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Abstract
Meta-embedding (ME) learning is an emerging ap-
proach that attempts to learn more accurate word
embeddings given existing (source) word embed-
dings as the sole input. Due to their ability to incor-
porate semantics from multiple source embeddings
in a compact manner with superior performance,
ME learning has gained popularity among practi-
tioners in NLP. To the best of our knowledge, there
exist no prior systematic survey on ME learning and
this paper attempts to fill this need. We classify ME
learning methods according to multiple factors such
as whether they (a) operate on static or contextu-
alised embeddings, (b) trained in an unsupervised
manner or (c) fine-tuned for a particular task/domain.
Moreover, we discuss the limitations of existing ME
learning methods and highlight potential future re-
search directions.

1 Introduction
Given independently trained multiple word representations
(aka embeddings) learnt using diverse algorithms and lexi-
cal resources, word meta-embedding (ME) learning meth-
ods [Yin and Schütze, 2016; Bao and Bollegala, 2018;
Bollegala et al., 2018a; Wu et al., 2020; He et al., 2020;
Jawanpuria et al., 2020; Coates and Bollegala, 2018] attempt
to learn more accurate and wide-coverage word embeddings.
The input and output word embeddings to the ME algorithm
are referred respectively as the source and meta-embeddings.
ME has emerged as a promising ensemble approach to com-
bine diverse pretrained source word embeddings to preserve
their complementary strengths.

The problem settings of ME learning differ from that of
source embedding learning in important ways as follows.

1. ME methods must be agnostic to the methods used to
train the source embeddings.

The source embeddings used as the inputs to an ME learning
method can be trained using different methods. For example,
context-insensitive static word embedding methods [Dhillon
et al., 2015; Mnih and Hinton, 2009; Collobert et al., 2011;
Huang et al., 2012; Mikolov et al., 2013; Pennington et al.,
2014] represent a word by a single vector that does not vary

depending on the context in which the word occurs. On the
other hand, contextualised word embedding methods [Peters
et al., 2018; Devlin et al., 2019; Yang et al., 2019; Lan et al.,
2020; Liu et al., 2019] represent the same word with different
embeddings in its different contexts. It is not clear beforehand
which word embedding is best for a particular NLP task. By
being agnostic to the underlying differences in the source
embedding learning methods, ME learning methods are in
principle able to incorporate a wide range of source word
embeddings. Moreover, this decoupling of source embedding
learning from the ME learning simplifies the latter.

2. ME methods must not assume access to the original
training resources used to train the source embeddings.

Source embeddings can be trained using different linguis-
tic resources such as text corpora or dictionaries [Tissier et
al., 2017; Alsuhaibani et al., 2019; Bollegala et al., 2016].
Although pretrained word embeddings are often publicly re-
leased and are free of charge to use, the resources on which
those embeddings were originally trained might not be pub-
licly available due to copyright and licensing restrictions. Con-
sequently, ME methods have not assumed the access to the
original training resources that were used to train the source
embeddings. Therefore, an ME method must obtain all seman-
tic information of words directly from the source embeddings.

3. ME methods must be able to handle pretrained word
embeddings of different dimensionalities.

Because ME methods operate directly on pretrained source
word embeddings without retraining them on linguistic re-
sources, the dimensionalities of the source word embed-
dings are often different. Prior work [Yin and Shen, 2018;
Levy et al., 2015] studying word embeddings have shown
that the performance of a static word embedding is directly
influenced by its dimensionality. ME learning methods use
different techniques such as concatenation [Yin and Schütze,
2016], orthogonal projections [Jawanpuria et al., 2020;
He et al., 2020] and averaging [Coates and Bollegala, 2018]
after applying zero-padding to the sources with smaller di-
mensionalities as necessary to handle source embeddings with
different dimensionalities.

