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Abstract

Cilia and flagella are organelles that play central roles in unicellular locomotion, embryonic

development, and fluid transport around tissues. In these examples, multiple cilia are often found

in close proximity and exhibit coordinated motion. Inspired by the flagellar motion of biflagellate

cells, we examine the synchrony exhibited by a filament pair surrounded by a viscous fluid and

tethered to a rigid planar surface. A geometrically-switching base moment drives filament motion,

and we characterize how the stability of synchonized states depends of the base torque magnitude.

In particular, we study the emergence of bistability that occurs when the anti-phase, breast-stroke

branch becomes unstable. Using a bisection algorithm, we find the unstable edge-state that exists

between the two basins of attraction when the system exhibits bistability. We establish a bifurcation

diagram, study the nature of the bifurcation points, and find that the observed dynamical system

can be captured by a modified version of Adler’s equation. The bifurcation diagram and presence

of bistability reveal a simple mechanism by which the anti-phase breast stroke can be modulated, or

switched entirely to in-phase undulations through the variation of a single bifurcation parameter.

I. INTRODUCTION

Cilia and eukaryotic flagella [1] are slender, flexible filaments that are used by microorgan-

isms for motility, and by the tissues of larger organisms to facilitate fluid transport. While

there are many examples of cells that possess a single flagellum, a prime example being the

properly-formed human sperm cell [2], there are many instances where cells are equipped

with multiple flagella or cilia. These organisms may use a pair of flagella, as is the case of

the unicellular algae Chlamydomonas [3], or may have large numbers distributed over their

entire surface, as observed for the unicellular Paramecium [4] and the multicellular algae

colonies, Volvox [3]. Fluid motion generated by large groups of cilia are also essential to the

proper function of larger organisms where it impacts embryo development [5], the movement

of mucus in the lungs [6], and the transport of cerebrospinal fluid in the brain [7].

The movement of a single cilium or flagellum is the result of the relative sliding of mi-

crotubule pairs that run the length of the flagellum or cilium and make up the internal
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structure known as the axoneme [1]. While the precise details of the force generation along

the axoneme remain an active topic of current research, it results in periodic beating that

can be viewed as a limit cycle. Key to facilitating transport in systems with multiple cilia

is how the motions of individual cilia are coordinated with those of their neighbors. For

examples involving large numbers of cilia or flagella, one of the most widely studied forms

of coordination is the metachronal wave [4]. With metachronal waves, the interactions be-

tween cilia result in a phase shift between their limit cycles that increases linearly with the

distance between cilia. Metachronal waves break the time-reversal symmetry [8] associated

with viscosity-dominated flows, assisting the asymmetric cilium beat in providing net fluid

motion or cell propulsion. Coordination is also paramount when smaller number of flagella

are involved. In the case of Chlamydomonas, its two flagella are observed to beat predomi-

nantly in an anti-phase breast stroke that occurs during forward swimming [9–11]. In-phase,

parallel undulations, however, can also be excited [12] when the cell experiences a sudden

stimulus and attempts to quickly move away from the source [12, 13].

Multiple physical mechanisms [14] are involved in giving rise to the observed coordinated

states. Interactions between neighboring cilia or flagella are mediated through the surround-

ing fluid [15], or through a more direct coupling at the surface, where the flagella may be

connected though compliant structures, as is the case of the distal striated fiber found in

the basal body [16, 17] of Chlamydomonas. Additionally, the surface may be that of a cell

which is free to move in the surrounding fluid, providing a further potential mechanism for

coupled motion [18]. The response of the cilia and flagella to mechanical signals can further

depend on their internal constitutive properties [19], along with the precise mechanism by

which internal force generation is regulated in response to external loads [20].

While many of these effects have been successfully combined in computational models

[6, 21, 22] that provide detailed descriptions of individual cilia and their hydrodynamic in-

teractions, elasticity, and internal actuation, simpler models [23] that capture the essence of

ciliary systems have been particularly effective in providing insight into coordination. These

models have been used successfully in conjunction with experimental studies [24, 25] on

model organisms, as well as with physical models [26] of ciliary systems constructed from

optical traps and colloidal particles. In these models, the cilia are treated as spherical parti-

cles that move along restricted paths and whose hydrodynamic interactions are described by

the flow due to a point force (Stokeslet). The phase of the oscillator is given by the angular
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position of the particle along the path.

In the simplest case of two particles that move along circular paths under the same

constant force, the particles retain their initial phase difference and do not synchronize

or phase lock [27]. Synchronization can be achieved by allowing the radius of the path

to vary and relax to a preferred value through a harmonic restoring force [24, 28]. In

this case, the differential equation governing their difference in phase reduces to Adler’s

equation [29], which originated from describing the relative phase of two coupled oscillators.

Adler’s equation admits two solutions corresponding to in-phase and anti-phase oscillations.

Depending on the sign of the coupling parameter, one of these oscillations will be stable,

while the other will be unstable. Other modifications of the basic circular-path model,

such as allowing for the forcing on the particle to vary with angular position [30], can also

yield Adler-like dynamics. These dynamics are found for particles moving along a straight

path and driven by a geometrically switching force [31], as well as for models constructed

from the principle component analysis of Chlamydamonas flagellar movement data [32]. In

fact, the stochastically-forced Adler’s equation has been used [10] to describe the coupled

motion of Chlamydomonas flagella, where the anti-phase breast stroke is stable and in-phase

undulations are unstable. The stochastic forcing allows for temporary departure anti-phase

beating during which time in-phase undulations can be observed.

