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Abstract

We introduce hidden 1-counter Markov models
(H1MMs) as an attractive sweet spot between stan-
dard hidden Markov models (HMMs) and prob-
abilistic context-free grammars (PCFGs). Both
HMMs and PCFGs have a variety of applications,
e.g., speech recognition, anomaly detection, and
bioinformatics. PCFGs are more expressive than
HMMs, e.g., they are more suited for studying pro-
tein folding or natural language processing. How-
ever, they suffer from slow parameter fitting, which
is cubic in the observation sequence length. The
same process for HMMs is just linear using the
well-known forward-backward algorithm. We ar-
gue that by adding to each state of an HMM an inte-
ger counter, e.g., representing the number of clients
waiting in a queue, brings its expressivity closer to
PCFGs. At the same time, we show that parameter
fitting for such a model is computationally inexpen-
sive: it is bi-linear in the length of the observation
sequence and the maximal counter value, which
grows slower than the observation length. The re-
sulting model of H1MMs allows us to combine the
best of both worlds: more expressivity with faster
parameter fitting.

1 Introduction
One of the major challenges in modelling sequential data
are long-term dependencies with a nested hierarchical struc-
ture. These are common in many domains such as natu-
ral language, music, or queuing systems. The two most
widely used probabilistic models for sequential data are Hid-
den Markov Models (HMMs) and probabilistic context-free
grammars (PCFGs). While HMMs are simple and fast to
learn, PCFGs are much slower, but can model such long-term
dependencies easily. We argue here that there is a middle
ground. There is a natural model that allows us to trade ex-
pressivity for computational complexity, namely, hidden one-
counter Markov model (H1MM) that we define in this paper.

Probabilistic models that incorporate a non-negative inte-
ger counter are natural models for queuing systems [Etessami
et al., 2010] or epidemics [Bahi-Jaber and Pontier, 2003],

where the counter keeps track of the number of clients wait-
ing or the number of people infected, respectively. Probabilis-
tic counter models are also commonly used in the analysis of
software [Braverman, 2006; Ben-Amram and Genaim, 2013].

Counter systems are often abstractions, where the counter
value is bounded in principle, e.g., by the number of peo-
ple in the world or by the number of atoms in the universe.
Such bounds are, however, so vast that studying the infinite-
state model with its concise representation instead is not only
appropriate but also more efficient. Moreover, correctness
proofs that do not rely on a bound of the counter are more
robust.

One counter automata recognize one counter languages
and can be used for, e.g., parsing bracketed arithmetic expres-
sions [Fischer et al., 1968], validation of XML documents
[Chitic and Rosu, 2004] or checking whether or not a given
sentence has the same number of noun and verb phrases.
Such checks cannot be done by finite automata that can only
recognize regular languages, which one counter languages
are a superset of. On the other hand, one counter languages
are a subclass of the context-free languages, which can be
recognized by pushdown automata.

Checking whether or not a given input string of length n
is a member of a context-free language takes cubic time us-
ing, e.g., the CYK algorithm. If we, instead, opt for simpler
one counter languages (which can be viewed as pushdown
automata with a single stack symbol) we can obtain a sub-
stantial acceleration.

Probabilistic one counter automata (P1CAs) [Etessami et
al., 2010] sit between Markov chains (MCs) and proba-
bilistic pushdown automata (PPDAs) [Mayr et al., 2006;
Etessami and Yannakakis, 2009]: they can be viewed as spe-
cial pushdown automata with just a single stack symbol [Etes-
sami et al., 2010], while MCs can be viewed as P1CAs that
never increase the counter value.

While learning PCFG from observations, the reestimation
of its parameters can be performed in cubic time in the size
of the input sequence by the Inside-Outside algorithm [Eis-
ner, 2016]. With the same computational complexity we can
compute the probability of PCFG generating a given out-
put [Chappelier et al., 1998].