Applications of ME: ME learning is attractive from an NLP
practitioners point for several reasons. First, as mentioned
above, there is already a large number of pretrained and pub-
licly available repositories of static and contextialised word



embeddings. However, it is not readily obvious what is the
best word embedding method to represent the input in a par-
ticular NLP application. We might not be able to try each
and every source embedding due to time or computational
constraints. ME learning provides a convenient alternative to
selecting the single best word embedding, where we can use
a ME trained from all available source embeddings. Second,
unsupervised ME learning methods (§ 3) do not require la-
belled data when creating an ME from a given set of source
word embeddings. This is particularly attractive in scenarios
where we do not have sufficiently large training resources for
learning word embeddings from scratch but have access to
multiple pretrained word embeddings. Moreover, by using
multiple source embeddings we might be able to overcome the
limited vocabulary coverage in the individual sources. Third,
in situations where there is some labelled data for the target
task or domain, we can use supervised ME learning methods
(§4) to fine-tune the MEs for the target task or domain.

From a theoretical point-of-view, ME learning can be
seen as an instance of ensemble learning [Dietterich, 2002;
Polikar, 2012], where we incorporate information from mul-
tiple models of lexical (word-level) semantics to learn an im-
proved representation model. An ensemble typically helps
to cancel out noise in individual models, while reinforcing
the useful patterns repeated in multiple models [Muromägi
et al., 2017]. Although there are some theoretical work
studying word embedding learning [Arora et al., 2016;
Mu et al., 2018; Bollegala et al., 2018b], the theoretical
analysis of ME learning has been under-developed, with
the exception of concatenated meta-embeddings [Bollegala,
2022]. For example, under what conditions can we learn a
better ME than individual source embeddings is an impor-
tant theoretical consideration. ME learning can also been
seen as related to model distillation [Passos et al., 2018;
Hinton et al., 2015] where we must learn a simpler student
model from a more complicated teacher model. Model distilla-
tion is an actively researched topic in deep learning where it is
attractive to learn smaller networks involving a lesser number
of parameters from a larger network to avoid overfitting and
inference-time efficiency.

In this survey paper we focus on word-level ME learning.
We first define the ME problem (§2) and cover unsupervised
(§ 3) and supervised (§ 4) ME methods. We also look at
multilingual ME in §5. Finally, we discuss the performance
of different ME methods (§6.1) and present potential future
research directions (§6.2). Moreover, we publicly release a
ME framework1 that implements several ME methods covered
in this paper, which we believe would be useful to further
enhance the readers’ understanding on this emerging topic.

2 Meta-Embedding – Problem Definition
Let us consider a set of N source word embeddings
s1, s2, . . . , sN respectively covering vocabularies (i.e. sets
of words) V1,V2, . . . ,Vn. The embedding of a word w in
sj is denoted by sj(w) ∈ Rdj , where dj is the dimension-
ality of sj . We can represent sj by an embedding matrix
Ej ∈ Rdj×|Vj |. For example, E1 could be the embedding

1https://github.com/Bollegala/Meta-Embedding-Framework

matrix obtained by running skip-gram with negative sampling
(SGNS) [Mikolov et al., 2013] on a corpus, whereas E2 could
be that obtained from global vector prediction (GloVe) [Pen-
nington et al., 2014] etc. Then, the problem of ME can be
stated as – what is the optimal way to combine E1, . . . ,En

such that some goodness measure defined for the accuracy of
the semantic representation for the words is maximised?

The source word embeddings in general do not have to
cover the same set of words. If w /∈ Vn, we can either as-
sign a zero embedding or a random embedding as sn(w) as a
workaround. [Yin and Schütze, 2016] proposed a method to
predict source embeddings for the words missing in a particu-
lar source. Specifically, given two different sources sn and sm
(where n ̸= m) they learn a projection matrix A ∈ Rdm×dn

using the words in Vn∩Vm, the intersection between the vocab-
ularies covered by both sn and sm. They find A by minimising
the sum of squared loss,

∑
w∈Vn∩Vm

||Asn(w)− sm(w)||22.
Finally, we can predict the source embedding for a word
w′ /∈ Vm and w′ ∈ Vn using the learnt A as Asn(w

