1)x

[
1 + w∗

1 + y
x

] β
γ−β

+ δ, (41)

where x(t) and y(t) are given by (39) with x0 = x, y0 = y. Here x− x
[

1+w∗

1+ y
x

] β
γ−β

is the total number

of the new infectives over the time interval θ1; y(θ1) = w∗x
[

1+w∗

1+ y
x

] β
γ−β

is the number of infectives to

be isolated at the moment of intervention.
The optimal strategy is deterministic stationary:

f∗(~x) =


(∞, 1), if ~x is in the areas I, II, or III or ~x = ;
(0, 1), if ~x is in the critical area L;
(θ1, 1), if ~x is in the area IV.
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Conditions 6.2(a,c,d) are satisfied, but Conditions 6.2(b,e) are not. Nevertheless, Condition 6.1 is
satisfied. Explanations are in [17]; note also that V∗(x, y) ≤ x ≤ N for (x, y) ∈ R2 because no more
than x susceptibles can become infected, and the positive Bellman function V∗(·) is smaller.

All the theorems and propositions from the previous sections hold.
The above presented Bellman function V∗(·) belongs toW1 and also toW2 and provides a solution

to the dual linear programs (18) and (28).
As for the primal programs (10) and (27), the optimal measures µ∗ and η∗, coming from the

optimal strategy f∗, depend on the initial condition ~x0.
(a) If ~x0 = , then the process is over (stopped), no more impulses are needed, and µ∗(d~x× dθ ×

da) = δ (d~x)δ∞(dθ)δ1(da); η∗( ×2) =∞; η∗( ×A) = 0; η∗((X ∩ R2)×A2) = 0.
(b) Suppose ~x0 = (x0, y0) belongs to the open set represented on Fig.2 as the union of the areas

I, II and III. Then the optimal strategy prescribes not to isolate any infectives at all, because the
amount of susceptibles x0 is not large, and preventing their infection is not profitable compared with
the cost of the isolation. The key expressions are as follows:

µ∗(d~x× dθ × da) = δ~x0
(d~x)δ∞(dθ)δ1(da),

and ∫
X×R̄0

+×A
C(~x, (θ, a))µ∗(d~x× dθ × da) = x0

(
1−

(
x0

x0 + y0

)β/(γ−β)
)

because

C(~x, (∞, 1)) =

∫
[0,∞)

Cg(φ(~x, u))du = x

(
1−

(
x

x+ y

)β/(γ−β)
)

for ~x = (x, y) ∈ R2.

For the measure η∗, induced by µ∗, we have η∗(X × A) = 0; the component η∗(d~x × 2) is
concentrated on the trajectory of the system (38) starting from ~x0

~x0
X := {(x(u), y(u)) : u ≥ 0, x(0) = x0, y(0) = y0} = {φ(~x0, u) : u ∈ R0

+} :

see Definition 7.2. It is defined by its values on the arcs: if ~x1 = φ(~x0, u); ~x2 = φ(~x1, t) = φ(~x0, u+ t),
then

η∗({φ(~x0, s) : u ≤ s ≤ u+ t} ×2) =: D(~x1, ~x2) = t

is the ‘time-distance’ between ~x1 and ~x2. See Remark 6.1, where m(d~x) = δ~x0
(d~x) and ψ(~x, u) = 1:

the measure η∗(d~x × 2) on ~x0
X is the image of the Lebesgue measure with respect to the mapping

φ(~x0, u) : R0
+ → ~x0

X . See also Definition 7.3: the measure η∗(d~x×2) is basic.∫
X×A2

C(~x, a)η∗(d~x× da) =

∫
~x0
X
β

xy

x+ y
η∗(d~x×2) =

∫
[0,∞)

[
−dx
dt

]
dt

= x0 − lim
t→∞

x(t) = x0

(
1−

(
x0

x0 + y0

)β/(γ−β)
)
.

(c) Suppose ~x0 = (x0, y0) belongs to the critical area L. Then the optimal strategy prescribes to
isolate immediately all the infectives. The key expressions are as follows:

µ∗(d~x× dθ × da) = δ~x0
(d~x)δ0(dθ)δ1(da) for ~x ∈ R2; µ∗( × dθ × da) = δ∞(dθ)× δ1(da),

and ∫
X×R̄0

+×A
C(~x, (θ, a))µ∗(d~x× dθ × da) = δ + cy0
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because
C(~x, (0, 1)) = CI(~x, 1) = δ + cy for ~x = (x, y) ∈ R2.