While basic models have lead the way in studying cilia coordination at larger scale [28, 33],

including the onset [24, 25] of metachronal waves, their versatility has also allowed for the

exploration of other physical mechanisms present in flagellar motion, such as basal coupling

[34, 35]. These mechanisms result in a departure from the standard Adler’s equation with the

emergence of bistability of the in-phase and anti-phase oscillations for a range of parameter

values. Bistable, as well as metastable, states are also obtained [30] when the particles move

along elliptical paths under a variable force or along straight paths with geometric switching

and cycle-dependent drag variations [36]. Regions of bistability have also been observed

in more detailed computational models. Guo et al. [36] simulated two flexible filaments

attached to a planar surface that were driven by torques at their bases that change direction

once a critical angle between the filament base and the surface normal has been achieved.

Base actuation, though not representative of cilia and flagella which are instead actuated

along their lengths, provides a simple way to explore filament synchronisation. Additionally,

base actuation is a potential mechanism for powering the motion of artificial microswimmers
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that utilise flexible filaments. Through a series of initial value problems, they showed that

for a certain range of base torque magnitude and filament separations the final state can

be in-phase or anti-phase, depending on the initial condition of the system. There are

different conventions adopted in the literature leading to opposite definitions of anti-phase

and in-phase synchronisation. In this paper, as in [36], in-phase refers to the case where

the difference in the angles between the filament bases and the surface normal is zero, i.e.

θ2(t) − θ1(t) = 0. For studies involving Chlamydomonas, for example [37], this is instead

referred to as anti-phase and the commonly observed breast-stroke is said to be in-phase.

In this work, we aim to build upon the results established in [36] and explore in more

detail the bifurcations encountered when the in-phase and anti-phase oscillations become

bistable. In particular, utilizing methods from computational dynamical systems along with

the computational methodology developed in [38], we compile the bifurcation diagram for a

fixed filament separation, computing the unstable branch in the bistable region that connects

with the in-phase branch through a sub-critical pitchfork bifurcation and merges with the

upper stable branch through a saddle-node bifurcation. The upper branch itself connects

to the anti-phase one through a super-critical pitchfork bifurcation. We characterize each

of the states using the phase portrait of the angles at the filament bases. We show how the

bifurcation diagram can be replicated through an Adler-like phenomenological model which

incorporates the bistable region and appropriate bifurcations through a Duffing-like term.

Using the bifurcation points from the bifurcation diagram for the filament system, the model

parameters can be tuned, allowing for a quantitative recreation of the original bifurcation

diagram.

II. SIMULATION AND METHODS

We consider two filaments of length l and cross-section radius a. The filaments are

tethered to a rigid planar surface and have base separation distance, B, as sketched in Fig.

1. The filaments have bending modulus KB, and are immersed in a surrounding fluid of

viscosity η. Here, the surface-parallel and normal directions are denoted by x and y, and

the corresponding unit vectors in these directions are x̂ and ŷ, respectively.
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FIG. 1: Schematic diagram for the filament system indicating the arclength s ∈ [0, l],

diameter 2a, base torques Ni, base angles θi and separation distance B.

A. Filament model

To compute the motion of the filaments, we utilize the model and numerical methods

described and developed in [38], which, for clarity, we summarize here in the context of

a single filament. The filament centerline is parameterized by arclength s, such that the

position of a point on the centerline at time t is given by Y (s, t). At each point along the

filament, we assign a unit vector t̂(s, t) that is constrained to be tangent to the centerline

through ∂Y /∂s = t̂. The force and moment balances along the filament are given by

∂Λ

∂s
+ f = 0, (1)

∂M

∂s
+ t̂×Λ+ τ = 0, (2)

where f(s, t) and τ (s, t) are the viscous forces and torques per unit length that arise due

to the motion of the filament through the surrounding fluid, while Λ(s, t) and M (s, t)

are the internal force and moment, respectively, on the cross-section of the filament. The

internal force arises due to the constraint on t̂ and Y . The internal moment is related to

the curvature, κ(s, t) = t̂× ∂t̂/∂s, through M = KBκ.

Along with these balances, at s = l, we will have the free-end condition, Λ(l, t) = 0 and

M (l, t) = 0, while at s = 0, the position of the filament is fixed and M(0, t)+N = 0, where
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N is an applied torque that gives rise to filament motion. Following [36], the base torque is

given by N = α(t)N0ẑ, where N0 is the torque magnitude and α is the switching parameter

that controls the direction of the driving torque. The value of α(t) varies in time and unlike

[36], we allow for it to vary continuously from ±1 to ∓1 over at short time τα when the

absolute value of the angle, θ, between t̂(0, t) and ŷ exceeds the critical angle Θ. Allowing

α(t) to vary continuously with time is important to ensure convergence of our implicit time

integration scheme. Specifically, if the time at which |θ| = Θ is t = tΘ, then α obeys

α(t) = ± tanh

[
4

(
2(t− tΘ)− Tα

τα

)]
, (3)

for t ∈ [tΘ, tΘ + Tα], where Tα sets the timescale over which α changes from ±1 to ∓1.