′). If
we have multiple sources, we can learn such projection matri-
ces between each pair of sources and in both directions. We
can then, for example, consider the average of all predicted
embeddings for a word as its source embedding in a particular
source. After this preprocessing step, all words will be covered
by all source embeddings. [Yin and Schütze, 2016] showed
that by applying this preprocessing step prior to learning MEs
(referred to as the 1TON+ method in their paper) to signifi-
cantly improve the performance of the learnt MEs. However,
as we see later, much prior work in ME learning do assume a
common vocabulary over all source embeddings for simplicity.
Without loss of generality, we will assume that all words are
covered by a common vocabulary V after applying any one of
the above-mentioned methods.

3 Unsupervised Meta-Embedding Learning
In unsupervised ME we do not assume the availability of
any manually-annotated labelled data that we can use in the
learning process. In this setting all data that we have at our
disposal is limited to the pretrained source embeddings.

3.1 Concatenation
One of the simplest approaches to create an ME under the un-
supervised setting is vector concatenation [Bao and Bollegala,
2018; Yin and Schütze, 2016; Bollegala et al., 2018a]. Denot-
ing concatenation by ⊕, we can express the concatenated ME,
mconc(w) ∈ Rd1+...+dN , of a word w ∈ V by (1).

mconc(w) = s1(w)⊕ . . . sN (w)

= ⊕N
j=1sj(w) (1)

Goikoetxea et al. [2016] showed that the concatenation of
word embeddings learnt separately from a corpus and Word-
Net to produce superior word embeddings. However, one
disadvantage of using concatenation to produce MEs is that it
increases the dimensionality of the ME space, which is the sum
of the dimensionalities of the sources. [Yin and Schütze, 2016]
post-processed the MEs created by concatenating the source
embeddings using Singular Value Decomposition (SVD) to
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reduce the dimensionality. However, applying SVD often re-
sults in degradation of accuracy in the MEs compared to the
original concatenated version [Bollegala et al., 2018a].

It is easier to see that concatenation does not remove any
information that is already covered by the source embeddings.
However, it is not obvious under what conditions concatena-
tion could produce an ME that is superior to the input source
embeddings. Bollegala [2022] shows that concatenation min-
imises the pairwise inner-product (PIP) [Yin and Shen, 2018]
loss between the source embeddings and an idealised ME. PIP
loss has been shown to be directly related to the dimension-
ality of a word embedding, and has been used as a criterion
for selecting the optimal dimensionality for static word em-
beddings. They propose a weighted variant of concatenation
where the dimensions of each source is linearly weighted prior
to concatenation. The weight parameters can be learnt in an
unsupervised manner by minimising the empirical PIP loss.

3.2 Averaging
Note that as we already mentioned in §1, source embeddings
are trained independently and can have different dimensionali-
ties. Even when the dimensionalities do agree, vectors that lie
in different vector spaces cannot be readily averaged. However,
rather surprisingly, [Coates and Bollegala, 2018] showed that
accurate MEs can be produced by first zero-padding source
embeddings as necessary to bring them to a common dimen-
sionality and then by averaging to create mavg(w) as given
by (2).

mavg(w) =
1

N

N∑
j=1

s∗j (w) (2)

Here, s∗j (w) is the zero-padded version of sj(w) such that
its dimensionality is equal to max(d1, . . . , dN ). In con-
trast to concatenation, averaging has the desirable prop-
erty that the dimensionality of the ME is upper-bounded by
max(d1, . . . , dN ) <

∑N
j=1 dj . Coates and Bollegala [2018]

showed that when word embeddings in each source are approx-
imately orthogonal, a condition that they empirically validate
for pre-trained word embeddings, averaging can approximate
the MEs created by concatenating.

