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Abstract: We investigate the impact of sterile neutrinos on the decay rate of extra Z′s with mass in the TeV
range in heterotic string derived models. We explore the impact of sterile neutrinos on the current Z′ mass
exclusion limits at the LHC, and how these bounds change when the parameter space of this specific class of
models is modified.
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I. INTRODUCTION

The Standard Model of particle physics provides an
effective quantum field theory parameterisation of all
observational data to date. Furthermore, the logarith-
mic evolution of the Standard Model parameters sug-
gests that it may provide such viable parameterisation

∗ 1Alon.Faraggi@liverpool.ac.uk, 2mguzzi@kennesaw.edu

up to the Grand Unified Theory scale, or the Planck
scale. Nevertheless, it is in general anticipated that the
Standard Model is augmented by additional particles and
symmetries due to its numerous shortcomings, e.g.: it
does not provide viable sources for dark matter and dark
energy; it is composed of several ad hoc sectors and re-
quires 19 continuous, and numerous discrete, parameters
to account for the experimental data; it does not account
for the gravitational interactions, which is fundamentally
incompatible with the quantum field theory framework.
Chief among them is the fact that neutrinos are mass-
less in the renormalisable Standard Model, which con-
tradicts the experimental observations. It is clear that
the neutrino sector of the Standard Model and its ex-
tensions provide the most fertile ground for experiments
in the near future. Perhaps most intriguing in this con-
text is the possible existence of light sterile neutrinos.
In turn, it was argued that sterile neutrinos can exist at
low scales provided that they are charged under an ex-
tra U(1) gauge symmetry, which remains unbroken down
to low scales, and under which the sterile neutrinos are
chiral. Mass terms for the sterile neutrinos can only be
generated by the Vacuum Expectation Value (VEV) that
breaks the extra U(1) symmetry. Otherwise, absence of
global symmetries in quantum gravity, in general, leads
to the expectation that Planck scale mass terms will be
generated for particles whose mass scales are not pro-
tected by a chiral symmetry. We may allow for their mass
terms to be suppressed by several orders of magnitude
relative to the Planck scale [1], but suppression of their
masses to the GeV scale, or below, requires high degree
of fine tuning, or a remnant local discrete symmetry [2].
This general expectation is indeed borne out in explicit
quasi–realistic string constructions [3, 4]. Light sterile
neutrinos are therefore naturally associated with an ex-
tra U(1) gauge symmetry that may be within reach of the
LHC [5]. On the other hand, the existence of light sterile
neutrinos may have profound impact on the collider sig-
natures of the extra vector boson, as it may substantially
affect its branching ratios, compared to extra Z ′ models
without sterile neutrinos. In this paper we examine the
potential impact of the sterile neutrinos on the experi-
mental signatures of the extra string derived Z ′ model.

http://arxiv.org/abs/2204.11974v1
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We remark that construction of string models with extra
Z ′ gauge symmetries, that may remain unbroken down
to low scales, has proven to be an arduous task. The
reason is that the extra U(1) symmetries that are often
discussed in the context of GUT extensions of the Stan-
dard Model are anomalous in explicit string models and
therefore cannot remain unbroken down to low scales. In
this paper we examine the potential impact of light ster-
ile neutrinos on the signature of extra Z ′ vector boson
in string derived models. In section II we give a brief
overview of the construction of string models with extra
Z ′ gauge symmetry. In section III we analyze the neu-
tral gauge boson sector of the model and in section VI we
study the decay rates and analyze the branching ratios of
the extra Z ′. In sectionV we investigate the sterile neu-
trino sector and calculate the branching ratios of the Z ′

into sterile neutrinos and compare with the correspond-
ing rates in their absence. Finally, in section VII we study
phenomenological implications and signatures at hadron
colliders. Our concluding remarks are in section VIII.

II. EXTRA Z′ IN STRING DERIVED MODELS

In this section we discuss the structure of the string
derived Z ′ model of ref. [6]. The model was con-
structed in the free fermionic formulation [7–9]. Only
the most salient features relevant for our discussion
are highlighted here. In the free fermionic formula-
tion in four dimensions all the worldsheet degrees of
freedom required to cancel the conformal anomaly are
represented in terms of free fermions on the string
worldsheet. In a convenient notation the 64 world-
sheet fermions in the lightcone gauge are denoted as:
Left-Movers: ψµ, χi, yi, ωi (µ = 1, 2, i = 1, · · · , 6)
Right-Movers

φ̄A=1,··· ,44 =



























ȳi , ω̄i i = 1, · · ·, 6

η̄i i = 1, 2, 3

ψ̄1,··· ,5

φ̄1,··· ,8

where the {y, ω|ȳ, ω̄}1,··· ,6 correspond to the six compact-
ified dimensions of the internal space; ψ̄1,··· ,5 produce the
SO(10) GUT symmetry; φ̄1,··· ,8 produce the hidden sec-
tor gauge group; and η̄1,2,3 produce three U(1) gauge
symmetries. Models in the free fermionic formulation
are specified in terms of boundary condition basis vec-
tors, which denote the transformation properties of the
fermions around the noncontractible loops of the world-
sheet torus, and the Generalised GSO projection coeffi-
cients of the one loop partition function [7–9]. The free
fermion models correspond to toroidal Z2 × Z2 orbifolds
with discrete Wilson lines [10].
Interest in string inspired Z ′ models arose from the

discovery that string inspired effective field theory mod-

els give rise to E6 GUT like models [11]. Extra U(1)
symmetries in these string inspired models therefore pos-
sess an E6 embedding and have generated multitude of
papers since the mid–eighties (for a recent review see
e.g. [12]). The construction of string derived models
that admit an unbroken extra U(1) symmetry down to
low scales proves, however, to be very difficult. The
symmetry breaking pattern in the string models E6 →
SO(10)×U(1)A entails that U(1)A is anomalous and can-
not be part of a low scale unbroken U(1)Z′ [13]. String
derived constructions with low scale U(1)Z′ /∈ E6 were
analysed in [14–17], but agreement with the measured
values of sin2(θ)W (MZ) and αs(MZ) favours Z ′ models
with E6 embedding [18]. We note that the anomaly free
U(1) combination of U(1)B−L and U(1)T3R