To compute its motion, the filament is discretized into N segments of length ∆L. The

position and orientation vector of segment n are denoted by Yn and t̂n, respectively. Second-

order central differencing is applied to the force and moment balances, Eqs. (1) and (2), to

yield

Λn+1/2 −Λn−1/2

∆L
+ fn = 0, (4)

Mn+1/2 −Mn−1/2

∆L
+

1

2
t̂n ×

(
Λn+1/2 +Λn−1/2

)
+ τn = 0, (5)

for segment n where Mn+1/2 = KB t̂n× (t̂n+1− t̂n)/∆L and Λn+1/2 are Lagrange multipliers

determined as part of the time integration in order to satisfy the discrete kinematic constraint

Yn+1 − Yn −
∆L

2

(
t̂n + t̂n+1

)
= 0 (6)

imposed on segment motion. Multiplying Eqs. (4) and (5) by ∆L produces the force and

torque balances on the segments which we express as

F C
n − FH

n = 0,

T E
n + T C

n − TH
n = 0, (7)

where F C
n = Λn+1/2 − Λn−1/2, T

C
n = (∆L/2)t̂n ×

(
Λn+1/2 +Λn−1/2

)
, and T E

n = Mn+1/2 −

Mn−1/2, while F
H
n and TH

n describe the force and torque segment n exerts on the surrounding

fluid. These equations establish the following low Reynolds number mobility problem for

segment motion V

Ω

 = M

FH

TH

 . (8)
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where for fully 3D motion, V ⊤ = (V ⊤
1 , . . . ,V

⊤
N ) is the 3N × 1 vector containing all segment

velocity components, while vector Ω contains all angular velocity components. FH and

TH are 3N × 1 vectors of the forces and torques, respectively, that the segments exert on

the fluid as given by Eq. (7). The matrix M is a 6N × 6N mobility matrix, which in our

simulations is given by the pairwise Rotne-Prager-Yamakawa (RPY) tensor that accounts for

the presence of the no-slip boundary [39]. The hydrodynamic radius of the segments is taken

to be the filament cross-sectional radius, a, which is related to the segment length through

a = ∆L/2.2. A quantitative comparison between the RPY approximation and numerical

solutions to the boundary integral equations [40] in the case of rigid straight filaments in

unbounded fluid is provided in [38]. There, the maximum relative errors in the segment

forces were found to be approximately 4%.

With V and Ω given by Eq. (8), the segment positions and orientations that satisfy

the constraints, as well as the values of Λn+1/2, are updated by integrating in time the

differential-algebraic system

dYn

dt
= Vn,

dt̂n
dt

= Ωn × t̂n,

Yn+1 − Yn −
∆L

2

(
t̂n + t̂n+1

)
= 0. (9)

In our simulations, we apply the implicit second-order backward difference time (BDF)

scheme to integrate Eq. (9) numerically. After applying BDF, we are left with a nonlinear

system of equations whose solution is the updated values of the positions, orientations and

Lagrange multipliers. We solve the nonlinear system iteratively using Broyden’s method.

For more details about the implementation of this approach, the reader is referred to [38],

where a complete description and study of the method can be found.

B. Simulating a filament pair

The model and methods described above readily extend to the case of two such filaments

that interact through the surrounding fluid. First, the force and moment balances, Eqs.

(1) and (2), are considered for each filament. The base of filament 1 is fixed to the surface

at the origin, while the base of filament 2 is tethered at Bx̂. Additionally, driving the
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motion of filament 1 is the applied base torque, N1 = α1(t)N0ẑ, and correspondingly for

filament 2 we have N2 = α2(t)N0ẑ. The values of α1 and α2 follow the switching mechanism

described above and are determined separately for each filament. Both filaments are subject

to free-end conditions.

The filaments are each discretized into N segments to give a total of 2N segments. To

allow for interactions between the filaments due to the surrounding fluid, the segment force

and torque balances, Eq. (7), for each filament are coupled by extending the low Reynolds

number mobility problem, Eq. (2), to the full system of 2N segments and allowing all

segments from both filaments to interact via the RPY tensor. This yields the velocity and

angular velocity for each segment, allowing for the position and orientation of the segments

to be updated by integrating Eq. (9) using the same methods as in the case of a single

filament.

C. Non-dimensionalization and simulation parameters

All quantities presented from here on are nondimensional. Specifically, we nondimension-

alize distances by the filament length, l, forces by the characteristic bending force,KB/l
2, and

time by the characteristic relaxation time ηl4/KB. As presented in [36], typical dimensional

values of these parameters are l = 20µm, η = 10−3Pas, and KB = 800pNµm2. In particu-

lar, we explore how the steady oscillations and their stability vary with the nondimensional

separation distance, b = B/l, and nondimensional base torque magnitude, Mb = N0l/KB.