For the measure η∗, induced by µ∗, we have

η∗((X∩R0
+)×2) = 0; η∗(d~x× da) = δ~x0

(d~x)δ1(da) for ~x ∈ R2; η∗( ×2) =∞; η∗( ×A) = 0 :

the process spends infinite time in the cemetery , and no impulses are applied;∫
X×A2

C(~x, a)η∗(d~x× da) = δ + cy0.

(d) Now suppose ~x0 = (x0, y0) belongs to the area IV. Then the optimal strategy prescribes to
wait and to apply the impulse θ1 time units later. The key expressions are as follows:

µ∗(d~x× dθ × da) = δ~x0
(d~x)δθ1(dθ)δ1(da) for ~x ∈ R2; µ∗( × dθ × da) = δ∞(dθ)δ1(da),

and ∫
X×R̄0

+×A
C(~x, (θ, a))µ∗(d~x× dθ × da) = x0 + (cw∗ − 1)x0

[
1 + w∗

1 + y0

x0

] β
γ−β

+ δ

because

C(~x0, (θ1, 1)) =

∫
[0,θ1]

[
−dx(t)

dt

]
dt+ CI(x(θ1), y(θ1), 1),

where x(t) and y(t) are given by the equalities (39), so that

C(~x0, (θ1, 1)) = x0 − x(θ1) + δ + cy(θ1),

where

x(θ1) = x0

[
1 + w∗

1 + y0

x0

] β
γ−β

; y(θ1) = w∗x0

[
1 + w∗

1 + y0

x0

] β
γ−β

,

see also (41). Below, ~x(θ1) := (x(θ1), y(θ1)).
For the measure η∗, induced by µ∗, we have

η∗(d~x× da) = δ~xθ1 (d~x)δ1(da) for ~x ∈ R2; η∗( ×2) =∞; η∗( × da) = 0 :

the process spends infinite time in the cemetery , and no impulses are applied. The component
η∗(d~x × 2), considered on R2, is basic, concentrated on the part of the trajectory ~x0

X from ~x0 up
to ~x(θ1), cf. (b). It coincides with the image of the Lebesgue measure on [0, θ1] with respect to the
mapping φ(~x0, u) : [0, θ1]→ ~x0

X . Therefore,∫
X×A2

C(~x, a)η∗(d~x× da) =

∫
[0,θ1]

[
−dx(t)

dt

]
dt+ δ + cy(θ1)

= x0 − x(θ1) + δ + cy(θ1).

In each case the occupation measure µf
∗

= µ∗ satisfies the characteristic equation (9) and solves
the first primal program (10). The aggregated occupation measure η∗, induced by µ∗, satisfies the
characteristic equation (26) and solves the second primal program (27). As for the Bellman function
V∗(·), it can be modified arbitrarily enough outside the trajectory ~x0

X (e.g., one can put it there equal
to zero); the resulting function will still solve the dual linear programs (18) and (28). See Remark 5.1.
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10 Conclusion and Discussion

Linear programming proved its effectiveness in many optimal control problems. In this article, we
investigated two pairs of linear programs coming from the optimal impulse control with total cost.
The dual programs (18) and (28) actually represent the dynamic programming approach in its integral
and differential form: see equations (7) and (21) correspondingly.

The primal linear programs (10) and (27) are useful in the case of constrained optimization (29)
which was not discussed in this article. In this case, the dynamic programming approach is problem-
atic, but the primal linear programs (10) and (27) remain the same: one simply has to supplement
them with inequalities ∫

X×R̄0
+×A

Cj(x, (θ, a))µ(dx× dθ × da) ≤ dj ;∫
X×A2

Cj(x, a)η(dx× da) ≤ dj

correspondingly (j = 1, 2, . . . , J).
The conditions imposed on the primitives of the model are not very restrictive. Several of them

probably can be relaxed without much efforts. For example, instead of Condition 3.3(a), one can
require that, after applying a bounded number of impulses, one can reach, from any initial state x0,
such a point x̂ ∈ X that

∫
[0,∞) |C

g(φ(x̂, u))du| <∞. As mentioned in Section 7, it seems that one can
omit Condition 7.1.

As for Conditions 3.1 and 3.3(b), the situation, when the cost functions can be positive and
negative, is more challenging. Investigation of such models is an interesting open problem.

11 Appendix

Proof of Lemma 6.2. According to Proposition 3.1, the Bellman function V∗(·) is bounded and lower
semicontinuous. To show that it is upper semicontinuous, we consider +∞ ∈ R̄0

+ as the isolated point.
The action space R̄0

+×A in the Markov decision process (5) is not compact, but the original transition
probability (2) is continuous.