Although averaging does not increase the dimensionality of
the ME space as with concatenation, it does not consistently
outperform concatenation, especially when the orthogonality
condition does not hold. To overcome this problem, Jawan-
puria et al. [2020] proposed to first learn orthogonal projection
matrices for each source embedding space. They measure the
Mahalanobis metric between the projected source embeddings,
which is a generalisation of the inner-product that does not
assume the dimensions in the vector space to be uncorrelated.

To explain their proposal further, let us consider two sources
s1 and s2 with identical dimensionality d. Let us assume
the orthogonal projection matrices for s1 and s2 to be re-
spectively A1 ∈ Rd×d and A2 ∈ Rd×d. The two words
wi, wj ∈ V1 ∩ V2 are projected to a common space respec-
tively as A1s1(wi) ∈ Rd and A2s2(wj) ∈ Rd. The similarity
in this projected space is computed using a Mahalanobis metric
(A1s1(wi))

⊤B(A2s2(wj)) defined by the matrix B ∈ Rd×d.

They learn A1,A2 and B such that the above metric computed
between the projected source embeddings of the same word is
close 1, while that for two different words is close to 0. Their
training objective can be written concisely as in (3) using the
embedding matrices E1,E2 ∈ Rd×|V1∩V2| and a matrix Y
where the (i, j) element Yij = 1 if wi = wj and 0 otherwise.

minimise
A1,A2,B

∣∣∣∣E1
⊤A1

⊤BA2E2 − Y
∣∣∣∣2
F
+ λ ||B||2F (3)

Here, λ ≥ 0 is a regularisation coefficient corresponding
to the Frobenius norm regularisation of B, which prefers
smaller Mahalanobis matrices. They show that the averag-
ing of the projected source embeddings (i.e. (B

1
2 A1s1(w) +

B
1
2 A2s2(w))/2) to outperform simple non-projected averag-

ing (given by (2)). Learning such orthogonal projections for
the sources has shown to be useful even in supervised ME
learning [He et al., 2020] as discussed later in §4.

3.3 Linear Projections
In their pioneering work on ME, Yin and Schütze [2016]
proposed to project source embeddings to a common space
via source-specific linear transformations, which they refer to
as 1TON. They require that the ME of a word w, m1TON(w) ∈
Rdm , reconstruct each source embedding, sj(w) of w using
a linear projection matrix, Aj ∈ Rdj×dm , from sj to the ME
space by as given by (4).

ŝj(w) = Ajm1TON(w) (4)

Here, ŝj(w) is the reconstructed source embedding of w from
the ME. Next, the squared Euclidean distance between the
source- and MEs is minimised over all words in the intersec-
tion of the source vocabularies, subjected to Frobenius norm
regularisation as in (5).

minimise
∀N
j=1Aj

∀w∈V m1TON(w)

N∑
j=1

αj

(∑
w∈V

||ŝj(w)− sj(w)||22 + ||Aj ||2F

)
(5)

They use different weighting coefficients αj to account for the
differences in accuracies of the sources. They determine αj

using the Pearson correlation coefficients computed between
the human similarity ratings and cosine similarity computed
using the each source embedding between word pairs on the
[Miller and Charles, 1998] dataset. The parameters can be
learnt using stochastic gradient descent, alternating between
projection matrices and MEs.

Muromägi et al. [2017] showed that by requiring the projec-
tion matrices to be orthogonal (corresponding to the Orthog-
onal Procrustes Problem) the accuracy of the learnt MEs is
further improved. However, 1TON requires all words to be
represented in all sources. To overcome this limitation they
predict the source embedding for missing words as described
in §2.

Assuming that a single global linear projection can be learnt
between the ME space and each source embedding as done by
Yin and Schütze [2016] is a stronger requirement. Bollegala
et al. [2018a] relaxed this requirement by learning locally
linear (LLE) MEs. To explain this method further let us
consider computing the LLE-based ME, mLLE(w), of a word



w ∈ V1 ∩V2 using two sources s1 and s2. First, they compute
the set of nearest neighbours, Nj(w), of w in sj and represent
w as the linearly-weighted combination of its neighbours by a
matrix A by minimisng (6).

minimise
A

2∑
j=1

∑
w∈V1∩V2

∣∣∣∣∣∣
∣∣∣∣∣∣sj(w)−

∑
w′∈Nj(w)

Aww′sj(w)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(6)

They use AdaGrad to find the optimal A. Next, MEs are learnt
by minimising (7) using the learnt neighbourhood reconstruc-
tion weights in A are preserved in a vector space common to
all source embeddings.