For all cases, the filaments are discretized into N = 19 segments, giving the filament

cross-sectional radius, a = 0.024. The torque transition time is set to τα = Tα/(ηl
4/KB) =

1.1 × 10−5. The time-step size is ∆t = 10−6 and simulations are run for t ∈ [0, Ttot] with

Ttot = 6. The simulations are performed over the range of dimensionless base torques

Mb = 2.5 − 10 and for separation distances b = 0.25 − 3. We note that for this range

of Mb, the filament period of oscillation is typically T ≲ 0.04 and approximately inversely

proportional to Mb. Thus, our simulations are run to times of at least 150T and we can

be reasonably confident that each simulation has reached its asymptotically stable steady

oscillation.
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III. RESULTS

We begin by considering different initial value problems over the range of b and Mb

indicated above and quantify the synchrony of the system at the final time. To measure

synchrony, we introduce the synchrony parameter,

Q(ts) = − 1

te − ts

∫ te

ts

α1(t)α2(t)dt, (10)

adapted from [31]. Here, ts and te are the times corresponding to the start and end of the

α1α2 oscillation period. Given the definition of Q in Eq. (10), Q = 1 implies that the

filaments’ beats are completely anti-phase, whereas Q = −1 means that the filaments’ beats

are perfectly in-phase. Based on this convention, the term in-phase refers to case where the

filaments undulate, while anti-phase refers to the case of the breast stroke. Further to this,

we measure the instantaneous phase difference between the two filaments

∆ϕ(t) = ϕ2(t)− ϕ1(t), (11a)

where, following [36], the phase of each filament is given by

ϕi(t) =
Θ + αi(t)θi(t)

4Θ
+

1− αi(t)

4
, (11b)

where Θ = ±0.15π is the switching angle. For θi ∈ [−Θ,Θ], ϕi is a monotonic function

varying in the range of ϕ ∈ [0, 1]. In particular, for ϕi ∈ [0, 0.5], αi = 1, and for ϕi ∈ [0.5, 1],

αi = −1.

A. Synchronization states

The simulations are run with two different initial conditions. In both cases, the filaments

are straight, while imposing: 1) ϕ1(t = 0) = 0.25 and ϕ2(t = 0) = 0.74 (∆ϕ(0) = ϕ2(0) −

ϕ1(0) = 0.49); 2) ϕ1(t = 0) = 0.25 and ϕ2(t = 0) = 0.26 (∆ϕ(0) = 0.01), corresponding to

perturbations from the anti-phase and in-phase states, respectively. The resulting filament

dynamics forMb = 7 are shown in Fig. 2, with Fig. 2a showing the anti-phase state and Fig.

2d providing the in-phase state. Figs. 3(a) and 3(b) show the final values of Q obtained for

the two different initial conditions for base torques 3 ≤ Mb ≤ 10 and filament separations

0.25 ≤ b ≤ 3. Here, we note that, for Mb ≲ 3 and b ≲ 0.25, each filament exhibits
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FIG. 2: Filament dynamics over one beat period for Mb = 7 with (a) Anti-phase

oscillations (Branch I), (b) Stable, phase-shifted oscillations (Branch II), (c) Unstable,

phase-shifted oscillations (Branch III), and (d) In-phase oscillations (Branch IV). The top

panels in each figure show the difference base angles, ∆θ = θ2 − θ1, over one period. The

symbols correspond to the time points that the filaments are shown.

.

significant motion at its free-end and the filaments collide. As observed filament shapes are

broadly similar to those found for isolated cases with the same value of Mb, we conclude

that filament shapes are largely unaffected by the hydrodynamic interactions between the

filaments. Accordingly, the filament shapes are largely independent of whether the filaments

are in the in-phase or anti-phase state. This property can be seen Fig. 2 by comparing
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FIG. 3: The synchrony parameter Q ∈ [−1, 1] of the asymptotic state in the Mb − b plane:

(a) ∆ϕ = 0.49; (b) ∆ϕ = 0.01. Q = 1 corresponds to anti-phase beating, and Q = −1

corresponds to in-phase beating. In (c), the contours show

∆Q = (Q0.49 +Q0.01)/2 ∈ [−1, 1], where the subscript indicates the value of ∆ϕ for which

Q was computed. ∆Q ≈ 0 in (c) indicates bistability.

.

the filament shapes for the different states. The key parameter, therefore, governing the

filament shape over time is Mb, which also controls directly the oscillation frequency.

At sufficiently low values of b (b < 0.75) and regardless of the initial conditions, the

filament pair exhibits asymptotically stable anti-phase synchrony (Q ≃ 1) forMb ≲ 3.5. For

the initial condition with ∆ϕ = 0.49, the asymptotically stable state transitions from the

anti-phase to in-phase synchrony for 7 ≲Mb ≲ 9 (Fig. 3a). A similar change occurs for the

∆ϕ = 0.01 initial condition, but it at a lower value of Mb. This suggests the existence of

bistability for a range ofMb where both in-phase and anti-phase synchrony states are stable.

This bistable region is also shown in Fig. 3(c) by the region of ∆Q = (Q0.49 +Q0.01)/2 ≃ 0,

where Q0.49 and Q0.01 are the synchrony parameters Q of the asymptotic states for ∆ϕ = 0.49

and ∆ϕ = 0.01, respectively. As b increases from b = 0.25 to b = 1, the range of Mb which

yields bistability widens. However, further increasing b beyond b ≃ 1.25 reduces the range

of Mb for which bistability is observed, with the upper limit decreasing with b (i.e. the blue

region in Fig. 3).