Let us show that the cost function C(x, (θ, a)) given by (3) is continuous on X × R̄0
+ ×A. The

second term I{θ < ∞}CI(φ(x, θ), a) is continuous because so are the function CI(·) and the flow φ.
(Remember, θ = +∞ is the isolated point in R̄0

+.)
Consider the first term

∫
[0,θ]C

g(φ(x, u))du and suppose xj → x and θj → θ <∞. Then∣∣∣∣∣
∫

[0,θ]
Cg(φ(x, u))du−

∫
[0,θj ]

Cg(φ(xj , u))du

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[0,θ]
Cg(φ(x, u))du−

∫
[0,θ]

Cg(φ(xj , u))du

∣∣∣∣∣+ sup
Y ∈X
|Cg(y)| × |θ − θj | → 0.

Here the first term approaches zero by the dominated convergence theorem.
Suppose θ =∞ and xj → x. Then, for an arbitrary ε > 0, for T such that

sup
y∈X

∫
(T,∞)

|Cg(φ(y, u))|du < ε

4
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we have ∣∣∣∣∣
∫

[0,∞)
Cg(φ(x, u))du−

∫
[0,∞)

Cg(φ(xj , u))du

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[0,T ]
Cg(φ(x, u))du−

∫
[0,T ]

Cg(φ(xj , u))du

∣∣∣∣∣+
ε

2
≤ ε

for all xj close enough to x: for fixed T ,

lim
xj→x

∣∣∣∣∣
∫

[0,T ]
Cg(φ(x, u))du−

∫
[0,T ]

Cg(φ(xj , u))du

∣∣∣∣∣ = 0

by the dominated convergence theorem, as above. Therefore, the cost function C(·) is continuous.
Now we approximate the solution to equation (7) as follows:

Wn(∆) = 0;

W0(x) :=

∫
[0,∞)

Cg(φ(x, u))du, x ∈ X;

Wn+1(x) = inf
(θ,a)∈R̄0

+×A

{
C(x, (θ, a)) +

∫
X∆

Wn(y)Q(dy|x, (θ, a))

}
, x ∈ X.

As usual, the stochastic kernel Q is given by (2), and, as mentioned above, it is continuous. The
sequence Wn(·) ≥ 0 decreases point-wise and, for each n = 0, 1, . . ., the function Wn(·) is bounded and
upper semicontinuous by the inductive argument. (See [2, Prop.7.31;7.32].) Therefore, the function
W∞(x) = limn→∞Wn(x) = infn∈{0,1,...}Wn(x) on X∆ is bounded and upper semicontinuous according
to [2, Prop.7.32].

It remains to show that the function W∞(·) satisfies equation (7) for all x ∈ X. Since, for all
n = 0, 1, . . ., x ∈ X,

Wn+1(x) = inf
(θ,a)∈R̄0

+×A

{
C(x, (θ, a)) +

∫
X∆

Wn(y)Q(dy|x.(θ, a))

}
≥ inf

(θ,a)∈R̄0
+×A

{
C(x, (θ, a)) +

∫
X∆

W∞(y)Q(dy|x.(θ, a))

}
,

we conclude that

W∞(x) = lim
n→∞

Wn+1(x) ≥ inf
(θ,a)∈R̄0

+×A

{
C(x, (θ, a)) +

∫
X∆

W∞(y)Q(dy|x, (θ, a))

}
.

On the other hand, for all n = 0, 1, . . ., x ∈ X,

W∞(x) ≤Wn+1(x) ≤ C(x, (θ, a)) +

∫
X∆

Wn(y)Q(dy|x, (θ, a))

for all (θ, a) ∈ R̄0
+ × A. After we pass to the limit as n → ∞, by the dominated (or monotone)

convergence theorem, we obtain:

W∞(x) ≤ C(x, (θ, a)) +

∫
X∆

W∞(y)Q(dy|x, (θ, a))
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for all x ∈ X, (θ, a) ∈ R̄0
+ ×A. Therefore,

W∞(x) ≤ inf
(θ,a)∈R̄0

+×A

{
C(x, (θ, a)) +

∫
X∆

W∞(y)Q(dy|x, (θ, a))

}
,

and the bounded function W∞(·) satisfies equation (7). Since the bounded solution to equation (7) is
unique according to Proposition 3.1, we conclude that the Bellman function V∗(·) = W∞(·) is upper
semicontinuous.

The proof is completed. 2

Proof of Lemma 6.3. According to Proposition 3.1, there exists a measurable mapping f∗ : X→
R̄0

+ × A providing the infimum in (7) and defining the optimal strategy in problem (4), which is
presented below as (f∗θ (y), f∗a (y)) for y ∈ X.

