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Measuring the structural complexity of music: from
structural segmentations to the automatic evaluation

of models for music generation
Jacopo de Berardinis, Angelo Cangelosi Member, IEEE, and Eduardo Coutinho

Abstract—Composing musical ideas longer than motifs or1

figures is still rare in music generated by machine learning2

methods, a problem that is commonly referred to as the lack of3

long-term structure in the generated sequences. In addition, the4

evaluation of the structural complexity of artificial compositions5

is still a manual task, requiring expert knowledge, time and6

involving subjectivity which is inherent in the perception of7

musical structure. Based on recent advancements in music struc-8

ture analysis, we automate the evaluation process by introducing9

a collection of metrics that can objectively describe structural10

properties of the music signal. This is done by segmenting11

music hierarchically, and computing our metrics on the resulting12

hierarchies to characterise the decomposition process of music13

into its structural components. We tested our method on a dataset14

collecting music with different degrees of structural complexity,15

from random and computer-generated pieces to real compositions16

of different genres and formats. Results indicate that our method17

can discriminate between these classes of complexity and identify18

further non-trivial subdivisions according to their structural19

properties. Our work contributes a simple yet effective frame-20

work for the evaluation of music generation models in regard to21

their ability to create structurally meaningful compositions.22

Index Terms—Music structure analysis, Evaluation measures23

I. INTRODUCTION24

Music is a powerful medium that conveys meaning to listen-25

ers by combining a variety of musical elements synchronously26

and sequentially. At the perceptual level, the basic attributes27

involved in music perception are loudness, pitch, contour,28

rhythm, tempo, timbre, spatial location and reverberation [1].29

Whilst listening to music, our brains continuously track and30

analyse these signals according to diverse gestalt and psycho-31

logical schemas. Some of them entail higher order musical32

dimensions (e.g., metre, key, melody, harmony), which reflect33

(contextual) hierarchies, intervals and regularities between the34

different musical elements. Others involve continuous predic-35

tions about what will come next in the music as means of36

tracking structure and conveying meaning [2].37

Structural elements of music can range from local/short-38

term organisational levels (e.g., chord, a sequence of39

notes/sounds) – the “micro” level – to the longer temporal40

scales capturing the form of a composition or compositions41

(e.g., sonata form in classical music, or verse/chorus form in42
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popular music) – the “macro” structure. Within these levels, 43

patterns can be identified and music can be segmented in 44

various ways on the basis of specific musical characteristics 45

at different temporal levels (e.g., dynamics, patterns of dura- 46

tions/rhythm, melodic patterns, instrumentation, etc.) [3]. 47

Given that the same musical material may induce structure 48

at different interrelated levels, one interesting feature of musi- 49

cal organisation is its hierarchical nature. For instance, a piece 50

of music may be analysed in terms of its overall form (e.g., 51

divided into meaningful sections), but within those sections 52

we can further divide music into sub-levels that reflect, for 53

instance, rhythmic or harmonic structure. Naturally, given 54

the diversity of musical styles and compositional/performative 55

approaches, different pieces/performances will have different 56

kinds and amounts of (hierarchical) structure, and therefore 57

diverge in terms of structural complexity1. 58

The varied and sophisticated patterns of structure that char- 59

acterise music are a key distinguishing factor when compared 60

to other acoustic mediums (e.g., speech, soundscapes). In fact, 61

the importance of music structure to musical appreciation is 62

paramount [5] and a wide range of musical parameters as well 63

as structural features are fundamental to covey different types 64

of meaning to listeners [6], which in turn can trigger a cascade 65

of other responses (e.g., dancing, emotions) [7]. 66

In the last few years, composing music with machine 67

learning systems has attracted great interest from academia 68

and industry [8]. Companies started offering automatic mu- 69

sic composition solutions for entertainment content, such as 70

soundtracks for video games and commercials. Researchers, 71

instead, are leaning towards computer-assisted composition, 72

augmenting the creative potential of artists and composers [9]; 73

and machine improvisation, a category of intelligent systems 74

capable to temporarily replace a performer during a live 75

session [10]. Improving the generative capabilities of these 76

systems does not only opens up the investigation of new forms 77

of music, but is also considered a pinnacle to understand 78

machine creativity [11]. 79

Nonetheless, dealing with the structural complexity of music 80

has been a tremendous challenge, especially for generating 81

long and musically meaningful pieces endowed with form 82

and long-term structure (e.g. sections) [12, 13]. Indeed, cur- 83

rent state-of-the-art systems generate pieces that are mostly 84

characterised by local or short-term form, with motives – the 85

1For a detailed perspective on the theoretical analysis of music structure,
we refer to [4], and to [3] or [2] for a computational treatment of the subject.
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shortest musical ideas, dominating the synthetic compositions86