Regions of stable in-phase oscillations and stable anti-phase oscillations separated by a

region of their bistability, were previously found [36] for this system for similar values of b, but

at a much lower and more narrow range of base torques, 2 ≲Mb ≲ 2.5. We suspect that these

quantitative differences are due differences in models for the hydrodynamic mobility of the
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FIG. 4: Bifurcation of synchronized states represented by Q with Mb ∈ [2.5, 10] and

b = 0.5. Here, the solid and dashed lines indicate stable and unstable states, respectively,

and the markers indicate the simulation data.

segments. To compute segment mobility, Guo et al. [36] employed regularized Stokeslets with

a point-wise evaluation of the flow at the segment centers. This results in higher diagonal

entries of the filament mobility matrix, hence a lower segment drag coefficient, as compared

to our RPY-based approach and, therefore, for a given value ofMb, the regularized Stokeslet

model will oscillate at a higher frequency. This, in turn, results in the Sperm number, the

ratio of viscous to elastic forces, being larger for a regularized Stokeslet filament, allowing

it to bend more at a fixed value of Mb. This aspect allowed [36] to investigate very low

values of Mb and b where they observe a second region of bistability, while in our case, the

filaments undergo rigid body motion and collide.

B. Bifurcation and stability analysis

To explore the nature of bistability in more detail, we perform a computational bifurca-

tion analysis of the filament system. As such an analysis typically requires many repeated

simulations, we focus our attention on the case of b = 0.5 where multiple bifurcations and

bistability are observed (see Fig. 3) over the range of Mb that we consider.

Fig. 4 shows the bifurcation diagram for the steady oscillatory states represented by Q,

and where Mb is the bifurcation parameter. The stable oscillatory states (Branches II and
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IV) are computed by fixing Mb and allowing the simulation to reach a steady oscillation for

a specified initial condition. To carefully track how these states evolve along the bifurcation

curves, a numerical continuation is performed by imposing the steady oscillation for Mb as

the initial condition of a simulation withMb+∆Mb. We also used numerical continuation to

obtain the unstable Branch I (Q ≃ 1) up toMb = 10 by carefully controlling each simulation

before the instability develops. This indicates also that there is a relatively small growth

rate along the unstable eigendirection associated with this state. We obtained identical

results for the Branch I states by performing simulations where mirror symmetry in filament

motion is imposed, in which case Branch I is a stable equilibrium. Finally, we calculate

the unstable Branch III placed between Branches II and IV for 2.75 ≲ Mb ≲ 8 using the

bisection algorithm outlined in [41].

To examine the stability of Branch I, we first obtained the solutions corresponding to

this branch from the simulations with imposed mirror symmetry. Then, for eachMb, we run

a simulation where the initial conditions are set by perturbing a snapshot taken from the

corresponding Branch I solution. The perturbation is introduced by rotating filament 2 by

0.78 degrees. A careful observation of the perturbation evolution suggests that the initial

form of the instability arises primarily with an increase of the oscillation period. To examine

the evolution of the perturbation further, we first compute the piecewise constant function,

γ(t) that increases by one each time α1 changes sign. Using this function, we then compute

Γ(ts) =
1

te − ts

∫ te

ts

|γ(t)− γAP (t)|dt, (12)

where γAP (t) is the piecewise function computed from the Branch I solution. The times te

and ts are defined above in Section IIA and are determined also from the Branch I solution.

From its definition, we see that Γ(t) will be constant in time if the oscillations in the two

simulations have the same period but a different phase and will increase monotonically if

the periods also differ.

The different branches and the bifurcations leading to these states are shown in Fig. 4

and summarised below. Their phase portraits on the θ1 − θ2 plane are also shown in Fig. 5.

1. Branch I: This branch is formed along Q = 1, indicating anti-phase synchrony for

this state. The phase portrait in the θ1 − θ2 plane shows that the state forms a

limit cycle and its shape nearly overlaps with the straight line θ1 + θ2 = 0 (Fig. 5a).
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FIG. 5: Phase portrait in θ1-θ2 space for the synchronized states for Mb = 7: (a) Branch I

(anti-phase oscillations); (b) Branch II (stable, phase-shifted oscillations); (c) Branch III

(unstable phase-shifted oscillations corresponding to the edge state); (d) Branch IV

(in-phase oscillation). Filament dynamics corresponding to these cases are shown in Fig. 2.

However, for Mb ≳ 2.5, this branch is unstable as perturbations to this state exhibit

an initial exponential growth in time (see the dashed lines is Fig. 6(a). For Mb = 2.5,

Γ(t) increases rapidly and attains a constant value, indicating that at long times the

filaments oscillate with the same period as the anti-phase state. The phase portrait

for this case, Fig. 6(b), shows the oscillations attaining a limit cycle close to, but

not precisely, that of the anti-phase state. These observations suggest that Mb = 2.5

is very close to the bifurcation point. For Mb = 6, we see that Γ continues to grow

even after its initial exponential increase as the solution moves towards Branch II and

attains a different period of oscillation. The evolution of the limit cycle in the θ1 − θ2
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FIG. 6: Stability of Branch I (anti-phase oscillations): (a) Γ(t) for cases Mb = 2.5, 6 and

10. Phase portraits for (b) Mb = 2.5, (c) Mb = 6, and (d) Mb = 10. The different colored

lines show trajectories over one period beginning at period Ti as indicated in the legend. In

each case T∞ shows the limit cycle at once the oscillations are steady.

plane for this case is shown in Fig. 6(c). For Mb = 10, we observe a more dramatic

increase in Γ(t) with time, while the phase portrait (Fig. 6(d)) illustrates that the

solution eventually achieves in-phase oscillations and reaches Branch IV.