Let x ∈ X be arbitrarily fixed. We will show that inequality (19) holds for the Bellman function
V∗(·), for the constant

G(x) := sup
y=φ(x,u):u≥0

Cg(y) ∨ sup
(y,a)∈{φ(x,u):u≥0}×A

|g(x, y, a)|.

Suppose y1 = φ(x, τ1) and y2 = φ(x, τ2) are two arbitrarily fixed points with 0 ≤ τ1 < τ2 <∞.
(a) If (τ2 − τ1) < f∗θ (y1), then

V∗(y1) =

∫
[0,τ2−τ1]

Cg(φ(y1, u))du+ V∗(y2)

by Corollary 1 of [18]. The same equality holds also in case τ2 − τ1 = f∗θ (y1), because the function
V∗(·) is continuous by Lemma 6.2: one should pass to the limit as t ↑ (τ2 − τ1) in the equality

V∗(y1) =

∫
[0,t]

Cg(φ(y1, u))du+ V∗(φ(y1, t)).

Therefore,
|V∗(y1)− V∗(y2)| ≤ G(x)(τ2 − τ1).

(b) Suppose now that (τ2 − τ1) > f∗θ (y1). Here 0 ≤ f∗θ (y1) <∞.
According to (7),

V∗(y1) ≤
∫

[0,τ2−τ1]
Cg(φ(y1, u))du+ inf

(θ,a)∈R̄0
+×A

{∫
[0,θ]

Cg(φ(y2, u))du+ I{θ < +∞}CI(φ(y2, θ), a)

}

=

∫
[0,τ2−τ1]

Cg(φ(y1, u))du+ V∗(y2) ≤ V∗(y2) +Gx(τ2 − τ1). (42)

Furthermore,
V∗(y2) ≤ CI(y2, f

∗
a (y1)) + V∗(l(y2, f

∗
a (y1))).

This inequality holds because we substituted specific values (θ = 0, f∗a (y1)) in the formula (7) for y2.
Since

V∗(y1) =

∫
[0,f∗θ (y1)]

Cg(φ(y1, u))du+ CI(φ(y1, f
∗
θ (y1)), f∗a (y1)) + V∗(l(φ(y1, f

∗
θ (y1)), f∗a (y1)))

and l(y2, f
∗
a (y1)) = l(φ(y1, f

∗
θ (y1)), f∗a (y1)), by Condition 6.2(c,d), we see that

V∗(y2) ≤ CI(y2, f
∗
a (y1)) + V∗(y1)−

∫
[0,f∗θ (y1)]

Cg(φ(y1, u))du− CI(φ(y1, f
∗
θ (y1)), f∗a (y1))

≤ V∗(y1) + |CI(φ(y1, τ2 − τ1), f∗a (y1))− CI(φ(y1, f
∗
θ (y1)), f∗a (y1))|

≤ V∗(y1) +

∫
[f∗θ (y1),τ2−τ1]

|g(x, φ(y1, u), f∗a (y1))|du.
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Here, the semigroup property of the flow φ was used several times.
Therefore, V∗(y2) ≤ V∗(y1) +G(x)(τ2 − τ1) and, taking into account (42), we see that again

|V∗(y1)− V∗(y2)| ≤ G(x)(τ2 − τ1).

Thus, the Bellman function V∗(·) is absolutely continuous along the flow φ.
For the last statement, note that, for all x ∈ X, |χV∗(φ(x, u))| ≤ G(φ(x, u)) for any version of the

function χV∗(·), for almost all u ≥ 0. 2

Proof of Lemma 6.4. The case a1 = a2 = 0 is trivial: it is sufficient to fix an arbitrary probability
m on X and put ψ(x, u) ≡ 0. In case a1 6= 0, a2 = 0, one should take m = m1 and put ψ(x, u) :=
a1ψ1(x, u). The case a1 = 0, a2 6= 0 is symmetric.

Suppose a1 6= 0 and a2 6= 0.
We take

m(dx) :=
|a1|m1(dx) + |a2|m2(dx)

|a1|+ |a2|
and ψ(x, u) := a1ψ1(x, u)d1(x) + a2ψ2(x, u)d2(x),

where dj(·) :=
dmj
dm is the Radon-Nikodym derivative (j = 1, 2).

(a) For an arbitrarily fixed S ∈ R+, denote

DS := {(x, u) : |ψ(x, u)| > S} ⊂ X× R0
+.