∑
w∈V1∩V2

∣∣∣∣∣∣
∣∣∣∣∣∣mLLE(w)−

2∑
j=1

∑
w′∈Nj(w)

Cww′mLLE(w
′)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(7)

Here, Cww′ = Aww′
∑2

j=1 I[w′ ∈ Nj(w)], where I is the
indicator function which returns 1 if the statement evaluated
is True. Optimal MEs can then be found by solving an eigen-
decomposition of the matrix (I − C)⊤(I − C), where C is
the matrix formed by arranging Cww′ as the (w,w′) element.
This approach has the advantage that it does not require all
words to be represented by all sources, thereby obviating the
need to predict missing source embeddings prior to ME.

3.4 Autoencoding
Bao and Bollegala [2018] modelled ME learning as an au-
toencoding problem where information embedded in different
sources are integrated at different levels to propose three types
of MEs: Decoupled Autoencoded ME (DAEME) (indepen-
dently encode each source and concatenate), Concatenated
Autoencoded ME (CAEME) (independently decode MEs to
reconstruct each source), and Averaged Autoencoded ME
(AAEME) (similar to DAEME but instead of concatenation
uses averaging). Given the space constraints we describe only
the AAEME model, which was the overall best performing
among the three.

Consider two sources s1 and s2, which are encoded respec-
tively by two encoders E1 and E2. The AAEME of w is
computed as the ℓ2 normalised average of the encoded source
embeddings as given by (8).

mAAEME(w) =
E1(s1(w)) + E2(s2(w))

||E1(s1(w)) + E2(s2(w))||2
(8)

Two independent decoders, D1 and D2, are trained to re-
construct the two sources from the ME. E1, E2, D1 and D2

are jointly learnt to minimise the weighted reconstruction loss
given by (9).

minimise
E1,E2,D1,D2

∑
w∈V1∩V2

(λ1 ||s1(w)−D1(E1(s1(w)))||22 +

λ2 ||s2(w)−D2(E2(s2(w)))||22) (9)

The weighting coefficients λ1 and λ2 can be used to assign
different emphasis to reconstructing the two sources and are

tuned using a validation dataset. In comparison to methods
that learn globally or locally linear transformations [Bollegala
et al., 2018a; Yin and Schütze, 2016], autoencoders learn non-
linear transformations. Their proposed autoencoder variants
outperform 1TON and 1TON+ on multiple benchmark tasks.

Although our focus in this survey is word-level ME learn-
ing, sentence-level ME methods have also been proposed [Po-
erner et al., 2020; Takahashi and Bollegala, 2022]. Poerner
et al. [2020] proposed several methods to combine sentence-
embeddings from pretrained encoders such as by concatenat-
ing and averaging the individual sentence embeddings.These
methods correspond to using sentence embeddings instead of
source word embeddings in (1) and (2) with ℓ2 normalised
sources. Moreover, they used the Generalised Canonical Cor-
relation Analysis (GCCA), which extends Canonical Corre-
lation Analysis to more than three random vectors, to learn
sentence-level MEs. They also extend AAEME method de-
scribed in §3.4 to multiple sentence encoders, where they learn
an autoencoder between each pair of sources. They found that
GCCA to perform best in sentence similarity prediction tasks.
Takahashi and Bollegala [2022] proposed an unsupervised
sentence-level ME method, which learns attention weights
and transformation matrices over contextualised embeddings
such that multiple word- and sentence-level co-occurrence
criteria are simultaneously satisfied.