2. Branch II: This branch appears to emerge via a supercritical pitchfork bifurcation at

a value just below Mb < 2.5, as the phase portraits of Branch I (Fig. 5a) and Branch

II (Fig. 6b) are very similar at Mb = 2.5. Close to the bifurcation point, this branch

exhibits nearly-perfect anti-phase synchrony, but the value of Q evolves non-trivially

along the bifurcation curve. In the phase portrait (Fig. 5b), this branch forms a limit

cycle roughly aligned with the line θ1 + θ2 = 0. Following the branch as Mb increases,
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Q decreases while the interior area of the limit cycle in the phase portrait increases

(Fig. 5b). The interior area of the limit cycle reaches its maximum when Q ≈ 0 and

Mb ≈ 8.15. Here, a saddle-node point is formed and this stable branch ceases to exist

(Fig. 4).

3. Branch III (edge state): Along with Branch II, this branch emerges from a saddle-node

bifurcation at Mb ≃ 8.15. This branch is unstable and is situated between Branch II

and Branch IV, which are both stable. Accordingly, in state space, this branch should

sit on the boundary of the basin of attraction for Branch II and that for Branch IV.

We can therefore compute this state using the bisection algorithm from Skufca et al.

[41]. Specifically, we first consider two initial conditions, one of which corresponds

to a solution that eventually reaches Branch II, while the other gives a solution that

approaches Branch IV. The initial conditions are repeatedly bisected to obtain two

solutions whose initial difference in Q is 10−8 even though they eventually approach

the different states given by Branches II and IV. The time traces of Q corresponding

to these two solutions are shown in Fig. 7 (blue and red lines for 0 ≤ t ≲ 0.01).

They share nearly the same value of Q (black line in Fig. 7) until at t ≈ 0.01 the Q

values begin to diverge from each other. At this time, we perform another bisection

of the solution to obtain an approximation of the edge state for 0.01 ≲ t ≲ 0.03.

By repeating this procedure as t increases, we ensure that the solution remains on

the boundary between the state-space basins of attraction of Branches II and IV and

obtain the unstable solutions that form Branch III.

As shown in Fig. 4, this branch is connected to Branches II and IV at Mb ≈ 2.5 and

Mb ≈ 8.15 (dashed purple line), respectively. The phase portrait of this branch shows

a limit cycle in the θ1-θ2 plane (Fig. 5c) similar in shape to that obtained for Branch

II, however here, we see that the limit cycle is aligned instead with θ1 = θ2. Moving

along Branch III in the direction of decreasing Mb, one observes that the interior area

of the limit cycle gradually decreases until it collapses to the line θ1 = θ2 when it

intersects Branch IV and one obtains a state with near-perfect in-phase synchrony.

4. Branch IV: On this branch, the filaments exhibit in-phase synchrony with Q ≃ −1.

The phase portrait in Fig. 5(d) confirms this as the limit cycle is very close to θ1 = θ2.

This branch is connected to Branch III through a subcritical pitchfork bifurcation
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the bisection, while the dash-dotted red lines show the trajectories that move toward

Branch IV.

point at Mb ≈ 2.5. Simulations with Mb below this value that are initiated close to

in-phase synchrony are found to transition to Branch I.

As done in previous studies of synchronisation due to hydrodynamic coupling, it is often

useful to relate the observed states and their stability back to those exhibited by classical

phenomenological models of coupled oscillators. For many such systems, it has been found

[10, 16] that the steady oscillations and their stability can be described by the classical

Adler’s equation [29] which admits steady in-phase and anti-phase oscillations, the stabilities

of which depend on the sign of the coupling parameter appearing in the equation. The

bifurcation diagram shown above and, in particular, the presence of bistability indicate that

the filament system exhibits dynamics richer than those found for Adler’s equation. To

resolve this, we propose a modification of Adler’s equation through the introduction of a

‘Duffing’-like interaction term to capture the observed bistability and various bifurcations.

To do this, we first consider a simple model equation for the phase of each oscillator:

ψ̇1(t) = ω1 −
σ

2
sin(ψ1(t)− ψ2(t)) +

λ

2
sin3(ψ1(t)− ψ2(t)), (13)

ψ̇2(t) = ω2 −
σ

2
sin(ψ2(t)− ψ1(t)) +

λ

2
sin3(ψ2(t)− ψ1(t)),

where ψi(t) and ωi are the phase and intrinsic frequency of, respectively, of oscillator i.