[14]. This is particularly prominent in music generated from87

long-short term memory (LSTM) recurrent neural networks88

(RNNs) [15], and is linked to the well-known problem of89

learning long-term dependencies from sequential data [16] –90

a long-standing goal in machine learning research.91

The advent of self-attention networks (SAN) in music92

modelling ameliorated this problem [17], with Transformer93

models now capable of generating music possessing structural94

properties that remain more coherent across a larger temporal95

scale compared to LSTMs [18]. Nevertheless, there is general96

consensus on the fact that the automatic generation of music97

with a realistic level of structural complexity is still an98

open problem for most genres. In fact, although structures at99

different temporal scales can now be found in generated music,100

those are rarely organised to convey a coherent musical idea101

throughout the piece, and inter-related with each other based102

on the principles of repetition, variation and contrast [19].103

Compared to the symbolic domain, the problem of structural104

complexity is more challenging for audio waveform genera-105

tion, as it requires processing significantly longer sequences106

(a three-minute-long audio segment sampled at 44.1 kHz will107

have an input length of about 8 million time steps). Not108

only does this exacerbate the problem of learning long-term109

dependencies, but generative models of waveform also have110

to capture an additional wide range of musical properties (e.g.111

timbre). In the audio domain, autoregressive models have been112

demonstrated to model local signal variations effectively and113

capture temporal correlations across tens of seconds [20]. A re-114

cent state-of-the-art automatic composition system is JukeBox115

[21] – generating audio music conditioned on artist, style, and116

lyrics. This model, counting billions of (learnable) parameters,117

was trained for several weeks using more than 512 V100118

GPUs. Nevertheless, when describing the generated musical119

repertoire, the authors reported that they could not “hear long120

term musical patterns, and [...] choruses or melodies that121

repeat” [21]. Analogously, when using JukeBox to generate122

completions close to the original pieces, they found that the123

generated continuations would “deviate completely into new124

musical material after about 30 seconds”.125

In our view, to start tackling this problem it is necessary126

to evaluate the structural complexity of music generated by127

automatic systems, in order to have a reference point that can128

be used to improve their composition capabilities. However,129

the evaluation of music generation methods is another open130

issue in the field, considering the lack of a standard evaluation131

methodology that can enable and foster a fair and objective132

comparison of music generation systems on a large scale [22].133

Even though computational methods quantifying specific134

musical properties have been previously addressed, there is135

still an open gap in devising measures of structural complexity136

that can easily be reused for the evaluation of generated137

music. To the best of our knowledge, current works focus138

on measuring tonal [23, 24], harmonic [25] and rhythmic [26]139

complexity of music, as well as properties related to musi-140

cality [27] and individuality [28] of performances. Notably,141

the work by Streich [29] encompasses both tonal, rhythmic142

and timbral complexities – which are considered indepen-143

dently as musical facets, and argues that the exploration of 144

human-perceived complexity should not be limited to pure 145

information-theoretical approaches, such as entropy measures 146

and Kolmogorov complexity. Nonetheless, the closest measure 147

of complexity entailing structural properties of the music 148

signal is the structural change [30] – a vector-valued meta- 149

feature that can be computed from any arbitrary frame-wise 150

audio feature (e.g. a chromagram) to quantify its amount of 151

change at different temporal scales. Each vector element is 152

expected to capture the structural change of a given feature at 153

a certain temporal scale, thus resembling Foote’s convolution 154

with a checkerboard kernel [31], where the window size of the 155

time scale parameterises the kernel. Although the convolution 156

method yields a novelty curve that can be used for structural 157

segmentation, it is not yet clear how the meta-feature would 158

relate to the presence of music structures rather than arbitrary 159

structures. In addition, the detection and the identification of 160

music structures generally requires taking multiple features 161

into account rather than relying on a single descriptor [32]. 162

A. Our contributions 163

In this article, and building upon our previous work [33], we 164

introduce a new set of metrics that tries to address a specific 165

gap – the automatic evaluation of music structural complexity. 166

Our method leverages a state of the art computational method 167

for music structure analysis (MSA) to detect structures and 168

their nested organisation within a composition. The resulting 169

structural segmentation is then analysed and summarised with 170

a set of metrics we devised to formally describe the decompo- 171

sition process of the identified musical ideas. In lieu of sub- 172

jectively defining structural complexity, our approach is based 173

on the hypothesis that the former is a latent property that can 174

be captured by a set of metrics. Nonetheless, given the scope 175

of this work, when addressing music structural complexity we 176

are primarily looking at the presence and richness of music 177

structures at different temporal scales, rather than seeking a 178

more general information theoretic interpretation of structural 179

complexity, thereby aligning with Streich’s views [29]. 180

We tested this method on a large dataset comprising music 181

with different types of structural complexity, and found that 182

our metrics can explain structural properties inherent to each 183

complexity class. We also showed and provided examples on 184

how these metrics can be used for evaluating the structural 185

complexity of music. Although our method is defined on audio 186

music, the obtained results demonstrated that our metrics also 187

work on synthesised MIDI music – thereby addressing both 188

the audio and the symbolic domains. The main contributions of 189

this paper are a set of metrics quantifying structural properties 190

of music, together with a novel evaluation framework for the 191

automatic analysis of structural complexity from music. 192

II. EVALUATION OF AUTOMATIC COMPOSITION METHODS 193

Evaluation is always required when submitting a novel 194

music generation method. Nonetheless, different evaluation 195

criteria and strategies are used heterogeneously and in isolation 196

from each other. In most cases, evaluation relies on manual 197

and subjective judgements by human listeners whom provide 198
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Fig. 1. Illustration of the hierarchical segmentation of a piece sampled from the distribution of an untrained LSTM (left); one generated from an LSTM
network trained on a dataset of symbolic classical music (centre); and the other chosen from a collection of classical compositions for piano (right), all with the
same duration. For each plot, the innermost circle corresponds to the first level in the hierarchy, where all audio frames belong to the same segment enclosing
the whole piece. From the second level, segments start decomposing into finer structural components (colours denote their identity, although repetitions occur
due to their limited availability), until every frame forms a community per se at the bottom of the hierarchy (the outermost circle).

ratings on specific properties related to the music composition199

itself (e.g. pitch range, mode, rhythmical consistency) or200

their subjective evaluation of the listening experience (e.g.,201

likeability, originality). In some (rare) cases, expert listeners202

are asked to evaluate the generated pieces by analysing their203

musical properties as a music teacher would do with the204

composition of a student [34].205

Overall, in line with the taxonomies reported in [35] and206

[22], evaluation methods for music generation can be organ-207

ised into the following categories – rarely used in conjunction.208

Music modelling evaluation. It concerns the evaluation of209

the prediction performance of an autoregressive music model210

– a specific family of music generation systems (also known as211

predictive models for music) that are trained to predict the next212

musical token (e.g. a note, chord, or a quantised representation213

of musical material) given the context of the previous events214

in a musical sequence (analogously to language models). This215

type of evaluation is based on the assumption that a model216

that can effectively predict music – having learnt associations217

between past and future musical content, can potentially218

encapsulate notions of music perception and composition.219

Hence, evaluating the predictive capabilities of a music model220

provides an indicator of the learned musical features possibly221

reflecting theoretical properties of music. The most common222

quantitative evaluation measures in the literature are the log-223

likelihood of the model’s predictions on the test set, frame-224

level accuracy [36], as well as general classification measures225

such as F-measure, precision, recall and perplexity [37].226

Statistical comparisons. Methods belonging to this category227

are based on computing some descriptive statistics on a set of228

generated compositions so that they can be compared with229

those extracted from the training data. Examples of these230

statistics at the piece level are pitch and note counts, pitch231

class and note length histograms, average pitch interval and232

so forth. Hence, this comparison provides a weak measure of233

the resemblance of the generated sequences to those contained234

in the training set [22], which can also be interpreted as a235

“plagiarism score” in a way [38]. Nonetheless, a high level236

of similarity with the training material might also indicate an237

overfitting trend or a poorly configured sampling strategy.238

Composition evaluation. The purpose of this evaluation is to 239

formally assess the quality and the plausibility of generated 240

pieces in terms of musical properties and/or theoretical rules. 241

This can be done via computational measures derived from 242

musicologists methods [39], or by involving a community of 243

music experts for review [34]. Given the scarcity of compu- 244

tational measures that can automate this process, the manual 245

evaluation of generated compositions, on the other hand, is 246

a laborious task requiring a high level of musical expertise. 247

In addition to potentially not being accessible, this evaluation 248

methodology also involves subjectivity at different levels. 249

Listening tests. This last group collects two of the most 250

common evaluation methods found in music generation works. 251

Both these strategies are based on listening tests involving 252

human participants, often without any musical training. 253

Turing test (alias discrimination test). A group of listeners 254

with different musical background is presented with pieces 255

either composed by humans or generated by a model. Lis- 256

teners are asked to discriminate among these groups, which 257

basically corresponds to answering the question: was this 258

piece composed by a human or by a machine? Whereas a 259

model generating music that cannot be clearly distinguished 260

from human work is a positive indicator of its generative 261

capabilities, this “pass-or-fail” methodology does not allow 262

comparisons with other automatic composition systems. 263

Furthermore, Turing tests have been heavily criticised over 264

the past decades [40, 41], particularly due to the complex 265

design of listening experiments under these settings [22]. 266

Blind comparison. This methodology permits to compare 267

music generated from different systems (usually a very few 268

pieces per model under analysis) by letting listeners rate 269

compositions based on specific properties, or express a pref- 270

erence among a given music selection including one piece 271

from each system. The final goal is to measure the extent 272

to which each generated track shows certain properties that 273

would be expected from real compositions. This approach 274

thus provides an evaluation method that allows the ranking 275

of each model according to the so obtained measurements. 276

From a critical perspective, this methodology is sensitive to 277

potential biases emerging from the selection of tracks in the 278
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experiment. The latter is particularly concerning in light of279