On the other end of the spectrum, Markov chains allow for
faster parsing and analysis [Rabiner, 1990], but lack expres-
sivity compared to one counter automata: they are finite state
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models, and, different to context free systems, they cannot
count.

Markov models are either manually designed as an abstrac-
tion of a system, or they are learned from observations. We
study the latter problem: based on a series of observations,
we want to learn adequate Markov models. Those models
can then, after they have been learned, be used for analysis.

When learning models from observations, there is no ac-
cess to the models themselves during learning; only the obser-
vations are available. That is, the probabilistic structures we
want to learn are hidden from view during learning, though
there are assumptions made about their size. While we can-
not observe how the models evolve, we can make observa-
tions from a finite alphabet, where (in an automata model)
the likelihood of making a particular observation depends on
the automaton state. (For counter and pushdown models, this
means that the observation is independent of the counter value
and stack content, respectively.) For example, it could hold
for a state q that we make observation a with a 40% chance,
and observation b with a 60% chance.

Thus, when learning a P1CA model from observation,
we refer to them as a hidden one counter Markov model
(H1MM), and when learning an MC from observations to a
hidden Markov Model (HMM), etc.

For H1MM, we show that, while they are pushdown sys-
tems that generate stochastic languages that can be non-
regular (when read as nondeterministic languages), they can
be learned using algorithms that generalize those used in
HMM learning. This results in a complexity of learning
quadratic in the length of the input, though the growth can be
truncated in many cases. E.g., when the counter system rep-
resents grammatical structures, those sentences with a nesting
depth beyond a ”human limit”, while grammatically correct
can be considered incomprehensible and could be discarded.

We have adapted three fundamental algorithms, Forward,
Backward and Baum-Welch, that are standard in the analysis
of HMM. This has allowed us to reduce the computational
complexity of estimating the parameters compared to stack-
based models that recognize SCFL and its sub-classes. The
adapted versions of these algorithms for H1MM analysis have
quadratic time complexity, which is a huge step forward from
the cubic running time known for the full pushdown models.

1.1 Related work
Hidden Markov Models were created in a series of papers by
Baum and his co-authors in 1960s [Baum and Petrie, 1966;
Baum et al., 1970]. HMMs has found numerous applications
since then, but are not well-suited to handle natural language
processing (NLP). To deal with NLP, Probabilistic Context
Free Grammars (PCFGs) were constructed in [Baker, 1979].
Many extensions of HMMs were proposed over the years
that give them a bit more “structure”. These include Lexicon
tree-HMMs [Lee and Ng, 2005] and Dynamically Weighted
HMMs [Lee et al., 2007] that were applied to spam deobfus-
cation, hierarchical hidden Markov models (HHMMs) [Fine
et al., 1998] that were later applied to information extraction
[Skounakis et al., 2003], and the special case of HHMMs,
Structured HMMs [Galassi et al., 2007] that are well-suited
for user profiling purposes. None of these models are ca-

pable of simulating H1MMs as all these models are still es-
sentially finite-state. An adaptation of the Viterbi algorithm
for stochastic one-counter automata, which are similar to (but
slightly less concise than) H1MMs, was studied in [Sakharov
and Sakharov, 2018].

1.2 Structure of the paper
The rest of this paper is organized as follows. In Section 2,
we formally define the Hidden one-counter Markov model
(H1CMM). In Section 3, we show how to adapt the three fun-
damental algorithms that are used to solve the learning prob-
lem for HMMs. In Section 4, we examine the performance
of our model against HMMs. Due to space constraints all the
proofs can only be found in the full version of this paper.