Since |ψ(x, u)| ≤ |a1ψ1(x, u)|d1(x) + |a2ψ2(x, u)|d2(x) for each (x, u) ∈ DS we have

either |a1ψ1(x, u)|d1(x) >
S

2
, or |a2ψ2(x, u)|d2(x) >

S

2
;

hence DS ⊂ DS/2
1 ∪DS/2

2 , where

D
S/2
j := {(x, u) : |ajψj(x, u)|dj(x) >

S

2
}, j = 1, 2.

Note that, for j = 1, 2, m({x ∈ X : |aj |dj(x) > |a1|+ |a2|}) = 0 because, otherwise, for the set Ej :=
{x ∈ X : |aj |dj(x) > |a1|+a2|} we would have had mj(Ej) =

∫
Ej
dj(x)m(dx) > (|a1|+|a2|)m(Ej)/|aj |

which is impossible. Furthermore, for each x ∈ DS/2
j , dj(x) > 0 because S > 0. Thus,

m̄(D
S/2
j ) =

∫
X

∫
R0

+

I{0 < dj(x) ≤ (|a1|+ |a2|)/|aj |}
I{|ajψj(x, u)|dj(x) > S/2}

dj(x)
du dmj(x)

≤
∫
X×R0

+

I{0 < dj(x) ≤ (|a1|+ |a2|)/|aj |}
I{(|aj + |a2|)|ψj(x, u)| > S/2}

dj(x)
m̄j(dx× du).

The last expression equals zero if∫
X×R0

+

I
{
|ψj(x, u)| > S/2

|a1|+ |a2|

}
m̄j(dx× du) = 0.

Let Sj > 0 be a constant in (25) corresponding to the measure m̄j and the function ψj(·) (j = 1, 2).

Then m̄(D
S/2
j ) = 0 as soon as S ≥ 2Sj(|a1|+ |a2|) and, for the constant Ŝ := 2(S1∨S2)

|a1|+|a2| , we have

m̄(DŜ) ≤ m̄(D
Ŝ/2
1 ) + m̄(D

Ŝ/2
2 ) = 0,

that is, the requirement (25) is satisfied for Ŝ ∈ R+.
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(b) The proof of this part is straightforward: for each i = 1, 2, . . ., Γ ∈ B(X× [i− 1, i)),

M i(Γ) =

∫
[i−1,i)

∫
X
I{(x, u) ∈ Γ}[a1ψ1(x, u)d1(x) + a2ψ2(x, u)d2(x)]m(dx) du

= a1

∫
[i−1,i)

∫
X
I{(x, u) ∈ Γ}ψ1(x, u)m1(dx) du

+a2

∫
[i−1,i)

∫
X
I{(x, u) ∈ Γ}ψ2(x, u)m2(dx) du = a1M

i
1(Γ) + a2M

i
2(Γ).

All three functions, integrated here, are bounded m̄-a.s., m̄1-a.s. and m̄2-a.s. correspondingly.
(c) This assertion is obvious. 2

Proof of Lemma 7.1. (a) For an arbitrarily fixed arc [x, y] ⊂ zX̄ c with y 6= ”∞”, take the following
function W (·) ∈ W2:

W (z) =


−D(x, y), if z is a predecessor of x on zX̄ c;
−D(z, y), if z ∈ [x, y];
0 otherwise,

where D is the time-distance. (See Definition 7.3(b).) Now

χW (z) =

{
1, if z ∈ [x, y];
0 otherwise,

and equality (26) implies that η([x, y]×2) = 0, because W (·) ≤ 0, W (x0) = 0, and W (l(y, a)) = 0 for
all points (y, a) ∈ Y. Hence η( zX̄ c ×2) = 0, because zX̄ c can be represented (up to a finite number
of points, where η = 0) as a union of arcs [x, y] ⊂ zX̄ c with x, y from the countable set, everywhere
dense in X.

Assume for contradiction that there is x ∈ zX̄ c ∩ Ŷc. Since x is non-cyclic, one can repeat the
presented above construction for a (small enough) arc [x, φ(x, ε)] ⊂ zX̄ c with ε > 0. In equality (26)
we will obtain the strictly positive value on the right-hand side.

(b) The proof follows from the same analysis of the similar functions W (·) ∈ W2. The only
difference is that the elementary arc can be half-closed: [x, y) = {φ(x, u) : 0 ≤ u < t}, where
t = D(x, y), and the point y is cyclic. Now, like previously, equality (26) implies that

η([x, y]×2)
η([x, y)×2)

}
=

∫
X
χW (x)η(dx×2) =

∫
X
W (y)η(dy ×A)

−
[
W (x0) +

∫
X×A

W (l(y, a))η(dy × da)

]
= D(x, y)[kX − kY ] = k̄

{
ηb([x, y])
ηb([x, y)).

2
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