the limited collections under analysis.280

To the best of our knowledge, most works based on listening281

tests rely on crowd-sourcing platforms, where participants282

receive a fee for their evaluation (e.g. Amazon Mechanical283

Turk); or on web-based platforms anyone can access to284

contribute their feedback. Hence, these experiments should285

be carefully designed [22], as ensuring an adequate level of286

control can be challenging considering that participants may287

not be easily filtered with a desired degree of specificity.288

In conclusion, there is a lack of systematic and standardised289

methods for evaluation of the music generated by automatic290

systems, which is a major limitation in this area given that291

there is still no consensus on how music generated from292

different models can be evaluated and compared.293

III. COMPUTATIONAL ANALYSIS OF MUSIC STRUCTURE294

The computational analysis of music structure is an active295

field of research, encompassing several aspects of music and296

involving numerous technical challenges [19]. From a general297

perspective, the main goal of MSA consists in decomposing298

or segmenting a given music representation into patterns299

or temporal units that correspond to musical parts, and to300

group these segments into musically meaningful categories301

depending on the use cases. Therefore, the task of MSA is302

typically split into two distinct sub-problems: the detection303

of the temporal boundaries where a transition between two304

consecutive segments occurs (boundary detection); and the305

labelling of the obtained segments according to their similarity306

or musical function (structural grouping).307

Most methods for automatic MSA only estimate single-level308

(flat) segmentations, where segments typically corresponds to309

sections (e.g. intro, chorus, verse in Western popular music).310

Depending on the music genre of the music collection under311

analysis, the temporal granularity of these segments is usually312

fixed, as the duration of large-scale structural patterns is313

generally style-dependent. Methods for flat MSA have already314

enabled novel applications in music information retrieval,315

ranging from methods facilitating the finding and access access316

music information in large multimedia collections [42], to317

active-music listening interfaces – allowing users to enjoy318

music in more interactive ways than conventional playback319

[43]. Nevertheless, the segmentation estimated by an algorithm320

for flat MSA only provides a bird’s-eye view of the structural321

properties of a music piece, meaning that any further decom-322

position of such large-scale segments would not be detected.323

Music form, indeed, is conceived by composers and per-324

ceived by listeners following a hierarchical organisation. Sec-325

tional patterns further decompose into progressively shorter326

musical ideas, unveiling phrases, measures, motives and so327

forth. This nested organisation of music finds the most granular328

level with tones and chords – the staples of a composition.329

Hierarchical MSA specifically takes this organisation into330

account, as it detects structural elements at different scales.331

Given a music track, these methods produce a multi-level332

segmentation – a hierarchy of flat segmentations, where each333

level offers a structural segmentation at a certain granularity.334
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Fig. 2. Acquisition process and categorisation of the structural metrics.

To get a better technical understanding of our work, we 335

introduce the following preliminary concepts and notation. Let 336

X = {x1, x2, . . . , xT } denote the set of frames sampled from 337

a given audio track at some fixed resolution (e.g. 10Hz). A flat 338

segmentation S of X is defined by temporally partitioning X 339

into a sequence of labelled time intervals, denoted as segments. 340

This can be encoded as S : [T ] → Y , i.e. a mapping of 341

samples t ∈ [T ] = {1, . . . , T} to a set of segment labels 342

Y = {y1, . . . , yk}. Depending on the labelling system, Y may 343

consist of functional labels, such as intro, verse and chorus, 344

or generic section identifiers such as A and B. 345

Let S(i) identify the label of the segment containing the i-
th frame in X. A segment boundary is any time instant at the
boundary between two segments: it usually corresponds to a
change of label S(t) 6= S(t+ 1) for t > 1, though boundaries
between similarly labelled segments can also occur (e.g. an
AA form). With these concepts, we can define a hierarchical
segmentation of depth m as a tree of flat segmentations

H = (S1, S2, . . . , Sm),

where each level refines the preceding, with the ordering 346

typically implying a coarse-to-fine structural analysis of the 347

corresponding track. A hierarchical MSA procedure can be 348

seen as a divisive hierarchical clustering method, with struc- 349

tural patterns being progressively refined across the hierarchy 350

to detect finer structures. Following this decomposition ap- 351

proach, all samples belong to the same “mother segment” 352

in S1; in contrast, if structural hierarchies are not bounded, 353

every sample will be associated to a distinct label in the last 354

segmentation level Sm, thereby forming a (trivial) structural 355

segment on its own called singleton. 356

IV. MEASURING MUSIC STRUCTURAL COMPLEXITY 357

The analysis of hierarchical segmentations can reveal in- 358

sights into the richness and complexity of music structure. As 359

an example, we show in Fig. 1 how a simple visualisation of 360

structural hierarchies permits visualising structural differences 361

between random, generated and real music. Here, a sunburst 362

diagram is used (as a compact alternative of a dendrogram) to 363

visualise a hierarchical segmentation of a track: from the top 364

level, where all the audio samples are clustered in the same 365

group (the unique slice in the inner-most circle), to the bottom 366

layer, where each temporal fragment of the composition forms 367

its own group (note the full separation in the outer-most circle). 368

By analysing how music structures progressively break up in 369

a composition, structurally informative descriptors can be used 370

to formalise this process. Our method does so in two steps. 371
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First, hierarchical segmentations are computed with the dy-372