2 Model and Problem Definitions
Let N0 be the set of non-negative integers.

A hidden one counter Markov model (H1MM) is a tuple
H = (Q,Σ, A0, A+, B, q0, qF ), consisting of

• a finite set Q of states,
• a finite set Σ of observations,
• transition functions A0 : Q × ∆0 × Q → [0, 1] and
A+ : Q×∆+ ×Q→ [0, 1],

• an emission function B : Q× Σ→ [0, 1], and
• a designated initial and final states q0 ∈ Q and qF ∈ Q,

respectively.
∆0 = {0, 1} and ∆+ = {−1, 0, 1} are the possible
changes for the counter value when the current counter
value is 0 and the value is positive, respectively. We also
require that A+, A0, B define for every state q ∈ Q a
probability distributions, i.e.,

∑
∆∈∆0,q′∈QA

0(q,∆, q′) =∑
∆∈∆+,q′∈QA

+(q,∆, q′) =
∑
o∈ΣB(q, o) = 1 holds.

A configuration of a H1MM is a pair (q, c), consisting of
a state q ∈ Q and a counter value c ∈ N0. The unique initial
configuration of a H1MM is (q0, 0).
A0 and A+ describe the dynamics of how the configura-

tion of a model evolves, while B describes the dynamics of
observing the evolution of the underlying model. Specifically,
matricesA0 andA+ specify the probability of transition from
any one state to another while changing the counter by a given
constant when the counter value is 0 and when the counter
is positive, respectively. For example A+(q,−1, q′) = 0.3
means that, when the model is in state q with a positive
counter value, then there is a chance of 30% that the model
moves to state q′ while decrementing the counter value by 1.
Matrix B specifies for each state the probability of making a
particular observation when at that state. (Note that we as-
sume this probability does not depend on the counter value,
but only on the state.) For instance, B(q, σ) = 0.25 means
that when the system is in state (q, c) for arbitrary counter
value c ≥ 0 there is a chance of 25% that σ is observed.

When we discuss the dynamics of a H1MM, we emphasize
that the configurations at position t of a run are probabilistic
variables by denoting them by St. If the counter is 0, the
transition matrix A0 determines the dynamics:

Pr(St+1 = (q′,∆) | St = (q, 0)) = A0(q,∆, q′)



where q is the state of the system at step t, q′ is the state at
step t+ 1, and ∆ ∈ ∆0 is the difference in the counter value
between these two steps. (The probability of this transition
for counter values ∆ 6∈ ∆0 is 0.)

If the current value of the counter c is positive, then the
transition matrix A+ is used instead:

Pr(St = (q′, c+ ∆) | St = (q, c)) = A+(q,∆, q′)

When the previous counter value is positive, the counter
value can only be decremented by 1, stay the same, or be
incremented by 1, i.e., ∆ ∈ ∆+ = {−1, 0, 1}.

A run of length T of a system is a finite trace
ρ = (q0, c0)(q1, c1)(q2, c2) . . . (qn, cn) of configurations
with c0 = 0, such that, for all integers t with 1 ≤ t ≤ T
Pr(St = qt, Ct = ct|St−1 = qt−1, Ct−1 = ct−1) > 0. A
run is accepting if (qn, cn) = (qF , 0) (i.e. if it ends in the
final state with counter value 0).

The states and counter values are not directly observable.
Instead, a hidden state qt produces an output symbol ot with
the probability defined by the emission matrix B. Denoting
by Ot the random variable of observation made at step t, we
have

Pr(Ot = o|St = q) = B(q, o).

For the run above, one would see an observation sequence
ω = o0o1o2 . . . on with probability

∏n
t=0 Pr(Ot = ot|St =

qt).
If O, S, and C denote the sequence of random variables of

observations, states, and counter values along a run, then

Pr(O =ω, S = ρ)

= Pr(O = ω | S = ρ) · Pr(S = ρ)

=

T∏
t=0

Pr(ot|qt)×
T∏
t=1

Pr(qt, ct|qt−1, ct−1) (1)

The first factor in the third line of Equation 1 is the emission
probability (for the given run), and the second factor is the
probability that a given run is generated.

A random multiset of runs of predefined length T and size
s for a H1MMH, denotedR(H, T, s), is produced by taking
s independent samples from S, (i.e., by producing s randomly
created runs.) In each of them we simply randomly select the
next configuration according to the probabilities A+ and A0.