Here, the first nonlinear term with coefficient σ in (13) is the coupling term found in the

classical Adler’s equation [29]. The second nonlinear term with coefficient λ is the term

newly introduced in the present study. We will see that addition of this term leads to the
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bifurcation behavior of the synchronized states consistent with that observed in the full

filament model. We note that the bifurcation behaviour is seen only for small filament

separations, indicating that the nonlinear term describes phenomenologically the near-field

(b < 1) hydrodynamic interactions. The equation for the phase difference between the two

oscillators, ∆(t) = ψ1 − ψ2, is then given by

∆̇(t) = δω − σ sin(∆) + λ sin3(∆), (14)

where δω = ω1 − ω2. The model in (13) may be made directly comparable to the full

filament model if we take θi = 2Θψi/π for ψi ∈ [−π/2, π/2) and θi = 2Θ(π − ψi)/π for

ψi ∈ [π/2, 3π/2). In this case, (11b) and (13) will then also admit a direct relation between

the synchrony parameter Q in (10) and a steady ∆, namely Q = −1 + 2∆/π.

If, like our filament model, the two oscillators have identical intrinsic frequencies (i.e.

δω = 0), Eq. (14) yields the steady states that satisfy

sin(∆) = 0 and sin2(∆) =
σ

λ
. (15)

For ∆ ∈ [0, π], the first equation in Eq. (15) has two solutions ∆(≡ ∆1) = 0 and ∆(≡ ∆2) =

π, which would represent the in-phase (Q = −1) and anti-phase synchronized states (Q = 1),

respectively. Similarly, the second equation has two solutions ∆(≡ ∆3) = sin−1(σ/λ) for

∆3 ∈ [0, π/2] and ∆(≡ ∆4) = π − sin−1(σ/λ) for ∆4 ∈ [π/2, π]. These two solutions only

exist for 0 ≤ σ/λ ≤ 1, and they originate due to the newly-introduced cubic interaction

term in (14).

To examine the stability these four solutions, we consider a small perturbation around

each equilibrium solution ∆k + ϵ∆̃ with ϵ ≪ 1 where k = 1, 2, 3, 4. When k = 1, 2, the

linearized equation for the perturbation is

˙̃∆(t) = −σ cos(∆k)∆̃, (16a)

indicating that ∆1 and ∆2 are stable and unstable if σ > 0, and vice versa. Similarly, for

k = 3, 4, we have,

˙̃∆(t) = 2σ cos(∆k)∆̃, (16b)

and therefore, ∆3 and ∆4 are unstable and stable if σ > 0, and vice versa.

From Eqs. (15) and (16), it is evident that the parameter σ controls the existence

and stability of the four equilibrium solutions, whereas λ only determines their existence.
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FIG. 8: Bifurcation diagram of the modified Adler’s model for the pitchfork bifurcation

base torque Mb,PF = 2.75 and saddle-node bifurcation value Mb,SN = 8.2. ∆ = 0 and

∆ = π correspond to in-phase and anti-phase synchronization respectively. Here,

Q = −1 + 2∆/π (see main text).

Therefore, σ alone controls the bifurcations of Eq. (14) and functions as Mb did in the

filament model. Furthermore, if σ = 0, ∆1 = ∆3 = 0 and the two stationary solutions

are neutrally stable. Also, for σ < 0, ∆3 does not exist, indicating that ∆3 emerges via

a pitchfork bifurcation at σ = 0. The same pitchfork bifurcation appears for ∆2 and ∆4.

When σ = 0, ∆2 = ∆4 = π with neutral stability, and ∆4 does not exist for σ < 0. Finally,

if σ = λ, ∆3 = ∆4 = π/2 and both solutions are neutrally stable. Also, they do not exist for

σ > λ and their stability is always opposite, e.g. if one is stable and the other is unstable.

This indicates that a saddle-node bifurcation takes place for ∆3 and ∆4 when σ = λ.

By comparing the stabilities and bifurcations of the four solutions with the corresponding

occurrences in the filament model, we can relate σ and λ to Mb and the values of Mb at

which bifurcations occur. First, since the stabilities of Branches I and IV in Fig. 4 are found

to be change at Mb ≈ 2.5, we will assume that ∆1 and ∆2 undergo pitchfork bifurcations

near this value, Mb = 2.75(≡ Mb,PF ), say. Second, we observe that all four branches in

Fig. 4 exist for 2.75 ≲Mb ≲ 8.2, with Mb ≈ 8.2 corresponding to the saddle-node point for

Branches II and III. Therefore, we will assume that ∆3 and ∆4 exist for 2.75 ≤ Mb ≤ 8.2

and ∆3 = ∆4 at Mb = 8.2(≡Mb,PF ). We now define

σ ≡ β(Mb −Mb,PF ) and λ ≡ β(Mb,SN −Mb,PF ) (17)
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with β < 0 controlling the strength of the interaction terms in Eq. (14), as well as the

strength of equilibrium state stability.

The bifurcation diagram with parameter values set according to Eq. (17) is shown in Fig.