4 Supervised Meta-Embedding Learning
MEs have also been learned specifically for a set of supervised
tasks. Unlike unsupervised ME learning methods described in
§3, supervised MEs use end-to-end learning and fine-tune the
MEs specifically for the downstream tasks of interest.

O’Neill and Bollegala [2018] used MEs to regularise a
supervised learner by reconstructing the ensemble set of pre-
trained embeddings as an auxiliary task to the main supervised
task whereby the encoder is shared between both tasks. (10)
shows the auxiliary reconstruction mean squared error loss
weighted by α for each word wt in a sequence of of length T
words, and the main sequence classification task cross-entropy
loss, weighted by β. Here, fθaux is the subnetwork of fθ that
corresponds to the ME reconstruction and fθmain is the subnet-
work used to learn on the main task, i.e fθ except the decoder
layer of the ME autoencoder.

minimise
θ

1

TN

T∑
t=1

[
α
(
fθaux(mconc(wt))−

mconc(wt)
)2

+ β

C∑
c=1

fθmain

(
mconc(wt)) log yt,c

)] (10)

The ME reconstruction shows improved performance on both
intrinsic tasks (word similarity and relatedness) and extrinsic
tasks (named entity recognition, part of speech tagging and
sentiment analysis). They also show that MEs require less la-
belled data for Universal Part of Speech tagging2 to perform as
well as unsupervised MEs. Wu et al. [2020] also successfully
deploy the aforementioned ME regularisation in the super-
vised learning setting. They showed that as the ME hidden

2https://universaldependencies.org/u/pos/all.html
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layer becomes smaller, the improvement in performance for
supervised MEs over unsupervised MEs becomes larger.

Kiela et al. [2018] proposed a supervised ME learning
method where they compute the ME of a word using a
dynamically-weighted sum of the projected source word em-
beddings. Each source embedding, sj , is projected to a com-
mon d-dimensional space using a matrix Pj ∈ Rdj×d and a
basis vector bj ∈ Rd as given by (11).

s′j(w) = Pjsj(w) + bj (11)

Next, the Dynamic Meta Embedding, mdme(w), of a word w
is computed as in (12).

mdme(w) =

N∑
j=1

αw,js
′
j(w) (12)

Here, αw,j is the scalar weight associated with w in source
sj , and is computed via self-attention mechanism as given by
(13).

αw,j = ϕ(a⊤s′j(w) + b) (13)

Here, ϕ is an activation function such as softmax, a ∈ Rd and
b ∈ R are respectively source and word independent attention
parameters to be learnt using labelled data. They also proposed
a contextualised version of DME (CDME), where they used
the hidden state from a BiLSM that takes the projected source
embeddings as the input. Although the differences between
DME and CDME were not statistically significant, overall, the
highest maximum performances were reported with CDME.

Xie et al. [2019] extended this approach by introducing
task-specific factors for a downstream task by computing the
pairwise interactions between embeddings in the ensemble
set. He et al. [2020] also create task-specific MEs by learn-
ing orthogonal transformations to linearly combine the source
embeddings. As already discussed in §3.2, enforcing orthog-
onality on the transformation matrix has shown to improve
performance of ME.

Lange et al. [2021] proposed feature-based adversarial meta-
embeddings (FAME) for creating MEs from both word- and
subword-level source embeddings. Specifically, a given to-
ken is represented by source embeddings as well as source-
independent features related to the token such as frequency,
length, shape (e.g. upper/lowercasing, punctuation, number
etc.). Source embeddings are projected to a common vector
space using linear projections, and their attention-weighted
sum is computed as the ME. A gradient reversal layer [Ganin
et al., 2016] is used to learn the projection and attention related
parameters. FAME achieves SoTA results for part-of-speech
(POS) tagging in 27 languages.