A random multiset of accepting runs of predefined length
T and size s for a H1MMH, denotedA(H, T, s), is produced
by taking s independent samples from S, and then store the
sampled run if it is accepting, and otherwise discard it; and
repeat this until s examples have been added.

A random multiset of observation sequences of predefined
length T and size s for a H1MM H, denoted O(H, T, s), is
produced by first producing A(H, T, s), and then sampling
an observation sequence for each run in A.

The main problem we study is, given a random multiset
of observation sequences O(H, T, s), find a H1MM H′ with
a given number |Q′| of states that is most likely to produce
O.

We note that a naive way of calculating the probability of
seeing a given observation sequence ω can be very slow: if A

denotes all the accepting runs of H of the same length as ω,
then this probability is

Pr(O = ω) =

∑
ρ∈A Pr(O = ω | S = ρ) · Pr(S = ρ)∑

ρ∈A Pr(S = ρ)

To calculate this value one would need to iterate over poten-
tially exponentially many accepting runs in A. In the next
section, we are going to show a dynamic programming solu-
tion to this problem that runs in polynomial time instead.

3 Adaptation of algorithms
We adapt here the standard Forward, Backward and Baum-
Welch algorithms, which are used for learning tasks in
HMMs, to our model H1MM by factoring in the configura-
tion the counter value.

The adapted Forward and Backward algorithms will con-
sist of two phases which we call: preliminary and normaliza-
tion. The first phase of both algorithms looks very similar to
the original algorithms for HMMs, but with the value of the
counter tracked. In the second phase, considering the spec-
ified initial configuration and terminal configuration, unnec-
essary paths are discarded from the trellis diagram and the
probability of all the paths connecting these two configura-
tions to each other is normalized.

The adapted version of Baum-Welch algorithm is used to
update the parameters of the H1MM taking the evolution of
the counter value into consideration. This algorithm consists
of two different computational parts represented by functions
ξ and γ defined as for HMMs [Bilmes, 2000]. These func-
tions calculate, respectively, the probability of a given con-
figuration at a given step t conditioned on the observation se-
quence and the probability of a particular pair of consecutive
configurations conditioned on the observation sequence.

3.1 The adapted Forward algorithm
Let oi:j = oi . . . oj be the part of the observation sequence
between steps i and j. The adapted Forward algorithm com-
putes the probability of a given observation sequence (o1:T )
by summing over all possible runs that can generate the given
observation sequence.

First Phase: preliminary Forward calculation
In this phase, we calculate the joint probability distribution
of a given observation sequence o1:t and the hidden state-
counter pair at step t being St = (q, c) conditioned on the
initial configuration being S0 = (q0, 0), which we will de-
note by α̂. Formally:

α̂t(q, c) = Pr(o1:t, St|S0)

Our algorithm calculates this value by summing over all
paths that reach St as shown in Figure 1. The calculation
starts at the base step at time t = 0. At this step, we know
that we are at the initial configuration, i.e., at the starting state
S0. So the base step value of α̂ is as follows:

• Base Step:

α̂0(q, c) =

{
1 :
0 :

if q = q0 and c = 0
otherwise
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Figure 1: The trellis of the preliminary forward flow

For any other step we calculate the value of α̂ recursively:
• Recursion Step:

if c−∆ = 0 :

α̂t(q, c) =
∑
q′∈Q

1∑
∆=0

α̂t−1(q′, c−∆)A0(q′,∆, q)B(q, ot)

if c−∆ > 0 :

α̂t(q, c) =∑
q′∈Q

1∑
∆=−1

α̂t−1(q′, c−∆)A+(q′,∆, q)B(q, ot)

Theorem 1. α̂t(q, c) calculates Pr(o1:t, St|S0) correctly.