∈ SO(10)

may in principle remain unbroken down to low scales [19].
However, ensuring that the left–handed neutrino masses
are adequately suppressed is facilitated if this U(1) sym-
metry is broken at a high scale [20]. Constructing string
models that allow for a extra U(1) ∈ E6 symmetry to re-
main unbroken down to low scales necessitates the con-
struction of string models in which U(1)A is rendered
anomaly free. One route to achieving this outcome is to
enhance U(1)A to a non-Abelian gauge symmetry á la ref.
[21]. An alternative is the construction of ref. [6], which
utilises the spinor–vector duality that was observed in
Z2 × Z2 orbifolds [22–24]. The duality is under the ex-
change of the total number of (16 + 16) representations
of SO(10) with the total number of 10 representations,
and is easy to understand if we consider the extension of
SO(10) × U(1)A to E6. The chiral and anti–chiral rep-
resentations of E6 decompose under SO(10) × U(1) as
27 = 16 + 10 + 1 and 27 = 16 + 10 + 1. In this case the
#1 of (16 + 16) and #2 of 10 representations are equal.
The E6 symmetry point in the moduli space corresponds
to a self–dual point under the exchange of the total num-
ber of SO(10) spinorial plus anti–spinorial, with the total
number of vectorial, representations. Breaking the E6

symmetry to SO(10) × U(1)A results in the projection
of some of the spinorial and vectorial representations,
which renders U(1)A anomalous. However, there may
exist vacua with equal numbers of (16 + 16) spinorial,
and 10 vectorial, representations, and traceless U(1)A,
without enhancement of the SO(10)× U(1)A symmetry
to E6 [6]. In such models the chiral spectrum still forms
complete E6 representations, but the gauge symmetry is
not enhanced to E6. In this cases U(1)A may be anomaly
free and remain unbroken down to low scales.

A classification method that provides a fishing tool to
extract models with specified physical properties was de-
veloped by using the free fermionic model building rules
[25–32]. In ref. [6], using the free fermionic fishing algo-
rithm, such a spinor–vector self dual model was extracted
with subsequent breaking of the SO(10) symmetry to
SO(6) × SO(4), which preserves the spinor–vector self–
duality. This model is a string derived model in which
an extra U(1) with E6 embedding may remain unbroken
down to low scales. The full massless spectrum of the
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string derived model is given in ref. [6]. The observable
and hidden gauge groups at the string scale are produced
by untwisted sector states and are given by:

observable : SO(6)× SO(4)× U(1)1 × U(1)2 × U(1)3

hidden : SO(4)2 × SO(8)

The massless string spectrum contains the fields required
to break the GUT symmetry to the Standard Model.
There are two anomalous U(1)s in the string model with

TrU(1)1 = 36 and TrU(1)3 = −36. (1)

The E6 combination, given by

U(1)ζ = U(1)1 + U(1)2 + U(1)3 , (2)

is anomaly free and can be a component of an extra Z ′

below the string scale. The observable SO(6) × SO(4)
gauge symmetry in the model is broken by the VEVs of
the heavy Higgs fields H and H . The decomposition of
these fields in terms of the Standard Model gauge group
factors is given by:

H(4̄,1,2) → ucH

(

3̄,1,
2

3

)

+ dcH

(

3̄,1,−1

3

)

+

N (1,1, 0) + ecH (1,1,−1)

H (4,1,2) → uH

(

3,1,−2

3

)

+ dH

(

3,1,
1

3

)

+

N (1,1, 0) + eH (1,1, 1)

The VEVs along the N and N directions leave the un-
broken combination

U(1)Z′ =
1

5
(U(1)C − U(1)L)− U(1)ζ /∈ SO(10), (3)

that may remain unbroken below the string scale pro-
vided that U(1)ζ is anomaly free. We note that this sym-
metry breaking pattern is enforced in the string model
due to a doublet–triplet missing partner mechanism [33]
that gives heavy mass to coloured scalar states that arise
in the untwisted sector of the string model [6]. Thus, the
combination given in eq. (3) is the extra U(1) combina-
tion that can arise in the string derived model with E6

embedding of the charges. Anomaly cancellation of the
U(1)Z′ charges requires the existence of the vector–like

leptons {Hi
vl, H̄

i
vl}, and quarks {Di, D

i}, that arise from
the vectorial 10 representation of SO(10), as well as the
SO(10) singlets Si in the 27 of E6. The supermultiplet1

spectrum below the Pati–Salam breaking scale is dis-
played schematically in Table I. The three right–handed
neutrino N i

L states become massive at the SU(2)R break-
ing scale, which generates the seesaw mechanism [5]. The
spectrum below the SU(2)R breaking scale is assumed to

1 Superfields are indicated with a hat symbol.

be supersymmetric, and we therefore include in the spec-
trum an additional pair of vector–like electroweak Higgs
doublets, that facilitate gauge coupling unification. This
is justified in the string inspired models due to the string
doublet–triplet splitting mechanisn [34, 35]. The states
φ and φ̄ are exotic Wilsonian states [6, 36]. Additionally,
the existence of light states ζi, that are neutral under
the SU(3)C ×SU(2)L ×U(1)Y ×U(1)Z′ low scale gauge
group, is allowed. The U(1)Z′ gauge symmetry can be
broken at low scales by the VEV of the SO(10) singlets
Si and/or φ1,2.

Field SU(3)C ×SU(2)L U(1)
Y

U(1)
Z′

Q̂i
L 3 2 + 1

6
− 2

5

ûi
L 3̄ 1 − 2

3
− 2

5

d̂iL 3̄ 1 + 1
3

− 4
5

êiL 1 1 +1 − 2
5

L̂i
L 1 2 − 1

2
− 4

5

D̂i 3 1 − 1
3

+ 4
5

ˆ̄Di 3̄ 1 + 1
3

+ 6
5

Ĥi
vl 1 2 − 1

2
+ 6

5
ˆ̄Hi
vl 1 2 + 1

2
+ 4

5

Ŝi 1 1 0 −2

Ĥ1 1 2 − 1
2

− 4
5

Ĥ2 1 2 + 1
2

+ 4
5

φ̂ 1 1 0 −1
ˆ̄φ 1 1 0 +1

ζ̂i 1 1 0 0

TABLE I. Supermultiplet spectrum and SU(3)C × SU(2)L ×
U(1)Y × U(1)Z′ quantum numbers, with i = 1, 2, 3 for the

three light generations. The charges are displayed in the nor-

malisation used in free fermionic heterotic–string models.