namic musical structure communities (DMSCOM) algorithm373

[33]. Second, we derive structural descriptors from them.374

A. Structural segmentation of audio music recordings375

DMSCOM is a recently proposed state-of-the-art algorithm376

that produces rich and deep hierarchical segmentations of377

music pieces from raw audio. Compared to other procedures, it378

has the advantage of being unsupervised and requiring minimal379

setup. In addition, the algorithm does not limit the size and380

type of segments to detect nor the topology of the estimated381

hierarchies. DMSCOM segments music hierarchically and382

performs both boundary detection and structural grouping.383

The process starts with the extraction of two sets of acoustic384

features from a raw audio file: chroma features, describing385

the distribution of the harmonic content of the spectrum into386

a fixed number of bins corresponding to pitches of a musical387

scale; and mel-frequency cepstral coefficients (MFCC), encod-388

ing the timbral properties of the signal. The instrumentation389

and the timbral properties of a sound source are indeed of390

great importance for the human perception of musical structure391

[44], and the same can be said for the pitch content, upon392

which harmonic and melodic sequences are built [45]. In393

fact, harmonic features alone have turned out to be effective394

mid-level representations for music structure analysis [46].395

Nevertheless, focusing on a single audio descriptor could po-396

tentially lead to undetected structural boundaries, as previous397

research found that a listener’s attention mostly shifts among398

timbral and chroma features throughout a piece [32]. For this399

reason, DMSCOM takes both these features into account, to400

create a single compact descriptor that retains timbral and401

harmonic/melodic properties of the track in a graph object.402

Following their extraction, both features sets are beat-403

synchronised – by averaging all the vectors belonging to404

the same estimated beat, to reduce data dimensionality and405

remove transient noise. This is done by using a dynamic406

programming algorithm for beat tracking that directly operates407

on the spectogram [47]. Then, the self-similarity of each408

(beat-synchronised) feature set is computed using a Gaussian409

kernel, thus yielding two self-similarities matrices (SSMs) of410

size N × N , where N is the number of beats. From the411

SSM computed on chroma features, the recurrence graph R is412

obtained by weighting edges according to the similarity of the413

corresponding beat-aggregated chroma vectors; whereas the414

proximity graph ∆ is defined analogously from the timbral415

SSM, with the only exception that only edges connecting416

temporally consecutive beats are preserved. In sum, R captures417

harmonic and melodic repetitions in a given track, whereas418

∆ preserves the sequential nature of music by connecting419

consecutive nodes according to their timbral consistency.420

Since MFCC and chroma-based features are both related to421

human perception of musical structure, combining them into422

a single representation would provide a rich and informative423

descriptor for MSA. To that end, the recurrence and the prox-424

imity graphs are fused into a single graph G = (V,E) in such425

a way as to avoid proximity connections being excessively426

outnumbered by the repetition connections. In the resulting427

music graph G, nodes still correspond to beats and edges 428

now encode their timbral and harmonic relationships, with 429

the topology of the network ensuring the connectedness of 430

temporally subsequent nodes. The edge set is represented as 431

an adjacency matrix E ∈ R|V |×|V | where |V | = N denotes the 432

number of nodes (or beats) and each Ei,j holds the relationship 433

between nodes i and j. The procedure for the creation of the 434

music graph is akin to [48], although the SSM computed on 435

the beat-synchronised chroma features undergoes a dynamic 436

filtration step before the the recurrence graph R is constructed. 437

This is done to retain structurally meaningful connections, and 438

it is controlled by the total strength of the network and a 439

hyper-parameter λ – the coefficient of filtration, controlling 440

the severity of the filtration process. 441

Structural segments at different levels of granularity are then 442

detected from the music graph G. Each segment collects nodes 443

with similar features, with the propensity of a node being part 444

of a group (or community) depending on the resolution level at 445

a certain layer in the hierarchy. A community thus corresponds 446

to the identity of a structural segment, collecting nodes with 447

homogeneous musical properties at a certain resolution level. 448

With DMSCOM, this is achieved by using the multi-resolution 449

hierarchical community detection procedure of [49] on G. 450

The key element of this recursive procedure is the resistance 451

parameter r, used to control the granularity of structural 452

patterns at a certain segmentation level. In particular, self- 453

loops with weight equal to r are introduced for all nodes 454

in the adjacency matrix E in order to control the propensity 455

of nodes forming communities: when r < 0 we can reveal 456

super-structures, since nodes are more reluctant to form small- 457

scale communities; when r > 0 we incentive individual links 458

thereby revealing sub-structures. For a more detailed overview 459

of DMSCOM and its experimental evaluation, we refer to [33]. 460

B. Metrics of music structural complexity 461

In this work, we use a collection of metrics quantifying 462

specific properties of the hierarchical segmentation process to 463

characterise music structural complexity. They were grouped 464

into three categories: segmentation metrics, hierarchy descrip- 465

tors and fragmentation metrics (see Fig. 2). 466

Segmentation metrics. This group of metrics includes pa- 467

rameters related to the segmentation algorithm – the extreme 468

values of the resistance parameter r needed to hierarchically 469

partition a given track (c.f. Section IV-A). rmin is the smallest 470

negative value of the resistance parameter s.t. all nodes of the 471

music graph belong to a single community. In other words, it 472

relates to the amount of negative “force” that has to be applied 473

to each node in the graph to enclose all of them within the 474

same segment, i.e., how much nodes are resisting to form a 475

single community. rmax is the resistance of the music graph to 476

decompose fully into singleton communities – the most atomic 477

structures. It corresponds to the smallest positive r s.t. each 478

node forms a community on its own (singleton). 479

Hierarchy descriptors. One of the most intuitive properties 480

to describe the complexity of a hierarchical segmentation is 481

the number of levels it contains – the depth of the hierarchy, 482

with 2 being the minimum possible depth (from the mother 483



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. Y, MONTH 2021 6

TABLE I
TAXONOMY OF THE STRUCTURAL METRICS AND OUTLINE OF THEIR FUNCTION IN RELATION TO THE HIERARCHICAL SEGMENTATIONS.

Group Metric Aggregation Values Description

Segmentation metrics rmin - 1 Smallest value of r to enclose all nodes in a single community.
rmax - 1 Smallest value of r to break the graph completely into singletons.

Hierarchy descriptors
hierarchy depth - 1 Relative number of segmentation levels in the hierarchy.
number of communities - 1 Total relative number of detected communities.
number of splits - 1 Total relative number of community splits across the hierarchy.

Fragmentation metrics singleton fragmentation - 1 Propensity of communities to become singletons (single-node
communities) towards the bottom of the hierarchy.

no. of non-singletons communities hierarchy 4 Relative number (proportion) of non-singleton communities per
level, aggregated across the hierarchy (M, SD, CV, SampEn).

size of non-singleton communities hierarchy 4 Relative size of non-singleton communities per level, aggregated
across the hierarchy (M, SD, CV, SampEn).

fragmentation imbalance level, hierarchy 12
Degree of distribution of nodes from parent to children com-
munities, aggregated for each level (min, max, M) then across
the hierarchy (M, SD, CV, SampEn).