Second Phase: Normalized Forward
The second phase of the algorithm calculates αt(q, c): the
joint probability distribution of the observation sequence o1:t

and the hidden state-counter pair at step t being St = (q, c)
under the condition that the initial configuration is S0 =
(q0, 0) and the terminal configuration has to be ST = (qF , 0).
Formally we write this as:

αt(q, c) = Pr(o1:t, St|S0, ST )

The way to compute this is to remove all paths from the
trellis diagram from which ST = (qF , 0) cannot be reached
in step T . Naturally, without normalization, the probabilities
to take any of these paths is now Pr(ST |S0), and no longer
1, and we need to normalize the probabilities accordingly.

• Base Step:

αT (q, c) =


α̂T (q,c)

Pr(ST |S0)

0

: if q = qF and c = 0

: otherwise

• Recursion Step:
if c = 0 :

αt(q, c) =∑
q′∈Q

1∑
∆=0

αt+1(q′, c+ ∆)A0(q,∆, q′)α̂t(q, c)

α̂t+1(q′, c+ ∆)

if c > 0 :

αt(q, c) =∑
q′∈Q

1∑
∆=−1

αt+1(q′, c+ ∆)A+(q,∆, q′)α̂t(q, c)

α̂t+1(q′, c+ ∆)

At the base step t = T , the calculation of normalization starts
in the final state with zero counter ST = (qF , 0). The rest
of the hidden state-counter pairs are discarded because our
model only accepts a run that ends at such final configuration
at t = T as shown in Figure 2. The accepting state is q1 with
zero counter value in this example. The normalized proba-
bility of (q1, 0), according to the equation of the base step, is
found by dividing the preliminary probability of the forward
flow of (q1, 0) with the total probability of reaching the final
configuration from the initial configuration.

There are three important points regarding the calculation
of the normalized probability of valid paths. First is that
the calculation starts from the final state with a zero counter
value. Second is that the time step is decremented by one
in each iteration. Therefore, in this phase, the normalization
calculation at a particular time step t will be used when cal-
culating the normalized probability as the time step t−1. The
last point is that we need all the preliminary probability val-
ues of the forward flow that we calculated in the first phase.
Theorem 2. αt(q, c) computes correctly the joint probability
Pr(o1:t, St = (q, c)|S0, ST ).

3.2 Adaptation of Backward algorithm
The adapted Backward algorithm computes the probability of
the future observation ot+1:T conditioned on the value of St.

First Phase: Preliminary Backward calculation
We calculate here, β̂t(q, c), the probability of reaching the
terminal configuration at the final step T from a given con-
figuration (q, c) at step t (given that we started at the initial
configuration). Formally:

β̂t(q, c) = Pr(ST = (qF , 0)|St = (q, c), S0)

The computation starts at the designated final configuration
ST = (qF , 0) at time t = T as shown in Figure 2 but the base
and recursion steps are different from the normalization of
adapted Forward calculation. For instance, we do not look at
the emitted observations in this phase.

• Base Step:

β̂T (q, c) =

{
1 :
0 :

if q = qF and c = 0
otherwise

• Recursion Step:
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Figure 2: normalization calculation of adapted Forward algorithm

if c = 0 :

β̂t(q, c) =
∑
q′∈Q

1∑
∆=0

β̂t+1(q′, c+ ∆)A0(q,∆, q′)

if c > 0 :

β̂t(q, c) =
∑
q′∈Q

1∑
∆=−1

β̂t+1(q′, c+ ∆)A+(q,∆, q′)

Theorem 3. β̂t(q, c) calculates Pr(ST |St = (q, c), S0) cor-
rectly.

Second Phase: Normalization Backward flow
In this phase the probability of emitting the future observa-
tion sequence ot+1:T is calculated conditioned on the current
configuration and that the terminal configuration is reached.
Formally,

βt(q, c) = Pr(ot+1:T |St = (q, c), S0, ST )

The calculation of the normalization of the backward flow
is started at the last time step T . The preliminary probability
of the backward flow is needed here.