8. The model yields a qualitatively similar bifurcation behavior. There are two pitchfork

bifurcations that occur at Mb = Mb,PF for the in-phase and anti-phase synchronized states

(∆ ∈ {0, π}) respectively. The two intermediate states emerge via these bifurcations and

meet at ∆ = π/2 to form the saddle-node point at Mb =Mb,SN . It is also worth mentioning

that the value of β does not change the bifurcation diagram in Fig. 8 as long as it remains

negative – if β is positive, the stable and unstable states in 8 exchange their stability and

become unstable and stable states, respectively. Finally, we note that Eq. (17) is not

the only way to model the bifurcation of the full filament model. For example, setting

σ = β(Mb − Mb,PF )
m and λ ≡ β(Mb,SN − Mb,PF )

m for any odd integer m will yield the

same bifurcations as (14). The more general requirements of determining σ and λ are that

1) σ should vary monotonically with the bifurcation parameter while covering both positive

and negative real numbers and that 2) λ is set to obtain four equilibrium solutions when

0 ≤ σ/λ ≤ 1. Provided that these conditions on σ and λ are satisfied, the bifurcations

observed for the full filament model can be reproduced using the modified Adler’s equation.

IV. CONCLUDING REMARKS

In this paper, we studied the synchronization of a pair of filaments that are tethered to

a flat surface and driven at their bases by geometrically-switching torques. Exploring the

parameter space of filament separation distance and base torque magnitude, we found that

the bistability of in-phase and anti-phase oscillations exists for a large region of the parameter

space. Fixing the filament separation distance and allowing the base torque to vary, we

utilized a variety of techniques, including bisection for edge state classification, to study

the bifucations that gave rise to bistability. The beginning of the bistable region coincided

with two simultaneous pitchfork bifurcations, a subcritical bifurcation from the in-phase

branch and a supercritical one from the anti-phase branch. The bistable region ended at a

saddle-point when the unstable solution that bifurcated from the in-phase branch merged

with the stable solution that bifurcated from the anti-phase branch. Finally, we showed

that the inclusion of additional nonlinear terms in Adler’s equation allowed us to reproduce
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quantitatively the bifurcation diagram for the filament system.

The similarities between the bifurcation diagram for the filament system and that of

the phenomenological model suggest that bistability may be a more generic property of a

particular class of mechanically coupled oscillators. In very recent work, Man and Kanso

[42] found the same bifurcations occurring for a filament pair where the filaments are driven

by a follower force [43, 44] applied to the filaments’ distal ends rather than the geometri-

cally switching base torques used here. Despite the actuation being very different, a similar

bifurcation diagram emerges. The two, closely-separated flagella of Chamydomonas are con-

nected in the basal body via the elastic distal striated fiber [14] and this elastic coupling has

been shown [16] to play a key role in flagellar synchronization for Chamydomonas. Oscillator

models [34, 45] that include elastic basal coupling are also found to exhibit bistability of

synchronized states, even in the absence of hydrodynamic interactions [45].

While we note that the model does not correspond directly to Chamydomonas flagella

and, as a result, we must be careful to draw any direct conclusions, the bistability it exhibits

(also highlighted by [45]) does point to a potential gait-switching mechanism that incorpo-

rates gait modulation and is consistent with experimental measurements of Ca2+ currents.

Specifically, the cell may maintain relevant quantities that stimulate flagellar actively in a

range where only the anti-phase breast stroke is stable. This corresponds to low Mb in our

model. Operating in this regime has the benefit that anti-phase beating would be robust

to perturbations as it is the only stable steady state. Modestly increasing activity levels

would allow for the continuous modulation of the anti-phase state, just as increasing Mb

changes the synchrony parameter along Branch II. A sufficiently large increase in activity,

however, would induce a transition to in-phase beating. Due to bistability, activity levels can

returned to modest levels and the flagella can maintain in-phase undulation. Finally, when

the activity level relaxes back to its very low rest value, beating returns to the anti-phase

state.

Generally speaking, this picture is consistent with the calcium ion (Ca2+) currents found

[46] to be important to changing flagellar synchrony in Chlamydomonas during photoshock

where the cell experiences a short, high intensity light pulse. This switching is also found

[12] to occur during mechanoshock, where Chlamydomonas experiences a sudden, intense

mechanical stimulus, and again, Ca2+ channels play a fundamental role in this response.

Experiments have shown [47] that large changes in Ca2+ concentrations cause flagella to
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transition from anti-phase breast-stroke to in-phase undulations, while more modest in-

creases lead to modulation of the anti-phase breast-stroke. In the case of photoshock, the

light pulse triggers the opening of ion channels, allowing the a large flux of Ca2+ into the

flagella, inducing the transition from anti-phase breast-stroke to in-phase undulations. After

this transition, the Ca2+ flux is maintained at a lower level for the 600ms that the flagella

perform in-phase undulation. A closer connection, however, will need to be made between

the models and the cellular mechanisms at play to test this hypothesis and elucidate more

clearly the precise reason for the transition. Further, bistability could potentially be used

as mechanism to control the synchronised states of artificial cilia. Such devices would, how-

ever, likely need to be driven independently and allow the artificial cilia to switch their beat

direction due to the flows generated by their neighbours. Magnetic cilia, such as those devel-

oped in [48–50], are driven externally by the same magnetic field. Thus, their dynamics are

influenced almost exclusively by the applied field, rather than the interactions with neigh-

bouring cilia, though tuning the magnetic properties of the cilia during device construction

can affect the overall collective state [50]. Devices actuated using light, such as in [51], with

illumination linked to device geometry, could instead be a potential system to explore the

bistability of synchronised states experimentally.
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