Fig. 3. Examples of maximally balanced (left) and imbalanced (right) splits.

segment to all singletons) and |V | the maximum (the mother484

segment losing a node at every level). Other structurally485

informative indicators are the number of communities and486

the number of splits, which indicate the amount of structural487

elements identified across the hierarchy and the amount of488

splits from which they originate. More precisely, a split is489

counted whenever a parent community at level i originates at490

least a new community at level i+ 1, in addition to the trivial491

one preserving the same nodes of the parent. Given that the492

depth of the hierarchy also depends on the music piece length,493

these three metrics are scaled with respect to the maximum494

values they can take in a given music graph. In this way, it is495

possible to compare tracks with different duration and metre.496

Fragmentation metrics. These metrics describe key aspects497

of the decomposition trend of hierarchical segmentations.498

The fragmentation imbalance of a split is an indicator of how499

nodes distribute from a parent community Cl with |Cl| nodes500

at level i to its children communities Cl,1, . . . , Cl,m at level501

i+ 1. It ranges from 0, when |Cl,k| = |Cl|
m ∀k ≤ m, to 1 for502

maximal imbalance – when ∃ Cl,k s.t. |Cl,k| = |Cl| −m+ 1,503

with all the other new communities being singletons (Fig. 3).504

Because the fragmentation imbalance is computed from an505

individual split, obtaining a single metric for the whole hi-506

erarchy requires two steps of aggregation: first we aggregate507

the fragmentation imbalance of all the communities splitting508

between each couple of successive levels (level aggregation),509

then we aggregate across this hierarchy (hierarchy aggrega-510

tion). We use the minimum, maximum and mean functions511

for level aggregation, and mean (M), standard deviation (SD),512

coefficient of variation (CV) and sample entropy (SampEn) 513

for hierarchy aggregation. SD, CV and SampEn are used to 514

study the dynamicity and predictability of the the hierarchical 515

fragmentation process. In particular, SampEn is a modification 516

of approximate entropy that is independent from sequence 517

length [50]. In statistical signal processing, approximate en- 518

tropy is used as a measure of irregularity and unpredictability 519

of fluctuations of time-series data [51]. Sequences with several 520

repetitive patterns receive small SampEn; less predictable 521

(more complex) ones yield higher values. 522

To describe the degree of fragmentation of communities at 523

a certain level, which indicates the persistence of nontrivial 524

structural components, we consider the proportion of non- 525

singleton communities together with their relative size. Given 526

a segmentation level Si the former one is obtained by counting 527

the number of non-singleton communities and scaling it by the 528

total number of communities in Si. Similarly, the size of non- 529

singletons communities – the number of nodes they contain, 530

is scaled by |V |. As we obtain a time series for each metric 531

– one for the number and one for the size of non-singleton 532

communities per level, only hierarchy aggregation is required. 533

Finally, another metric – singleton fragmentation – describes 534

how far in the hierarchy nodes tend to form singletons, 535

indicating the pace at which the most atomic structural com- 536

ponents – beats – tend to separate from larger structures. 537

Given that the singleton fragmentation pertains to each v ∈ V , 538

values are computed independently for each node and then 539

averaged. More formally, assuming that a node v becomes a 540

singleton in Si (the i-th level in the structural hierarchy S), 541

the fragmentation imbalance of v is simply defined as i
|S| , 542

where |S| denotes the hierarchy depth (the total number of 543

segmentation levels in S). This metric ranges in the [0, 1] 544

interval. Values close to 0 indicate a slower and persistent 545

fragmentation of the graph; if nodes tend to become singletons 546

towards the end of the hierarchy, values would tend to 1. 547

V. EXPERIMENTS AND RESULTS 548

In this section, we describe our test framework, experimen- 549

tal procedures and results pertaining to the investigation of 550

metrics to quantify the structural complexity of music pieces. 551
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A. Music dataset552

Our first step was to create a music dataset that included553

music with different levels of structural complexity. In par-554

ticular, we included three types of subsets, which we think555

establishes a good test-bed: human-composed music (high556

complexity; “real” music), computer-generated music (which557

we expect will have intermediate complexity) and random558

music (minimal complexity). In our view, each of these559

subsets is associated with a different level of music structural560

complexity, which allows to investigate whether our metrics561

permit discriminating between these broad complexity levels.562

Another way to interpret the proposed experimental method-563

ology in light of the three subsets is as follows. First, random564

and real music are needed to verify whether the structural565

complexity metrics can confirm our objective expectations: the566

former having little or no structure, and the latter possessing a567

realistic/maximal level of music structural complexity. If this568

is confirmed, hence the structural complexity metrics conform569

with our assumptions, then we would obtain a lower bound570

(random music) and an upper bound (real music) for the571

structural complexity of music. Therefore, the next question572

is to see where generated music stands in this space.573

1) Human-composed (real) music: This subset includes a574

selection of “real” music, i.e., music written by human com-575

posers, which includes a partition of the Pianomidi [52] and576

SALAMI [53] datasets. The first, is a well-known dataset of577

classical music for piano (in symbolic format) spanning from578

the baroque era to the late Romantic and impressionist periods.579

The second, is a dataset used for audio-based MSA, providing580

live performances of pop/rock/blues music together with their581

structural annotations. We expect real music2 to exhibit the582

highest degree of structural complexity, with short-term (e.g.,583

motifs), mid-term (e.g., phrases) and long-term (e.g., sections)584

structural elements emerging from the compositions.585

2) Computer-generated music: This subset includes music586

generated by three state-of-the-art machine learning models:587

the Basic RNN, the Lookback RNN and the Attention RNN588

[54]. These three models are particularly interesting because589

they have different levels of ability to produce musical content590

with long-term structures. Furthermore, all these models have591

a comparable number of learnable parameters, use the same592

encodings of symbolic music, and were trained on the same593

music corpus using similar strategies and optimisation meth-594

ods. This ensures that the musical properties of the generated595

compositions – and in particular, their increased level of596

structural complexity, can be attributed to the architectural597

design of these models rather than being the result of other598

factors that we would not be able to trace. Therefore, these599

models provide a controlled testbed for our experiments.600

The Basic RNN is a vanilla LSTM recurrent neural network601

[15] trained for one-step ahead prediction on symbolic music602

sequences. This architecture is representative of several works603

in the literature, from the first attempts at music modelling604

with LSTMs [55] to more recent architectures [56].605

The Lookback RNN is an extension of the Basic RNN which606

introduces time-delayed connections and requires several ad-607

2The terms real and human-composed music are used interchangeably.