• Base Step:

βT (q, c) =

{
1 :
0 :

q = qF and c = 0
otherwise

• Recursion Step:

if c = 0 :

βt(q, c) =∑
q′∈Q

1∑
∆=0

βt+1(q′,∆)A0(q,∆, q′)B(q′, ot+1)β̂t+1(q′,∆)

β̂t(q, c)

if c > 0 :

βt(q, c) =∑
q′∈Q

1∑
∆=−1

βt+1(q′, c+ ∆)A+(q,∆, q′)B(q′, ot+1)β̂t+1(q′, c+ ∆)

β̂t(q, c)

Theorem 4. βt(q, c) calculates correctly the probabilities
Pr(ot+1:T |St = (q, c), S0, ST ).

3.3 Adaptation of Baum-Welch algorithm
It is worth to point out that the original Baum-Welch algo-
rithm is a special case of the Expectation Maximization (EM)
algorithm [Bilmes, 2000] therefore the same aspect is con-
sidered on the adapted version when the counter variable is
taken into account. The adapted algorithm runs a procedure
that finds a set of parameters that get closer and closer to the
optimal model. It is repeating the following steps:

E-Step
In this step, there are two calculations where each takes into
account the counter value.
Theorem 5. γt(q, c) = Pr(St|O,S0, ST ) is the calculation
of the marginal posterior distribution of a hidden variable
St = (q, c) where

γt(q, c) =
α̂t(q, c)βt(q, c)β̂t(q, c)

α̂t(qF , 0)

Theorem 6. ξt((q
′, c′), (q, c)) = Pr(St−1, St|O,S0, ST )

calculates the joint posterior distribution of two successive
hidden variables of the model where

ξt((q
′, c′), (q, c)) =

α̂t−1(q′, c′)Aδ(c
′)(q′,∆, q)B(q, ot)β̂t(q, c)βt(q, c)

α̂T (qF , 0)

and

δ(c′) =

{
0 : c′ = 0
+ : c′ > 0

M-Step
In the M-step, we use the posterior parameters (i.e., θ) to find
new parameters (i.e., θ′) of the model that maximize the ex-
pected likelihood as estimated in the E-step. We can write the
joint probability distribution over hidden, counter and obser-
vation variables as follows:

Pr(S,C,O|θ) =

D∏
d=1

T∏
t=1

B(o
(d)
t , S

(d)
t )Aδ(C

(d)
t )(S

(d)
t , C

(d)
t+1−C

(d)
t , S

(d)
t+1)

where

δ(C
(d)
t ) =

{
0, C

(d)
t = 0

+, C
(d)
t > 0

We consider multiple observation sequences to learn an op-
timal model. Here, D represents the number of observation
sequences. We use Lagrange multipliers to obtain optimized



values for the model parameters. The updated formula for the
emission matrix is

B̂(q, o) =

∑D
d=1

∑T
t=1 γ

(d)
t (S

(d)
t )I(o

(d)
t = o)∑D

d=1

∑T
t=1 γ

(d)
t (S

(d)
t )

where I(o) denotes an indicator function which is 1 if ot =
o is true, and 0 otherwise. The updated formulas for state
transition matrices Â0 and Â+, respectively, are

Â0(q,∆, q′) =

∑D
d=1

∑
{t|C(d)

t =0} ξ
(d)
t (S

(d)
t , S

(d)
t+1)∑

S
(d)
t+1

∑D
d=1

∑
{t|C(d)

t =0} ξ
(d)
t (S

(d)
t , S

(d)
t+1)

Â+(q,∆, q′) =

∑D
d=1

∑
{t|C(d)

t >0} ξ
(d)
t (S

(d)
t , S

(d)
t+1)∑

S
(d)
t+1

∑D
d=1

∑
{t|C(d)

t >0} ξ
(d)
t (S

(d)
t , S

(d)
t+1)

4 Experiments
All algorithms here were implemented in Python and evalu-
ated on Intel i7 3.3 GHz CPU with 16 GB RAM. We also
implemented the standard algorithms (forward, backward,
Baum-Welch) for HMMs ourselves for a fair comparison.
The full source-code and the inputs used will be made freely
available online.