III. NEUTRAL GAUGE BOSONS SECTOR

The scalar Lagrangian describing the mass contribu-
tions of the gauge bosons is given by

LGM = |DµH1|2 + |DµH2|2 +
∑

i

|DµSi|2 (4)

where the scalar components of the supermultiplets are
Si, and H1 and H2 which are the singlets, and two Higgs
doublets respectively. For simplicity, we restrict our at-
tention to one singlet field only in the i-summation, which
we will denote S. The covariant derivative acting on the
H1 field is defined as

DµH1 =

(

∂µ + ig2W
a
µ τ

a +
i

2
gY Y1A

Y
µ +

i

2
gZ′BH1

Bµ

)

H1

(5)

where τa = σa/2 and σa are the SU(2) Pauli matri-
ces, W a

µ are the SU(2) gauge fields and g2 is the re-

spective coupling, AYµ is the U(1)Y gauge field and gY
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is the coupling, and Bµ is that of the extra U(1)Z′ and
gZ′ is the coupling. Y1 is the hypercharge of H1 un-
der U(1)Y , and BH1

is the charge of H1 under the extra
U(1)Z′ . The SU(3) sector is omitted here. The covariant
derivative acting on the other Higgs fields has the same
structure. We introduce the following parameterisation
for the Higgs fields

H1 =

(

ReH0
1 + iImH0

1

ReH−
1 + iImH−

1

)

,

H2 =

(

ReH+
2 + iImH+

2

ReH0
2 + iImH0

2

)

,

S = ReS + iImS, (6)

and the vacuum expectation values in correspondence of
the minimum value of the potential are defined as

〈H1〉 =
(

v1
0

)

, 〈H2〉 =
(

0
v2

)

, 〈S〉 = vS . (7)

where v1, v2, and vS are the respective values. Expanding
the scalar sector in Eq. 4 we obtain the quadratic terms
that contribute to the gauge bosons mass matrix when
the Higgs fields take their vev’s. These terms are

LGM =
g22
4
(v21 + v22)W

+µW−
µ +

g22
4
(v21 + v22)W

3µW 3
µ

−g2gY
4

(v21 + v22)W
3µAYµ +

g2Y
4
(v21 + v22)A

Y µAYµ

+
g2gZ′

4
(BH1

v21 −BH2
v22)W

3
µB

µ

−gY gZ′

4
(BH1

v21 −BH2
v22)A

Y
µB

µ

+
g2Z′

4
(B2

H1
v21 +B2

H2
v22 +B2

Sv
2
S)BµB

µ, (8)

where BS is the charge of the S field under the ex-
tra U(1)Z′ . The corresponding mass matrix in the
(W 3

µ , A
Y
µ , Bµ) basis is given by

M2
gauge =













g22
4 v

2 − g2gY
4 v2 g2

4 xB

− g2gY
4 v2

g2Y
4 v

2 − gY
4 xB

g2
4 xB − gY

4 xB
NB

4













, (9)

where we have defined the following quantities to simplify
the notation

xB = gZ′(BH1
v21 −BH2

v22) ,

NB = g2Z′(B2
H1
v21 +B2

H2
v22 +B2

Sv
2
S) , (10)

and where v2 = v21+v
2
2 , g

2 = g2Y +g22, and tanβ = v2/v1.
The photon field is massless, and the mass eigenvalues of
the Z and the Z ′ neutral gauge bosons with this notation
are

M2
Z =

1

8

(

NB + g2v2 −
√

(NB − g2v2)
2
+ 4g2x2B

)

,

M2
Z′ =

1

8

(

NB + g2v2 +

√

(NB − g2v2)
2
+ 4g2x2B

)

.

(11)

tanβ = 1

tanβ = 5

tanβ = 15

tanβ = 30

100 500 1000 5000 1×104 5×104

100

500

1000

5000

10
4

vS[GeV]

M
Z
'[G
e
V
]

FIG. 1. TeV-range Z′ mass as a function of vS for different
values of tan β and with gZ′ = gY . The region at the right of
the red vertical line is the one in which the expectation value
vS is in the TeV range.
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0 10000 20000 30000 40000 50000

100

500

1000

5000
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Z
'[G
e
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]

FIG. 2. TeV-range Z′ mass as a function of vS for different
values of the coupling constant gZ′ .

For large values of vS , the extra Z ′ boson decouples and
the mass of the Z boson can be expressed as

M2
Z =

1

4
g2v2 − 1

4
g2
(

BH1
v21 −BH2

v22
)2

B2
Sv

2
S

+O(1/v4S),

(12)

where 1/4g2v2 is the square mass of the SM Z boson,
and the other terms are corrections that are (1/v2S)

n sup-
pressed. The mass of the SM Z boson is measured with
very high accuracy (i.e. MZ = 91.1876 ± 0.0021 GeV)
and it can in principle be used to constrain the value of
vS and gZ′ for fixed values of the charges in the model.
As a simple example, in Figures 1, and 2, we illustrate

a particular choice of the parameters vS , tanβ, and gZ′

that leads to values of MZ′ in the O(10) TeV range. In
Figure 1, MZ′ values are obtained as function of vS for
different values of tanβ and with gZ′ = gY . The region
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to the right of the red vertical line is the one in which
the expectation value vS is in the TeV range. We choose
vS = 1 TeV as a lower limit as vS is expected to be
large. In Figure 2, the vS-parameter scan is performed
for different values of the Z ′ coupling constant gZ′ . To
obtain MZ′ > 4 TeV vS must be larger than 1.5 × 104

GeV.
The normalized orthogonal eigenvector matrix Ogauge

rotates the (W 3
µ , A

Y
µ , Bµ) fields of the neutral sector into

the physical ones

{

Aγµ, Zµ, Z
′
µ

}

= Ogauge.
{

W 3
µ , A

Y
µ , Bµ

}

(13)

and has components given in Appendix A. The photon
field is given by Aγµ = (g2A

Y
µ + gYW

3
µ)/g. The small

mixing between the Z and Z ′ is expressed through angle
δ defined as

sin δ = − 2gxB
√

8g2x2B + 2f2
1 (1 +

1
f1

√

4g2x2B + f2
1 )

cos δ = − f1 +
√

f2
1 + 4g2x2B

√

8g2x2B + 2f2
1 (1 +

1
f1

√

4g2x2B + f2
1 )

tan δ =
2gxB

f1 +
√

f2
1 + 4g2x2B

. (14)

where we introduced f1 = NB−g2v2 to simplify the nota-
tion. We observe that when 1/v2S is small, the structure
of the rotation matrix simplifies, and one has

Aγµ = AYµ cos θW +W 3
µ sin θW

Zµ =W 3
µ cos θW −AYµ sin θW +Bµε

Z ′
µ = Bµ +

(

sin θWA
Y
µ −W 3

µ cos θW
)

ε (15)

where θW is the Weinberg angle, and where g2/g =
cos θW , gY /g = sin θW . The infinitesimal mixing pa-
rameter can be defined as

sin δ|vS→∞ ≃ −g xB/f1 +O(1/v2S), ε = −g xB/f1
(16)

obtained by expanding the expression for sin δ in pow-
ers of 1/v2S. According to the choice of parameters used
in this work, |ε| approximately varies between 10−3 and
10−5 when 0.1× 104 ≤ vS ≤ 2.5× 10−5 GeV.