ditional inputs at each time step (a rich conditioning signal). 608

More precisely, in addition to the previous musical token and 609

assuming that all pieces have time signature of 4/4, a Lookback 610

RNN receives the following information: (i) the specific events 611

from one and two measures ago; (ii) whether the last token was 612

repeating the event from one or two bars before it; (iii) two 613

labels denoting whether the network has to repeat the event 614

from one or two measures ago, respectively; (iv) the current 615

relative position within the measure in terms of quarters. 616

These architectural changes aim to facilitate the model to 617

learn structural regularities from sequences by providing prior 618

knowledge of metrical structure to the network [57]. 619

Finally, the Attention RNN is another architecture that 620

expands the memory capacity of the LSTM by means of 621

an attention mechanism [58], which enables the network to 622

contextually access the generated output sequence up to a 623

certain number of elements. This frees the network from 624

having to store musical content in the LSTM cell’s state. Atten- 625

tion mechanisms have become staple in modern architectures 626

for music generation [18], because they are more effective 627

at modelling long-term dependencies in sequential data – a 628

desideratum for the generation of music with increased levels 629

of structural complexity [59]. Although generated music still 630

does not posses a clear structural identity [60], autoregressive 631

models tend to produce music exhibiting repetition and varia- 632

tion only at a local level [36]. Nevertheless, these subsets were 633

specifically chosen due to the increasing level of structural 634

complexity their music is expected to exhibit according to [54], 635

starting from the Basic RNN. 636

3) (Quasi-)Random music: The last subset contains music 637

artificially generated or manipulated in a way to compromise 638

most of its structural integrity. First, we include a group 639

of pieces generated with a Basic RNN (the same model in 640

Section V-A2) after a single epoch of training on the Pianomidi 641

dataset. Second, we used a scrambling method [61] that 642

randomly shuffles beat-aggregated feature vectors to destroy 643

any structural relationship at the beat level on all tracks of 644

SALAMI and Pianomidi datasets. We expect that music pieces 645

from both these groups will have minimal structure. 646

4) Data overview: All sets comprise music pieces with 647

duration of 180 ± 20 seconds – a duration we find suitable 648

for the identification of structures spanning from short- to 649

long-term scales. To obtain audio tracks, the MIDI files in 650

our collection are synthesised using FluidSynth and the 651

freely available FR3 General-MIDI soundfont3. The diversity 652

of musical material (live performances, synthesised symbolic 653

music) and the inclusion of different genres (classical, pop, 654

rock, etc.) provides a challenging experimental setup to test 655

the robustness and the generalisation of the structural metrics. 656

B. Structural complexity metrics and summaries 657

Following the procedure detailed in Section IV-B, we com- 658

puted all metrics for the music tracks in our dataset. To 659

produce hierarchical segmentations, the coefficient of filtration 660

of DMSCOM was set to its default value (λ = 4), as it was 661

found to achieve state of the art results on SALAMI [33]. 662

3https://www.fluidsynth.org/
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Fig. 4. Overview of the structural metrics divided by each music subset in our collection – random music generated from an untrained LSTM (r-net) or by
beat-shuffling on SALAMI (r-sa) and pianomidi (r-pm); and computer-generated music from a basic (b-rnn), lookback (l-rnn) and attention (a-rnn) LSTM;
real classical music for piano selected from the SALAMI (sa) and pianomidi (pm) datasets. For those metrics requiring hierarchy aggregation only, the name
of the functional is reported in brackets; when level aggregation needs to be applied before the former, both functionals are reported.
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Each metric was then grouped according to the music selection663