5 Multi-lingual Meta-Embedding Learning
MEs have also been extended to the cross-lingual and multi-
lingual settings. Winata et al. [2019a] use self-attention across
different embeddings to learn multi-lingual MEs. For Named
Entity Recognition (NER), the multi-lingual embeddings in
the ensemble set are concatenated and passed as the input into
a transformer encoder and a conditional random field is used

as the classification layer. The use of self-attention weights
showed to improve over a linear layer without self-attention
weights. Winata et al. [2019b] have also extended this to using
hierarchical MEs (HMEs), which refers to word-level MEs
that are created via a weighted average of sub-word level ME
representations. They find that HMEs outperform regular MEs
on code-switching NER through the use of pretrained subword
embeddings given by fasttext [Joulin et al., 2017].

Garcı́a et al. [2020] learn MEs for cross-lingual tasks by
projecting the embeddings into a common semantic space.
Embeddings of resource-rich languages can then be used to
improve the quality of learned embeddings of low-resourced
languages. This is achieved in three steps: (1) align the vector
spaces of different vocabularies of each language using the
bilingual mapper VecMap [Artetxe et al., 2016], (2) create new
embeddings for missing words in the source embeddings and
(3) average the embeddings in the ensemble set. The resulting
ME vocabulary will then be the union of the vocabularies
of the word embeddings used. This method is referred to as
MVM (Meta-VecMap).

Doval et al. [2018] align embeddings into a bilingual vector
space using VecMap and MUSE [Conneau et al., 2017] and use
a linear layer to transform the aligned embeddings such that
the average word vector in the ensemble set can be predicted
in the target language from the source. This is motivated by
the finding that the average of word embeddings is a good ap-
proximation for MEs [Coates and Bollegala, 2018] as already
discussed in §3.2.

6 Discussion
In this section, we first discuss the performance of the different
ME methods described in this paper. Next, we discuss the
limitations in existing ME learning methods and highlight
potential future research directions.

6.1 Evaluation and Performance
Given that ME are representing the meaning of words using
vectors, MEs have been evaluated following the same bench-
mark tasks commonly used for evaluating source (static) word
embeddings such as word or sentence similarity measurement,
analogy detection, text classification, textual entailment recog-
nition, part-of-speech tagging [Lange et al., 2021], etc.

The performance of an ME created using a set of source
embeddings depends on several factors such as the source
embeddings used (e.g, the resources used to train the sources,
their dimensionalities), dimensionality of the ME, and hyper-
parameters (and how they were tuned) for the downstream
tasks (in the case of supervised ME). However, prior work
in ME learning have used different settings, which makes it
difficult to make direct comparisons among results reported in
different papers [Garcı́a-Ferrero et al., 2021].

Consistently across published results, concatenation has
shown to be a competitive baseline, and averaging does not
always outperform concatenation. Predicting source embed-
dings for out-of-vocabulary words has reported mixed re-
sults [Garcı́a-Ferrero et al., 2021]. Methods for predicting
source embeddings for missing embeddings in a source uses
simple linear transformations such as learning projection ma-
trices [Yin and Schütze, 2016; Garcı́a-Ferrero et al., 2021].



However, whether such transformations always exist between
independently trained vector spaces is unclear [Bollegala et
al., 2017]. On the other hand, averaging has reported good per-
formance without requiring the prediction of missing source
embeddings because average is already a good approximation
for the missing source embeddings. However, scaling each di-
mension of a source embedding to zero mean and subsequently
normalising the embeddings to unit ℓ2 norm is required when
the dimensionalities and norms of the source embeddings that
are averaged are significantly different.

Moreover, carefully weighting sources using some valida-
tion data has shown to improve performance of concatena-
tion [Yin and Schütze, 2016]. Although applying SVD re-
duces the dimensionality of the concatenated MEs, it does not
always outperform the concatenation baseline. In particular,
the number of singular values remains an important factor that
influences the performance of this method [Bollegala, 2022].
The best performance for unsupervised ME has been reported
by autoencoding methods, and in particular by AEME [Bao
and Bollegala, 2018]. Overall, supervised or task-specific ME
learning methods have reported superior performances over
unsupervised ones [Lange et al., 2021] in tasks such as sen-
tence classification, POS tagging and NER. Therefore, when
there is some labelled data available for the target task, we rec-
ommend using supervised ME methods. However, it remains
unclear whether a supervised ME trained for one particular
task will still perform well for a different task.