IV. THE HIGGS SECTOR

The Higgs sector of the superpotential W for this
model, contains structures of the type

W ⊃ λŜĤ1 · Ĥ2 + yeĤ1 · L̂R̂+ ydĤ1 · Q̂D̂R

+ yuĤ2 · Q̂ÛR, (17)

where ye, yu, and yd are parameters and, as mentioned
above, we restrict our attention to the case of one singlet
Ŝ. The study of the EW symmetry breaking proceeds

similarly to that in Refs. [37, 38]. The scalar potential is
given by

V = |λH1 ·H2|2 + |λS|2(|H1|2 + |H2|2) +
g22
2
|H†

1H2|2

+
1

8
(g22 + g2Y )(H

†
1H1 −H†

2H2)
2 + (aλSH1 ·H2 + h.c.)

+
g2B
8
(BH1

H†
1H1 +BH2

H†
2H2 +BSS

†S)2 +m2
1|H1|2

+ m2
2|H2|2 +m2

S |S|2. (18)

To have a stable minimum, conditions are obtained by
imposing ∂V/∂Hi = 0 on the minimum
(

4aλv2vS +BH1
g2Z′v1

(

BH1
v21 +BH2

v22 +BSv
2
S

)

+g2v1
(

v21 − v22
)

+ 4m2
1v1 + 4λ2v1v

2
2 + 4λ2v1v

2
S

)

= 0

(

4aλv1vS +BH2
g2Z′v2

(

BH1
v21 +BH2

v22 +BSv
2
S

)

+g2v2
(

v22 − v21
)

+ 4m2
2v2 + 4λ2v21v2 + 4λ2v2v

2
S

)

= 0

4aλv1v2 + vS
[

4m2
S + 4v2λ2

]

+vSBSg
2
Z′

(

BH1
v21 +BH2

v22 +BSv
2
S

)

= 0

(19)

from which one can eliminate m1,m2 and mS , while aλ
and λ are free parameters.

A. The CP-even sector

The matrix elements of the CP-even sector, for which
we use the basis (ReH0

1 ,ReH
0
2 ,ReS), are obtained from

1/2∂2V/∂Hi∂Hj and are given as

(M2
ev)11 =

1

2

(

g2BB
2
H1

+ g2
)

v21 − aλ
v2vS
v1

(M2
ev)12 = aλvS − 1

2
v1v2

(

−g2Z′BH1
BH2

− 4λ2 + g2
)

(M2
ev)13 = aλv2 +

1

2
v1vS

(

g2Z′BH1
BS + 4λ2

)

(M2
ev)22 =

1

2

(

g2Z′B2
H1

+ g2
)

v22 − aλ
v1vS
v2

(M2
ev)23 = aλv1 +

1

2
v2vS

(

g2Z′BH2
BS + 4λ2

)

(M2
ev)33 = −aλ

v1v2
vS

+
1

2
g2Z′B2

Sv
2
S . (20)

This mass matrix is symmetric (Mij = Mji and the
other terms are obtained by symmetry. The diagonal-
ization procedure leads to three massive states corre-
sponding to three neutral Higgs particles indicated by
(H0

1 , H
0
2 , H

0
3 ). One of these states is interpreted as the

observed Higgs boson with mass mH ≈ 125 GeV, one is
light (20 ≤ mH ≤ 90 GeV) and the other has mass in the
TeV’s range. The light Higgs states represent a poten-
tial new decay channel for the Z0 boson, although this is
highly suppressed.
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FIG. 3. Mass values of the CP-even sector Higgs bosons as a
function of the scalar potential parameters λ for two values
of aλ. Here we have chosen tanβ = 30, gZ′ = gY , vS = 2 ·104
GeV, and v2 = 246 GeV.

As a simple example, the numerical analysis for a se-
lected region of the parameter space for the mass eigen-
values is shown in Figure 3. Here, the Higgs mass values
are shown as function of λ for two values of aλ, and for
tanβ = 30, gZ′ = gY , vS = 2 · 104 GeV, and v2 = 246
GeV. These values are chosen consistently with the find-
ings previously discussed in Sec. III based on Figures 1,
and 2. This shows that for relatively small values of
the scalar potential parameters λ, and aλ, there exists a
portion of the parameter space which leads to acceptable
physical mass values for the Higgs states. The interaction
basis states are related to the physical Higgses through
the rotation matrix obtained by the inverse matrix of the

normalized eigenvectors
(

UCP−even
)−1

ij

cij =
(

UCP−even
)−1

ij
(21)

which results in

ReH0
1 = c11H

0
1 + c12H

0
2 + c13H

0
3

ReH0
2 = c21H

0
1 + c22H

0
2 + c23H

0
3

ReS = c31H
0
1 + c32H

0
2 + c33H

0
3 (22)

where, in correspondence of the parameters chosen in
Figure 3, we obtain that |c11| ≈ |c22| ≈ |c33| ≈ 0.90,
|c12| = |c21| ≈ 10−2, and the remaining coefficients are
. 10−3.

B. The CP-odd sector

For the CP-odd sector we use the (ImS, ImH0
1 , ImH

0
2 )

and the matrix elements are

M2
odd = −aλ





v1v2
vS

v2 v1
v2

v2vS
v1

vS
v1 vS

v1vS
v2



 (23)

After the diagonalization procedure we obtain two
null eigenvalues, corresponding to two neutral Nambu-
Goldstone bosons G0

1 and G0
2, and one physical state H0

4 ,
identified with a neutral pseudoscalar Higgs of mass

m2
H0

4

= aλ

(

−v1v2
vS

− v1vS
v2

− v2vS
v1

)

(24)

Rotating the fields from the interaction basis to the phys-
ical basis in the derivative couplings of the lagrangian
density,

LDC = −g2W 3
µ∂

µGY + gY A
Y
µ ∂

µGY + gZ′Bµ∂
µGB

(25)

where

GY = g2(v1Im H0
1 − v2Im H0

2 )

GB = gZ′(BH1
v1Im H0

1 +BH2
v2Im H0

2 +BSvSIm S)

(26)

the two Nambu-Goldstone bosons, G0
1 and G0

2, can be
expressed in terms of the physical fields giving GZ and
GZ′ which correspond to the Z and Z ′ massive states.
The expression for LDC in terms of physical states is
given by

LDC =MZZµ∂
µGZ +MZ′Z ′

µ∂
µGZ′ . (27)

The eigenvectors matrix UCP−odd rotates the physical
component H0

4 and the GZ , GZ′ fields in the CP-odd sec-
tor is given by





H0
4

GZ
GZ′



 = UCP−odd





Im S
Im H0

1

Im H0
2



 , (28)

In Figure 4 we show the mass values of pseudo-scalar
Higgs as a function of aλ for different values of vS and
where we have chosen tanβ = 30 and v2 = 246 GeV
as before. Depending on vS , these mass values approxi-
mately range from 10 GeV to 100 GeV.