We tested the algorithm on the following in-
put. We first created 6 different models Hi =
(Qi,Σi, A

0
i , A

+
i , Bi, q0, qF ), where i = 1, 2 . . . , 6. Model

Hi has i + 1 states and Figure 2 shows Hi where the
probability values are omitted. Each model has a structure
similar to this example, which was picked in order to exhibit
an interesting counting behavior from the model. The
probabilities of transitions and observations A0

i , A+
i , and Bi

were then randomly selected.
Then using each Hi, we created a random multi-set of ob-

servation sequencesOi(Hi, T, 20000) that contain 20000 ob-
servation sequences with a fixed length T = 16.

To simplify the comparison, we let the number of states of
HMM to have 2.24 times more states (exactly

√
5 more) than

the H1MM model that it is compared with. This is because
to describe the transition matrix of H1MM with n states one
needs 5n2 values, while HMM utilises only n2 values. This
way we only compare models with the same total number of
parameters and thus avoid the need to penalize the model with
more parameters as one would do when using, e.g., Akaike
or Bayesian information criteria for measuring the quality of
models.

We noticed that both HMM and H1MM algorithm tend
to get stuck in local minima very often. In order to avoid
this, we followed the following procedure to train our models.
We started with 100 different initial completely random (i.e.,
fully connected with probabilities picked uniformly at ran-
dom) H1MM models (or HMM models). After each learning
step, we discarded the bottom 25% of these models as mea-
sured by the value of their likelihood. Eventually we only
had one model left that we trained until the learning process
converged.

The running time of the learning process for HMMs
Hi, i = 1, . . . , 6 took: 10 minutes, 30 minutes, 1 hour, 4

q0start q1

b, 0

a, 0

a,
+

1

b,+1

a,+1

b,−1

b,+1

a,−1

Figure 3: An example p1CA model. Blue arrows are enabled when
the counter value is zero, and the other arrows are enabled when the
counter value is positive.

hours, 6 hours, 10 hours, respectively. The same task for the
H1MM took: 1 hour, 6 hours, 22 hours, 79 hours, 218 hours,
- (initialization was done by hand), respectively.

At the training step, the parameters of the model were rees-
timated using the adapted Baum-Welch algorithm discussed
in the previous section. The learning algorithms has nested
loops over the length T of the observation sequence, feasi-
ble maximum counter values M ≤ 1

2T , and goes twice over
the number of hidden states n = |Q| at each iteration step.
Therefore, the complexity of the adapted Baum-Welch algo-
rithm is O(n2TM), where the counter value cannot exceed
the remaining length of the observation sequence; in particu-
lar M ≤ 1

2T .
The learnt HMM and H1MM models were then compared

with the original model. We chose as the performance metric
the likelihood of a set of test observations, which were differ-
ent from the observation sequences used in the learning pro-
cess. We calculated the similarity score using the Kullback-
Leibler (KL) divergence.

KL(P ||Q) = P (x) log
(P (x)

Q(x)

)
Here, P(x) addresses the original likelihood distribution and
Q(x) shows the likelihood distribution of the model to be an-
alyzed for every variable x. This estimates the difference be-
tween two likelihood distributions. Only if two distributions
match perfectly, the KL score is zero otherwise and the closer
to 0 it is the better. As we can see in Table 1, our H1MM
algorithms learnt almost perfectly the original model, while
HMMs struggle to get any close. The price we pay for that
is obviously the longer running time, but we are still much
faster compared to using PCFGs instead. In fact, based on
the running time of our learning algorithms for HMM and
H1MM, we can extrapolate that, if we were to implement the
standard cubic inside-outside learning algorithm for PCFGs,
it would timeout already forH3.

Model H1 H2 H3 H4 H5 H6

H1MM 0.008 0.0022 0.11 0.0027 0.0045 0.0064
HMM 4.94 5.44 5.24 5.26 6.799 5.11

Table 1: KL scores of all 6 individual models.
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