6.2 Issues and Future Directions
We outline issues and potential research directions in ME.

Contextualised MEs: Despite the good intrinsic perfor-
mance, Garcı́a-Ferrero et al. [2021] showed that none of the
ME methods outperformed fasttext source embedding on
GLUE benchmarks [Wang et al., 2018]. Moreover, concatena-
tion (with centering and normalising of source embeddings)
and averaging have turned out to be strong baselines, often
outperforming more complex ME methods. Given that contex-
tualised embeddings obtain the SoTA performances on such
extrinsic evaluations, we believe it is important for future re-
search in ME learning to consider contextualised embeddings
as sources instead of static word embeddings [Takahashi and
Bollegala, 2022; Poerner et al., 2020].

Sense-specific MEs: Thus far, ME learning methods have
considered a word (or a sentence) as the unit of representation.
However, the meaning of a word can be ambiguous and it
can have multiple senses. Sense-embedding learning methods
learn multi-prototype embeddings [Reisinger and Mooney,
2010; Neelakantan et al., 2014] corresponding to the different
senses of the same ambiguous word. How to combine sense
embeddings with word embeddings to create sense-specific
MEs remains an open research problem.

MEs For Sequence-to-Sequence Models: MEs have yet
to be used for sequence-to-sequence generation tasks such as
machine translation Therefore, we predict that a study of how
they can be used in tandem with SoTA models such as the
Transformer [Vaswani et al., 2017] would be an impactful con-
tribution. Particular questions of interests would be: (1) How

do Transformers perform on text generation tasks when preini-
tialised with MEs? and (2) Does a smaller model preinitialised
with MEs outperform a model without MEs?. Answering the
aforementioned questions gives a clear indication of how MEs
can be retrofitted into SoTA models and how they can obtain
near SoTA results with shallower models.

Mitigating Negative Transfer: Creating an ME using all
sources could lead to negative transfer [Pan and Yang, 2010]
and consequently degrade model performance. Although
attention-based source-weighting methods have been pro-
posed [Xie et al., 2019; Winata et al., 2019b], that learn
different weights for the sources, a systematic analysis of
how negative transfer affects ME is required.

Theoretical Analysis of MEs: Compared to the empirical
success, theoretical understanding of ME learning remains
under-developed. Some of the important theoretical questions
are: (1) What is the optimal dimensionality for MEs to balance
the memory vs performance tradeoff ?, (2) What is the relative
contribution between sources vs. ME learning algorithm to-
wards the performance gains in downstream tasks?, and (3)
What are the generalisation bounds for the performance of
ME learning algorithms beyond a specific set of sources?.

Social bias in MEs: Word embeddings have shown to en-
code worrying levels of unfair social biases such as gen-
der, racial and religious biases [Kaneko and Bollegala, 2019;
Bolukbasi et al., 2016]. Given that MEs are incorporating
multiple sources and further improve the accuracy of the em-
beddings, an unaddressed concern is whether an ME learning
method would also amplify social biases contained in the
source embeddings. It would be ethically inappropriate to
deploy MEs with social biases to downstream NLP applica-
tions. We believe that further research is needed to detect and
mitigate such biases in MEs.

7 Conclusion
We presented a survey of ME learning methods. We classified
prior work into different categories such as unsupervised, su-
pervised, sentence-level and multi-lingual ME learning meth-
ods. Finally, we highlighted potential future research direc-
tions. Given that ME learning is an active research topic, we
hope this survey facilitates newcomers on this topic as well as
providing inspiration to future developments in the broader AI
community, incorporating existing word/text representations
to create more accurate versions.
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[Muromägi et al., 2017] Avo Muromägi, Kairit Sirts, and
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