C. The charged sector

The charged sector is obtained by considering the
(ReH+

2 ,ReH
−
1 ) and (−ImH+

2 , ImH
−
1 ) basis which pro-

duces the mass matrix

M2
H± =

(

v1(−2aλvS+v1v2κ)
2v2

−aλvS + 1
2v1v2κ

−aλvS + 1
2v1v2κ

v2(−2aλvS+v1v2κ)
2v1

)

,

(29)
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FIG. 4. Mass values of the CP-odd sector pseudo-scalar Higgs
boson as a function of the scalar potential parameter aλ for
different values of vS . Here we have chosen tan β = 30 and
v2 = 246 GeV.
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FIG. 5. Mass values of the charged Higgs as a function of the
scalar potential parameter aλ for different values of λ. Here
we have chosen tanβ = 30, v2 = 246 GeV and vS = 2 · 104
GeV.

where we defined κ = (g22 −2λ2). Diagonalizing the mass
matrix, one obtains a null eigenvalue corresponding to
the charged Namubu-Goldstone bosons G±, and a mass
eigenvalue for the ± charged states

m2
H± = (v2(−2aλvS + v1v2κ))/(2v1v2). (30)

The rotation to the physical basis is obtained by using
the eigenvectors matrix Ucharged

(

G−

H−

)

= Ucharged
(

ReH+
2

ReH−
1

)

, (31)

where G+ = G−† and H+ = H−†. In Figure 5 we show
a plot mH± as a function of aλ for different values of λ.
The other parameter are chosen as tanβ = 30, v2 = 246
GeV, and vS = 2 · 104 GeV.

V. THE NEUTRINO SECTOR AND STERILE

NEUTRINOS

According to the discussion in Sec. II and in [5],
the seesaw mass matrix that allows for sterile neutri-
nos with masses of the same size of that of active

neutrinos and that have large mixing with the lat-
ter, is generated by considering the extended set of

fields {Li, N i, Hi
vl, H

i

vl, S̃
i, H̃1, H̃2, φ, φ̄, ζ

i}, which repre-
sent the fermionic component of the respective multi-
plets. We remind that the model has an underlying E6

structure, and that the fundamental 27 representation of
E6 decomposes as 27 = 16 + 10 + 1 under SO(10), where
the 16 contains the Standard Model fields plus the right–
handed neutrino field; the 10 contains a pair of colour
triplets and electroweak doublets; and the 1 is a Stan-
dard Model and SO(10) singlet field. In total we have
at the string level i = 3, i.e. three complete multiplets
in the 27 representation of E6, decomposed under the
unbroken E6 subgroup [6]. Here, Li are the chiral lep-

ton doublets, N i are the right-handed neutrinos, S̃i are
the fermionic components of the SO(10) singlets, and H̃1

and H̃2 are the fermionic components of the electroweak
Higgses. The neutrino mass matrix is generated from
the allowed renormalizable couplings among these fields
obtained by expanding the superpotential in field com-
ponents

W ⊃ λij1 L̂
iN̂ jĤ2 + λijk2 L̂iN̂ j ˆ̄Hk

vl + λij3 N̂
iζ̂jN

+ λijk4 Ĥi
vl
ˆ̄Hj
vlŜk + λik5 Ĥ

i
vlĤ2Ŝ

k + λij6
ˆ̄Hi
vlĤ1ζ̂

j

+ λi7Ĥ1Ĥ2ζ̂
i + λi8φ̂

ˆ̄φζ̂i + λi9
ˆ̄φ ˆ̄φŜi + λijk10 ζ̂

iζ̂j ζ̂k + h.c. ,

(32)

and from the nonrenormalizable terms NiNjNN in-
troduced to generate a Majorana mass terms for the
right–handed neutrinos. We consider for simplicity only
the set of chiral fields under the U(1)Z′ group. Then, the
gauge symmetry generates the seesaw mass matrix below

LMν̃
=

















L
i

S̃
i

H
i

vl

Hi
vl

N
i

















T












0 0 0 λn λvD
0 0 λv1 λv2 0
0 λv1 0 vS 0
λn λv2 vS 0 0

λvD 0 0 0 N
2

M

























Li

S̃i

Hi
vl

H
i

vl

N i













(33)

which mixes the (Li, S̃i, Hi
vl, H

i

vl, N
i) states. To make

the phenomenological analysis feasible, we restrict the
parameter space by considering the product of the
Yukawa couplings and vevs as single parameters in
Eq. 33. In addition, this allows us to suppress Yukawa
coupling indices appearing in Eq. 32. The seesaw mass
matrix in Eq. 33, depends on N and n that are the vevs
that break the SU(2)R symmetry, vS that is the vev that
breaks the U(1)Z′ symmetry, and vD, v1 and v2 which are
the vevs that break the electroweak symmetry. In partic-
ular, vD is the vev that produces the Dirac mass terms
that couples between the left- and right-handed neutri-
nos. vS , v1 and v2 have been introduced in Sec. III.
To illustrate the mixing of the states in Eq. 33, we

consider the field column

niα =
(

Li, S̃i, Hi
vl, H

i

vl, N
i
)T

. (34)
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We simplify the picture by considering one lepton gen-
eration only. To keep our discussion general we retain
index i, but we fix it i = e. In this way, α = 1, . . . , 5 (the
mass matrix is 5×5) and it will be easy to generalize this
to the case of three or more generations.

After the diagonalization of the mass matrix in Eq. 33,
the mass eigenstates can be written as

ν̃j = (ν1, ν2, ν3, ν4, ν5)
T
=

5
∑

α=1

U †
jαn

e
α, (35)

where ν1, . . . , ν5 are expressed as combinations of the
Le, S̃e, He

vl, H
e

vl, N
e fields. The ν̃ represents the fermionic

component of the sterile neutrino supermultiplet. The
fermionic Lagrangian in terms of Dirac spinors contains
terms of the type

Lferm ⊃ iL̄iγµDµLi + iR̄iγµDµRi + iN̄ iγµDµN i

+ i ¯̃SiγµDµS̃i + . . . (36)

which is obtained by combining the Weyl spinors of the
superfields. Here, Ri are the right-handed fields relative
to i = e, µ, τ . It is important to keep in mind that in rep-
resentation 27 of E6 all chiral multiplets are left-handed
(see Table I). The charges for the right-handed fields are
obtained from Table I by flipping the respective charge
signs.