each track belongs to (e.g. Pianomidi), thereby enabling the664

analysis and the comparison of the distributions of these665

groups (Figure 4). To detect statistically significant differences666

between the music selections, pairwise Kolmogorov-Smirnov667

tests were performed for all metrics (Bonferroni corrections668

were applied to control for family-wise error rate of multiple669

comparisons). This in-depth statistical analysis, together with670

a table reporting the mean and the standard deviation of each671

metric per music selection, are provided in Appendix A.672

From the results we found that real music, compared to673

the other subsets, is harder to segment, as it results in deeper674

hierarchies following a more complex decomposition trend.675

The values of the resistance parameter r indicate that real676

music requires more energy to enclose all nodes within a677

single community (rmin), as well as to fully decompose678

networks into singletons (rmax). This is particularly evident679

between real and random music, with generated music only680

approaching the human-composed class with the Attention681

RNN – a pattern we found for several other metrics.682

A similar trend can be observed for the hierarchy descrip-683

tors. Hierarchies obtained from the segmentation of human-684

composed music are the deepest in terms of segmentation685

levels, with the fewest relative number of communities re-686

sulting from a reduced number of splits. In contrast, random687

music is segmented in shallow hierarchies with the highest688

number of estimated communities, although still originating689

from a few splits. Generated music, instead, sits in between the690

former groups for hierarchy depth and number of communities,691

stemming from the largest number of splits. Therefore, it can692

be observed that the relative number of splits is a structural693

property shared between real and random music, and allows694

to distinguish these groups from generated music.695

Regarding the decomposition trend of music, a level-to-level696

analysis of non-singleton communities and their fragmentation697

across the hierarchies revealed the following insights. For698

real music, the relative number and the size of non-singleton699

communities per level are the least complex to predict, with700

the highest standard deviation and coefficient of variation. On701

the contrary, the trend of non-singleton communities in random702

music is the most complex process, with the lowest amount of703

variation. The decomposition trend of human-composed music704

thus follows some regularity, which is particularly evident for705

the relative size of non-singleton communities.706

The choice of level aggregation (LA) function did not707

influence the analysis of the fragmentation imbalance, as both708

min, max and mean provided similar insights. From this anal-709

ysis, we found that real music produces the most imbalanced710

splits (0.38 and 0.37 average fragmentation imbalance with711

mean LA for SALAMI and Pianomidi respectively) compared712

to the other groups. The higher fragmentation imbalance of713

human-composed music, together with its reduced number714

of non-singleton communities per level, indicates a leaky715

segmentation behaviour. This means that the hierarchical seg-716

mentations of real music tend to be inflated by the number717

of nodes separating from larger communities as singletons,718

which in turn contributes to increase the hierarchy depth.719

The singleton fragmentation metric provides further insights720

into the pace at which this leaky segmentation occurs across 721

hierarchies. Given that human-composed music has the lowest 722

singleton fragmentation, the full decomposition of structural 723

segments into singletons does not occur right at the bottom 724

of hierarchies – a behaviour which is more pronounced for 725

random and generated music. Indeed, the leaky segmentation 726

of real music is more gradual throughout the hierarchies, rather 727

than happening mostly towards their bottom levels. 728

C. Structural complexity of different music subsets 729

As can be inferred from the analysis above, there is re- 730

dundancy between the various metrics, which can indicate 731

the existence of latent variables. This was confirmed via a 732

correlation analysis, which revealed strong and significant 733

correlation between more than 80% of the metrics. To identify 734

potential latent variables, we employed principal component 735

analysis (PCA) on the whole set of metrics after discarding the 736

segmentation metrics. This ensures comparability of the latent 737

variables independently of the MSA procedure used to produce 738

hierarchical segmentations (r-values are DMSCOM-specific). 739

The first two principal components explained 83% of the 740

variance in the structural metrics. Hereinafter, we will focus 741

on the first two principal components and refer to them as 742

structural summaries – a compact descriptor of the structural 743

properties captured by the original metrics. 744

As latent variables were identified, we analysed the distri- 745

butions of the structural summaries (denoted as PC0 and PC1) 746

of the various music subsets. These are plotted in Fig. 5. 747

To detect differences between the distributions of each 748

selection, we computed a series of Kruskal-Wallis H-tests 749

and found that they differ significantly for both summaries 750

(χ2 = 630.85 and χ2 = 342.89, p < 0.0001; for PC0 and 751

PC1, respectively). The results of the pairwise comparisons 752

conducted jointly for the structural summaries using bivariate 753

Kolmogorov-Smirnov (KS) tests (after Bonferroni corrections) 754

are shown in Fig. 6. Due to the large number of comparisons, 755

the results are reported as a heatmap which highlights statis- 756

tically significantly different (p < 0.05) subsets in yellow and 757

non-significant in green (similar distributions). 758

The pairwise analysis revealed five distinct clusters of struc- 759

tural complexity: 1) random-salami and random-pianomidi (or 760

randomised-human; 2) random-net on its own; 3) Basic RNN 761

and Lookback RNN (hereinafter, simple RNN; 4) Attention 762

RNN; and 5) “real” music (SALAMI and Pianomidi). 763

In sum, the structural summaries allow discriminating be- 764

tween the different music subsets in our dataset, and can 765

unveil further subdivisions in each of these groups. These 766

subdivisions are retained structurally meaningful, as they 767

confirm that scrambled music still preserves some degree of 768

structure (as the perturbation is operated at the beat level), 769

and the importance of attention mechanisms for automatic 770

composition models; however, the architectural changes of the 771

Lookback RNN did not significantly contribute to the structural 772

complexity of the generated music compared to a vanilla 773

LSTM model. To conclude, the structural summaries provide 774

a formal and automatic way to inspect where a given music 775

piece or collection sits within the structural complexity plane. 776
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Fig. 5. Illustration of the distributions of the structural summaries for each group after bivariate kernel density estimation. The mean and the standard deviation
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VI. STRUCTURAL SUMMARIES: A FRAMEWORK FOR777

MEASURING MUSIC STRUCTURAL COMPLEXITY778

The analysis of the structural summaries on our dataset779

provides a compact and effective framework to evaluate the780

structural complexity of computer-generated music. One pos-781

sibility is to compare a corpus of generated pieces with the782

five reference classes of structural complexity we described783

in the previous section. Similarly to our previous analysis,784

Kolmogorov-Smirnov (KS) tests could then be used to com-785

pute the pair-wise differences between the bivariate distri-786

bution of the structural summaries extracted from the given787

collection and those of the reference classes. Furthermore, the788

resulting KS scores, ranging in [0, 1], can then be interpreted789

as a dissimilarity measure between the generated corpus and 790

each of these classes (Figure 6, right). 791

If the intention is to evaluate a single track, the Mahalonobis 792

distance between its structural summaries (a data point) and 793

the distribution of each reference class could also be computed. 794

The Mahalanobis distance is suitable for this purpose as it is 795

an effective multivariate distance function that measures the 796

distance between a single data point and a distribution. An 797

example of this approach is shown in Table II for Vivaldi’s 798

“La Caccia” (Autunno part III) – a classical music piece 799

for orchestra from the Baroque period. In addition to the 800

original orchestral version, we included: a structurally simpli- 801

fied version of the former piece, that is used for educational 802
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TABLE II
MAHALONOBIS DISTANCE OF THE STRUCTURAL SUMMARIES EXTRACTED
FROM EACH VERSION OF VIVALDI’S LA CACCIA W.R.T. THE REFERENCE

COMPLEXITY GROUPS. THE DISTANCE OF THE CLOSEST REFERENCE
CLASS IS HIGHLIGHTED IN BOLD FOR EACH TRACK.

random-net randomised-human simple RNN attention RNN human
Original 28.68 22.42 2.08 0.90 0.52
Simplified 18.26 13.45 3.13 3.00 4.63
Randomised 1.22 0.44 3.67 5.63 11.65

purposes (recorder practise in secondary school); as well as a803

randomised version of it, following the same scrambling pro-804

cedure outlined in Section V-A3. As shown, both the original805

and the randomised versions received the smallest distance806

to their expected classes - human (0.52) and randomised-807

human (0.44), respectively. The simplified version, instead, has808

structural properties closer to those of generated music, and,809

in this particular case, to the Attention RNN outputs. These810

results are thus in line with the consideration that the structural811

simplification of the educational track was artificially operated812

to make it easier for novice students to analyse and play the813

piece on the recorder. Although the Mahalonobis distance of814

the structural summaries of the simplified version from their815

closest distributions – 3.13 from the Simple RNN and 3.00816

from the Attention RNN, is not as low as those of the original817

and random versions, there is still reasonable margin to the818

other reference complexity classes.819

From a statistical perspective, the use of our framework820

would be more reliable if distributions are to be compared,821

rather than individual tracks. Indeed, comparing two distri-822

butions under the same assumptions would provide a more823

robust statistical indicator, rather than comparing a data point824

against a distribution. This approach would also align to the825

expected use case for automatic evaluation. Experimenters826

would generate a reasonable number of tracks from their music827

generation system, extract a number of metrics to quantify828

specific musical properties of the compositions, along with829

their structural summaries. The latter would then be compared830

to the reference complexity classes for structural evaluation.831

In any case, both the corpus and the single-track evaluations832

necessitate the principal components matrix from our previous833

experiments (Section V-C) before any comparison is possible.834

In fact, as a preliminary step, the structural complexity metrics835

extracted from the hierarchical segmentation of the given836

track(s) need to be projected onto the principal components,837

so that the structural summaries can be obtained.838

VII. CONCLUSIONS839

In this paper, we addressed the automatic analysis of struc-840

tural complexity of music – an open problem in the field of841

computational music analysis which is currently jeopardis-842

ing the systematic evaluation and the comparison of music843

generation systems. Our approach builds upon computational844

methods for hierarchical music structure analysis (MSA), ca-845

pable of unveiling the nested organisation of music from long846

and articulated musical ideas (e.g. sections) to progressively847

shorter and simpler structural components (e.g. motifs). Given848

a music track or a synthesised symbolic piece, a structural849

segmentation is first estimated as a hierarchical object using a850

state-of-the-art method for hierarchical MSA. This is followed 851

by the extraction of a set of metrics to formally describe these 852

hierarchies and the decomposition of music structures therein. 853

To test the ability of our metrics to characterise structural 854

properties of music, we computed them on a dataset including 855

random, real and computer-generated music – groups which 856

we expect to be associated with different degrees of structural 857

complexity. After analysing their distribution on each group, 858

we found that not only our metrics permit to discriminate 859

between them, but further non-trivial subdivisions can also be 860

identified according to the structural properties of the compo- 861

sitions. Our results thus revealed how these hierarchies differ 862

as mathematical objects, and demonstrated the effectiveness 863

of our metrics as structural descriptors of music. 864

We also showed how these metrics, together with their 865

statistical analysis on the dataset, can provide a compact 866

framework for automatically evaluating the structural com- 867

plexity of a given collection of music or individual tracks. To 868

the best of our knowledge, our method is the first to achieve 869

this and comes with the following strengths: (i) it relies on 870

simple metrics and functionals describing the decomposition 871

process of music into nested and progressively more granular 872

structures; (ii) our metrics exclusively capture structural as- 873

pects of music, due to the preliminary MSA step; (iii) we did 874

not attempt at subjectively defining structural complexity, but 875

we relied on the assumption that pseudo-random and human- 876

composed music would belong to different complexity classes. 877

In addition, as our method takes music recordings as input, 878

the resulting framework can be used to evaluate both audio- 879

based and symbolic music generation systems, although a 880

sonification step of compositions is needed in the latter case. 881

Overall, this work demonstrated that structurally informative 882

descriptors can be extracted from the hierarchical segmentation 883

of music, and made a first step towards the automatic evalua- 884

tion of the structural complexity of computer-generated music. 885

Planned future work includes a broader analysis of computer- 886

generated music, and the investigation of our structural sum- 887

maries from a musicological perspective. 888
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APPENDIX 1109