The neutrino current which couples to the Z ′ in the
physical basis can be written as

JZ
′ν̃ν̃ =

∑

i,j

ν̃j
[

gV,ijγµ + gA,ijγµγ
5
]

ν̃i Z
′µ, (37)

where gV,ij and gA,ij are the vector and axial-vector
couplings respectively. They are obtained by rotat-

ing (Li, S̃i, Hi
vl, H

i

vl, N
i) through U †, and (W 3

µ , A
Y
µ , Bµ)

through Ogauge in Eq. 36, to the physical states. In a
compact form, gV,ij and gA,ij can be written as

gV,ij =

5
∑

α=1

3
∑

k=1

U †
jαUαi

(

OT
)

k3

gk
4
(Qα,R +Qα,L)k

gA,ij =

5
∑

α=1

3
∑

k=1

U †
jαUαi

(

OT
)

k3

gk
4
(Qα,R −Qα,L)k,

(38)

where OT is the transposed of Ogauge defined in Eq. 13,
and in Eq. 16 and (Qα,R ± Qα,L)k are the fermion
charges under SU(2), U(1)Y and U(1)Z′ for k = 1, 2, 3
respectively, relative to the α-th field in Eq. 34, and
gk = g2, gY , gZ′ . The 1/4 coefficient is from the chiral
projectors.
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-4
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mν4 ; λ� = 6·10
-4
GeV

mν5 ; λ� = 4·10
-4
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mν5 ; λ� = 5·10
-4
GeV

mν5 ; λ� = 6·10
-4
GeV

4.0×105 6.0×105 8.0×105 1.0×106 1.2×106

5.×10-4

0.001

0.005

0.010

λv2 [GeV]

m
ν

4�
�

[e
V
]

FIG. 6. Parametric scan for the mass values of the lightest
neutrino states mν4,5 .

VI. Z′ DECAY RATES

The Z ′ decay channels considered in this study are
summed up to give the total rate in the equation below

ΓZ′ =
∑

f

ΓZ′→ff̄ + ΓZ′→WW +
3
∑

i=1

ΓZ′→ZH0
i

+

4
∑

i,j=1

ΓZ′→H0
i
H0

j
+ ΓZ′→H−H+ +

5
∑

i,j=4

ΓZ′→ν̃iν̃j

(39)

where f is an index for the quarks and leptons (e, µ, τ),
H0
i represents the CP-even (i = 1, 2, 3) and CP-odd

(i = 4) states of the two Higgs doublets in the model,
H± are the charged Higgs states, and ν̃ are the mixed
neutrino states. Expressions for the individual rates are
given in Appendix; here we focus on a Z ′ decaying into
neutrino states as it is more relevant to our discussion
about branching ratios.
The decay rate of the Z ′ into the allowed neutrino

states is given by

ΓZ′→i,j =
MZ′

12π

[

g2V,ij + g2A,ij
]

, (40)

which we multiply by a factor of 3 to account for the three
generations. We restrict our attention to the lightest neu-
trino states ν̃4,5 that can be considered massless. The
remaining states are very heavy due to the see-saw mech-
anism, and their decay rate is negligible or zero. In Fig-
ures 7 and 8 we explored the dependence of ΓZ′→ν̃4,5ν̃4,5

,

on parameters λn, λvD, and λv2 which show stronger
sensitivity. We keep vS = 2 · 104 GeV which corresponds
to a Z ′ with mass M ′

Z = 7 TeV, and gZ′ = gY . We
observe that changes in these parameters produce varia-
tions in the decay rates that are from 10−3 to 15-20 GeV,
and therefore considerably impact the total rate of the
Z ′. The branching ratios for the dominant channels q̄q,
l̄l, ν̃ν̃, W+W−, and H+H−, are illustrated in Figure 9
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FIG. 7. Z′ decay rates into ν̃iν̃j mixed state with i, j = 4, 5
as a function of λv2 for different values of λvD. MZ′ = 7 TeV.

where we observe that the ratio into neutrinos competes
with the QCD one q̄q.

VII. COLLIDER SIGNATURES AND Z′ MASS

BOUNDS

In this section we show the results of a phenomenolog-
ical study for Drell-Yan (DY) dilepton production [39]
which we used to investigate potential signatures of this
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FIG. 8. Z′ decay rates into ν̃iν̃j mixed state with i, j = 4, 5
as a function of λv2 for different values of λn. MZ′ = 7 TeV.

model at the LHC. Our notation closely follows that of
refs. [40–42] and it is briefly summarized below.
The colour-averaged inclusive differential cross section

for resonant dilepton production in proton-proton colli-
sions pp→ Z ′ +X → ll̄+X at the LHC, is given by [40]

dσ

dQ2
= τσZ′ (Q2,M2

Z′)WZ′ (τ,Q2) τ =
Q2

S
, (41)

where Q is the invariant mass of the final-state dilep-
ton pair, σZ′(Q2,M2

Z′) is the point-like cross section

for Z ′ production (see ref. [41] for details),
√
S is the
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FIG. 9. Z′ branching ratios as a function of MZ′ for the most
relevant channels: qq, l̄l, ν̃ν̃, W+W−, and H+H−. Here
λvD = 1 GeV.

center-of-mass energy of the collision, and WZ′(τ,Q2) is
the hadronic structure function containing details of the
hadronic initial-state and the hard-scattering cross sec-
tion. This is defined as

WZ′(τ,Q2) =
∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dxδ(τ − xx1x2)

fH1→i(x1, µ
2
F )fH2→j(x2, µ

2
F )∆i,j(x,Q

2, µ2
F ) ,

(42)

where fHi→j(xi, µ
2
F ) are the parton distribution func-

tions (PDFs) of the proton evaluated at longitudinal mo-
mentum fraction xi (i = 1, 2) of the proton (Hi) car-
ried by the parton, and at factorization scale µF . They
represent the probability of finding parton j in hadron
Hi at energy scale µF in the collision. The function
∆i,j(x,Q

2, µ2
F ) incorporates all the hard-scattering con-

tributions. This factorization formula in Eq. 41 is univer-
sal for invariant mass distributions mediated by s-channel
exchanges of neutral or charged currents. The hard scat-
terings can be expanded in a series in terms of the strong
coupling constant αs(µ

2
R) as

∆i,j(x,Q
2, µ2

F ) =

∞
∑

n=0

αns (µ
2
R)∆

(n)
i,j (x,Q

2, µF , µ
2
R) .

(43)

where µR is the renormalization scale. The QCD the-
ory predictions presented here include full spin correla-
tion and are calculated up to next-to-next-to-leading or-
der (NNLO) in αs with CandiaDY [43], an in-house C++
computer code that has been modified to calculate invari-
ant mass distributions for the production of generic Z ′

models. CandiaDY has been validated against VRAP [44]
and FEWZ [45–47]. Electroweak corrections [47–53] are
not included in our theory calculation, and this work fo-
cuses on invariant mass distribution and total cross sec-
tion only. More exclusive observables for Z ′ resonant

 0.01
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 10
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[fb

]
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gZ´   = gY
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Γ/MZ´    = 6%

ATLAS 13 TeV 139 fb-1   Luminosity: Observed Xsec upper limit at 95% CL

FIG. 10. Observed 95% CL upper limits on the total cross
section as a function of the Z′ mass at ATLAS 13 TeV [54].
The theory predictions for the total inclusive cross section is
evaluated at NNLO in QCD using CT18NNLO PDFs. The
induced PDF uncertainty represented by the blue bands is at
the 68% CL.

lepto-production in DY [46, 47] will be presented in a
forthcoming analysis.
The final results of this phenomenological study are

illustrated in Figure 10 and 11 where we used recent LHC
precision measurements at a center of mass energy

√
S of

13 TeV from the ATLAS [54] and CMS [55] experiments
for the observed total cross section upper limits at 95%
confidence level (CL) as a function of the Z ′ mass. On top
of these limits, we superimpose our theory calculation at
NNLO in QCD calculated with CT18NNLO PDFs. We
include the induced PDF uncertainties on the total cross
sections obtained at 68% CL which are represented by
blue bands in the two figures.
The observed upper limits at 95% CL on the produc-

tion of the same Z ′ but at CMS 13 TeV [55] are illustrated
in 11. In this case, to reduce the dependence on corre-
lated systematic uncertainties and also theoretical uncer-
tainties associated to the theory prediction, the CMS lim-
its are expressed in terms of the ratio of the cross section
for dilepton production via a Z ′ boson to the measured
cross section for dilepton production via the Z0 boson
in the invariant mass range 60–120 GeV. This ratio is
defined as

σ(MZ′)

σ(MZ)
=
σ
(

pp→ Z ′ +X → ll̄+X
)

σ
(

pp→ Z +X → ll̄+X
) (44)

The parameter choice utilized to produce our theory
predictions for DY Z ′ production is given below

{λvD, λv1, λv2, λn,N
2
/M} =

{1, 5× 10−4, 5× 10−4, 5× 10−4, 2.5× 1011} GeV.

tanβ = 30; v2 = 246 GeV; µF = µR = Q. (45)

The mass of the Z ′ is mostly controlled by the vacuum
expectation value vS which varies accordingly for each
value of MZ′ .
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FIG. 11. Observed 95% C.L. upper limits on the total cross
section ratio as a function of the Z′ mass at CMS 13 TeV [55].
The theory predictions are evaluated as in Figure 10.

The presence of light sterile neutrinos as additional de-
cay channel for the Z ′ inflates the Z ′s decay width and
reduces the total cross section as compared to the case
without sterile neutrinos. This results in a shift of the
Z ′ mass limits towards lighter values. The Z ′ widths
obtained within this model are found to be 1%-3.5% of
the resonance mass. However, it must be pointed out
that they are strongly correlated to the coupling con-
stant gZ′ and anti-correlated to the parameter vS , i.e.,
ΓZ′/MZ′ increases with gZ′ and is suppressed by increas-
ing vS . As compared to the benchmark models reported
in refs. [54, 55] which include the Sequential Standard
Model Z ′

SSM [56] and extra Z ′
χ and Z ′

ψ bosons from E6-

motivated Grand Unification models [57], the Z ′ studied
in this work has comparable mass limits to that of Z ′

ψ,
but systematically lower for gZ′ = gY .

VIII. DISCUSSION AND CONCLUSIONS

In this paper we considered the decay rates of an ex-
tra Z ′ vector boson that arises in the string derived Z ′

model of ref. [6]. It has been suggested that existence
of light sterile neutrinos at low mass scales can only be
reconciled in string theory provided that there exist an
extra U(1) gauge symmetry, under which the sterile neu-
trinos are chiral, and which remains unbroken down to
intermediate or low scales [5]. Taking the U(1)Z′ com-
bination from the string model, and assuming unbroken
supersymmetry down to low scales, the spectrum of our
string inspired model is nearly fixed by the requirement
of anomaly cancellation. Similarly, its superpotential is
fixed by the symmetries of the model. In this paper, we
examined the decay rate of the extra Z ′ in the presence
of the light sterile neutrinos and the additional matter
states predicted in the model. It is noted that a priori
one may expect that the decay rate of the extra Z ′ may

be substantially altered in the presence of the additional
light matter states. We have studied how the presence
of sterile neutrinos impacts the observed cross section
upper limits, and consequently, the limits on the mass of
the Z ′. We observed that sterile neutrinos shift the upper
limits for the Z ′ mass towards lighter values. We have
carefully investigated both the neutral gauge bosons and
Higgs sectors and studied the dependence of the model
on the most important parameters of the superpotential,
by restricting the attention to the case of one singlet S.
The CP-even sector produces light Higgs states which
can couple to the Z and can potentially contribute as
new decay channel even if they are highly suppressed.
Finally, we carefully investigated the neutrino sector and
explored the rich parameter space of the corresponding
sector of the superpotential. These parameters are cho-
sen such that they produce realistic values for the mass
of the lighter neutrino states. Sterile neutrinos are the
result of a complicated mixture of states as illustrated in
Eq. 33, where we restricted the analysis to the case of
one lepton generation. Decay rates of the Z ′ into sterile
neutrinos have been explored in terms of the most sensi-
tive parameters (λn, λv1, λv2, vS , λvD). To conclude we
remark that while our motivation herein was the associa-
tion of the sterile neutrinos under which they are chiral,
the argument can be extended to the very existence of
the electroweak symmetry breaking scale. From table I
we note the existence of the electroweak Higgs doublets
that are chiral under U(1)Z′ and the additional vector–
like pair, which is added in to facilitate gauge coupling
unification [18, 58]. However, while there is no symmetry
that protects the additional vector–like pair from acquir-
ing a large mass, the mass terms for the chiral Higgs
pairs can only be generated by the Z ′ breaking VEVs.
Thus, we note that the exitence of the electroweak sym-
metry breaking scale can be naturally generated in this
string inspired Z ′ model, with the combination of super-
symmetry and the U(1)Z′ symmetry. Agreement with
the gauge coupling parameters, sin θW (MZ) and αsMZ ,
then requires a revised scrutiny. We further remark that
the existence of the extra states at the U(1)Z′ break-
ing scale may very naturally give rise to small deviation
from the Standard Model predictions, such as the one
recently reported by the CDF–collaboration for the W–
boson mass [59], without affecting direct searches as the
mass scale of the extra states is naturally associated with
the Z ′ mass scale. We further note that the model pre-
dicts a rich Higgs spectrum and that some of the scalar
mass eigenstates may lie below the observed Higgs states
at 125 GeV. Recent claims in the literature for evidence
for such a state in the LHC data [60] are therefore par-
ticularly intriguing. As a final note, we remark that the
Z ′ model considered here is supersymmetric. Depend-
ing on the details of the supersymmetry breaking mech-
anism, the additional superpartner states may, or may
not appear, below the Z ′ breaking scale. The appealing
scenario is in fact the possibility that the supersymme-
try breaking scale and the Z ′ breaking scale are in fact
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associated. We will return to these questions in future
publications.
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Appendix A: Rotation Matrix for the neutral gauge

boson fields

TheOgauge matrix individual components are reported
here

O11 = gY /g, O12 = g2/g, O13 = 0,

O21 =
−g2/g xB

(

f1 +
√

f2
1 + 4g2x2

B

)