STATISTICAL ANALYSIS OF THE STRUCTURAL METRICS 1110

This section provides further details on the results of our 1111

experiment reported and illustrated in Section V-B. As part 1112

of the methodology, each structural metric is considered in- 1113

dependently (before dimensionality reduction), separated for 1114

each subset – random, computer-generated and real music, and 1115

aggregated by music selection (e.g. random-net) in our dataset. 1116

Following aggregation, the mean and the standard deviation of 1117

each metric per music selection are reported in Table III. 1118

To complement this study, we also report the results of the 1119

statistical analysis, performed independently on each structural 1120

metric, in relation to the values taken by each music sub- 1121

set. As done for the structural summaries, for each metric, 1122

Kolmogorov-Smirnov tests are used to detect statistically 1123

significant differences between the various music selections 1124

(with Bonferroni corrections being considered to account for 1125

multiple comparisons). These are illustrated in Fig 7, following 1126

the same conventions introduced in Section V-B. 1127



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. Y, MONTH 2021 14

TABLE III
OVERVIEW OF THE STRUCTURAL METRICS COMPUTED ON THE DATASET – MEAN AND STANDARD DEVIATION ARE REPORTED FOR EACH MUSIC SUBSET,

WITH THE MAXIMUM VALUES PER-METRIC IN BOLD. LA AND HA DENOTE LEVEL AND HIERARCHY AGGREGATION RESPECTIVELY.

measure LA HA random-net random-sa random-pm basic-rnn lookback-rnn attention-rnn salami pianomidi

rmin

-

−0.12± 0.04 −0.05± 0.03 −0.08± 0.05 −0.74± 0.35 −0.68± 0.3 −1.04± 0.24 −1.09± 0.16 −1.11± 0.11
rmax 4.2± 0.46 4.09± 0.22 4.1± 0.28 11.26± 10.03 11.17± 9.6 20.46± 14.32 21.73± 12.83 19.76± 9.0
hierarchy depth 0.08± 0.01 0.06± 0.02 0.07± 0.03 0.18± 0.08 0.16± 0.06 0.23± 0.07 0.25± 0.05 0.28± 0.05
number of splits 6.43± 1.07 5.21± 1.4 5.92± 1.28 9.27± 2.14 9.83± 1.5 8.18± 2.57 6.47± 2.32 6.53± 1.95
number of communities 0.97± 0.01 0.97± 0.0 0.97± 0.0 0.91± 0.1 0.92± 0.11 0.79± 0.17 0.72± 0.13 0.72± 0.11
singleton fragmentation 0.74± 0.0 0.74± 0.0 0.74± 0.0 0.7± 0.05 0.71± 0.04 0.66± 0.05 0.62± 0.04 0.62± 0.03
ns communities (number)

-

M 0.94± 0.03 0.97± 0.02 0.96± 0.03 0.68± 0.18 0.68± 0.13 0.54± 0.14 0.45± 0.13 0.45± 0.1
SampEn 0.14± 0.02 0.17± 0.03 0.15± 0.02 0.11± 0.03 0.11± 0.02 0.09± 0.03 0.09± 0.02 0.09± 0.03

SD 0.14± 0.07 0.07± 0.04 0.09± 0.05 0.35± 0.08 0.37± 0.06 0.4± 0.03 0.38± 0.04 0.4± 0.03
CV 0.15± 0.08 0.07± 0.04 0.1± 0.06 0.59± 0.3 0.58± 0.21 0.79± 0.22 0.92± 0.22 0.92± 0.19

ns communities (size) M 0.96± 0.03 0.98± 0.02 0.97± 0.02 0.76± 0.11 0.75± 0.09 0.69± 0.08 0.67± 0.06 0.66± 0.05
SampEn 0.14± 0.02 0.16± 0.03 0.15± 0.02 0.09± 0.02 0.09± 0.02 0.08± 0.02 0.08± 0.02 0.08± 0.02

SD 0.11± 0.08 0.04± 0.04 0.06± 0.05 0.31± 0.07 0.34± 0.06 0.34± 0.05 0.33± 0.03 0.33± 0.03
CV 0.12± 0.09 0.04± 0.04 0.06± 0.06 0.43± 0.14 0.47± 0.11 0.49± 0.1 0.49± 0.07 0.5± 0.07

fragmentation imbalance mean M 0.13± 0.02 0.12± 0.02 0.12± 0.02 0.25± 0.1 0.22± 0.08 0.31± 0.08 0.38± 0.07 0.37± 0.06
SampEn 0.56± 0.27 0.74± 0.38 0.67± 0.37 0.9± 0.5 0.82± 0.43 1.25± 0.53 1.63± 0.39 1.61± 0.39

SD 0.17± 0.03 0.16± 0.03 0.17± 0.03 0.27± 0.07 0.26± 0.06 0.32± 0.05 0.34± 0.04 0.34± 0.03
CV 1.38± 0.14 1.41± 0.14 1.41± 0.16 1.15± 0.2 1.22± 0.18 1.05± 0.16 0.9± 0.11 0.94± 0.11

min M 0.07± 0.03 0.06± 0.03 0.07± 0.03 0.14± 0.09 0.12± 0.07 0.2± 0.08 0.26± 0.08 0.25± 0.07
SampEn 0.39± 0.15 0.48± 0.2 0.44± 0.19 0.38± 0.24 0.32± 0.18 0.53± 0.25 0.74± 0.27 0.71± 0.24

SD 0.16± 0.04 0.15± 0.05 0.16± 0.05 0.26± 0.09 0.25± 0.08 0.32± 0.07 0.36± 0.05 0.36± 0.05
CV 2.43± 0.47 2.47± 0.49 2.41± 0.4 2.28± 0.61 2.44± 0.58 1.85± 0.52 1.51± 0.32 1.5± 0.26

max M 0.22± 0.04 0.21± 0.04 0.22± 0.04 0.44± 0.13 0.41± 0.1 0.49± 0.1 0.57± 0.08 0.53± 0.08
SampEn 0.54± 0.23 0.71± 0.37 0.66± 0.34 0.86± 0.39 0.87± 0.37 1.1± 0.34 1.35± 0.27 1.31± 0.24

SD 0.25± 0.03 0.23± 0.04 0.25± 0.04 0.37± 0.04 0.37± 0.04 0.4± 0.03 0.4± 0.02 0.4± 0.02
CV 1.14± 0.14 1.14± 0.12 1.14± 0.14 0.9± 0.18 0.94± 0.16 0.85± 0.15 0.72± 0.11 0.77± 0.11
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Fig. 7. Pairwise statistical analysis of the music subsets for each structural metric (yellow denotes statistical difference).