√

4g2x4
B + 2x2

B

(

2g2x2
B + f1

(

f1 +
√

f2
1 + 4g2x2

B

))

,

O22 =
gY /g xB

(

f1 +
√

f2
1 + 4g2x2

B

)

√

4g2x4
B + 2x2

B

(

2g2x2
B + f1

(

f1 +
√

f2
1 + 4g2x2

B

))

,

O23 =
1

√

2 +

(

f1

(

f1+
√

f2
1
+4g2x2

B

))

2g2x2
B

,

O31 =
−g2/g xB

(

f1 −
√

f2
1 + 4g2x2

B

)

√

4g2x4
B + 2x2

B

(

2g2x2
B + f1

(

f1 −
√

f2
1 + 4g2x2

B

))

,

O32 =
gY /g xB

(

f1 −
√

f2
1 + 4g2x2

B

)

√

4g2x4
B + 2x2

B

(

2g2x2
B + f1

(

f1 −
√

f2
1 + 4g2x2

B

))

,

O33 =
2

√

4 +
2
(

f1

(√
f2
1
+4g2x2

B
+f1

)

+2g2x2
B

)

g2x2
B

.

(A1)

where xB = gZ′(BH1
v21 − BH2

v22), NB = g2Z′(B2
H1
v21 +

B2
H2
v22 +B2

Sv
2
S), and f1 = NB − g2v2.

Appendix B: Z′ decay rates

In this section we report the tree-level analytical ex-
pressions for the partial decay widths of the Z ′. In par-
ticular, we calculate the rates for ΓZ′→W+W− , ΓZ′→ZH0

i
,

ΓZ′→H0
i
H0

j
, ΓZ′→W±H∓ , and ΓZ′→H+H− . We refer to

[41] and references therein for the calculation of the other
rates used in this work.

1. Z′ decay rates in W+W− and ZH0
i

The calculation for the decay rate Z ′ → WW gives
(see also Refs. [56, 61])

ΓZ′→WW =
αem
48

cot2 θW

[

1− 4

(

MW

MZ′

)2
]3/2

(

MZ′

MW

)4
[

1 + 20

(

MW

MZ′

)2

+

(

MW

MZ′

)4
]

MZ′ε2

(B1)

while that for the Z ′ → ZH0
i where H0

i are from the
CP-even sector with i = 1, 2, 3 gives

ΓZ′→ZH0
i
=

g2
Z′ZH0

i

16M3
Z′π

(

2 +
M2
Z′ +M2

Z −m2
Hi

4M2
Z′M2

Z

)

×
√

M2
Z′ − (MZ +mHi

)2
√

M2
Z′ − (MZ −mHi

)2

(B2)

where the couplings are given by

gZ′ZH0
1
= c11v1

[

BH1
cwg2gZ′ − c2wg

2
2ε+B2

H1
g2Z′ε

− gY cwY1 (BH1
gZ′ − 2cwg2ε+ gY swεY1)] + . . .

gZ′ZH0
2
= c22v2

[

−BH2
cwg2gZ′ − c2wg

2
2ε+B2

H2
g2Z′ε

− gY cwY2 (BH2
gZ′ + 2cwg2ε+ gY swεY2)] + . . .

gZ′ZH0
3
= c33vSB

2
Sg

2
Z′ε+ . . . (B3)

where the dots indicate terms proportional to off-
diagonal elements cij that are suppressed and essentially
have no impact on the rates (see Sec.IVA for discussion).
Here we define cw = cos θW and sw = sin θW to simplify
the notation.

2. Z′ decay rates in two Higgs bosons

The decay rate for the Z ′ → H0
iH

0
j with i, j = 1, 2, 3, 4

is given by

ΓZ′→H0
i
H0

j
=

g2
Z′H0

i
H0

j

(16M5
Z′π)

[

(mHi
−mHj

−MZ′)×

(mHi
+mHj

−MZ′)(mHi
−mHj

+MZ′)

(mHi
+mHj

+MZ′)
]3/2

; (B4)

where the couplings are defined as

gZ′H0
1
H0

i
= BS c31 c3i gZ′ i = 1, 2, 3;

gZ′H0
2
H0

j
= BS c32 c3j gZ′ j = 2, 3;

gZ′H0
3
H0

3
= BS c

2
33 gZ′ ;

gZ′H0
4
H0

i
=

1

2
b11 BS c3i gZ′ i = 1, 2, 3; (B5)
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where cij are obtained numerically. They are the coeffi-
cients of the inverse matrix of the normalized eigenvectors
for the CP-even sector and are discussed in Sec.IVA. To
simplify the notation, we introduced the b11 coefficient
which is defined as

b11 =
v21vS

√

v22 + v2S
v22v

2
S + v21(v

2
2 + v2S)

(B6)

3. Z′ decay rates into W±H∓

The decay rate of the Z ′ into W+H− is given by

ΓZ′→W+H− =
g2Z′W+H−

16M3
Z′π

[

2 +
(M2

Z′ +M2
W −m2

H±)

4M2
Z′M2

W

]

×
√

(

M2
Z′ − (MW +m2

H±)2
) (

M2
Z′ − (MW −m2

H±)2
)

(B7)

The rate into W−H+ is the same. The g2Z′W∓H± cou-
plings are defined as

gZ′W∓H± =
1√
2
g2

(

−v2
v
BH1

gZ′v1 +
v1
v
BH2

gZ′v2

− v2
v
gY swv1εY1 +

v1
v
gY swv2εY2

)

. (B8)

4. Z′ decay rates into H+H−

The decay rate of the Z ′ into H+H− is obtained as

ΓZ′→H+H− =
g2Z′H+H−

16M5
Z′π2

[

M2
Z′(MZ′ − 2mH±)

(2mH± +MZ′)]
3/2

(B9)

where the coupling is given by

gZ′H+H− =
(v1
v

)2

(BH1
gZ′ + cwg2ε)

+
(v2
v

)2

(−BH2
gZ′ + cwg2ε)

+ gY swε

(

(v1
v

)2

Y1 −
(v2
v

)2

Y2

)

;

(B10)
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